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Effects of Preview Time in Manual Tracking Tasks
Kasper van der El, Student Member, IEEE, Sharon Padmos, Daan M. Pool, Member, IEEE,

Marinus (René) M. van Paassen, Senior Member, IEEE, and Max Mulder, Member, IEEE

Abstract—In manual control tasks, preview of the target
trajectory ahead is often limited by poor lighting, objects, or
display edges. This paper investigates the effects of limited
preview, or preview time, in manual tracking tasks with single-
and double-integrator controlled element dynamics. A quasi-
linear human controller model is used to predict human behavior
adaptations offline, by finding the model parameters that yield
optimal performance at each preview time. These predictions
are then verified by fitting the same model to measurements
from a human-in-the-loop experiment, where subjects performed
a tracking task with eight different preview time settings between
0 and 2 s. Results show that tracking performance improves and
that the model’s “look-ahead” time parameters increase with
increasing preview time. Beyond a certain preview time, approx-
imately 0.6 and 1.15 s in single- and double-integrator tasks,
respectively, additional preview evokes no further adaptations.
The offline model predictions closely match the experimental
results, which thereby promises to facilitate similar quantitative
insights in other tasks with restricted preview.

Index Terms—Manual control, modeling, parameter estima-
tion, preview time, system identification

I. INTRODUCTION

PREVIEW information about a future trajectory to follow

is present in many manual control tasks. A clear example

of preview is the road that is visible ahead when driving [1].

The extent of the visible preview is always limited by the

horizon, fog, poor lighting, objects, or display edges. The

“preview time” is the time required to reach the farthest visible

point on the previewed trajectory at the current velocity. It

has been shown that Human Controllers (HCs) can better

follow a target trajectory when the preview time increases, in

tasks ranging from display tracking [2]–[7] to car driving [8]–

[11]. However, task performance is typically stable when the

preview time exceeds a certain minimum, or “critical” preview

time, which is known to range between 0.3-1.5 s, depending on

the control task [3]–[6], [8]. To assure safe manual operation in

control tasks with restricted preview, it is essential to quantify

and, if possible, predict the critical preview time and the

performance degradation at lower preview times.

The effects of preview time on HC behavior are as of yet

not fully understood. Task characteristics (or variables) such

as the Controlled Element (CE) dynamics and target trajectory

bandwidth also evoke HC behavior adaptations [12], [13],

and influence the effects of preview, including the critical

time [5], [14]. Attempts to quantify the effects of preview

time through control-theoretic modeling of driver steering [1],
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[15]–[18] and manual tracking [2], [3], [5], [19] account

for HCs’ use of preview in fundamentally different ways.

We recently proposed a new quasi-linear model for preview

tracking tasks [19], which captures measured HC multiloop

control dynamics in tracking tasks with 0 s (pursuit) and 1 s

of preview. Preliminary experimental results suggest that this

model can also capture HC adaptation to preview time [7],

but this was only shown for rate control tasks with preview

times between 0 and 1 s. The model’s physically interpretable

parameters can be directly estimated from experimental data

using system identification, yielding novel quantitative insights

into how HCs use preview. This already led to an initial set of

“verbal adjustment rules” that cover HC adaptation to the CE

dynamics in preview tracking tasks [14]. Unfortunately, we

currently lack the understanding and experimental data that

are required to formulate similar rules for the effects of other

task variables, such as available preview time [13].

The goal of this paper is to quantify the effects of preview

time in manual tracking tasks; in particular, we investigate the

critical preview time and changes in task performance and HC

control behavior. As the CE dynamics are known to strongly

affect HCs’ use of preview [14], we investigate the effects of

preview time with both Single Integrator (SI, rate control) and

Double Integrator (DI, acceleration control) CE dynamics.

We will first use the quasi-linear preview model from [19]

to theoretically predict the effects of preview time offline, by

finding the model parameters (i.e., the HC’s behavior) that

minimize the tracking error in closed-loop model simulations.

Second, we verify these predictions with measurements from

a human-in-the-loop experiment, in which eight subjects per-

formed the same target-tracking and disturbance-rejection task,

with eight different preview times between 0 and 2 s (well

above reported critical preview times [3]–[6], [8]). To explic-

itly quantify HCs’ adaptation to preview time, we apply a

nonparametric, multiloop system identification technique [20],

and we make a least-squares fit of the preview model to the

measurement data to estimate the model’s parameters.

This paper is structured as follows. First, Section II intro-

duces the considered preview tracking task and the preview

control model from [19]. Predictions of the effects of preview

time are presented in Section III, followed by the experimental

method and the applied identification techniques in Section IV.

Section V summarizes the experiment results and compares

them to the predictions. The paper ends with a discussion and

our main conclusions in Sections VI and VII, respectively.

II. THE CONTROL TASK

Fig. 1 illustrates the considered control task and shows the

principal terminology used throughout this paper. The HC’s
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Fig. 1. Preview displays with different preview times (a), illustration of the control task (b), and the model for HC preview tracking behavior from [19] (c).

task is to give control inputs u(t) to the CE such that the CE

output x(t) (white circle on the display, Fig. 1a) horizontally

follows the target signal ft(t) (black cross) as closely as

possible, while the CE output is simultaneously perturbed by

a disturbance signal fd(t). In other words, the HC should

minimize the horizontal tracking error e(t)= ft(t)−x(t). On

the displays (Fig. 1a) the target signal ft([t, t + τp]) ahead

is also visible (winding line) up to the preview time τp s

ahead. The previewed target signal can be used by the HC

to anticipate the future horizontal movements of the current

target marker. When τp is zero, only the current target is visible

and a classical pursuit task is obtained [10].

The model of HC behavior in preview tracking tasks

from [19] is depicted in Fig. 1c. The model is quasi-linear, with

linear time-invariant transfer functions H( jω) that account

for the majority of the HC’s behavior, and a remnant signal

n(t) that captures the remaining time-variations, nonlinearities,

and noise. HC use of the full previewed target is modeled

with two responses. The main, low-frequency, “far-viewpoint”

response allows for most performance improvement relative

to zero-preview, pursuit tasks, while the auxiliary, high-

frequency, “near-viewpoint” response improves performance

slightly more at a cost of a substantial increase in control

effort [14]. The far-viewpoint response involves an identi-

cal feedback control-strategy as in compensatory tracking

tasks [12]; however, the error e⋆(t) that is minimized is not

the true error e(t), but the difference between the filtered

target at the far viewpoint τ f s ahead and the CE output:

E⋆( jω) = Ho f
( jω)eτ f jω Ft( jω)−X( jω), with the capital let-

ters denoting the Fourier transforms of the respective signals.

The low-pass smoothing filter Ho f
( jω) is given by:

Ho f
( jω) = K f

1

1+Tl, f jω
, (1)

with target weighting gain K f and time constant Tl, f . HCs

completely ignore the target signal variations when K f=0,

while K f=1 indicates a response to the true advanced error,

at least at those frequencies sufficiently below the smoothing

filter cutoff 1/Tl, f [14]. In the time domain, the low-pass

filter in (1) can be interpreted as the weighted average of the

previewed target up to the far viewpoint, such that τ f is the

most distance point on the previewed trajectory that is used by

the HC, while Tl, f quantifies the portion of the visible preview

that is used for smoothin the trajectory.

The modeled error response Hoe⋆
( jω) is a reduced form of

McRuer et al.’s precision model [21]:

Hoe⋆
( jω) = Ke⋆(1+TL,e⋆ jω). (2)

Here, Ke⋆ is the error response gain and TL,e⋆ is the lead time

constant. Possible lag equalization is omitted in (2), as such

behavior is normally absent in SI and DI tasks [12]. In SI

tasks no lead equalization is required and (2) reduces to Ke⋆
1.

The HC’s physical limitations are also included in this inner

loop: τv is the response time delay and Hnms( jω) represents

the neuromuscular activation dynamics [23], modeled here as

a second-order mass-spring-damper system [19],

Hnms( jω) =
ω2

nms

( jω)2 +2ζnmsωnms jω +ω2
nms

, (3)

with a break frequency ωnms and damping ratio ζnms.

The open-loop, near-viewpoint response Hon( jω), although

not always initiated by all HCs, is used in parallel with the

far-viewpoint response to better track the highest frequencies

of the target signal [14], [19]. Whether HCs apply a near-

viewpoint response likely depends on their motivation to attain

optimal performance (it requires substantial effort [14]), and

familiarity with the task’s CE dynamics and target signal,

which is essential for applying an open-loop feedforward con-

trol strategy effectively. Longer preview times may trigger the

near-viewpoint response, as the HC’s knowledge of the target

signal improves. With 1 s of preview, most subjects were found

to apply a near-viewpoint response in SI tasks, but not in DI

1Note that preview tasks with SI dynamics may evoke some low-frequency
lag-lead behavior [22]; as this behavior was absent in our experiment, the
lag-lead dynamics are excluded from the SI model in this paper.
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tasks [14], as accurate feedforward control with these unstable

dynamics is difficult [24], [25]. Although not all subtleties of

the near-viewpoint response are yet understood, its dynamics

appear to approximate a simple differentiator [14]:

Hon( jω) = Kn jω, (4)

with gain Kn, and the target τn s ahead as the

input. In the following, we will analyze two models:

the “Full Model” (FM) with parameter vector

Θ = [Kn τn K f Tl, f τ f Ke⋆ TL,e⋆ ωnms ζnms τv]
T , as well

as a “Reduced Model” (RM) that omits the near-viewpoint

response (i.e., no Kn and τn).

III. OFFLINE MODEL PREDICTIONS

In this section, we use the preview model from [19] to

predict the effects of preview time on HC behavior and track-

ing performance. Two scenarios are investigated: a Reduced

Model Prediction (RMP) and a Full Model Prediction (FMP),

obtained with the RM (Hon( jω)=0) and FM (Hon( jω) is used)

versions of the model, respectively.

A. Approach

Humans are known to be adaptive controllers that optimize

their control gains [12], [16], [26], [27]. This adaptation

can be expressed mathematically with an optimality crite-

rion that reflects the HC’s goals, like a weighted combina-

tion of optimized performance and minimized control effort.

Motivated HCs typically aim mainly for optimal tracking

performance [12], [26], so a good prediction of the model

parameter vector Θ is obtained by minimizing the variance

of the error, σ2
e (Θ). The variance can be calculated in the

frequency domain by integrating the power spectral density

function of the error signal [28].

To calculate the tracking error, we first lump the modeled

HC dynamics from the previous section into two describing

functions Hot ( jω) and Hox ( jω), which represent the HC’s total

response to the target and CE output signals (see Fig. 2 for

the corresponding equivalent control diagram [14], [19]):

Hox = Hoe⋆
Hnmse

−τv jω , (5)

Hot = [Honeτn jω +Ho f
eτ f jω Hoe⋆

]Hnmse
−τv jω (6)

Here, the jω terms are dropped for brevity. Expressing

X( jω) as a function of the external inputs Ft( jω), Fd( jω),
and N( jω) using Fig. 2, and substituting the result into

E( jω)=Ft( jω)−X( jω), yields for the tracking error [29]:

E =
(1+Hce(Hox −Hot ))Ft −Fd −HceN

1+Hox Hce

. (7)

ft(t)

x(t)
Hce

fd(t)

u(t)

n(t)

+

− +

+

+

+Hot

Hox human

controller

Fig. 2. Two-channel equivalent control diagram of the HC.

B. Settings and Procedure

HC adaptation to variations in τp between 0 and 2 s is

predicted by minimizing σ2
e (Θ), subject to a minimum phase

margin constraint of 20 deg. The preview time is varied with

a 0.01 s resolution, and at each preview time the near- and

far-viewpoint locations are constrained to the visible preview

region, that is 0≤τn≤τp and 0≤τ f≤τp. The human’s limitation

parameters and lead time constant are kept fixed, their values

are based on the preview tracking data in [14] (see Table I).

For the RMP, the error variance is optimized for the remaining

four model parameters: Ke⋆ , K f , τ f , and Tl, f . For the FMP,

the error variance is optimized for Kn, τn, and Tl, f , while Ke⋆ ,

K f , and τ f are fixed at the optimal values found in the RMP,

as their interaction with the desired near-viewpoint response

is small [14]. However, Tl, f is again free to allow for an

attenuated far-viewpoint response at high frequencies, which

may improve the effectiveness of the near-viewpoint response.

The predicted performance is compared to human-in-the-loop

data from previous experiments for verification, see Table II.

The target signal is a multisine composed of 20 sinusoids:

ft(t) =
20

∑
i=1

At [i]sin(ωt [i]t +φt [i]), (8)

with amplitude At [i], frequency ωt [i], and phase φt [i] of the ith

sinusoid. The disturbance signal is defined identically, whereas

remnant is set to zero. The target and disturbance signals

have mutually exclusive frequencies, which are distributed

logarithmically between 0.1 and 16 rad/s at integer multiples

of the 0.0524 rad/s (=2π/120) fundamental frequency, corre-

sponding to a 120 s measurement time. Both signals have a

square amplitude spectrum, with a 1.5 rad/s bandwidth beyond

which the amplitudes are attenuated. The variance of the target

σ2
ft

and disturbance σ2
fd

signal is 1.61 cm2 and 0.26 cm2,

respectively. Both signals are identical to those used in [14],

[19], see [19] for the exact values of At , ωt , and φt .

C. Results

Fig. 3 shows that both the RMP and FMP predict an

improved tracking performance with increasing preview time

TABLE I
OFFLINE MODEL SIMULATIONS PARAMETER SETTINGS.

Hce( jω) TL,e⋆ , s ωnms, rad/s ζnms, - τv, s

SI 1.5/( jω) - 10.5 0.35 0.26

DI 5/( jω)2 1.5 8 0.45 0.3

TABLE II
PREVIOUS PREVIEW TRACKING EXPERIMENTS.

dist. forcing bandwidth, no.
CE added function rad/s subj.

Reid [3] SI no filt. noise - 6
Ito [4] SI, DI no multisine 2.5 2
Tomizuka [5] SI, DI no filt. noise 1.5 3
Van der El [7] SI yes multisine 1.5 6
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τp, as the normalized error variance σ2
e /(σ

2
ft
+σ2

fd
) decreases.

In SI and DI tasks the RMP predicts that optimal performance

is reached with approximately 0.6 and 1.15 s of preview,

respectively. Additional preview beyond this critical preview

time is not necessary for optimal performance, hence invariant

HC behavior is predicted (the gray areas in Fig. 3). Below

the critical preview time (white areas), HCs can benefit from

additional preview by adapting their control behavior. The

FMP predicts that a near-viewpoint response can considerably

reduce the critical preview time. However, actual HCs can

likely initiate this open-loop feedforward response only at

higher preview times, when full periods of the high-frequency

target sinusoids’ are explicitly visible within τp [14].

Fig. 3 shows that various previous human-in-the-loop ex-

periments [3], [5], [7] indeed measured optimal performance

around our predicted critical preview time, both in SI and DI

tasks. Only Ito & Ito [4] found a somewhat lower critical

preview time, which may be due to the higher bandwidth

of their target signal (2.5 rad/s, see Table II). The predicted

performance variations with preview time are also similar to

the previous measurements [3]–[5], [7]. However, our current

model predictions generally yield better overall performance,

as no remnant is included.

The RMP shows that a large performance benefit is possible

by only adapting the far-viewpoint response. In particular, it

is beneficial to keep the far viewpoint located at the endpoint

of the previewed target signal (i.e., τ f=τp in Fig. 3) when

more preview becomes available below the critical preview

time. Moreover, Tl, f increases in DI tasks, such that more of

the high frequencies are cognitively filtered from the target

signal with additional preview, as a longer portion of the

trajectory is used for smoothing. Predicted adaptations of the
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σ
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Fig. 3. Predicted tracking performance as compared to previous experiments
(top), and the optimal model parameters (bottom); the transition to the shaded
region indicates the predicted critical preview time.

other RMP parameters, Ke⋆ and K f , are presented together

with the experimental measurements in Section V.

The FMP shows that, at short preview times, the near view-

point’s ideal position is also at the endpoint of the previewed

target (i.e., τn=τ f=τp in Fig. 3). This indicates a single-

viewpoint control strategy, as the near- and far-viewpoint

responses are based on the same point on the target ahead.

However, as explained before, it is unlikely that actual HCs

initiate a near-viewpoint response at low preview times. At

higher preview times (but still below the critical preview time),

τn is predicted to be smaller than τ f , which suggests that a two-

viewpoint control strategy can yield improved performance.

In this preview region it is more likely that actual HCs

apply a near-viewpoint response, because there is additional

preview beyond τn that can be used to plan this open-loop

feedforward control. As shown before [14], only a marginal

performance improvement can be achieved relative to a far-

viewpoint control strategy only. With sufficient preview, the

optimal near-viewpoint position is around 0.4 and 0.7 s ahead

in SI and DI tasks, respectively.

IV. EXPERIMENTAL VALIDATION: METHOD

The predicted effects of varying preview time are verified

with a human-in-the-loop experiment. Details of this experi-

ment are presented here, together with the system identification

techniques applied to analyze the measurements.

A. Hypotheses

We expect that the offline model predictions, which assume

that HCs aim only for optimal performance, accurately reflect

actual HC control adaptation to preview time. This leads to

the following three hypotheses:

I: Below the critical preview time, HCs adapt their control

behavior (characterized by estimated preview model pa-

rameters) to increasing preview time to improve tracking

performance. Most importantly, they position their far-

viewpoint as far ahead as possible (τ f≈τp).

II: Beyond the critical preview time, HC behavior and

tracking performance are invariant with preview time.

III: The critical preview times in SI and DI tasks are 0.6 s

and 1.15 s, respectively.

We formulate no hypothesis about the near-viewpoint re-

sponse, because its possible contribution is only small (see

Section III), and, in addition, previous work has shown that

it is often difficult to consistently detect the near-viewpoint’s

presence from experimental data [14].

B. Experiment Design

1) Independent Variables: In the experiment, we tested

eight preview times between 0 and 2 s, in both SI and DI

tasks (their dynamics were equal as in the offline analysis).

The tested preview times included 0 and 1 s to allow for

direct comparison with earlier data [14], [19], preview times

of 0.25, 0.5 and 0.75 s were added in-between for a sufficient

resolution in the predicted “region of behavior adaption” (see

Fig. 3). In addition, preview times of 1.33, 1.66 and 2 s
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were included to also ensure sufficient data in the “region of

constant behavior”. The full factorial of the two independent

variables was tested, yielding 16 conditions in total.

2) Control Variables and Apparatus: The experiment was

conducted in the fixed-base simulator in the Human-Machine

Interaction Laboratory at TU Delft. The setup was identical to

the preview tracking experiment in [19]. Subjects were seated

directly in front of the screen on which the preview display

of Fig. 1 was shown with dark green lines and indicators

on a black background. Subjects gave control inputs with a

side-stick at their right-hand side (0.45 cm/deg input scaling),

which was configured to only rotate around its roll axis. The

target and disturbance forcing functions were also identical

to those used in [19]. Five different phase realizations of the

target signal were used to prevent subjects from recognizing

parts after repeated exposure.

3) Participants, Instructions, and Procedure: Eight male

volunteers participated in the experiment. They were aged

between 23 and 54, with an average of 32 years, and their

tracking experience ranged from novice to experienced. Sub-

jects were instructed to minimize the tracking error, and the

RMS value of this error was reported to the subjects after every

run to motivate them to keep improving their performance.

To reduce effects of fatigue, the experiment was divided

over two sessions, which took place on different days. Half of

the subjects performed the SI conditions first, while the other

half of the subjects performed the DI conditions first. The

eight different preview times for each CE were performed in a

single session. The conditions were presented to the subjects

in a random order following a Latin-square design. Before

starting each experimental session, subjects could familiarize

themselves with the CE and all eight preview times, each

being presented once in descending order from 2 to 0 s.

Next, the subjects performed a single condition until at least

8 runs were completed and performance was stable in the

last five consecutive runs, which were then saved for later

analysis. Then subjects moved on to the next condition. Each

run lasted 128 s, but only the last 120 s were used for analysis,

the first 8 s were used as run-in time. Breaks of around

15 minutes were scheduled after completion of each two

conditions, yielding a total time per session of approximately

4 hours, depending on the amount of training required.

C. Data Analysis

The use of two multisine forcing functions, see (8), both

with 20 input frequencies that are integer multiples of the

measurement base frequency (ωb=2π/120 rad/s), facilitates

the following frequency-domain analysis.

1) Tracking Performance: The variance of the error σ2
e

was used as measure of tracking performance. The variance

was calculated per measurement run in the frequency domain

by integrating the power spectral density function [28]. The

contribution of the target and disturbance signals to the error

variance were obtained by integrating only over the respective

forcing function input frequencies, while the remainder was

considered to be due to remnant. Hereby, we neglected the

small remnant contribution at the input frequencies.

2) HC Dynamics Estimation: First, frequency responses

of Hot ( jωi) and Hox( jωi) in Fig. 2 were estimated, at the

input frequencies ωi of the target and disturbance signals.

An instrumental-variable multiloop system identification tech-

nique was used, based on Fourier coefficients [20], [30]. The

same method was used to derive the preview tracking model,

see [19], [20] for a complete derivation.

Second, following the same procedure as in [19], the model

parameter vector Θ was estimated by minimizing a least-

squares criterion based on the modeling error ε:

Θ̂ = argmin
Θ

40

∑
i=1

|ε( jωi|Θ)|2, (9)

where: ε( jωi|Θ) =U( jωi)−Û( jωi|Θ). (10)

U( jωi) is the measured control output, averaged over

the five measurement runs in the frequency domain.

The modeled control output Û( jωi|Θ) is obtained from

open-loop simulations of the model in Fig. 2, that is,

Û( jωi|Θ) = Ĥot ( jωi|Θ)Ft( jωi)− Ĥox( jωi|Θ)X( jωi). To min-

imize (9) a Nelder-Mead simplex algorithm was used, con-

strained only to avoid solutions with negative parameters. The

best estimate of Θ (given by the lowest criterion value) was

selected from 100 randomly initialized optimization runs. In a

few cases, when the best solution yielded clear outliers in the

parameters, the second best solution was manually selected.

The Variance Accounted For (VAF) was used as measure for

the model’s quality-of-fit: VAF =
[

1− (σ2
ε /σ2

u )
]

×100% [31].

A VAF of 100% reflects that the modeling error ε is zero and

that model perfectly describes the measurements.

3) Perfect Target-Tracking: HCs track the target perfectly

when X( jω)/Ft( jω)=1. This condition is satisfied when the

target frequency response (Hot in Fig. 2) equals the “perfect”

target response HP
ot
( jω) = Hox( jω)+1/Hce( jω), see [14] for

a detailed derivation. We calculated HP
ot
( jωi) based on the

nonparametric frequency response estimate of Hox( jωi).

V. EXPERIMENTAL VALIDATION: RESULTS

A. Nonparametric Results

1) Tracking Performance: Fig. 4 shows that the measured

tracking performance improves when more preview becomes

available, both in SI and DI tasks. Performance improves

mainly at the target frequencies, although the remnant fre-

quencies also contribute slightly (especially in DI tasks);

differences at the disturbance input frequencies are small,

which corresponds to [14]. Remarkably, in DI tasks, a minor

performance degradation is observed when τp is increased

from 1.66 to 2 s. Possibly, the additional information distracts

the HC or evokes a reduced-effort control strategy. Fig. 4

shows that subjects attain most of the total performance

improvement already with only 0.5-0.75 s (SI) and 1-1.66 s

(DI) of preview.

In SI tasks, the experimental performance at target and

disturbance frequencies matches the RMP almost perfectly. In

DI tasks, the RMP consistently predicts superior performance

than measured experimentally. Likely, the lack of damping in

the CE led to increased remnant and a less linear response

(see also [14], [19]), resulting in suboptimal performance.
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Fig. 4. Experimental tracking error variance, separated into contributions at
the target, disturbance, and remnant frequencies; average over eight subjects
and 95% confidence intervals, corrected for between-subject variability. The
offline model predictions (RMP) are also shown for comparison.

Nonetheless, the exponential trend of improving performance

with increasing preview time is almost identical in the RMP

and the experiment, and the predicted critical preview times

(0.6 s for SI and 1.15 s for DI) are in the same range where

the experimental performance stabilizes.

2) Target Response Dynamics: Fig. 5 shows estimates of

the HCs’ target frequency response function Hot ( jω). In both

SI and DI tasks, longer preview times yield markedly more

phase lead in Hot ( jω), which thereby better matches the

response required for perfect target-tracking HP
ot
( jω) (solid

gray line). When the preview time exceeds 0.5 and 0.75 s in

SI and DI tasks, respectively, Hot ( jω) approximates HP
ot
( jω)

up to frequencies around 4 rad/s, which is well above the target

signal bandwidth (1.5 rad/s). As such, all low-frequency, high-

amplitude sinusoids are tracked well and the target-tracking

performance improvement saturates with higher preview times,

see Fig. 4. In DI tasks, more preview additionally evokes

a decreased magnitude of Hot ( jω) at higher frequencies,

corresponding to the predicted increase of the low-pass filter

time constant (see Fig. 3).

Whereas the frequency response estimates are a smooth

function of frequency in SI tasks, the estimates in DI tasks are

more variable. This is supported by the standard errors of the

frequency response estimates in Fig. 6, and is a consequence

of both the larger remnant (see Fig. 4), and a general ignorance

to track the higher frequencies of the target signal in DI tasks.

Fig. 6 also shows the dynamics predicted by the offline

model optimization. Overall, the experiment data matches the

predictions reasonably well, although neither RMP nor FMP

match the data perfectly. In SI tasks, the measured magnitude

peak at the higher frequencies is higher than the RMP, but

below the FMP, which suggests that at least several subjects

initiated a near-viewpoint response. In DI tasks, the measure-

ments match best with the FMP, both in phase and magnitude,

but the difference between RMP and FMP is small. Fig. 6

also reveals some low-frequency lag in the measurements for

SI tasks, which are not captured by the predictions; such lag

been observed before in preview tracking [19], [22], but is not

explicitly included in the model here for simplicity.
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Fig. 5. Frequency response estimates of the experimental target response
dynamics (average of all subjects). HP

ot
( jω) is only shown for τp=0 s, as it

is identical at all preview times due to invariance of Hox ( jω) (not shown).
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Fig. 6. Comparison of experimental and predicted target response dynamics
for τp=0.75 s (SI tasks) and τp=1.33 s (DI tasks). Measurements indicate
the average over the eight subjects and standard error.

B. Modeling Results

1) Variance Accounted For: Both RM and FM fits yield

average VAFs well above 85% in SI tasks, and well above 75%

in DI tasks (see Fig. 7). The VAF in DI tasks is lower than in

SI tasks because of a larger remnant contribution (see Fig. 4),

which is not captured by the linear model. The FM provides

a consistently higher VAF than the RM, but at the cost of two

additional model parameters (Kn and τn). With increasing τp

the improvement in VAF from RM to FM increases, indicating

a stronger near-viewpoint response. With short preview times,



VAN DER EL et al.: EFFECTS OF PREVIEW TIME IN MANUAL TRACKING TASKS 7

τp, s

V
A

F
,

%

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

60

70

80

90

100

FM fit

RM fit

DISI

Fig. 7. Average model VAFs, errorbars indicate the standard deviation.

below 0.5 s for SI dynamics and 0.75 s for DI dynamics, the

RM and FM describe the data equally well. Therefore, we will

not further consider the FM fit results (nor the FMP) at these

lower preview times in the remainder of this paper.

2) RM Fits – Internal-Error Response and Physical Limi-

tations: Fig. 8 shows the model’s (RM) estimated feedback

parameters. In SI tasks, the experimental error response gain

Ke⋆ is approximately invariant, while a 25% decrease was

predicted below the critical preview time. The response time

delay τv decreases from around 0.3 to 0.2 s. In DI tasks, Ke⋆

increases from 0.15 to 0.28, and while the response delay

decreases only slightly, substantially less lead is generated

(TL,e⋆ drops from 2.7 to 1.5 s). These trends suggest that

longer preview times evoke a more aggressive (higher gain)

internal-error response at low frequencies, which corresponds

to Fig. 5. The neuromuscular break frequency ωnms is in

general invariant with preview time, but the damping ratio

ζnms decreases approximately 20-30%.

3) RM Fits – Far-Viewpoint Response: In Fig. 9, the black

markers show the estimated far-viewpoint parameters and the

gray solid line represents the RMP; these match almost per-

fectly, especially in SI tasks. As predicted, below the critical

preview time, subjects position their far-viewpoint as far ahead

as possible (τ f≈τp), see Fig. 9a. Although we estimated the

model parameters without applying constraints, τ f is always

estimated lower than the preview time (gray shaded area in

Fig. 9a), or only slightly higher. As such, τ f indeed appears

to accurately reflect the farthest point along the previewed

trajectory ahead that subjects use for control.

When the preview time is above 0.75 s (SI) and 1 s (DI) the

experimental τ f data stabilize. Some subjects (presented with

markers in Fig. 9) select a far viewpoint near τp even beyond

the critical preview time, which was also reported in [7] for a

SI task. However, with the highest preview time of 2 s all but

one subject (in the DI task) set their τ f close to the predicted

values. Slightly more preview than the critical preview time

thus induces HCs to position their far viewpoint at the visually

salient endpoint of the winding preview line, opposed to the

“optimal” position. This behavior appears to depend on the

display scaling, because subjects focused even more on the

trajectory’s endpoint while using the smaller preview displays

in the experiments in [7], [14].

In DI tasks, the estimated far-viewpoint gain K f increases

with preview time, as predicted (Fig. 9b). However, most

subjects adopt a K f well below the unity value of the RMP
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Fig. 8. Internal-error response and physical-limitation parameters obtained
from RM fits (FM fits yield similar results), average over eight subjects and
95% confidence intervals, corrected for between-subject variability. The offline
predictions are also shown for comparison.

beyond the critical preview time, which explains why the

attained tracking performance is worse than predicted (see

Fig. 4). In SI tasks, subjects adopt a K f close to unity,

which corresponds to the RMP above the critical preview time.

With short preview times the RMP predicted a lower K f ; the

difference is approximately 25% for τp=0 s, which is equal but

opposite to the error in the Ke⋆ prediction, such that the total

target response gain K f Ke⋆ was in fact predicted accurately.

The far-viewpoint time constant Tl, f (Fig. 9c) increases with

preview time, especially in DI tasks, which indicates that

subjects respond less to the target’s higher frequencies when

τp increases. Equivalently, a higher Tl, f suggests that subjects

use a longer region of the target signal for smoothing, which

is indeed facilitated by the visible preview. Fig. 9c shows that,

as expected, Tl, f is typically smaller than τp. In SI tasks, the

measured Tl, f values around 0.1 s imply a break frequency

of approximately 10 rad/s, which is near the highest forcing

function excitation frequency; the effect of the estimated filter

on the model output is thus small. This corresponds roughly

with the RMP, which predicts that Tl, f≈0 s. In DI tasks, a

higher Tl, f was expected from the RMP. Likely, for the less
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Fig. 9. Estimated far-viewpoint parameters (means and individual subjects)
compared to the predictions. Different results are slightly shifted horizontally
to prevent overlapping. FM fits (and predictions) are omitted for low preview
times because their VAFs are similar to the RM fits.

aggressive target response gain K f adopted by the subjects

relative to our model predictions, it is rewarding to attenuate

less of the high frequencies with the low-pass filter.

4) FM Fits: Fig. 9 also shows the far-viewpoint parameters

estimated with the FM, while Fig. 10 shows the two additional

near-viewpoint parameters. Estimated values for τ f and K f

differ only marginally between RM and FM fits and the trend

with changes in preview time is identical. Tl, f is in general

higher in the FM fit, compared to the RM fit, because the

HC’s high-frequency target response can be captured by the

model’s near-viewpoint response.

The near-viewpoint position (τn, Fig. 10a) is occasionally

estimated to be far beyond the shown preview (i.e., τn≫τp).

Such physically impossible values of τn occur when no near-

viewpoint response is in fact present, as this effectively makes

τn a free, and ineffectual, parameter. Disregarding the esti-

mates well beyond the preview time limit, τn is approximately

invariant with preview time, and stabilizes on average around

τp, s
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Fig. 10. Estimated near-viewpoint parameters (means and individual subjects)
compared to the predictions. Results for low preview times are omitted,
because the VAFs of the RM and FM fits are very similar here.

the predicted values of 0.4 and 0.7 s in SI and DI tasks,

respectively. Substantial between-subject differences are, how-

ever, visible: while most subjects select a near viewpoint that

is clearly closer ahead on the previewed target than the far

viewpoint, several other subjects select their two viewpoints

very close together (i.e., τn≈τ f ), which suggests that these

subjects in fact apply a single-viewpoint control strategy.

The experimental near-viewpoint response gains Kn

(Fig. 10b) are also approximately constant above the critical

preview time. Clearly, the FMP predicted a much higher

Kn compared to the experimental measurements, especially

in SI tasks and at lower preview times. This corresponds

to results in [14], where it was also shown that a higher

value of Kn yields improved performance, but also increased

control activity. It thus appears that our subjects also aimed

for limited control effort, and not just optimal performance,

as was assumed in our offline predictions.

VI. DISCUSSION

The goal of this paper was to quantify and model human

control adaptation to variations in available preview time,

between 0 and 2 s. To this end, we used the preview tracking

model from [19] both to make offline predictions and to

analyze measurements from a human-in-the-loop experiment.

Corresponding to previous results [2]–[11] we found evi-

dence supporting our first hypothesis that, below the critical

preview time, HCs adapt their control behavior with increasing

preview to improve tracking performance. HCs reposition their

far viewpoint to the endpoint of the previewed target (i.e.,

τ f≈τp). Moreover, especially in DI tasks, HCs respond more
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aggressively to the target (higher K f ) with more preview, while

using the longer preview span to better smooth the target signal

(higher Tl, f ), effectively ignoring more of the high frequencies.

Just below the critical preview time, more compelling

evidence for the presence of a near-viewpoint response occurs.

The FM, which includes the near-viewpoint response, captures

the measured HC behavior more accurately than the “far-

viewpoint only” RM, and the near viewpoint’s position is

estimated within the range of visual preview for more subjects

(i.e., τn≤τp). HCs initiate a near-viewpoint response only

when the preview time exceeds approximately 0.5 s (SI) and

0.75 s (DI), with average τn values around 0.2 s (SI) and 0.6 s

(DI). The preview time needed for an effective near-viewpoint

response approximately equals a full period (0.54 s) of the

target signal’s highest frequency component (ωt=11.57 rad/s).

This suggests that the near-viewpoint response is in fact not

a response to a single point ahead, but to a full sinusoid that

is recognized from the target signal. When initiated, the near-

viewpoint dynamics are mostly invariant with preview time.

Our second hypothesis was that HC behavior and tracking

performance are invariant beyond the critical preview time.

This was generally confirmed, but with two caveats. First,

several subjects need markedly more preview than the critical

preview time to move their far viewpoint away from the

endpoint. Second, in DI tasks, tracking performance degraded

slightly when the preview time increased from 1.66 s to 2 s.

However, no consistent, explanatory adaptation of behavior

(i.e., model parameters) was found, so more measurements are

required to establish whether the additional preview distracts

HCs, evokes a subtle adaptation to a lower effort control

strategy, or is an artifact of our modest sample size.

The critical preview time, the transition from adaptive to

invariant HC behavior (and performance), was measured to be

0.5-0.75 s (SI) and 1-1.66 s (DI). This is in the same range

as the 0.6 s (SI) and 1.15 s (DI) predicted offline, confirming

our third hypothesis. Note that these values are not universal:

the perfect target tracking dynamics HP
ot
( jω) reveal that the

critical preview time depends not only on the CE dynamics,

but also on the HC’s feedback response. For example, a

high (feedback) gain Ke⋆ leads to a lower critical preview

time because the CE output intercepts the target signal faster.

This lack of critical preview time invariance corresponds to

measurements in previous preview tracking experiments [3]–

[7], and driving tasks [8], [11].

Compared to similar preview tracking experiments [7], [14],

our subjects on average displayed more skilled, proficient man-

ual control behavior, including better tracking performance, a

lower response delay τv and a higher control gain Ke⋆ . Possible

causes include that our subjects performed more tracking runs

(eight conditions per CE) and that the experimental preview

display was slightly larger compared to [7], [14], which are

both known to allow for superior performance. While the

presented performance and critical preview times may not be

representative for a general population (our subjects were eight

relatively young males) and for other tasks, the observed low-

level control adaptations to preview time are generalizable,

and can be predicted offline for other populations and tasks

using the preview model from Fig. 1, see Section III.

The ultimate goal of our work is to obtain a full quantitative

understanding of HC manual control behavior and adaptation

in general control tasks with preview (e.g., driving). Here,

we have established the effects of preview time in tracking

task, while previous work has quantified the effects of CE

dynamics [14] and the viewing perspective [22]. Other key

variables that may trigger human adaptation, but which effects

are still poorly understood, are the target signal bandwidth,

availability of additional feedback cues (e.g., from vehicle

rotations, optic flow, or physical motion), and available lane

width (i.e., boundary-avoidance, opposed to our line-tracking

task). We intend to quantify human adaptation to these ele-

ments in future work, to eventually facilitate predictions and

evaluation of HC behavior in a broad range preview control.

VII. CONCLUSION

This paper investigated the effect of preview time in man-

ual tracking tasks, using a combination of offline model

predictions and human-in-the-loop measurements. Increasing

the preview time results in better tracking performance, and

larger “look-ahead” time model parameters, indicating that

subjects respond to a part of the previewed trajectory farther

ahead. Beyond a certain “critical” preview time, both track-

ing performance and control behavior stabilize, and effects

of additional preview are small. The critical preview time

is not invariant; in tasks with single- and double-integrator

controlled element dynamics humans use around 0.6 and 1.15 s

of preview, respectively. Measured control adaptations were

predicted accurately with the quasi-linear manual control mod-

eling framework. This approach promises to provide insight

into human performance limitations due to restricted preview,

including the critical preview time, also in other control tasks.
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