
Multi-Layered Telemetry Assessing Global Performance of LEO
Internet Providers

Enhancing LEO Internet Providers Telemetry with User-Initiated Active Measurements

Janusz Urbański1

Supervisor(s): Dr. Nitinder Mohan1, Dr. Tanya Shreedhar1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2025

Name of the student: Janusz Urbański
Final project course: CSE3000 Research Project
Thesis committee: Dr. Nitinder Mohan, Dr. Tanya Shreedhar, Dr. Qing Wang

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Enhancing LEO Internet Providers Telemetry with User-Initiated Active Measurements

Abstract
Low Earth Orbit (LEO) satellite constellations, particularly SpaceX’s
Starlink, have quickly gained popularity and have become a viable
alternative to traditional terrestrial Internet Service Providers (ISPs)
in recent years. However, due to their novelty and unique archi-
tecture, research into their performance is limited, especially one
comparing LEO and terrestrial internet. This paper will demon-
strate how user-initiated active measurements can be used to both
gather new data about LEO internet and assess and compare the
performance of individual networks. First, performance metrics
that reflect typical internet usage scenarios, such as web browsing
and video streaming, are chosen. Next, a test suite is developed to
collect data about one’s network. It also augments this data with
location information to aid in later comparison. This data can then
be used for comparisons between individual networks as well as
in further research. The last step integrates the suit developed into
a web based platform that aims to provide a wide variety of infor-
mation about Starlink’s performance, architecture and allow users
to gauge the potential benefits of transitioning from terrestrial to
LEO internet could provide them.

1 Introduction
Low Earth Orbit (LEO) internet satellite constellations have become
an increasingly popular method of accessing the internet in recent
years. They promise fast and reliable internet to people living in
remote or underserved regions [42]. This helps solve the digital
divide highlighted in the UN-Habitat report on global digital access
disparities [45]. LEO satellite internet also provides internet access
during air, land, and sea [38, 41, 43, 44] travel, enhancing both
passenger comfort as well as aiding in remote rescue operations
and business endeavors.

Several LEO internet satellite constellations exist, including Star-
link [39], Project Kuiper [2], and OneWeb [15]. Among them, Star-
link is currently the largest, with over 5 million registered users
[36] as well as more than 7500 active satellites in orbit [24]. Con-
sequently, this research primarily focuses on Starlink, though the
methods developed can be easily extended to other constellations.

Despite high interest in the technology, there exists only limited
research into its performance due to significant challenges in its
measurement and the novelty of LEO internet. For instance, limi-
tations in accurate IP based geolocation capability and the lack of
public IPv4 addresses for most Starlink users [47], limit researchers’
ability to collect accurate global performance data without deploy-
ing complex measurement infrastructure. While some work has
examined localized [22, 25] as well as global [26, 47] Starlink per-
formance, there is no research enabling the comparison of any one
local network to the local performance of Starlink. This creates not
only a knowledge gap, but also a challenge for individuals evaluat-
ing the potential benefits of the transition from terrestrial to LEO
internet.

This research aims to demonstrate how user-initiated active
measurements can be used to address this gap while also solving
the challenge individuals face. This goal is achieved by developing a
test suite that allows users to assess their own network performance
in comparison with other local terrestrial and LEO networks. In

Figure 1: Starlink’s architecture diagram. Repro-
duced from Nitinder Mohan et al., “A Multifaceted
Look at Starlink Performance,” in Proceedings of
the 2024 Web Conference (WWW’24), ACM, 2024.
https://doi.org/10.1145/3589334.3645328. © 2024 Copy-
right held by the owner/author(s). Licensed to ACM.

addition to providing insights for individual users, it also allows
for gathering data that contributes to further research efforts.

This suite is then integrated with a larger platform that provides
end-users with information on Starlink’s future predicted perfor-
mance as well as its infrastructure. While there exist several tools
that allow for assessing Starlink’s performance and infrastructure
[33, 40, 46] and while networkmeasurement tools like speed test are
widely used [7, 20, 32], there is no unified platform combining this
information and enabling meaningful cross-network performance
comparisons.

2 Background
In the context of internetmeasurements, telemetry entails collecting
data about the performance of a network. Those measurements can
be categorized as active when performed by the user or passive
when relying on data collected by third parties [27]. This paper
will focus on active measurements initiated by an end-user and
their benefit when assessing the performance of a network. Multi-
layered telemetry entails measuring different network metrics (e.g.
latency and throughput) over different protocols, this provides a
holistic look into given networks performance instead of focusing
on a single use case scenario.

The following description of Starlink’s architecture is largely
based on the work by Mohan et al. [26]. The architecture of Starlink
is unique compared to terrestrial internet. The constellation consists
of thousands of satellites orbiting at approximately 550 km above
Earth’s surface. The majority of the satellites have an orbit with the
inclination of 53°but there are also some that use 70°and 97.7°orbits
to serve the polar regions. As can be seen in Figure 1, Starlink
uses a "Bent-Pipe" architecture. Points of Presence (PoP) usually
located at internet exchange points provide an interface between the
terrestrial and Starlink network. Each PoP is then connected to one
or more Ground Stations (GS). The Ground Stations use the Ka-band
link to connect to the satellites. Each end-user requires a Starlink
Terminal called "Dishy". This terminal uses phased-array antennas
to connect to a satellite using the Ku-band link. Each satellite can
connect to multiple Dishys. It can then relay the connection to a
GS forming a "bent-pipe" or if the distance between the end-user



Janusz Urbański

Table 1: Metrics chosen to be measured

Category Metric Unit
Web Browsing Latency to Google DNS 𝑚𝑠

Speed Test Download Speed 𝑀𝑏/𝑠
Speed Test Upload Speed 𝑀𝑏/𝑠
Speed Test Latency 𝑚𝑠

Speed Test Packet Loss %
Dash streaming Buffer Level 𝑠

Dash streaming Bitrate 𝐾𝑏/𝑠
Dash streaming Resolution 𝑝𝑥

Dash streaming Framerate 𝐹𝑃𝑆

WebRTC Latency 𝑚𝑠

WebRTC Audio Packet Loss %
WebRTC Audio Jitter 𝑚𝑠

WebRTC Audio Bitrate 𝐾𝑏/𝑠
WebRTC Video Packet Loss %
WebRTC Video Jitter 𝑚𝑠

WebRTC Video Bitrate 𝐾𝑏/𝑠

and the GS is too great, the newer satellites [35] are capable of laser
Inter Satellite Link (ISL), and can relay the signal between multiple
satellites before reaching a GS forming an "extended bent-pipe".

3 Methodology
3.1 NetMet
3.1.1 Introduction to NetMet. NetMet [5] is a browser extension
that allows the user to run comprehensive network tests using their
browser. It includes a web browsing test, a speed test, and a video
streaming test. The web browsing test uses browser’s built-in Per-
formance API [29] to measure DNS lookup, server connection, TLS
negotiation, and first byte time. It achieves this by using Chrome
Extension APIs [11] to launch new browser windows with popular
regional websites and monitor the loading process of those pages.
The speed test measures upload and download throughput, latency,
and packet loss. It utilizes the M-lab’s NDT test [8, 19, 20]. The
video streaming test is based on the DASH protocol [28]. It utilizes
the dash.js [9] and the Akamai test servers [1] to measure bitrate,
buffer level, framerate, and resolution of a video stream. As this
tool fits the goal of performing multi-layered measurements and is
open-source it was chosen as the basis of the test suite. However,
because one of the goals of the test suite and the larger platform
was to provide the end-user with a seamless test experience, the
tool had to be adapted to work as a part of a website instead of a
browser extension.

3.1.2 Web Test. Adapting the web browsing test presented the
most significant challenge. The NetMet implementation of the test
used Chrome Extension APIs to open a new browser window and
connect to websites inside it. While the connection was being es-
tablished, it used the resource timing module of the browser’s Per-
formance API. Lastly Chrome Extension APIs were again used to
send messages back to the main extension’s window about the mea-
sured performance. However, this proved impossible to replicate
inside a webpage without the access to Chrome Extension APIs due

to cross-origin resource sharing (CORS) policy. Because of CORS
restrictions, when performing a web request, timing properties are
inaccessible to the client unless the server explicitly permits it via
the ‘Timing-Allow-Origin‘ header [29]. As this would require ac-
quiring permissions frommajor website providers around the world
it was deemed infeasible. A potential method to circumvent this
issue would be to only measure to a server under the researcher’s
control. However, that would introduce a bias in measurements as
the server is based in the Netherlands, users running the measure-
ments from further locations would receive worse results. Due to
these limitations, a simplified approach was chosen. The test would
be based on latency measurements to website provider edge nodes.
This would still give a result indicative of web browsing perfor-
mance while circumventing the issues detailed above. Google’s DNS
endpoint was chosen as the target of the measurement due to its
ubiquity. Ten HTTP GET requests are sent to "https://dns.google"
with caching disabled. The time between the sending of the re-
quest and the response arriving is then measured to calculate the
latency. The test result is calculated as the median of all the latency
values. The median was chosen over mean due to its higher resis-
tance to outliers. The choice to use only ten samples was due to its
correlation with total test time, on slow networks, the test could
take minutes if a high sample size was chosen, hindering the user
experience.

3.1.3 Speed Test. This test was adapted in almost its entirety from
NetMet. The only major change made was the process of deciding
on the test server. Due to the limited accuracy of IP based geolo-
cation when using Starlink [47] the server chosen to perform the
test can sometimes not be the closest one resulting in reduced test
accuracy. However, there exists a dataset created by another re-
searcher participating in this project [14], that provides a mapping
of cities to their best-performing servers locations. This dataset
was augmented to map the best-performing server for each region
and country, based on how many cities in a region or country use
a particular server. The method of choosing the server for the mea-
surement is to first check if a direct mapping exists between a city
and a server, if so, this mapping is used, then the fallbacks become
the best-performing server for the region, the best-performing
server for the country, and lastly the standard selection method
used in the NDT test [21].

While this approach helps to mitigate the bad server selection
issue, it has some major conceptual and implementation limitations.
First it requires the mapping to be periodically updated as the
internet infrastructure might change in time. Second, while for
cities with a direct mapping the advantage of this method is clear
as it will always pick the best server as long as the dataset is up
to date, in the fallback criteria where it chooses the server based
on the region or country of the city the advantage of this method
becomes unclear. To assess the difference in performance between
these cases and the standard NDT method would require a large
scale global study, which is beyond the scope of this work. This
issue could be circumvented by running the test using bothmethods
and selecting the better result, this could also be used as a way to
acquire the data on the performance of both methods. However,
this solution can degrade user experience as the test can take a long
time on slower networks and running it twice augments the issue.



Enhancing LEO Internet Providers Telemetry with User-Initiated Active Measurements

It can also be argued that while the chosen server selection method
might not always provide a better server it introduces stability
as each city will always be mapped to the same server as long as
the data set doesn’t change, reducing the variance in the collected
data. The last major limitation of this method is an implementation
one. As the dataset contains mappings to server locations rather
than specific servers, a request to M-Lab’s NDT Locate API [18] is
required to acquire the server URL. The API doesn’t provide the
ability to filter servers by city location, only region and country
level filtering is possible, it also only returns 4 servers with each
request. Because in the current version of the dataset only the city
and country of each server are stored, a request is made based on
the country of the server. This creates an issue in big countries
where more than 4 servers are present, this will frequently lead
to the request providing no mapping for the city in question. The
current implementation falls back to using the standard NDT server
selection method if the issue occurs. The better solution would be
to augment the dataset with server regions as it’s unlikely a region
will contain more than 4 servers.

3.1.4 Streaming test. The DASH streaming test was adapted from
NetMet with no major changes. The only minor change was the
reduction of test runtime from 30 to 20 seconds. This is due to
Starlink performing periodic reconfigurations every 15 seconds
that can have significant impact on the performance [26]. This
ensures that in each test only one such event can occur. The data is
then aggregated using the mean. In this case a mean was chosen
in order to capture the impact sudden connection quality changes
have on the stream.

3.2 WebRTC
3.2.1 Introduction to WebRTC. WebRTC is a technology that en-
ables real time peer-to-peer communications in the browser [12].
It was chosen as an augmentation to the NetMet test suite as it
complements it well by covering a common internet use case not
covered by NetMet. Its peer-to-peer nature is also unique and no
prior research exists on its interaction with Starlink.

3.2.2 WebRTC test. TheWebRTC test establishes a video and audio
stream between the user and a server-side WebRTC client. It then
uses the built-in RTCStatsReport function of the WebRTC API
[31] to gather statistics about the connection. Using this method,
data about the bitrate, packet loss, and jitter for both the audio
and video stream is collected. Latency data is also recorded, but
this functionality is limited to Chromium-based browsers due to
API limitations [30]. There also exist some additional limitations
in the implementation. Due to privacy considerations the video
and audio stream sent to the server is blank. Consequently, only
the incoming traffic is measured. The peer-to-peer nature of the
connection creates a problem: there must be a way for two clients
located behind different NATs to connect. To solve this, STUN
servers are used [10]. Google’s public STUN servers were used in
the implementation. STUN however is not perfectly reliable and
there might be a case where a connection can’t be made. While this
could be solved by using TURN servers, this increases complexity
and the lack of STUN connectivity can itself be a viable result
to the user, due to this TURN servers were not employed. This

Figure 2: The front page of the web platform.

Figure 3: The popup confirming the accuracy of IP geoloca-
tion.

introduces bias as the other client is always located on a server in
the Netherlands, this leads to reduced accuracy of measurements
performed outside of Europe. Overcoming this issue would require
the creation of global WebRTC test network which is beyond the
scope of this work. There exist however a mitigating factor, from
the end-user perspective the comparisons are always performed
between nearby networks, this causes the bias on both of them to
be similar and cancel out, so while the absolute values are biased,
the relative ones are not. Because of this and the uniqueness of this
kind of measurement when it comes to Starlink, the test was chosen
to be included. The test again takes 20 seconds and uses mean for
aggregation for the reasons highlighted at the end of section 3.1.4.

4 Integration and Results
4.1 The integrated platform
The test suite was then integrated into a web based platform pro-
viding information about Starlink’s performance, it’s front page
can be seen in Figure 2. The platform was created using the Vue
Framework [49] for the front-end and a FastApi [34] back-end, the
database was created using PostgreSQL [16]. The database used
for the platform is first created using the Global Telemetry Tool
created as a different part of this project [13]. The tool can then
be used to populate the database with unified Cloudflare and NDT
test dataset. Then migrations created using Alembic [4] are run,



Janusz Urbański

Figure 4: A world map with cities available for selection.
Colored based on the NDT server mapping accuracy.

Figure 5: The comparison screen. Keep in mind that the data
was created for demonstration purposes and might not be
representative of real network performance.

to create the additional tables required for conducting the mea-
surements. This particular tech stack was chosen as it allows for
creating complex web applications as well as due to personal pref-
erence and previous experience of the members of the research
team. The platform’s source code is publicly available on GitHub
[3]. The further sub-sections will provide insights into the workings
and implementation of each of the major components enabling the
network performance comparison. Each sub-section will contain
a reference to a section in the appendix containing screenshots of
the platform showcasing the relevant feature.

4.2 Location gathering
The first step needed for providing the comparison is acquiring
the location of the user. The location is collected down to the city
level, but some large cities have finer distinctions (e.g. Manhattan
and Brooklyn are treated as separate cities). This provides enough
accuracy for the comparison while also providing only limited in-
formation about end-users precise address. Due to the unreliability
of IP based geolocation when using Starlink [47], a different means
of precisely acquiring the user location had to be developed. To this
end a hybrid approach was chosen, first there is a call to a geoloca-
tion API [17], this API was chosen because its free version allows
HTTPS requests, has precision down to the city level, provides

ASN information used to distinguish between different internet
providers, and allows for 50,000 requests per month. After the API
returns a response the user gets asked if the inferred location is cor-
rect, see Figure 3, if the user confirms the selection the application
proceeds to the measurement.

If the location can not be inferred from users IP or the result
is not correct the user is given an option to choose their location
on a map, see Figure 4. Cities are represented by different colored
dots indicating the accuracy of the NDT server mapping discussed
in section 3.1.3. The user can then get details about each dot by
hovering over it and select it by clicking to proceed to measurement.
The map was implemented using MapLibre GL JS library [23]. The
city location data uses a free dataset created by Simple Maps [37].
The city data is filtered to only include countries with Starlink
operational, converted to the GeoJSON format, and added as a layer
to the map.

While this approach provides a good basis for accurate and
user-friendly location gathering, it faces some issues. The first
and biggest issue is the lack of standardization in location names.
Countries are referred to by standardized two-letter codes [48] and
the dataset contains both special character containing and ascii
variant of city names, regions however lack this standardization,
the free version of the dataset includes only localized region names
(e.g. Zuid-Holland), on the other hand the geolocation API uses
english region names. This causes comparisons made by region to
be unreliable, an effort was taken in the implementation to mitigate
this issue as much as possible but it is not a perfect solution. The
better solution would be to use a paid dataset, either the premium
version of the Simple Maps dataset or the dataset provided by the
author of the geolocation API. This would also help solve an issue of
data sparsity. The free dataset only provides data for selected larger
cities. This causes regions like Alaska to have only a few cities to
select from. To meet the goal of allowing users in remote places
access to accurate measurements, upgrading the dataset should be
a priority before launching the service publicly.

4.3 Measurement
After user location is confirmed the sequence of test from the suit
are performed. They are launched sequentially as to not impact
each other. The implementation details for this step are provided in
section 3. The speed and streaming tests use an interface adapted
from NetMet while running. The WebRTC test has an interface
based on the streaming test due to their similarity. This interface is
visible while the tests are running to give the user proper feedback
about their progress.

4.4 Comparison
The comparison for all tests is performed in the samemanner.When
a test finishes, it sends its result along with the user location to the
server. The server then queries the database to find tests performed
in the same city. However, if less than ten test results are available
it then tries to query the data based on the region of the user. If
there are again less than ten tests it queries the data on a country
level, as this has greatly reduced accuracy, the query only returns
archived Starlink results, which due to it’s global nature and unified
architecture has less variation over large distances than terrestrial,



Enhancing LEO Internet Providers Telemetry with User-Initiated Active Measurements

where some regions might be served by high speed fiber internet
and others by radio internet. The fallback threshold was chosen
arbitrarily and should be adjusted based on the dataset size and
user feedback. The query returns top hundred results sorted by
time, Starlink results are provided with a bias that makes them
always appear on top of the list, as long as the measurement was
taken in the last month. A threshold of 100 was chosen to balance
the sample size, data clarity, and response size. It should be further
tweaked based on user testing.

This data is then sent back to the user and presented in the
form of scatter plots, see Figure 5. The plots were created using
the Chart.js library [6], it provides a large amount of customization
options thatmake it easy to tweak existing and add new charts in the
future. The user can then hover on the highlighted dot representing
their measurement to see its details. For speed, streaming, and rtc
tests multiple charts corresponding to the different metrics can be
viewed. This remains largely a proof of concept, many different
visualization styles for this data could be created, that will allow
users to find one that best fits their preferences.

4.5 Cold start
While the speed test data can be compared to unified NDT and
Cloudflare dataset created by another researcher participating in
this project [14], all the other tests suffer from a cold start. There
are no publicly available datasets containing this data and so the
only comparisons that can be made is with the data collected by
users using the platform. This might slow down the adoption of
the site due to limited functionality at the launch. However, this
problem is somewhat counteracted by the wide scope of services
provided by the platform, the additional services could help build
a user base even when the active measurement suite has limited
functionality.

5 Conclusion and Future work
User-initiated active measurements are a powerful tool for evaluat-
ing Starlink and other network performance. They create unique
opportunities for both researchers and users to learn more about
networks. While passive data enables large-scale system compar-
isons, it cannot be used to directly compare individual networks, a
gap filled by active measurements. Active measurements can also
be used as a source of passive data, making global data collection
critical for future research on terrestrial and LEO networks. The
test suite and platform created during this research enable the col-
lection of varied network performance data while providing users
with a powerful tool for gaining deeper insight about Starlink’s
performance.

This research also showed some limitations active measurements
face when run inside a website environment. The most important
insight is that security policies like CORS limit one’s ability to gather
meaningful data about the performance of third-party websites.
This shows that for accurate measurements of such data, tools like
browser extensions have a clear advantage. This reduces the ability
to gather crowd-sourced data on those metrics, as the need to install
a browser extension may reduce user participation.

On the other hand, tests run from inside a website face fewer
limitations while measuring the performance of tasks like video

streaming or conferencing. Due to this and the limited work done
on measuring the interaction of those technologies with Starlink,
this suggests a clear direction for further research, to provide new
insights into LEO internet. Data collected by the platform developed
during this research can then be used to aid in this further work.

Some work still remains that should be addressed before the plat-
form can be publicly launched. Most notably extensive testing has
to be performed on a wide variety of systems to ensure a seamless
experience. There are also some considerations to be made with
the third party tools and datasets used, a lot of them were chosen
due to being freely available, for the production version, choosing
more capable paid tools, should be considered to reduce some of
the limitations encountered during development.

6 Responsible research
While no sensitive user data was collected during this research,
the platform developed as part of it will store and handle such
information. A clear privacy policy was provided, which users can
access and agree to before any data is collected. An active effort was
made to minimize the risk of identifying users from the data col-
lected. While network performance data is not considered sensitive,
location, time, and internet provider (ISP) data could be. Because
of this, the location is collected only at a city level, as it provides
sufficient accuracy without exposing any particular addresses. ISP
data, even when combined with city and time information, exposes
no additional details about the user, as the list of ISPs operating
in each region is already publicly available. Considering all this, it
is unlikely that any additional sensitive user data can be inferred
from the collected information.

All the code and data used in the development, as well as the
final product were made publicly available on GitHub [3]. This
allows other researchers to verify the validity of the methods used,
and provides a way to replicate the results and conclusions reached
by this research.

An effort was made to minimize the appearance of any biases in
the data collected. To achieve this, the use of centralized servers was
largely avoided, as this could introduce extensive bias, considering
the global scope of the work. However, it could not be eliminated
completely. The WebRTC test had to use centralized servers due
to technical limitations. To minimize its impact, the existence of
this limitation was documented so any individuals using the data
gathered are aware of its existence.

The references used as the basis of this work were based on
known reputable sources such as ACM.When information could not
be sourced from scientific work published in reputable journals, it
was checked to appear multiple times in different articles, websites,
blogs, and other similar public sources. All sources of information,
data, and code were credited and license terms were followed.

References
[1] Akamai. 2025. Akamai Stream Validation and Player Test. Retrieved 2025-05-23

from https://players.akamai.com/
[2] Amazon. 2025. Projec Kuiper. Retrieved 2025-06-20 from https://www.

aboutamazon.com/what-we-do/devices-services/project-kuiper
[3] Christiaan Baraya, Cristian Benghe, Janusz Urbański, and Vlad-Stefan Graure.

2025. Global Telemetry Data Processing System. Retrieved 2025-06-22 from
https://github.com/TUD-BScResearchProject-6079/global-telemetry-cli

[4] Michael Bayer. 2025. Alembic. Retrieved 2025-06-20 from https://github.com/
sqlalchemy/alembic

https://players.akamai.com/
https://www.aboutamazon.com/what-we-do/devices-services/project-kuiper
https://www.aboutamazon.com/what-we-do/devices-services/project-kuiper
https://github.com/TUD-BScResearchProject-6079/global-telemetry-cli
https://github.com/sqlalchemy/alembic
https://github.com/sqlalchemy/alembic


Janusz Urbański

[5] Rohan Bose. 2025. NetMet: A Tool for Network Measurement. Retrieved 2025-06-20
from https://github.com/boserohan/netmet

[6] Chart.js. 2025. Simple yet flexible JavaScript charting library for the modern web.
Retrieved 2025-06-20 from https://www.chartjs.org/

[7] Cloudflare. 2025. Internet Speed Test - Measure Network Performance | Cloudflare.
Retrieved 2025-06-10 from https://speed.cloudflare.com/

[8] Code for Science & Society (CS&S). 2025. Measurement Lab. Retrieved 2025-05-23
from https://www.measurementlab.net/

[9] Dash Industry Forum. 2025. dash.js. https://github.com/Dash-Industry-Forum/
dash.js

[10] Getstream. 2025. Learn STUN & TURN Servers on WebRTC. Retrieved 2025-06-20
from https://getstream.io/resources/projects/webrtc/advanced/stun-turn/

[11] Google. 2025. API reference. Retrieved 2025-06-20 from https://developer.chrome.
com/docs/extensions/reference/api

[12] Google. 2025. WebRTC. Retrieved 2025-06-20 from https://webrtc.org/
[13] Vlad-Stefan Graure. 2025. Global Telemetry Data Processing System. Re-

trieved 2025-06-20 from https://github.com/TUD-BScResearchProject-6079/
global-telemetry-cli

[14] Vlad-Stefan Graure. 2025. Multi-Layered Telemetry Assessing Global Perfor-
mance of LEO Internet Providers: Towards a Global Telemetry System for Evalu-
ating LEO ISP Performance.

[15] Eutelset Group. 2025. OneWeb. Retrieved 2025-06-20 from https://oneweb.net/
[16] PostgreSQL Global Development Group. 2025. PostgreSQL: The World’s Most

Advanced Open Source Relational Database. Retrieved 2025-06-10 from https:
//www.postgresql.org/

[17] IpInfo. 2025. IpInfo. Retrieved 2025-06-10 from https://ipinfo.io/
[18] Measurement Lab. 2025. Locate API v2. Retrieved 2025-06-20 from https://www.

measurementlab.net/develop/locate-v2/
[19] Measurement Lab. 2025. ndt7-js. https://www.speedtest.net/
[20] Measurement Lab. 2025. Speed Test by Measurement Lab. Retrieved 2025-06-10

from https://speed.measurementlab.net/
[21] Phillipa Gill Loqman Salamatian. 2025. How M-Lab Determines User Location and

Selects Servers. Retrieved 2025-06-20 from https://www.measurementlab.net/
blog/improving-m-lab-geolocation/

[22] Sami Ma, Yi Ching Chou, Haoyuan Zhao, Long Chen, Xiaoqiang Ma, and
Jiangchuan Liu. 2022. Network Characteristics of LEO Satellite Constellations:
A Starlink-Based Measurement from End Users. arXiv:2212.13697 [cs.NI]
https://arxiv.org/abs/2212.13697

[23] MapLibre. 2025. MapLibre GL JS. Retrieved 2025-06-20 from https://maplibre.
org/maplibre-gl-js/docs/

[24] Jonathan McDowell. 2025. Satellite statistics: Satellite and Debris Population.
Retrieved 2025-06-20 from https://planet4589.org/space/stats/active.html

[25] François Michel, Martino Trevisan, Danilo Giordano, and Olivier Bonaventure.
2022. A first look at starlink performance. In Proceedings of the 22nd ACM Internet
Measurement Conference (Nice, France) (IMC ’22). Association for Computing Ma-
chinery, New York, NY, USA, 130–136. https://doi.org/10.1145/3517745.3561416

[26] NitinderMohan, AndrewE. Ferguson, Hendrik Cech, Rohan Bose, Prakita Rayyan
Renatin, Mahesh K. Marina, and Jörg Ott. 2024. A Multifaceted Look at
Starlink Performance. In Proceedings of the ACM Web Conference 2024 (Singa-
pore, Singapore) (WWW ’24). ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3589334.3645328

[27] Venkat Mohan, YR Janardhan Reddy, and K Kalpana. 2011. Active and passive
network measurements: a survey. International Journal of Computer Science and
Information Technologies 2, 4 (2011), 1372–1385.

[28] Mozilla. 2025. DASH Adaptive Streaming for HTML video. Retrieved 2025-
06-20 from https://developer.mozilla.org/en-US/docs/Web/API/Media_Source_
Extensions_API/DASH_Adaptive_Streaming

[29] Mozilla. 2025. Resource timing. Retrieved 2025-05-23 from https://developer.
mozilla.org/en-US/docs/Web/API/Performance_API/Resource_timing

[30] Mozilla. 2025. RTCIceCandidatePairStats: currentRoundTripTime property. Re-
trieved 2025-06-20 from https://developer.mozilla.org/en-US/docs/Web/API/
RTCIceCandidatePairStats/currentRoundTripTime

[31] Mozilla. 2025. RTCStatsReport. Retrieved 2025-06-20 from https://developer.
mozilla.org/en-US/docs/Web/API/RTCStatsReport

[32] Ookla. 2025. Speedtest by Ookla - The Global Broadband Speed Test. Retrieved
2025-06-10 from https://www.speedtest.net/

[33] Mike Puchol. 2025. Starlink Satellite Coverage Visualization. Retrieved 2025-04-22
from https://starlink.sx/

[34] Sebastián Ramírez. 2025. FastAPI. Retrieved 2025-06-10 from https://fastapi.
tiangolo.com/

[35] Via Satellite. 2021. Latest Starlink Satellites Equipped with Laser
Communications, Musk Confirms. Retrieved 2025-06-20 from
https://www.satellitetoday.com/launch/2021/01/25/latest-starlink-satellites-
equipped-with-laser-communications-musk-confirms/

[36] SatNews. 2024. Analyst: Starlink at 5m users. Retrieved 2025-05-02 from https:
//news.satnews.com/2024/12/19/analyst-starlink-at-5m-users/

[37] SimpleMaps. 2025. World Cities Database Basic. Retrieved 2025-06-20 from
https://simplemaps.com/data/world-cities

[38] SpaceX. 2025. ROAM WITH STARLINK. Retrieved 2025-05-02 from https:
//www.starlink.com/roam

[39] SpaceX. 2025. Starlink. Retrieved 2025-05-02 from https://www.starlink.com/
[40] SpaceX. 2025. Starlink Coverage Map. Retrieved 2025-04-22 from https://www.

starlink.com/map
[41] SpaceX. 2025. Starlink For Aviation. Retrieved 2025-05-02 from https://www.

starlink.com/business/aviation
[42] SpaceX. 2025. Starlink For Homes. Retrieved 2025-05-02 from https://www.

starlink.com/residential
[43] SpaceX. 2025. Starlink For Land Mobility. Retrieved 2025-05-02 from https:

//www.starlink.com/business/mobility
[44] SpaceX. 2025. Starlink For Maritime. Retrieved 2025-05-02 from https://www.

starlink.com/business/maritime
[45] UN-Habitat. 2023. Assessing the Digital Divide. Retrieved 2025-05-02

from https://unhabitat.org/programme/legacy/people-centered-smart-cities/
assessing-the-digital-divide

[46] Unknown. 2025. Unofficial Starlink Global Gateways & PoPs. Re-
trieved 2025-05-02 from https://www.google.com/maps/d/u/0/viewer?mid=
1805q6rlePY4WZd8QMOaNe2BqAgFkYBY&hl=en_US&ll=-3.81666561775622e-
14,0&z=2

[47] Bingsen Wang, Xiaohui Zhang, Shuai Wang, Li Chen, Jinwei Zhao, Jianping Pan,
Dan Li, and Yong Jiang. 2024. A Large-Scale IPv6-Based Measurement of the
Starlink Network. arXiv:2412.18243 [cs.NI] https://arxiv.org/abs/2412.18243

[48] Wikipedia. 2025. List of ISO 3166 country codes. Retrieved 2025-06-20 from
https://en.wikipedia.org/wiki/List_of_ISO_3166_country_codes

[49] Evan You. 2025. Vue.js. Retrieved 2025-06-10 from https://vuejs.org/

https://github.com/boserohan/netmet
https://www.chartjs.org/
https://speed.cloudflare.com/
https://www.measurementlab.net/
https://github.com/Dash-Industry-Forum/dash.js
https://github.com/Dash-Industry-Forum/dash.js
https://getstream.io/resources/projects/webrtc/advanced/stun-turn/
https://developer.chrome.com/docs/extensions/reference/api
https://developer.chrome.com/docs/extensions/reference/api
https://webrtc.org/
https://github.com/TUD-BScResearchProject-6079/global-telemetry-cli
https://github.com/TUD-BScResearchProject-6079/global-telemetry-cli
https://oneweb.net/
https://www.postgresql.org/
https://www.postgresql.org/
https://ipinfo.io/
https://www.measurementlab.net/develop/locate-v2/
https://www.measurementlab.net/develop/locate-v2/
https://www.speedtest.net/
https://speed.measurementlab.net/
https://www.measurementlab.net/blog/improving-m-lab-geolocation/
https://www.measurementlab.net/blog/improving-m-lab-geolocation/
https://arxiv.org/abs/2212.13697
https://arxiv.org/abs/2212.13697
https://maplibre.org/maplibre-gl-js/docs/
https://maplibre.org/maplibre-gl-js/docs/
https://planet4589.org/space/stats/active.html
https://doi.org/10.1145/3517745.3561416
https://doi.org/10.1145/3589334.3645328
https://doi.org/10.1145/3589334.3645328
https://developer.mozilla.org/en-US/docs/Web/API/Media_Source_Extensions_API/DASH_Adaptive_Streaming
https://developer.mozilla.org/en-US/docs/Web/API/Media_Source_Extensions_API/DASH_Adaptive_Streaming
https://developer.mozilla.org/en-US/docs/Web/API/Performance_API/Resource_timing
https://developer.mozilla.org/en-US/docs/Web/API/Performance_API/Resource_timing
https://developer.mozilla.org/en-US/docs/Web/API/RTCIceCandidatePairStats/currentRoundTripTime
https://developer.mozilla.org/en-US/docs/Web/API/RTCIceCandidatePairStats/currentRoundTripTime
https://developer.mozilla.org/en-US/docs/Web/API/RTCStatsReport
https://developer.mozilla.org/en-US/docs/Web/API/RTCStatsReport
https://www.speedtest.net/
https://starlink.sx/
https://fastapi.tiangolo.com/
https://fastapi.tiangolo.com/
https://www.satellitetoday.com/launch/2021/01/25/latest-starlink-satellites-equipped-with-laser-communications-musk-confirms/
https://www.satellitetoday.com/launch/2021/01/25/latest-starlink-satellites-equipped-with-laser-communications-musk-confirms/
https://news.satnews.com/2024/12/19/analyst-starlink-at-5m-users/
https://news.satnews.com/2024/12/19/analyst-starlink-at-5m-users/
https://simplemaps.com/data/world-cities
https://www.starlink.com/roam
https://www.starlink.com/roam
https://www.starlink.com/
https://www.starlink.com/map
https://www.starlink.com/map
https://www.starlink.com/business/aviation
https://www.starlink.com/business/aviation
https://www.starlink.com/residential
https://www.starlink.com/residential
https://www.starlink.com/business/mobility
https://www.starlink.com/business/mobility
https://www.starlink.com/business/maritime
https://www.starlink.com/business/maritime
https://unhabitat.org/programme/legacy/people-centered-smart-cities/assessing-the-digital-divide
https://unhabitat.org/programme/legacy/people-centered-smart-cities/assessing-the-digital-divide
https://www.google.com/maps/d/u/0/viewer?mid=1805q6rlePY4WZd8QMOaNe2BqAgFkYBY&hl=en_US&ll=-3.81666561775622e-14,0&z=2
https://www.google.com/maps/d/u/0/viewer?mid=1805q6rlePY4WZd8QMOaNe2BqAgFkYBY&hl=en_US&ll=-3.81666561775622e-14,0&z=2
https://www.google.com/maps/d/u/0/viewer?mid=1805q6rlePY4WZd8QMOaNe2BqAgFkYBY&hl=en_US&ll=-3.81666561775622e-14,0&z=2
https://arxiv.org/abs/2412.18243
https://arxiv.org/abs/2412.18243
https://en.wikipedia.org/wiki/List_of_ISO_3166_country_codes
https://vuejs.org/

	1 Introduction
	2 Background
	3 Methodology
	3.1 NetMet
	3.2 WebRTC

	4 Integration and Results
	4.1 The integrated platform
	4.2 Location gathering
	4.3 Measurement
	4.4 Comparison
	4.5 Cold start

	5 Conclusion and Future work
	6 Responsible research
	References

