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Abstract—Recent trends in automotive electronics such
as automated driving will increase the number and com-
plexity of electronics used in safety relevant applications.
Applications in logistics or ridesharing will require a spe-
cific year of service rather than the conventional mileage
usage. Reliable operations of the electronic systems must
be assured at all times, regardless of the usage condi-
tion. A more dynamic and on-demand way of assuring the
system availability will have to be developed. This paper
proposes a thermo-mechanical stress-based prognostics
method as a potential solution. The goal is achieved by
several novel advancements. On the experimental front,
a key microelectronics package is developed to directly
apply the prognostics and health management (PHM) con-
cept using a piezoresistive silicon-based stress sensor.
Additional hardware for safe and secure data transmis-
sion and data-processing is also developed, which is crit-
ically required for recording in situ and real-time data. On
the data-management front, proper data-driven approaches
have to be identified to handle the unique data set from
the stress sensor employed in the study. The approaches
effectively handle the massive amount of data that reveals
the important information and automation of the prognostic
process and thus to be able to detect, classify, locate
and predict the failure. The statistical techniques for di-
agnostics and the machine learning (ML) algorithms for
health assessment and prognostics are also determined to
implement the approaches in a simple, fast but accurate
way within the capacity of limited computing power. The
proposed prognostics approach is implemented with actual
microelectronics packages subjected to harsh accelerated
testing conditions. The results corroborate the validity of
the proposed prognostics approach.

Index Terms—Piezoresistive Stress Sensor, Data-driven,
Electronic Packages, Prognostics and Health Manage-
ment, Recurrent Neural Network, Machine Learning key-
words@ieee.org or visit http:/www.ieee.org/documents/
taxonomy_v101.pdf.

I. INTRODUCTION

ICROELECTRONICS packages are composed of
multi-layer dissimilar materials with complex geome-
tries. These composite interfaces, corners and edges are sub-
jected to various loading conditions during manufacturing as
well as operation [1]. The packaging technologies are used
to protect sensitive electronic components for various applica-
tions such as telecommunication, automotive and aerospace.
During operation, the internal stress state changes, due to
the coefficient of thermal expansion (CTE) mismatch among

the materials used in the package as well as the stress concen-
trations at material discontinuities, which can cause thermo-
mechanical related failures. According to [2] these failures
account for more than 65% of the total failures in electronics.

Prognostics is the process of predicting a future state (of
reliability) based on current and historic conditions. Prognos-
tics and health management (PHM) is a method that permits
the reliability of a system to be evaluated in its actual life-
cycle conditions, to determine the advent of failure, and
mitigate the system risks [3]. One of the ways to perform
prognostics is to measure the mechanical stresses directly
using a stress sensor. Such sensor was developed originally
to measure the manufacturing stresses [4], but was extended
successfully to various applications including transfer molding
[5], packaging [6], molding relaxation [7], prognostics [8] [9]
and condition monitoring [10] [11]. In [12] the sensor was
packages in a QFN and the stress field has been recorded
after the damage. Although, the damage was observed in the
stress field the limitation is that the delamination is imposed
apriori. Delamination was also reported in [13]. A flip chip as
an application was used during the reliability testing. While
the delamination was successfully monitored, the delamination
happened exactly at the sensor interface and only 11 measuring
cells was used.

In the previous related paper [8], delamination was success-
fully detected in overmolded electronic unit test vehicle using
such stress sensor. The propagation of the delamination was
also successfully monitored. Yet, the available experimental
data was limited (the delamination was apriori imposed), and
delamination was correlated with stress data only qualitatively.
This is the motivation of the current paper. Algorithms and
techniques for automated degradation estimation and predic-
tion for electronic packages using mechanical stress is not yet
reported.

Significantly more data are required to predict the health
condition quantitatively. They should be collected from multi-
ple samples, and each sample should provide continuous stress
signals from the healthy state to the state of complete failure.
The previous approach by which the data is handled manually
using a degradation model becomes simply unfeasible for such
large amount of data [8]. For example, raw data for each
sample goes up to 2.5 GB for 2500 Cycles. A Finite Element
Method validation of the current experiments used in this paper
was performed in [14]. A classical back propagation neural
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network was used to estimate the degradation. The results
showed that an improved model is needed.

In this paper, the stress-based PHM capability is extended
into a quantitative domain where accurate prediction of re-
maining useful life (RUL) becomes possible. The goal is
achieved by several major novel advancements:

« Non-destructive and in-situ detection of the delamination

during accelerated testing

o Successful classification of the data obtained from two

different failure modes

o Quantitative estimation of delamination location, state of

health and degradation of automotive electronic packages
using Machine Learning

In section II, the general PHM framework adopted in this
study is introduced. An experimental setup and a test vehicle
are described in Section III. Results from actual tests and
various strategies for evaluation and processing the data are
presented in Section IV. Diagnostics by means of failure
detection, location and classification is shown in Section V.
Section VI presents the Health Assessment and Prognostics.

[I. METHODOLOGY

In this section the PHM framework is presented. The
fundamentals of the methods used in the methodology is
also discussed. The workflow of the PHM methodology is
described in Figure 1.
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Data
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' Fault Classification

'
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Data Smoothing
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Fig. 1. Algorithm flowchart that depicts the workflow of the PHM
methodology and the corresponding hardware.

One of the most important aspects in PHM is the sensor data
selection, as it has to be sensitive to a damage of interest. A
piezoresistive silicon-based stress sensor was employed in this
study, due to its direct connection to any physical changes in
the package [15]. The stresses are calculated based on the two
measured quantities: (1) the stresses determined from pMOS
and nMOS current values and (2) the temperature determined
from the voltages. Both pMOS and nMOS (p and n chan-
nel MOSFETSs) transistors are used for the stress difference
D(oc) = oxx — oyy calculation and shear stress oxy,

respectively. These values are calculated from the following
relationship:

1 Ioyr — Itn

D = Ogu — = 1

(o) =0 Oyy 7_‘_24 Tovr + Iin (D

o 1 Iovr — Itn @)
o —wy Iour + Inn

where 711, m12,m44 are the piezoresistive coefficients of sili-
con; and I;y, Ioyr are the currents measured at the input
and output of the sensor, respectively. This data is then
passed through a preprocessing step that removes outliers,
smoothens the data and extracts the relative stresses caused
by the temperature change. More details about the theoretical
background of the stress sensor can be found in [16] and
the fundamentals of how to use such sensor in reliability are
described in detail in [15].

An acquisition unit (AU) is utilized to acquire the sensor
signals, and the second unit is to process and transmit the data
(PHM Central Unit). Through this platform, the data from the
sensors are collected, processed, and transmitted to a cloud or
a database server.

A visualization metric is used to observe any change in
the sensor data that might indicate a shift from the normal
operation. To automate this process, a failure detection algo-
rithm is used in parallel to check if the stress data is within
the threshold. Most of the failure detection algorithms can be
easily biased by some unknown operating conditions or some
other unexpected events. Therefore, a visualization metric is
necessary as a robust measure. After the failure is recognized,
a diagnostic tool is used to classify the data in groups, which
are subsequently assigned to a certain physical quantity. An
algorithm for degradation estimation and prediction is then
applied to quantitatively assess the failure.

Simple, fast and accurate models are chosen in this method-
ology. The process of choosing the algorithms is made based
on the performance evaluation in comparison with the failure
analysis. Scanning Acoustic Microscope (SAM) and cross-
sectioning are used collectively for the required detailed failure
analysis.

A. Acquisition Unit and Central PHM Unit

As mentioned earlier, the piezoresistive Silicon based stress
sensor was developed originally for measuring stresses during
the manufacturing processes [17]. A dedicated AU is required
to steer the sensor and to successfully record the data. The
first AU was developed together with the sensor [18], but its
large size and the small number of sensors for simultaneous
measurements made it impractical for in-situ applications. The
second AU developed by Palczynska [19] made the in-situ
measurements possible by scaling down the unit with a 12V
power source. In addition, a multiplexer was added to increase
the maximum number of sensors. More advancements are
required to cope with other challenging issues encountered in
actual applications: the large amount of data, further minia-
turization, data remote access, computing power, and long
running experiments. Such system is depicted in Figure 2.
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The newly developed AU consists of Arduino Yun Mini
board as well as a custom designed board. The former is
used to control and readout the sensor and the latter to power
and steer the sensor. The Arduino board is equipped with a
pcontroller and a pprocessor that sustains the Wi-Fi shield.

/

Acquisition Unit
Wi-fi Connection
Mechanical Stresses,
Current, Voltage, temperature] {Temperature, Time

) )

Fig. 2. Data Flow representation. On each chart is described the
electronic unit, the connection and the data output.

PHM Central Unit
Wi-fi Connection
Mechanical Stresses,
Temperature, Time

T

Stress Sensor Test Vehicle
Cable Connection

I[1l. EXPERIMENTAL SETUP AND TEST VEHICLE

One critical failure mechanism of semiconductor packages
is the loss of adhesion at interfaces causing delamination. Fail-
ure modes that are caused by delamination are the passivation
damage, wire-bond degradation, intermittent electrical failure,
and popcorn cracking.

A. Test Vehicle

The test vehicle (TV) used in this study is a Thin-Quad Flat
Package (TQFP) mounted on a Printed Circuit Board (PCB).
A TQFP encapsulates eight sensors on a single die, as depicted
in Figure 3. Each sensor consists of 60 measurement cells in a
6x10 matrix and every each cell contains the pMOS and nMOS
transistor, as shown in Figure 3. Seven TVs fabricated from 2
different molding compounds are used in the experiment. The
TVs are numbered as:

MC'i_j, where i is the molding compound and j is the
sample number.

il %

v B ]

nMOS Current pMOS, Current 6X10 Cells/6X10 Cells|
< Minor I

everse] [
1 $ : _s2 s3

rrrrrr
Molding Compound

Fig. 3. Test Vehicle. 8 stress sensors encapsulated in a TQFP package
mounted on a PCB. It indicates the sensor location, definition and the
number of measuring cells.

The TVs use pre-oxidized leadframe, which significantly
reduces the interface strength between the molding compound
and the copper pad. It is expected that the delamination process
starts at different times for M C'1 and M C2.

Temperature shock (TS) testing is used for damage accel-
eration in the study. A TS equipment used in the experiment
contains two separate chambers, which are preset at different
temperatures. The temperatures profile consists of —40°C and
150°C, as shown in Figure 4. Considering the amount of time
needed for the AU to acquire one measurement point (MP),

every cycle produces two or three measurement points. Several
samples are placed on the basket, and the signal wires are
taken out though the middle hollow cylinder which is used for
the basket movement. The transition between temperatures is
short due to the mobility of the basket (according to Figure 4).
The stresses inflicted to the samples in this type of chamber
are larger than in a regular thermal chamber due to the fast
transition. The temperature difference between the test vehicle
and the chamber is initially high, imposing extra stresses.

Temperature Cycle in TSE
igh Temperature Chamber 1 1

Temperature

-40°C

Low Temperatute Chamber ! | o
0 30 31 61 62 92 93
Time in minute

Fig. 4. Temperature cycle duration. Transition time and the dwell time is
briefly specified.

IV. EXPERIMENTAL RESULTS

Repeated loading causes accumulated fatigue damage, lead-
ing to cracks and rupture. It is generally understood that
exposing surface-mount plastic parts to high-temperature re-
flow profiles can generate package failures if delamination is
present. Figure 5 depicts where the delamination occurs and
where the stresses are measured in a typical package.

Where we can
evaluate the stress

Where delamination
happens \

A
S —

Fig. 5. Package on PCB cross-section. It shows the main elements of
the package and illustrates where the stresses are measured. At the
same time, where the delamination usually occurs.

Two experiments were performed in two separate TS cham-
bers. The temperature profile used in the experiment is de-
scribed in Figure 4. In the first experiment, the test vehicles
were cycled for 750 TS cycles with 30 minutes dwell time,
and in the second experiment, for 1600 TS cycles with 40
minutes dwell time.

The stress data was continuously recorded during TS cy-
cling. The data from the TV stress sensor was captured with
the AU by a cable connection, which was placed outside the
chamber. The AU was sending the data to the Wi-fi Console,
followed by the Raspberry Pi to collect this data from the
Console and save it. A simple graphical interface was used in
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TABLE |
DATA PROCESSING

Input: Sensors Data Ioyr, [N, V,Time

Output: Relative stress difference, Temp, Time per Cycle:
D(0)ij; = (0za — Uyy)§2:74ooc — (0za — 09@)?:15000
1. Stress Difference, temperature and time calculation:
DIF;x, TEM,; and TIME,

2. Data cleaning: Calibration of temperatures and outliers
correction: NAT € [-1,1], NJA=0

3. Labeling: Temperature classification.

TemCaty, =" high(150°)” VN AT} € [1.00,0.98]
TempCaty = "low(—40°)" VNATy € [—0.98,1.00]
TempCaty = "undefined” YN AT} € [0.98, —0.98]
4. Smoothing: Sliding Window

DIF,, = \/% SE=v(DIF, — DIF)?
5. Space Transformation: Cycle space; One value per cycle
(Uzm - O'yy)ZJ = TJ[(DIsz)]

1 =1,2,...,n and n = total number of cells
*3=1,2,...,m and m = number of cycles
k=1,2,...,p and p = total number of measurement points

Raspberry Pi to check the status of the experiments and the
stresses in real time. At every 50 MPs, the data was sent to
the cloud server. The possibility of accessing the Raspberry
Pi with a monitor, remote access or a smartphone, provides
flexibility and better control over the experiments.

The raw data gathered from the experiment was composed
of the high precision physical measures of voltages and
currents from each individual cell of the TV and the times
when the measurements were performed. By themselves, these
measures do not provide any valuable insight into the matter
of this study. All this data is contained in a single data set.

A. Data Preprocessing.

The stress difference is computed using equations 1 and 2,
with the corresponding currents values from the raw data set.
The temperatures are calculated from the measured voltages,
and the time for measurements is extracted from raw data. All
calculation steps are described in Table I.

Each step is summarized below:

Step 1. DIF stores the stress difference values of each
cell per MP, TEM stores the temperature values of each cell
per MP and TIME stores the time at the beginning of the
recording of each MP. Step 2.Data cleaning techniques usually
include detecting N/A values, outliers and gaps on the data.
It is always the first step in data preprocessing [20], [21].
These values are shown on Figure 6. Step 3. Handling of
outliers on the temperature feature is straightforward as the
final distribution along the NAT-axis is known. All values of
NAT must fall around +1 and -1 after normalization. Values
exceeding these thresholds are data transmission errors and
are taken out. Step 4. DIF must pass now through a filtering
process to reduce sources of noise [21]. Not all data will
be relevant on a later step, so only data points classified as
’high’ and ’low’ will be filtered for speeding up the process. A
window filter of three data points. The value of the data point
at the center of the window is replaced by the average of

i i ° i i lCorrect Melasures
15 '"‘:’ """" i' """" ‘:' """ ":" Recording failure 7|
i i i ° i ®  Outliers
i i o i i i
T e
I T
1 [ ] 1 1 1 1
“ be 1 o : :
e e bomeeeee oo prmmmmes pommmr
i i i ° i i
e i ‘ i i
o = =
pesidit i i ; i
0 2000 4000 6000 8000 10000

Measurement Point

Fig. 6. Normalized average temperature (NAT) of sensor 3. The temper-
ature is calculated at each cell position and then averaged in one value.
The jump in the scaling data is represented by a stop and start of the
experiment. The orange data is explained by a pause in the chamber
operation.

_20 -

4045

Stress Difference [MPa]

—60

_80 _.,.‘."...‘.‘.-..‘.".‘.‘- ..,.‘.".E.‘.. : :
0 300 600 900 1200 1500 1800 2100
Time [Cycle]

Fig. 7. MC1_1 TV 480 stress difference sensing cells representation
during the experiment.

its sides if the standard deviation surpasses a fixed threshold
of 1.1. Step 5. After filtering process, 2 or 3 measures on
each peak or dwell time of the temperature cycle are kept. A
transformation is performed reducing every sequence of MPs
to just one point whose value is the average of the original
points.

The sensor data set has been reduced finally to an under-
standable form. The dimensions have been reduced to include
one unique signal per cell on the sensor that shows the stress
difference variation between the peak low temperature and the
peak high temperature of each of the temperature shock cycles
the TV was exposed to. Figure 7 depicts such unique signal
per cell of all 480 measuring locations. After applying the
data processing to the datasets obtained from the experiment
the visualization of one single signal per cell is possible,
representing the relative values of stresses, by subtracting the
residual stresses. These new values are representing the stress
given by the temperature change AT = 190°C.
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B. Visualization Metric

It is reasonable to assume that the delamination processes
at both the molding compound and copper pad interface
and silicon die and die attach interface can alter the stress
distribution over the surface of the silicon die. Even after the
stress transformation into one single value per cell and cycle,
it is still difficult to analyze the data in the form of 480 cells,
see Figure 7. A certain load metric, which well represents the
effect of CTE mismatch and integrates data from the 480 cells,
is required to represent the applied loading [22].

A load metric can be defined using the stress signals from
all 480 cells as:

_ 2= 1PN9)i| 3)

In this manner, the data from 480 parameters was reduced
to a single value, which makes analyzing the stress feasible.
Using this procedure, the stress response for the whole die
can be visualized, as depicted in Figure 8. Sudden increases
or sudden drops in stress indicates delamination initiation and
propagation in the package. It is important to recall that the
crack propagation rate is inversely proportional to the rate of
the interface stiffness change, i.e., the stress rate changes with
the crack propagation rate.

Visualizing the data from the TV M C1_1 on Figure 8, the
following observations are made:

« Between 0 and 750 TS cycles, the stresses have a rela-
tively constant value. Small changes are observed due to
the moisture release and relaxation effects. This can be
also attributed to the effect of aging-induced oxidization
on the package stress that has been reported recently [23].

o Around a TS cycle of 850, there is a small drop followed
by a large sudden increase of the stress, indicating a
significant change in the package structure.

o Afterwards, the stresses change at a slow rate, but still
follow the same trend of increasing for approximately
additional 500 cycles until reaching the maximum value.
This indicates further changes in the structure.

e From 1350 TC cycle onwards, the stresses increase
initially at a fast rate but the rate becomes slow. This is
an indication that the changes inside the package reach
the ending phase.

The overall behavior of the stresses in MC1_2 TV is
constant during the TS, indicating no changes in the package
structure. In comparison with the M C1_1 the stress behavior
does not show any initial changes linked to the moisture and
also no sudden drops. There are only few small changes,
caused by interruption of the experiment. The visualization
metric of all samples are depicted in Figure 8. Based on these
initial plots, it is observed that all other samples MC2_1,
MC2_2, MC2_3 and M C2_4 have some initial delamination.
It is speculated that the interface toughness between the
molding compound and the copper pad in case of MC2 is
smaller than that in the case of M C1. The next subchapter
explains how the changes shown by the visualization metric
are connected to the delamination.

— MC2 1 — MC2 4 — MCI 2
— MC2 3 MC2_2 MC1_1

35 T rY"""r—=—-= ““1'"":'"'1""1'““r“'1“"'r""

30 1

25 4

20 4

S
15 1
10 1

Thermal Shock Cycles

Fig. 8. Visualization Metric. The sum of absolute stress value change
divided by the number of cells in cycle time for M C1 and M C2.

2500 Cycles

850 Cycles 1050 Cycles

=

nN

I No Delamination
Delamination

Fig. 9. SAM of M C'1_1 during and after the experiment. Delamination is
detected and is depicted in red areas. Two cross-section are performed
at the end of the experiment.

C. Failure Analysis

Using the visualization metric, a change in the sensor data
was observed, indicating a shift from the normal conditions.
These observations are confirmed by the physical failure and
the location documented by scanning acoustic microscope
images and cross-section images.

The relative stress difference was correlated with delamina-

Initial 1650 Cycles

No Delamination

Fig. 10. SAM of M C1_2 in discrete time. No delamination is present
and one cross-section is performed at the end of the experiment.

Line 1-1 Cross-Section Line 2-2 Cross-Section

Fig. 11. Cross-section Failure Analysis of MC1_1 along Line 1-
1 and Line 2-2. Crack is present at the interface between molding
compound/copperpad and die attach/copper pad along the entire cross-
section for Line 1-1, except the middle part in Line 2-2.
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tion using Scanning Acoustic Microscope (SAM) images. The
SAM images taken at various stages are shown in Figure 9.
The samples were taken out from the TS chamber for taking
SAM images. The cables were removed for SAM imaging, and
they were re-soldered to the samples before placing them back
in the TS chambers. The state of the package M C1_1 before
and after 750 TS does not show any delamination (Figure 9).
The significant change in the stress is observed around 850
Cycles. A SAM analysis was performed again at 850 cycles,
and the image is shown in Figure 9. The image clearly shows
that delamination started at the bottom of the package, which
correlates well with the sudden increase in stress shown in
Figure 8 for MC1_1 .

The same sample was tested again by SAM after additional
200 TS cycles. The image shows that a new delamination
started on the other side while the first delamination propa-
gated. The SAM image confirmed the crack growth. The stress
history in Figure 8 (the maximum stress levels at that specific
point in time) also corroborates this.

At the end of the Experiment, at around 2500 TS cycles, an-
other SAM analysis was performed. The image clearly shows
that delamination occurred everywhere except for a small area
at the center (Figure 9). To further validate the correlation,
a destructive failure analysis was performed after the TS
cycling. The cross-section images along Line 1-1 of MC1_1
are shown in Figure 11. The images show clearly cracks at
all three interfaces (molding compound/copper pad, silicon
die/die attach, and die attach/copper pad), which validates the
SAM investigation. The cross-section images along Line 2-
2 of MC1_1 are shown in Figure 11. The images clearly
indicate the presence of cracks at all three interfaces. The
images also confirm the interface with no delamination that
the SAM images were able to identify.

In the case of TV M C1_2, there was no significant change
in stresses during the experiment, indicating that no delamina-
tion occurred. This is confirmed by the SAM images obtained
after the experiment (Figure 10). It was further corroborated
by the cross-section images.

V. DIAGNOSTICS

Diagnostics consists of two steps: fault detection by Maha-
lanobis Distance (MD) and fault clarification by a clustering
technique.

A. Fault Detection

Fault detection by MD was described in details for fault
classification in [8] and for fault detection in [10] [24].
Mahalonobis distance is the distance between a point and
a distribution. And not between two distinct points, like
Euclidean distance. It is effectively a multivariate equivalent
of the Euclidean distance. Basically, is the normalized distance
between the test point from the sample mean over the standard
deviation. A healthy baseline and a threshold are needed to
classify the product states (healthy or unhealthy). They are
determined by the well-known Mahalanobis Distance (MD).
The methodology begins with gathering the sensor data, i.e.,
the values of stress difference at the 480 sensor cells. These

values are referred to as performance parameters. They are
stored in a matrix X;; with elements denoted as x¢j, where
i = 1,2,...,p and p is the total number of performance
parameters (here p = 480) and 7 = 1,2,...,m where m is
the total number of measurement points. A representative MD
applied to the stress sensor cells is shown in Figure 12. The
healthy baseline is created on the first 800 measurement points
of no delamination. The data points exceeding the failure limit
are clearly seen in the MD results after 850 Cycles, where
delamination occurred. The failure detection point is defined.
The threshold was computed from the healthy data (i.e., no
initial delamination). The result is also plotted in Figure 12.
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Fig. 12. Classic threshold MD applied to TQFP stress sensor data. The
fault is detected around 850 Cycles.

Since the MD are not normally distributed, a Box-Cox
transformation [25] is used to convert the data into a normal
distribution. A warning limit threshold is defined as (u + 20)
and a fault alarm threshold as (¢ + 30), based on the nor-
mal distribution parameters. A limitation of the Mahalanobis
distance is found that the healthy baseline cannot be updated.

B. Fault Classification

One way of classifying the data is clustering, which is
a common unsupervised ML technique. Its aim is to divide
objects into groups according to distance-based similarity mea-
sure [26]. This method is chosen because of its computational
effectiveness amongst other unsupervised ML methods. A
clustering technique is used to classify the data. To reveal
hidden information such as the necessary number of clusters,
the Elbow method, described in [26], is used. All the 480
stress sensing cells are used in the algorithm. Based on the
elbow method, only three clusters are needed to correctly split
the data. Based on the number of prediction class output and
the previous knowledge from failure analysis, three subgroups
are identified. This can be visualized in Figure 13, as fol-
lows: the first subgroup is the healthy class 2 until 880 TS
cycle; the second subgroup is the data associated with the
delaminated copper pad/molding compound interface; and the
third subgroup contains the data obtained after 1450 cycles
onwards attributed to the delamination at the adhesive/silicon
die interface.
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Fig. 13. Prediction Class with K-Means Clustering method. 2 - repre-
sents the health state; 1 - the delamination between molding compound
and copper pad; 0 - delamination between the adhesive and silicon die.

TABLE I
CONTOUR PLOT STANDARD DEVIATION.

Input: Stress Difference D(c);;1, Cycle Interval
Output: Standard Deviation SD;;; per Interval
Step 1. Calculate the average of each column:
735 =+ 31— D(0)ij
Step 2. Calculate the standard deviation:
> (D(0)s;—x75)?

r—1

SDZ'j = \/

Step 3. Plot the contour matrix S Dgpz24.
Step 4. Evaluate the crack tip on the contour plot.

*,=1,2,...,n and n = 20 number of cells in x direction
*53=1,2,...,m and m = 24 number of cells in y direction
*k =1,2,...,p and p = number of cycles

* =2, ...,7 and r = Cycle Interval where standard deviation
is calculated

The results from the clustering are an indirect validation of
the assumption in the section I'V that delamination starts at the
outer areas of the silicon die, resulting in an increase in the
stress difference.

C. Fault Location

As depicted in Figure 3 the silicon die consists of 20 sensing
cells on z direction and 24 cells on y, respectively. It is
observed that high value of the Standard Deviation (SD) per
each r number of interval cycles, corresponds to the crack tip
location in the adhesive layer. The steps followed in calculation
of the SD is described in Table II.

Cycle 1280 Cycle 1460 Cycle 1620

Cycle 1780

 Cyde 1140 ws

cellin x cellin x

cellinx cellinx

Fig. 14. Stress Difference SD every 20 Cycles plotted on a contour
image for M C1_1. The crack tip is given by the high SD.

Cycle 2080

Cycle 1980 0] Cycle 2260

Fig. 15. Stress Difference SD every 20 Cycles plotted on a contour
image for M C'1_1. The crack tip is given by the high standard deviation.
This is validated over the SAM images on this TV, but also on the other
TVs.

For this case an interval of 20 cycles is chosen to evaluate
the standard deviation. This value is chosen to have an effec-
tive number of pictures that needs to be manually evaluated.
Some of them are depicted in Figure 14 and 15. It is clearly
shown that the high values of standard deviation in the contour
plot corresponds to the crack tip in the adhesive layer. This
way it is possible to follow the crack tip delamination area at
least every 2 cycles.

In Figure 15 an S'D contour plot image is overlaid over the
SAM image. This corroborates with our observation that the
high values of S'D indicates the location of the crack tip. This
validation is performed on all the other SAM images available
and validates our observations.

Every image is then manually evaluated and a red dotted
path is drawn over the high values of the SD. The area formed
inside the path is then divided by the total area of the sensor
area and transformed into percentage. Therefore, at least every
2 cycles an estimated remaining not delaminated area can be
manually evaluated.

VI. HEALTH ASSESSMENT AND PROGNOSTICS
A. Degradation estimation

ESN is a new type of Recurrent Neural Network (RNN)
proposed in recent years, and was developed by Jaeger [27].
The training process of ESN is easier and less computationally
intensive than regular RNN which has the same size [28].

Remaining useful life (RUL) is the amount of time left
before a system fails to operate within acceptable limits. RUL
calculation is similar to Time-to-Failure (TTF) calculation,
except that an upper operating limit threshold is used instead
of a failure threshold [29]. Defining a degradation threshold for
RUL is a challenging task as it strictly depends on applications.
Various application-specific integrated circuits (ASICs) can be
packaged in the same type of the housing, such as TQFP. For
an application with relatively small power dissipation (below 1
W), only 10% of the die attach contact area can still provide
good functionality of the ASIC, while for other application
with larger power dissipation, even 20% of the contact area
can bring the device to an end of life. In our study, we have
assumed that 10% of the contact area as a threshold for an
end of life, i.e., a good connection between silicon die and die
paddle is assumed to be provided even after 90% of the die
attach is delaminated. It is to be noted that the threshold value
should be adjusted for different applications. In this paper,
the ESN method is used for the estimation and prediction of
degradation based on incremental stress values. The RUL is
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predicted by extrapolation from the degradation estimation.
For the purpose RUL calculation, the degradation grades of
“complete delamination” and ”no delamination” are set to be
0% and 100%, respectively. Half of the TVs data MC1_1,
M?2_1 and M2_4 is used for both training set and testing
set. The data from M1_2, ,M2_2 and M2_3 are used for the
analysis. In a real time prognosis, the inputs are the stress
difference of that specific point in time, and the output will
be the degradation estimation percentage. The input of ESN is
defined as all relative stresses D(o) of all valid measurement
points in all sensors as:

u = D(O’)ij (4)

,where ¢ = 1,2,...,n and n = total number of cells (480 in
this case) and j = 1,2, ...,,m and m = number of cycles.
Output of ESN defined as the degradation grade is a
function, from 100% to 0% created based on the SD values.
This evaluation is perfomed manually on the contour plot
image every 20 cycles. This is a time consuming task and
therefore needs to be automated. Traning half of the TVs data
is an attempt to generalize the model. The rest of TVs data is
evaluated by the model, without being neccessary to manually
evaluate the delamination area based on the fault location.

100%
x 100%
x 100%

2|z

®)

x 100%
0%

,where R is the area evaluated by manually drawing a red
dotted path and N is the total area of the physical sensor.

Data from three TVs M C1_1, M2 _1 and M2_4 were used
to train the network. Cross-validation was used in the training
process that involved the separation of data into k folds. In
this study k£ = 10 was used. After the division, the model was
trained on 9 of these folds and then was subsequently validated
using the remaining fold. The average of the 10 measures mean
square error (MSE) was the metric used to improve the model.

Up to the point where there is a failure detected the output is
considered 100% as of no delamination is present. Afterwards,
a manually created function is used to describe the degradation
(equation 5).

The parameter size of dynamic reservoir n, the desired
spectral radius of dynamic reservoir r, the input shift and
scaling, and the output shift and scaling have to be optimized.
The commonly used range of parameters are shown in Table
1.

The optimization strategy used in this case is a conservative
one. Changing one parameter with a certain step, keep others
unchanged, train the ESN using the cross-validation to get the
lowest MSE.

During optimization, the ESN was trained and tested for
105 times. The minimum MSE was then found, and its
combination of parameter was recorded. The optimization
process took about 5 hours. From this optimization, it is

==

TABLE llI
RANGE OF PARAMETERS OF RNN [30].

Parameter Commonly used range
Reservoir size [50,800]
Spectral radius [0.1,1)
Input scaling [0,1]
Input shift [0.max;y, pytl

Output scaling
Output shift

[0,1]
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Fig. 16. Degradation estimation ESN Output for MC1 and M C2.

observed that the reservoir size and the spectral radius are two
main factors influencing MSE. A very good practical guideline
can be found in [31]. The execution time of the model is
659ms for fitting and 745ms for prediction, on a regular
office Degradation prediction in percentage for all the testing
modules are shown in Figure 16. Degradation percentages
here refer to delamination area. Comparing the results from
the ESN prediction and the SAM images from Figure 17 the
following can be stated:

e For TV MC2_1 and MC2_2 a 30% delamination area
remaining is predicted by the ESN. This is validated by
the SAM images.

e For TV MC2_3 and MC2_4 the model predicts an
almost full delamination percentage close to few percent-
ages. This is also confirmed by the SAM images.

o As expected for TV M C'1_2 no degradation is predicted.

Following the same methodology from the fault location
section, the degradation estimation for the other TVs was also
evaluated and is depicted in Figure 18. A comparison between

65% Delamination  70% Delamination 95% Delamination 95% Delamination ~No Delamination
Delamination
No Delamination

Fig. 17. SAM Images at the end of the experiments for MC'1 and M C2.
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Fig. 18. Degradation estimation ESN Output vs SD Estimation.

the ESN model and SD methodology is shown. The results
shows good accuracy in generalization of ESN model. The
model can be, of course, improved by including more samples
data into the training data.

Based on the neural network model, RUL estimation can
be extrapolated. However, how to extrapolate RUL from this
model under real operating conditions still remains a challenge
that must be addressed in the future studies. It is observed that
the RUL for all the modules strongly depends on the failure
detection point, the loading conditions and material properties.

VII. CONCLUSION

The thermo-mechanical stress-based prognostics approach
was developed to extend the stress-based PHM capability into
a quantitative domain where accurate prediction of remain-
ing useful life (RUL) became possible. The approach was
implemented with actual microelectronics packages subjected
to harsh accelerated testing conditions. Piezoresistive stress
sensors were employed to measure the internal stresses of
microelectronic packages. An Acquisition Unit (AU) and a
Raspberry Pi were used for sensor data read-out, collection
and evaluation. Accelerated tests in a thermal convection
chamber were performed, and the resultant failure data were
utilized to conduct data processing. The statistical techniques
for diagnostics and the machine learning (ML) algorithms for
health assessment and prognostics were then implemented to
estimate and predict the degradation state.

The neural network model used in the paper was built and
tested by using one half of TVs as a training set and the
other half of TVs as a testing set. The network parameters
were optimized only for these datasets. More data sets must
be obtained to train and test the network so that a more gen-
eralized model can be created. Nevertheless, the results show
that the proposed framework and approach outperforms the
conventional failure analysis approach (e.g., SAM analysis).
The results also confirm that data driven approaches provide
the opportunity not only to monitor the asset during operation,
but also to understand the asset behavior based on its current
design. This can lead to a better product in the future and to
further optimize resources and expenditures.
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