
<<DataType>>
HeatExchangeType

<<Property>>
+ convectiveFraction: Scale (0…1)
+ latentFraction: Scale (0…1)
+ radiantFraction: Scale (0..1)
+totalValue: Measure

<<CodeList>>
OwnershipTypeValue

<<Property>>
+ corporation
+ governmentt
+ nonOccupantPrivateOwner
+ nonProfitOrganisation
+ occupantPrivateOwner
+ propertyManagementCompany
+ otherOrCombination

<<CodeList>>
CurrentUseValue

<<CodeList>>
Core::OccupantTypeValue

residents, workers, students,
patients, visitors,
othersOrCombination

<<enumeration>>
HouseholdTypeValue

+ loneAdult
+ multiFamily
+ oneFamily
+ pensionerCouple
+ unrelatedAdults
+ vacant
+ workerCouple

<<enumeration>>
ResidenceTypeValue

mainResidence
secondaryResidence
vacant

AbstractFeatureWithLifespan

<<FeatureType>>
Household

<<Property>>
+ residenceType: ResidenceTypeValue (0…1)
+ household Type: HouseholdTypeValue (0…1)

AbstractFeatureWithLifespan

<<FeatureType>>
Occupants

<<Property>>
+ heatDissipation: HeatExchangeType (0…1)
+ numverOfOccupants: Integer (0…1)
+ occupancyRate: AbstractSchedule (0…1)
+ occpantType: OccupantTypeValue (0…1)

1

0..*
+household
<<Property>>

<<DataType>>
BuildingUnitOccupancy

<<Property>>
+ numberOfRooms: Integer (0…1)
+ ownerName: CharacterString (0…1)
+ ownershipType: OwnershipTypeValue (0…1)
+ energyPerformanceCertification: EnergyPerformanceCertification (0..*)

0..1

0..*+occupiedBy
<<Property>>

<<DataType>>
ADEOfBuildingUnit

<<FeatureType>>
LightingFacilities

<<Property>>
+ elictricalPower: Measure (0…1)

<<FeatureType>>
DHWFacilities

<<Property>>
+ numberOfBaths: Integer (0…1)
+ numberOfShowers: Integer (0…1)
+ numberOfWashBasins: Integer (0…1)
+ waterStorageVolume: Volume (0…1)

<<FeatureType>>
ElectricalAppliances

<<Property>>
+ electricalPower: Measure (0…1)

AbstractOccupiedSpace

<<FeatureType>>
Facilities

<<Property>>
+ operationSchedule: AbstractSchedule (0…1)
+ heatDissipation: HeatExchangeType (0…1)

<<FeatureType>>
UsageZone

+ coolingSchedule: AbstractSchedule (0…1)
+ heatingSchedule: AbstractSchedule (0…1)
+ usageZoneType: CurrentUseValue
+ usedFloors: IntegerList (0…1)
+ ventilationSchedule: AbstractSchedule (0…1)
+ averageIntemalGains: HeatExchangeType (0..1)

0..1

0..*
+equippedWith
<<Property>>

<<FeatureType>>
Building::Building Unit

<<FeatureType>>
AbstractUsageZone

<<FeatureType>>
AbstractThermalZone

AbstractLogicalSpace

<<FeatureType>>
Building::AbstractBuildingSubdivision

AbstractLogicalSpace

<<FeatureType>>
Core::Adress

+contains
<<Property>>

0..* 0..1

+contains
<<Property>>

0..*

1

+address
<<Property>>

*

*

0..1 0..1

0..*

0..*

+occupiedBy
<<Property>>

MSc Thesis in Geomatics for the Built Environment

Mapping the Energy AD E to
CityGML 3.0
CAROLIN BACHERT

January 2023

MSc thesis in Geomatics

Mapping the Energy ADE to CityGML 3.0

Carolin Bachert

January 2023

A thesis submitted to the Delft University of Technology in partial

fulfilment of the requirements for the degree of Master of Science in

Geomatics

Carolin Bachert: Mapping the Energy ADE v1.0 to CityGML 3.0 (2023).

 This work is licensed under a Creative Commons Attribution 4.0 International

License. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/.

This work was supervised by:

Delft University of Technology

3D Geoinformation Group

1st supervisor: Dr. Giorgio Agugiaro

2nd supervisor: Camilo León-Sánchez

Technical University of Munich

Chair of Geoinformatics

External supervisor: Dr. Tatjana Kutzner

Stuttgart University of Applied Sciences

Co-reader: Prof. Dr. Volker Coors

https://creativecommons.org/licenses/by/4.0/

Abstract

In order to limit the global warming to well below 2 degrees Celsius, all sectors have to reduce

their greenhouse gas emissions and become more sustainable. This also includes the building

sector, which is in Europe responsible for 40% of the total energy consumption (European

Commission, 2020). A way to work towards this goal is by retrofitting the existing building

stock to become more energy efficient. Urban Building Energy Modelling (UBEM) can help in

this endeavour by identifying energy-saving potentials and thus to effectively allocate the

required resources (Horak et al., 2022). Yet, UBEM involves many stakeholders which is why

standards are crucial to facilitate data exchange and interoperability among them. In this

context, the Energy ADE v1.0 was developed as an extension for the semantic 3D city model

standard CityGML 2.0. It serves two purposes, first by storing energy related information on

the individual building level, and second by providing the necessary input data for UBEM

simulations (Agugiaro et al., 2018). However, in September 2021 CityGML 3.0 was released.

The introduced changes directly affect the structure of the Energy ADE, which is why it cannot

fully function on it anymore. This thesis therefore answers the question, how and to what extent

the Energy ADE for CityGML 2.0 needs to be adapted to be conformant with the new CityGML

3.0 standard. It is accomplished by following a model-driven approach, where the UML class

diagrams for the mapped Energy ADE are created first, before automatically deriving the

corresponding XSD schema file. Through the lossless mapping itself, the Energy ADE is

integrated as much as possible into CityGML 3.0, while also maintaining a logical symmetry.

As such it accounts for the introduced changes of CityGML 3.0, by making use of the space

and geometry concept, the versioning possibilities as well as the provided structures to model

time-dependent data. The result is eventually tested and verified by converting a sample dataset

to the Energy ADE for CityGML 3.0. This work provides an example on how other ADEs can

be adapted to fit the new CityGML 3.0 standard and thus hopefully to the further establishment

of it.

Acknowledgements

First of all, I would like to thank all my supervisors for their great support, insights and feedback

while working on this thesis. During many meetings, Giorgio Agugiaro and Camilo León-

Sánchez really helped me to understand the concepts of the Energy ADE and discussed every

small detail regarding different mapping possibilities with me. Vital was also Tatjana Kutzner’s

expert knowledge of CityGML 3.0 and her introductions into Enterprise Architect and

ShapeChange.

Furthermore, I want to thank my friends and family who have been there for me in this time,

with all their support to keep me motivated but also with sometimes well-deserved distractions.

A special thanks goes to my library friends who I have seen day-in and day-out in the last few

months, making the long working hours more bearable with all the little coffee breaks in

between. Lastly, I am also very thankful for my friends and fellow students from Geomatics

who were also in the process of writing their thesis. Because as we say in Germany, “geteiltes

Leid ist halbes Leid”.

Table of Contents

1. Introduction .. 1

1.1. CityGML and Application Domain Extensions .. 2

1.2. Research Objective .. 3

1.3. Method ... 4

1.4. Reading Guide ... 4

2. Scientific Context ... 6

2.1. Urban Building Energy Modelling .. 6

2.2. Introduction to UML ... 8

2.3. CityGML 2.0 ... 12

2.4. The Energy Application Domain Extension .. 15

2.4.1. General ... 15

2.4.2. Modules .. 16

2.4.3. Software Support of the Energy ADE .. 26

2.4.4. Related ADEs ... 27

2.5. CityGML 3.0 ... 27

2.5.1. Changes in CityGML 3.0 ... 28

2.5.2. Applications of CityGML 3.0 .. 36

2.5.3. ADEs for CityGML 3.0 .. 36

2.5.4. Conversion from CityGML 2.0 to CityGML 3.0 ... 37

3. Method ... 38

3.1. Mapping ... 39

3.2. XSD Schema .. 40

3.3. Conversion ... 41

4. Implementation ... 43

4.1. Mapping the Energy ADE to CityGML 3.0 .. 43

4.1.1. Core module ... 45

4.1.2. Building Physics module .. 49

4.1.3. Layer and Material module .. 55

4.1.4. Occupant Behaviour module .. 58

4.1.5. Energy Systems module ... 62

4.1.6. Time Series Supporting classes .. 64

4.1.7. Schedules Supporting classes ... 71

4.1.8. Weather Data supporting classes .. 75

4.2. Derivation of the XSD schema file .. 76

4.3. Conversion to Energy ADE for CityGML 3.0 .. 77

4.3.1. Test data creation ... 77

4.3.2. Conversion workspace ... 79

5. Results .. 88

5.1. Mapped classes .. 88

5.2. Comparison of Encodings ... 91

5.3. DailyPatternSchedule .. 95

5.4. File size comparison .. 102

6. Discussion .. 103

6.1. A unique solution? ... 103

6.2. Geometry representations .. 105

6.3. Considerations beyond mapping ... 106

6.4. Data conversion ... 108

7. Conclusion .. 109

7.1. With regard to the Research Objective .. 109

7.2. Open Issues and Future Work ... 112

7.3. Outlook .. 112

7.4. Personal Reflection .. 113

Literature .. 115

Appendix A: UML diagrams of Energy ADE for CityGML 3.0 ... 124

Figures

Figure 1: Applicability of open building standards on a geographical scale. 8

Figure 2: UML class with several properties. .. 9

Figure 3: Association between two classes .. 10

Figure 4: Navigable association between two classes. ... 10

Figure 5: Aggregation relationship. A Forest contains one to many Trees. 11

Figure 6: Composition relationship. A Tree contains 1 to many Leaves. 11

Figure 7: Generalisation relationship. An AbstractPlant can be a Tree or a Bush. 12

Figure 8: The five LODs of CityGML 2.0 on the example of a Building. 13

Figure 9: Extending _AbstractBuilding with additional properties via the ADE hook 14

Figure 10: Defining the new feature type AbstractEnergySystem as a subclass of _CityObject

in the Energy ADE 1.0 for CityGML 2.0 Core module. .. 15

Figure 11: Overview of the modular structure of the Energy ADE for CityGML 2.0 17

Figure 12: The Energy ADE for CityGML 2.0 Core module. ... 18

Figure 13: The Energy ADE for CityGML 2.0 Building Physics module. 20

Figure 14: The Energy ADE for CityGML 2.0 Material and Construction module. 21

Figure 15: The Energy ADE for CityGML 2.0 Occupant Behaviour module. 22

Figure 16: The Energy ADE for CityGML 2.0 Energy Systems module. 23

Figure 17: The Energy ADE for CityGML 2.0 Time Series supporting classes. 24

Figure 18: The Energy ADE for CityGML 2.0 Schedules supporting classes. 25

Figure 19: The Energy ADE for CityGML 2.0 Weather Data supporting classes. 26

Figure 20: Overview of the CityGML 3.0 modules. ... 29

Figure 21: The space concept as defined in the Core module .. 30

Figure 22: Space and space boundary .. 30

Figure 23: Physical space and logical space. ... 31

Figure 24: Occupied and unoccupied space. .. 31

Figure 25: Excerpt of the Core module, showcasing the geometry and LOD concept. 32

Figure 26: Excerpt of the CityGML 3.0 Dynamizer module ... 34

Figure 27: ADE mechanism for defining additional properties and creating new classes. 35

Figure 28: Schematic workflow of the mapping and conversion process. 38

Figure 29: Proceeding order for the mapping. ... 40

Figure 30: Overview of ShapeChange process. ... 41

Figure 31: Test data creation and conversion. .. 41

Figure 32: Mapping volume in _AbstractBuilding to volume in AbstractSpace 45

Figure 33: The Energy ADE for CityGML 3.0 Core module. ... 49

Figure 34: Option of mapping the Building Physics module to AbstractCityObject 49

Figure 35: Excerpt of the CityGML 3.0 Building module ... 50

Figure 36: The Energy ADE for CityGML 3.0 Building Physics module. 52

Figure 37: Excerpt of the CityGML 3.0 Construction module .. 53

Figure 38: The Energy ADE for CityGML 3.0 Layer and Material module. 57

Figure 39: The Energy ADE for CityGML 3.0 Occupant Behaviour module. 60

Figure 40: The Energy ADE for CityGML 3.0 Energy System module. 63

Figure 41: Excerpt of the Energy ADE for CityGML 3.0 Core module 64

Figure 42: The Energy ADE for CityGML 3.0 Time Series module. 67

Figure 43: Option 2 – Creating a new ADE class to map RegularTimeSeriesFile to CityGML

3.0. .. 68

Figure 44: Option 3 – Creating one common ADE class for RegularTimeSeries and

RegularTimeSeriesFile. .. 69

Figure 45: Option 4 – AbstractRegularTimeseries with specialisation classes for

RegularTimeseries and RegularTimeseriesFile. .. 70

Figure 46: The Energy ADE for CityGML 3.0 Schedules module. ... 71

Figure 47: occupancyRate with implicit relation and explicit relation to AbstractSchedule. .. 72

Figure 48: CompositeTimeseries and TimeseriesComponent in the Dynamizer module 73

Figure 49: Excerpt of the Energy ADE for CityGML 3.0 timeseries module 74

Figure 50: The Energy ADE for CityGML 3.0 Weather Data supporting classes. 75

Figure 51: The test dataset in boundary representation .. 78

Figure 52: Schematic representation of the FME workspace to create test data 79

Figure 53: Schematic representation of the FME workspace to convert the data 80

Figure 54: MultiSurface representation of AbstractThematicSurface Core module. 81

Figure 55: Integrating ADE geometries into CityGML 3.0 in FME. 82

Figure 56: Simplified workflow for extracting and writing WeatherData. 83

Figure 57: Simplified workflow for extracting and writing timeseries data 84

Figure 58: Simplified workflow for extracting and writing schedule data 86

Figure 59: Schematic data preparation for the DailyPatternSchedule consisting of

RegularTimeseries. ... 87

Figure 60: Excerpt of the Energy ADE for CityGML 3.0 Core module, showing the class

AbstractEnergySystem. .. 111

Figure 61: Excerpt of the Energy ADE for CityGML 3.0 XSD schema file for the class

AbstractEnergySystem. .. 111

Tables

Table 1: Integration of the volume property in Energy ADE for CityGML 2.0 into the volume

property of AbstractSpace in CityGML 3.0 ... 46

Table 2: Integration of the floorArea property in Energy ADE for CityGML 2.0 into the area

property of AbstractSpace in CityGML 3.0 ... 46

Table 3: Integration of the heightAboveGround property in Energy ADE for CityGML 2.0 into

the height property of AbstractConstruction in CityGML 3.0 ... 46

Table 4: Selected CityGML 3.0 class descriptions .. 51

Table 5: Selected CityGML 3.0 class descriptions .. 53

Table 6: Selected CityGML 3.0 construction classes .. 55

Table 7: Selected CityGML 3.0 Furniture and Installation classes .. 61

Table 8: Different property encodings in FME through CityGML Reader / Writer and GML

Reader / Writer. .. 80

Table 9: Summary of how much the Energy ADE classes are changed through the mapping to

CityGML 3.0. ... 88

Table 10: File size comparison for the test dataset .. 102

Table 11: Details of how selected Energy ADE classes have been changed while mapping to

CityGML 3.0 .. 110

Encodings

Encoding 1: Encoding of ADE hook properties in CityGML 2.0. ... 92

Encoding 2: Encoding of ADE hook properties in CityGML 3.0. ... 92

Encoding 3: Encoding of an Energy ADE RegularTimeSeries in CityGML 2.0. 93

Encoding 4: Encoding of an Energy ADE RegularTimeseries in CityGML 3.0. 95

Encoding 5: Encoding of a correct Energy ADE DailyPatternSchedule in CityGML 3.0. 97

Encoding 6: Incorrect encoding of a more complex Energy ADE DailyPatternSchedule in

CityGML 3.0 .. 99

Encoding 7: Manually corrected encoding of a more complex Energy ADE

DailyPatternSchedule in CityGML 3.0 .. 101

Abbreviations

ADE Application Domain Extension

BIM Building Information Modeling

CityGML City Geography Markup Language

HVAC Heating Ventilation Air Conditioning

IFC Industry Foundation Classes

LOD Level Of Detail

OGC Open Geospatial Consortium

UBEM Urban Building Energy Modelling

UESM Urban Energy Systems Modelling

UML Unified Modeling Language

1

1. Introduction
Based on the United Nations World Urbanization Prospects, the World Bank estimates that in

2020, 4.36 billion of the world’s population lives in urban areas. This makes more than 56% of

the people residing in cities, with no prospects of a changing trend (World Bank, 2020a, b).

Also the Sustainable Development Goals highlight the multidimensional challenges arising

through this development by Goal 11: Make cities inclusive, safe, resilient and sustainable

(Sustainable Development Goals, 29.11.2022).

Its importance becomes evident through the fact that emissions and resource use are rising with

increasing population densities, leading to cities being responsible for over 70% of global

carbon emissions (Ribeiro et al., 2019). Within this context, the building sector plays a crucial

role. In the European Union, it causes 36% of the greenhouse gas emissions and 40% of the

total energy consumption. To strive towards carbon-neutral cities, buildings’ energy efficiency

consequently needs to be enhanced. A way to achieve this is by renovating and retrofitting the

already existing building stock. This measurement could eventually decrease Europe’s total

energy consumption by up to 6% (European Commission, 2020).

Urban Energy Modelling (UEM) can play a vital role in this endeavour by simulating a city’s

energy demand and supply. For identifying energy-saving potentials on the building level,

bottom-up Urban Building Energy Modelling (UBEM) techniques are particularly suitable

(Nageler et al., 2018). Their outcomes can support decision-makers in efficiently allocating the

required resources (Horak et al., 2022).

However, various models are in place, differing in their methodology and spatial granularity.

Generally, they require a vast amount of input data, ranging from physical building properties,

energy consumption, local climate data and occupant behaviour to the buildings’ geometries

(Corrado & Fabrizio, 2019). This often results in interoperability problems between the

different stakeholders (Agugiaro et al., 2018) and thus withholds the potential of UBEM.

To circumvent those issues, domain standards facilitate data exchange and the development of

suitable software tools. In regard to model 3D urban environments, only a few open standards

exist. At the individual building level, Building Information Modeling (BIM) is frequently

implemented through the Industry Foundation Classes (IFC) standard (Agugiaro et al., 2018).

The standard has its origin in the field of Architecture and models buildings throughout their

lifecycle in high geometric detail (Arroyo Ohori et al., 2022). These characteristics qualify the

2

standard for precise energy simulations of single buildings. However, at a city-wide level,

standards focusing on larger areas and multiple buildings at once, are better suited.

1.1. CityGML and Application Domain Extensions
An open standard designed to operate at this scale is the City Geography Markup Language

(CityGML) managed by the Open Geospatial Consortium (OGC) which is currently most

widely adopted in version 2.0. It constitutes a storage and exchange format as well as a UML

data model for semantically enriched 3D city models, by defining “basic entities, attributes, and

relations” (Gröger & Plümer, 2012). The entities refer to in cities occurring dominant features,

such as buildings, vegetation or transportation infrastructure. They can geometrically be

modelled together with semantic and topographic information in various Levels Of Detail

(LOD) (Gröger et al., 2012).

Although CityGML already offers vast possibilities to describe city models, certain applications

might require specific classes and attributes that are not foreseen in the standard data model. To

account for those cases it is possible to extend the data model in two ways. The first one is

through generic attributes and objects, which augment the features’ properties and allow to

model unrepresented objects respectively. In this way, the added generics are not formally

defined by any schema and can be added during runtime. The other possibility is to create

specific Application Domain Extensions (ADE) with their own UML class diagram and XSD

encoded schema. By this, new feature classes, attributes and relations are formally defined

which are embedded in the standard CityGML data model (Gröger et al., 2012). This has the

advantage of increased interoperability and the possibility to validate enriched city models

(Biljecki et al., 2018).

The Energy ADE v1.0 is exactly such a formal extension of CityGML 2.0. It builds up on the

CityGML 2.0 Core and Building modules, by introducing new classes and adding properties to

already existing ones. As such, it offers a solution to store UBEM relevant information and

serves at the same time as input data for single-building or city-wide energy assessments.

Through the standardisation, interoperability between different stakeholders in the domain can

be increased (Agugiaro et al., 2018).

Furthermore, the Energy ADE is mentioned as a best practice example in related literature due

to the involvement of various international parties in the development, its technical maturity

and last but not least its frequent application in research projects (Kolbe et al., 2021) (Biljecki

3

et al., 2018). For instance Rossknecht & Airaksinen, 2020 developed a concept for heating

demand predictions in Helsinki under the different climate change scenarios. Malhotra et al.,

2019 scrutinize the approach to enrich the CityGML plus Energy ADE data model through

existing simulation platforms depending on different LODs, and Pasquinelli et al., 2019 assess

the energy performance of the building stock in Northern Italy. Other examples include (Geiger

et al., 2020), (León-Sánchez et al., 2021) and (Coors et al., 2022).

In the meantime, the OGC officially released the new CityGML 3.0 standard in September 2021

(Kolbe et al., 2021). After several years of development in multiple working groups, the final

version introduces several changes. Some of the most relevant ones are the revised geometry

concept and the newly established space concept in the Core module. Moreover, new modules

for man-made constructive elements and time-dependent properties are incorporated (Kutzner

et al., 2020). Additionally, the ADE mechanism has been modified for an improved possibility

to include several ADEs at the same time (Kolbe et al., 2021).

Those changes directly affect the structure of the Energy ADE. First and foremost, the Energy

ADE cannot fully function with CityGML 3.0 due to the new extension mechanism and

partially changed class names. Furthermore, some classes and properties in the Energy ADE

are now incorporated in the standard CityGML 3.0 data model. Thus, modelling things twice

fails to meet the objective of an ADE which is to extend where necessary. Beyond that, the

OGC standard introduces many additional classes, which potentially offer a better semantic fit

to link the ADE classes to.

As CityGML 3.0 is still relatively new, not much research has been published yet in regard to

ADEs. Some projects exist which already implement extensions. However, they rather focus

on a practical use case with an ADE as by-product, and less on the technical modelling decisions

behind their creation. Besides this, the thematically related UtilityNetwork ADE (citygml3-

utility-network-ade, 30.11.2022) has been mapped to fit CityGML 3.0. But there is no

publication in this regard, describing the process or the modelling decisions behind.

1.2. Research Objective
The objective of this work is thus to map the Energy ADE to CityGML 3.0 ensuring a lossless

data conversion and to implement the final result together with a detailed description of the

reasonings and processes behind. Within this context, the thesis therefore aims to answer the

following research question:

4

How and to what extent need the Energy ADE for CityGML 2.0 be adapted to be conformant

with the newly released CityGML 3.0 standard?

As part of the research, several sub-questions are furthermore specified:

• Which classes of the Energy ADE 1.0 become obsolete, which ones need to be adapted

and which ones can mostly be taken over?

• What will the Energy ADE data model for CityGML 3.0 look like, both in terms of

UML encoding and XSD file?

• How can Energy ADE for CityGML 2.0 data be converted to Energy ADE for CityGML

3.0 data?

The scope is thus to solely map the existing Energy ADE onto CityGML 3.0, to produce a valid

XSD file, and to implement a testing pipeline to convert data losslessly. Its content in terms of

semantics and functionalities is not to be altered. Though, some minor changes might inevitably

occur due to the new structure of CityGML 3.0.

1.3. Method
The research is accomplished by adapting the model-driven approach as described by van den

Brink et al., 2013, to fit CityGML 3.0. First, the UML class diagrams of the Energy ADE 1.0

for CityGML 3.0 are created before automatically deriving the corresponding XSD schema file

with the Java tool ShapeChange. Finally, test data is created and subsequently converted to the

newly established ADE. This step is implemented in the ETL software FME.

All resources of this thesis are collected in a GitHub repository.

All over, I am aspiring to contribute with this work to the further establishment of CityGML

3.0 as a new standard. This includes to keep a widely used ADE up to date with the most recent

developments in the Geoinformation domain and to serve as an information resource for future

endeavours in developing the Energy ADE. Moreover, I hope this research provides some

useful insights for other practitioners working with ADEs in CityGML 3.0.

1.4. Reading Guide
The remaining thesis is structured as follows.

https://github.com/tudelft3d/EnergyADEv1_toCityGMLv3

5

Chapter 2 gives an extensive insight into relevant concepts, theories and related work.

Followingly, Chapter 3 explains the methodology including the applied model-driven approach

in more detail, together with the used tools and software. Chapter 4 subsequently describes the

implementation of the mapping, the schema file derivation and the data conversion in depth.

Chapter 5 presents the obtained results before discussing them in Chapter 6. Finally, Chapter 7

draws the conclusions of this work.

6

2. Scientific Context
In this chapter some theoretical background is provided. It gives an insight into relevant

concepts, data models and methodologies together with related literature. For this, approaches

for Urban Building Energy Modelling are briefly explained. Following is an introduction to the

basics of Unified Modeling Language as it is inevitable to understand when working with

CityGML. Subsequently, relevant concepts of CityGML 2.0 are outlined before describing the

Energy ADE 1.0 in detail. Lastly, the main changes of the new CityGML 3.0 standard are

presented.

2.1. Urban Building Energy Modelling
Urban Energy Modelling (UEM) frameworks, analysing a city’s energy demand and supply

(Abbasabadi & Ashayeri, 2019; Horak et al., 2022), and Urban Building Energy Modelling

(UBEM), focussing on the building sector (Nageler et al., 2018; Reinhart & Cerezo Davila,

2016), are valuable methods for urban planners and policy makers to work towards more

sustainable cities. Generally, UBEM can be distinguished in top-down and bottom-up

approaches. Top-down models are based on historic data of the overall energy flow in a certain

area. This information can then be further decomposed to match smaller sections. Bottom-up

models on the other hand, operate rather on individual or multiple building level and are then

scaled up to larger extents. They require detailed information about the objects’ energy relevant

characteristics, such as energy demand and supply, thermal properties or occupancy behaviour

(Abbasabadi & Ashayeri, 2019; Reinhart & Cerezo Davila, 2016).

Bottom-up models can be further subdivided into two main categories, the physical modelling

approach, also called simulation-based engineering by Abbasabadi & Ashayeri, 2019, and the

data-driven approach (Nageler et al., 2018). Data-driven models establish a mathematical

relationship through artificial intelligence or statistical techniques between provided energy

datasets and the “energy use of individual end-uses” (Abbasabadi & Ashayeri, 2019). The

physical modelling approach relies on a combination of building geometries, their physical

characteristics and additional information e.g. regarding their heating, ventilation and air-

conditioning (HVAC) systems or internal gains. As these non-geometric information are often

difficult to obtain on an individual level, building archetypes are commonly used instead

(Abbasabadi & Ashayeri, 2019; Nageler et al., 2018). They describe certain building typologies

with shared properties (Reinhart & Cerezo Davila, 2016).

7

The described bottom-up approaches both require certain energy relevant building information

for their implementation. According to Corrado & Fabrizio, 2019, they can be categorised into

Climate (time-varying information about weather phenomena), Building (including information

regarding the building envelope with its construction layers and thermal zones), HVAC

(information about subsystems for energy -emission, -control, -distribution, -storage, -

generation) and Users (including occupancy schedules and operation schedules for e.g.

ventilation, thermostats or shading devices). For each of these aspects exist equivalents in the

Energy ADE which are presented in part 2.4.2.

The Energy ADE for CityGML thus closes the gap of an open energy data model at city scale.

Open standards are pivotal for a successful establishment of UBEM, as they involve many

different actors and stakeholders. Without such standards data interoperability and exchange

can be difficult due to non-uniform object definitions and formats. This potentially leads to a

loss of information, requires more time and resources to obtain good quality harmonised data

and eventually fewer software solutions for UBEM (Agugiaro et al., 2018).

Existing open standards to model the built environment with the possibility to include energy

related information are sparse. They moreover vary in their covered geographic scale and level

of detail depending on the application domain (Agugiaro et al., 2018). On the individual

building level, the IFC data model is commonly used to represent buildings from the

architectural and constructional point of view throughout their lifecycle. It provides various

entities and attributes to represent the detailed structure of a building (Arroyo Ohori et al.,

2022). Also in the world of BIM, the Green Building XML schema (gbXML) “enables

interoperability between disparate building design and engineering analysis software tools”

(gbXML, 02.01.2023). Based on these characteristics the standard is particularly suited for

energy analyses on the building level (Agugiaro et al., 2018). Opposed to this, the INSPIRE

Specification on Buildings operates on the cross country and international level within the

European Union. It provides attributes to describe, among others, a buildings’ heating system,

its energy performance or network connections. However, it fails to meet the complexity needed

for UBEM (INSPIRE Thematic Working Group Buildings, 2013; Agugiaro et al., 2018).

The Energy ADE for CityGML facilitates UBEM on the level between, on the city-wide scale.

As such, is shares some overlap on both ends with BIM and ISPIRE (Figure 1). In order to

continue with more detailed explanations of CityGML and the Energy ADE, the basics of UML

described in the following.

8

Figure 1: Applicability of open building standards on a geographical scale. Taken from Agugiaro et al., 2018.

2.2. Introduction to UML
As of version 3.0, the CityGML Conceptual Model and its ADEs are formally defined through

Unified Modeling Language (UML) object models. Also in the earlier versions, UML plays a

crucial role in specifying the standard and exchange format. It thus constitutes an integral part

of this thesis and is followingly explained in its fundamental structures.

UML was first introduced in 1995 by G. Booch, J. Raumbaugh and later on I. Jacobson as a

tool for “specifying, visualizing and documenting object-oriented systems” (Breu et al., 1997).

Since then it has been standardised through the Object Management Group (OMG) in 1997

(Rumbaugh et al., 1999; UML v2.5.1, 2017) and is available as ISO standard in version UML

2.4.1 (ISO/IEC 19505-2:2012, 2012).

The UML subsumes several kinds of diagram types, which are classified according to so-called

views. In the case of CityGML, class diagrams are used. They describe a static system

consisting of objects and their (static) relationships to each other (Rumbaugh et al., 1999). The

for CityGML relevant concepts of this diagram type are further explained in more detail,

whereas the descriptions are mostly based on Pilone & Pitman, 2005 and own experience.

Classes, Objects and Features

At the core of the class diagram are the classes. They represent a group of objects with common

characteristics and behaviour. An object or feature on the other hand, is a concrete instance of

9

this class (Pilone & Pitman, 2005). An exemplary class could be “Tree”, with instances being

a specific oak or a maple tree feature.

Attributes

Classes can have several attributes giving additional information about its instances. In the

context of CityGML and according to General Feature Model defined in ISO 19109, they are

also called properties (ISO 19109:2015, 2015). Within the tree example, this could be the

species of the tree, its height and age. Each attribute is of a given type, which can be simple

(e.g. CharacterString, Double) or complex (e.g. an individually defined data type).

Multiplicity

Attributes and relations (see next point) have a multiplicity. In the context of attributes, it

specifies how many instances of this attribute are required or allowed per object. For

relationships, it defines the number of instances of another class an object can relate to.

Multiplicities are defined as follows:

Integer [2] Requires exactly two instances

Range [0..1] Requires number of instances within the given range

 [0..*] The asterisk symbolises an indefinite number

Missing Requires exactly one instance

Figure 2: UML class with several properties.

Relations

10

Classes can be in relation with each other. The way the relations are drawn in the UML class

diagram, gives information about the kind of relationship. Except for inheritance, relations also

have multiplicities and role names. The role name gives a semantic meaning to the relation

between two classes.

Association

Associations express a general relationship between classes which can be parsed in both

directions. Additional context is given through the role name and the multiplicity. In essence,

such a relationship is the same as an inline attribute of a class, where the role name corresponds

to the attribute name and the other class to the data type. Therefore, these two concepts can be

used interchangeably.

Figure 3: Association between two classes. A Garden has zero to many Trees, whereas a Tree is locatedIn only
one Garden.

Associations that are only parsed in one direction, are called unidirectional associations. The

navigability is indicated with an arrow towards the class to navigate to. If both ends of the

relationship have an arrow, it is a bidirectional association thus the same as a regular

association described before.

Figure 4: Navigable association between two classes.

Aggregation

11

An aggregation relationship expresses an ownership of one class over the other. However, the

classes may still exist independently. It can be read as “class A owns class B”. In UML

diagrams, it is represented through an empty diamond shape at the owning class.

Figure 5: Aggregation relationship. A Forest contains one to many Trees.

Composition

Composition relationships are similar to aggregations but constitute a stronger relationship

between the classes. It is read as “class A contains class B” or “class B is a part of class A”.

Thus, the contained class cannot exist on its own. It is drawn with a filled diamond shape at the

owning class.

Figure 6: Composition relationship. A Tree contains 1 to many Leaves.

Generalisation or inheritance

As the name already suggests, a generalisation relationship is between a general parent class

and one or multiple more specific child classes. The parent class subsumes properties common

to the child elements. Like this, all these properties, as well as the relations from and to the

parent class, are inherited by the child elements. Therefore, this kind of relationship is also

called inheritance. It is generally used to emphasize the commonality between the child classes.

Generalisation relationships are depicted through a closed arrow, pointing towards the parent

class.

12

Figure 7: Generalisation relationship. An AbstractPlant can be a Tree or a Bush.

A concept commonly used within CityGML in this context, is the one of abstract classes. An

abstract class is a parent class which never has an instance of itself. Only the child elements can

instantiate objects. A specific example from CityGML 3.0 is the AbstractConstructionSurface

class with several kinds of construction surfaces, such as RoofSurface, GroundSurface or

WallSurface, as child elements.

Stereotypes

Each element in the UML class diagram may be given a stereotype. It defines the role of an

element, for example a feature type or a data type. Stereotypes are depicted above the class or

element name in angle brackets («») (Pilone & Pitman, 2005). The different kinds of stereotypes

used in CityGML 3.0 and the Energy ADE are described in detail in chapter 5.2 of the CityGML

Conceptual Model Standard (Kolbe et al., 2021).

2.3. CityGML 2.0
The Energy ADE in its current version (v1.0) was developed for the CityGML 2.0 standard

published in 2012. However, the first version of the data model for representing and exchanging

3D city models dates back to 2008. Since then, it formed the basis of numerous applications

and research projects worldwide (Gröger et al., 2012). This is likely due to its unique approach

of defining the “three-dimensional geometry, topology, semantics and appearance of the most

relevant topographic objects in urban or regional contexts” all within one open data model

(Gröger & Plümer, 2012).

13

This is implemented by specifying common entities, attributes and relations, organised in 13

thematic modules, connected with each other through the Core module. Here, the concept of

city objects plays an important role. They describe in cities occurring dominant features such

as buildings, bridges or trees, all deriving from the abstract class _CityObject defined in the

Core module (Gröger et al., 2012).

Moreover, features in CityGML are geometrically modelled through boundary representation,

meaning that solid objects are defined over their bounding surfaces. In the case of Building in

the Building module, this can be implemented with its corresponding RoofSurface, WallSurface

and GroundSurface. Additionally, each feature can be modelled in five different LODs, with

increasing semantic and geometric richness. LOD0 refers to the feature’s 2.5D footprint. LOD1

is a prismatic block representation, often obtained by extruding LOD0. Next, LOD2 includes

in the case of Building, a simplified roof shape and the possibility to model it through its

thematic surfaces. LOD3 then represents the feature’s most detailed shape from the outside. For

Building, this includes openings such as windows and doors. Lastly, LOD4 adds the interior of

the feature to it (Biljecki et al., 2016; Gröger & Plümer, 2012). Figure 8 shows the LODs on the

example of a building.

Figure 8: The five LODs of CityGML 2.0 on the example of a Building. Taken from Biljecki et al., 2016.

Although the data model of CityGML is extensive, it is impossible to include all possible

features and attributes that might be needed for specific applications. Therefore, two ways of

extending CityGML 2.0 are foreseen.

The first one is through adding generic city objects (GenericCityObject) and generic attributes

(_genericAttribute) on demand. They are defined in the Generics module and can be added in

runtime without extending the CityGML 2.0 XSD schema. While this is a convenient way of

augmenting the data model with simple features, it does not suffice to model more complex

systems, nor is it possible to validate the additional information against the given schema

(Biljecki et al., 2018; Gröger & Plümer, 2012).

14

The extension through formally defined ADEs closes this gap. They can specify additional

features, relations, properties, data types and geometries in a separate XSD schema with its own

namespace. In this way, the information can be standardised and validated, ensuring better data

interoperability (Biljecki et al., 2018; Gröger & Plümer, 2012). As such, ADEs make use of

two extension mechanisms to achieve this:

1. Augment existing CityGML features with new properties and relations through the ADE

hook.

The CityGML classes to be extended are subclassed by a new element with the

stereotype «ADEElement». Within this new element, the additional properties can be

defined. The specialisation relation itself is marked with the stereotype «ADE» (Figure

9) (van den Brink et al., 2013).

Figure 9: Extending _AbstractBuilding with additional properties via the ADE hook mechanism in the Core
module of the Energy ADE 1.0 for CityGML 2.0. Taken from Agugiaro et al., 2018.

2. Define new feature types by subclassing CityGML classes.

New features can be defined through subclassing _CityObject and _Feature or a suitable

specialisation class thereof. The new feature can then define its own properties and

relations (Figure 10) (Biljecki et al., 2018).

15

Figure 10: Defining the new feature type AbstractEnergySystem as a subclass of _CityObject in the
Energy ADE 1.0 for CityGML 2.0 Core module. Taken from Agugiaro et al., 2018.

2.4. The Energy Application Domain Extension

2.4.1. General

Application Domain Extensions for CityGML are a popular way to include certain features to

the data model which are needed for specific applications. This is demonstrated by the amount

of different ADEs, which vary greatly in their complexity and maturity. Biljecki et al., 2018

give an extensive overview of existing ADEs and their developments.

The Energy ADE is mentioned in this context as an exemplary development. It started as a joint

effort in 2013 of the University of Applied Sciences Stuttgart and the Technical University of

Munich to harmonise their data models for urban energy simulations. Followingly, eleven

European organisations, among them universities and research institutes, joined the

collaboration to further develop the ADE. Additionally, the urban energy simulation platforms

SimStadt, CitySIM, Modelica library AixLib, EnergieAltlas, the Curtis platform and

SUNSHINE cooperated from the beginning on. This international joint project resulted in the

official release of the Energy ADE version 1.0 for CityGML 2.0 in January 2018 (Agugiaro et

al., 2018). This current version, including all the recent developments, can be found in a public

Git Repository (Energy ADE, 07.11.2022).

The purpose of the Energy ADE is twofold. On the one hand, it serves as an open, standardised

data model to “store and manage energy relevant data at urban scale” (Agugiaro et al., 2018).

This simultaneously ensures data interoperability between different stakeholders and facilitates

the data exchange. On the other hand, it can be used as input for UBEM, both on the single-

building as well as the city-wide level. Through its flexibility based on the provided classes and

properties, it is applicable for simpler analysis, but also for very detailed complex ones

(Agugiaro et al., 2018). An insight in simulation tools supporting the Energy ADE for CityGML

2.0 is given in part 2.4.3.

16

Since the release of the Energy ADE 1.0 in early 2018, there have been a few suggestions for a

further development towards a version 2.0. Some of the proposed changes can be found in the

corresponding Git Repository under “Issues” (Energy ADE, 03.06.2022). Furthermore, Dr.

Joachim Benner held a presentation about a critical review and proposal of a new Energy ADE

model. He mainly points some missing base classes, properties and relations out and

subsequently proposes a simpler version of the Energy System module (Energy ADE Review,

03.06.2022). Beyond this, Schildt et al., 2021 suggest to extend the Energy ADE in a new

version with additional energy systems and building utilities. However, there has not been any

official meeting yet among the working group to discuss the further development of the ADE.

2.4.2. Modules

The Energy ADE data model extends the CityGML Core and Building module by adding new

properties to existing classes as well as introducing new feature and data types. The ADE is

subdivided into six thematic modules, designed as UML diagrams, with interrelations to one

another. In the following, the modules including their most important features are outlined. A

more in depth description is given in Agugiaro et al., 2018.

17

Figure 11: Overview of the modular structure of the Energy ADE for CityGML 2.0 and its interrelations. Taken
from Agugiaro et al., 2018.

Core Module

Overall, the Energy ADE Core module defines additional attributes for the _AbstractBuilding

and _CityObject classes, introduces abstract base classes for the other modules and provides

additional property types (Figure 12).

The CityGML 2.0 class _AbstractBuilding is extended via the ADE hook mechanism to add

general parameters for roughly evaluating a building’s energy demand. They include additional

information regarding the geometry and location (floorArea, volume, heightAboveGround,

referencePoint) which are not provided by CityGML 2.0, its construction structure

(constructionWeight) and the type of building (buildingType). These added properties can be

applied to both, the Building and the BuildingPart class.

18

Figure 12: The Energy ADE for CityGML 2.0 Core module.

Furthermore, any _CityObject can be extended with the relations to EnergyDemand and

WeatherData. The EnergyDemand feature type allows to model the energy demand

(energyAmount) of various end uses (endUse) in a time-depending manner. As such, it serves

as a greatly simplified alternative to the more complex AbstractEnergySystem classes. For more

detailed energy analysis, the WeatherData type allows to model time-varying weather

phenomena such as temperature and solar irradiance. Because these two classes can be applied

to any _CityObject, they constitute means to model energy related properties also for features

outside of buildings.

Additionally, the abstract classes for the other thematic modules of the Energy ADE

(AbstractThermalZone, AbstractUsageZone, AbstractConstruction, AbstractEnergySystem) are

introduced in the Core. This moreover illustrates their relation to one another. Lastly, additional

data types, codelists and enumerations needed for features’ properties are established (Agugiaro

et al., 2018).

19

Building Physics Module

For more detailed UBEM, buildings are partitioned in in one or multiple thermal zones to

simulate their thermal behaviour. A thermal zone describes an isothermal volume, which can

refer to only one room, or for simplified models to an aggregation of rooms up to the whole

building. Thermal zones are delimited from each other and the outside of a building via thermal

boundaries. They can be defined as surfaces with a uniform thickness and energy transfer rate.

Discontinuities within them, typically windows or doors, are called thermal openings.

These concepts are respectively modelled in the Buildings Physics module through the classes

ThermalZone, ThermalBoundary and ThermalOpening. It is possible to geometrically represent

them, whereby the ThermalZone volume needs to be fully enclosed by the ThermalBoundary

and ThermalOpening surfaces.

A ThermalZone can contain several UsageZones, which hold information about heating-,

cooling- and ventilation schedules. ThermalBoundary and ThermalOpening in turn have a

mandatory relation to the AbstractConstruction class, specifying optical and thermal properties

of the surfaces (Agugiaro et al., 2018). The whole Building Physics module is depicted in Figure

13.

20

Figure 13: The Energy ADE for CityGML 2.0 Building Physics module.

Material and Construction Module

As mentioned, the Material and Construction module provides classes to remodel construction

structures in terms of their optical and thermal properties. This is implemented through a

Construction class with a property for the given heat transmission coefficient uValue.

Alternatively, it can also be modelled in more detail by several ordered layers (Layer). They

are themselves defined through one or multiple LayerComponent instances with a certain

thickness, made of a specified material (Gas, SolidMaterial). A Construction can also be set up

as a ReverseConstruction, where the order of the layers is inverted (Agugiaro et al., 2018)

(Figure 14).

21

Figure 14: The Energy ADE for CityGML 2.0 Material and Construction module.

Occupant Behaviour Module

The Occupant Behaviour module defines classes to model different usage zones and how they

are utilised by occupants and facilities such as electrical appliances. By including schedules it

is possible to represent their behaviour over the day/year/etc.

At the core of the module is the class UsageZone, which “defines regions of homogenous

usage” (Agugiaro et al., 2018). It provides properties to specify the current use

(usageZoneType) and influences on the indoor temperature (coolingSchedule, heatingSchedule,

ventilationSchedule). A UsageZone can furthermore contain several building units

(BuildingUnit), accommodating ownership information. Both the UsageZone and the

22

BuildingUnit may additionally have relations to Facilities (including DHWFacilities,

LightingFacilities, ElectricalAppliances) and Occupants to model internal heat gains produced

by them (Agugiaro et al., 2018).

Figure 15: The Energy ADE for CityGML 2.0 Occupant Behaviour module.

Energy Systems Module

For detailed energy supply and demand analyses, additional information regarding a building’s

energy systems are crucial. These can be provided through AbstractEnergySystem and its

associated classes in the Energy Systems module. It entails classes to model a building’s energy

23

storage (AbstractStorageSystem), distribution (AbstractEnergyStorageSystem), emission

(EmitterSystem) and conversion appliances (AbstractEnergyDistributionSystem). The module

furthermore showcases how the energy is exchanged and transmitted among them through the

EnergyFlow with its mandatory property energyAmount (Agugiaro et al., 2018) (Figure 16).

Figure 16: The Energy ADE for CityGML 2.0 Energy Systems module.

24

Time Series

The timeseries classes belong next to the schedule and weather data ones to the supporting

classes. They are used throughout the other modules to represent more specific property types

or additional properties.

More specifically, the timeseries classes are used to model time-varying property values, for

example the energyAmount in EnergyDemand. The respective attributes have the base class

AbstractTimeSeries as their property type.

The abstract base class has four possible specialisation classes, whereas they can be categorised

into regular and irregular timeseries. Regular timeseries have a given time period

(temporalExtent) and time interval (timeInterval) for the measurements. The measurement

values themselves are stored in case of a RegularTimeSeries in a measurement list (values), and

in case of a RegularTimeSeriesFile in an external file. Irregular timeseries on the other hand,

provide a specific timestamp with every measurement value. They can again be modelled inline

with the IrregularTimeSeries or stored externally with the IrregularTimeSeriesFile (Agugiaro

et al., 2018) (Figure 17).

Figure 17: The Energy ADE for CityGML 2.0 Time Series supporting classes.

25

Schedule

Schedules are used to describe to which extent appliances or features are operated in a certain

time period. They work in the same way as timeseries, by setting the property type to

AbstractSchedule for the respective attributes.

Figure 18: The Energy ADE for CityGML 2.0 Schedules supporting classes.

The base class can be specialised into four classes, with increasing degrees of freedom to model

the schedules. In its simplest form, the ConstantValueSchedule, the usage is specified through

only one average value. The DualValueSchedule distinguishes between operating and idle times

(usageValue, idleValue). Beyond that, the DailyPatternSchedule allows to model varying

operation times depending on the period of the year (PeriodOfYear) and the day

(DailySchedule). With the TimeSeriesSchedule the operating times can freely be modelled

through any of the given timeseries (Agugiaro et al., 2018) (Figure 18).

Weather Data

The weather data is comprised of the feature type WeatherStation deriving from _CityObject,

and the type WeatherData, which can be added to any _CityObject. Therefore, the

WeatherStation serves as a class to accumulate various time depending climate and weather

metrics relevant to a more sophisticated UBEM (Agugiaro et al., 2018) (Figure 19).

26

Figure 19: The Energy ADE for CityGML 2.0 Weather Data supporting classes.

KIT profile

The KIT profile is not a module of the Energy ADE, but rather a subset of it. It was developed

at the Karlsruhe Institute of Technology as a simplified data model for less complex energy

analysis and applications (KIT Profile, 13.11.2022). The most notable difference is the omitted

Energy Systems module. Instead, the energy demand can only be modelled through the class

EnergyDemand in the Core module. Furthermore, the supporting modules are reduced

substantially. For the timeseries, only the RegularTimeSeries and the RegularTimeSeriesFile

remain. The schedules are reduced to the DailyPatternSchedule. Beyond this, some smaller

changes include the elimination of some feature types (e.g. ReverseConstruction), relations and

properties.

2.4.3. Software Support of the Energy ADE

The vast collaboration in the Energy ADE’s development likely explains the software

supporting the extension. Among them is SimStadt, an urban simulation tool developed at HFT

Stuttgart (Coors et al., 2021). The integrated workflow for heat demand analysis reads

CityGML 2.0 data, calculates the yearly space heating and domestic hot water demands, and

exports the result in form of CityGML 2.0 + Energy ADE.

Similarly, the CitySim software (CitySim, 13.11.2022) quantifies heating and cooling demands

at urban scale. The simulation considers the corresponding occupant behaviour, local radiation

models, thermal building properties as well as given energy and supply systems. The results

can be written in form of CityGML 2.0 + Energy ADE (Kämpf & Coccolo, 2015).

27

Moreover, a relational database management system implementation for the Energy ADE

exists. The 3DCityDB, managing CityGML data within a spatial database system, also has an

extension for the mentioned KIT profile. Through this, corresponding data can be imported,

analysed, manipulated and exported (3CityDB Energy ADE, 13.11.2022)

Lastly, the ETL software FME can handle the extension when provided the according XSD

schema file.

2.4.4. Related ADEs

There are a few other ADEs that follow a similar purpose or share some overlap with the Energy

ADE. Among them are two ADEs, both with the name Energy Efficiency ADE. They enable

to model thermal zones (Dalla Costa et al., 2011) and define classes to model material properties

respectively (Prieto et al., 2012). However, they are not as extensive and widespread as the

Energy ADE. Furthermore, the UtilityNetwork ADE focuses on modelling utility and

infrastructure networks for cities, such as electricity, fresh water, gas or telecommunication

networks, and additionally provides ways to represent information about materials, usage and

population (UtilityNetwork ADE, 12.11.2022) (Kutzner et al., 2018; Becker et al., 2011;

Biljecki et al., 2018). As such, the ADE shows some overlap with the Energy ADE in the

thematic scope but also in some of the modules that are designed. However, as opposed to the

Energy ADE, the UtilityNetwork ADE focuses rather on a city level and on “what’s outside the

buildings” (Agugiaro et al., 2018). By this, the two ADEs complement each other and enable

the user to model and simulate energy-related questions holistically for a city.

Beyond this, the Energy ADE 1.0 has also been adapted as an extension for CityJSON. The

CityJSON Energy extension implements the simplified KIT profile for CityJSON 1.0 (based

on the CityGML 2.0 standard) (Tufan, 2022).

2.5. CityGML 3.0
CityGML 3.0 was developed with the goal in mind to be more applicable for different user

groups and additional use cases. More specifically, the interoperability with standards like IFC

or INSPIRE was enhanced and additional modules were added, e.g. to incorporate the

processing and storage of point clouds (Kutzner et al., 2020).

The first discussions and change requests for a new CityGML version started as early as 2013,

one year after the release of CityGML 2.0. Following several years of work, the first refined

28

version of CityGML 3.0 in form of the GML encoding and UML diagrams was freely available

in 2019 through a Git Repository (CityGML-3.0Encodings, 10.11.2022) (Kutzner et al., 2020).

Eventually, the new version was officially released in September 2021, defined as a Conceptual

Model standard specified through UML class diagrams. This way the new standard is encoding

independent, opening the door for various implementations of the data model (Kolbe et al.,

2021). The corresponding XML-based schema files are expected to be officially approved and

released by the OGC in early 2023 according to Dr. Kutzner. However, they are already

available through a newly set up Git Repository for the CityGML 3.0 GML encoding

(CityGML3.0-GML-Encoding, 10.11.2022).

An alternative official OCG encoding for CityGML is CityJSON, developed by the 3D

geoinformation research group at the Delft University of Technology. As the name already

suggests, it is a JSON-based encoding of the CityGML data model, aiming to be more developer

friendly through easy visualisation and manipulation of the corresponding files (Ledoux et al.,

2019). Moreover, CityJSON already implements a subset of the CityGML 3.0 conceptual model

since version 1.1 (CityJSON Specification, 10.11.2022). However, it deliberately does not

support all features of the conceptual model standard, either due to their rare usage or to avoid

an overcomplication of the encoding (CityJSON, 10.11.2022).

Additionally, a database schema encoding as it is available with 3DCityDB for CityGML 2.0

is currently in development. But there are no publications yet in this regard.

2.5.1. Changes in CityGML 3.0

With CityGML 3.0 come some major revisions. They can be summarised in four aspects. First,

is the already mentioned formal definition through the Conceptual Model standard (Kolbe et

al., 2021) to ensure encoding independence. This also includes its foundation on the ISO 191xx

standards. Second, is the introduction of new modules (Dynamizer, Versioning, PointCloud,

Construction) and the alteration of already existing ones (Core, Generics, Building,

Transportation) (Figure 20). Third, the Core module now contains a new space concept and

centrally defines all geometries including a revised notion of the LODs. Lastly, the ADE

mechanism has been refined to easily incorporate multiple extensions at the same time and to

allow for the application of the model-driven approach. Nevertheless, despite all these changes,

lossless conversion of CityGML 1.0 and 2.0 datasets to CityGML 3.0 is ensured (Kutzner et

al., 2020).

29

Figure 20: Overview of the CityGML 3.0 modules. Taken from Kutzner et al., 2020.

Space Concept

The newly introduced space concept is one of the major changes of CityGML 3.0. It is defined

in the Core module through abstract classes. This way, another level of semantic meaning is

added to each city object while inheriting the corresponding properties from the Core. An

overview of the entire space concept is given in Figure 21.

30

Figure 21: The space concept as defined in the Core module. Source: Kolbe et al., 2021.

On the first level, all AbstractCityObjects are divided into AbstractSpace and

AbstractSpaceBoundary. The space class is used to model real-world volumetric entities, such

as buildings or traffic spaces. It moreover now holds properties to further describe geometric

characteristics of the objects, namely their volume and area. Space boundaries on the other

hand describe features with an areal extent delimiting space objects. An example of this are all

AbstractConstructionSurface elements (Construction module) such as WallSurface or

RoofSurface (Figure 22).

Figure 22: Space (orange) and space boundary (blue). Adapted from Kutzner et al., 2020.

In the next step, spaces are further subclassed into AbstractLogicalSpace and

AbstractPhysicalSpace. Physical spaces are “fully or partially bounded by physical objects”

and can hence be physically experienced (Kutzner et al., 2020). An example are buildings,

31

which are bounded by a roof, walls, and floor surfaces. On the other hand, logical spaces

describe entities in regard to a thematic meaning. This can be a union of several physical spaces,

such as an apartment consisting of several rooms, but also a more abstract space like a traffic

zone. As such, logical spaces are bound by either virtual or real-world boundaries which are

both geometrically modelled through space boundaries.

Figure 23: Physical space (room, green) and logical space (aggregation of multiple rooms, pink). Adapted from
Kutzner et al., 2020.

AbstractPhysicalSpace is in turn further subclassed into AbstractOccupiedSpace and

AbstractUnoccupiedSpace. Occupied spaces are “physical volumetric objects that occupy

space in the urban environment” (Kutzner et al., 2020). It can be understood as an object which

occupies space for other things to be put there. Similarly, unoccupied spaces are also physical

volumetric objects, but they do not block any space for other entities. An example to help

understand this concept is a building and its interior. The building represents an occupied space,

as this part of the land cannot be used anymore for other purposes. However, the rooms inside

describe an unoccupied space because it is still possible for someone to walk through or to fill

it with other objects, for example, Furniture (which again would be an occupied space) (Figure

24).

Figure 24: Occupied and unoccupied space. Taken from Kutzner et al., 2020.

32

Finally, the concrete classes of e.g. Building or BuildingRoom are all subclasses of these

abstract space classes. Whether an object is a subclass of space boundary, space or any other

of the mentioned space classes, is solely dependent on its semantic meaning (Kutzner et al.,

2020).

Geometry and LOD Concept

Next to the new space concept, also all the geometries are now centrally defined in the Core

module. As such, they are associated with the space concept and are thus inherited by the

specialisation classes. This way, the thematic modules themselves are slimmed down, by

avoiding repetitive modelling within each of them.

Moreover, the LOD concept has been revised in the new CityGML version. LOD 4, which was

previously used to model the interior of buildings, has been removed. Instead, the interior can

be integrated into any other LOD (0-3). Additionally, it is now possible to represent the interior

itself in various levels of detail. This allows for more flexibility in terms of geometric

representations depending on the specific user needs. For instance, it is possible to model a

building in LOD 1 while at the same time depicting the interior in LOD 3 (Kutzner et al., 2020).

Figure 25: Excerpt of the Core module, showcasing the geometry and LOD concept. Source: Kolbe et al., 2021.

33

Construction module

The Construction module is newly introduced with CityGML 3.0 and serves as an intermediary

module between the Core module and the Building, Bridge and Tunnel modules. It defines

common classes that are used to model man-made constructions (Kutzner et al., 2020). Among

them are all the thematic surfaces (AbstractConstructionSurface, AbstractFillingSurface and

specialisation classes), the AbstractConstruction class which is the superclass of Building

(Building module), and OtherConstruction covering other kinds of constructions. Furthermore,

it contains a class AbstractConstructiveElement that can be used to model volumetric elements

of a construction like walls or slabs (Kolbe et al., 2021).

Building module

As already mentioned, the geometries and thematic surfaces are no longer defined in the

Building module. Apart from this, the AbstractBuilding class remains to have the two

subclasses Building and BuildingPart. But now there is a composition relationship between the

subclasses, with Building being the owning class. The earlier CityGML version has an

aggregation between AbstractBuilding and BuildingPart, denoting that a BuildingPart can

consist of further BuildingParts. Furthermore, the module now contains the class

AbstractBuildingSubdivision as a subclass of AbstractLogicalSpace and a superclass of

BuildingUnit and Storey. This enables to represent logical building subdivisions according to a

homogenous property (e.g. function or ownership) in a standardised way (Kutzner et al., 2020).

Dynamizer and Versioning modules

In order to model qualitative and quantitative changes of a city or city objects over time, two

new modules have been introduced, the Versioning module and the Dynamizer module.

The Versioning module allows to model qualitative variations of city objects over time. By this,

it is possible to host multiple versions of the same city object within one city model as well as

multiple versions of the whole city model. The Dynamizer module on the other hand, enables

to represent qualitative temporal variations of attribute values which are changing frequently

over time, such as the temperature throughout a day/month/year. It is based on an according

ADE for CityGML 2.0 by Chaturvedi & Kolbe, 2017, which was developed to “support real-

time sensor readings and other time-dependent properties within semantic 3D city models”. The

34

related data sources are usually either through simulations, recorded data or real-time sensors

(Kutzner et al., 2020).

Figure 26: Excerpt of the CityGML 3.0 Dynamizer module. Source: Kolbe et al., 2021.

In the context of this thesis, the new possibility to model time-varying property values is of

great importance. Thus, this aspect of the Dynamizer module is explained in more detail (see

Figure 26 for an overview of the module).

At the modules core is the Dynamizer feature type, which can be referenced by any

AbstractCityObject via the dynamizer relation. With the Dynamizer’s mandatory property

attributeRef, it is indicated which exact property of which class instance is referenced and

overwritten by the time-varying data. The Dynamizer can then own an AbstractTimeseries,

specifying the observation property’s values over time. Eventually, this can be implemented in

various ways depending on the chosen specialisation class. One option is to individually model

each value with a corresponding time-value-pair (GenericTimeseries). If the values with their

timestamps are stored in an external file, they can be included via the TabulatedFileTimeseries

class Dynamizer

«FeatureType»
Core::AbstractCityObject

«FeatureType»
CompositeTimeseries

«Property»
+ adeOfCompositeTimeseries: ADEOfCompositeTimeseries [0..*]

«FeatureType»
AbstractAtomicTimeseries

«Property»
+ observationProperty: CharacterString
+ uom: CharacterString [0..1]
+ adeOfAbstractAtomicTimeseries: ADEOfAbstractAtomicTimeseries [0..*]

«FeatureType»
Core::AbstractFeatureWithLifespan

«FeatureType»
AbstractTimeseries

«Property»
+ firstTimestamp: TM_Position [0..1]
+ lastTimestamp: TM_Position [0..1]
+ adeOfAbstractTimeseries: ADEOfAbstractTimeseries [0..*]

«FeatureType»
Dynamizer

«Property»
+ attributeRef: CharacterString
+ startTime: TM_Position [0..1]
+ endTime: TM_Position [0..1]
+ adeOfDynamizer: ADEOfDynamizer [0..*]

«FeatureType»
Core::AbstractDynamizer

«DataType»
TimeseriesComponent

«Property»
+ repetitions: Integer
+ additionalGap: TM_Duration [0..1]

«FeatureType»
StandardFileTimeseries

«Property»
+ fileLocation: URI
+ fileType: StandardFileTypeValue
+ mimeType: MimeTypeValue [0..1]
+ adeOfStandardFileTimeseries: ADEOfStandardFileTimeseries [0..*]

«FeatureType»
TabulatedFileTimeseries

«Property»
+ fileLocation: URI
+ fileType: TabulatedFileTypeValue
+ mimeType: MimeTypeValue [0..1]
+ valueType: TimeseriesTypeValue
+ numberOfHeaderLines: Integer [0..1]
+ fieldSeparator: CharacterString
+ decimalSymbol: Character [0..1]
+ idColumnNo: Integer [0..1]
+ idColumnName: CharacterString [0..1]
+ idValue: CharacterString [0..1]
+ timeColumnNo: Integer [0..1]
+ timeColumnName: CharacterString [0..1]
+ valueColumnNo: Integer [0..1]
+ valueColumnName: CharacterString [0..1]
+ adeOfTabulatedFileTimeseries: ADEOfTabulatedFileTimeseries [0..*]

«enumeration»
TimeseriesTypeValue

 int
 double
 string
 geometry
 uri
 bool
 implicitGeometry
 appearance

«FeatureType»
GenericTimeseries

«Property»
+ valueType: TimeseriesTypeValue
+ adeOfGenericTimeseries: ADEOfGenericTimeseries [0..*]

«DataType»
TimeValuePair

«Property»
+ timestamp: TM_Position
+ intValue: Integer [0..1]
+ doubleValue: Real [0..1]
+ stringValue: CharacterString [0..1]
+ geometryValue: GM_Object [0..1]
+ uriValue: URI [0..1]
+ boolValue: Boolean [0..1]
+ implicitGeometryValue: ImplicitGeometry [0..1]
+ appearanceValue: AbstractAppearance [0..1]

AnyFeature

«FeatureType»
Core::AbstractFeature

0..1

+timeseries
«Property»

1

+timeValuePair
«Property» 1..*

*

+dynamicData
«Property»

0..1

+dynamizer
«Property»

*

+component
«Property»

1..*
{ordered}

35

or the StandardFileTimeseries. For more complex timeseries, the CompositeTimeseries and the

TimeseriesComponent are foreseen.

ADE mechanism

The CityGML extension mechanism has been revised in order to improve the application of

several ADEs at the same time. This is achieved through the remodelled ADE hook explained

below. Additionally, ADEs now have to be, just as CityGML 3.0 itself, formally defined by

UML class diagrams to ensure encoding independence.

The first extension mechanism, for defining new ADE Elements, stays principally the same as

in earlier versions. New features are supposed to be derived from AbstractFeature or an

appropriate subclass of it. In case the feature has a spatial extent, it should derive from a

semantically logical superclass inheriting the earlier described space concept. However, it is

still possible to explicitly define geometries for new features.

The second ADE mechanism injects additional properties to already existing CityGML feature

types. This form of extension is also known as ADE hook. The hook mechanism has been

revised in CityGML 3.0 so that subclassing the feature type is no longer necessary. Instead, the

new properties are added via the extension attribute “adeOfFeatureTypeName” of type

“ADEOfFeatureTypeName” which every CityGML feature type contains. FeatureTypeName

is replaced with the according class name (e.g. adeOfBuilding with the type ADEOfBuilding).

The new properties are then added to a new subclass of the data type ADEOfFeatureTypeName

with the stereotype «DataType».

Both of the mechanisms are schematically depicted in the following figure.

Figure 27: ADE mechanism for defining additional properties (EnergyProperties) and creating new classes
(ThermalHull).

36

2.5.2. Applications of CityGML 3.0

Even though CityGML 3.0 is a rather new standard, it has already been used for a number of

research projects and implementations. Some of these publications date back to before the

release date. This is possible as the developments of the standard have always been publicly

accessible through the Git repositories. However, it should still be mentioned that many of those

papers are (co)written by authors who significantly contributed to the development of CityGML

3.0.

One category of published research regarding CityGML 3.0 highlights and explains the changes

that are made, without an explicit application (Löwner et al., 2014), (Löwner & Gröger, 2017),

(Kutzner & Kolbe, 2018), (Kutzner et al., 2020).

The other category covers actual applications and testing of the new standard. Beil et al., 2020

for instance, explore the capability of CityGML 3.0’s Transportation module to model and

represent streetspaces in comparison to other common formats. Another work from Beil et al.,

2021 showcases how the new PointCloud module in CityGML 3.0 can be utilised to store point

clouds with richer semantics than just the classification values. Beyond this, Yan et al., 2021

make use of CityGML 3.0 and IndoorGML 1.0 to develop a system for seamless indoor-outdoor

navigation.

Further practical work involves the creation and usage of ADEs and is discussed in the

following section.

2.5.3. ADEs for CityGML 3.0

The Git Repository for the CityGML 3.0 GML encoding contains next to the UML diagrams

and schema files also example data for the different modules (CityGML3.0-GML-Encoding,

12.11.2022). Among them are also two ADEs, the Test ADE and the Urban Planning ADE.

The Test ADE is an artificial extension for CityGML 3.0 originally developed to test the support

of the 3D City Database introduced with version 4.0. It covers the ADE extension mechanisms

explained earlier, namely adding new feature types and extending existing ones with additional

properties. The ADE consists of one UML diagram module showcasing these techniques

(TestADE, 12.11.2022).

The Urban Planning ADE was developed as part of the "i-Urban Revitalization" (i-UR) project

supported by the Japanese government to aid municipalities analysing and visualising

37

developments in regard to urban planning. The ADE enables among others to store and model

information about urban zones and its functions, the population living in them, as well as the

transportation accessibility (Akahoshi et al., 2020). The resulting ADE together with its UML

diagram has since been partly adapted to comply with the new CityGML 3.0 standard and its

revised ADE mechanism (Urban Planning ADE, 12.11.2022).

Another ADE that is implemented for CityGML 3.0 is the IfcADE by Biljecki et al., 2021.

Although the new Conceptual Model aims for a better interoperability between IFC and

CityGML, some relevant information is still lost. The IfcADE tries to close this gap. It is based

on the preliminary Conceptual Model and XML-based encoding which were available at the

time of development. Based on the ADE’s corresponding UML diagram, the new extension

mechanism has not been applied yet. However, according to the authors, the ADE is to be

updated if necessary with the official release of the standard (Biljecki et al., 2021).

Furthermore, the already discussed UtilityNetwork ADE has been adapted to fit the new

standard. This includes changes of some parent classes, considering the introduced space

concept. Geometry representations are also affected by this, in a way that most of them don’t

need to be explicitly modelled anymore. Instead, they are inherited from the CityGML 3.0 core

(citygml3-utility-network-ade, 12.11.2022).

Other ADEs for CityGML 3.0 are among others developed for the representation of a 3D

cadastre in Addis Ababa (Nega & Coors, 2022) or as support for 3D underground land

administration (Saeidian et al., 2022).

2.5.4. Conversion from CityGML 2.0 to CityGML 3.0

To convert CityGML data to the new version, the open-source Java library and API citygml4j

can be used (citygml4j, 12.11.2022). It supports the CityGML 3.0 Conceptual Model both in

its GML and JSON encoding. Beyond that, there exists a freely available FME based conversion

tool (FME conversion, 12.11.2022). The tool focusses on the Building module and its necessary

adjacent classes in the GML encoding. Other objects can easily be included by a user following

the example of the already existing ones.

38

3. Method
Overall, this thesis consists of 3 steps:

1) Mapping process and creation of UML class diagrams

2) Derivation of the corresponding XSD schema file

3) Data conversion

The first two steps follow a model-driven approach. It was applied for the development of

CityGML 3.0 (Kutzner et al., 2020) and is also the proposed methodology for the creation of

Application Domain Extensions by van den Brink et al., 2013. However, it is slightly adapted

as the Energy ADE is only mapped and not newly created and to be conformant with CityGML

3.0. The overall workflow is summarised in Figure 28.

Figure 28: Schematic workflow of the mapping and conversion process.

39

3.1. Mapping
In the model-driven approach, first a data model defining the required classes, properties and

relations is defined at a conceptual level (Kutzner et al., 2020). For this purpose, UML class

diagrams are used in order to match the CityGML definition and the Energy ADE already in

place. This adheres at the same time to the CityGML 3.0 conceptual model standard, requiring

ADEs to be defined through UML diagrams.

To define the data model van den Brink et al., 2013 formulate six sub steps which are adapted

to this research.

1) Selection of a formal modelling language. In this case UML is used, as it is demanded

by the CityGML 3.0 specifications

2) Establish correspondence between the CityGML base classes and the semantic classes

to be included in the ADE. This includes a first informal mapping where the new classes

can potentially be placed within the CityGML UML diagram according to their semantic

correspondence.

3) Choosing of the subclasses to be extended. Here, the specific subclass where the ADE

is placed is chosen and it has to be decided which ADE mechanism applies. Either the

properties will be extended through the hook mechanism, or a new class or feature will

be created in relation to the existing class. This and the previous step, are already

partially given through the existing Energy ADE. But due to the changes in CityGML

3.0, the correspondence and the best fitting ADE mechanism need to be revised.

4) Possibly define code lists. For this, the already existing codelists of Energy ADE v1.0

are mostly taken over. However, it is to be checked whether newly introduced or

reworked code lists in CityGML 3.0 (partly) replace some of the Energy ADE code lists.

Additionally, this step entails the assessment whether any Energy ADE properties can

be replaced by newly introduced CityGML ones.

5) Define the geometry representation for each class if necessary. If a class in the ADE

requires a geometric representation it is to be decided in which way it is needed.

Through the reworked LOD and geometry concept of CityGML 3.0, most of the classes

can inherit the geometries from the Core module. However, it is still possible to

explicitly define the ADE classes’ own geometries.

6) Decide on topologically and semantically correct LOD. This step comes hand in hand

with the previous one. There might be cases where specific LODs are topologically

40

correct or incorrect. The decision should be align with the revised LOD definitions of

CityGML 3.0.

This whole approach is first applied conceptually with “pen and paper”, one module at a time.

The general proceeding order is illustrated in Figure 29. As it can be seen the Core Module and

the Supporting classes are developed in parallel to the other modules. Once the mapping is

done, the according UML diagrams are created in Enterprise Architect v13 (EA). The software

by Sparx Systems focuses on visual modelling of systems, software, processes and architectures

(Enterprise Architect, 15.11.2022).

Figure 29: Proceeding order for the mapping.

3.2. XSD Schema
In the second step, the transfer format is derived from the established data model. Because this

work is based on the GML encoding of CityGML, the result is in form of an XSD schema file.

The file lays down the encoding rules, meaning it defines how to correctly write an Energy

ADE GML file. It furthermore enables the syntactic validation of Energy ADE data.

The implementation of this step is done with the Java tool ShapeChange v2.11. In combination

with a specified configuration file, the tool is able to connect to EA and automatically derives

the corresponding XML schema (ShapeChange, 15.11.2022). Within this process, modelling

errors and violations against the ISO19109 standard in the UML diagrams are detected as a side

effect. Additionally, the resulting file is manually examined on any potential remaining

problems.

41

Figure 30: Overview of ShapeChange process. Taken from ShapeChange, 26.11.2022.

3.3. Conversion
The last step converts CityGML 2.0 data extended with the Energy ADE to CityGML 3.0 plus

Energy ADE. In order to create and test a lossless conversion application, a test dataset needs

to be generated first. This dataset aims to cover as much of the Energy ADE as possible,

comprising every feature type, data type, property and relation at least once. However, there

are almost endless possibilities to model them in terms of XLinks, parent classes or relations to

one another. Therefore, the test dataset does not implement the Energy ADE in all its entity.

The test dataset creation, as well as the development of the conversion tool is done with the

ETL software FME Desktop v2022.0. It provides means to import and export CityGML data in

different versions and in combination with ADEs. Furthermore, the files can be validated

against the given schemas. The conversion tool itself builds up on the described FME

workspace in part 2.5.4 since it also needs to convert the relevant features of CityGML 3.0.

Figure 31: Test data creation and conversion.

As the starting point for the input data serves a CityGML 2.0 plus Energy ADE file which

already contains several prominent features and properties of the extension. It is part of the

42

GEO5014 course materials at TU Delft and provided by Giorgio Agugiaro. Missing features in

the dataset are identified and subsequently complemented. The such acquired data is then in

turn employed as input for the conversion (Figure 31).

Finally, the converted results are verified in two ways. The first one is by the GML Writer

validation, checking whether everything is in accordance with the provided XSD schema file.

The second one is a manual validation of the results by comparing the input gml file with the

produced output file. Through this, missing properties or wrong assignments to parent elements

can be detected.

Although the implementation of this thesis overall follows the described workflow, it is not

always a linear process. Certain feedback loops exist, where smaller problems or

inconsistencies in previous steps are detected. These are then corrected if necessary.

43

4. Implementation
As described in the Methodology, the implementation consists of three steps. The structure of

this chapter follows those steps, starting with the conceptual mapping of the Energy ADE 1.0

to CityGML 3.0. Next, the derivation of the XSD schema through ShapeChange is explained.

Finally, a description of the two FME workspaces to create the test data and to subsequently

convert it is provided.

4.1. Mapping the Energy ADE to CityGML 3.0
At the thesis’ core is the mapping process of adjusting the Energy ADE to fit the new CityGML

3.0 standard. The goal is to obtain an updated extension without any changes of content and

loss of information.

At the same time, the result should demonstrate coherent mapping and logical consistency

throughout all the modules. In order to achieve this, two general mapping principles are

established which function as a guideline, as there usually is more than just one possibility to

implement something. Moreover, some overarching mapping decisions are explained. They

constitute decisions which generally apply within all ADE modules.

The remainder of chapter 4.1 then demonstrates and reasons the final mapping decisions as well

considered alternatives module by module.

General mapping principles

1. Integrate as much as possible:

The first guiding principle is to integrate the Energy ADE as much as possible into the

CityGML 3.0 conceptual model. This also implies to make use of the newly introduced

space and geometry concept. An advantage of this strategy is that an additional layer of

semantic meaning is added to each class deriving directly or indirectly from

AbstractCityObject. It also leads to the possibility of replacing certain Energy ADE

properties by newly added CityGML 3.0 ones. Furthermore, this strategy enables a multiple

LOD representation and makes the explicit definition of geometries redundant.

Alternatively, the Energy ADE classes could be kept closer together on a higher level while

explicitly defining the geometries and all the individual properties. As such, the changes in

44

CityGML 3.0 would largely be disregarded and the final result would resemble a mere

copying of the Energy ADE already in place.

2. Maintain a logical symmetry:

The second modelling principle aims to retain a certain logical symmetry while mapping.

In other words, similar classes in terms of their meaning or conceptual level should also be

mapped to the same parent class or the same hierarchy level in the CityGML 3.0 data model.

On a more individual level, the decision on how and where an Energy ADE class is integrated

within CityGML 3.0 depends on multiple factors. First and foremost is the semantic fit of a

class to its potential parent class. It is possible that an ADE class fits several CityGML classes

throughout their specialisation relations (e.g. AbstractBuilding or Building). In such cases, it is

inspected whether the additional properties and relations of the more specialised class add any

value to the ADE class. Moreover, it is compared how similar classes are mapped to fulfil the

second modelling principle. Lastly, it is checked if the decision would inadvertently effect any

of the other ADE classes (e.g. by adding properties to a class via the hook which are then in

turn inherited by another ADE class).

Although the mapping principles might sound rather abstract at this point, they will become

tangible through the explanations in the particular modules (see chapter 4.1). It is furthermore

important to mention, that those guidelines still give room for multiple solutions in certain

cases. If so, the decision is made on the individual level.

Overarching mapping decisions

1. AbstractFeatureWithLifespan over AbstractFeature:

AbstractFeatureWithLifespan is always preferred over AbstractFeature as generalisation

class. This way, useful additional properties can be included. Among them are the newly

introduced ones validFrom and validTo. By including them it is possible for every Energy

ADE object to be represented in different versions throughout its history. As such they

integrate in the CityGML 3.0 way of supporting feature history.

2. Maintain abstract classes:

A benefit of using abstract classes is to support the modular structure of UML diagrams

with several packages. Through them, they can be conveniently connected with each other.

Although, the in this thesis proposed mapping does not make use of this modular structure

45

and rather implements everything in one package, the abstract classes are kept. This follows

the idea of a lossless mapping and opens the possibility for an easy transferral into the

modular structure in potential future work.

3. Multiplicities, relations and properties:

Finally, multiplicities, relations and properties are generally kept as they are in the Energy

ADE for CityGML 3.0. In case something is changed in this regard, it is explicitly

mentioned and reasoned.

4.1.1. Core module

BuildingProperties

The additional properties for Building and BuildingPart keep being added to the class

AbstractBuilding. With the revised ADE hook mechanism, the subclassed data type needs a

unique descriptive name. Here, BuildingProperties is chosen.

Several ADE properties can be replaced by CityGML 3.0 ones, namely volume, floorArea and

heightAboveGround. The detailed mapping is demonstrated in the tables 1, 2 and 3. Figure 32

additionally shows the mapping in terms of UML diagrams on the example of volume. The

mapping of the other two properties is alike. Furthermore, the point geometry referencePoint

is replaced by the lod0Point geometry deriving from AbstractSpace.

Figure 32: Mapping volume in _AbstractBuilding to volume in AbstractSpace in terms of UML. Source:
Agugiaro et al., 2018; Kolbe et al., 2021.

46

Table 1: Integration of the volume property in Energy ADE for CityGML 2.0 into the volume property of AbstractSpace in
CityGML 3.0. VolumeTypeValue is an enumeration, QualifiedVolumeTypeValue an extendible codelist.

«ADEElement »

_AbstractBuilding AbstractSpace

volume: VolumeType volume: QualifiedVolume

type: VolumeTypeValue  typeOfVolume: QualifiedVolumeTypeValue

value: Volume volume: Volume

Table 2: Integration of the floorArea property in Energy ADE for CityGML 2.0 into the area property of AbstractSpace in
CityGML 3.0. FloorAreaTypeValue is an enumeration, QualifiedAreaTypeValue an extendible codelist.

«ADEElement »

_AbstractBuilding AbstractSpace

floorArea: FloorArea area: QualifiedArea

type: FloorAreaTypeValue  typeOfArea: QualifiedAreaTypeValue

value: Area area: Area

Table 3: Integration of the heightAboveGround property in Energy ADE for CityGML 2.0 into the height property of
AbstractConstruction in CityGML 3.0. ElevationReferenceValue is a codelist and can be extended. lowReference and status
don’t have an equivalent in the Energy ADE. For lowReference “ground” can be set, HeightStatusValue is an enumeration of
the values “estimated” and “measured”.

«ADEElement »

 _AbstractBuilding AbstractConstruction

heightAboveGround:

HeightAboveGround

height: Height

heightReference:

ElevationReferenceValue
 highReference: ElevationReferenceValue

value: Length value: Length

 lowReference: ElevationReferenceValue

 status: HeightStatusValue

EnergyDemand

In a similar manner to the Energy ADE for CityGML 2.0, every CityObject demands zero to

many EnergyDemand instances. But because association relations are in principle just

properties by reference, they are not allowed to be added directly to a CityGML feature type,

as this would alter the original data model. Therefore, the class in question is extended with the

47

ADE hook, from which the relation to the ADE object departs. In this case, the subclassed

DataType is named EnergyADECityObjectProperties.

Within the EnergyDemand class itself, the compulsory property energyAmount is described

through a timeseries. In this version of the Energy ADE, the supporting classes of

AbstractTimeSeries are partly replaced by classes of the CityGML 3.0 Dynamizer module.

Where this is not sufficient to convey the Energy ADE timeseries information, the ADE

mechanisms are applied to extend the Dynamizer module. Therefore, the way time-varying

properties are modelled has changed. While the detailed functioning is explained in subchapter

4.1.6, it is at this point important to know that a class containing a time-depending property

requires a relation to the AbstractDynamizer. Such a connection is already provided by

CityGML 3.0 for any AbstractCityObject (see Core module: AbstractCityObject to

AbstractDynamizer). However, EnergyDemand is derived from AbstractFeatureWithLifespan

and thus, the relation needs to be explicitly added. This is implemented by a navigable

association from EnergyDemand to AbstractDynamizer. The role name (dynamizer) is adopted

from CityGML 3.0. The multiplicity on the other hand is set to 1, signifying it is a mandatory

relation. Because energyAmount is a mandatory property of EnergyDemand, and it needs to be

referenced by a Dynamizer for the time-depending values, the multiplicity can be regarded as a

“security check”.

WeatherData

WeatherData objects are altered from having the stereotype «type» to «FeatureType». The

former is not used for application schemas anymore, but rather for conceptual schemas (ISO

19109:2015, 2015). In order to preserve the ability of carrying a unique id, «FeatureType» is

used instead.

As a new feature type, a suitable generalisation class is needed. Without any further

specification, it would simply be a subclass of Feature. WeatherData objects carry information

regarding different weather phenomena. Although they can be located with a point geometry

(position), they are not a physical object in a city. Hence, AbstractCityObject is excluded as

superclass and AbstractFeatureWithLifespan is chosen instead.

Beyond this, WeatherData shares some common characteristics with EnergyDemand. Every

AbstractCityObject can also be enriched with weather information. This is again implemented

with a relation from the hook data type EnergyADECityObjectProperties to WeatherData (role

48

name: weatherData). Moreover, WeatherData also carries a time-varying property (values)

which requires a connection to the AbstractDynamizer. The respective relation is modelled in

the same way.

class Core

«FeatureType»
EnergyDemand

«Property»
+ energyAmount: Measure
+ endUse: EndUseTypeValue
+ maximumLoad: Measure [0..1]
+ energyCarrierType: EnergyCarrierTypeValue [0..1]

«FeatureType»
Core::AbstractCityObject

«DataType»
ADEOfAbstractCityObject

(from Core)

«DataType»
ADEOfAbstractBuilding

(from Building)

«DataType»
BuildingProperties

«Property»
+ buildingType: BuildingTypeValue [0..1]
+ constructionWeight: ConstructionWeightValue [0..1]
+ energyPerformanceCertification: EnergyPerformanceCertification [0..*]
+ isLandmarked: Boolean [0..1]
+ refurbishmentMeasure: RefurbishmentMeasure [0..*]

«DataType»
EnergyADECityObjectProperties

AbstractLogicalSpace

«FeatureType»
Building::AbstractBuildingSubdivision

«FeatureType»
AbstractUsageZone

«enumeration»
ConstructionWeightValue

 veryLight
 light
 medium
 heavy

«DataType»
EnergyPerformanceCertification

«Property»
+ rating: CharacterString
+ name: CharacterString
+ certificationId: CharacterString [0..1]

«CodeList»
RefurbishmentClassValue

+ advanced
+ norefurbishment
+ standard

«Union»
DateOfEvent

«Property»
+ instant: TM_Position
+ period: TM_Period

«DataType»
RefurbishmentMeasure

«Property»
+ date: DateOfEvent
+ level: RefurbishmentClassValue
+ description: CharacterString [0..1]

«enumeration»
EndUseTypeValue

 cooking
 domesticHotWater
 electricalAppliances
 lighting
 otherOrCombination
 spaceCooling
 spaceHeating
 ventilation
 process

«FeatureType»
WeatherData

«Property»
+ weatherDataType: WeatherDataTypeValue
+ values: Measure

«enumeration»
WeatherDataTypeValue

 airTemperature
 humidity
 windSpeed
 cloudiness
 globalSolarIrradiance
 directSolarIrradiance
 diffuseSolarIrradiance
 terrestrialEmission
 downwardTerrestrialRadiation
 daylightIlluminance

GM_Primitive

«type»
Geometric primitive::

GM_Point

«CodeList»
BuildingTypeValue

+ apartmentBlock
+ multiFamilyHouse
+ singleFamilyHouse
+ terracedHouse

«CodeList»
EnergyCarrierTypeValue

+ chilledAir
+ chilledWater
+ coal
+ electricity
+ fuelOil
+ hotAir
+ hotWater
+ naturalGas
+ propane
+ steam
+ woodChips
+ woodPallets

AbstractFeature

«FeatureType»
Core::AbstractFeatureWithLifespan

«FeatureType»
AbstractLayeredMaterial

«FeatureType»
AbstractEnergySystem

«Property»
+ numberOfDevices: Integer [0..1]
+ model: CharacterString [0..1]
+ serviceLife: ServiceLife [0..1]

«FeatureType»
AbstractThermalZone

energyAmount requires to
be referenced by Dynamizer

values requires to be
referenced by Dynamizer

AbstractPhysicalSpace

«FeatureType»
Core::AbstractOccupiedSpace«FeatureType»

Core::AbstractDynamizer

«ObjectType»
ServiceLife

«Property»
+ startOfLife: TM_Position [0..1]
+ lifeExpectancy: TM_IntervalLength [0..1]
+ mainMaintenanceInterval: TM_IntervalLength [0..1]

+thermalZone
«Property»

0..*

1

+aggregatedBuildingLayering
«Property»

0..1

+installedIn
«Property»

0..*

+position
«Property»

0..1

1 +usageZone
«Property»

0..*

0..1
+contains

«Property» 0..*

+dynamizer
«Property»

1

+demandedBy
«Property»

0..*

+dynamizer
«Property» *

+dynamizer
«Property»

1

+demands
«Property»

0..*

+weatherData
«Property»

0..*

49

Figure 33: The Energy ADE for CityGML 3.0 Core module.

Apart from this, the properties of WeatherData remain. Only the inline property position with

the point geometry is now expressed through an association relation to be aligned with the

modelling style of CityGML 3.0.

4.1.2. Building Physics module

The Building Physics module showcases the general mapping principles based on the various

implementation possibilities as described in the following.

One option to map the ThermalZone, ThermalBoundary and ThermalOpening to fit CityGML

3.0, is by deriving them all from AbstractCityObject (Figure 34). This is very similar to the

implementation of the Energy ADE for CityGML 2.0. All properties remain in place. The

required geometries need to be explicitly modelled.

Figure 34: Option of mapping the Building Physics module to AbstractCityObject. Adapted from Kolbe et al.,
2021.

The alternative is to spread the Building Physics classes across the CityGML 3.0 UML

diagrams, according to their best semantic fit. For the ThermalZone this is some specialisation

class of AbstractSpace, for the ThermalBoundary and ThermalOpening a subclass of

AbstractSpaceBoundary. As such, properties can be mapped to CityGML 3.0 ones, geometries

do not need to be explicitly modelled and another layer of semantic meaning is added through

the space concept.

50

Based on these arguments, and as already anticipated, the second option is further pursued. In

this scope, different mapping possibilities are debated.

(Abstract)ThermalZone

A thermal zone is an intrinsically logical concept. Therefore, it can be mapped to

AbstractLogicalSpace or one of its subclasses (see Figure 35 and Table 4).

AbstractLogicalSpace itself is a suitable superclass for AbstractThermalZone. Yet it is rather

generic and according to the mapping principles a more specialised class adds additional value.

Figure 35: Excerpt of the CityGML 3.0 Building module. Adapted from Kolbe et al., 2021.

Following this logic, BuildingUnit constitutes a well-fitting superclass. The homogenous

property defining the subdivision would correspond to the isothermal volume of a thermal zone.

However, choosing BuildingUnit as superclass for AbstractThermalZone leads to interrelation

issues with The Energy ADE BuildingUnit of the Occupant Behaviour module. Anticipating

some of the mapping decisions within this module, the Energy ADE BuildingUnit’s properties

are incorporated to the CityGML BuildingUnit class by the ADE hook mechanism.

Consequently, all those additional properties could be passed on to the ThermalZone leading to

logical inconsistencies. Hence, AbstractBuildingSubdivision is selected as the parent class for

AbstractThermalZone.

«FeatureType»
AbstractBuilding

«Property»
+ class: BuildingClassValue [0..1]
+ function: BuildingFunctionValue [0..*]
+ usage: BuildingUsageValue [0..*]
+ roofType: RoofTypeValue [0..1]
+ storeysAboveGround: Integer [0..1]
+ storeysBelowGround: Integer [0..1]
+ storeyHeightsAboveGround: MeasureOrNilReasonList [0..1]
+ storeyHeightsBelowGround: MeasureOrNilReasonList [0..1]
+ adeOfAbstractBuilding: ADEOfAbstractBuilding [0..*]

AbstractOccupiedSpace

«FeatureType»
Construction::

AbstractConstruction

«FeatureType»
BuildingPart

«Property»
+ adeOfBuildingPart: ADEOfBuildingPart [0..*]

«TopLevelFeatureType»
Building

«Property»
+ adeOfBuilding: ADEOfBuilding [0..*]

AbstractSpace

«FeatureType»
Core::

AbstractLogicalSpace

«FeatureType»
AbstractBuildingSubdivision

«Property»
+ class: BuildingSubdivisionClassValue [0..1]
+ function: BuildingSubdivisionFunctionValue [0..*]
+ usage: BuildingSubdivisionUsageValue [0..*]
+ elevation: Elevation [0..*]
+ sortKey: Real [0..1]
+ adeOfAbstractBuildingSubdivision: ADEOfAbstractBuildingSubdivision [0..*]

«FeatureType»
Storey

«Property»
+ adeOfStorey: ADEOfStorey [0..*]

«FeatureType»
BuildingUnit

«Property»
+ adeOfBuildingUnit: ADEOfBuildingUnit [0..*]

* +storey
«Property»

*

*
+buildingSubdivision

«Property»

*

1
+buildingPart
«Property» *

*+buildingUnit
«Property»

*

51

Table 4: Selected CityGML 3.0 class descriptions. Taken from Kolbe et al., 2021.

Class Description

AbstractLogicalSpace AbstractLogicalSpace is the abstract superclass for all types of
logical spaces. Logical space refers to spaces that are not bounded
by physical surfaces but are defined according to thematic
considerations.

AbstractBuildingSubdivision AbstractBuildingSubdivision is the abstract superclass for different
kinds of logical building subdivisions.

BuildingUnit A BuildingUnit is a logical subdivision of a Building. BuildingUnits
are formed according to some homogeneous property like function,
ownership, management, or accessibility. They may be separately
sold, rented out, inherited, managed, etc.

Using the AbstractBuildingSubdivision as superclass, the properties floorArea and volume can

be replaced by the area and volume property of AbstractSpace in the same manner as in the

BuildingProperties. Similarly, the solid geometry volumeGeometry is replaced by the

respective geometry in the CityGML 3.0 Core module.

As it can be seen in Figure 35, there already exists a relation (buildingSubdivision) from

AbstractBuilding, which is extended with the BuildingProperties in the ADE Core, to

AbstractBuildingSubdivision of which AbstractThermalZone is a subclass. Thus, it is not

strictly necessary to add another relation in the ADE Core module between BuildingProperties

and AbstractThermalZone. However, it increases the readability of the UML diagram to

explicitly demonstrate how the objects are connected. Furthermore, the additional relation

(thermalZone) is specified to be a composition, showcasing the stronger dependency. Its

addition does not violate the CityGML 3.0 buildingSubdivision aggregation relation since it can

simply be regarded as a subset.

The same accounts for the boundary relation from ThermalZone to ThermalBoundary.

Although a boundary relation is already provided by CityGML 3.0 between AbstractSpace and

AbstractSpaceBoundary, of which ThermalZone and ThermalBoundary are subclasses, it is

again modelled and further restricted in the Building Physics module. Additionally, the name

of the relation is changed from boundedBy in the Energy ADE for CityGML 2.0 to boundary

in order to match the wording in CityGML 3.0.

Lastly, the target class of the association interiorRoom originating from ThermalZone is

updated from Room in CityGML 2.0 to BuildingRoom in the CityGML 3.0 Building module.

52

Figure 36: The Energy ADE for CityGML 3.0 Building Physics module.

ThermalBoundary and ThermalOpening

ThermalZones are fully enclosed by ThermalBoundaries and ThermalOpenings. They both

have an areal extent, thus it is evident that they are mapped to a subclass of

AbstractSpaceBoundary.

In order to make use of additional properties and the CityGML 3.0 geometries, the highest

possible parent class is AbstractThematicSurface (see Figure 25).

class BuildingPhysics

AbstractThermalZone

«FeatureType»
ThermalZone

«Property»
+ additionalThermalBridgeUValue: Measure [0..1]
+ effectiveThermalCapacity: Measure [0..1]
+ indirectlyHeatedAreaRatio: Scale [0..1]
+ infiltrationRate: Measure [0..1]
+ isCooled: Boolean = true
+ isHeated: Boolean = true

«FeatureType»
ThermalBoundary

«Property»
+ thermalBoundaryType: ThermalBoundaryTypeValue
+ azimuth: Angle [0..1]
+ inclination: Angle [0..1]
+ refurbishmentMeasure: RefurbishmentMeasure [0..*]

«enumeration»
ThermalBoundaryTypeValue

 interiorWall
 intermediaryFloor
 sharedWall
 outerWall
 groundSlab
 basementCeiling
 atticFloor
 roof

«FeatureType»
ThermalOpening

«Property»
+ indoorShading: ShadingType [0..1]
+ outdoorShading: ShadingType [0..1]
+ openableRatio: Scale [0..1]

«DataType»
ShadingType

«Property»
+ maximumCoverRatio: Scale
+ name: CharacterString [0..1]
+ transmittance: Transmittance

«enumeration»
WavelengthRangeType

 solar
 infrared
 visible
 total

«DataType»
Transmittance

«Property»
+ fraction: Scale
+ wavelengthRange: WavelengthRangeType

AbstractSpaceBoundary

«FeatureType»
Core::AbstractThematicSurface

«FeatureType»
Construction::AbstractFillingSurface

«FeatureType»
Construction::AbstractConstructionSurface

AbstractUnoccupiedSpace

«FeatureType»
Building::BuildingRoom

AbstractFeatureWithLifespan

«FeatureType»
AbstractLayeredMaterial

+layering
«Property» 0..1

+interiorRoom
«Property»

0..*

+layering
«Property»

0..1

1

+relatesTo
«Property»

0..*

+delimits
«Property»

1..2
{ordered}

+boundary
«Property» 0..*

1

+relatesTo
«Property»

0..*

+contains
«Property» 0..*

1

53

Figure 37: Excerpt of the CityGML 3.0 Construction module. Adapted from Kolbe et al., 2021.

The class ClosureSurface was briefly considered as parent class for ThermalOpening, but

looking at its description (see Table 5) reveals a semantic mismatch. ClosureSurfaces are rather

used to fill holes in volumetric objects (e.g. the openings of a tunnel), whereas

ThermalOpenings describe thermal discontinuities in a surface, namely windows and doors.

Table 5: Selected CityGML 3.0 class descriptions. Taken from Kolbe et al., 2021.

Class Description
AbstractThematicSurface AbstractThematicSurface is the abstract superclass for all types of

thematic surfaces.
ClosureSurface ClosureSurface is a special type of thematic surface used to close

holes in volumetric objects. Closure surfaces are virtual (non-
physical) surfaces.

AbstractConstructionSurface AbstractConstructionSurface is the abstract superclass for different
kinds of surfaces that bound a construction.

AbstractFillingSurface AbstractFillingSurface is the abstract superclass for different kinds
of surfaces that seal openings filled by filling elements.

Another possibility is to map ThermalBoundary to AbstractConstructionSurface and

ThermalOpening to AbstractFillingSurface. This has the advantage of the already established

association relationship between the two classes (fillingSurface, see Figure 37). Moreover, the

concept of a thermal opening perfectly fits the AbstractFillingSurface. In most cases thermal

openings occur at windows or doors and AbstractFillingSurface is specifically made to model

these surfaces. On the other hand, the ThermalBoundary class does not fit the

class Construction

«FeatureType»
AbstractConstructionSurface

«Property»
+ adeOfAbstractConstructionSurface: ADEOfAbstractConstructionSurface [0..*]

«FeatureType»
DoorSurface

«FeatureType»
WindowSurface

«FeatureType»
WallSurface

«FeatureType»
GroundSurface

«FeatureType»
FloorSurface

«FeatureType»
RoofSurface

«FeatureType»
InteriorWallSurface

«FeatureType»
CeilingSurface

«FeatureType»
OuterCeilingSurface

«FeatureType»
OuterFloorSurface

«FeatureType»
AbstractFillingSurface

«Property»
+ adeOfAbstractFil l ingSurface: ADEOfAbstractFil l ingSurface [0..*]

AbstractSpaceBoundary

«FeatureType»
Core::

AbstractThematicSurface

«FeatureType»
Core::ClosureSurface

«TopLevelFeatureTyp...
Generics::

GenericThematicSurface

+fillingSurface
«Property»

*

54

AbstractConstructionSurface ideally. The CityGML 3.0 class refers to surfaces bounding a

construction (referring to the CityGML 3.0 concept of a construction, see Table 6). However, a

ThermalZone is a logical concept and a ThermalBoundary is consequently not a construction

surface of physical nature.

Now, it is possible to model ThermalBoundary and ThermalOpening to different levels within

the CityGML UML diagram. But one of the goals while mapping is to retain a sort of logical

symmetry, meaning similar classes should be derived from the same or comparable parent

classes. This ensures consistency and thus an easier understanding of the Energy ADE UML

class diagrams for a user.

Therefore, in the case of ThermalBoundary and ThermalOpening a compromise has to be made.

Either derive them both from AbstractThematicSurface or use AbstractConstructionSurface and

AbstractFillingSurface instead. While both scenarios are legitimate, the decision is made to

uniformly use AbstractThematicSurface as superclass. Eventually, using a more generic parent

class for ThermalOpening does not make it less correct. It only comes at the cost of losing some

additional semantic context. Whereas, mapping a class somewhere with a slight semantic

mismatch contravenes the established mapping principles of CityGML 3.0 (stating the

determining factor for mapping is the semantic fit).

For both, ThermalBoundary and ThermalOpening, the area property can be replaced by the

area property of AbstractThematicSurface. Likewise, the surfaceGeometry describing a

GM_MultiSurface can be replaced by the corresponding CityGML 3.0 geometry.

The target classes of the relatesTo associations need to be updated with their new CityGML 3.0

counterparts. For _BoundarySurface this is AbstractConstructionSurface, and for _Opening it

is AbstractFillingSurface. This unveils another problem if the classes were derived from

AbstractConstructionSurface and AbstractFillingSurface. Through the relatesTo association,

the classes could refer to themselves which is not the purpose. It could be circumvented by

adding an OCL constraint or a note prohibiting the self-referral. Either way, it would add more

complexity to the Energy ADE specification.

Furthermore, the role name of the association to the former AbstractConstruction class is

changed to layering. Some of the classes in the Material and Construction module need

renaming due to semantic discrepancy with the newly introduced construction classes in

CityGML 3.0. This is further elaborated in the subsequent subchapter.

55

4.1.3. Layer and Material module

With CityGML 3.0 the Construction module is newly introduced (see chapter 2.5.1). It contains

among others the classes AbstractConstruction (superclass of AbstractBuilding),

OtherConstruction and AbstractConstructiveElement (see Table 6 for descriptions). On the

other hand, a construction according to the Energy ADE solely describes thermal and optical

properties of built elements without any geometric context. This can be achieved by specifying

these properties for the separate layers made of different materials, which together construct the

built element. An example is a double-glazed window, with one layer of glass, a subsequent

“empty” layer filled with air, and a second layer of glass.

These considerations reveal the semantic discrepancy between the two concepts of construction.

Therefore, a renaming of the Energy ADE construction is necessary. For this, the name

LayeredMaterial is proposed. It expresses how constructions are composed of several layers

made of different materials. Based on this, the classes and role names are changed accordingly.

The module itself is renamed to Layer and Material module.

Table 6: Selected CityGML 3.0 construction classes in the Construction and Building module. Taken from Kolbe
et al., 2021.

Class Description
AbstractConstruction AbstractConstruction is the abstract superclass for objects that are

manufactured by humans from construction materials, are
connected to earth, and are intended to be permanent. A connection
with the ground also exists when the construction rests by its own
weight on the ground or is moveable limited on stationary rails or if
the construction is intended to be used mainly stationary.

OtherConstruction An OtherConstruction is a construction that is not covered by any
of the other subclasses of AbstractConstruction.

AbstractConstructiveElement AbstractConstructiveElement is the abstract superclass for the
representation of volumetric elements of a construction. Examples
are walls, beams, slabs.

BuildingConstructiveElement A BuildingConstructiveElement is an element of a Building which
is essential from a structural point of view. Examples are walls,
slabs, staircases, beams.

As in the other Energy ADE modules, different mapping possibilities are considered and

discussed. This is done again with the goal in mind to integrate the ADE as much as possible

into the CityGML 3.0 conceptual model.

56

AbstractLayeredMaterial, LayeredMaterial and ReverseLayeredMaterial

The need for renaming the modules classes already indicates the semantic mismatch with the

CityGML 3.0 construction definition. LayeredMaterial and its related classes do not constitute

a permanent bigger construction element as described in the definitions of Table 6. Therefore,

another suitable generalisation class needs to be found.

When integrating the classes into the space and geometry concept, a subclass of AbstractSpace

has to be chosen. A LayeredMaterial complex consist of up to several Layer instances, all with

a given thickness. Hence, it can be considered a 3D volumetric object. Down the line, none of

the more specialised CityGML classes fit semantically. Therefore, the only possible superclass

for AbstractLayeredMaterial is AbstractOccupiedSpace, describing an object blocking space.

However, the general question comes up whether AbstractLayeredMaterial should have a

spatial extent at all. Although it is an intrinsically physical concept, the classes rather serve the

purpose to provide additional relevant information for UBEM. In this context, geometry

representations do not add any extra value. For simulations required geometries are already

given through the ThermalBoundary, ThermalOpening and AbstractBuilding. Moreover, there

are no suitable thematic surfaces that could bound the 3D LayeredMaterial.

Based on these arguments, the AbstractLayeredMaterial and its specialisation classes remain

as in the Energy ADE for CityGML 2.0 on a higher level without any geometric representation.

In accordance with the overarching mapping decisions, AbstractFeatureWithLifespan is chosen

for this.

All the properties and relations, renamed where necessary, stay in place. The LayeredMaterial

property serviceLife is changed from a property by reference to an inline one. This way it is

represented in the same way as in AbstractEnergySystem or LayerComponent. Moreover,

serviceLife is changed from «type» to «ObjectType» as the former stereotype is no longer

applicable for application schemas (see WeatherData in 4.1.1 Core module). In this case,

«ObjectType» is preferred over «DataType», as it also contains a unique id, enabling

referencing through XLinks.

Eventually, the option was discussed to add a relation from AbstractCityObject (from

EnergyADECityObjectProperties in this case) in the ADE Core module to

AbstractLayeredMaterial. This would enable to further specialise the thermal and optical

properties of every city object. Although this might be a valuable addition to the Energy ADE,

it exceeds the purpose of a mere mapping by extending the ADE’s functionalities. Thus, it is

57

out of scope for this thesis, but might be considered for future versions of the ADE. The final

UML class diagram of the module is depicted in Figure 38.

Figure 38: The Energy ADE for CityGML 3.0 Layer and Material module.

class Layering

AbstractFeatureWithLifespan

«FeatureType»
AbstractLayeredMaterial

«FeatureType»
ReverseLayeredMaterial

«FeatureType»
LayeredMaterial

«Property»
+ uValue: Measure [0..1]
+ opticalProperties: OpticalProperties [0..1]
+ serviceLife: ServiceLife [0..1]

«DataType»
Reflectance

«Property»
+ fraction: Scale
+ surface: SurfaceSide
+ wavelengthRange: WavelengthRangeType

«enumeration»
SurfaceSide

 inside
 outside

«DataType»
OpticalProperties

«Property»
+ emissivity: Emissivity [0..*]
+ reflectance: Reflectance [0..*]
+ transmittance: Transmittance [0..*]
+ glazingRatio: Scale [0..1]

«DataType»
Emissivity

«Property»
+ fraction: Scale
+ surface: SurfaceSide

AbstractFeatureWithLifespan

«FeatureType»
Layer

AbstractFeatureWithLifespan

«FeatureType»
LayerComponent

«Property»
+ areaFraction: Scale [0..1] = 1.0
+ thickness: Length [0..1]
+ serviceLife: ServiceLife [0..1]

AbstractFeatureWithLifespan

«FeatureType»
AbstractMaterial

«FeatureType»
Gas

«Property»
+ isVentilated: Boolean [0..1] = false
+ rValue: Measure [0..1]

«FeatureType»
SolidMaterial

«Property»
+ conductivity: Measure [0..1]
+ density: Measure [0..1]
+ permeance: Measure [0..1]
+ porosity: Scale [0..1]
+ specificHeat: Measure [0..1]
+ embodiedCarbon: Measure [0..1]
+ embodiedEnergy: Measure [0..1]

AbstractFeatureWithLifespan

«FeatureType»
ImageTexture

«Property»
+ url: URI
+ repeatS: Boolean
+ repeatT: Boolean

«DataType»
Transmittance

«Property»
+ fraction: Scale
+ wavelengthRange: WavelengthRangeType

«ObjectType»
ServiceLife

«Property»
+ startOfLife: TM_Position [0..1]
+ lifeExpectancy: TM_IntervalLength [0..1]
+ mainMaintenanceInterval: TM_IntervalLength [0..1]

+material
«Property» 1

+imageTexture
«Property»

0..1

+layer
«Property»

0..*
{ordered}

+layerComponent
«Property» 1..*

+baseLayering
«Property»

1

58

Layer and LayerComponent

The same considerations have been applied to the classes Layer and LayerComponent. For a

coherent modelling, they are derived from the same superclass as AbstractLayeredMaterial

because they ultimately form the LayeredMaterial. Therefore, Layer and LayerComponent are

mapped to AbstractFeatureWithLifespan.

All the properties and relations remain in place.

AbstractMaterial

AbstractMaterial and its subclasses Gas and SolidMaterial are sole specifications of the

material properties. They are not physically experienceable and can thus not be mapped to

AbstractCityObject or any of its specialisation classes. Accordingly, it is also derived from

AbstractFeatureWithLifespan.

4.1.4. Occupant Behaviour module

(Abstract)UsageZone

The UsageZone has similar traits as the ThermalZone in the Building Physics module. It is a

logical building subdivision of volumetric extent which is defined according to a homogenous

characteristic, in this case the usage through occupants and facilities. Apparent through this

description, it fits the definition of CityGML 3.0’s BuildingUnit well (see Table 4). However,

deriving AbstractUsageZone from BuildingUnit leads to the same issue of inheriting unwanted

properties (see next part on mapping of Energy ADE BuildingUnit). Moreover, it would

interfere with the aimed logical symmetry between similar classes. Thus, AbstractUsageZone

is, like AbstractThermalZone, subclassed from AbstractBuildingSubdivision (see Figure 35 for

relation between the CityGML 3.0 classes).

By integrating UsageZone in the space and geometry concept, the property floorArea can be

replaced by the area attribute of AbstractSpace. Likewise, the volumeGeometry is replaced by

the solid geometry provided in the CityGML 3.0 Core module.

Furthermore, the UsageZone class contains many properties which are described through

schedules (coolingSchedule, heatingSchedule, ventilationSchedule). The schedules have been

59

changed from «type» to «FeatureType», which enables the given properties to relate to them

through inline relations. A more detailed description on this is given in chapter 4.1.6.

BuildingUnit

The CityGML 3.0 Building module contains a specialisation class of

AbstractBuildingSubdivision named BuildingUnit. According to its definition in the conceptual

model standard it is used to describe a logical building subdivision based on a homogenous

property such as ownership (Kolbe et al., 2021, see also Table 4). Thus, the description perfectly

fits the conception of the Energy ADE BuildingUnit. As such, the ADE properties can easily

be attached to the CityGML class via the hook mechanism. Due to this reason BuildingUnit is

mapped as such, even though it hinders AbstractThermalZone and AbstractUsageZone being

subclassed from the same named CityGML class. The alternative is to specialise

AbstractBuildingSubdivision or CityGML BuildingUnit itself to derive the ADE BuildingUnit

under a changed name. Yet, this could lead to confusion with the BuildingUnit class not having

the same meaning as before.

Through this mapping, the BuildingUnit is furthermore integrated into the space and geometry

concept, meaning it can now be modelled with a volumetric extent. In the Energy ADE for

CityGML 2.0, BuildingUnit is subclassed from _CityObject. However, in CityGML 3.0 no

concrete class should directly be derived from AbstractCityObject. Instead, such a class should

ideally be integrated into the new space concept.

Regarding the properties, floorArea can be replaced as described before into the area property

of AbstractSpace. The other properties remain in the subclassed ADE DataType

BuildingUnitOccupancy. Moreover, the relations departing from BuildingUnit in the Energy

ADE for CityGML 2.0, now derive from BuildingUnitOccupancy in order to not alter the

CityGML 3.0 data model (see Figure 39).

Occupants and Household

Occupants and Household characterise the occupants and their behaviour within a housing unit.

As such they do not constitute city objects and are thus mapped to a higher level. Because

occupants can change over time, they two classes are derived from

60

AbstractFeatureWithLifespan. This is also in accordance with the mapping principles stated in

the beginning of the chapter.

Figure 39: The Energy ADE for CityGML 3.0 Occupant Behaviour module.

class Occupancy

AbstractLogicalSpace

«FeatureType»
Building::AbstractBuildingSubdivision

«FeatureType»
AbstractUsageZone

«FeatureType»
UsageZone

«Property»
+ coolingSchedule: AbstractSchedule [0..1]
+ heatingSchedule: AbstractSchedule [0..1]
+ usageZoneType: CurrentUseValue
+ usedFloors: IntegerList [0..1]
+ ventilationSchedule: AbstractSchedule [0..1]
+ averageInternalGains: HeatExchangeType [0..1]

AbstractOccupiedSpace

«FeatureType»
Facilities

«Property»
+ operationSchedule: AbstractSchedule [0..1]
+ heatDissipation: HeatExchangeType [0..1]

«FeatureType»
DHWFacilities

«Property»
+ numberOfBaths: Integer [0..1]
+ numberOfShowers: Integer [0..1]
+ numberOfWashBasins: Integer [0..1]
+ waterStorageVolume: Volume [0..1]

«FeatureType»
LightingFacilities

«Property»
+ electricalPower: Measure [0..1]

«FeatureType»
ElectricalAppliances

«Property»
+ electricalPower: Measure [0..1]

AbstractFeatureWithLifespan

«FeatureType»
Occupants

«Property»
+ heatDissipation: HeatExchangeType [0..1]
+ numberOfOccupants: Integer [0..1]
+ occupancyRate: AbstractSchedule [0..1]
+ occupantType: OccupantTypeValue [0..1]

AbstractFeatureWithLifespan

«FeatureType»
Household

«Property»
+ residenceType: ResidenceTypeValue [0..1]
+ householdType: HouseholdTypeValue [0..1]

«FeatureType»
Building::BuildingUnit

«DataType»
ADEOfBuildingUnit

(from Building)

«DataType»
BuildingUnitOccupancy

«Property»
+ numberOfRooms: Integer [0..1]
+ ownerName: CharacterString [0..1]
+ ownershipType: OwnershipTypeValue [0..1]
+ energyPerformanceCertification: EnergyPerformanceCertification [0..*]

«CodeList»
Core::OccupantTypeValue

«CodeList»
CurrentUseValue

«DataType»
HeatExchangeType

«Property»
+ convectiveFraction: Scale [0..1]
+ latentFraction: Scale [0..1]
+ radiantFraction: Scale [0..1]
+ totalValue: Measure

«CodeList»
OwnershipTypeValue

«Property»
+ corporation
+ government
+ nonOccupantPrivateOwner
+ nonProfitOrganisation
+ occupantPrivateOwner
+ propertyManagementCompany
+ otherOrCombination

«enumeration»
HouseholdTypeValue

 loneAdult
 multiFamily
 oneFamily
 pensionerCouple
 unrelatedAdults
 vacant
 workerCouple

«enumeration»
ResidenceTypeValue

 mainResidence
 secondaryResidence
 vacant

«FeatureType»
AbstractThermalZone

AbstractFeature

«FeatureType»
Core::Address

residents, workers,
students, patients, visitors,
othersOrCombination

0..1

+equippedWith
«Property»

0..*

0..1
+equippedWith

«Property» 0..*

*

+address
«Property»

*

0..1

+contains
«Property»

0..*

0..1

+occupiedBy
«Property» 0..*

1

+contains
«Property»

0..*

1

+household
«Property» 0..*

0..1

+occupiedBy
«Property»

0..*

61

All the properties and relations stay in place. Solely the property type of occupantType in

Occupants does not need to be explicitly defined anymore. The codelist with the name

OccupantTypeValue is now established under the same name and with identical values in

CityGML 3.0. Here, it is part of the complex data type Occupancy, which is among others used

by the occupancy property in AbstractConstruction. Still, the CityGML 3.0 property can’t

replace any Energy ADE ones. The ADE classes in question are not specialisation classes of

AbstractConstruction and thus can not inherit the occupancy property.

Facilities

Facilities encompass DHWFacilities (Domestic Hot Water, e.g. shower, washbasin),

LightingFacilities and ElectricalAppliances. Like BuildingUnit, they derive from _CityObject

in the Energy ADE for CityGML 2.0. This indicates that Facilities are physically

experienceable and should thus be integrated into the space and geometry concept when

mapping.

Table 7: Selected CityGML 3.0 Furniture and Installation classes in the Construction and Building module. Taken
from Kolbe et al., 2021.

Class Description
AbstractInstallation AbstractInstallation is the abstract superclass for the representation

of installation objects of a construction.

BuildingInstallation A BuildingInstallation is a permanent part of a Building (inside
and/or outside) which has not the significance of a BuildingPart.
Examples are stairs, antennas, balconies or small roofs.

AbstractFurniture AbstractFurniture is the abstract superclass for the representation of
furniture objects of a construction.

BuildingFurniture A BuildingFurniture is an equipment for occupant use, usually not
fixed to the building.

First, AbstractInstallation and BuildingInstallation (see Table 7) are considered as superclass

for Facilities. Bigger built-in facilities such as showers or a bathing tub might fit the definition.

But other movable facilities (e.g. a table lamp) do not. Some Facilities better match the

description of AbstractFurniture or BuildingFurniture (Table 7). Examples for this are smaller

electrical appliances. However, the already mentioned bathtub or lighting facilities which are

built into construction surfaces, can hardly be considered as furniture.

62

These examples show the difficulties of finding a common superclass which fits all kinds of

Facilities. Therefore, the more generic class AbstractOccupiedSpace is chosen for it.

Consequently, Facilities can be depicted through different geometries as opposed to in the

Energy ADE for CityGML 2.0.

4.1.5. Energy Systems module

AbstractEnergySystem and specialisation classes

The mapping of AbstractEnergySystem and all its specialisation classes is very similar to the

Facilities in the Occupant Behaviour module. It is as well derived from _CityObject in the

Energy ADE for CityGML 2.0. Furthermore, all its subclasses represent some sort of appliances

or cables and pipes which are physically present in a building. Therefore, the

AbstractEnergySystem class is also derived from AbstractOccupiedSpace, integrating it in the

space and geometry concept. This moreover ensures the logical symmetry to Facilities, one of

the predetermined mapping principles.

For most of the involved classes nothing changes, except that they can now be geometrically

represented. Within the AbstractSolarEnergySystem, a subclass of

AbstractEnergyConversionSystem, the surfaceGeometry (multisurface geometry) property can

thus be replaced by the corresponding CityGML 3.0 geometry. Beyond this, the volume

property of ThermalStorageSystem (subclass of AbstractStorageSystem) needs to be renamed.

It refers to the storage volume rather than the object volume which is described through the

same called property of AbstractSpace. For this reason, the Energy ADE property is renamed

to storageVolume.

Within the AbstractEnergySystem class is also a minor change. The property

yearofManufacture is replaced by validFrom in AbstractFeatureWithLifespan. The CityGML

property refers to the date when an object was created in the real world. Its corresponding

property type DateTime requires the specification of the month, day and time. Thus, these

values need to be added to the given year.

All the relations in the discussed classes remain as they are. Also the installedIn association

from AbstractEnergySystem to AbstractCityObject in the Core module. One of the UML class

diagrams is shown in Figure 40, the two remaining ones can be found in Appendix A: UML

diagrams of Energy ADE for CityGML 3.0.

63

Figure 40: The Energy ADE for CityGML 3.0 Energy System module.

SystemOperation, EnergyFlow and EnergySource

SystemOperation, EnergyFlow and EnergySource are the three classes in the Energy Systems

module which do not derive from AbstractEnergySystem. In the Energy ADE for CityGML 2.0

they are subclasses of _Feature. Here, they are mapped to AbstractFeatureWithLifespan in

accordance with the mapping principles. This ensures that they can be included in different

versions of a city model.

class EnergySystem

AbstractOccupiedSpace

«FeatureType»
AbstractEnergySystem

«Property»
+ numberOfDevices: Integer [0..1]
+ model: CharacterString [0..1]
+ serviceLife: ServiceLife [0..1]

«FeatureType»
AbstractEnergyDistributionSystem

«Property»
+ distributionPerimeter: DistributionTypeValue [0..1]

«FeatureType»
AbstractEnergyConversionSystem

«Property»
+ efficiencyIndicator: CharacterString [0..1]
+ installedPower: Measure [0..1]
+ nominalEfficiency: Measure [0..1]

«FeatureType»
AbstractStorageSystem

«FeatureType»
EmitterSystem

«Property»
+ emitterType: EmitterTypeValue [0..1]
+ installedPower: Measure [0..1]
+ thermalExchange: HeatExchangeType [0..1]

AbstractFeatureWithLifespan

«FeatureType»
EnergyFlow

«Property»
+ energyAmount: Measure
+ energyCarriertype: EnergyCarrierTypeValue [0..1]

«FeatureType»
EnergySource

«Property»
+ co2EmissionFactor: Measure
+ energyDensity: Measure [0..1]
+ primaryEnergyFactor: Measure

AbstractFeatureWithLifespan

«FeatureType»
SystemOperation

«Property»
+ endUse: EndUseTypeValue
+ operationTime: AbstractSchedule [0..1]
+ yearlyGlobalEfficiency: Decimal [0..1]

«enumeration»
DistributionTypeValue

 building
 dwelling
 groupOfBuildings
 room
 staircase
 storey

«enumeration»
EmitterTypeValue

 radiator
 convector
 radiantFloor
 radiantCeiling
 radiantWall
 splitUnit
 2PipesFanCoilUnit
 4PipesFanCoilUnit

energyAmount requires to be
referenced by Dynamizer

AbstractFeatureWithLifespan

«FeatureType»
Core::AbstractDynamizer

1

+has
«Property»

0..*

+stores
«Property»

0..*

+isStoredBy
«Property»

0..*

+distributes
«Property» 0..*

+isDistributedBy
«Property»

0..*

+isEmittedBy
«Property» 0..*

+emitts
«Property»

0..*

+provides
«Property»

0..*

+isProvidedBy
«Property»

0..*

+dynamizer
«Property»

1

64

Because EnergyFlow contains the time-varying property energyAmount, a relation to the

Dynamizer module need to be established. This is implemented in the same manner as in the

Energy ADE Core module.

4.1.6. Time Series Supporting classes

The newly introduced Dynamizer module enables to model time-varying property values and

thus shares many similarities with the timeseries supporting classes of the Energy ADE. Due to

this overlap, large parts of the timeseries classes are replaced by the Dynamizer module.

Although the resulting timeseries module decreases, the same information as before is still

conveyed.

How properties are injected with timeseries data through the Dynamizer is explained in chapter

2.5.1. At this point it is important to remember that any property in a specialisation class of

AbstractCityObject can be given time-depending attribute values.

Figure 41: Excerpt of the Energy ADE for CityGML 3.0 Core module, showcasing the UML modelling of time-varying
properties.

In the Energy ADE three classes contain such time-varying properties: WeatherData (values),

EnergyDemand (energyAmount) and EnergyFlow (energyAmount). All those classes derive

from AbstractFeatureWithLifespan and have hence no relation to AbstractDynamizer through

CityGML 3.0. Therefore, this relation is explicitly established by adding an association from

the respective classes to AbstractDynamizer. Because the properties in question are mandatory,

and therefore require to be referenced by the Dynamizer, the association multiplicity is set to 1.

If the properties were optional, this would not be possible. In fact the multiplicities of the

property and the association should be equal. Furthermore, a note is attached to the regarding

class Core

«FeatureType»
EnergyDemand

«Property»
+ energyAmount: Measure
+ endUse: EndUseTypeValue
+ maximumLoad: Measure [0..1]
+ energyCarrierType: EnergyCarrierTypeValue [0..1]

«FeatureType»
WeatherData

«Property»
+ weatherDataType: WeatherDataTypeValue
+ values: Measure

AbstractFeature

«FeatureType»
Core::AbstractFeatureWithLifespan

energyAmount requires to
be referenced by Dynamizer

values requires to be
referenced by Dynamizer

«FeatureType»
Core::AbstractDynamizer

+dynamizer
«Property»

1

+dynamizer
«Property»

1

65

Energy ADE classes, informing a user which of the properties requires to be referenced by the

Dynamizer. Alternatively, OCL constraints could be implemented to enforce the reference.

They have the advantage that they can’t be ignored like the notes. However, such a constraint

would be long and complex, which might be difficult to read and understand for users.

The property type of the time-varying attributes also changes through the new modelling

technique. Eventually, timeseries data capture measure attributes (value + uom). Therefore, the

property type of the regarding attributes is set to Measure. Figure 41 shows how the described

modelling is implemented in UML.

TimeValuesProperties

TimeValuesProperties is a complex data type describing metadata of time-dependent

properties. In the Energy ADE for CityGML 2.0 it used as property type of the

variableProperties attribute in AbstractTimeSeries (see Figure 17).

The Dynamizer module does not have any equivalent properties to describe this information.

Therefore, the TimeValuesProperties are added to AbstractTimeseries1 with the ADE hook

mechanism. By extending AbstractTimeseries instead of AbstractAtomicTimeseries the

additional properties can also be used for CompositeTimeseries.

Within the subclassed data type are directly the TimeValuesProperties. This eliminates the

intermediary variableProperties attribute referring to the TimeValuesProperties through its

property type.

Moreover, the 0..* multiplicity of adeOfAbstractTimeseries prevents the mandatory character

of TimeValuesProperties. Due to the given multiplicity and the functioning of the hook

mechanism, it is not possible for ADEs to include compulsory extension properties. However,

as soon as one of the attributes in TimeValuesProperties is set, the (other) mandatory properties

must also be implemented.

IrregularTimeSeries

The counterpart of IrregularTimeSeries is the GenericTimeseries in the Dynamizer module.

They both describe the same kind of timeseries and are modelled in a similar way. The uom

1 Note the difference between AbstractTimeseries (CityGML 3.0) and AbstractTimeSeries (Energy ADE).

66

property in IrregularTimeSeries is mapped to the uom property of AbstractAtomicTimeseries.

Conversely, GenericTimeseries introduces the mandatory property valueType which defines the

data type of the measurement values. In the Energy ADE the data type is already predefined as

Decimal (see MeasurementPoint). Thus, the property value can uniformly be set to double when

converting. The time-value pair itself (Energy ADE: MeasurementPoint / CityGML 3.0:

TimeValuePair) is modelled in both cases with a property for the timestamp (time / timestamp)

and one for the value (value / doubleValue). In CityGML’s TimeValuePair it is beyond that

possible to use further data types, each with their own corresponding property. They are

however not relevant in the context mapping or data conversion.

IrregularTimeSeriesFile

Similarly, the IrregularTimeSeriesFile is almost completely replaced by the

TabulatedFileTimeseries. The uom property is again mapped to the uom property of

AbstractAtomicTimeseries. Except for recordSeparator, all properties are assimilated by their

counterparts in TabulatedFileTimeseries. recordSeparator is incorporated to the CityGML 3.0

class through the hook mechanism. Additionally, TabulatedFileTimeseries contains the

compulsory property fileType specifying the external file’s format. This value needs to be set

accordingly when converting.

CityGML 3.0 provides next to the TabulatedFileTimeseries another class for externally stored

timeseries. StandardFileTimeseries handles files encoded in special standardised formats.

Examples are the OGC TimeseriesML or OGC Observations & Measurements Standard (Kolbe

et al., 2021). Nonetheless, this class is not considered for mapping as many properties would

be lost or the given input file would need to be altered in order to match the standards.

RegularTimeSeries

For the RegularTimeSeries exists no ideal equivalent in the Dynamizer module. One possibility

is to nonetheless map it to GenericTimeseries and derive the timestamps through the given

temporal extent and the interval length. But this eradicates the benefit of a more compact

encoding through the RegularTimeSeries class.

Therefore, a new class is created for it, deriving from AbstractAtomicTimeseries. The name is

adapted to RegularTimeseries to match the other Dynamizer classes. Moreover, the property

67

temporalExtent is replaced by the properties firstTimestamp and lastTimestamp of the class

AbstractTimeseries.

Figure 42: The Energy ADE for CityGML 3.0 Time Series module.

class Timeseries

AbstractFeature

«FeatureType»
Dynamizer::AbstractTimeseries

«Property»
+ firstTimestamp: TM_Position [0..1]
+ lastTimestamp: TM_Position [0..1]
+ adeOfAbstractTimeseries: ADEOfAbstractTimeseries [0..*]

«FeatureType»
Dynamizer::AbstractAtomicTimeseries

«Property»
+ observationProperty: CharacterString
+ uom: CharacterString [0..1]
+ adeOfAbstractAtomicTimeseries: ADEOfAbstractAtomicTimeseries [0..*]

«FeatureType»
Dynamizer::GenericTimeseries

«Property»
+ valueType: TimeseriesTypeValue
+ adeOfGenericTimeseries: ADEOfGenericTimeseries [0..*]

«FeatureType»
Dynamizer::TabulatedFileTimeseries

«Property»
+ fileLocation: URI
+ fileType: TabulatedFileTypeValue
+ mimeType: MimeTypeValue [0..1]
+ valueType: TimeseriesTypeValue
+ numberOfHeaderLines: Integer [0..1]
+ fieldSeparator: CharacterString
+ decimalSymbol: Character [0..1]
+ idColumnNo: Integer [0..1]
+ idColumnName: CharacterString [0..1]
+ idValue: CharacterString [0..1]
+ timeColumnNo: Integer [0..1]
+ timeColumnName: CharacterString [0..1]
+ valueColumnNo: Integer [0..1]
+ valueColumnName: CharacterString [0..1]
+ adeOfTabulatedFileTimeseries: ADEOfTabulatedFileTimeseries [0..*]

«DataType»
ADEOfAbstractTimeseries

(from Dynamizer)

«DataType»
TimeValuesProperties

«Property»
+ acquisitionMethod: AcquisitionMethodValue
+ interpolationType: InterpolationTypeValue
+ qualityDescription: CharacterString [0..1]
+ source: CharacterString [0..1]
+ thematicDescription: CharacterString [0..1]

«enumeration»
AcquisitionMethodValue

 measurement
 simulation
 calibratedSimulation
 estimation
 unknown

«enumeration»
InterpolationTypeValue

 averageInPrecedingInterval
 averageInSucceedingInterval
 constantInPrecedingInterval
 constantInSucceedingInterval
 continuous
 discontinuous
 instantaneousTotal
 maximumInPrecedingInterval
 maximumInSucceedingInterval
 minimumInPrecedingInterval
 minimumInSucceedingInterval
 precedingTotal
 succeedingTotal

«DataType»
ADEOfTabulatedFileTimeseries

(from Dynamizer)

«DataType»
TabulatedFileTimeseriesExtension

«Property»
+ recordSeparator: CharacterString [0..1] = \n
+ timeInterval: TM_IntervalLength [0..1]

«FeatureType»
RegularTimeseries

«Property»
+ timeInterval: TM_IntervalLength
+ values: MeasureList

«DataType»
TimeValuePair

«Property»
+ timestamp: TM_Position
+ intValue: Integer [0..1]
+ doubleValue: Real [0..1]
+ stringValue: CharacterString [0..1]
+ geometryValue: GM_Object [0..1]
+ uriValue: URI [0..1]
+ boolValue: Boolean [0..1]
+ implicitGeometryValue: ImplicitGeometry [0..1]
+ appearanceValue: AbstractAppearance [0..1]

(from Dynamizer)

«enumeration»
Dynamizer::

TimeseriesTypeValue

 int
 double
 string
 geometry
 uri
 bool
 implicitGeometry
 appearance

«FeatureType»
Dynamizer::CompositeTimeseries

«Property»
+ adeOfCompositeTimeseries: ADEOfCompositeTimeseries [0..*]

«DataType»
TimeseriesComponent

«Property»
+ repetitions: Integer
+ additionalGap: TM_Duration [0..1]

(from Dynamizer)

«DataType»
ADEOfAbstractAtomicTimeseries

(from Dynamizer)

«DataType»
DPSProperties

«Property»
+ dayType: DayTypeValue [0..1]
+ period: TM_Period [0..1]

«enumeration»
DayTypeValue

 monday
 tuesday
 wednesday
 thursday
 friday
 saturday
 sunday
 designDay
 weekDay
 weekEnd
 typicalDay

«DataType»
ADEOfCompositeTimeseries

(from Dynamizer)

«DataType»
PeriodOfYear

«Property»
+ period: TM_Period

+component
«Property»

1..*
{ordered}

0..1

+timeseries
«Property»

1

+timeValuePair
«Property» 1..*

68

RegularTimeSeriesFile

Mapping the RegularTimeSeriesFile faces the same problem as the RegularTimeseries, it has

no counterpart within the Dynamizer module. The TabulatedFileTimeseries enforces with OCL

constraints, that either timeColumnNo or timeColumnName require a value. In concrete terms

this means that a column containing the timestamps needs to be specified. Though, such a

column is not part of a regular timeseries file.

In the following, five options on how to integrate the RegularTimeSeriesFile in the Dynamizer

module are presented.

Option 1: Change input file

The first option is to alter the input file in a way that it contains timestamp values. The

information can be derived through the temporal extent and the time intervals. This has the

advantage that no additional class is created. On the other hand, input files need to be

manipulated priorly, which is potentially a time-consuming process. Consequently, it eliminates

the possibility to connect any true regular timeseries files to the Energy ADE. The resulting

loss of functionalities contradicts the research goal of a lossless mapping which is why the

remaining options are favoured.

Option 2: Create own ADE class

Figure 43: Option 2 – Creating a new ADE class to map RegularTimeSeriesFile to CityGML 3.0.

class Timeseries

AbstractFeature

«FeatureType»
Dynamizer::AbstractTimeseries

«FeatureType»
Dynamizer::AbstractAtomicTimeseries

«FeatureType»
Dynamizer::GenericTimeseries

«FeatureType»
Dynamizer::TabulatedFileTimeseries

«FeatureType»
RegularTimeseries

«Property»
+ timeInterval: TM_IntervalLength
+ values: MeasureList

«DataType»
TimeValuePair

(from Dynamizer)

«FeatureType»
RegularTimeseriesFile

«Property»
+ fileLocation: URI
+ timeInterval: TM_IntervalLength
+ numberOfHeaderLines: Integer [0..1]
+ fieldSeparator: CharacterString
+ recordSeparator: CharacterString [0..1]
+ decimalSymbol: CharacterString
+ valueColumnNumber: Integer

+timeValuePair
«Property» 1..*

69

Alternatively, the second option is to create an own ADE class for RegularTimeseriesFile. The

characteristics are similar to RegularTimeseries and TabulatedFileTimeseries. It derives from

AbstractAtomicTimeseries, the properties uom and temporalExtent are replaced by CityGML

3.0 ones. How this option looks like in terms of UML is depicted in Figure 43. This solution is

straightforward and easy to use. Yet, it models repetitive information which are in sum already

contained in the other specialisation classes of AbstractAtomicTimeseries.

Option 3: One common ADE class for RegularTimeSeries and RegularTimeSeriesFile

Another possibility is to create a common class for RegularTimeSeries and

RegularTimeSeriesFile. It contains the union of the original classes’ properties. The common

properties have a multiplicity of 1, whereas the remaining ones are set to 0..1. Additionally, a

new mandatory property (isFile) of type Boolean is introduced to specify how the information

is stored. Based on the property value, OCL constraints determine which properties need to be

at least set (see Figure 44).

This option overcomes the downside of the previous one by avoiding repetitive modelling

through two separate classes. Although it comes at the cost of being more difficult to understand

by a user, especially because of the OCL constraint. Moreover, the class name hides the fact it

also stores timeseries files. In such a property-based approach, the stored object only unveils

through the properties. Opposed to that, CityGML 3.0 relies on an object-based approach in

which the class name plays a vital part in object definition.

Figure 44: Option 3 – Creating one common ADE class for RegularTimeSeries and RegularTimeSeriesFile.

class Timeseries

AbstractFeature

«FeatureType»
Dynamizer::AbstractTimeseries

«FeatureType»
Dynamizer::AbstractAtomicTimeseries

«FeatureType»
Dynamizer::GenericTimeseries

«FeatureType»
Dynamizer::TabulatedFileTimeseries

«DataType»
TimeValuePair

(from Dynamizer)

«FeatureType»
RegularTimeseries

«Property»
+ isFile: Boolean
+ timeInterval: TM_IntervalLength
+ values: MeasureList [0..1]
+ fileLocation: URI [0..1]
+ numberOfHeaderLines: Integer [0..1]
+ fieldSeparator: CharacterString [0..1]
+ recordSeparator: CharacterString [0..1]
+ decimalSymbol: CharacterString [0..1]
+ valueColumnNumber: Integer [0..1]

«OCL»
{(if isFile = true then
fileLocation->notEmpty() and
fieldSeparator->notEmpty())
(else if then
values->notEmpty())}

+timeValuePair
«Property» 1..*

70

Option 4: Introduce an AbstractRegularTimeseries

The fourth option follows the object-based approach by creating an abstract class for

RegularTimeseries and RegularTimeseriesFile, containing their common property timeInterval

(see Figure 45). This emphasizes their commonality while acknowledging their different

purposes.

Figure 45: Option 4 – AbstractRegularTimeseries with specialisation classes for RegularTimeseries and
RegularTimeseriesFile.

Option 5: Integrate RegularTimeSeriesFile in TabulatedFileTimeseries with workaround

In this last option a workaround for the OCL constraint of TabulatedFileTimeseries is explored.

Although a timestamps column is non-existent in regular timeseries files, the property

timeColumnName asking for a CharacterString value can be given a NaN value. This value can

express in form of a string that such a column is not included. The property recordSeparator is

already included through the ADE hook. To this, the property timeInterval is added with a 0..1

multiplicity. Furthermore, as already shown in the other classes, the properties uom and

class Timeseries

AbstractFeature

«FeatureType»
Dynamizer::AbstractTimeseries

«FeatureType»
Dynamizer::AbstractAtomicTimeseries

«FeatureType»
Dynamizer::GenericTimeseries

«FeatureType»
Dynamizer::TabulatedFileTimeseries

«FeatureType»
AbstractRegularTimeseries

«Property»
+ timeInterval: TM_IntervalLength

«DataType»
TimeValuePair

(from Dynamizer)
«FeatureType»

RegularTimeseriesFile

«Property»
+ fileLocation: URI
+ numberOfHeaderLines: Integer [0..1]
+ fieldSeparator: CharacterString
+ recordSeparator: CharacterString [0..1]
+ decimalSymbol: CharacterString
+ valueColumnNumber: Integer

«FeatureType»
RegularTimeseries

«Property»
+ values: MeasureList

+timeValuePair
«Property» 1..*

71

temporalExtent are replaced by CityGML 3.0. The implementation of this in terms of UML is

depicted in Figure 42.

Option 5 has the advantage of reusing existing classes instead of creating new ones. This keeps

the UML model compact and avoids modelling redundant information. It furthermore adheres

to the mapping principles of integrating the Energy ADE as much as possible into CityGML

3.0. Based on these arguments, this last option is finally chosen for the RegularTimeSeriesFile.

4.1.7. Schedules Supporting classes

In the Energy ADE for CityGML 2.0 timeseries and schedules function in the same way.

Because the timeseries are largely replaced through classes in the Dynamizer module, its

operating principles are adapted. This comes at the cost of a more complex implementation as

compared to the Energy ADE already in place. However, the schedules are not bound to any

pre-existing classes in CityGML 3.0 because there is nothing alike in place. Therefore, they can

independently be mapped with a simpler method than the timeseries.

Figure 46: The Energy ADE for CityGML 3.0 Schedules module.

As described for WeatherData in chapter 4.1.1. the stereotype «type» is not utilised for

application schemas anymore. Consequently, the stereotype of AbstractSchedule and its

class Schedule

AbstractFeature

«FeatureType»
Core::AbstractFeatureWithLifespan

«FeatureType»
Core::AbstractDynamizer

«FeatureType»
AbstractSchedule

«FeatureType»
ConstantValueSchedule

«Property»
+ averageValue: Measure

«FeatureType»
DualValueSchedule

«Property»
+ usageHoursPerDay: Decimal [0..1] = 24
+ usageDaysPerYear: Decimal [0..1] = 365
+ usageValue: Measure
+ idleValue: Measure

«FeatureType»
DailyPatternSchedule

«Property»
+ timeDependingValues: Decimal

«FeatureType»
TimeseriesSchedule

«Property»
+ timeDependingValues: Decimal

timeDependingValues
requires to be referenced
by Dynamizer

timeDependingValues
requires to be referenced
by Dynamizer

+dynamizer
«Property»

1+dynamizer
«Property»

1

72

subclasses needs to be changed. «DataType» is ruled out due to its missing unique id. The id is

necessary for referencing schedules with XLinks, a in this context frequently used method.

Thus, AbstractSchedule is converted to «FeatureType» preserving the unique id.

The new features are integrated into CityGML 3.0 by deriving them from

AbstractFeatureWithLifespan. AbstractCityObject as alternative is incompatible because

schedules are not considered a city object nor have a spatial extent. AbstractFeature on the

other hand is a possible option, yet AbstractFeatureWithLifespan is preferred due to the general

modelling principles. Coherent with the remaining ADE classes, this enables to model different

versions of the schedules. Furthermore it fulfils the guideline of logical symmetry when

mapping, as both timeseries and schedules eventually derive from the same class. Figure 46

shows the UML diagram of the schedules and how the classes are related to the Dynamizer

module.

The properties being described through schedules, have the property type AbstractSchedule (see

Figure 47 left). This inline representation is equal to an explicit relation (by reference) from the

respective feature type to AbstractSchedule (see Figure 47 right).

Figure 47: occupancyRate with implicit relation (left) and explicit relation (right) to AbstractSchedule.

ConstantValueSchedule and DualValueSchedule

Both classes are converted to feature types and derive from AbstractSchedule. Besides that,

they keep their properties as before.

TimeseriesSchedule

Similarly, the TimeSeriesSchedule remains relatively unchanged. Its name is adapted to

TimeseriesSchedule according to the CityGML 3.0 practice. Additionally, the property type of

timeDependingValues is changed to Decimal. Opposed to the other properties carrying time-

73

varying values with measure types, the TimeseriesSchedule does not require a unit of measure.

The values rather describe a ratio how intensely something is used at a given time. In order to

write those time varying values, a connection from TimeseriesSchedule to AbstractDynamizer

is added. As in examples before, the role name is set to dynamizer, and the multiplicity to 1.

DailyPatternSchedule

To map the DailyPatternSchedule there are two possibilities. The first one being to keep the

schedule as it is, modelling it through compositions PeriodOfYear and DailySchedule. The

second option is to make use of CompositeTimeseries and TimeseriesComponent in the

Dynamizer module. A CompositeTimeseries can have several TimeseriesComponents, whereas

each of them is described through one of the given timeseries (Figure 48). As such, the provided

structure allows to construct more complex, nested timeseries, similar to the

DailyPatternSchedule.

Figure 48: CompositeTimeseries and TimeseriesComponent in the Dynamizer module of CityGML 3.0. Adapted
from Kolbe et al., 2021.

For a lossless mapping, some information from the Energy ADE’s DailyPatternSchedule and

its compositions needs to be added to the Dynamizer classes. The «dataType» DailySchedule,

carrying the actual time-varying property (schedule) in the Energy ADE for CityGML 2.0, can

be corresponded to the «DataType» TimeseriesComponent. However, the second property

(dayType) cannot be added to it, as classes with the stereotype «DataType» can’t be extended

with the usual CityGML extension mechanisms. However, because TimeseriesComponent is

class Dynamizer

«FeatureType»
CompositeTimeseries

«Property»
+ adeOfCompositeTimeseries: ADEOfCompositeTimeseries [0..*]

«FeatureType»
AbstractAtomicTimeseries

«Property»
+ observationProperty: CharacterString
+ uom: CharacterString [0..1]
+ adeOfAbstractAtomicTimeseries: ADEOfAbstractAtomicTimeseries [0..*]

«FeatureType»
AbstractTimeseries

«Property»
+ firstTimestamp: TM_Position [0..1]
+ lastTimestamp: TM_Position [0..1]
+ adeOfAbstractTimeseries: ADEOfAbstractTimeseries [0..*]

«DataType»
TimeseriesComponent

«Property»
+ repetitions: Integer
+ additionalGap: TM_Duration [0..1]

AnyFeature

«FeatureType»
Core::AbstractFeature

0..1

+timeseries
«Property»

1

+component
«Property»

1..*
{ordered}

74

eventually described through other timeseries, dayType can be added to

AbstractAtomicTimeseries via the hook mechanism.

Next is the period property in the Energy ADE for CityGML 2.0’s PeriodOfYear. In case the

timeseries are all within one time period, the period property can be added with the hook to the

CompositeTimeseries. The class entails all the other timeseries and thus the period then

accounts for all of them. Alternatively, if there are several PeriodOfYear within one

DailyPatternSchedule, the period can also be written to the corresponding timeseries directly.

To do this, the period is additionally added with the hook to AbstractAtomicTimeseries. This

solution offers a shortcut, as otherwise such cases would need to be modelled through

CompositeTimeseries consisting of CompositeTimeseries. Figure 49 summarises the with the

ADE hook incorporated properties in order to map the DailyPatternSchedule.

Figure 49: Excerpt of the Energy ADE for CityGML 3.0 timeseries module, showing the extensions relevant for
the DailyPatternSchedule.

Through the described mapping, only one property (timeDependingValues) containing the time-

depending values is needed in the DailyPatternSchedule. Additionally, a relation to

AbstractDynamizer is needed in the same way as for the TimeseriesSchedule (Figure 46). This

class Timeseries

AbstractFeature

«FeatureType»
Dynamizer::AbstractTimeseries

«Property»
+ firstTimestamp: TM_Position [0..1]
+ lastTimestamp: TM_Position [0..1]
+ adeOfAbstractTimeseries: ADEOfAbstractTimeseries [0..*]

«FeatureType»
Dynamizer::AbstractAtomicTimeseries

«Property»
+ observationProperty: CharacterString
+ uom: CharacterString [0..1]
+ adeOfAbstractAtomicTimeseries: ADEOfAbstractAtomicTimeseries [0..*]

«FeatureType»
Dynamizer::CompositeTimeseries

«Property»
+ adeOfCompositeTimeseries: ADEOfCompositeTimeseries [0..*]

«DataType»
TimeseriesComponent

«Property»
+ repetitions: Integer
+ additionalGap: TM_Duration [0..1]

(from Dynamizer)

«DataType»
ADEOfAbstractAtomicTimeseries

(from Dynamizer)

«DataType»
DPSProperties

«Property»
+ dayType: DayTypeValue [0..1]
+ period: TM_Period [0..1]

«enumeration»
DayTypeValue

 monday
 tuesday
 wednesday
 thursday
 friday
 saturday
 sunday
 designDay
 weekDay
 weekEnd
 typicalDay

«DataType»
ADEOfCompositeTimeseries

(from Dynamizer)

«DataType»
PeriodOfYear

«Property»
+ period: TM_Period

0..1

+timeseries
«Property»

1

+component
«Property»

1..*
{ordered}

75

mapping option adheres to the mapping principle to integrate the Energy ADE as much as

possible into CityGML 3.0. Thus, it is preferred and implemented one.

4.1.8. Weather Data supporting classes

The Weather Data module contains besides WeatherData, which is discussed under the Core

module in chapter 4.1.1, the class WeatherStation. In the Energy ADE for CityGML 2.0 it

derives from _CityObject and is thus integrated into the space and geometry concept when

mapping. It is not defined what form a WeatherStation exactly takes. It can be in form of its

own building or also just an assembly of different measurement instruments. Therefore, the

class is kept higher up in the CityGML 3.0 hierarchy at AbstractOccupiedSpace.

Due to its integration in the space concept, the point geometry position is no longer needed.

The property stationName on the other hand remains as it is, although it is not strictly necessary

as the name can also be conveyed through the name property of AbstractFeature. Moreover,

the parameter association to WeatherData is omitted due to a mistake in the Energy ADE.

Because WeatherStation is a subclass of AbstractCityObject, and any AbstractCityObject

already has a connection to WeatherData (weatherData), the association is redundant. The

module is depicted in Figure 50.

Figure 50: The Energy ADE for CityGML 3.0 Weather Data supporting classes.

class WeatherData

«DataType»
ADEOfAbstractCityObject

(from Core)

«DataType»
EnergyADECityObjectProperties

AbstractFeatureWithLifespan

«FeatureType»
WeatherData

«Property»
+ weatherDataType: WeatherDataTypeValue
+ values: Measure

«FeatureType»
WeatherStation

«Property»
+ stationName: CharacterString [0..1]

AbstractPhysicalSpace

«FeatureType»
Core::AbstractOccupiedSpace

«enumeration»
WeatherDataTypeValue

 airTemperature
 humidity
 windSpeed
 cloudiness
 globalSolarIrradiance
 directSolarIrradiance
 diffuseSolarIrradiance
 terrestrialEmission
 downwardTerrestrialRadiation
 daylightIlluminance

AbstractFeatureWithLifespan

«FeatureType»
Core::AbstractDynamizer

values requires to be
referenced by
Dynamizer::AbstractTime
series

GM_Primitive

«type»
Geometric primitive::

GM_Point

+dynamizer
«Property» 1

+position
«Property»

0..1

+weatherData
«Property» 0..*

76

4.2. Derivation of the XSD schema file
In order to produce valid Energy ADE data, an according schema file is needed in the

background. This schema is automatically derived from the UML diagrams through

ShapeChange.

At the heart of the tool is a to the use case customised configuration file. For this thesis, the

configuration file of the UtilityNetwork ADE for CityGML 3.0 (citygml3-utility-network-ade,

26.11.2022) is used as a starting point. Both ADEs extend CityGML 3.0 in a GML target

encoding, and thus make use of the same namespaces and encoding rules. Therefore, only small

parts of the configuration file need to be adapted in order to fit the Energy ADE.

Generally, the configuration file specifies which UML diagrams are processed, how they are

supposed to be encoded and where to store the results. First, some input parameters are defined.

Among them are the path to the EA file (parameter name="inputFile") and the regarding

application schema (parameter name="appSchemaName"). Furthermore, the required

stereotypes are laid out, including standard GML ones and the ones specific to CityGML 3.0

(e.g. TopLevelFeatureType). Next, the output directory for the log file (parameter

name="logFile") and the resulting schema (targetParameter name="outputDirectory") is

determined.

An especially important part of the configuration file is the targets definition. It includes the

target encoding, which is an XML schema file (XSD) in this case, and the applied encoding

rules. The encoding rules are based on GML 3.2.1 and are extended by user defined ones

(EncodingRule name="citygml" extends="iso19136_2007"). Moreover, the CityGML 3.0

namespaces are given in order to link them correctly in the ADE. Additionally, it is defined

how the applied data types in the UML diagrams are mapped to xml ones. All the standard data

types are imported through a link provided by ShapeChange (xi:include href="http://

shapechange.net/resources/config/StandardMapEntries.xml"). However, the mapping

rules for user defined data types need to be individually specified (xsdMapEntries). For the

Energy ADE this is only the case for the type IntegerList used by property usedFloors in

UsageZone. Finally, it is specified whether codelists are encoded, and if so, in which output

directory they are saved.

After the configuration file is set, ShapeChange itself is executed in a command line interface.

The command includes the used java version, the path to the ShapeChange installation and the

configuration file.

77

With the execution of ShapeChange comes a validation of the UML diagrams against the given

ISO standards. Any errors or warnings are summarised with a short description in the log file.

As a consequence, ShapeChange also constitutes an important control instance while creating

the UML diagrams.

Eventually, the final XSD schema file is manually reviewed by checking whether all classes

and properties are correctly modelled. The XSD schema of the UtilityNetwork ADE served in

this step as a guide for a better understanding of the file’s structure.

4.3. Conversion to Energy ADE for CityGML 3.0
The conversion to Energy ADE for CityGML 3.0 is realised with a workspace in FME. In order

to create and test it, a suitable input dataset is required. This is generated by the FME workspace

described in the first part of the chapter. The conversion workspace itself is subject to the latter

part.

4.3.1. Test data creation

As starting point for the test data creation serves an already with Energy ADE enriched

CityGML 2.0 dataset. It is an imaginary city model consisting of 12 buildings modelled through

their boundary surfaces RoofSurface, WallSurface and GroundSurface in LOD 2. Additionally,

the buildings are represented through a lod0FootPrint and a referencePoint respectively. Each

building contains one UsageZone and one ThermalZone with their boundaries following the

respective CityGML boundary surfaces. Thus, the ThermalBoundary always follows the

building geometries whereas the ThermalOpenings are modelled without geometry.

Additionally, they are described through Constructions with Layers, LayerComponents and

Materials. Furthermore, every building has a set of Facilities, Occupants and Households as

well as a timeseries for EnergyDemand and an occupancyRate schedule. Lastly, the city model

also contains a WeatherStation for temperature and humidity on top of Building 1.

This shows that many ADE feature types and properties are already present in the dataset.

However, the entire Energy Systems module is missing and thus needs to be added. Moreover,

some individual feature types are not included yet (BuildingUnit, ReverseConstruction,

ImageTexture, Gas) as well as a few isolated properties (e.g. opticalProperties and serviceLife

in Construction, openableRatio in ThermalOpening). Additionally, only RegularTimeSeries

and DailyPatternSchedule are applied out of the Time Series and Schedules supporting classes.

All of the missing features and properties are complemented through the FME workspace.

78

Figure 51: The test dataset in boundary representation. Visualisation by FZK Viewer.

In a new workspace, a CityGML 2.0 Reader and Writer are inserted with the additional Energy

ADE schema file. This imports a separate Reader and Writer Instance for every feature type of

CityGML 2.0 and the Energy ADE. Within the settings, the option “validate CityGML Dataset

File” is set to true. In the Reader properties, the number of maximum nested attributes is set to

3000 in order to also expose the FME encoding for long and nested properties. This is especially

useful when modelling the remaining timeseries and schedules.

The enrichment of the dataset is implemented through so called transformers in FME.

Generally, three scenarios of how the input is processed can be differentiated. They are

schematically displayed in Figure 52 within the blue boxes.

In Scenario A, the feature types which are already complete in terms of their properties and

relations are simply connected to their respective writers. Scenario B describes the case if the

feature is already present in the input, but some properties are missing, or additional possibilities

(e.g. for the schedules) are included. Here, the attributes are manipulated with an

AttributeManager and/or an AttributeCreator transformer before connecting it to the Writer.

The AttributeCreator only comes into place for creating list attributes. In FME, list attributes

are used for properties or relations with a 0..* multiplicity.

The last scenario applies if a feature type is not present yet within the input data. Through a

Creator transformer, an instance of the respective feature is created. By joining the Reader and

the creation instance at the subsequent AttributeManager, all possible properties already show

up and only need to be assigned property values.

In some cases additional filter transformers are applied to separate only one specific instance

and manipulate its attributes individually. This is for example the case for the EnergyDemand,

where one instance is separated to model a IrregularTimeSeries.

79

Figure 52: Schematic representation of the FME workspace to create test data. Left in green are the Reader
features, right the Writer features. A, B and C refer to the three scenarios how the data is processed.

4.3.2. Conversion workspace

The conversion to Energy ADE for CityGML 3.0 builds up on an FME workspace for

converting the Building module to CityGML 3.0 (see Method). As in the workspace before, the

data is imported with a CityGML Reader. However, it only reads and writes up to CityGML

2.0. Therefore, to export the converted data, a generic GML Writer is in place. By providing

the CityGML 3.0 XSD schema files, the new standard can already be exported. The same

accounts for reading CityGML 3.0 with the GML Reader.

Because the Reader and Writer in the workspace are only set up for CityGML features, they

have to be updated with the “Update Feature Types” option in FME to also incorporate the

Energy ADE. This imports the necessary ADE feature types for further processing.

The conversion workspace is schematically depicted in Figure 53. All over, the conversion

consists in large parts of renaming the attributes due to their changed FME encoding.

Furthermore, the ADE geometries have to be adapted to the CityGML 3.0 ones (Figure 53, In/Out

A). Also new is that the timeseries, the schedules and WeatherData now have their own Writer

feature types. Therefore, the regarding information needs to be extracted and processed

accordingly (Figure 53, In B/Out Schedule FT, Dynamizer FT). Finally, the conversion handles

individual changes of some mapped properties and property values. Everything concerning

general CityGML 3.0 and thus, elements already implemented beforehand in the workspace,

are not discussed separately.

80

Figure 53: Schematic representation of the FME workspace to convert the data to CityGML 3.0 + Energy ADE.
Left in green are the CityGML Reader features, right the GML Writer features In B contains timeseries and

schedule information which is extracted and then written to its according Writer feature.

Attribute Renaming

There are a few things that the processing of all feature types have in common. Among them

are the attribute names, how they are displayed and encoded in FME, differ between the

CityGML Reader and the GML Writer. The example of two Occupants properties in the table

below demonstrates this. In the CityGML Reader the name fractions are separated by

underscores. Each property, also in case of nested properties (see second example in Table 8),

is preceded by “energy_”. Moreover, everything is written in lowercases. The GML Writer

encoding on the other hand, resembles the given property names in the UML diagrams, also in

terms of capitalisation. Nested properties are simply separated by full stops (.).

Table 8: Different property encodings in FME through CityGML Reader / Writer and GML Reader / Writer. At
the examples of numberOfOccupants and heatDissipation of the Occupants feature type.

CityGML Reader / Writer GML Reader / Writer

energy_number_of_occupants numberOfOccupants

energy_heat_dissipation_energy_heat_excha

nge_type_energy_convective_fraction_units

heatDissipation.HeatExchangeType.convecti

veFraction.uom

Through the capitalisation of the nested attributes, and because not every “.” in the updated

encoding translates to an “_energy” in the original one, it is difficult to develop a general rule

fitting to all properties. Therefore, the attributes are individually renamed for every feature type

81

with an AttributeRenamer transformer in FME. Note that gml attributes are automatically

interpreted correctly by the GML Writer, which is why properties such as gml_id or

gml_parent_id do not require renaming.

List attributes in general have to be renamed with a ListRenamer transformer. The same

encoding rules apply as for regular attributes. Renaming gml_name through a regular

AttributeRenamer is an exception, as the list entry can only be 0 and can thus be hardcoded.

Another small detail is that the citygml_feature_role in UsageZone, ThermalZone and the

schedule properties of UsageZone needs to be renamed to gml_parent_property in order to be

written correctly. In the first two cases, the classes would instead be written with the role

buildingSubdivision due to the relation between AbstractBuilding and

AbstractBuildingSubdivision. In the case of the three schedule properties in UsageZone

(coolingSchedule, heatingSchedule, ventilationSchedule), all the schedules would be written to

coolingSchedule and thus violating the given multiplicity of 0..1.

Geometries

The Energy ADE geometries are, with the exception of the WeatherData position, fully

replaced by CityGML 3.0 geometries. What eventually changes is only the role name pointing

to the geometry. This is remodelled in FME by altering the geometries name and traits.

Figure 54: MultiSurface representation of AbstractThematicSurface in the CityGML 3.0 Core module.

ThermalBoundary and its MultiSurface geometry serve therefor as an example. However, the

same methodology with adapted parameters applies to all other geometries.

As it can be taken from the Energy ADE for CityGML 2.0 UML diagram (Figure 13), the

geometry of ThermalBoundary is referenced via the surfaceGeometry property. In CityGML

class Core - Geometry and LoD concept

AbstractSpaceBoundary

«FeatureType»
AbstractThematicSurface

GM_MultiPrimitive

«type»
Geometric aggregates::

GM_MultiSurface

*
+lod0MultiSurface

«Property»
0..1

*

+lod2MultiSurface
«Property»

0..1

*
+lod1MultiSurface

«Property»

0..1

*

+lod3MultiSurface
«Property»

0..1

82

3.0, the corresponding role name is lodxMultiSurface. It connects AbstractThematicSurface, of

which ThermalBoundary is a subclass, to the MultiSurface geometry (see Figure 54).

In FME this updated role name has to be set as geometry name and geometry trait at the

MultiSurface level. First, a new attribute citygml_lod_name is created with the value

lod2MultiSurface. In the conversion LOD 2 is uniformly chosen for the geometries, but it can

be changed depending on the use case. This attribute is subsequently set as geometry trait at

MultiSurface level through a GeometryPropertySetter transformer. With a second

GeometryPropertySetter the geometry name is changed to lod2MultiSurface, also at

MultiSurface level. The process is designed in a way, that incoming features without any

geometries remain untouched. Figure 55 shows this process in FME.

Figure 55: Integrating ADE geometries into CityGML 3.0 in FME.

WeatherData

With mapping the Energy ADE to CityGML 3.0, WeatherData is transformed to a feature type.

As a consequence, it has its own Writer feature in the FME workspace. The according

information is imported together with city objects containing weather data in form of nested list

attributes. From them, the WeatherData information needs to be extracted, edited and directed

to the new Writer. In case of the test data, only WeatherStation contains WeatherData.

Therefore, it is yet only implemented for this feature type. The workflow is depicted in a

simplified way in Figure 56.

In a first step, a separate path for the WeatherData is established. Then the parent-child

relationship can be implemented by changing the WeatherStation’s gml_id to gml_parent_id

and by setting the citygml_feature_role to weatherData. Because the weather data information

is still stored in form of lists per incoming WeatherStation feature, they are exploded. Resulting

83

are individual WeatherData features. Their attribute names are subsequently adapted to the

required GML encoding by FME and then connected to the Writer.

Due to the new ADE hook mechanism, the parent-child relationship alone is not sufficient to

correctly connect the WeatherData to its owning class. Therefore, the gml_ids of the

WeatherData features need to be transferred back to WeatherStation. Here, they are again

aggregated to a list and written to adeOfAbstractCityObject{}.

EnergyADECityObjectProperties.weatherData{}.owns.

Figure 56: Simplified workflow for extracting and writing WeatherData.

Time Series

Similar to WeatherData, the timeseries are mapped to their own feature types. Additionally,

they have to be modelled as child elements of Dynamizer, which is also newly created. The

required timeseries information is also imported with the Reader feature types containing time-

depending properties in form of nested attributes. This information is extracted, processed in

order to be written to the Dynamizer and further passed on for editing to be finally connected

to the respective timeseries Writer. The schematic workflow is showed in Figure 57 on the

example of EnergyFlow. However, the mechanism is the same for all feature types containing

time-varying properties.

To be able to eventually write the timeseries data to the correct Writer feature type, it first needs

to be determined which type of timeseries each incoming feature describes. Every timeseries

must contain the mandatory property acquisitionMethod within variableProperties. Through a

84

conditional statement, it is looked up which attribute has an attribute value (e.g. if

energy_energy_amount_energy_regular_time_series_energy_variable_properties_energy_ti

me_values_properties_energy_acquisition_method has a vale; then RegularTimeSeries). In

case none of the four possible attributes have a value, the timeseries is referenced via XLink.

This can be deduced as all time-varying properties are obligatory.

Figure 57: Simplified workflow for extracting and writing timeseries data on the example of EnergyFlow.

Additionally, some attributes are created which are needed for further processing. In the Energy

ADE for CityGML 2.0, the time-varying property energyAmount was simply described through

the timeseries values. But now, it requires its own Measure value which is then referenced by

the according Dynamizer. Thus, the attributes energyAmount and energyAmount.uom are

created and given input values. Because they have no equivalent in the test data, the values are

85

currently made up. However, in a more refined version of the Conversion workspace, they could

be set through user parameters or be deducted from the timeseries themselves. Beyond this, two

attributes are created for attributeRef and observationProperty. The former requires a XPath to

the referenced property. It follows the hierarchy structure in the resulting GML file. In case of

EnergyFlow, the XPath writes as //nrg:EnergyFlow[@gml:id='id_energy_flow_1']

/nrg:energyAmount. The latter, observationProperty, is rather of descriptive nature.

Followingly, the features are sent to the Dynamizer block. In CityGML 3.0, every timeseries

object is contained within a Dynamizer object which is therefore created first. A parent-child

relationship is established through the gml_parent_id, which is the gml_id of the feature

accommodating the time-varying property (here gml_id of EnergyFlow), and the

citygml_feature_role, which is always dynamizer in this case. Moreover, a gml_id for each

Dynamizer object is created before sending it to the according Writer feature type. Table 2 in

Figure 57 summarises this step in a simplified form.

Next, a parent-child relationship between the Dynamizer feature and the timeseries feature is

developed in the same way. gml_id is renamed to gml_parent_id and citygml_feature_role is

set to dynamicData. Followingly, the timeseries objects are separated according to the

classifying attribute created in the beginning. Depending on the kind of timeseries, the features’

attributes are processed to match the required encoding in the Writers.

RegularTimeSeries does not require many changes beyond the attribute renaming. Only the

temporalExtent is replaced by firstTimestamp and lastTimestamp.

For the IrregularTimeSeries turned GenericTimeseries, the attributes are renamed as described

earlier. Above this, a new one for valueType is created giving it the TimeseriesTypeValue

double.

The IrregularTimeSeriesFile and RegularTimeSeriesFile both mapped to

TabulatedFileTimeseries, are given two new attributes. valueType also with the

TimeseriesTypeValue double, and fileType. The latter value is defined through a codelist and is

thus simply set to unknown. An alternative would be to define a user parameter in FME to

individually insert this information. In case of the RegularTimeSeriesFile, the attribute

timeColumnName is given the value non-existent.

86

Schedules

Schedules follow the same pattern as WeatherData and the timeseries before. They now all

have their own Writer feature types and the according information needs to be extracted from

the owning Reader feature type. The workflow for this shows many similarities to the one of

the timeseries. It is schematically depicted in Figure 58 for the Occupants feature type, although

it functions for all feature types containing schedule properties.

In a first step, an attribute is created specifying which kind of schedule id described. This is

implemented through conditional statements, testing which of the given attributes carries a

value. The attributes used for testing are selected in a way that they are mandatory if they carry

this kind of schedule. For example a ConstantValueSchedule requires a property value for

averageValue. Thus, if the corresponding FME encoded attribute (energy_occupancy_rate_

energy_constant_value_schedule_energy_average_value) contains a value, the feature must

describe a ConstantValueSchedule.

Figure 58: Simplified workflow for extracting and writing schedule data on the example of Occupants.

Then, the features are sent off to establish the parent child relationship between the new

schedule feature and the owning feature. As in previous descriptions, this is done through

citygml_feature_role/gml_parent_property and gml_parent_id. Subsequently, the features are

filtered on their schedule type attribute and further processed accordingly before connecting

them to their respective Writer feature type. Because the DailyPatternSchedule and the

TimeseriesSchedule are further described through timeseries, they are sent to the Dynamizer

87

block. The TimeseriesSchedule are treated in the same way as the remaining time-depending

properties. DailyPatternSchedule however, is more complex and needs some additional data

preparation. Due to the given complexity, this step is adapted to the input data. It is

schematically displayed in Figure 59.

Figure 59: Schematic data preparation for the DailyPatternSchedule consisting of RegularTimeseries.

First, the DailyPatternSchedule is filtered and given the sorting attribute value

CompositeTimeseries for the further processing in the Dynamizer block. After filtering here,

the features are prepared for the CompositeTimeseries Writer. This includes the creation of the

list attribute(s) component{}.TimeseriesComponent.repetitions indicating how many

components the timeseries has and how often they are repeated. Additionally, the period

attribute is converted to the ADE hook property of CompositeTimeseries. In case there are

multiple PeriodOfYear given, the attribute is written to the ADE hook of

AbstractAtomicTimeseries instead. Followingly, the features containing the actual timeseries

values are passed on for some further processing to be finally written to the according Writer

feature type.

88

5. Results
This chapter presents the results by summarising the mapping of the classes and by

demonstrating how the encoding of a CityGML file enriched with Energy ADE data changes.

Additionally, a closer is taken at how the DailyPatternSchedule is now encoded through the

CompositeTimeseries. Furthermore, the efficiency of the mapped Energy ADE is analysed in

regard to its size compared to the original Energy ADE for CityGML 2.0.

5.1. Mapped classes
The previous chapter explains in detail how each of the modules and its classes are mapped to

CityGML 3.0. Here, the mapping of all classes is summarised in one table, showing how much

they were changed and the most important details regarding the changes.

“Obsolete” refers here to the case that the Energy ADE class is replaced by CityGML 3.0,

“Adapted” to some larger adjustments and “Mostly taken over” to some minor adjustments to

fit the CityGML 3.0 standard.

Table 9: Summary of how much the Energy ADE classes are changed through the mapping to CityGML 3.0.

Module Class Status Details

Core

_AbstractBuilding /

BuildingProperties

Mostly

taken over

Adapted to new hook mechanism, some

properties replaced by CityGML 3.0

ones

AbstractEnergySystem Adapted New generalisation class:

AbstractOccupiedSpace, incorporation

in space and geometry concept, property

yearOfManufacture replaced by

CityGML 3.0

EnergyDemand,

WeatherData

Mostly

taken over

Adapted to the new hook mechanism,

relation to AbstractDynamizer to

represent time-varying property

Building

Physics

ThermalZone Adapted New generalisation class:

AbstractBuildingSubdivision,

incorporation into space and geometry

concept, replacement of properties

floorArea and volume by CityGML 3.0

89

ThermalBoundary,

ThermalOpening

Adapted New generalisation class:

AbstractThematicSurface, incorporation

into space and geometry concept,

replacement of area property

Material and

Construction

/ Layering

Construction /

LayeredMaterial,

ReverseConstruction /

ReverseLayeredMaterial

Adapted Changed name due to new semantic

mismatch with CityGML 3.0 conception

of construction

Layer, LayerComponent Mostly

taken over

New generalisation class:

AbstractFeatureWithLifespan

AbstractMaterial, Gas,

SolidMaterial

Mostly

taken over

New generalisation class:

AbstractFeatureWithLifespan

ImageTexture Mostly

taken over

New generalisation class:

AbstractFeatureWithLifespan

Occupant

Behaviour

UsageZone Adapted New generalisation class:

AbstractBuildingSubdivision,

incorporation into space and geometry

concept, replacement of property

floorArea by CityGML 3.0

BuildingUnit Adapted Now extends CityGML 3.0

BuildingUnit with additional properties

through ADE hook, incorporation into

space and geometry concept,

replacement of property floorArea by

CityGML 3.0

Occupants, Household Mostly

taken over

New generalisation class:

AbstractFeatureWithLifespan

Facilities,

DHWFacilities,

LightingFacilities,

ElectricalAppliances

Adapted New generalisation class:

AbstractOccupiedSpace, incorporation

into space and geometry concept

Energy

Systems

AbstractEnergy

ConversionSystem,

Boiler,

ElectricalResistance,

CombinedHeatPower,

MechanicalVentilation,

Mostly

taken over

Incorporation into space and geometry

concept, generalisation class derives

from AbstractOccupiedSpace

90

AirCompressor, Chiller,

GenericConversion

System, HeatPump,

HeatExchanger,

AbstractSolarEnergy

System, Photovoltaic

System, SolarThermal

System, Photovoltaic

ThermalSystem

AbstractEnergy

DistributionSystem,

ThermalDistribution

System, Power

DistributionSystem

Mostly

taken over

Incorporation into space and geometry

concept, generalisation class derives

from AbstractOccupiedSpace

AbstractStorageSystem,

ThermalStorageSystem,

PowerStorageSystem

Mostly

taken over

Incorporation into space and geometry

concept

EmitterSystem Mostly

taken over

Incorporation into space and geometry

concept

EnergyFlow,

EnergySource

Mostly

taken over

Relation to AbstractDynamizer to

represent time-varying property

SystemOperation Mostly

taken over

New generalisation class:

AbstractFeatureWithLifespan

Time Series

AbstractTimeSeries Obsolete variableProperties are mapped to

AbstractTimeseries with the ADE hook

RegularTimeSeries /

RegularTimeseries

Adapted Incorporated into the CityGML 3.0

dynamizer module as specialisation

class of AbstractAtomicTimeseries

IrregularTimeSeries /

GenericTimeseries

Obsolete Replaced by GenericTimeseries in the

Dynamizer module

RegularTimeSeriesFile,

IrregularTimeSeriesFile

/TabulatedFileTimeseries

Obsolete,

Adapted

Both classes largely replaced by

TabulatedFileTimeseries in Dynamizer

module, addition of properties

recordSeparator and timeInterval with

the ADE hook

91

Schedules

AbstractSchedule,

ConstantValueSchedule,

DualValueSchedule

Adapted Changed to stereotype «FeatureType»,

new way for properties to reference to

schedules

DailyPatternSchedule Adapted Changed to stereotype «FeatureType»,

only one property containing time-

depending values, relation to

AbstractDynamizer, complex timeseries

are now covered through

CompositeTimeseries in the Dynamizer

module

TimeSeriesSchedule /

TimeseriesSchedule

Adapted Changed to stereotype «FeatureType»,

relation to AbstractDynamizer

Weather Data WeatherStation Adapted New generalisation class:

AbstractPhysicalSpace. Incorporation

into space and geometry concept

5.2. Comparison of Encodings
The conversion shows that data can successfully be converted to the mapped Energy ADE for

CityGML 3.0 without any loss of information. Although the content of the Energy ADE remains

the same, the way it is encoded in GML files does change in some parts. This is demonstrated

in the following by comparing the test dataset before and after the conversion.

ADE Hook Mechanism

Properties which are added to an existing class with the ADE hook mechanism are in CityGML

2.0 at the same hierarchy level as native CityGML properties (see Encoding 1, line 6).

1
2
3
4
5
6
7
8
9
10
11

<core:cityObjectMember>
 <bldg:Building gml:id="id_building_01">
 <gml:description>This is Building 1</gml:description>
 <gml:name>Snoke's Palace</gml:name>
 <core:creationDate>2019-11-17</core:creationDate>
 <energy:buildingType>Terraced House</energy:buildingType>
 <energy:constructionWeight>medium</energy:constructionWeight>
 <energy:energyPerformanceCertification>
 <energy:EnergyPerformanceCertification>
 <energy:rating>B</energy:rating>
 <energy:name>CasaClima</energy:name>

92

12
13
14
15
16
17

 <energy:certificationId>CC_12345_AA</energy:certificationId>
 </energy:EnergyPerformanceCertification>
 </energy:energyPerformanceCertification>
 <energy:isLandmarked>false</energy:isLandmarked>
 </bldg:Building>
</core:cityObjectMember>

Encoding 1: Encoding of ADE hook properties in CityGML 2.0.

In CityGML 3.0, however, the ADE properties are more nested within the file. The new

CityGML property adeOfAbstractBuilding (Encoding 2, line 6) contains the ADE

BuildingProperties (Encoding 2, line 7). The actual properties themselves are then written one

hierarchy level further down as seen in line 8.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

<core:cityObjectMember>
 <bldg:Building gml:id="id_building_01">
 <gml:description>This is Building 1</gml:description>
 <gml:name>Snoke's Palace</gml:name>
 <core:creationDate>2019-11-17T00:00:00</core:creationDate>
 <bldg:adeOfAbstractBuilding>
 <nrg:BuildingProperties>
 <nrg:buildingType>Terraced House</nrg:buildingType>
 <nrg:constructionWeight>medium</nrg:constructionWeight>
 <nrg:energyPerformanceCertification>
 <nrg:EnergyPerformanceCertification>
 <nrg:rating>B</nrg:rating>
 <nrg:name>CasaClima</nrg:name>
 <nrg:certificationId>CC_12345_AA</nrg:certificationId>
 </nrg:EnergyPerformanceCertification>
 </nrg:energyPerformanceCertification>
 <nrg:isLandmarked>false</nrg:isLandmarked>
 </nrg:BuildingProperties>
 </bldg:adeOfAbstractBuilding>
 </bldg:Building>
</core:cityObjectMember>

Encoding 2: Encoding of ADE hook properties in CityGML 3.0.

This revised hook mechanism has the advantage that several ADE properties from different

extensions can be included in one dataset with a clear distinction. On the other hand, it also

creates more nested file structures with additional four lines of code per object containing ADE

properties.

Timeseries

In the Energy ADE for CityGML 2.0, timeseries data is written directly below the time-

depending property. This can be seen on the example of energyAmount in line 9 of Encoding

93

3. Following the properties and complex data types, the encoding has several further hierarchy

levels, nesting the information.

1
2
3
4
5
6
7
8
9
10
11
12
13

14

15

16
17
18
19
20
21
22
23
24
25
26

27

28
29
30
31
32
33
34
35

<core:cityObjectMember>
 <bldg:Building gml:id="id_building_01">
 <gml:description>This is Building 1</gml:description>
 <gml:name>Snoke's Palace</gml:name>
 <core:creationDate>2019-11-17</core:creationDate>
 <energy:demands>
 <energy:EnergyDemand gml:id="id_ED_1">
 <gml:name>Space heating energy demand 1</gml:name>
 <energy:energyAmount>
 <energy:RegularTimeSeries gml:id="id_rts_1">
 <energy:variableProperties>
 <energy:TimeValuesProperties>
 <energy:acquisitionMethod>estimation
 </energy:acquisitionMethod>
 <energy:interpolationType>averageInSucceeding
 Interval</energy:interpolationType>
 <energy:qualityDescription>Quality description
 text</energy:qualityDescription>
 <energy:source>Source text</energy:source>
 </energy:TimeValuesProperties>
 </energy:variableProperties>
 <energy:temporalExtent>
 <gml:TimePeriod>
 <gml:beginPosition>2017-01-01</gml:beginPosition>
 <gml:endPosition>2017-12-31</gml:endPosition>
 <gml:duration>P1Y0M0D</gml:duration>
 </gml:TimePeriod>
 </energy:temporalExtent>
 <energy:timeInterval
 unit="year">0.0833</energy:timeInterval>
 <energy:values uom="kWh/month">200 180 160 120 80 0 0 0 40
 60 10 150</energy:values>
 </energy:RegularTimeSeries>
 </energy:energyAmount>
 <energy:endUse>spaceHeating</energy:endUse>
 <energy:energyCarrierType>Natural Gas</energy:energyCarrierType>
 </energy:EnergyDemand>
 </energy:demands>
 </bldg:Building>
</core:cityObjectMember>

Encoding 3: Encoding of an Energy ADE RegularTimeSeries in CityGML 2.0.

Looking at the same content in CityGML 3.0, the deeper hierarchy levels and longer encoding

are obvious (Encoding 4). Partly, this is due to EnergyDemand already being contained in the

ADE hook structure of AbstractCityObject (lines 6-9). Beyond this, another level is added

through the required Dynamizer which owns the timeseries (lines 12-14). The hook mechanism

can furthermore be found again within the timeseries to represent the TimeValuesProperties

(lines 19-27). Moreover, the two new attributes attributeRef and observationProperty further

elongate the encoding of timeseries data.

94

When writing (Ir)RegularTimeSeriesFile data turned TabulatedFileTimeseries, yet another

hook is applied which leads to more nesting and additional lines of code to convey the same

information.

1
2
3
4
5
6
7
8
9
10
11
12
13

14
15
16

17

18

19
20
21

22

24

25
26
27
28

29

30

31
32
33
34
35
36
37
38
39
40
41
42

<core:cityObjectMember>
 <bldg:Building gml:id="id_building_01">
 <gml:description>This is Building 1</gml:description>
 <gml:name>Snoke's Palace</gml:name>
 <core:creationDate>2019-11-17</core:creationDate>
 <core:adeOfAbstractCityObject>
 <nrg:EnergyADECityObjectProperties>
 <nrg:demands>
 <nrg:EnergyDemand gml:id="ED_1">
 <gml:name>Space heating energy demand 1</gml:name>
 <nrg:dynamizer>
 <dyn:Dynamizer gml:id="id_dynamizer_510a">
 <dyn:attributeRef>//nrg:EnergyDemand[@gml:id=ED_1']
 /nrg:energyAmount</dyn:attributeRef>
 <dyn:dynamicData>
 <nrg:RegularTimeseries gml:id="id_rts_1">
 <gml:name>Space heating energy demand
 1</gml:name>
 <dyn:firstTimestamp>2017-01-
 01T00:00:00Z</dyn:firstTimestamp>
 <dyn:lastTimestamp>2017-12-
 31T00:00:00Z</dyn:lastTimestamp>
 <dyn:adeOfAbstractTimeseries>
 <nrg:TimeValuesProperties>
 <nrg:acquisitionMethod>estimation
 </nrg:acquisitionMethod>
 <nrg:interpolationType>averageIn
 SucceedingInterval
 </nrg:interpolationType>
 <nrg:qualityDescription>Quality
 description text
 </nrg:qualityDescription>
 <nrg:source>Source text</nrg:source>
 </nrg:TimeValuesProperties>
 </dyn:adeOfAbstractTimeseries>
 <dyn:observationProperty>energy amount
 spaceHeating</dyn:observationProperty>
 <nrg:timeInterval
 unit="year">0.0833</nrg:timeInterval>
 <nrg:values uom="kWh/month">200 180 160 120
 80 0 0 0 40 60 10 150</nrg:values>
 </nrg:RegularTimeseries>
 </dyn:dynamicData>
 </dyn:Dynamizer>
 </nrg:dynamizer>
 <nrg:energyAmount uom="test">110</nrg:energyAmount>
 <nrg:endUse>spaceHeating</nrg:endUse>
 <nrg:energyCarrierType>Natural Gas</nrg:energyCarrierType>
 </nrg:EnergyDemand>
 </nrg:demands>
 </nrg:EnergyADECityObjectProperties>
 </core:adeOfAbstractCityObject>

95

43 </bldg:Building>
</core:cityObjectMember>

Encoding 4: Encoding of an Energy ADE RegularTimeseries in CityGML 3.0.

5.3. DailyPatternSchedule
The conversion of the DailyPatternSchedule is the most complex one out of all classes. In cases

where the test data only has one PeriodOfYear and one DailySchedule, it works correctly (see

Encoding 5). Note that as in the other examples, the converted data is very nested due to its

inclusion in the Dynamizer module and the revised ADE hook mechanism.

1
2
3
4
5
6
7
8
9

10
11
12

13

14

15
16
17

18
19

20
21
22
23
24

25

26

27
28
29
30

<core:cityObjectMember>
 <bldg:Building gml:id="id_building_03">
 <gml:description>This is Building 1</gml:description>
 <gml:name>Snoke's Palace</gml:name>
 <bldg:adeOfAbstractBuilding>
 <nrg:BuildingProperties>
 <nrg:usageZone>
 <nrg:UsageZone gml:id="id_building_3_usage_zone_1">
 <gml:description>Single usage zone corresponding to the
 whole ThermalZone</gml:description>
 <gml:name>UsageZone 1 of Building 1</gml:name>
 <nrg:coolingSchedule>
 <nrg:DailyPatternSchedule
 gml:id="id_building_3_cooling_schedule_1">
 <gml:description>This exemplary cooling schedule
 contains a typical day with a timeseries of
 Boolean values</gml:description>
 <nrg:timeDependingValues>0.5
 </nrg:timeDependingValues>
 <nrg:dynamizer>
 <dyn:Dynamizer gml:id="id_dynamizer_3">
 <dyn:attributeRef>//nrg: DailyPatternSchedule
 [@gml:id='id_building_3_cooling_schedule_1']
 /nrg:timeDependingValues</dyn:attributeRef>
 <dyn:dynamicData>
 <dyn:CompositeTimeseries
 gml:id="id_CompositeTimeseries_3">
 <dyn:adeOfCompositeTimeseries>
 <nrg:PeriodOfYear>
 <nrg:period>
 <gml:TimePeriod>
 <gml:beginPosition>2017-
 01-01
 </gml:beginPosition>
 <gml:endPosition>2017-
 12-31</gml:endPosition>
 <gml:duration>P1Y
 </gml:duration>
 </gml:TimePeriod>
 </nrg:period>
 </nrg:PeriodOfYear>
 </dyn:adeOfCompositeTimeseries>

96

31
32
33

34
35

36

37

38

39

40

41

42

43

44

45

46
47

48
49

50

51

52
53
54
55

 <dyn:component>
 <dyn:TimeseriesComponent>
 <dyn:repetitions>1
 </dyn:repetitions>
 <dyn:timeseries>
 <nrg:RegularTimeseries
 gml:id="id_timeseries_24">
 <dyn:firstTimestamp>
 00:00:00
 </dyn:firstTimestamp>
 <dyn:lastTimestamp>
 23:59:00
 </dyn:lastTimestamp>
 <dyn:adeOfAbstract
 Timeseries>
 <nrg:Time
 ValuesProperties>
 <nrg:acquisition
 Method
 >estimation</
 nrg:acquisition
 Method>
 <nrg:interpolation
 Type>averageIn
 Succeeding
 Interval</
 nrg:interpolation
 Type>
 </nrg:Time
 ValuesProperties>
 </dyn:adeOfAbstract
 Timeseries>
 <dyn:observationProperty
 >time depending values
 of id_building_3_
 cooling_schedule_1</
 dyn:observationProperty>
 <dyn:adeOfAbstract
 AtomicTimeseries>
 <nrg:DPSProperties>
 <nrg:dayType>
 typicalDay</
 nrg:dayType>
 </nrg:DPSProperties>
 </dyn:adeOfAbstract
 AtomicTimeseries>
 <nrg:timeInterval
 unit="hour">1</
 nrg:timeInterval>
 <nrg:values
 uom="Boolean">0 0 0 0
 0 0 1 1 1 1 1 1 1 1 1 1
 1 1 0 0 0 0 0 0
 </nrg:values>
 </nrg:RegularTimeseries>
 </dyn:timeseries>
 </dyn:TimeseriesComponent>
 </dyn:component>
 </dyn:CompositeTimeseries>

97

56
57
58
59
60
61
62
63
64
65
66
67

 </dyn:dynamicData>
 </dyn:Dynamizer>
 </nrg:dynamizer>
 </nrg:DailyPatternSchedule>
 </nrg:coolingSchedule>
 </nrg:UsageZone>
 </nrg:usageZone>
 </nrg:BuildingProperties>
 </bldg:adeOfAbstractBuilding>
 </bldg:Building>
</core:cityObjectMember>

Encoding 5: Encoding of a simple, correct Energy ADE DailyPatternSchedule in CityGML 3.0.

Nonetheless, more complex DailyPatternSchedules with several PeriodOfYear or

DailySchedules pose a problem for FME. In such cases, the CompositeTimeseries has several

components, where each of them contains one single timeseries. Although the data is prepared

in the correct way in FME, the Writer establishes a wrong correspondence. As a result, all

timeseries are written within one component (Encoding 6, lines 13-69), the remaining

components are written but remain empty (Encoding 6, lines 70-74). This leads to a violation

against the XSD schema.

1
2

3
4
5
6

7
8
9
10

11
12

13
14
15
16
17

18
19
20

21
22

<nrg:UsageZone gml:id="id_building_1_usage_zone_1">
 <gml:description>Single usage zone corresponding to the whole
 ThermalZone</gml:description>
 <gml:name>UsageZone 1 of Building 1</gml:name>
 <nrg:coolingSchedule>
 <nrg:DailyPatternSchedule gml:id="id_building_1_cooling_schedule_1">
 <gml:description>This exemplary cooling schedule contains a typical
 day with a timeseries of Boolean values</gml:description>
 <nrg:timeDependingValues>0.5</nrg:timeDependingValues>
 <nrg:dynamizer>
 <dyn:Dynamizer gml:id="id_dynamizer_1">
 <dyn:attributeRef>//nrg:DailyPatternSchedule[@gml:id='id_
 building_1_cooling_schedule_1']/nrg:timeDependingValues
 </dyn:attributeRef>
 <dyn:dynamicData>
 <dyn:CompositeTimeseries gml:id=
 "id_CompositeTimeseries_1">
 <dyn:component>
 <dyn:TimeseriesComponent>
 <dyn:repetitions>1</dyn:repetitions>
 <dyn:timeseries>
 <nrg:RegularTimeseries gml:id=
 "id_timeseries_01">
 <dyn:adeOfAbstractAtomicTimeseries>
 <nrg:DPSProperties>
 <nrg:dayType>typicalDay
 </nrg:dayType>
 <nrg:period>

98

23

24

25

26
27
28
29
30

31

32
33
34

35

36
37
38

39

40

41
42

43
44
45

46
47
48

49

50

51
52
53
54
55

56

57
58
59

60

 <gml:TimePeriod>
 <gml:beginPosition>2017-01-
 01</gml:beginPosition>
 <gml:endPosition>2017-06-
 30</gml:endPosition>
 <gml:duration>P0Y6M
 </gml:duration>
 </gml:TimePeriod>
 </nrg:period>
 </nrg:DPSProperties>
 </dyn:adeOfAbstractAtomicTimeseries>
 <dyn:firstTimestamp>00:00:00
 </dyn:firstTimestamp>
 <dyn:lastTimestamp>23:59:00
 </dyn:lastTimestamp>
 <dyn:adeOfAbstractTimeseries>
 <nrg:TimeValuesProperties>
 <nrg:acquisitionMethod>estimation
 </nrg:acquisitionMethod>
 <nrg:interpolationType>averageIn
 SucceedingInterval
 </nrg:interpolationType>
 </nrg:TimeValuesProperties>
 </dyn:adeOfAbstractTimeseries>
 <dyn:observationProperty>time depending
 values of id_building_1_cooling_
 schedule_1</dyn:observationProperty>
 <nrg:timeInterval
 unit="hour">1</nrg:timeInterval>
 <nrg:values uom="Boolean">0 0 0 0 0 0 1 1 1
 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0</nrg:values>
 </nrg:RegularTimeseries>
 <nrg:RegularTimeseries gml:id=
 "id_timeseries_02">
 <dyn:adeOfAbstractAtomicTimeseries>
 <nrg:DPSProperties>
 <nrg:dayType>typicalDay
 </nrg:dayType>
 <nrg:period>
 <gml:TimePeriod>
 <gml:beginPosition>2017-07-
 01</gml:beginPosition>
 <gml:endPosition>2017-12-
 31</gml:endPosition>
 <gml:duration>P0Y6M
 </gml:duration>
 </gml:TimePeriod>
 </nrg:period>
 </nrg:DPSProperties>
 </dyn:adeOfAbstractAtomicTimeseries>
 <dyn:firstTimestamp>00:00:00
 </dyn:firstTimestamp>
 <dyn:lastTimestamp>23:59:00
 </dyn:lastTimestamp>
 <dyn:adeOfAbstractTimeseries>
 <nrg:TimeValuesProperties>
 <nrg:acquisitionMethod>estimation
 </nrg:acquisitionMethod>
 <nrg:interpolationType>averageIn

99

61
62
63

64

65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

 SucceedingInterval
 </nrg:interpolationType>
 </nrg:TimeValuesProperties>
 </dyn:adeOfAbstractTimeseries>
 <dyn:observationProperty>time depending
 values of id_building_1_cooling
 _schedule_1</dyn:observationProperty>
 <nrg:timeInterval
 unit="hour">1</nrg:timeInterval>
 <nrg:values uom="Boolean">1 0 1 0 1 0 1 0 1
 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0</nrg:values>
 </nrg:RegularTimeseries>
 </dyn:timeseries>
 </dyn:TimeseriesComponent>
 </dyn:component>
 <dyn:component>
 <dyn:TimeseriesComponent>
 <dyn:repetitions>1</dyn:repetitions>
 </dyn:TimeseriesComponent>
 </dyn:component>
 </dyn:CompositeTimeseries>
 </dyn:dynamicData>
 </dyn:Dynamizer>
 </nrg:dynamizer>
 </nrg:DailyPatternSchedule>
 </nrg:coolingSchedule>
</nrg:UsageZone>

Encoding 6: Incorrect encoding of a more complex Energy ADE DailyPatternSchedule in CityGML 3.0. The
CompositeTimeseries has two components, whereas both timeseries are written within the first one.

However, this is an error produced by the FME GML Writer and not the developed data model

itself, which can be proven in two ways. First, a simple CityGML 3.0 test data set without the

Energy ADE, containing one CompositeTimeseries with several components, is imported into

FME with a GML Reader. The validation at this point is successful. Connecting the Reader

feature types directly with their corresponding GML Writer feature types and exporting the

data, produces the same validation errors as in the conversion workspace. The second way of

proving this is by manually altering the converted test data set (the output created by the

workspace described in 4.3.2) in a way that the individual timeseries are correctly corresponded

to their component. By this, the content itself is not changed, only its position within the GML

file (see Encoding 7). Reading in and validating this dataset with a GML Reader produces no

errors.

1
2

3
4
5
6

<nrg:UsageZone gml:id="id_building_1_usage_zone_1">
 <gml:description>Single usage zone corresponding to the whole
 ThermalZone</gml:description>
 <gml:name>UsageZone 1 of Building 1</gml:name>
 <nrg:coolingSchedule>
 <nrg:DailyPatternSchedule gml:id="id_building_1_cooling_schedule_1">
 <gml:description>This exemplary cooling schedule contains a typical

100

7
8
9
10

11
12

13
14
15
16
17

18
19
20

21
22
23

24

25

26
27
28
29
30

31

32
33
34

35

36
37
38

39

40

41
42
43
44
45
46
47
48

 day with a timeseries of Boolean values</gml:description>
 <nrg:timeDependingValues>0.5</nrg:timeDependingValues>
 <nrg:dynamizer>
 <dyn:Dynamizer gml:id="id_dynamizer_1">
 <dyn:attributeRef>//nrg:DailyPatternSchedule[@gml:id='id_
 building_1_cooling_schedule_1']/nrg:timeDependingValues
 </dyn:attributeRef>
 <dyn:dynamicData>
 <dyn:CompositeTimeseries gml:id=
 "id_CompositeTimeseries_1">
 <dyn:component>
 <dyn:TimeseriesComponent>
 <dyn:repetitions>1</dyn:repetitions>
 <dyn:timeseries>
 <nrg:RegularTimeseries gml:id=
 "id_timeseries_01">
 <dyn:adeOfAbstractAtomicTimeseries>
 <nrg:DPSProperties>
 <nrg:dayType>typicalDay
 </nrg:dayType>
 <nrg:period>
 <gml:TimePeriod>
 <gml:beginPosition>2017-01-
 01</gml:beginPosition>
 <gml:endPosition>2017-06-
 30</gml:endPosition>
 <gml:duration>P0Y6M
 </gml:duration>
 </gml:TimePeriod>
 </nrg:period>
 </nrg:DPSProperties>
 </dyn:adeOfAbstractAtomicTimeseries>
 <dyn:firstTimestamp>00:00:00
 </dyn:firstTimestamp>
 <dyn:lastTimestamp>23:59:00
 </dyn:lastTimestamp>
 <dyn:adeOfAbstractTimeseries>
 <nrg:TimeValuesProperties>
 <nrg:acquisitionMethod>estimation
 </nrg:acquisitionMethod>
 <nrg:interpolationType>averageIn
 SucceedingInterval
 </nrg:interpolationType>
 </nrg:TimeValuesProperties>
 </dyn:adeOfAbstractTimeseries>
 <dyn:observationProperty>time depending
 values of id_building_1_cooling_
 schedule_1</dyn:observationProperty>
 <nrg:timeInterval
 unit="hour">1</nrg:timeInterval>
 <nrg:values uom="Boolean">0 0 0 0 0 0 1 1 1
 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0</nrg:values>
 </nrg:RegularTimeseries>
 </dyn:timeseries>
 </dyn:TimeseriesComponent>
 </dyn:component>
 <dyn:component>
 <dyn:TimeseriesComponent>
 <dyn:repetitions>1</dyn:repetitions>

101

49

50
51
52

53
54
55

56

57

58
59
60
61
62

63

64
65
66
67

68
69
70

71

72

73
74
75
76
77
78
79
80
81
82
83

 <dyn:timeseries>
 <nrg:RegularTimeseries
 gml:id="id_timeseries_02">
 <dyn:adeOfAbstractAtomicTimeseries>
 <nrg:DPSProperties>
 <nrg:dayType>typicalDay
 </nrg:dayType>
 <nrg:period>
 <gml:TimePeriod>
 <gml:beginPosition>2017-07-
 01</gml:beginPosition>
 <gml:endPosition>2017-12-
 31</gml:endPosition>
 <gml:duration>P0Y6M
 </gml:duration>
 </gml:TimePeriod>
 </nrg:period>
 </nrg:DPSProperties>
 </dyn:adeOfAbstractAtomicTimeseries>
 <dyn:firstTimestamp>00:00:00
 </dyn:firstTimestamp>
 <dyn:lastTimestamp>23:59:00
 </dyn:lastTimestamp>
 <dyn:adeOfAbstractTimeseries>
 <nrg:TimeValuesProperties>
 <nrg:acquisitionMethod>estimation
 </nrg:acquisitionMethod>
 <nrg:interpolationType>averageIn
 SucceedingInterval
 </nrg:interpolationType>
 </nrg:TimeValuesProperties>
 </dyn:adeOfAbstractTimeseries>
 <dyn:observationProperty>time depending
 values of id_building_1_cooling_
 schedule_1</dyn:observationProperty>
 <nrg:timeInterval unit="hour">1
 </nrg:timeInterval>
 <nrg:values uom="Boolean">1 0 1 0 1 0 1 0 1
 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0</nrg:values>
 </nrg:RegularTimeseries>
 </dyn:timeseries>
 </dyn:TimeseriesComponent>
 </dyn:component>
 </dyn:CompositeTimeseries>
 </dyn:dynamicData>
 </dyn:Dynamizer>
 </nrg:dynamizer>
 </nrg:DailyPatternSchedule>
 </nrg:coolingSchedule>
</nrg:UsageZone>

Encoding 7: Manually corrected encoding of a more complex Energy ADE DailyPatternSchedule in CityGML
3.0. Each RegularTimeseries is written within one component.

102

5.4. File size comparison
As it can be anticipated through the examples above, the file size for a dataset in terms of

number of lines increases with the Energy ADE for CityGML 3.0. Table 10 shows this on the

example of the used test dataset where its number of lines is determined with and without the

Energy ADE, both for CityGML 2.0 and CityGML 3.0. In all scenarios, the size increases with

the new standard. However, including the Energy ADE (+12%) more than without it (+4.5%).

This also becomes evident by looking at the increased overhead produced by the Energy ADE

(how many lines in the file belong to the ADE).

Table 10: File size comparison for the test dataset. The values refer to the number of lines in each scenario.

 Without Energy ADE With Energy ADE Overhead Energy ADE

CityGML 2.0 1895 15090 13195

CityGML 3.0 1980 16911 14931

 +4.5% +12% +13%

The reason behind is presumably the frequent use of the ADE hook mechanism, which requires

in its revised version more lines to encode the same information. Moreover, the mapping of

some Energy ADE classes to CityGML 3.0 classes (e.g. BuildingUnit, RegularTimeSeriesFile,

DailyPatternSchedule) requires the additional application of the hook mechanism to include all

given properties. Additionally, the timeseries now also require more space in the encoding due

to the adaption to the Dynamizer module.

Nevertheless, if file size is a limiting factor for an application, CityGML files can effectively

be compressed as zip or gzip files. These zipped files can then also be read with FME.

Concerning the XSD schema files, the Energy ADE for CityGML 2.0 one comprises 2452 lines,

whereas the mapped one for CityGML 3.0 only 1663. This is also reflected by the file size in

terms of storage, with the mapped schema almost requiring half the space (132KB vs 73KB).

The reason behind is that many ADE properties got replaced by CityGML ones, as well as some

of the classes. Nevertheless, the same amount of information can be conveyed with the updated

version of the Energy ADE. Thus, the size of the schema file does not necessarily reflect the

size of the data carrying the actual information.

103

6. Discussion
This chapter sets the generated Energy ADE for CityGML 3.0 and the corresponding

conversion in a broader context and discusses certain decisions, outcomes and possible

alternatives.

6.1. A unique solution?
The data conversion proves the successful mapping of the Energy ADE 1.0 to CityGML 3.0

without any loss of information. However, it is also clear from the given explanations in chapter

4.1, that there are several possibilities to conduct the mapping. The implemented one follows

the guiding principle of a mapping on a logical and conceptual level.

Minimum Mapping

One alternative viable solution would be a “minimum mapping”. In this scenario, the only

adjustments are the ones strictly necessary for the ADE to work with CityGML 3.0. This

includes the adaption to the new ADE hook mechanism in the case of the additional

AbstractBuilding properties, WeatherData and EnergyDemand. Furthermore, the names of the

generalisation classes would need to be updated, e.g. from _CityObject in CityGML 2.0 to

AbstractCityObject in CityGML 3.0. Lastly, the stereotype «type» in WeatherData, ServiceLife,

the schedules and timeseries would need to be changed to a reasonable alternative.

The ADE classes would remain at the same parent classes as before. For example

AbstractThermalZone and AbstractUsageZone would derive from AbstractCityObject.

AbstractLayeredMaterial (renaming would also in this scenario be necessary) and all its related

classes would remain subclasses of AbstractFeature.

An open question is how the timeseries would be handled in this scenario. One option would

be to still make use of the Dynamizer module and its adjacent classes. Although a more

minimalist approach would be to also convert them to «FeatureType» and derive

AbstractTimeSeries from AbstractFeature. The references to AbstractTimeSeries could then be

implemented in the same way as it is done in this thesis’ solution for the schedules.

As a result, the mapped ADE would be very similar to the original Energy ADE for CityGML

2.0, also without any loss of information. Compared to the applied implementation in this thesis,

104

the minimum mapping approach is less complex and keeps the ADE classes on a higher level

within the UML class diagrams.

On the other hand, it disregards any of the changes introduced in CityGML 3.0. The new space

and geometry concept would not apply as nothing is derived below AbstractCityObject. This

misses out on the additional semantics provided and furthermore requires the Energy ADE to

keep explicitly define its geometries. Moreover, the version history could not be consistently

implemented due to the classes deriving from AbstractFeature. Finally, almost none of the

properties, such as volume in ThermalZone or area in ThermalBoundary, could be replaced by

CityGML 3.0 properties.

Middle Ground

A second alternative to map the Energy ADE to CityGML 3.0 is by finding a middle ground

between the applied “integrate as much as possible” solution and the minimum mapping.

For this, ADE objects would be integrated into the space and geometry concept, where the

contextual relation is obvious. However, only the abstract space classes would be considered.

This would for example be the case for AbstractThermalZone which then derives either from

AbstractSpace or AbstractLogicalSpace.

Classes which derive in the Energy ADE for CityGML 2.0 from _CityObject, but do not carry

any geometries would remain being subclassed from AbstractCityObject (e.g. Facilities and

AbstractEnergySystem). Furthermore, it could be discussed whether to derive the remaining

classes from AbstractFeature or AbstractFeatureWithLifespan.

This mapping strategy would allow to make use of the geometry definitions in CityGML 3.0.

At the same time, features without geometries in the Energy ADE for CityGML 2.0 would also

not be given any. Thus, the middle ground solution accounts for some of the changes in

CityGML 3.0 while at the same time keeping the mapped Energy ADE relatively similar to the

original one.

Both of the presented alternatives are most likely implementable without any loss of

information. Only the level of integration into CityGML 3.0 changes, and with this how much

additional context is given through it.

105

However, compared to the options above, the applied mapping strategy fully accounts for all

changes and additional features introduced with CityGML 3.0. It follows the in the CityGML

3.0 Conceptual Model standard proposed strategy to derive classes where they best semantically

fit. Additionally, it adheres to the CityGML 3.0 developers’ ideal that nothing should be derived

from AbstractCityObject itself anymore. Because if something is a city object, and thus

physically experienceable, it should also be integrated into the space and geometry concept.

Eventually, only applications and testing of the three mapping solutions can show which of

them is the most practical.

6.2. Geometry representations
As a result of deploying the general mapping principles, in particular the first one – integrate

as much as possible, all ADE classes formerly deriving from _CityObject are now integrated

into the space and geometry concept of CityGML 3.0. This comes with several benefits.

To begin with, geometries no longer have to be explicitly defined within the ADE. Instead, the

CityGML 3.0 geometries are made use of. Additionally, several new classes implementing the

space concept are introduced with the new OGC standard. They thus increase the amount of

possible parent classes and furthermore add another layer of semantic meaning to their deriving

ADE classes. Consequently, the Energy ADE integrates seamlessly into the designed logic of

CityGML 3.0.

Yet, some new challenges and open questions arise through this mapping. In the Energy ADE

for CityGML 2.0, only one explicit geometry representation is foreseen per feature. Now, it is

possible to model multiple geometries in various LODs for the features. Though, it is not

particularly defined what each LOD of an ADE class should represent. For example to specify

how a ThermalZone is modelled in LOD 2 versus in LOD 3. Generally, the common LOD

notion as defined in CityGML 3.0 should be applied and adapted to the use case. Moreover, it

can be specified which geometry representations are allowed for a class depending on its

context. To stay with the example of ThermalZone, it would be possible to stipulate that it can

only be bound by ThermalBoundary. Furthermore, classes can be given a maximum LOD in

which they are allowed to be modelled or restrict the geometry representation all over. For

instance, it can be considered to represent Facilities only through a lod0Point geometry as more

detail would not add any further value to an energy simulation. However, these detailed

106

geometry definitions and considerations are out of scope for this work and subject to further

testing in practice.

Another consequence of the applied mapping approach is that some ADE classes now have the

possibility to be geometrically represented as opposed to before in the Energy ADE for

CityGML 2.0. This includes BuildingUnit, now integrated into the CityGML 3.0 BuildingUnit

feature type, AbstractEnergySystem and Facilities both being mapped to

AbstractOccupiedSpace. Before, they all derived from _CityObject without having any

geometry.

Seemingly, this contradicts the aim of this work to map the Energy ADE without any changes

of its content and functionalities. While this is true to some extent, the overall logic and

consistent mapping outweighs attaining this aim. The decision for this also goes back to a

remark from T.H. Kolbe, one of CityGML 3.0’s main developers. According to him, nothing

should derive from AbstractCityObject itself anymore. Instead, all city objects are supposed to

be mapped to one of the abstract space classes (see Figure 21). The resulting issue of the

extended functionality could be circumvented by restricting the geometric modelling of those

classes as described before. This way, the CityGML 3.0 modelling style would be respected

without extending the Energy ADE’s functionalities.

A last consideration regarding the geometries in the Energy ADE for CityGML 3.0 is the actual

modelling of valid geometries. For ThermalZone, this regards for instance the specification of

the normal direction (inwards or outwards) or the watertight boundary representation through

ThermalBoundary. Furthermore, it could be defined that a ThermalBoundary should have a

cavity at the place of a ThermalOpening to prevent overlayed surfaces. However, these

specifications are also out of scope of this thesis and are meant to represent a chance for further

reasoning on the Energy ADE and CityGML 3.0. In the meantime, general definitions of valid

geometries as they are described in chapter 9 of Arroyo Ohori et al., 2022 apply in addition to

the specifications in the CityGML 3.0 conceptual model standard (Kolbe et al., 2021) and

regarding explanations in Agugiaro et al., 2018.

6.3. Considerations beyond mapping
Throughout the explanations in chapter 4.1 it becomes clear that, even with rather rigidly set

mapping principles, are several possibilities to implement something. In this context, also some

options come up which would go beyond a sole mapping and extend the Energy ADE’s

107

functionalities. As this is out of scope, they are eventually not implemented. Nevertheless, these

options are again highlighted at this point.

The to the Dynamizer module added class RegularTimeseries, only accepts numeric values for

the data type MeasureList (property values). Its counterpart, GenericTimeseries however,

accepts several other data types such strings, geometry object or booleans. Thus, the

RegularTimeseries could also be extended with these types to be more coherent with CityGML

3.0.

Furthermore, the requirement for time-varying properties to have a connection to the Dynamizer

could be loosened a bit. By this, it is also possible to represent the property through just one

value instead of a necessary timeseries. The single value can for example be an average of the

other values. This slightly extended conception does not take away any of the ADE’s

functionality, but additionally allows for an alternative simpler modelling.

Lastly, a relation from AbstractCityObject to AbstractLayeredMaterial could be added. The

relation would enable every city object, not only buildings and thermal zones, to further specify

the materials it is made of. As such, the additional functionality would be similar in its purpose

to the corresponding relation to EnergyDemand.

These few examples show that possibly not all benefits of CityGML 3.0 can be made use of by

a mapping of the Energy ADE with the aim to not change any of its functionalities. The reason

behind is that the Energy ADE 1.0 was originally developed for CityGML 2.0. A sole mapping

can therefore not account for the changes within the OGC standard itself. Consequently, if the

Energy ADE was newly designed for CityGML 3.0, the result would most likely be different

to the one obtained in this thesis.

As a side note, there are also two suggestions for future CityGML 3.0 releases. First is the

inclusion of a class to represent regular timeseries in the Dynamizer module. Those are

frequently used and are more space efficient in the encoding compared to representing the same

information through GenericTimeseries. Second, also in the Dynamizer module, is the addition

of a record separator property to TabulatedFileTimeseries. It is usually needed for a complete

reading of the time-varying information in a file, especially when working with different file

formats.

108

6.4. Data conversion
The developed conversion tool in FME transfers the test data to Energy ADE for CityGML 3.0

data without losing any content, even though some DailyPatternSchedules require manual

postprocessing.

But beyond that, the workspace also has some limitations. First of all, it is comparatively large

and slow to edit. This is mostly due to the very long nested attributes which are each

individually renamed. The renaming process itself is furthermore rather repetitive. Each feature

type at least needs one transformer to rename the attributes accordingly. Depending on the

number of attributes, the transformer can get very rich in information.

Therefore, a solution to rename all attributes of all features automatically with the same

transformers would be ideal. A possible approach is through the BulkAttributeRenamer, which

renames all incoming attributes according to predefined rules. However, those rules are difficult

to determine in a way that they fit all attributes. Especially when it comes to the capitalisation

of the letters as this is not rule based, but solely dependent on how the names are written in the

UML diagram. Another option could be to already import the Energy ADE for CityGML 2.0

data with a GML Reader instead of a CityGML one. This could prevent the extensive renaming

of attributes overall. But this option is yet to be explored. Beyond this, those issues likely solve

themselves once a CityGML 3.0 Reader and Writer is available in FME.

Although the applied attribute renaming process is tedious, it works without any problems in

regard of the generated output. Beyond this, the workspace contains another limitation through

its partly adaption to the input test data and some hardcoded information. For instance, the

WeatherData is only retrieved from WeatherStation, whereas it can be contained within all city

objects. This can be solved by creating a WeatherStation block, similar to the ones for

timeseries and schedules, where each city object send its features to. Furthermore, the LOD

when integrating the ADE geometries to CityGML 3.0 geometries, is uniformly set to LOD 2.

Similarly, the newly required static attribute values for the time-depending properties are

hardcoded. Both of those problems could be solved by applying user parameters. They can be

set by the user before the workspace is run.

109

7. Conclusion
This thesis proposes a mapping of the Energy ADE 1.0 to the recently published CityGML 3.0

standard without losing any of the information conveyed. In order to do so, it follows a model-

driven approach adapted from van den Brink et al., 2013. It includes the creation of UML class

diagrams, implemented in Enterprise Architect, and the automatic derivation of a corresponding

XSD schema file through ShapeChange. Additionally, sample data was created and converted

with FME to CityGML 3.0 plus Energy ADE to test and verify the mapped extension.

Eventually, the research question including the sub-questions can be answered as follows.

7.1. With regard to the Research Objective
How and to what extent need the Energy ADE for CityGML 2.0 be adapted to be conformant

with the newly released CityGML 3.0 standard?

Overall, the ADE hook mechanism and the correspondences of the Energy ADE classes to

CityGML 3.0 have successfully been adapted. This is implemented in a manner which accounts

for the introduced changes in CityGML 3.0, by making use of the space and geometry concept,

the versioning possibilities as well as the provided structures to model time-dependent data.

Beforehand defined rules, such as to integrate the Energy ADE classes as much as possible and

to maintain a logical symmetry or to prefer AbstractFeatureWithLifespan over AbstractFeature

as a generalisation class, ensure a consistent mapping throughout all modules. Another result

of the applied strategy is that several Energy ADE properties could be replaced by CityGML

3.0 ones.

Which classes of the Energy ADE 1.0 become obsolete, which ones need to be adapted and

which ones can mostly be taken over?

Out of the 61 classes of the Energy ADE, 4 got obsolete through the mapping, 21 were adapted

and 36 were mostly taken over. “Obsolete” refers here to the case that the Energy ADE class is

replaced by CityGML 3.0, “Adapted” to some larger adjustments and “Mostly taken over” to

some minor adjustments to fit the CityGML 3.0 standard. The table below depicts a small

excerpt of the mapping results, showing how much the classes have changed and the most

important details regarding the changes. A complete version of the table can be found in Chapter

5.1.

110

Table 11: Details of how selected Energy ADE classes have been changed while mapping to CityGML 3.0. Please
refer to Table 9 for the full version.

Class Status Details

AbstractEnergySystem Adapted New generalisation class:

AbstractOccupiedSpace, incorporation in space

and geometry concept, property

yearOfManufacture replaced by CityGML 3.0

ThermalZone Adapted New generalisation class:

AbstractBuildingSubdivision, incorporation

into space and geometry concept, replacement

of properties floorArea and volume by

CityGML 3.0

Occupants Mostly taken

over

New generalisation class:

AbstractFeatureWithLifespan

AbstractEnergyConversionSystem Mostly taken

over

Incorporation into space and geometry concept,

generalisation class derives from

AbstractOccupiedSpace

IrregularTimeSeries Obsolete Replaced by GenericTimeseries in the

Dynamizer module

What will the Energy ADE data model for CityGML 3.0 look like, both in terms of UML

encoding and XSD file?

This is shown on the example of the class AbstractEnergySystem in the Core module. Its parent

class has changed through the mapping from _CityObject to AbstractOccupiedSpace which is

also reflected in the UML class diagram (Figure 60) and the XSD schema file (Figure 61). The

complete UML diagrams can be found in Appendix A: UML diagrams of Energy ADE for

CityGML 3.0. The XSD schema file can be accessed over the Git repository.

111

Figure 60: Excerpt of the Energy ADE for CityGML 3.0 Core module, showing the class AbstractEnergySystem.

Figure 61: Excerpt of the Energy ADE for CityGML 3.0 XSD schema file for the class AbstractEnergySystem.

How can Energy ADE for CityGML 2.0 data be converted to Energy ADE for CityGML 3.0

data?

At the moment, and within the scope of this thesis, data can be converted with the software

FME. It is imported with a CityGML Reader and exported with a GML Writer providing the

corresponding XSD schema files. In between, mainly the attributes are renamed accordingly.

Furthermore, the Energy ADE geometries are transformed into standard CityGML 3.0 ones.

Lastly, the timeseries and schedules which are now individual feature types, are extracted from

the imported data, manipulated and connected to their own Writer. This process works for

almost every feature without any loss of information. The only exception to this are

DailyPatternSchedules which are mapped to CompositeTimeseries with several

TimeseriesComponents. In this case, the GML Writer does not interpret and export the data

correctly. Yet, this is a software limitation (or bug) and not an error of the mapped Energy ADE

itself. The proof for that is that it can be solved through a simple manual postprocessing as seen

in Chapter 5.3.

AbstractFeatureWithLifespan

«FeatureType»
Core::AbstractCityObject

«FeatureType»
AbstractEnergySystem

«Property»
+ numberOfDevices: Integer [0..1]
+ model: CharacterString [0..1]
+ serviceLife: ServiceLife [0..1]

AbstractPhysicalSpace

«FeatureType»
Core::AbstractOccupiedSpace

+installedIn
«Property»

0..*

112

7.2. Open Issues and Future Work
The applied mapping strategy leads in parts to an extended functionality of the Energy ADE.

This mainly affects the wider possibilities to geometrically represent city objects through the

incorporation into the geometry concept of CityGML 3.0. Thus, the specification of allowed

geometry representations and LODs for each ADE class deriving from AbstractCityObject calls

for further reasoning to attain a complete definition of the Energy ADE for CityGML 3.0. A

further refinement of the work could be to create individual packages for the modules as it is

done in the Energy ADE for CityGML 2.0. Currently, all UML class diagrams are modelled

within one package, inhibiting the creation of package-based diagrams.

Moreover, alternative mapping solutions could be implemented. One of them is the minimum

mapping approach, aligning the Energy ADE only as much as absolutely necessary to comply

with the new standard. However, this approach would not take the changes and with this, the

potential of CityGML 3.0 into account. Either way, only testing and real-life use cases can show

the most practical solution.

Furthermore, due to the novelty of the Energy ADE for CityGML 3.0, it only fulfils one of its

two original purposes. It stores UBEM relevant data in a standardised way and thus enhances

data exchange and interoperability. But at the moment, it cannot serve as input data or format

for simulations until corresponding software implements its support.

7.3. Outlook
All over, this work allows me to provide some insights for future versions of the Energy ADE

which are then likely natively modelled on CityGML 3.0. This accounts especially for the

handling of time-varying properties as well as considerations regarding the use of the newly

provided space concept. Beyond that, I am aspiring to contribute with this work to the

establishment of the new CityGML 3.0 standard. For other ADEs which also need to be adapted

to function with it, this thesis can provide an example on methodology and on how encountered

issues are solved.

In addition, the current energy crisis in Europe with increasing prices and the question of long-

term energy security makes this topic even more relevant. This includes the rising costs for

building materials such as cement, which is highly energy consuming in its production.

Therefore, renovation of the already existing building stock is crucial, also from an economic

113

point of view. For the future, it is hence inevitable to create a sustainable, energy efficient

building stock.

Thus, it should be invested in research and development to support this goal. Urban Building

Energy Modelling can hereby play an important role, to help efficiently allocating resources

where they have the most impact. With this thesis, I believe I am contributing to this bigger

goal by working towards the further development and establishment of UBEM.

7.4. Personal Reflection
The Master programme Geomatics at the Delft University of Technology enabled me to conduct

this research through its interdisciplinary nature and technical depth. Many of the completed

courses prepared me directly or indirectly for this big project. This includes the acquisitions of

skills in software and programming languages, the knowledge in the domain of 3D modelling

or valuable soft skills such as fast familiarisation with new topics and problems.

Courses of special relevance were “Geographical Information Systems (GIS) and

Cartography”, giving me my first insights into the world of FME, “Geo Database Management

Systems”, showing me the complexity of UML modelling, “3D Modelling of the Built

Environment”, providing me with knowledge of 3D city models and geometries, and “Geo-

information Governance” teaching me the dos and don’ts of scientific writing. Beyond this, the

elective “Geomatics as support for energy applications” introduced me into the world of

CityGML and UBEM and started my interest in this specific research area. It furthermore

enabled me to refine my skills in UML modelling and the software FME. This also prepared

me greatly for my internship at con terra, where I was able to put this into practice. It was also

where I first got in touch with CityGML 3.0. The new opportunities I saw here, eventually led

me to the topic of this Master thesis.

The process of implementing and writing this thesis itself certainly had its ups and downs. A

new challenge was to plan and implement such a long project all by myself. At times, this gave

me a lot of freedom, without any pressing deadlines every two weeks. However, it also came at

the expense of long working hours at other times. Especially challenging were problems in the

implementation that I did not foresee. An example for this is the data conversion in FME which

was extremely time consuming with a lot of bugs and errors in between. Nevertheless, I am also

proud of how fast my knowledge in such a complex topic grew. Without forgetting about the

bigger picture, I was also able to think about small details and implications coming with them.

114

Altogether, the thesis asked for a lot of stamina and creativity. Now looking back at what I

achieved in this time, I can confidently say that I am happy with this experience and with what

I’ve learnt through this.

115

Literature
Abbasabadi, N., & Ashayeri, M. (2019). Urban energy use modeling methods and tools: A

review and an outlook. Building and Environment, 161, 106270.

https://doi.org/10.1016/j.buildenv.2019.106270

Agugiaro, G., Benner, J., Cipriano, P., & Nouvel, R. (2018). The Energy Application Domain

Extension for CityGML: Enhancing interoperability for urban energy simulations. Open

Geospatial Data, Software and Standards, 3(1), 2. https://doi.org/10.1186/s40965-018-

0042-y

Akahoshi, K., Ishimaru, N., Kurokawa, C., Tanaka, Y., Oishi, T., Kutzner, T., & Kolbe, T. H.

(2020). i-Urban revitalization: Conceptual modeling, implementation, and visualization

towards sustainable urban planning using CityGML. ISPRS Annals of the

Photogrammetry, Remote Sensing and Spatial Information Sciences, V-4–2020, 179–

186. https://doi.org/10.5194/isprs-annals-V-4-2020-179-2020

Arroyo Ohori, K., Ledoux, H., & Peters, R. (2022). 3D modelling of the built environment: Vol.

v0.8. https://github.com/tudelft3d/3dbook/releases

Becker, T., Nagel, C., & Kolbe, T. H. (2011). Integrated 3D Modeling of Multi-utility Networks

and Their Interdependencies for Critical Infrastructure Analysis. In T. H. Kolbe, G.

König, & C. Nagel (Eds.), Advances in 3D Geo-Information Sciences (pp. 1–20).

Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-12670-3_1

Beil, C., Kutzner, T., Schwab, B., Willenborg, B., Gawronski, A., & Kolbe, T. H. (2021).

Integration of 3D Point Clouds with Semantic 3D City Models—Providing Semantic

Information beyond Classification. ISPRS Annals of the Photogrammetry, Remote

Sensing and Spatial Information Sciences, VIII-4/W2-2021, 105–112.

https://doi.org/10.5194/isprs-annals-VIII-4-W2-2021-105-2021

Beil, C., Ruhdorfer, R., Coduro, T., & Kolbe, T. H. (2020). Detailed Streetspace Modelling for

Multiple Applications: Discussions on the Proposed CityGML 3.0 Transportation

116

Model. ISPRS International Journal of Geo-Information, 9(10), 603.

https://doi.org/10.3390/ijgi9100603

Biljecki, F., Kumar, K., & Nagel, C. (2018). CityGML Application Domain Extension (ADE):

Overview of developments. Open Geospatial Data, Software and Standards, 3(1), 13.

https://doi.org/10.1186/s40965-018-0055-6

Biljecki, F., Ledoux, H., & Stoter, J. (2016). An improved LOD specification for 3D building

models. Computers, Environment and Urban Systems, 59, 25–37.

https://doi.org/10.1016/j.compenvurbsys.2016.04.005

Biljecki, F., Lim, J., Crawford, J., Moraru, D., Tauscher, H., Konde, A., Adouane, K.,

Lawrence, S., Janssen, P., & Stouffs, R. (2021). Extending CityGML for IFC-sourced

3D city models. Automation in Construction, 121, 103440.

https://doi.org/10.1016/j.autcon.2020.103440

Breu, R., Hinkel, U., Hofmann, C., Klein, C., Paech, B., Rumpe, B., & Thurner, V. (1997).

Towards a formalization of the Unified Modeling Language. In M. Akşit & S. Matsuoka

(Eds.), ECOOP’97—Object-Oriented Programming (Vol. 1241, pp. 344–366).

Springer Berlin Heidelberg. https://doi.org/10.1007/BFb0053386

Chaturvedi, K., & Kolbe, T. H. (2017). Future City Pilot 1 Engineering Report.

http://docs.opengeospatial.org/per/16-098.html#SOSTool

Coors, V., Pietruschka, D., & Zeitler, B. (Eds.). (2022). iCity. Transformative Research for the

Livable, Intelligent, and Sustainable City: Research Findings of University of Applied

Sciences Stuttgart. Springer International Publishing. https://doi.org/10.1007/978-3-

030-92096-8

Coors, V., Rodrigues, P., Weiler, V., Duminil, E., Klöber, A., Holweg, D., Brüggemann, T.,

Bohn, K., Groll, L., Balbach, B., & Spath, F. (2021). SimStadt 2.0: Schlussbericht.

Hochschule für Technik Stuttgart;

https://www.tib.eu/de/suchen/id/TIBKAT%3A1773515144

117

Corrado, V., & Fabrizio, E. (2019). Steady-State and Dynamic Codes, Critical Review,

Advantages and Disadvantages, Accuracy, and Reliability. In Handbook of Energy

Efficiency in Buildings (pp. 263–294). Elsevier. https://doi.org/10.1016/B978-0-12-

812817-6.00011-5

Dalla Costa, S., Roccatello, E., & Rumor, M. (2011). A CityGML 3D geodatabase for

buildings’ energy efficiency. The International Archives of the Photogrammetry,

Remote Sensing and Spatial Information Sciences, XXXVIII-4/C21, 19–24.

https://doi.org/10.5194/isprsarchives-XXXVIII-4-C21-19-2011

European Commission. (2020). Energy efficiency in buildings. European Commission - Energy

Department.

https://ec.europa.eu/info/sites/default/files/energy_climate_change_environment/event

s/documents/in_focus_energy_efficiency_in_buildings_en.pdf

Geiger, A., Nichersu, A., & Hagenmeyer, V. (2020). Sensitivity of input data in building

heating energy demand simulation. BauSIM 2020, 23. - 25. September 2020, Graz.

BauSIM.

Gröger, G., Kolbe, T. H., Nagel, C., & Häfele, K. H. (2012). OGC city geography markup

language (CityGML) encoding standard. Reference number: OGC 12-019.

http://www.opengis.net/spec/citygml/2.0

Gröger, G., & Plümer, L. (2012). CityGML – Interoperable semantic 3D city models. ISPRS

Journal of Photogrammetry and Remote Sensing, 71, 12–33.

https://doi.org/10.1016/j.isprsjprs.2012.04.004

Horak, D., Hainoun, A., Neugebauer, G., & Stoeglehner, G. (2022). A review of spatio-

temporal urban energy system modeling for urban decarbonization strategy formulation.

Renewable and Sustainable Energy Reviews, 162, 112426.

https://doi.org/10.1016/j.rser.2022.112426

118

INSPIRE Thematic Working Group Buildings. (2013). D2.8.III.2 INSPIRE Data Specification

on Buildings – Technical Guidelines. European Commission Joint Research Centre.

https://inspire.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecificati

on_BU_v3.0.pdf

Kämpf, J., & Coccolo, S. (2015). Concrete application case of CitySim: Presentation for the

CityGML Energy ADE Workshop in Munich.

https://en.wiki.energy.sig3d.org/images/upload/EnergyADE_CitySim_30.11.2015.pdf

Kolbe, T. H., Kutzner, T., Smyth, C. S., Nagel, C., Roensdorf, C., & Heazel, C. (2021). OGC

City Geography Markup Language (CityGML) Part 1: Conceptual Model Standard.

Reference number: 20-010. http://www.opengis.net/doc/IS/CityGML-1/3.0

Kutzner, T., Chaturvedi, K., & Kolbe, T. H. (2020). CityGML 3.0: New Functions Open Up

New Applications. PFG – Journal of Photogrammetry, Remote Sensing and

Geoinformation Science, 88(1), 43–61. https://doi.org/10.1007/s41064-020-00095-z

Kutzner, T., Hijazi, I., & Kolbe, T. H. (2018). Semantic Modelling of 3D Multi-Utility

Networks for Urban Analyses and Simulations: The CityGML Utility Network ADE.

International Journal of 3-D Information Modeling, 7(2), 1–34.

https://doi.org/10.4018/IJ3DIM.2018040101

Kutzner, T., & Kolbe, T. H. (2018). CityGML 3.0: Sneak preview. PFGK18-Photogrammetrie-

Fernerkundung-Geoinformatik-Kartographie, 37. Jahrestagung in München 2018,

835–839.

Ledoux, H., Arroyo Ohori, K., Kumar, K., Dukai, B., Labetski, A., & Vitalis, S. (2019).

CityJSON: A compact and easy-to-use encoding of the CityGML data model. Open

Geospatial Data, Software and Standards, 4(1), 4. https://doi.org/10.1186/s40965-019-

0064-0

León-Sánchez, C., Giannelli, D., Agugiaro, G., & Stoter, J. (2021). Testing the new 3D BAG

Dataset for Energy Demand Estimation of Residential Buildings. The International

119

Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,

XLVI-4/W1-2021, 69–76. https://doi.org/10.5194/isprs-archives-XLVI-4-W1-2021-69-

2021

Löwner, M.-O., Benner, J., & Gröger, G. (2014). Aktuelle trends in der Entwicklung von

CityGML 3.0. Geoinformationen Öffnen Das Tor Zur Welt, 34.

Löwner, M.-O., & Gröger, G. (2017). Das neue LoD Konzept für CityGML 3.0. Proc. 13th

GeoForum MV. GeoMV EV, Warnemünde, Germany, 1–8.

Malhotra, A., Shamovich, M., Frisch, J., & van Treeck, C. (2019). Parametric Study of the

Different Level of Detail of CityGML and Energy-ADE Information for Energy

Performance Simulations. 3429–3436.

https://doi.org/10.26868/25222708.2019.210607

Nageler, P., Koch, A., Mauthner, F., Leusbrock, I., Mach, T., Hochenauer, C., & Heimrath, R.

(2018). Comparison of dynamic urban building energy models (UBEM): Sigmoid

energy signature and physical modelling approach. Energy and Buildings, 179, 333–

343. https://doi.org/10.1016/j.enbuild.2018.09.034

Nega, A., & Coors, V. (2022). The Use of CityGML 3.0 in 3D Cadastre system: The Case of

Addis Ababa City. The International Archives of the Photogrammetry, Remote Sensing

and Spatial Information Sciences, XLVIII-4/W4-2022, 109–116.

https://doi.org/10.5194/isprs-archives-XLVIII-4-W4-2022-109-2022

Object Management Group Unified Modeling Language (OMG UML). (2012). ISO.

https://www.iso.org/standard/52854.html

Pasquinelli, A., Agugiaro, G., Tagliabue, L., Scaioni, M., & Guzzetti, F. (2019). Exploiting the

Potential of Integrated Public Building Data: Energy Performance Assessment of the

Building Stock in a Case Study in Northern Italy. ISPRS International Journal of Geo-

Information, 8(1), 27. https://doi.org/10.3390/ijgi8010027

Pilone, D., & Pitman, N. (2005). UML 2.0 in a nutshell (1st ed). O’Reilly Media.

120

Prieto, I., Izkara, J. L., & Delgado del Hoyo, F. J. (2012). Efficient Visualization of the

Geometric Information of CityGML: Application for the Documentation of Built

Heritage. In B. Murgante, O. Gervasi, S. Misra, N. Nedjah, A. M. A. C. Rocha, D.

Taniar, & B. O. Apduhan (Eds.), Computational Science and Its Applications – ICCSA

2012 (Vol. 7333, pp. 529–544). Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-642-31125-3_40

Reinhart, C. F., & Cerezo Davila, C. (2016). Urban building energy modeling – A review of a

nascent field. Building and Environment, 97, 196–202.

https://doi.org/10.1016/j.buildenv.2015.12.001

Ribeiro, H. V., Rybski, D., & Kropp, J. P. (2019). Effects of changing population or density on

urban carbon dioxide emissions. Nature Communications, 10(1), 3204.

https://doi.org/10.1038/s41467-019-11184-y

Rossknecht, M., & Airaksinen, E. (2020). Concept and Evaluation of Heating Demand

Prediction Based on 3D City Models and the CityGML Energy ADE—Case Study

Helsinki. ISPRS International Journal of Geo-Information, 9(10), 602.

https://doi.org/10.3390/ijgi9100602

Rules for application schema. (2015). ISO. https://www.iso.org/standard/59193.html

Rumbaugh, J., Jacobson, I., & Booch, G. (1999). The unified modeling language reference

manual. Addison-Wesley.

http://debracollege.dspaces.org/bitstream/123456789/404/1/UML%20Reference%20

Manual%20by%20James%20Rambaugh.pdf

Saeidian, B., Rajabifard, A., Atazadeh, B., & Kalantari, M. (2022). Extending CityGML 3.0 to

Support 3D Underground Land Administration. The International Archives of the

Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-4/W4-

2022, 125–132. https://doi.org/10.5194/isprs-archives-XLVIII-4-W4-2022-125-2022

121

Schildt, M., Behm, C., Malhotra, A., Weck-Ponten, S., Frisch, J., & Treeck, C. (2021,

September). Proposed Integration of Utilities in the Energy ADE 2.0.

Tufan, Ö. (2022). Development and Testing of the CityJSON Energy Extension for Space

Heating Demand Calculation [Master Thesis]. Delft University of Technology.

Unified Modeling Language Version 2.5.1. (2017). OMG. https://www.omg.org/spec/UML

van den Brink, L., Stoter, J., & Zlatanova, S. (2013). UML-Based Approach to Developing a

CityGML Application Domain Extension: UML-Based Approach to Developing a

CityGML Application Domain Extension. Transactions in GIS, 17(6), 920–942.

https://doi.org/10.1111/tgis.12026

Yan, J., Zlatanova, S., & Diakité, A. (2021). A unified 3D space-based navigation model for

seamless navigation in indoor and outdoor. International Journal of Digital Earth,

14(8), 985–1003. https://doi.org/10.1080/17538947.2021.1913522

122

Online References

3DCityDB Energy ADE [Git Repository]. Retrieved from https://github.com/3dcitydb/energy-

ade-citydb. Last accessed: 13.11.2022.

CityGML-3.0Encodings [Git Repository]. Retrieved from

https://github.com/opengeospatial/CityGML-3.0Encodings/. Last accessed: 10.11.2022.

CityGML3.0-GML-Encoding [Git Repository]. Retrieved from

https://github.com/opengeospatial/CityGML3.0-GML-Encoding. Last accessed: 12.11.2022.

citygml3-utility-network-ade [Git Repository]. Retrieved from https://github.com/tum-

gis/citygml3-utility-network-ade. Last accessed: 26.11.2022.

Citygml4j [Git Repository]. Retrieved from https://github.com/citygml4j/citygml4j. Last

accessed: 12.11.2022.

CityJSON [Website]. Retrieved from https://www.cityjson.org/. Last accessed: 10.11.2022.

CityJSON Specification [Specification]. Retrieved from https://www.cityjson.org/specs/1.1.1/.

Last accessed: 10.11.2022.

Energy ADE [Git Repository]. Retrieved from https://git.rwth-aachen.de/energyade/citygml-

energy. Last accessed: 07.11.2022.

Enterprise Architect [Website]. Retrieved from https://sparxsystems.com/. Last accessed:

15.11.2022.

FME conversion [Website]. Retrieved from https://hub.safe.com/publishers/con-

terra/templates/convert-citygml-2-0-to-3-0. Last accessed: 12.11.2022.

gbXML [Website]. Retrieved from: https://www.gbxml.org/. Last accessed: 02.01.2023.

KIT Profile [Website]. Retrieved from

https://www.citygmlwiki.org/upload/EnergyADE%201.0/KIT-Profile/FeatureCatalogue/. Last

accessed: 13.11.2022.

OGC CityGML [Website]. Retrieved from https://www.ogc.org/standards/citygml. Last

accessed: 10.11.2022.

ShapeChange [Website]. Retrieved from https://shapechange.net/. Last accessed: 02.01.2022.

https://github.com/3dcitydb/energy-ade-citydb
https://github.com/3dcitydb/energy-ade-citydb
https://github.com/opengeospatial/CityGML-3.0Encodings/
https://github.com/opengeospatial/CityGML3.0-GML-Encoding
https://github.com/tum-gis/citygml3-utility-network-ade
https://github.com/tum-gis/citygml3-utility-network-ade
https://github.com/citygml4j/citygml4j
https://www.cityjson.org/
https://www.cityjson.org/specs/1.1.1/
https://git.rwth-aachen.de/energyade/citygml-energy
https://git.rwth-aachen.de/energyade/citygml-energy
https://sparxsystems.com/
https://hub.safe.com/publishers/con-terra/templates/convert-citygml-2-0-to-3-0
https://hub.safe.com/publishers/con-terra/templates/convert-citygml-2-0-to-3-0
https://www.gbxml.org/
https://www.citygmlwiki.org/upload/EnergyADE%201.0/KIT-Profile/FeatureCatalogue/
https://www.ogc.org/standards/citygml
https://shapechange.net/

123

Sustainable Development Goals [Website]. Retrieved from

https://www.un.org/sustainabledevelopment/cities/. Last accessed: 29.11.2022.

TestADE [Git Repository]. Retrieved from https://github.com/3dcitydb/extension-test-ade.

Last accessed: 12.10.2022.

Urban Planning ADE [Git Repository]. Retrieved from https://github.com/opengeospatial

/CityGML3.0-GML-Encoding/tree/main/resources/examples/ADE-examples/Urban-Planning-

ADE. Last accessed: 12.11.2022.

UtilityNetworkADE [Git Repository]. Retrieved from

https://github.com/TatjanaKutzner/CityGML-UtilityNetwork-ADE. Last accessed:

12.10.2022.

World Bank (2020a). Rural Population [Data file]. Retrieved from

https://data.worldbank.org/indicator/SP.RUR.TOTL. Last accessed: 29.11.2022.

World Bank (2020b). Urban Population [Data file]. Retrieved from

https://data.worldbank.org/indicator/SP.URB.TOTL. Last accessed: 29.11.2022.

https://www.un.org/sustainabledevelopment/cities/
https://github.com/3dcitydb/extension-test-ade
https://github.com/opengeospatial%20/CityGML3.0-GML-Encoding/tree/main/resources/examples/ADE-examples/Urban-Planning-ADE
https://github.com/opengeospatial%20/CityGML3.0-GML-Encoding/tree/main/resources/examples/ADE-examples/Urban-Planning-ADE
https://github.com/opengeospatial%20/CityGML3.0-GML-Encoding/tree/main/resources/examples/ADE-examples/Urban-Planning-ADE
https://github.com/TatjanaKutzner/CityGML-UtilityNetwork-ADE
https://data.worldbank.org/indicator/SP.RUR.TOTL
https://data.worldbank.org/indicator/SP.URB.TOTL

124

Appendix A: UML diagrams of Energy ADE for CityGML 3.0

class Core

«FeatureType»
EnergyDemand

«Property»
+ energyAmount: Measure
+ endUse: EndUseTypeValue
+ maximumLoad: Measure [0..1]
+ energyCarrierType: EnergyCarrierTypeValue [0..1]

«FeatureType»
Core::AbstractCityObject

«DataType»
ADEOfAbstractCityObject

(from Core)

«DataType»
ADEOfAbstractBuilding

(from Building)

«DataType»
BuildingProperties

«Property»
+ buildingType: BuildingTypeValue [0..1]
+ constructionWeight: ConstructionWeightValue [0..1]
+ energyPerformanceCertification: EnergyPerformanceCertification [0..*]
+ isLandmarked: Boolean [0..1]
+ refurbishmentMeasure: RefurbishmentMeasure [0..*]

«DataType»
EnergyADECityObjectProperties

AbstractLogicalSpace

«FeatureType»
Building::AbstractBuildingSubdivision

«FeatureType»
AbstractUsageZone

«enumeration»
ConstructionWeightValue

 veryLight
 light
 medium
 heavy

«DataType»
EnergyPerformanceCertification

«Property»
+ rating: CharacterString
+ name: CharacterString
+ certificationId: CharacterString [0..1]

«CodeList»
RefurbishmentClassValue

+ advanced
+ norefurbishment
+ standard

«Union»
DateOfEvent

«Property»
+ instant: TM_Position
+ period: TM_Period

«DataType»
RefurbishmentMeasure

«Property»
+ date: DateOfEvent
+ level: RefurbishmentClassValue
+ description: CharacterString [0..1]

«enumeration»
EndUseTypeValue

 cooking
 domesticHotWater
 electricalAppliances
 lighting
 otherOrCombination
 spaceCooling
 spaceHeating
 ventilation
 process

«FeatureType»
WeatherData

«Property»
+ weatherDataType: WeatherDataTypeValue
+ values: Measure

«enumeration»
WeatherDataTypeValue

 airTemperature
 humidity
 windSpeed
 cloudiness
 globalSolarIrradiance
 directSolarIrradiance
 diffuseSolarIrradiance
 terrestrialEmission
 downwardTerrestrialRadiation
 daylightIlluminance

GM_Primitive

«type»
Geometric primitive::

GM_Point

«CodeList»
BuildingTypeValue

+ apartmentBlock
+ multiFamilyHouse
+ singleFamilyHouse
+ terracedHouse

«CodeList»
EnergyCarrierTypeValue

+ chilledAir
+ chilledWater
+ coal
+ electricity
+ fuelOil
+ hotAir
+ hotWater
+ naturalGas
+ propane
+ steam
+ woodChips
+ woodPallets

AbstractFeature

«FeatureType»
Core::AbstractFeatureWithLifespan

«FeatureType»
AbstractLayeredMaterial

«FeatureType»
AbstractEnergySystem

«Property»
+ numberOfDevices: Integer [0..1]
+ model: CharacterString [0..1]
+ serviceLife: ServiceLife [0..1]

«FeatureType»
AbstractThermalZone

energyAmount requires to
be referenced by Dynamizer

values requires to be
referenced by Dynamizer

AbstractPhysicalSpace

«FeatureType»
Core::AbstractOccupiedSpace«FeatureType»

Core::AbstractDynamizer

«ObjectType»
ServiceLife

«Property»
+ startOfLife: TM_Position [0..1]
+ lifeExpectancy: TM_IntervalLength [0..1]
+ mainMaintenanceInterval: TM_IntervalLength [0..1]

+thermalZone
«Property»

0..*

1

+aggregatedBuildingLayering
«Property»

0..1

+installedIn
«Property»

0..*

+position
«Property»

0..1

1 +usageZone
«Property»

0..*

0..1
+contains

«Property» 0..*

+dynamizer
«Property»

1

+demandedBy
«Property»

0..*

+dynamizer
«Property» *

+dynamizer
«Property»

1

+demands
«Property»

0..*

+weatherData
«Property»

0..*

125

class BuildingPhysics

AbstractThermalZone

«FeatureType»
ThermalZone

«Property»
+ additionalThermalBridgeUValue: Measure [0..1]
+ effectiveThermalCapacity: Measure [0..1]
+ indirectlyHeatedAreaRatio: Scale [0..1]
+ infiltrationRate: Measure [0..1]
+ isCooled: Boolean = true
+ isHeated: Boolean = true

«FeatureType»
ThermalBoundary

«Property»
+ thermalBoundaryType: ThermalBoundaryTypeValue
+ azimuth: Angle [0..1]
+ inclination: Angle [0..1]
+ refurbishmentMeasure: RefurbishmentMeasure [0..*]

«enumeration»
ThermalBoundaryTypeValue

 interiorWall
 intermediaryFloor
 sharedWall
 outerWall
 groundSlab
 basementCeiling
 atticFloor
 roof

«FeatureType»
ThermalOpening

«Property»
+ indoorShading: ShadingType [0..1]
+ outdoorShading: ShadingType [0..1]
+ openableRatio: Scale [0..1]

«DataType»
ShadingType

«Property»
+ maximumCoverRatio: Scale
+ name: CharacterString [0..1]
+ transmittance: Transmittance

«enumeration»
WavelengthRangeType

 solar
 infrared
 visible
 total

«DataType»
Transmittance

«Property»
+ fraction: Scale
+ wavelengthRange: WavelengthRangeType

AbstractSpaceBoundary

«FeatureType»
Core::AbstractThematicSurface

«FeatureType»
Construction::AbstractFillingSurface

«FeatureType»
Construction::AbstractConstructionSurface

AbstractUnoccupiedSpace

«FeatureType»
Building::BuildingRoom

AbstractFeatureWithLifespan

«FeatureType»
AbstractLayeredMaterial

1

+relatesTo
«Property»

0..*

+delimits
«Property»

1..2
{ordered}

+boundary
«Property» 0..*

1

+relatesTo
«Property»

0..*

+contains
«Property» 0..*

1

+interiorRoom
«Property»

0..*

+layering
«Property» 0..1

+layering
«Property»

0..1

126

class Layering

AbstractFeatureWithLifespan

«FeatureType»
AbstractLayeredMaterial

«FeatureType»
ReverseLayeredMaterial

«FeatureType»
LayeredMaterial

«Property»
+ uValue: Measure [0..1]
+ opticalProperties: OpticalProperties [0..1]
+ serviceLife: ServiceLife [0..1]

«DataType»
Reflectance

«Property»
+ fraction: Scale
+ surface: SurfaceSide
+ wavelengthRange: WavelengthRangeType

«enumeration»
SurfaceSide

 inside
 outside

«DataType»
OpticalProperties

«Property»
+ emissivity: Emissivity [0..*]
+ reflectance: Reflectance [0..*]
+ transmittance: Transmittance [0..*]
+ glazingRatio: Scale [0..1]

«DataType»
Emissivity

«Property»
+ fraction: Scale
+ surface: SurfaceSide

AbstractFeatureWithLifespan

«FeatureType»
Layer

AbstractFeatureWithLifespan

«FeatureType»
LayerComponent

«Property»
+ areaFraction: Scale [0..1] = 1.0
+ thickness: Length [0..1]
+ serviceLife: ServiceLife [0..1]

AbstractFeatureWithLifespan

«FeatureType»
AbstractMaterial

«FeatureType»
Gas

«Property»
+ isVentilated: Boolean [0..1] = false
+ rValue: Measure [0..1]

«FeatureType»
SolidMaterial

«Property»
+ conductivity: Measure [0..1]
+ density: Measure [0..1]
+ permeance: Measure [0..1]
+ porosity: Scale [0..1]
+ specificHeat: Measure [0..1]
+ embodiedCarbon: Measure [0..1]
+ embodiedEnergy: Measure [0..1]

AbstractFeatureWithLifespan

«FeatureType»
ImageTexture

«Property»
+ url: URI
+ repeatS: Boolean
+ repeatT: Boolean

«DataType»
Transmittance

«Property»
+ fraction: Scale
+ wavelengthRange: WavelengthRangeType

«ObjectType»
ServiceLife

«Property»
+ startOfLife: TM_Position [0..1]
+ lifeExpectancy: TM_IntervalLength [0..1]
+ mainMaintenanceInterval: TM_IntervalLength [0..1]

+material
«Property» 1

+imageTexture
«Property»

0..1

+layer
«Property»

0..*
{ordered}

+layerComponent
«Property» 1..*

+baseLayering
«Property»

1

127

class Occupancy

AbstractLogicalSpace

«FeatureType»
Building::AbstractBuildingSubdivision

«FeatureType»
AbstractUsageZone

«FeatureType»
UsageZone

«Property»
+ coolingSchedule: AbstractSchedule [0..1]
+ heatingSchedule: AbstractSchedule [0..1]
+ usageZoneType: CurrentUseValue
+ usedFloors: IntegerList [0..1]
+ ventilationSchedule: AbstractSchedule [0..1]
+ averageInternalGains: HeatExchangeType [0..1]

AbstractOccupiedSpace

«FeatureType»
Facilities

«Property»
+ operationSchedule: AbstractSchedule [0..1]
+ heatDissipation: HeatExchangeType [0..1]

«FeatureType»
DHWFacilities

«Property»
+ numberOfBaths: Integer [0..1]
+ numberOfShowers: Integer [0..1]
+ numberOfWashBasins: Integer [0..1]
+ waterStorageVolume: Volume [0..1]

«FeatureType»
LightingFacilities

«Property»
+ electricalPower: Measure [0..1]

«FeatureType»
ElectricalAppliances

«Property»
+ electricalPower: Measure [0..1]

AbstractFeatureWithLifespan

«FeatureType»
Occupants

«Property»
+ heatDissipation: HeatExchangeType [0..1]
+ numberOfOccupants: Integer [0..1]
+ occupancyRate: AbstractSchedule [0..1]
+ occupantType: OccupantTypeValue [0..1]

AbstractFeatureWithLifespan

«FeatureType»
Household

«Property»
+ residenceType: ResidenceTypeValue [0..1]
+ householdType: HouseholdTypeValue [0..1]

«FeatureType»
Building::BuildingUnit

«DataType»
ADEOfBuildingUnit

(from Building)

«DataType»
BuildingUnitOccupancy

«Property»
+ numberOfRooms: Integer [0..1]
+ ownerName: CharacterString [0..1]
+ ownershipType: OwnershipTypeValue [0..1]
+ energyPerformanceCertification: EnergyPerformanceCertification [0..*]

«CodeList»
Core::OccupantTypeValue

«CodeList»
CurrentUseValue

«DataType»
HeatExchangeType

«Property»
+ convectiveFraction: Scale [0..1]
+ latentFraction: Scale [0..1]
+ radiantFraction: Scale [0..1]
+ totalValue: Measure

«CodeList»
OwnershipTypeValue

«Property»
+ corporation
+ government
+ nonOccupantPrivateOwner
+ nonProfitOrganisation
+ occupantPrivateOwner
+ propertyManagementCompany
+ otherOrCombination

«enumeration»
HouseholdTypeValue

 loneAdult
 multiFamily
 oneFamily
 pensionerCouple
 unrelatedAdults
 vacant
 workerCouple

«enumeration»
ResidenceTypeValue

 mainResidence
 secondaryResidence
 vacant

«FeatureType»
AbstractThermalZone

AbstractFeature

«FeatureType»
Core::Address

residents, workers,
students, patients, visitors,
othersOrCombination

0..1

+equippedWith
«Property»

0..*

0..1
+equippedWith

«Property» 0..*

*

+address
«Property»

*

0..1

+contains
«Property»

0..*

0..1

+occupiedBy
«Property» 0..*

1

+contains
«Property»

0..*

1

+household
«Property» 0..*

0..1

+occupiedBy
«Property»

0..*

128

class EnergySystem

AbstractOccupiedSpace

«FeatureType»
AbstractEnergySystem

«Property»
+ numberOfDevices: Integer [0..1]
+ model: CharacterString [0..1]
+ serviceLife: ServiceLife [0..1]

«FeatureType»
AbstractEnergyDistributionSystem

«Property»
+ distributionPerimeter: DistributionTypeValue [0..1]

«FeatureType»
AbstractEnergyConversionSystem

«Property»
+ efficiencyIndicator: CharacterString [0..1]
+ installedPower: Measure [0..1]
+ nominalEfficiency: Measure [0..1]

«FeatureType»
AbstractStorageSystem

«FeatureType»
EmitterSystem

«Property»
+ emitterType: EmitterTypeValue [0..1]
+ installedPower: Measure [0..1]
+ thermalExchange: HeatExchangeType [0..1]

AbstractFeatureWithLifespan

«FeatureType»
EnergyFlow

«Property»
+ energyAmount: Measure
+ energyCarriertype: EnergyCarrierTypeValue [0..1]

«FeatureType»
EnergySource

«Property»
+ co2EmissionFactor: Measure
+ energyDensity: Measure [0..1]
+ primaryEnergyFactor: Measure

AbstractFeatureWithLifespan

«FeatureType»
SystemOperation

«Property»
+ endUse: EndUseTypeValue
+ operationTime: AbstractSchedule [0..1]
+ yearlyGlobalEfficiency: Decimal [0..1]

«enumeration»
DistributionTypeValue

 building
 dwelling
 groupOfBuildings
 room
 staircase
 storey

«enumeration»
EmitterTypeValue

 radiator
 convector
 radiantFloor
 radiantCeiling
 radiantWall
 splitUnit
 2PipesFanCoilUnit
 4PipesFanCoilUnit

energyAmount requires to be
referenced by Dynamizer

AbstractFeatureWithLifespan

«FeatureType»
Core::AbstractDynamizer

1

+has
«Property»

0..*

+stores
«Property»

0..*

+isStoredBy
«Property»

0..*

+distributes
«Property» 0..*

+isDistributedBy
«Property»

0..*

+isEmittedBy
«Property» 0..*

+emitts
«Property»

0..*

+provides
«Property»

0..*

+isProvidedBy
«Property»

0..*

+dynamizer
«Property»

1

129

class EnergyConversionSystem

«FeatureType»
AbstractEnergyConversionSystem

«Property»
+ efficiencyIndicator: CharacterString [0..1]
+ installedPower: Measure [0..1]
+ nominalEfficiency: Measure [0..1]

AbstractFeatureWithLifespan

«FeatureType»
SystemOperation

«Property»
+ endUse: EndUseTypeValue
+ operationTime: AbstractSchedule [0..1]
+ yearlyGlobalEfficiency: Decimal [0..1]

«FeatureType»
Boiler

«Property»
+ hasCondensation: Boolean

«FeatureType»
ElectricalResistance

«FeatureType»
CombinedHeatPower

«Property»
+ technologyType: CharacterString
+ thermalEfficiency: Scale [0..1]
+ electricalEfficiency: Scale [0..1]

«FeatureType»
MechanicalVentilation

«Property»
+ hasHeatRecovery: Boolean
+ recuperationFactor: Scale

«FeatureType»
AirCompressor

«Property»
+ compressorType: CompressorTypeValue
+ pressure: Measure [0..1]

«FeatureType»
GenericConversionSystem

«FeatureType»
AbstractSolarEnergySystem

«FeatureType»
HeatPump

«Property»
+ heatSource: HeatSourceTypeValue
+ copSourceTemperature: Measure [0..1]
+ copOperationTemperature: Measure [0..1]

«FeatureType»
HeatExchanger

«Property»
+ networkId: CharacterString
+ networkNodeId: CharacterString
+ primaryHeatSupplier: CharacterString [0..1]

«FeatureType»
Chiller

«Property»
+ condensationType: CondensationTypeValue
+ compressorType: CompressorTypeValue
+ refrigerant: CharacterString [0..1]

«FeatureType»
PhotovoltaicSystem

«Property»
+ cellType: CellTypeValue
+ moduleArea: Area [0..1]

«FeatureType»
SolarThermalSystem

«Property»
+ collectorType: CollectorTypeValue
+ apertureArea: Area [0..1]
+ opticalEfficiency: Scale [0..1]
+ linearHeatLossCoefficient: Decimal [0..1]
+ quadraticHeatLossCoefficient: Decimal [0..1]

«FeatureType»
PhotovoltaicThermalSystem

«Property»
+ cellType: CellTypeValue
+ collectorType: CollectorTypeValue
+ moduleArea: Area [0..1]
+ apertureArea: Area [0..1]
+ opticalEfficiency: Scale [0..1]
+ linearHeatLossCoefficient: Decimal [0..1]
+ quadraticHeatLossCoefficient: Decimal [0..1]

«enumeration»
CompressorTypeValue

 reciprocatingCompressorHermetic
 reciprocatingCompressorSemiHermetic
 reciprocatingCompressorOpen
 rotaryVaneCompressor
 scrollCompressor
 screwCompressor
 centrifugalCompressor

«enumeration»
HeatSourceTypeValue

 ambientAir
 aquifer
 exhaustAir
 horizontalGroundCollector
 verticalGroundCollector

«enumeration»
CondensationTypeValue

 dryCooling
 evaporativeCooling
 hybridCooling
 adiabaticCooling
 freeCooling

«enumeration»
CellTypeValue

 monocrystalline
 polycrystalline
 amorphous

«enumeration»
CollectorTypeValue

 flatPlaneCollector
 evacuatedTubeCollector

AbstractThematicSurface

«FeatureType»
Construction::AbstractConstructionSurface

AbstractInstallation

«FeatureType»
Building::BuildingInstallation

AbstractOccupiedSpace

«FeatureType»
AbstractEnergySystem

+installedOnConstructionSurface
«Property»

0..1

1

+has
«Property»

0..*

+installedOnBuildingInstallation
«Property»

0..1

130

class EnergyDistributionStorageSystem

AbstractOccupiedSpace

«FeatureType»
AbstractEnergySystem

«Property»
+ numberOfDevices: Integer [0..1]
+ model: CharacterString [0..1]
+ serviceLife: ServiceLife [0..1]

«FeatureType»
AbstractEnergyDistributionSystem

«Property»
+ distributionPerimeter: DistributionTypeValue [0..1]

«FeatureType»
AbstractStorageSystem

«FeatureType»
ThermalStorageSystem

«Property»
+ preparationTemperature: Measure [0..1]
+ medium: MediumTypeValue [0..1]
+ thermalLossesFactor: Measure [0..1]
+ storageVolume: Volume [0..1]

«FeatureType»
PowerStorageSystem

«Property»
+ batteryTechnology: CharacterString [0..1]
+ powerCapacity: Measure [0..1]

«FeatureType»
ThermalDistributionSystem

«Property»
+ isCirculation: Boolean [0..1]
+ medium: MediumTypeValue [0..1]
+ nominalFlow: Measure [0..1]
+ returnTemperature: Measure [0..1]
+ supplyTemperature: Measure [0..1]
+ thermalLossesFactor: Measure [0..1]

«FeatureType»
PowerDistributionSystem

«Property»
+ current: Measure [0..1]
+ voltage: Measure [0..1]

«enumeration»
MediumTypeValue

 air
 steam
 water

131

class Timeseries

AbstractFeature

«FeatureType»
Dynamizer::AbstractTimeseries

«Property»
+ firstTimestamp: TM_Position [0..1]
+ lastTimestamp: TM_Position [0..1]
+ adeOfAbstractTimeseries: ADEOfAbstractTimeseries [0..*]

«FeatureType»
Dynamizer::AbstractAtomicTimeseries

«Property»
+ observationProperty: CharacterString
+ uom: CharacterString [0..1]
+ adeOfAbstractAtomicTimeseries: ADEOfAbstractAtomicTimeseries [0..*]

«FeatureType»
Dynamizer::GenericTimeseries

«Property»
+ valueType: TimeseriesTypeValue
+ adeOfGenericTimeseries: ADEOfGenericTimeseries [0..*]

«FeatureType»
Dynamizer::TabulatedFileTimeseries

«Property»
+ fileLocation: URI
+ fileType: TabulatedFileTypeValue
+ mimeType: MimeTypeValue [0..1]
+ valueType: TimeseriesTypeValue
+ numberOfHeaderLines: Integer [0..1]
+ fieldSeparator: CharacterString
+ decimalSymbol: Character [0..1]
+ idColumnNo: Integer [0..1]
+ idColumnName: CharacterString [0..1]
+ idValue: CharacterString [0..1]
+ timeColumnNo: Integer [0..1]
+ timeColumnName: CharacterString [0..1]
+ valueColumnNo: Integer [0..1]
+ valueColumnName: CharacterString [0..1]
+ adeOfTabulatedFileTimeseries: ADEOfTabulatedFileTimeseries [0..*]

«DataType»
ADEOfAbstractTimeseries

(from Dynamizer)

«DataType»
TimeValuesProperties

«Property»
+ acquisitionMethod: AcquisitionMethodValue
+ interpolationType: InterpolationTypeValue
+ qualityDescription: CharacterString [0..1]
+ source: CharacterString [0..1]
+ thematicDescription: CharacterString [0..1]

«enumeration»
AcquisitionMethodValue

 measurement
 simulation
 calibratedSimulation
 estimation
 unknown

«enumeration»
InterpolationTypeValue

 averageInPrecedingInterval
 averageInSucceedingInterval
 constantInPrecedingInterval
 constantInSucceedingInterval
 continuous
 discontinuous
 instantaneousTotal
 maximumInPrecedingInterval
 maximumInSucceedingInterval
 minimumInPrecedingInterval
 minimumInSucceedingInterval
 precedingTotal
 succeedingTotal

«DataType»
ADEOfTabulatedFileTimeseries

(from Dynamizer)

«DataType»
TabulatedFileTimeseriesExtension

«Property»
+ recordSeparator: CharacterString [0..1] = \n
+ timeInterval: TM_IntervalLength [0..1]

«FeatureType»
RegularTimeseries

«Property»
+ timeInterval: TM_IntervalLength
+ values: MeasureList

«DataType»
TimeValuePair

«Property»
+ timestamp: TM_Position
+ intValue: Integer [0..1]
+ doubleValue: Real [0..1]
+ stringValue: CharacterString [0..1]
+ geometryValue: GM_Object [0..1]
+ uriValue: URI [0..1]
+ boolValue: Boolean [0..1]
+ implicitGeometryValue: ImplicitGeometry [0..1]
+ appearanceValue: AbstractAppearance [0..1]

(from Dynamizer)

«enumeration»
Dynamizer::

TimeseriesTypeValue

 int
 double
 string
 geometry
 uri
 bool
 implicitGeometry
 appearance

«FeatureType»
Dynamizer::CompositeTimeseries

«Property»
+ adeOfCompositeTimeseries: ADEOfCompositeTimeseries [0..*]

«DataType»
TimeseriesComponent

«Property»
+ repetitions: Integer
+ additionalGap: TM_Duration [0..1]

(from Dynamizer)

«DataType»
ADEOfAbstractAtomicTimeseries

(from Dynamizer)

«DataType»
DPSProperties

«Property»
+ dayType: DayTypeValue [0..1]
+ period: TM_Period [0..1]

«enumeration»
DayTypeValue

 monday
 tuesday
 wednesday
 thursday
 friday
 saturday
 sunday
 designDay
 weekDay
 weekEnd
 typicalDay

«DataType»
ADEOfCompositeTimeseries

(from Dynamizer)

«DataType»
PeriodOfYear

«Property»
+ period: TM_Period

0..1

+timeseries
«Property»

1

+component
«Property»

1..*
{ordered}

+timeValuePair
«Property» 1..*

132

class Schedule

AbstractFeature

«FeatureType»
Core::AbstractFeatureWithLifespan

«FeatureType»
Core::AbstractDynamizer

«FeatureType»
AbstractSchedule

«FeatureType»
ConstantValueSchedule

«Property»
+ averageValue: Measure

«FeatureType»
DualValueSchedule

«Property»
+ usageHoursPerDay: Decimal [0..1] = 24
+ usageDaysPerYear: Decimal [0..1] = 365
+ usageValue: Measure
+ idleValue: Measure

«FeatureType»
DailyPatternSchedule

«Property»
+ timeDependingValues: Decimal

«FeatureType»
TimeseriesSchedule

«Property»
+ timeDependingValues: Decimal

timeDependingValues
requires to be referenced
by Dynamizer

timeDependingValues
requires to be referenced
by Dynamizer

+dynamizer
«Property»

1+dynamizer
«Property»

1

class WeatherData

«DataType»
ADEOfAbstractCityObject

(from Core)

«DataType»
EnergyADECityObjectProperties

AbstractFeatureWithLifespan

«FeatureType»
WeatherData

«Property»
+ weatherDataType: WeatherDataTypeValue
+ values: Measure

«FeatureType»
WeatherStation

«Property»
+ stationName: CharacterString [0..1]

AbstractPhysicalSpace

«FeatureType»
Core::AbstractOccupiedSpace

«enumeration»
WeatherDataTypeValue

 airTemperature
 humidity
 windSpeed
 cloudiness
 globalSolarIrradiance
 directSolarIrradiance
 diffuseSolarIrradiance
 terrestrialEmission
 downwardTerrestrialRadiation
 daylightIlluminance

AbstractFeatureWithLifespan

«FeatureType»
Core::AbstractDynamizer

values requires to be
referenced by Dynamizer

GM_Primitive

«type»
Geometric primitive::

GM_Point

+dynamizer
«Property» 1

+position
«Property»

0..1

+weatherData
«Property» 0..*

	Deckblatt Masterarbeit
	P5_final.pdf
	1. Introduction
	1.1. CityGML and Application Domain Extensions
	1.2. Research Objective
	1.3. Method
	1.4. Reading Guide

	2. Scientific Context
	2.1. Urban Building Energy Modelling
	2.2. Introduction to UML
	2.3. CityGML 2.0
	2.4. The Energy Application Domain Extension
	2.4.1. General
	2.4.2. Modules
	2.4.3. Software Support of the Energy ADE
	2.4.4. Related ADEs

	2.5. CityGML 3.0
	2.5.1. Changes in CityGML 3.0
	2.5.2. Applications of CityGML 3.0
	2.5.3. ADEs for CityGML 3.0
	2.5.4. Conversion from CityGML 2.0 to CityGML 3.0

	3. Method
	3.1. Mapping
	3.2. XSD Schema
	3.3. Conversion

	4. Implementation
	4.1. Mapping the Energy ADE to CityGML 3.0
	4.1.1. Core module
	4.1.2. Building Physics module
	4.1.3. Layer and Material module
	4.1.4. Occupant Behaviour module
	4.1.5. Energy Systems module
	4.1.6. Time Series Supporting classes
	4.1.7. Schedules Supporting classes
	4.1.8. Weather Data supporting classes

	4.2. Derivation of the XSD schema file
	4.3. Conversion to Energy ADE for CityGML 3.0
	4.3.1. Test data creation
	4.3.2. Conversion workspace

	5. Results
	5.1. Mapped classes
	5.2. Comparison of Encodings
	5.3. DailyPatternSchedule
	5.4. File size comparison

	6. Discussion
	6.1. A unique solution?
	6.2. Geometry representations
	6.3. Considerations beyond mapping
	6.4. Data conversion

	7. Conclusion
	7.1. With regard to the Research Objective
	7.2. Open Issues and Future Work
	7.3. Outlook
	7.4. Personal Reflection

	Literature
	Appendix A: UML diagrams of Energy ADE for CityGML 3.0

