
Delft University of Technology
Master’s Thesis in Computer Engineering

SSA Back-Translation: Faster Results with
Edge Splitting and Post Optimization

Maarten Faddegon

SSA Back-Translation: Faster Results with Edge

Splitting and Post Optimization

Master’s Thesis in Computer Engineering

Embedded Software Section
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

Maarten Faddegon
me@maartenfaddegon.nl

May 31st, 2011

mailto:me@maartenfaddegon.nl

Author

Maarten Faddegon (me@maartenfaddegon.nl)
Title

SSA Back-Translation: Faster Results with Edge Splitting and Post Optimization
MSc presentation

June 14th, 2011

Graduation Committee
prof. dr. K.G. Langendoen Delft University of Technology
dr. M. Beemster ACE Associated Compiler Experts
dr. G.N. Gaydadjiev Delft University of Technology

mailto:me@maartenfaddegon.nl

Abstract

A compiler translates one representation of a software program into another.
Beside translation compilers often have other tasks such as optimizating the
result and warning the programmer for mistakes. Internally a compiler uses
an Intermediate Representation (IR) for analysis and manipulation of the
program at hand.
Data dependencies in most programming languages are implicit. Some

compilers use an IR in Static Single Assignment (SSA) in which each local
variable is only defined once to simplify analysis of data dependencies. If the
number of assignments in the IR is not restricted, it is said to be in normal
form. Input of a compiler is in normal form and translation is needed to
bring the IR in SSA form.
SSA-form contains phi functions to merge values based on control flow.

After optimizations on SSA-form are performed it is not trivial to translate
SSA-form back to normal form because the properties of phi nodes cannot
be translated directly to processor instructions. The algorithms of Briggs
and Sreedhar are the two major methods of back-translation.
This thesis presents a modification that can be applied to the methods

of Briggs and Sreedhar. The original methods append copy instructions to
the end of existing source blocks. The presented modification splits edges
between source and target by inserting phiblocks where the algorithms of
Sreedhar and Briggs emit copy operations to replace phi functions.
For this study a bridge between LLVM and CoSy was built such that

LLVM can be used for the optimizations on SSA-form and CoSy for the
post back-translation optimizations. Four back-translation algorithms are
implemented in CoSy. The methods are compared through experiments with
six testcases from the SPEC benchmark suite.
On average the presented modification reduces the execution time of the

resulting code with 5% for Briggs’ method and 3% for Sreedhar’s method.
Experiments also show that the result of back-translation with or without
phiblocks is suboptimal: repeating optimizations after back-translation that
were already done on the IR in SSA-form can reduce the execution time on
average with 18%.

iv

Preface

This thesis is the final project for receiving the Master of Science degree in
Computer Engineering programme at Delft University of Technology. It was
carried out at ACE Associated Compiler Experts between September 2010
and May 2011.
During my stay at ACE I was asked to look into the mapping of LLVM’s

intermediate representation onto CoSy’s intermediate representation. Soon
I was facing the problem of back-translating static single assignment form.
After reading a number of papers on the subject I implemented the two main
algorithms for back-translation and started experimenting with variations on
these algorithms. This led to an interesting modification that enables the
generation of faster code.

For their support, advice and guidance and the opportunity to work with the
CoSy technology I would like to thank Marcel, Toru and the other developers
of ACE.
I would like to thank Koen for his advice and for serving as my supervisor

at Delft University of Technology even during his sabbatical.
For their moral and financial support during my studies I like to thank

my parents Hans and Ingrid.

Maarten Faddegon

Amsterdam, The Netherlands
May 31st, 2011

v

vi

Contents

Preface v

1 Introduction 1

2 Background 3

2.1 Compiler . 3

2.2 Normal Form . 4

2.3 Static Single Assignment . 4

2.4 Dynamic Assignment . 5

2.5 Branches and Phi-functions 5

2.5.1 Special Properties of Phi Functions 6

2.6 Block Names . 8

2.7 Why SSA is Used . 9

3 Methods of Back-translation 11

3.1 Cytron’s Method . 11

3.2 Briggs’ Method . 13

3.3 Post Back-translation Coalescing 14

3.4 Sreedhar’s Method . 16

3.5 Boissinot’s Improvements . 17

3.5.1 Exotic Terminator Problem 17

3.5.2 Live Out Problem . 18

3.5.3 Improved Interference Check 18

4 Proposal for Improvement 21

4.1 Implementation . 21

4.2 Previous Work Mentioning Phi Blocks 21

4.3 Conjectures on Performance 22

4.4 Post Back-translation Optimizations 23

5 Method of Evaluation 25

5.1 Sassa’s Evaluation . 25

5.1.1 Preliminary Comparison 25

5.1.2 Empirical Data . 25

vii

5.2 Method Used for this Study 26

6 Case Study 29

6.1 Swap Problem . 29
6.1.1 Result of Sreedhar’s Method 29
6.1.2 Result of Briggs’ Method 30
6.1.3 Effect of Phiblock Insertion 31
6.1.4 Conclusion . 31

6.2 Less is More . 33
6.2.1 Conclusion . 35

7 Implementation 37

7.1 Implemented for this Study 37
7.2 Complexity . 37
7.3 Reliability . 38
7.4 Efficiency . 39
7.5 Testability . 40

8 Results 43

8.1 Experiment Setup . 43
8.1.1 Benchmarked Testcases 43
8.1.2 Optimization Schemes 44
8.1.3 Method of Backtranslation 45

8.2 Sreedhar, Briggs and Edge-Splitting 45
8.3 Sreedhar versus Briggs . 46
8.4 The Effect of Optimizations 47

9 Conclusions 53

viii

Chapter 1

Introduction

Compilers translates one representation of a software program into another.
Beside translation compilers often have other tasks such as optimizing the
result and warning the programmer for mistakes. Internally a compiler uses
an Intermediate Representation (IR) for analysis and manipulation of the
program.

LLVM is an open-source compiler popular amongst academic research pro-
jects [11, 10]. CoSy is a compiler-framework build by ACE. Both compilers
are based on a modern design modelled around one intermediate represent-
ation (IR). However, the design of the intermediate representation of LLVM
and CoSy differs.

During my stay at ACE a bridge between LLVM and CoSy was needed
that maps the IR of LLVM onto CoSy’s IR (CCMIR). One of the largest
differences between the compilers is that the IR and the algorithms used
by LLVM are based on Static Single Assignment (SSA) form. In the SSA
representation each variable has only one definition, the rationale behind
this limitation is that the compiler can analyse the IR faster and/or easier.
Therefore, LLVM performs most optimizations on the SSA form.

The front end of the LLVM compiler translates the IR into SSA form. The
IR of CoSy is not in SSA form (from here on not-SSA-form will be called
normal form). Before the codegenerator in the back-end of the compiler
can emit processor instructions, the SSA form is to be back-translated to
normal form. Various methods for the back-translation of SSA form exist
but the two main methods of back-translation are the methods of Briggs[3]
and Sreedhar[13]. The research of this thesis concerns the optimality of
these methods. The shared characteristic of these methods is that they glue
together variables by appending copy instructions at the end of a branch.

Since optimization is performed before before back-translation, abundant
use of copy instructions may have a negative impact on execution time. By
repeating optimizations before and after back-translation this thesis answers
the question:

1

• Can the back-translation methods of Briggs and Sreedhar undo op-
timizations that are performed before going out of SSA?

Furthermore, this thesis presents a modification that can be applied to
the methods of Sreedhar and Briggs that speeds up results by reducing the
number of copy instructions executed by placing them in separate blocks
(named phiblocks). when fewer copy instructions need to be executed the
resulting program is faster. This thesis provides answers to the following
questions:

• What is the effect of placing instructions in phiblocks compared to the
conventional methods of Sreedhar and Briggs on the execution time of
the resulting code?

• Previous research by Sassa[12] showed that Sreedhar’s method is su-
perior to Briggs’ method. Is this also true when the phiblock modific-
ation is applied?

To find answer to these questions both methods of back-translation and
the variations on these methods are implemented. Six testcases from the
SPEC suite are used to obtain empirical data. Furthermore a number of
small cases are used as examples for the reasoning behind the insertion of
phiblocks.
The remainder of this thesis is structured as follows: Background inform-

ation of normal form, SSA and other terminology used in this document are
explained in Chapter 2. Chapter 3 provides short summaries of previous
work in the field of SSA back-translation. In Chapter 4 a novel modifica-
tion is described to the existing methods. The goal of this modification is
to improve the final result when the method is used in combination with
optimization techniques after back-translating. How the different back-
translation algorithms are compared is described in Chapter 5 The case
studies are presented in Chapter 6. Chapter 7 contains an analysis of the
back-translation methods from a software engineering viewpoint. The res-
ults of the tests from the SPEC benchmark suite are presented in Chapter 8.
The last chapter describes conclusions and presents answers to the questions
based on the results of the case studies and benchmarks.

2

Chapter 2

Background

This chapter provides background information on compilers, covering con-
cepts such as normal form, static single assignment (SSA) form and other
terminology.

2.1 Compiler

A compiler is a program that translates one representation of a software
program into a different representation. For example, a C-compiler trans-
lates a piece of code written in the C programming language into processor
specific assembly.

Beside direct translation, compilers often have other tasks such as optim-
izing the result for speed and/or size. Compilers can also analyze the code
and warn the programmer for mistakes.

The input representation is targeted at the human programmer. The
output representation is aimed at the processor architecture. Analysis and
transformations on these representations is difficult because control flow and
data dependencies are implicit. Therefore a third representation is used.
This representation is only used internally by the compiler and is called
intermediate representation (IR). Input, output and IR of a compiler share
the same meaning. But their representation is different because they serve
different goals.

Different compilers use different intermediate representations. The design
of an IR has impact on the design of the algorithms that work on the IR.
Therefore the design of the IR affects the speed of the compiler and the
complexity of the design of a transformation on the IR.

In this document two intermediate representations are studied: The IR
of the LLVM compiler and CoSy’s IR (CCMIR). LLVMIR is represented in
Static Single Assignment (SSA) form. CoSy works with an IR in normal
form. The next two sections define intermediate representation in normal
form and SSA from.

3

2.2 Normal Form

Before SSA-form can be described, it should be clear what intermediate
representation in normal form is.

An important property of an intermediate representation is to enable the
compiler to analyse the control flow. In 1970 Allen [1] described the use
of basic blocks and a control flow graph, which is used today in almost all
compilers. A short summary of the basic concepts is provided in this section.

A function is divided in linear sequences of statements. These sequences
are called basic blocks. The first statement in the basic block is the only
entry point. The last statement in the basic block is a terminator: a state-
ment that controls which statement is executed next. Examples of termin-
ators are goto and if-then-else statements.

A basic block has a number of possible predecessors and possible suc-
cessors. A control flow graph (CFG) is a directed graph. The nodes in the
CFG represent the basic blocks. The edges represent possible control flow
between the basic blocks.

2.3 Static Single Assignment

SSA-form is a representation in which for each variable statically there may
only be one assignment to that variable. The difference between static and
dynamic assignment is explained in the next section. SSA-form is usually
only applied on local variables. Global variables are excluded because they
can be accessed from different fuctions and even from code not analysed by
the compiler.

We take a look at a small example, in which we want to call a function
and then add 4 to the result. Different representations are possible. One of
the possible representations in normal form that fits the description is:

a := f()
a := a+ 4

In this example variable a is assigned to twice. Multiple assignments to the
same variable are not allowed in SSA-form. To translate this example to
SSA-form, a second variable is needed.

a1 := f()
a2 := a1 + 4

But, most programs are more complex than the example above. They can
contain branches and loops. Section 2.4 and 2.5 explain how the dataflow
of such constructs is represented in SSA-form.

4

2.4 Dynamic Assignment

An assignment may be inside a loop. For each iteration of the loop, an
assignment to the same variable is done. An assignment during execution
of the program is called a dynamic assignment. An assignment in the inter-
mediate representation is called a static assignment. Thus, an assignment
inside a loop can be assigned to statically once, while it is assigned to dy-
namically as many times as the loop iterates. Assigning multiple times to
the same variable dynamically does not violate the static single assignment
restriction.

Take a look at the following example. It illustrates the difference between
static and dynamic assignment.

b := 1

b := 2

loop 10 times :

a := b

f(a, b)

Variable a is statically assigned to once. Dynamically it is assigned to 10
times. (Even though it does not make much sense to assign the same value
10 times).

Assignments to the other variable are outside the loop. Therefore the
number of static and dynamic assignments is equal. This example is not in
SSA-form, because the number of static assignments to b is larger than 1.

In SSA-form, multiple uses (reading the content) of variables are allowed,
static as well as dynamic.

2.5 Branches and Phi-functions

Almost any program used in the real world needs at a certain point to make
a decision. Therefore it contains branches. This can be found in constructs
such as conditionally executed code. Or whether to continue or to step out
of a loop.

An often occurring possibility is that in these branches different assign-
ments to the same variable are performed. For example, imagine two branches
in which a value is assigned to variable x. For now we define these branches
as the left and right branch. When the two branches merge, x is used.
Figure 2.1 provides a graph of this case.

5

. . . = x

x = . . .x = . . .

Figure 2.1: Example of two merging branches in normal form.

To translate to SSA, the assignments in the branches must be done to dif-
ferent variables, say to x1 and x2, respectively. But, which of these variables
should be used after the branches? When the previous branch was the left
branch, x1 should be used. In the other case x2 is to be used. To handle
this variable merging, a function is used that is aware from which of the
preceding blocks the controlflow comes. These special functions are called
phi-functions, and are represented with the symbol ‘φ’. Figure 2.2 shows
the merging-branches example represented in SSA-form with the use of a
phi-function.

x = φ(x1, x2)

. . . = x

x1 = . . . x2 = . . .

Figure 2.2: Example of two merging branches in SSA-form.

2.5.1 Special Properties of Phi Functions

In the example the phi function is the first (and only) statement of the block
in which the control flow comes together and the variables are merged. Phi
functions are always placed before any other statement in a block.
The phi functions of a basic block are an atomic, read-before-write action.

This means that upon entering a basic block first the arguments of all phi
functions are read. Then the target variables of all phi functions are written.
To show how this can be used we take a look at the notation of an example

about swapping the values of two variables. We focus on a basic block that is
the core of a loop. This block has two possible predecessors: flow can come
from the block before the loop and also from the block itself. Before the

6

a1 = 4

b1 = 2

a2 = φ(b1, b2)

b2 = φ(a1, a2)

r = 10× a2 + b2

Figure 2.3: Swapping variables with phi functions.

loop variables a1 and b1 are initialized. In SSA-form it is possible to swap
the values of a2 and b2 without the explicit use of a temporary variable, as
illustrated by Figure 2.3.
An important property that is used in the swap example and the example

of Figure 2.2 is that a phi function “knows” which basic block was executed
previously.
The predecessor awareness, atomicity and read-before-write property of

phi functions make that they cannot be translated directly to machine code.
It is needed to back-translate the SSA-form to normal form. In Chapter 3
a number of methods to do so are described.

7

source block 1 source block 2

φ . . .

target block

(a)

φ . . .

target block

is a

source block

(b)

source block

phi block

�
��φ . . .

target block

(c)

Figure 2.4: Various examples of source, target and phiblocks.

2.6 Block Names

Statements are placed in a basic block, a function is built from these blocks.
In the rest of this work three different types of blocks in relation to a phi
function are defined.
First of all, the block that contains the phi statement will be referred to

as the target block (Figure 2.4a).
A phi function has a number of arguments. Each argument refers to a

preceding basic block. These are referred to as source blocks. It is possible
that the source block and the target block are one and the same block, for
example in a loop (Figure 2.4b).
The third case is not found in SSA-form. But back-translation to normal

form may introduce new basic blocks. Since such blocks are the result of
a back-translated phi functions these blocks are referred to as phiblocks
(Figure 2.4c).

8

2.7 Why SSA is Used

If a compiler uses SSA-form, the intermediate representation is translated
into SSA, analysed and optimized and translated back out of SSA. The op-
timization passes need to ensure that the intermediate representation stays
in SSA-form. This seems very complex and raises the question why SSA is
used.
The dataflow of an IR in SSA-form is more explicit than the dataflow

in normal form. Analysis can be done easier and faster, as Briggs[3] and
Cytron[7] show. Here the small example of Figure 2.5 concerning dead code
analysis is discussed. The first statement in this example is dead code, in
normal form (Figure 2.5a) this can be detected by overwriting x without
reading it. The SSA-form of the example (Figure 2.5b) is more explicit: x1
is never used and can therefore be removed.

x = 20
x = 40
y = x+ 2

(a) Normal form.

x1 = 20
x2 = 40
y = x2 + 2

(b) SSA-form.

Figure 2.5: Example with dead code.

9

10

Chapter 3

Methods of Back-translation

The intermediate representation in SSA-form cannot be translated into as-
sembly directly. It is needed to back-translate to normal-form first. This
chapter describes different methods of back-translation in historical order.

3.1 Cytron’s Method

Cytron [7] was the first to publish about SSA form of intermediate repres-
entation. His paper acknowledges the need for a method of back-translation
and also proposes such a method.

This method eliminates phi functions by replacing them with a number of
copy instructions. For each argument to a phi function, a copy instruction
is appended to the source block that copies the content of the argument to
the target variable.

Figure 3.1 provides an example of Cytron’s method of back-translation.
In the example there is one phi function to which two arguments are passed.
For both arguments, a copy statement is appended to the source block cor-
responding to that argument. The copy statement copies the content of
the corresponding argument to target variable x. From this example it be-
comes clear that many new copy statements are created by back-translation.
Some of these statements can be removed again by coalescing after back-
translation, more details are provided in Section 3.3.

Besides using SSA-form to help analysis, it is also possible to use optim-
ization techniques in SSA form. However the optimized SSA code can be
more challenging to back-translate. Several years after Cytron’s publica-
tion, Briggs [3] identified a number of problem-cases in which the SSA-form
is changed in such a way that applying Cytron’s method of back-translation
fails to produce a result with the same meaning. These problem cases
are created by transformations on the SSA-form, for example when copy
propagation is applied to optimize the IR. Copy propagation tries to remove
unnecessary copy statements, for example the right-hand-side of the second

11

x = φ(x1, x2)

. . . = x

x1 = . . . x2 = . . .

(a) SSA-form

· · ·

x1 = . . .

x = x1

x2 = . . .

x = x2

(b) Normal-form with φ-functions
replaced.

Figure 3.1: Example of applying Cytron’s method of back-translation.

statement in a = 40; b = a; c = b+ 2 can be removed when a is propagated:
a = 40;����b = a;c = a+ 2.1

One of the problematic situations Briggs identified is known as the swap-
problem. Figure 3.2 shows how this problematic situation is created, and
how back-translating the copy-folded SSA form with Cytron’s method goes
wrong.
In this case, the error is in the central block. This block is both source

and target. Cytron’s method appends two copy statements to the end of
the block. These statements should swap the variables a2 and b2. But
the temporary variable that was used in the original is folded away by in-
SSA optimization. In SSA-form (Figure 3.2b) this is correct since all phi-
functions at the begin of a block are one simultaneous read-before-write
action. But in the normal form that is the result of Cytron’s method (Figure
3.2c) the value held by a2 is overwritten before it can be stored in b2.

1Yes, this example can be optimize further by also propagating the constant 40.

12

a = 4

b = 2

x = a

a = b

b = x

r = 10× a+ b

(a) Normal form be-
fore translation.

a1 = 4

b1 = 2

a2 = φ(b1, b2)

b2 = φ(a1, a2)

r = 10× a2 + b2

(b) SSA-form after trans-
lation and copy folding.

a1 = 4

b1 = 2

a2 = b1

b2 = a1

a2 = b2

b2 = a2

r = 10× a2 + b2

(c) Normal form after
back-translation with
Cytron’s method.

Figure 3.2: Example code in which the swap problem manifests itself. Vari-
able r in (a) and (b) is 24 or 42, depending on the number of iterations of the
loop. But in Cytron’s back-translated code, the content of a2 is overwritten,
therefore r in (c) is always 44.

3.2 Briggs’ Method

Briggs [3] did not only identify the problems with Cytron’s method but also
proposed an improved method of back-translation. Like Cytron’s method
this method pushes out copy statements for all arguments in the phi-function.
However, the target of this variable is a temporary variable (instead of the
target of the phi-function itself.) The phi-function then, is not removed, but
replaced by a copy from the temporary variable to the actual target. Figure
3.3 illustrates how this remedies the swap problem (see Figure 3.2-b for the
SSA-form.)
Furthermore Briggs is also the first to suggest looking at liveness. He

proposes an algorithm, like described above, but which emits (slightly) fewer
copy operations. However, Sreedhar has taken this idea to a much higher
level, as described in Section 3.4.

13

a1 = 4

b1 = 2

ta = b1

tb = a1

a2 = ta

b2 = tb

ta = b2

tb = a2

r = 10× a2 + b2

Figure 3.3: Normal form after back-translating optimized SSA-form of the
swap problem using Briggs’ method.

3.3 Post Back-translation Coalescing

A variable is live between the assignment of a value until the last use of
that value. This is also called the liverange of a variable. In normal form a
variable can have multiple liveranges. Since a variable in SSA is only defined
(assigned to) once, it only has one liverange. Figure 3.4a shows an example
with liveranges of the variables.

When the liveranges of two variables overlap, the variables interfere: they
can not share the same register. Interference between variables can be rep-
resented with an interference graph. Each variable is represented as a node
of the interference graph. If two variables interfere, there is an edge between
the nodes (variables). An interference graph corresponding to the liveranges
of the example is shown in Figure 3.4b.

If two variables do not interfere, it is possible to use a single variable. Mer-
ging variables is often called coalescing. The example interference graph
shows that variable a and b cannot be coalesced since there is an edge
between their nodes. There is no edge between b and c, therefore it is
possible to coalesce these variables. After coalescing, the copy instruction
c = b is changes into a statement without effect and can be removed. The

14

a = 2

b = 21

c = b

f(a, c)

a b c

(a) Example code.

b

a

c

(b) Interference graph.

Figure 3.4: Liveness of example code and corresponding interference graph.

number of copy instruction in the example is reduced by coalescing c and b.
Figure 3.5 shows that the result after coalescing variables b and c reduces
the number of variables.

Many copy operations are introduced when applying Briggs’ method of
back-translation. The example of Figure 3.4 shows that copy operations
can be eliminated by coalescing. Therefore, Briggs suggests to use Chaitin’s
method of coalescing[6], which uses the following steps:

1. Do a data-flow analysis to obtain liveness information.

2. Use this information to built an interference graph.

3. For all copy operations where source and target variable do not inter-
fere, coalesce the variables and eliminate copy operation. This step is
often called copy propagation.

4. Use a heuristic to colour the remaining interference graph.

5. If more colours than registers are used, add spill code and go back one
step.

Other approaches are possible. A combination of coalescing and SSA
back-translation is proposed by Sreedhar. He claims that applying his
method is better than applying Briggs + Chaitin. His method is described
in detail in Section 3.4.

Budimlic [5] proposes another combination of coalescing and back-translation.
The result after applying his method is (according to his tests) comparable
to Briggs + Chaitin. Budimlic’s method uses SSA properties and therefore
compile time is reduced. A drawback of this method compared to Briggs +
Chaitin is that flexibility is lost, it is not possible to run other out-of-SSA
optimizations before the coalescing phase.

15

a = 2

c = 21

f(a, c)

Figure 3.5: Variable b and c in the example of Figure 3.4 can be coalesced.

3.4 Sreedhar’s Method

Sreedhar [13] tries to reduce the number of variables involved as well as the
number of copy instructions needed compared to Briggs. The main idea of
his method is to coalesce the variables involved in a φ-statement.

However, it is not always possible to coalesce the variables without chan-
ging the meaning. Sometimes variables interfere. In those cases the interfer-
ence is to be broken first. This is done by pushing out copy-statements and
introducing a new temporary variable. Then the argument in the phi func-
tion can be replaced by the new variable. Once interference is broken, the
phi function contains a set of variables consisting of old and new variables.
This set can be coalesced.

Sreedhar proposes three variations of his algorithm. The first variation as-
sumes interference in all cases and is similar to Briggs’ algorithm. Secondly
liveness information is used to determine for which variables a copy instruc-
tion must be emitted. The final variant of Sreedhar’s method uses both
liveness information and knowledge on the dataflow to emit as few copy in-
structions as possible. Figure 3.6 provides an example on which Sreedhar’s
method is applied.

Combining liveness information with the knowledges from which source a
phi function parameter originates is done for each set of two variables. If
the variables in the set interfere, Sreedhar identifies 4 distinct cases. For
each of these cases different measures are to be taken.

In the first and second case there is interference only on one of the sources,
but not at the other. Interference can be broken by creating a single2 copy
instruction. This introduces a temporary variable.

In the third case, interference is identified at both sources. The only way
to break the interference is to emit two copy instructions and introduce two
new temporary variables.

The final case identified by Sreedhar is interference somewhere in the
program between the two variables, but not at one of the source blocks. In
this case a copy instruction is needed, but it does not matter to which of
the source blocks this copy instruction is emitted. Therefore it is best to
postpone this choice until copy instructions for all other argument pairs are

2As opposed to Briggs, where two copies would be emitted.

16

x1 = 4

y = φ(x1, x2)

x2 = 2

r = y

(a) SSA-form.

y

x2 x1

(b) Interference graph of
variables involved in φ

statement.

X = 4

y = X

X = 2

r = y

(c) Normal form after
solving interference
and coalescing.

Figure 3.6: Using Sreedhar’s algorithm to back-translate the lost-copy prob-
lem. First a copy instruction is introduced to break interference between x2
and y. To this end a new variable t (not shown in figures) is introduced that
replaces the target and a copy instruction y = t is placed just after the phi
statement. Once interference is broken, all variables in the phi function are
coalesced: X ← {x1, x2, t} and the phi function is removed.

emitted. It is possible that a copy instruction to one of the arguments is
already emitted because of interference with another variable involved in the
phi function.

3.5 Boissinot’s Improvements

Boissinot [2] studied the algorithms of Briggs and Sreedhar. Hereby he
focussed on correctness of these algorithms.
He reports two cases in which back-translation with Sreedhar’s method

fails to produce a correct result. The first problem occurs when a rather
exotic terminator is used in the IR. The second problem is about the liveness
of variables at the end of a basic block. For both cases a solution is proposed
by Boissinot, he also proposes the usage of an alternative interference check.

3.5.1 Exotic Terminator Problem

Generally an intermediate representation contains a limited number of state-
ments for the control flow. For example goto or if-then-else. These state-

17

ments are only allowed at the end of a basic block, therefore they are called
terminators.

Usually a terminator does not create nor alters any variable. Therefore
it is safe to insert the copy operations just before the terminator as Briggs
and Sreedhar propose.

However, Boissinot assumes an intermediate representation in which the
terminating statement can also modify a variable. This is a common op-
erations in digital signal processing, but modifying a variable is not SSA.
However, Boissinot’s almost-SSA form may be of some use where such state-
ments are desirable. The example he uses is a branch-and-decrement state-
ment, which is shown in the code snippet of figure 3.7a. Due to interference
between variables, coalescing is not possible. A copy instruction would be in-
serted just before the branch-and-decrement statement. Therefore it would
hold the wrong (not yet decremented) value of v.

Boissinot proposes two solutions for this problem. Either to split the edge
and place the copy operation in a phiblock or to perform the same change
as the terminator would apply in the copy operation. For the example of
figure 3.7a, using x′ = x− 1 as copy operations solves the problem.

3.5.2 Live Out Problem

Sreedhar tries to coalesce the variables of a phi function. For variables that
interfere, his algorithm tries to emit as few copy operations as possible. To
determine for which variables a copy operation is needed, the live-out sets
at the end of the source blocks are used.

Boissinot sketches a situations where the live-out set of the block is not
equal to the live-out set at the place the copy instructions are inserted.
See figure 3.7b. The if-then-else terminator is the last use of y in that
branch. Therefore y is not in the live-out set of that source block. If y is not
in the block live-out set, interference can be broken by appending a copy
instruction tmp = x. The result is shown in figure 3.7b.

However, the copy instruction is inserted just before the terminator at
that point, y is in the live-out set. Interference is not broken and when y
and tmp would be coalesed the meaning of the result y=x; if (y) deviates
from the original.

Boissinot’s solution to the live-out problem is to look at the live-out set of
the statement before the terminator of a source block instead of the live-out
set of the source block itself, as Sreedhar suggested in his paper.

3.5.3 Improved Interference Check

Boissinot proposes to refine the definition of interference used in Sreedhar’s
algorithm. In SSA form, each variable has a uniquely defined value. There-
fore Boissinot states that: two variables interfere if their live ranges overlap

18

x = . . .

Br dec(x)

y1 = φ(x, . . .)

y2 = y1 + . . .

. . . = x

(a) Exotic terminator

x = . . .

y = . . .

tmp = x

if(y)-then-else

z = φ(y, tmp)

. . . = z
. . .

. . .

(b) Live-out problem after attempt to
break interference with tmp = x Coales-
cing y and tmp results in overwriting the
variable used by the if-then-else state-
ment.

Figure 3.7: Boissinot’s problem cases.

and they hold different values. Sreedhar determines the interference of vari-
ables by checking if their live ranges intersect.
Boissinot counted the number of remaining copy operations in a number of

benchmarks. He observes a reduction of the static number of copy operations
in the results if he uses Sreedhar with value coalescing compared to Sreedhar
with conventional coalescing. He does not report any information regarding
execution time.
However, after copy propagation, there shouldn’t be any copies left with

the same value. Therefore this method is only valuable if the SSA form was
not optimized. And in that case there are easier and faster ways to get out
of SSA form.

19

20

Chapter 4

Proposal for Improvement

The methods of Briggs, Cytron and Sreedhar append copy instructions at
the end of the source block. However a phi statement selects between a
number of expressions just before entry of its target block. Therefore, inser-
tion of a copy instruction at the edge between the source and target block
would be closer to the definition of a phi function than appending it to the
end of the source block.

The following sections elaborate on how this behaviour can be implemen-
ted, who used it before, what the effect on performance is, and provide
suggestions to maximize performance.

4.1 Implementation

Adding copy instructions on an edge is not possible. However a new dedic-
ated block for the copy instructions can be added. This phiblock is placed
between the source and target block. Beside being a more natural way of
placing the copy instructions, phiblocks also influence the execution time of
the result.

4.2 Previous Work Mentioning Phi Blocks

One of the effects of using phiblocks is that the statements in the block
are executed exactly in between the source and target block. Therefore
Boissinot [2] suggests to use phiblocks as a possible solution for the exotic
terminator problem, but only in case the source block is terminated with an
terminator that changes a variable.

Budimlic [5] created an algorithm that provides a result similar to the
combination of Briggs’ method of back-translation and Chaitin’s coalescing
algorithm. In his paper Budimlic shows his result is almost as good as Briggs
and coalescing. But the compiler itself is faster as it uses the properties of
SSA when coalescing. Budimlic’s algorithm cannot handle critical edges.

21

source block

with copy instructions

target block other block

(a)

source block

phi block

with copy instructions

target block

other block

(b)

Figure 4.1: The number of of executed copy operations introduced by SSA
back-translation can be reduced with the insertion of a phiblock.

That is, an edge for which the source has multiple outgoing edges and the
target multiple incoming edges. Before back-translation Budimlic splits all
critical edges by inserting a basic block.

As far as known by the author, there is no work about the effects of
phiblocks on the performance of the end result produced by the compiler.

4.3 Conjectures on Performance

Budimlic and Boissinot suggest the use of phiblocks are required in certain
cases to obtain a correct result.

In this document the positive effect on the performance of the resulting
code is discussed. It is likely the dynamic number of copy operations de-
creases (especially in combination with post optimization) when using phi-
blocks; on the downside a number of extra unconditional jump operations
are needed for the phiblock insertion.

It is expected that number of executed copy operations decrease, because
the copy operations are only executed when really needed. This is illustrated
by the example of Figure 4.1. The copy instructions needed by the target
block are in case a always executed. For case b, they are executed only when
necessary.

The inserted phiblocks are only executed when traversing exactly from
the intended source- and targetblock. Therefore it is expected that the
number of jump operations increases. Figure 4.2 provides an example that

22

source block 1 source block 2

phi block 1 phi block 2 other block

target block

Figure 4.2: Introduced phiblocks can increase the number of jumps needed.
Dashed edges can be implemented by falling through.

shows that the insertion of a phiblock can introduce the need for an extra
unconditional jump (phiblock 2 introduces 1 extra jump operation). But
that this is not always the case (phiblock 1).

4.4 Post Back-translation Optimizations

Section 3.3 discussed that after Briggs’ method of back-translation, it is
good practice to coalesce variables by copy propagation (Chaitin’s method).
However there are situations for which copy propagation is not enough, for
example, if not only variables but also constants or even more complex
expressions are used as argument to a phi function.
In Figure 4.3 an example is shown where after back-translation a com-

bination of copy propagation and expression propagation is able to reduce
the number of copy operations compared to copy propagation alone. In this
example Briggs’ method is used to back-translate from SSA form, which
introduces copy instructions that are unnecessary.
Splitting edges with phiblocks will have a beneficial effect on the result of

optimizations that run after back-translation since not only the execution
of statements is more selective but the live ranges of the variables involved
in these copy instructions also will be uncluttered.

23

. . . x = f()

y = φ(3, x)

g(y)

(a) SSA-form.

t = 3
x = f()

t = x

g(t)

(b) Back-translation and copy
propagation.

t = 3 t = f()

g(t)

(c) Back-translation, copy propaga-
tion and expression propagation.

Figure 4.3: An example where copy propagation is not enough. It is not
possible to propagate x from the copy statement t = x. However the ex-
pression holding function call f() can be propagated. Then x is never used
and therefore x = f() is dead code and can be removed.

24

Chapter 5

Method of Evaluation

To obtain empricial data on the effect of phiblocks insertion during back-
translation Sassa’s evaluation is used as a foundation. Section 5.1 summar-
izes his method and results. The method used for this research is described
in Section 5.2

5.1 Sassa’s Evaluation

Sassa [12] evaluated the back-translation methods proposed by Briggs and
Sreedhar. He performed an analysis of the algorithms on typical problem
cases. And he ran a series of benchmarks to obtain empirical data. Based
on his results Sassa concluded that Sreedhar’s algorithm is superior to that
of Briggs. The next subsections summarize Sassa’s experiments.

5.1.1 Preliminary Comparison

Briggs identified three problem cases on which Cytron’s back-translation
method fails. Sassa assumes these cases are typical for an optimized program
in SSA form. Therefore he bases his preliminary comparison on these cases.

Sassa back-translates each of these problem cases with both algorithms.
He tries to coalesce the remaining variables and removes dead code.
The number of copy operations left is used as the metric to estimate

performance. Table 5.1 shows Sassa’s result. Sreedhar’s method results in
a better result on the Swap problem. For the other two cases the number
of copy operations is equal for Briggs and Sreedhar.

5.1.2 Empirical Data

To support his conjecture Sassa did an experiment in which he tried to simu-
late real world compilation. For this he used 6 integer benchmarks from the
SPEC 2000 suite. To compile the benchmarks he used the COINS compiler.
In this compiler Sassa implemented both back-translation algorithms. To

25

Briggs Sreedhar

Lost Copy 1 1
Simple Ordering 2 2
Swap 5 3

Table 5.1: Copy operations in result as counted by Sassa. Fewer is better.

obtain results applicable to both compilers for general purpose computing
as well as the embedded market, the experiments are performed with 20 and
with 8 registers.
Sassa sees the biggest difference between Sreedhar and Briggs in the gzip

benchmark: With 8 registers, the execution time of the benchmark compiled
with Sreedhar’s method is about 28% faster than the result compiled with
Briggs’ method. With 20 registers, the difference is 8%.
For the other testcases from this suite, the difference is smaller. With 8

registers, Sreedhar is always faster than Briggs. With the number of registers
increased to 20 it is still true that Sreedhar is faster on average. However,
there are also two cases in which Briggs is faster. The result of the mcf
benchmark on which Briggs’ method is applied is faster by almost 3% than
Sreedhar’s result. That is the largest difference in performance in favor of
Briggs.

5.2 Method Used for this Study

In this study we want to evaluate the effect of post back-translation op-
timization and the effect of phiblocks. First a preliminary comparison is
performed based on typical cases, then empirical data is obtained with ex-
periments.
In his preliminary comparison, Sassa observes the biggest difference between

Brigg and Sreedhar in the swap problem. Therefore I will do a case study
of the swap problem to find out what the effect of post back-translation
optimization is and what the effect of phiblocks is for this case.
Also, in an example I study the relation between the number of variables

and the number of registers / spills needed. To collect empirical data I use
the two cases in which Sassa finds the two most outspoken differences: mcf
and gzip from the SPEC2000 suite.
To compile the benchmarks I used a combination of two compilers. The

front-end used is from the LLVM compiler. This part translates the C-code
to the IR of LLVM in SSA form. The in-SSA optimization are done by this
compiler. I wrote a translator from LLVMIR to CCMIR in SSA form. On
the result one of the following methods of back-translation is performed:

• The original method of Briggs, which appends copy instructions to the
source block.

26

• The original interference and dataflow method of Sreedhar, which ap-
pends copy instructions –needed to break interference– to the source
block.

• Briggs’ method with modification, inserts and appends to phiblocks.

• Sreedhar’s method with modification, inserts and appends to phiblocks
when needed to break interference.

After back-translation a number of existing CoSy optimizations can be
performed on the result. The CoSy compiler generates assembly from which
an executable is created. The executables of various combinations of back-
translation with or without post back-translation optimization is run on a
pentium machine to obtain execution times.

27

28

Chapter 6

Case Study

I studied two cases. The first case discussed is the swap problem a typical
problem case that is encountered by a back-translation algorithm. It is used
to show the differences between the backtranslation methods of Sreedhar
and Briggs, the effects of phiblock creation and the effect of optimization
after back-translation. Also the trade-offs of edge-splitting are discussed in
this section.

Section 6.2 discusses the order in which optimizations are done. Sreedhar
coalesces variables in combination with back-translating. Therefore, the
number of variables in the result of back-translation with Sreedhar is often
lower than the number of variables after using Briggs’ method. However
the early coalescing of Sreedhar may actually result in a larger number of
registers needed.

6.1 Swap Problem

The swap problem is a typical case for which Sreedhar’s original method
of back-translation performs better than Briggs’ orignal method. The swap
problem (Figure 6.1a) is one of the 3 problem cases identified by Briggs for
which Cytron’s method fails (see Chapter 3.) This section takes a closer
look at why Sreedhar performs better than Briggs in this case. Also the
effect of the phiblock modification is studied for this testcase.

6.1.1 Result of Sreedhar’s Method

Coalescing the variables involved in the phi functions is not possible imme-
diately. Sreedhar’s method therefore emits a number of copy instructions to
break interference.

The second phi statement is identified as case 2 interference1 between

1Section 3.4 explains the different cases of dataflow and interference recognized by
Sreedhar’s method of back-translation.

29

a1 = 40

b1 = 2

a2 = φ(a1, b2)

b2 = φ(b1, a2)

f(a2, b2)

(a) SSA-form

a1 = 40

b1 = 2

a2 = a1

a1 = b1

b1 = a2

f(a2, a1)

(b) Sreedhar

a1 = 40

b1 = 2

t0 = a1

t1 = b1

a2 = t0

b2 = t1

t0 = b2

t1 = a2

f(a2, b2)

(c) Briggs

Figure 6.1: Swap problem back-translated with unmodified Briggs and
Sreedhar before any kind of post back-translation optimization is applied.

source and target. Only one copy is needed. The first phi statement then
needs two copies to break a case 3 interference between source and target.
Figure 6.1b shows the result.

6.1.2 Result of Briggs’ Method

Briggs’ method introduces copy operations for each argument of the phi-
function at the end of the source block. There are two phi functions in the
swap problem of Figure 6.1a with two arguments each, thus Briggs’ method
emits 4 copy operations. Furthermore each phi-function has a target variable
to which the temporal variable is to be copied, resulting in two more copy
operations.

Of these 6 copy operations 4 are inside the body of the loop and two
are outside the loop. The two copy operations outside the loop can be
removed by propagation but because of overlapping live ranges in the body,
the number of copy operations inside the loop cannot be reduced.

30

method copy instructions branch instructions

Briggs 6(4,4) 1(1)
+ propagate 4(4,4) 1(1)
+ phiblocks &

propagate 3(3,1) 2(1)

Sreedhar 3(3,3) 1(1)
+ propagate 3(3,3) 1(1)
+ phiblocks &

propagate 3(3,2) 2(1)

Table 6.1: Number of instructions after back-translation. Figures in paren-
theses show number of instructions in loop body. Before the comma if more
iterations follow. After the comma the number of instructions executed in
the last iteration of the loop.

6.1.3 Effect of Phiblock Insertion

Figure 6.2 presents the result of appling the method of Briggs with phiblock
insertion on the swapproblem. Two phiblocks are introduced, one block in
the loop and one block before entering the loop.

Like unmodified Briggs, the 2 copy operations before entering the loop can
be removed by applying a combination of expression and copy propagation.
That leaves the phiblock empty, so it can be removed.

The phiblock inside the loop reduces the length of the live ranges of t0 and
t1. Therefore the number of copy operations inside the loop can be reduced
from 4 to 3 by applying copy propagation.

Also the last iterations of the loop does not enter the phiblock. Thus,
the last iterations only executes one copy operation. The trade-off is that
on entering the loop an unconditional branch instruction is needed to jump
around the phiblock.

Modified Sreedhar does not suffer from the unnecessary long live-ranges.
Therefore the effect of the phiblocks is smaller. The body contains two copy
operations and the phiblock one. Therefore the last iteration executes two
copy instructions. Thus, the number of copy operations is reduced by one,
but one branch instruction is introduced.

6.1.4 Conclusion

An overview of the number of copy and branch instructions of the various
methods is provided in Table 6.1. Comparing the results of the backtrans-
lated swapproblem without modification nor optimizations show a better
result when Sreedhar is used to backtranslate than when Briggs is used,
because the number of dynamic copy operations is lower and the number of
branches is equal.

31

a1 = 40

b1 = 2

t1 = a1

t2 = b1

a2 = t1

b2 = t2

t1 = b2

t2 = a2

f(a2, b2)

(a) modified-Briggs

t1 = 40

t2 = 2

a2 = t1
t1 = t2

t2 = a2

f(t1, t2)

(b) + copy and expression propagation

Figure 6.2: Swap problem back-translated with modified-Briggs and the
effect of optimizing after back-translation.

Applying propagation to these back-translation results reduces the gap
between Briggs and Sreedhar. However, the number of dynamic copy oper-
ations in the result of Sreedhar’s method is still lower even though Sreedhar’s
result does not profit at all from these optimizations.
Splitting edges by creating phiblocks reduces the dynamic number of copy

operations. However, both the static and dynamic number of branch instruc-
tions increases. For Briggs, a reduction of two copy instructions is traded for
one extra branch instruction. Sreedhar with phiblocks compared to Sreedhar
without trades one copy instruction for one branch instruction.
The introduced branch instruction is an unconditional jump, to a loc-

ation nearby. The cost of such a jump is very low on modern processor
architectures. Since the address is known, the pipeline is not disturbed.
Many processors even implement a technique called branch folding [9], this
virtually reduces the cost of this jump to zero.

32

From Table 6.1 can be concluded that Briggs with phiblocks is faster than
plain Sreedhar if the cost of an unconditional branch instruction is equal to
(or less than) the cost of a copy instruction.

It is very unlikely that modified Briggs is slower than the fastest unmod-
ified result. Only when an unconditional branch would be 3 or more times
as expensive as a copy instruction that holds.

6.2 Less is More

The number of variables in the intermediate representation is often smaller
when using Sreedhar’s method compared to using Briggs’ method. This
is caused by the coalescing technique used in Sreedhar. However, Hack [8]
showed that aggressive optimization in an early stage may have a detrimental
effect on coalescing in the final stage of the compiler, resulting in the need for
a larger number of registers. In this section an example is studied showing
that Sreedhar’s coalescing indeed can result in fewer variables for which
more registers are needed compared to the result of Briggs’ method.

a = . . .

b = . . .

x1 = . . .

. . . = a

x2 = . . .

. . . = b

y = φ(x1, x2)

. . . = y

Figure 6.3: SSA form of the example

In this example a phi-statement is used in which none of the variables
involved (x1, x2 and y) interference. Ideal for Sreedhar. However, there are
two other variables (a and b) which interfere with each other and with one
of the arguments to the phi-function. See figure 6.3 for the SSA-form of the
example case.

The testcase is back-translated with the two different methods, of which
the results are shown in Figure 6.5. The intermediate representation of

33

Briggs needs 6 variables, that is the 5 original variables plus a new one.
Sreedhar coalesces x1, x2 and y, resulting in 3 variables. Briggs’ result
needs 10 copy instructions, compared to 7 used in Sreedhar’s result.
So far, Sreedhar seems to be better. Let us, however, take a look at

the interference graphs of the resulting intermediate representations. Also
here we see the difference in number of variables reflected. However, these
interference graphs allow us to determine the number of registers needed.
This can be done with graph-coloring. Every different colour is a different
register. The minimum number of colours needed for Briggs’ graph is two.
Sreedhar’s graph has only 3 variables, but all 3 of them need a different
colour. Thus, in this case, Briggs’ result has need for fewer registers than
Sreedhar’s result.
When mapping to registers, a number of copy instructions of Briggs’ in-

termediate representation become superfluous. They copy the content of a
register to itself. By removing these instructions, the number of copy in-
structions in Briggs’ result is reduced to the same number of instructions as
Sreedhar’s result.

x1

x2

a

b

t

y

(a) Briggs

X

a b

(b) Sreedhar

Figure 6.4: Interference graphs.

34

6.2.1 Conclusion

In this section an example is presented showing that while the coalescing
of Sreedhar’s method of back-translation reduces the number of variables it
also may block coalescing in a later phase. In certain cases this can result in
the need for a larger number of registers after Sreedhar’s method compared
to the result after applying Briggs’ method.

a = . . .

b = . . .

x1 = . . .

. . . = a

t = x1

x2 = . . .

. . . = b

t = x2

y = t

. . . = y

(a) Briggs

a = . . .

b = . . .

. . . = a

X = . . .X = . . .

. . . = b

. . . = X

(b) Sreedhar

Figure 6.5: Back-translated normal-form.

35

36

Chapter 7

Implementation

The quality of the implementation of an algorithm depends on the crafts-
manship of the programmer and the quality of the design. This chapter
starts with a description of what was implemented for the experiments,
followed by a discussion of how difficult it is to create a high quality im-
plementation of the back-translation algorithms of Sreedhar, Briggs and the
edge splitting modification of those algorithms.

No hard, proven metric known to the author of this thesis in which to
express the quality of a program based on the algorithm. However, Budgen
[4] describes a set of factors to assess the fitness for purpose, which are
applied in this chapter to the (modified) algorithms of Sreedhar and Briggs.
Before the fitness for purpose can be discussed, it is needed to define the
objectives of the method of back-translation, which is done in the first section
of the chapter. Then complexity, reliability, efficiency and testability are
discussed.

7.1 Implemented for this Study

For the experiments in this study certain parts from the LLVM compiler
and CoSy’s framework were readily available, other parts were implemented
as part of the thesis work. Figure 7.1 shows all components of the compiler
chain.

A parser was created that reads LLVMIR and maps it onto SSA-extended
CCMIR. To back-translate the SSA-extended CCMIR, the methods of Briggs
and Sreedhar were implemented, with and without the edge-splitting vari-
ation proposed in Chapter 4.

7.2 Complexity

Complexity is an indicator of the of the likeliness an error is made in the
implementation. Various metrics exist to estimate the complexity of an im-

37

LLVM:

CoSy:

C parser in-SSA opt.

LLVMIR

 parser

back-

 translation

post opt. back-

 end

Figure 7.1: Compiler chain with new components encircled.

plementation. In this section three of these metrics are used to compare the
methods of Sreedhar and Briggs, and to estimate the increased complexity
of edge splitting. The metrics used are lines of code, number of branch
statements and number of loops.

Table 7.1 shows that the implementation of Sreedhar’s method is estim-
ated to be 9 to 37 times as complex as the implementation of Briggs’ method.
Liveness analysis needed by Sreedhar is excluded in this analysis. Phiblock
insertion is estimated to be no more than 2 times as complex as appending
to sourceblocks, as can be seen in Table 7.2.

Sreedhar Briggs ratio

lines 245 28 9
branches 37 1 37
loops 17 2 9

Table 7.1: Indicators of the complexity of implementation of the back-
translation methods of Sreedhar and Briggs.

7.3 Reliability

The two factors to estimate the reliability of back-translation based on the
design are completeness and robustness.

38

phiblock sourceblock ratio

lines 75 40 2
branches 11 6 2
loops 9 7 1

Table 7.2: Indicators of the complexity of implementation of copy instruction
appending to sourceblock or edge-splitting appending copy instructions to
source compared to inserting in a phiblock.

Completeness is the ability to handle all possible inputs. In the case of
a back-translation algorithm, variations in input come from the arguments
to the phi statements. By its generic nature, Briggs can handle almost
any possible expression as argument. The more specific design of Sreedhar
requires a local variable as argument to the phi function.
Robustness is the ability to cope with failure of other components. Sreed-

har depends on the liveness information, a bug in the liveness analysis can
result in subtle but serious deviations in the result. On the other hand,
Briggs does not rely on liveness information, but coalescing after back-
translation of course does.

7.4 Efficiency

Two approaches are possible. One is to analyze the algorithms, the other
approach is to measure the time needed by the compiler.
Simplified algorithms of Briggs and Sreedhar are shown in Listing 7.1 and

Listing 7.2. For the analysis I assume the phi-statement to back-translate
has n − 1 arguments and 1 target. Briggs emits a copy for each argument
and for its target, thus it needs O(n) time. Sreedhar compares each pair,

needing O(
(

n

2

)

) = O(n(n−1)(n−2)!
2(n−2)!) = O(12n

2 − 1
2n) = O(n2) time.

Thus from this can be concluded that the time needed by Briggs grows
linearly with the number of arguments whereas the time needed by Sreedhar
grows polynomial. However, as the number of argument is small (n is typical
between 3 and 5) constants are of a greater importance and the conclusion
based on big-oh analysis should be used with care.

Listing 7.1: Big-Oh analysis of Briggs’ algorithm

c r ea t e tmp
for each obj in phiStatement−>args O(n)

emit copy i n s t r u c t i o n tmp = obj
emit copy i n s t r u c t i o n ta r = tmp

39

Listing 7.2: Big-Oh analysis of Sreedhar’s algorithm

for each pa i r (i−j) in args + ta r g e t O(
(

n

2

)

)
check i f i i s in Lj
check i f j i s in Li
based on i n t e r f e r e n c e

add i , j or both to l i s t o f cand idate s
for a l l o b j e c t s in cand idate s Owc(n)

emit approp iate copy i n s t r u c t i o n s

The comparison of the compilation time of the implementation of Sreed-
har, Briggs and the phiblock modification is done by measuring the time
needed to compile the testcases Figure 7.2 shows a comparison of the ob-
tained times.

Comparing the time needed by the phiblock modification of Briggs’ al-
gorithm with the time needed by the unmodified Brigg’s algorithm shows a
small increase in time needed to insert the phiblocks.

The time needed by Sreedhar’s algorithm to complete back-translation
depends on the live-ranges of the variables is involved. Since the phiblock
modification influences the liveranges of the variables, the impact of the
phiblock modification on the time needed by Sreedhar’s method to back-
translate is larger than on Briggs.

Comparing Sreedhar’s algorithm with Briggs algorithm shows that with
Sreedhar’s method the compiler takes up to a factor 10 more time than
when Brigg’s method is used. However, in the implementation created dur-
ing this thesis the liveness analysis does not use the SSA properties. And
more important, updating the liveness information in the implementation
of Sreedhar’s algorithm can be done more efficient, as described by Sreed-
har in his paper. Therefore comparing compilation times of Sreedhar and
Briggs based on these measurements is not completely fair. Nonetheless
variations of compilation time of the phiblock modification are a good in-
dicator that Sreedhar is slower than Briggs although the inefficiency in the
liveness analysis amplifies the differences of the compilation time for Sreed-
har’s algorithm.

7.5 Testability

The action for an argument of a phi function in Brigg’s algorithm is always
the same. Per pair of of variables Sreedhar distinguishes 4 different cases
when there is a conflict between the variables. For each of these cases, and
the case in which there is no conflict a different course of action is to be taken.
A phi function with n−1 arguments and 1 target variable therefore has

(

n

2

)

×5

40

0

2

4

6

8

10

12

14

gzip
vpr

m
cf

parser

bzip2
twolf

Briggs
Briggs + phiblocks

Sreedhar
Sreedhar + phiblocks

Figure 7.2: Six testcases from the SPEC benchmark suite are used to obtain
compilation time ratio per benchmark when method of back-translation is
varied, normalized to Briggs without phiblocks. In the next chapter more
details on the benchmarks follows.

possible resulting variations. For 3 arguments that are 192 possible results!
It is therefore much more difficult to test an implementation of Sreedhar’s
method than to test Brigg’s method.
Sreedhar’s method depends on liveness information that is to be created

before the algorithm is run and also needs to be updated in between back-
translation of the phi statements. A small programming mistake in either
the live analysis before or during back-translation with Sreedhar can result
in bugs that are hard to find.
Coalescing variables make it harder to verify if an erroneous back-translation

is made. In the case of Briggs + Chaitin, a dump can be made in between,
or Chaitin can be disabled completely. The variable coalescing in Sreedhar’s
algorithm is part of the back-translation and cannot be skipped.
Spliting edges does not make it easier nor harder to test correctness of

the implementation. However, in the case of Sreedhar’s algorithm they do
change the behaviour of the algorithm as the (intermediate) live ranges of
the variables differ compared to those when back-translating with Sreedhar’s
original method of back-translation.

41

42

Chapter 8

Results

This chapter presents the results of 144 experiments in which 6 testcases
were back-translated with 4 methods of back-translation and optimized with
6 different combinations of engines.

The first section of this chapter explains the setup of the experiments.
In the other sections the results are discussed. In Section 8.2 it is shown
what the effect on the performance of the result is when phiblocks are or
are not created during back-translation. Section 8.3 discusses the differ-
ences between Sreedhar and Briggs. The effects of post optimization are
discussed in Section 8.4. For reference Table 8.1 lists the execution times of
all benchmarks.

8.1 Experiment Setup

To obtain empirical data the result after compilation of various testcases
is executed. This section starts with a description of the testcases that
are used. Then follows an explanation of the various optimization schemes.
The last part of this section shortly sums up the methods of back-translation
benchmarked.

8.1.1 Benchmarked Testcases

A selection of 6 testcases of the SPEC 2000 integer benchmark suite are used:
gzip, vpr, mcf, parser, bzip2 and twolf. These testcases are selected because
they are used in previous research of Sassa [12]. This enables comparison
with his results. Refer to Chapter 5 for more details on Sassa’s evaluation.

Gzip and bzip2 are testcases that compress and decompress. Vpr and
Twolf find solutions for the place and route problem. Parser is a syntactic
parser of a natural language. Mcf is an implementation of the simplex
algorithm to optimize a schedule.

43

For a 20 register machine, Sassa found results back-translated with Sreed-
har performing on average better than those back-translated with Briggs.
Outlyers are gzip for which Sreedhar’s result is faster by 8% and mcf for
which the Briggs’ back-translated result is faster by almost 3%.

During the experiments, the bzip2 testcase triggered strange behaviour
in the compiler. To obtain a valid result in all cases; it was necessary to
the disable the loop invariant optimization engine. An error is suspected in
the creation of liveness information for Sreedhar. Therefore results of bzip2
should be used with care.

8.1.2 Optimization Schemes

Before back-translation, the SSA code is optimized by the LLVM compiler
(among others, this includes expression propagation which is the root cause
of Cytron’s method failing to produce a correct back-translations result).
The in-SSA optimization techniques are for all benchmarks the same (LLVM
-O3). Various combinations of optimizations in CoSy on the normal form
intermediate representation after SSA back-translation are tried. The dif-
ferent combinations are described here shortly:

noopt

The back-translated intermediate representation is passed to the co-
degenerator immediately.

minopt

Block merging, dead code removal, disjoint life range splitting, expres-
sion simplification and miscellaneous small optimizations.

constprop

Search for assignment of a constant to a variable and replace use of
that variable with the constant. Includes minopt.

copyprop

Search for copy statements and try to replace use of left-hand-side
variable with right-hand-side variable. Includes minopt. This basically
is Chaitin’s coalescing algorithm.

exprprop

Search for an assignment of an expression to a variable and try to re-
place use of that variable with the right-hand-side expression. Includes
minopt.

maxopt

Minopt and all 3 propagation techniques. This is the default combin-
ation of CoSy’s low-level optimization techniques.

44

8.1.3 Method of Backtranslation

The in-SSA intermediate representation of the benchmarks is back-translated
with 4 different methods of back-translation: Briggs’ method, Sreedhar’s
method and both methods with phiblock insertion. In the following the
term edge-splitting is used synonymously with phiblock insertion.

85 %

90 %

95 %

100 %

105 %

110 %

gzip
vpr

m
cf

parser

bzip2
twolf

Briggs
Briggs + phiblocks

Sreedhar
Sreedhar + phiblocks

Figure 8.1: Relative execution times of the results (lower is better), when
the IR after back-translation is directly fed into the codegenerator (noopt).
Per benchmark the execution times are normalized to the execution time of
the result back-translated with Briggs’ method.

8.2 Sreedhar, Briggs and Edge-Splitting

Two comparisons of the effect of edge splitting by phiblock insertion on
the algorithms are presented here. First the execution times are compared
when no optimization is applied. Then for each method the various post
optimizations schemes as described above are applied and the best result is
selected.
Figure 8.1 shows the execution times of the resulting executables when no

post back-translation optimization is applied after back-translation. For all
6 testcases, the result after applying Briggs with phiblocks is faster than the
result on which Briggs without phiblocks was used to back-translate. The
result of Sreedhar with phiblocks is faster in all but bzip2.
Optimization is beneficial after back-translation with phiblocks and without

phiblocks, details are discussed in Subsection 8.4. In the bar-chart of Figure
8.2 the methods of backtranslation are compared when post-backtranslation
optimization is used. Briggs’ method with phiblocks is faster than Briggs

45

85 %

90 %

95 %

100 %

105 %

110 %

gzip
vpr

m
cf

parser

bzip2
twolf

Briggs
Briggs + phiblocks

Sreedhar
Sreedhar + phiblocks

Figure 8.2: Comparison of the best result of each back-translation method.
For each benchmark the fastest result after applying Briggs (without phi-
blocks) is set to 1. The other results are scaled to to that result.

without phiblocks in all cases, on average the phiblock modification is 5%
faster. Sreedhar with phiblocks also gives a faster result compared to Sreed-
har without phiblocks; on average execution time can be reduced with 3%.

8.3 Sreedhar versus Briggs

Sassa’s conclusion that Sreedhar is superior to Briggs is confirmed by the
results of back-translation with optimization and without phiblocks in all
cases but bzip2. In the cases of gzip, mcf, bzip2 and twolf the result of
Briggs with phiblocks is faster than the result for which Sreedhar without
phiblocks is used. However, in 3 of those 4 testcases Sreedhar with phiblocks
is still faster than Briggs with phiblocks.

Figure 8.3 shows for each testcase of the benchmark suite, the relative
difference in execution time of the result after applying either Sreedhar or
Briggs. In most cases the largest difference between Sreedhar and Briggs
is shown when no phiblocks are used. This is especially pronounced in the
testcase gzip. For this testcase the result of Sreedhar without modification
and without applying post optimization executes in 90% of the time needed
by the result of Briggs without modification and post optimization. When
phiblocks are used during back-translation and optimization thereafter is
applied, then Sreedhar’s result executes in 99% of the time needed by Briggs’
result.

46

-15 %

-10 %

-5 %

0 %

5 %

10 %

15 %

gzip
vpr

m
cf

parser

bzip2
twolf

unmodified noopt
phiblocks noopt
unmodified best

phiblocks best

Figure 8.3: Difference in execution time when Briggs or Sreedhar is used
with and without phiblock modification.

8.4 The Effect of Optimizations

In this section a closer look is taken at the effects of the post back-translation
optimizations. First the gain of the best results over the results where
no optimization was applied, then a closer look is taken at the differences
between the various optimization schemes.
Figure 8.4 shows how much is gained by post optimization for the 4 meth-

ods of back-translation. Most interesting aspect of this chart is the difference
between optimizing after Sreedhar with and without phiblocks. For the 4
cases gzip, vpr mcf and twolf, optimizing after Sreedhar with phiblocks is
more beneficial than optimizing after Sreedhar without phiblocks. These
cases are those for which phiblocks seemingly had no effect in the noopt
case (see Figure 8.1). On average post optimization gains an improvement
over noopt of 17% when Briggs is used, 18% after Briggs with phiblocks,
also 18% after Sreedhar and 20% after Sreedhar with phiblocks.
The positive effect of phiblocks for Briggs 1998’s method is already visible

in the noopt benchmarks and the effect of post optimizations is not univocal
more beneficial when Briggs with phiblocks is used than when Briggs without
is used.
Figure 8.5 and Figure 8.6 show for all 6 testcases a barchart with the

scaled execution times of the results after applying the various optimization
schemes for the 4 different methods of back-translation.

47

10 %

15 %

20 %

25 %

30 %

gzip
vpr

m
cf

parser

bzip2
twolf

Briggs
Briggs + phiblocks

Sreedhar
Sreedhar + phiblocks

Figure 8.4: Improvement of post optimizations, expressed in percentage of
the noopt execution time. Higher means more could be gained by post-
optimizing, the end-result is not necessarily better.

70 %

75 %

80 %

85 %

90 %

95 %

100 %

105 %

110 %

noopt

m
inopt

constprop

copyprop

exprprop

m
axopt

Briggs
Briggs + phiblocks

Sreedhar
Sreedhar + phiblocks

(a) Gzip

70 %

75 %

80 %

85 %

90 %

95 %

100 %

105 %

110 %

noopt

m
inopt

constprop

copyprop

exprprop

m
axopt

Briggs
Briggs + phiblocks

Sreedhar
Sreedhar + phiblocks

(b) Mcf

Figure 8.5: Ratios showing the effect of phiblock insertion and various post
SSA back-translation optimizations on 2 of the benchmarks. All execution
times are scaled to the time of the result when Briggs method is used for
back-translation and no optimizations are applied afterwards. Also see Fig-
ure 8.6 in which the results of the other benchmarks are shown.

48

In some cases the minopt scheme worsens the result compared to applying
no optimization at all. This may be the result of preparing the IR for
copy, constant and expression propagation without actually performing the
propagation.
Expression propagation is clearly the optimization pass with the greatest

effect: in all cases the result after this pass is comparable to the result after
applying all optimization.

49

70 %

75 %

80 %

85 %

90 %

95 %

100 %

105 %

110 %

noopt

m
inopt

constprop

copyprop

exprprop

m
axopt

Briggs
Briggs + phiblocks

Sreedhar
Sreedhar + phiblocks

(a) Parser

70 %

75 %

80 %

85 %

90 %

95 %

100 %

105 %

110 %

noopt

m
inopt

constprop

copyprop

exprprop

m
axopt

Briggs
Briggs + phiblocks

Sreedhar
Sreedhar + phiblocks

(b) Vpr

70 %

75 %

80 %

85 %

90 %

95 %

100 %

105 %

110 %

noopt

m
inopt

constprop

copyprop

exprprop

m
axopt

Briggs
Briggs + phiblocks

Sreedhar
Sreedhar + phiblocks

(c) Bzip2

70 %

75 %

80 %

85 %

90 %

95 %

100 %

105 %

110 %

noopt

m
inopt

constprop

copyprop

exprprop

m
axopt

Briggs
Briggs + phiblocks

Sreedhar
Sreedhar + phiblocks

(d) Twolf

Figure 8.6: Ratios showing the effect of phiblock insertion and various post
SSA back-translation optimizations. (Cont. from Figure 8.5)

50

compiler options gzip vpr mcf parser bzip2 twolf

briggs, noopt 31.995 1723.339 76.675 136.502 89.313 176.900
blocks with phiblocks, noopt 29.882 1701.251 75.584 133.468 84.475 176.949
sreedhar, noopt 29.248 1682.899 73.925 131.367 89.693 177.992
blocks with phiblocks, noopt 28.781 1680.741 74.170 129.924 84.633 176.604
briggs, minopt 32.293 1619.209 75.028 137.687 90.325 171.722
blocks with phiblocks, minopt 31.896 1593.288 74.655 135.063 83.477 169.168
sreedhar, minopt 30.243 1604.652 72.412 132.479 87.640 168.815
blocks with phiblocks, minopt 30.238 1586.074 73.743 131.738 83.035 168.120
briggs, constprop 32.258 1624.351 75.199 141.099 90.287 170.871
blocks with phiblocks, constprop 31.840 1594.278 74.804 135.212 83.553 168.666
sreedhar, constprop 30.239 1602.515 72.464 132.986 87.845 168.307
blocks with phiblocks, constprop 30.280 1584.467 73.668 131.763 83.100 167.878
briggs, copyprop 31.239 1588.906 75.013 137.346 90.959 170.515
blocks with phiblocks, copyprop 29.677 1576.702 74.823 135.548 86.708 167.168
sreedhar, copyprop 30.767 1628.212 73.239 132.130 87.611 167.768
blocks with phiblocks, copyprop 30.256 1614.013 73.800 130.421 87.535 168.588
briggs, exprprop 26.130 1447.844 61.498 116.241 71.840 142.977
blocks with phiblocks, exprprop 23.264 1432.357 58.157 114.093 66.190 139.425
sreedhar, exprprop 25.275 1426.318 58.645 112.249 74.461 143.048
blocks with phiblocks, exprprop 23.521 1414.849 56.426 110.253 73.537 138.073
briggs, maxopt 26.505 1488.478 59.165 116.418 73.335 146.379
blocks with phiblocks, maxopt 23.502 1471.699 57.467 114.315 66.698 138.673
sreedhar, maxopt 25.412 1417.429 58.690 111.429 77.792 142.961
blocks with phiblocks, maxopt 23.096 1402.712 55.723 111.169 73.610 141.012

Table 8.1: Execution times in seconds of all experiments.

51

52

Chapter 9

Conclusions

Compilers translate one representation of a software program into another.
Internally a compiler uses an Intermediate Representation (IR) for analysis
and manipulation of the program.
In this project two compilers are used. LLVM is an open-source compiler

popular amongst academic research projects [11, 10]. CoSy is a compiler-
framework build by ACE. For the research of this thesis a bridge was build
that maps the IR of LLVM in SSA form onto CoSy in normal form. Vari-
ous methods for the back-translation of SSA form exist, but the two main
methods of back-translation are the methods of Briggs[3] and Sreedhar[13].
The main isssue is how to translate phi functions, which merge control flow
streams, to normal form.
Briggs’ method emits copy instructions for all variables involved in the

phi function. Sreedhar’s method emits fewer copy instructions and reduces
the number of variables by coalescing. Since optimization is performed be-
fore before back-translation, abundant use of copy instructions may have
a negative impact on execution time. Sassa showed that Sreedhar gives a
faster result[12].
A novel modification is proposed to split edges by inserting phiblocks for

the methods of Sreedhar en Briggs. The modification is tested by imple-
menting the original and modified methods of Sreedhar and Brigs and use
them in the LLVM-CoSy bridge.
This allowed for answering the following questions:

• Can the back-translation methods of Briggs and Sreedhar undo op-
timizations that are performed before going out of SSA? (Yes.)

• What is the effect of placing instructions in phiblocks compared to the
conventional methods of Sreedhar and Briggs on the execution time of
the resulting code? (Faster results.)

53

• Previous research of Sassa showed that Sreedhar’s method is superior
to Briggs’ method. Is this also true when the phiblock modification is
applied? (Incidentally Briggs’ result becomes as good as Sreedhar’s,
on average Sreedhar’s results are still better.)

The benchmarks showed that the resulting IR of back-translating an op-
timized IR in SSA form with the methods of Briggs and Sreedhar is sub-
optimal. This is shown by the fact that optimizations such as propagation
after back-translation speed up the result on average with 18% even though
the same optimization is already done in-SSA.
The swap problem is used to show why edge splitting with phiblocks can

be beneficial. The benchmarks results show that the phiblock modification
of Briggs and Sreedhar speeds up results that are already optimized before
and after back-translation: execution time is reduced on average by 5% for
Brigg’s method and 3% for Sreedhar’s method. These are improvements
over a result that is already optimized with LLVM and with the set of post-
optimizations in CoSy.
Briggs’ algorithm is much simpler and less prone to mistakes in the imple-

mentation than the algorithm of Sreedhar. When phiblocks and post optim-
ization are used, on average the results of Sreedhar’s method are faster by
2% compared to Briggs’ result. For certain cases, however, by using phiblocks
and post optimization the difference between the results of the simple back-
translation method of Briggs are almost as good as the result of Sreedhar’s
method. In case of the SPEC gzip benchmark: when no post optimization
or phiblocks are used Sreedhar’s result is 10% faster than Briggs’s result but
by using post optimization and phiblock insertion the difference is reduced
to less than 1%.
Left for future research on this topic is the effect of phiblocks when more

limited architectures are targeted. Another interesting question is if a set
of optimization techniques exists that can nullify the difference between
Sreedhar and Briggs with an acceptable increase in compilation time.

54

Bibliography

[1] F.E. Allen. Control flow analysis. In ACM Sigplan Notices, volume 5, pages
1–19. ACM, 1970.

[2] Benoit Boissinot, Alain Darte, Fabrice Rastello, Benoit Dupont de Dinechin,
and Christophe Guillon. Revisiting out-of-ssa translation for correctness, code
quality and efficiency. In Proceedings of the 7th annual IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization, CGO ’09, pages
114–125, Washington, DC, USA, 2009. IEEE Computer Society.

[3] Preston Briggs, Keith D. Cooper, Timothy J. Harvey, and L. Taylor Simpson.
Practical improvements to the construction and destruction of static single
assignment form. Softw. Pract. Exper., 28:859–881, July 1998.

[4] D. Budgen. Software design. Addison Wesley, 2003.
[5] Zoran Budimlic, Keith D. Cooper, Timothy J. Harvey, Ken Kennedy,

Timothy S. Oberg, and Steven W. Reeves. Fast copy coalescing and live-
range identification. In In Proceedings of the ACM Sigplan Conference on
Programming Language Design and Implementation (PLDI-02, pages 25–32.
ACM Press, 2002.

[6] G. J. Chaitin. Register allocation & spilling via graph coloring. SIGPLAN
Not., 17:98–101, June 1982.

[7] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-
neth Zadeck. Efficiently computing static single assignment form and the
control dependence graph. ACM Trans. Program. Lang. Syst., 13:451–490,
October 1991.

[8] Sebastian Hack, Daniel Grund, and Gerhard Goos. Register allocation for
programs in ssa-form. In In Compiler Construction 2006, volume 3923 of
LNCS, pages 247–262. Springer Verlag, 2006.

[9] John L. Hennessy and David A. Patterson. Computer Architecture - A Quant-
itative Approach (4. ed.). Morgan Kaufmann, 2007.

[10] List of LLVM related publications. http://llvm.org/pubs/, Feb. 2011.
[11] List of LLVM users. http://llvm.org/users.html, Dec. 2010.
[12] Masataka Sassa and Masaki Kohama. Comparison and evaluation of back-

translation algorithms for static single assignment forms. Comput. Lang. Syst.
Struct., pages 173–195, July 2009.

[13] Vugranam C. Sreedhar, Roy Dz ching Ju, David M. Gillies, and Vatsa
Santhanam. Translating out of static single assignment form. In In Static
Analysis Symposium, Venezia, Italy, pages 194–210. Springer Verlag, 1999.

55

Index

Boissinot, 17
Boissinot problem cases, 18
Briggs, 13

Chaitin, 14
coalescing, when, 33
compexity, 37
conclusion, 53
copy propagation, 14
Cytron, 11

dynamic assignment, 5

edge splitting, 21
efficiency, 39
empirical data, absolute, 51
empirical data, to ratio, 46
exotic terminator problem, 17

interference, 14
Intermediate Representation, 4
IR, see Intermediate Representation

live out problem, 18
liveness, 14

normal form, 4

phi-function, 5
phiblock, 8
phiblocks, 21

register pressure, 33
reliability, 38

source block, 8
Sreedhar, 16
SSA, see Static Single Assignment

static assignment, 5
Static Single Assignment, 4
swap problem, 29

target block, 8
terminator, 18

value interference, 18

56

	Preface
	Introduction
	Background
	Compiler
	Normal Form
	Static Single Assignment
	Dynamic Assignment
	Branches and Phi-functions
	Special Properties of Phi Functions

	Block Names
	Why SSA is Used

	Methods of Back-translation
	Cytron's Method
	Briggs' Method
	Post Back-translation Coalescing
	Sreedhar's Method
	Boissinot's Improvements
	Exotic Terminator Problem
	Live Out Problem
	Improved Interference Check

	Proposal for Improvement
	Implementation
	Previous Work Mentioning Phi Blocks
	Conjectures on Performance
	Post Back-translation Optimizations

	Method of Evaluation
	Sassa's Evaluation
	Preliminary Comparison
	Empirical Data

	Method Used for this Study

	Case Study
	Swap Problem
	Result of Sreedhar's Method
	Result of Briggs' Method
	Effect of Phiblock Insertion
	Conclusion

	Less is More
	Conclusion

	Implementation
	Implemented for this Study
	Complexity
	Reliability
	Efficiency
	Testability

	Results
	Experiment Setup
	Benchmarked Testcases
	Optimization Schemes
	Method of Backtranslation

	Sreedhar, Briggs and Edge-Splitting
	Sreedhar versus Briggs
	The Effect of Optimizations

	Conclusions

