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Preface

This thesis is written from a strong personal motivation and a dedication to applying
science to solve real-world problems. Driven by difficulties and passionate about explain-
ing complex matters in inclusive terms, I chose to study Applied Mathematics with a
specialization in Discrete Mathematics and Optimization. During and after my Bachelor,
I contributed to several innovative projects and organizations focused on finding creative
solutions to initiate and realize the urgent transitions within today’s complex transport,
energy, waste and supply systems.
Among these experiences were the TU Delft Hyperloop Dream Team, an impact invest-
ment internship, and a Management of Innovation exchange program in Paris. These
projects strengthened my belief that the energy transition, affecting both public and pri-
vate sectors, industry, households, and individuals, can only be achieved collectively. My
earlier contributions in the energy domain include the development of a model to calculate
the greenhouse gas emission savings of clean molecules, based on the methodology of the
European Commission. Furthermore, I participated in a conference in Paris that brought
together policy makers and key stakeholders from the French and Dutch energy sectors
to discuss innovation, demand reduction, and education. The preparatory workshop on
the integration of values in climate and energy citizen assemblies greatly inspired me to
continue collaborating and seeking synergies to address our shared challenge.
During my time in Paris, I actively searched for a graduation project in the energy transi-
tion, as I consider it to be one of the most impactful applications in my field of expertise.
Through the Dutch Embassy in Paris, I came in contact with Energy Pool, a front-runner
in the valorization of flexibility, controlling and optimizing industrial sites, (islanded)
microgrids, prosumers and hybrid powerplants. I was instantly impressed by their port-
folio, experience, and expertise and it soon became clear that we share common values
and a mission to contribute to mitigating climate change. The product of this fruitful
collaboration is now in front of you.
I would like to thank Joshua Leduc, Nicolas Bergevin, and all my colleagues in the Soft-
ware Business Line at Energy Pool for their guidance, French lessons, and the welcoming
environment in Lyon. Their openness and support helped me greatly in my professional
and personal development. I am equally grateful for the supervision from the TU Delft,
I feel fortunate to have been supported by Leo van Iersel, my enthusiastic Professor in
Optimization, who trusted me and this project from the very beginning.
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Abstract

The increasing integration of Renewable Energy Sources (RES), rising global electricity
demand, and ongoing developments in power market structures collectively increase the
complexity of Energy Management Systems (EMS). The tight scheduling of interdepen-
dent decisions in a Rolling Horizon (RH) Mixed Integer Linear Programming (MILP)
environment requires efficient formulations to remain scalable and flexible to future in-
novations. This thesis investigates initialization strategies (warm starts) that leverage
previous optimal system configurations to reduce computational complexity and solution
time. Iterative cycles of variable selection, warm start execution, and problem reformu-
lation are evaluated across multiple scenarios. These scenarios vary in modeling horizon,
day-ahead price profiles, market engagement strategies, and environmental and system
conditions. Problem reformulations include adjustments in the treatment of violation de-
cision variables, linear reformulations, and the use of Benders decomposition. The results
demonstrate that successful warm start implementations can substantially reduce solution
times and provide valuable insights for further tightening problem formulations. Overall,
the study provides guidance on efficient formulations that support effective initialization
and enhance solver performance across a wide range of users and system configurations,
thereby contributing to more scalable and widely applicable energy optimization practices.

Keywords: Rolling Horizon (RH), Warm Start, Unit Commitment (UC), Mixed Integer
Linear Programming (MILP), Benders Decomposition
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1 Introduction

1.1 Relevance

1.1.1 Energy Management Systems and Initialization Strategies

The decarbonization of energy systems is one of the most pressing challenges of the twenty-
first century. To meet the internationally established Sustainable Development Goals
and the Paris Agreement, global warming needs to be mitigated. Energy Management
Systems (EMS) are software- and hardware based systems that monitor, control, and
optimize the generation, storage, and consumption of energy. Figure 1 shows a schematic
representation of an EMS.

Figure 1: Schematic representation of an Energy Management System (EMS) [1]

More efficient and advanced EMSs are needed as the transformation from conventional
energy sources such as coal and gas toward Renewable Energy Sources (RES) such as
solar, wind, and hydrogen takes place. This is due to the fact that the variable and
weather-dependent availability of RES makes it difficult to ensure the stability and relia-
bility of the power grid [84] [78] [28] [24].
This thesis provides a road map of strategies that works around the compounded complex-
ity of EMSs, by investigating initialization strategies in a Rolling Horizon (RH) energy
optimization context. The energy optimization problem is formulated as a Mixed Integer
Linear Program (MILP). In the MILP, the EMS is represented by decision variables and
constraints, and the optimization problem is formulated as an objective function that
minimizes the cost of the system. In the RH framework, the MILP has to be solved
repeatedly over short intervals, which is problematic in practice because the running time
of solvers grows exponentially with instance size. The main goal of this thesis is to present
opportunities to benefit from initialization strategies in various scenarios across problem
reformulations and algorithm designs to improve the scalability of the RHMILP approach.
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1.1.2 Stakeholders and Electricity Markets

The increasing global demand for sustainable energy is driving innovation in smart grids,
energy storage and scheduling, and demand-response flexibility solutions. The intermit-
tent behavior of RES, combined with increasing electricity demand, has led to the imple-
mentation of ancillary services to handle variability and prevent grid congestion. These
services involve many actors operating across various time frames, depending on system
needs. Key stakeholders include Transmission and Distribution System Operators (TSO,
DSO), prosumers, consumers, power exchanges, (islanded) microgrids, (hybrid) power
plants, and households. Together, they aim to guarantee transparency and security of
supply across all levels of operation, from resource to consumption [35] [56].
To predict and anticipate electricity demand and supply, developments in forecasting,
storage and decision-making methods unfold rapidly. Policy makers, grid operators and
major producers and consumers are committed to designing robust frameworks integrat-
ing economic, environmental, and social considerations [75]. On an international scale,
countries benefit from raw materials and interconnections, complementing one another
to reduce the risk of grid failures and congestion. Participation in wholesale markets is
encouraged, as it generates profits while simultaneously providing system stability. An
increasing number of participants enhances market liquidity, which improves transparency
and provides a clearer picture of available volumes for distribution, thereby facilitating
more accurate predictions of supply and demand [67][55][15].

1.1.3 Importance of Efficient Modeling

On a local industrial and generational level, the co-optimization of energy and reserves
is referred to as the Unit Commitment (UC) or dispatch problem. With the increasing
complexity and diversity of EMSs and flexibility market mechanisms, it is crucial to
integrate the assets both internally on-site and with the surrounding environment, while
responding in a timely manner to system events. The ensemble must therefore adhere to
timeseries, system constraints, and ambient conditions at all times.
A reactive and adaptive EMS can incorporate the latest developments and innovations in
the field, while also allowing for creative solutions fitted for their specific application. In
this way, financial and technical gains and losses can be controlled in response to evolving
conditions. EMSs typically involve batteries, generators, loads, converters, and the site as
a whole, and continuously update the target settings for each asset. It is crucial that trade-
offs are safe, realistic, smooth, and efficient. To limit losses and maximize gains while
protecting the system, decision-making needs to occur as close to real-time as possible.
An EMS is considered that optimizes at regular intervals over a Rolling Horizon (RH)
into the near future.
The cost of calculations is influenced by the quantity of both functionalities and data
points depending on the chosen modeling horizon, but also by the inherent complexity and
variety of UC and Dispatch optimization. The relevance of fast and efficient optimization
is therefore twofold: it enables EMSs to remain adaptive to ongoing developments and
environmental changes, while also integrating innovative solutions and contributing to
system stability [49][91].
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1.2 Motivation: Computational Limits

The more computationally expensive calculations in RH optimization become, the less
time remains to anticipate the next step. This issue is amplified by the growing number
and complexity of market mechanisms, which operate on overlapping time frames. In
such a setting, accurate knowledge system details, like storage levels and forecast quality,
is essential before placing bids and committing volumes. As the frequency of decision
updates increases in the RH environment, the benefits of repetition and tight control are
challenged by rising system complexity and computational cost. This complexity does
not only stem from the sheer scale of assets, services, and exceptions, but also from the
need to preserve a tractable MILP formulation. Avoiding nonlinearities often requires
the introduction of auxiliary variables, constraints, and reformulations, which expand the
problem size. Thus, as more physical enhancements and adaptive mechanisms are incor-
porated, the MILP grows denser and harder to solve within the available computational
budget and strict cycle deadlines [24].
A practical failure mode arises when the solver is still computing the previous optimization
at the moment the next RH cycle begins. Forecasts and time series then become desyn-
chronized from the computed setpoints, degrading the realized asset targets and control
quality. Operators are forced into a trade-off: either runtime is prioritized—allowing the
solver to continue until a desired solution quality is achieved—or solution quality is re-
laxed by accepting a larger optimality gap to meet the real-time cycle deadline [30].
Contemporary research explores ways to manage this tension, for example, selecting fore-
cast horizons that are long enough to produce effective setpoints without inflating data
volume, employing multiobjective formulations, or adopting multistage RH schemes to
partition problem scale [91][101][31]. Yet, maintaining timely and high-quality dispatch
without fragmenting the optimization, and thus without sacrificing adaptability, remains
a central challenge in today’s energy optimization landscape. In this setting, initializa-
tion strategies hold particular promise: By providing good starting points, they can offset
the compounded complexity introduced by both the growing scale of services and the
linearization of non-linear physical behaviors. This opens opportunities to reduce solve
times and latency without compromising solution quality.
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1.3 Thesis Contribution

1.3.1 Initialization Strategies

This thesis investigates initialization strategies for reducing the running times of energy
optimization problems while preserving solution quality. In this context, initialization
strategies use parts of previously obtained solutions as starting points for subsequent
Rolling Horizon (RH) runs, providing high-quality offsets for decision variables. This
phenomenon is referred to as a warm start. The RH environment is particularly suitable
for such approaches, as not all variables are expected to change significantly between
consecutive high-resolution runs. The effectiveness of the proposed strategies is system-
atically tested, analyzed, and repeated across representative environments and scenarios,
covering a wide range of system needs and configurations.

1.3.2 Reformulations and Algorithm Design

To extensively analyze the performance of initialization strategies, this work examines
reformulations of constraints and the removal of nonlinearities in MILP models, as well as
the influence of algorithmic choices in solver usage. The reformulations contain the dele-
tion of violation decision variables, and additions as well as reformulations of constraints.
The alorithmic design choices contain the investigation of a Benders Decomposition of
the optimization problem. These aspects are included because they contribute to the
compounded complexity of RH Unit Commitment and dispatch problems, and therefore
directly impact both runtime and solution quality.

1.3.3 Implementation

The analysis provides extensive information on the potential of initialization techniques
and related methods in practice. The findings are intended to inspire the adoption of suc-
cessful outcomes in compatible settings and to motivate further refinements of solution
approaches. Moreover, the increasing heterogeneity and complexity of EMSs highlights
the need for conditional decision-making, where time frames, initialization strategies,
constraint formulations, and algorithmic choices can be creatively combined to enhance
optimization performance.
Close-to-real-time solving not only provides financial benefits, but also improves robust-
ness and the quality of dispatch optimization. In addition, it enables the integration of
new functionalities, supporting ongoing innovation. Enhancements in system efficiency
and problem formulation also stimulate competition and market participation, thereby
contributing to the development of flexibility services and the stabilization of an increas-
ingly renewable energy system.

13



1.4 Thesis Structure

The remainder of this thesis is organized according to the following Sections:

• Literature Review reviews relevant research on initialization strategies, Rolling Hori-
zon optimization, stochastic programming, algorithms, and decomposition approaches
for EMS purposes and related fields.

• Energy Markets introduces the market design, system operators, and ancillary ser-
vices that provide context for the modeling work.

• Energy Management System Description describes the EMS setup, including as-
sets, variables, and constraints, and formulates the objective function minimizing
operational and market participation costs.

• warm start strategies applies warm start initialization first to violation variables in
a baseline scenario, and then extends the analysis across multiple scenarios to study
solver dynamics, variable sets, effort levels, and modeling horizons.

• Linearity and Reformulations analyzes the removal of nonlinearities and the impact
of constraint reformulations on solver behavior and evaluates the performance of
warm start strategies under these changes.

• Model Conversion and Benders Decomposition implements the model in Python’s
docplex, compares formulations with and without violations, and investigates Ben-
ders decomposition as an alternative approach.

• Conclusion and Discussion discusses contributions and challenges, and outlines di-
rections for future research.
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2 Literature Review

2.1 Drivers and Challengers of Renewable Energy Integration

The global transition towards a clean renewable energy system is led by issues of environ-
mental degradation, finite quantity and uneven distribution of fuels, as well as growing
energy demand [22]. Revolution is needed to secure affordable energy globally, tackle
climate-change related risks and elevate long-term economic growth. Specific goals and
guidelines, established internationally in the Sustainable Development Goals (SDG) and
the European Green Deal, among others, require the implementation of measures to elim-
inate or reduce the negative impact of human activity on the environment [83].
A key aspect of the energy transition is the replacement of non-renewable energy sources
such as coal and natural gas with Renewable Energy Sources (RES). The integration of
RES has a significant impact on the reliability and stability of the power grid, since their
output is inherently variable and weather-dependent. This variability presents challenges
in balancing supply and demand, maintaining frequency stability, and ensuring adequate
reserve margins. On our way to climate neutrality, the increase in the share of RES
in the electricity grid requires new means of securing and stocking energy due to the
intermittent production of RES [24]. Moreover, rapid urbanization, population growth,
and technological advancements cause a rise in demand for electricity, in cities as well as
in expanding suburban areas and more isolated areas. The existing power grid networks
are not equipped to meet the increasing demands of the 21st century and struggle to keep
up with the increasing load [35] [56].

2.2 Grid Balancing and Flexibility Services

The increasing penetration of RES and the growing electricity demand have led to im-
portant developments in the operation of the electricity grid. Flexibility services are
implemented to enable the electricity system to respond to variability and uncertainty in
supply and demand, and to prevent grid congestion. These services rely on flexible re-
sources such as generation units, energy storage systems, and controllable demand. The
operation and coordination of these resources involve multiple actors, including electric-
ity generators, Transmission System Operators (TSOs), Distribution System Operators
(DSOs), and consumers. Flexibility is activated over various time frames depending on
system needs [45]. Industrial loads can provide demand-side flexibility by adjusting their
power consumption in response to market signals or grid needs, such as temporarily re-
ducing or shifting production during peak demand periods or high prices. Storage systems
offer a solution to mitigate output power fluctuations, maintain frequency, and provide
voltage stability [19]. The usage of Battery Energy Storage Systems (BESS) for energy
arbitrage is evolving in the electric sector, driven by increasing participation in wholesale
markets. More competitive market structures contribute to grid stability, as a large num-
ber of price signals reflect real-time system conditions and resource availability, ensuring
an efficient balance between demand and supply [41] [15] [69]. Energy markets and their
participants are discussed in further detail in Section 3.
To locally provide reliable and efficient power, increasing self-consumption of RES is
emerging, turning consumers into prosumers using energy production systems. Surplus
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electricity is traded with grid companies, a concept that is known as Power To Grid
(P2G). This decentralized approach can lead to grid instability, increasing the number of
interactions and unpredictable fluctuations. The exchange of electricity among users and
the reduction of main grid dependency of Energy Communities consisting of Distributed
Energy Resources (DERs) rise as solutions to meet collective benefits. [39] Discovers the
role of prosumer energy communities in providing flexibility and grid balancing services in
alignment with EU goals. Microgrids (MG) are localized energy systems that can operate
independently or in conjunction with the main electrical grid [104]. Microgrids can be
seen as energy communities and consist of DERs, storage systems, and control systems.
The increasing complexity of energy distribution networks has implicated the develop-
ment of efficient and intelligent Energy Management Systems (EMS). The implementa-
tion of an EMS that integrates RES and operates flexibility services requires profound
decision making [94]. Optimization algorithms, modeling horizons, objective functions,
constraints, data pre-processing, and variable definition are to be considered. With the
increasing complexity of EMSs, scalability challenges arise in terms of the number of vari-
ables, multi-objectivity, differences in order magnitude of variables, computational time,
solution quality, robustness in case of erratic input parameters, and many other modeling
segments. Multiple best practices and recent trends are discussed, in energy systems as
well as other domains that face similar optimization challenges.

2.3 Rolling Horizon MILP optimization

Optimization methods aim to find the best available solution to a mathematical problem,
in which an objective function is minimized or maximized. The feasible solution set is
defined by constraints on the variables of the problem. In Linear Programming (LP),
both the objective function and the constraints must be linear. Mixed-Integer Linear
Programming (MILP) is a variant of LP where one or more variables are restricted to be
integer [33].
In order to implement an optimization method in an EMS, some parameters of the model
have to be estimated. For example power generation from intermittent RES and consumer
activity have uncertain natures, whereas system limits and day-ahead electricity prices
are known. In deterministic optimization methods, the uncertainty of the variables is
not taken into account, that is, the forecasts of the estimated values are assumed to be
perfect. In stochastic optimization methods, on the other hand, multiple scenarios are
generated in which the to be estimated parameters take different values [90].
An optimization problem is often formulated to find the best solution for a specific time
series. The length of this so-called modeling horizon is determinative for the compatibility
of computing resources and the running time of the model that represents your problem
[32] [74]. Rolling Horizon (RH) algorithms split the modeling horizon and operation
problem into multiple time slots and solve the corresponding subproblems in sequence.
This approach is typically adopted in complex operation problems that use forecasts for
uncertain input data and for large-scale optimization problems. In the energy domain,
rolling horizons have shown to be suitable for power system operation schedules for Unit
Commitment (UC) [79] [95], Combined heat and power (CHP) [24] and storage systems
[31][32].
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To satisfy the European qualification framework for high-efficiency cogeneration (CHP),
yearly-basis energy savings indexes need to be reported, that is, the modeling horizon
needs to be extended to a year. Normally, extending the modeling horizon implies in-
creasing the computational requirements of the model. A rolling horizon model either
overcomes the latter or decreases the computational requirements in case of an unchanged
modeling horizon. [23] presents a MILP for a Combined Cooling Heat Power (CCHP) en-
ergy system, minimizing operation and maintenance costs subject to system constraints.
An extension of this MILP applies a RH algorithm for a cogeneration (CHP) energy sys-
tem with time-variable loads, system limits, financial incentives, and ambient conditions.
Each subproblem takes into account information from past and future periods with aggre-
gated estimates from both typical weeks in the first phase and previous solutions of the
solver in the second phase of model testing. The use of previous solutions by the solver
is called a warm start strategy, which helps guide the search. The concept is described
in more detail in Section 2.4. The solution of the first phase of model testing is found 60
times faster than to optimize the whole year problem without division into weekly time
slots. The second phase even speeds up the optimization by a factor of nearly 2, 500,
which shows great potential for the implementation of warm start strategies. Notably,
the inclusion of heat storage in the energy system leads to an increase in running time;
nevertheless this can be mitigated by allowing a higher MILP gap [24]. To guarantee
computational tractability in multi-staged optimization, the problem can be solved for a
limited set of typical and extreme periods, which can be selected by a k-MILP clustering
model [102].
[31] increases self-consumption of RES and provides a more robust microgrid EMS by
executing a RH strategy with two different time periods. In the first stage of the strategy,
an optimization for the BESS settings is performed each 15 minutes over a modeling
horizon of 24 hours. The second stage RH of 48 hours follows the reference values from
the first optimization with a sampling time of 1 minute, allowing an accurate response
to load changes and reducing errors associated with load predictions. By integrating the
solution, the costs of drawing energy from the main grid are reduced by 45% per day,
increasing the independence and efficiency of the system.
The choice of the modeling horizon and forecast horizons of intermittent sources and
electricity prices affects the quality and computational time of the solution. After com-
parison with 24 and 48 hour periods, forecasting up to 36 hours in each subproblem is
found to guarantee effective dispatch scheduling of electricity generators and BESS for
multiple-day periods. Compared with Pareto search and Genetic Algorithm (GA), MILP
is the only algorithm that guarantees optimum identification in the case of increased
model complexity following increased horizons. MILP also reports the best performance
in terms of solution computation time [91].
An extension of the Rolling-Horizon Collision Resolution algortihm (exRHCR) solves
instances 39% faster than RHCR in a Lifelong Multi-Agent Path Finding (L-MAPF)
application where a team of agents visits multiple locations on a shared graph avoiding
collisions with each other. The approach employs an extension of Priority-Based Search
(exPBS), and allows to warm start the search with the priorities used in previous MAPF
instances.[62]. Search algorithms are commonly implemented in priority-based multi-
objective optimization problems [34] [85] [101].
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2.4 Warm Starts and Initialization Strategies

Warm starts use the data from a prior solution to provide initial values and therefore
avoid costly initialization between runs. Warm start initialization is a well-known concept
in Mixed Integer Linear Programming as often consecutive problem instances are not
strongly divergent and the B&B algorithm allows efficient reuse of its search tree and
the dual bounds of its leaf nodes. This way, convergence can be strongly accelerated.
Warm start algorithms are given an instance of the problem and a prediction or guess of
the solution based on the solution space of the problem. The method is commonly used
in applications where related instances of the same optimization problem are solved in
sequence. The runtime of the algorithm is bound by the distance between the predicted
solution and the true solution, so high quality predictions can strongly improve algorithm
run time [81].
Unit commitment (UC) is one of the biggest optimization challenges in energy manage-
ment, since switching between generators, dispatched power depending on the (predicted)
demand and availability of renewable energy, and electricity-market participation, all have
to be optimized simultaneously. A Dantzig-Wolfe decomposition strategy can break the
UC problem down by generators. The reformulated decomposed problem can be solved
with a column generation procedure that can be seen as the dual of a cutting plane
approach. A warm started column generation procedure uses a pre-trained model to
generate initial dual variables. Numerical experiments demonstrate that solving a UC
problem with decomposition is always faster than solving it without decomposition using
IBM ILOG CPLEX. Warm starting the column generation procedure reduces the number
of iterations and computational time of the solution [82]. [27] presents a MILP formulation
for the UC problem of thermal assets requiring a single set of binary variables, each asso-
ciated with one unit per period. This is a significantly lower number of binary variables
compared with other MILP formulations and therefore proposes an efficient framework
reducing modeling complexity.

2.5 Model predictive control (MPC)

Model Predictive Control (MPC) is a model-based optimization method that contains
three classical steps: prediction of evolution of the system, optimization at each sampling
time and control by means of a rolling time horizon policy. MPC can be seen as a form
of control in which the current control action is obtained by solving at each sampling
instant a finite horizon open-loop optimal control problem. The technique is capable of
considering state- and input constraints in the control of linear, nonlinear and uncertain
systems [59][52][51]. The approach overcomes the shortcomings of static optimization
problems by using disturbance models and a receding horizon [92]. In MPC we expect
consecutive instances to be nearly identical and embrace the idea that if we are able to
solve trajectory optimization problems quickly enough we can replan the future of the
system at each sampling time and achieve a reactive behavior [58]. Advances in MPC
allow the inclusion of discrete decisions in many MPC optimization problems [60].
To include MPC in a real-time system, it is crucial to know the worst-case iterations and
size of the Branch and Bound (B&B) tree of the MILP solver, since the MPC requires a
solution at each sampling time [80]. The B&B method relies on solving convex relaxations
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of the problem in a binary search tree to approach the solution to the MILP. Each node
corresponds to a convex relation that either contains relaxations of the binary constraints
or not. The idea of the method is to use the result from the relaxations to prune parts
of the search tree before explicit exploration. Nodes are cut in one or multiple of the
following cases:

• infeasibility of the relaxation

• the optimal solution of the relaxation is worse than the best known integer solution
so far and/or

• the solution to the relaxation is integer infeasible

Many optimization solvers like ILOG’s CPLEX use the B&B algorithm to solve MILP
optimization problems [65]. The algorithm terminates and delivers a solution that is
globally optimal. Most of the B&B schemes make use of a warm start within a single
B&B solve, where the general approach is to start each B&B search from the leaves of the
previous optimization. [58] introduces a warm start procedure for MPC by partly shifting
the leaves of the B&B of the previous tree in time and using duality to obtain cost limits
for the new subproblems. Properly shifted and combined with feasibility arguments this
approach greatly outperforms approaches that solve optimization problems from scratch.
MPC appears suitable in microgrid operation planning in order to cost-efficiently manage
its energy resources. [65] solves a microgrid optimization problem by defining a MPC
problem that uses the cost function associated to the MILP that describes the system
containing dispatchable- and storage units, (non)controllable loads and RESs. The ap-
proach assumes perfect knowledge of the microgrid state and RES production and embeds
inevitable forecast errors in an MPC framework. The method shows great cost- and de-
manded power reductions while maintaining an effective trade-off between computational
time and solution quality. Furthermore, approaches that optimize MILPs using MPC are
used for District Heating Power Plants (DHPP), thermal energy storage (TES) and CHP
plants [92].
Solving Hybrid MPC with both continuous and discrete variables can take a long time
due to the offline computation of discontinuous variables for MPC as a consequence of
the combinatorial complexity. Generalized Benders Decomposition (GBD) strongly ac-
celerates Hybrid MPC by separating the problem into a master problem which solves the
so-called complicating variables and a subproblem which solves the rest [53]. The com-
plicating are identified such that when those would be fixed, the problem is easy to solve;
In MILP applications these are often the discrete variables (integers and booleans). The
strategy can be seen as Danzig-Wolfe decomposition applied to the dual.
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2.6 Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) emerges in the energy landscape and field of micro-
grid systems due to its applicability, quick convergence time, and high performance [56].
PSO is a heuristic programming approach inspired by the choreography of a bird flock
where particles decide their optimal position continuously during flight. The approach can
be seen as a distributed behavior algorithm that manages and coordinates agents spread
across a system. The fast convergence compared to traditional evolutionary algorithms
is due to the introduction of the use of flying potential solutions through hyperspace.
PSO also allows individuals to learn from their past experiences, whereas other evolu-
tionary algorithms tend to focus only on the current population. The short running time
for single-objective optimization shows potential for multi-objectivity. Multi Objective
Particle Swarm Optimization (MOPSO) is considered for sizing hybrid renewable energy
systems with multiple storage technologies [21]. The method discusses multiple genetic
algorithms for Hybrid Energy Storage Systems.
Genetic algorithms (GA) are stochastic global search and are based on heuristic methods.
GA are bio-inspired and known to be robust in multi-objective applications [54]. PSO
and GA are also considered in the design optimization of Combined Cooling Heating
and Power (CCHP) systems. [73] introduces a Multi-Objective Chaos Game Optimiza-
tion (MOCGO) two-layer MILP algorithm that also couples RES, unlike previous PSO
techniques. Convergence behavior of the MOCGO again shows efficacy in optimizing
multi-objective problems when convergence to the Pareto front is observed when increas-
ing the number of algortihm iterations. The method distinguishes economic, energy and
environmental performance, which underlines the conflicts of interest in multi-objective
EMS optimization. Pareto solutions are often used in combination with GA and PSO in
problems with a multi-objective nature [54]. Pareto ranking schemes can be used to ex-
tend a PSO approach to multi-objectivity where the updated memory of each individual
corresponds to an objective function value. The production of hypercubes to divide the
explored space and the identification of leaders that guide the search appear to be suc-
cessful and faster compared to other genetic and evolutionary algorithms [29]. Another
double layer optimization of GA and MILP provides robustness for erratic input data
considering uncertainties of electricity demand and production of intermittent sources.
The model optimizes profit after the participation of a MG on the wholesale market [72].
PSO is also examined in the optimization of microgrid operations in island mode. To-
gether with a dynamic adjustment algorithm, PSO sets charge limits of the batteries by
the diesel generator and determines the optimal size of the PV fields and battery capacity.
The dependence of the diesel generators is minimized, reducing over all production costs
[104].
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2.7 Reinforcement Learning

A Reinforcement Learning (RL) strategy to minimize energy optimizes the performance
of a Central Processing Unit (CPU) through Voltage Frequency Scaling (VFS) in three
phases:

• A chosen predictor is used to identify the Q-value of the future system state, using
previous observed CPU workloads, providing a predicted CPU workload

• Based on the current system state and informed by Q- values, appropriate VFS
control actions are explored to meet performance requirements

• The state-action relationships are exploited. In case of performance offset caused
by mispredictions, the RL algorithms learns. The offset is minimized through the
action rewarding mechanism that considers both energy efficiency and performance.

The case study shows that RL is a powerful tool in systems with erratic future states
and that it is capable of learning from its environment in order to guarantee performance
efficiently [77].
Reinforcement Learning (RL) is integrated into an existing MPC framework (see Section
2.5) to enhance adaptability and reduce the engineering effort required for controller
implementation [18]. The goal of the proposed RL-MPC algorithm is to learn from the
environment while satisfying constraints and this is done by effectively combining the
machine learning and control communities. The solution method of MPC takes the union
of estimated- states and disturbances as input and the objective function is inferred every
control step. The value function of RL is used to shorten the non-linear program from
MPC and to enable learning. In the value based approach of RL, the optimal action is
derived from a specific state and from there the policy based approach of RL parametrizes
a policy to map states into action. [103] shows an application of a RL strategy for a multi-
objective distributed manufacturing optimization problem where energy consumption and
assembly completion time are minimized. In particular, the feedback-based Q-learning
method effectively identifies rewards for potential future actions, and the next action with
optimal return is chosen accordingly. RL is combined with a Brainstorm Optimization
(BSO) algorithm: a swarm intelligence algorithm that applies clustering to speed up
convergence. An alternative clustering method than the standard k-means clustering
mechanism in BSO is chosen to reduce computational complexity and save evaluation
time.
[79] shows the successful result of the implementation of Reinforcement Learning (RL)
in a Rolling Horizon Unit Commitment (RHUC) optimization. RL methods are chosen
to solve optimization problems because of their ability to reduce computational time and
improve performance. Given the capacity of RL methods to find optima in unknown
environments, the methods are specifically contemporary relevant for power systems in-
tegrating an increasing amount of uncertainties.
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2.8 Conclusion and Future Research

The reviewed literature outlines a diverse and promising landscape of methods for man-
aging the increasing complexity of modern Energy Management Systems (EMS). Key
technical challenges arise from the variability and uncertainty of RES, the rise of decen-
tralized and remote generation, and the coordination required among a growing number
of stakeholders in the energy sector. These include grid operators, policy makers, aggre-
gators, and prosumers, each with distinct responsibilities, constraints, and optimization
objectives. This underlines the need for EMS solutions that are not only robust and scal-
able, but also capable of balancing multiple objectives and responding flexibly to diverse
system needs.
MILP-based optimization, applied within a rolling horizon framework, remains a central
technique for solving operational planning problems such as Unit Commitment (UC).
Model Predictive Control enhances this approach by embedding short-term reactivity,
while metaheuristics such as PSO and learning-based methods like Reinforcement Learn-
ing contribute to adaptability and resilience in non-convex or data-rich settings.
A particularly relevant focus across studies is the use of warm start strategies: methods
that leverage information from previous optimization runs to accelerate convergence in
future iterations. These strategies show strong potential in improving solver performance,
especially in EMS contexts with high temporal resolution or frequent re-optimization.
However, the current body of literature lacks a structured understanding of when and
how warm starts are most effective, particularly in the case of the Unit Commitment
problem, where solution times remain a bottleneck for large-scale and high-resolution
EMS deployment.
Three key factors affecting warm start performance remain underexplored:

• The length and resolution of the (rolling) optimization horizon appear to have a
significant, but poorly quantified, impact on warm start effectiveness. The trade-off
between warm start benefit and forecast accuracy degradation over longer horizons
remains insufficiently studied.

• Although combinations of warm starts with decomposition, MPC, or metaheuristics
are occasionally proposed, there is no systematic evaluation of hybrid strategies or
guidance on how to tune their integration for specific EMS applications.

• Most studies rely on a single commercial solver (e.g., CPLEX, Gurobi), without
comparative analysis of how warm start strategies interact with different solver
heuristics, presolve routines, and node selection policies.

A unified framework that maps the interaction between warm start techniques, solver
architecture, horizon configuration, and auxiliary heuristics in EMS problems, particularly
for UC, will strongly improve both academic insight and practical deployment. This
framework applied to an integrated energy system will be essential to meet the operational
demands of the energy transition within the set 2030 and 2050 timelines.
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3 Energy Markets

The energy market was liberated in the 1990s with the intention of securing supply by
efficiently organizing the provision of electricity and gas by introducing regulated compet-
itive forces [67]. To maintain the balance of demand and supply, electricity is traded on
Power Exchanges, like European Energy Exchange (EEX) in Europe [55][15]. Members
submit orders for buying and/ or selling power that reflect supply and demand for a cer-
tain market area at that given moment in time. Power Exchanges are major contributors
to transparent electricity flow across borders. Multiple responsibility schemes considering
key actors, market participants, and flexibility solutions are presented.

3.1 Shared Responsibilities between TSOs and DSOs

The rise of Distributed Energy Resources (DERs) including RES generation, demand-side
response, electric vehicles (EVs) and batteries (BES) have motivated the development of
agents procuring flexibility services for a reliable and cost-efficient power system. It is a
TSO’s responsibility to respond to unexpected demand, meet transmission demand, re-
duce frequency fluctuations, and prevent power cuts and network congestion on a national
level. Distributed System Operators (DSOs) seek alternatives that can follow the high
rate of DER penetration on a regional level as local grid operator [88]. The problem of op-
timal TSO-DSO coordination through market-based mechanisms remains unsolved. [93]
considers the following responsibility mechanism: DSOs for local congestion management,
TSO for system-wide reserve deployment and retailers for hedging against network usage
tariffs based upon peak-load pricing. [43] presents multiple different models representing
potential responsibility relations between TSOs, DSOs and DERs.

Figure 2: DSO managed model presented in [43]

In a distributed energy system, the flexibility of the market is essential for the increasing
number of producers, consumers and prosumers of greatly varying scales [87]. In the
European context, energy supply and system balancing is guaranteed through wholesale
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energy markets at various timeframes. Every market participant is associated with a
Balance Responsible Party (BRP) that makes up for under-/overproduction of the par-
ticipant. TSOs rely on BRPs to pre-balance their system. The authors of [88] work
out the analogy between DSOs and BRP as middle players between TSOs and DERs
or market participants. They pose a model that makes DSOs financially responsible for
imbalance, like BRPs, by submitting price-taking offers that represent the net outcome
of DSO scheduled actions at the distribution level. This is done with the goal to increase
the market coordination and promote wider participation of DERs in both the balancing
market and the proposed DSO market.

3.2 Day-Ahead and Intraday

As mentioned before, flexibility services operate over various time frames, each corre-
sponding to different markets. The Day-Ahead (DA) market, like EPEX SPOT in the
case of the EEX group, operates daily through a blind auction that trades all hours of
the following day. Orders are logged in by the market participants before the order book
closes at 12:00 CET (see Figure 6). There are two types of orders that represent the
volumes participants are willing to buy or sell for the lowest to highest price ticks com-
ing out of the auction. Aggregated demand- and supply curves are established based on
buy- and sell- orders respectively for each hour of the following day. The DA market is a
wholesale market where the marginal production cost of the last accepted unit determines
the electricity price, according to a merit order (see Figure 3). The matching algorithm
of the Power Exchange determines the legally binding agreements to purchase or sell for
the Market Clearing Price (MCP) of the given hour (see Figure 4). The market is cleared
and settled every day by a clearing house for energy and commodity products, ECC in
the case of the EPEX SPOT market. ECC conducts all financial settlement and connects
multiple European markets, by maintaining relations with banks. The clearing house
manages transactional risks by collateral payment mechanisms for participants.

Figure 3: The merit order pricing of the Day-Ahead mar-
ket [2]

Figure 4: MCP and MCV as
intersection of demand- and
supply curves for a specific
hour [15]

With the incorporation of RES, power markets need to be able to accomodate short-term
forecasts and quick turn transactions. In order to make changes to trading contracts in
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the case of shifting weather conditions or other unforeseen events, the day ahead markets
are complemented by intraday and balancing markets. Where Day-Ahead Markets trades
∼ 24 hours before delivery, Intraday Markets allow purchasing and selling of electricity
throughout the whole day, up to minutes before the physical delivery. Members use
the Intraday Market to make last minute adjustments and change their market position
close to real-time. Trading on the intraday market allows for energy arbitrage for assets,
purchasing electricity and charge when prices are low and discharge/produce during peak
demand hours [47] [90].

3.3 Balancing services

The final balancing of the demand and supply is achieved through balancing markets, that
are controlled by TSOs [55] [26]. There exist multiple ancillary services to maintain a sta-
ble frequency of 50 Hz of the European electricity grid. Frequency ancillary services in
Europe are divided into four main reserve categories. Short-term deviations are balanced
through the primary reserve, also known as the Flexibility Containment Reserve (FCR)
that intervenes within seconds. FCR providers must be able to ramp up/down their gen-
eration/consumption within 30 seconds after a disturbance in supply and demand. FCR
is automatically activated and TSOs provide financial compensations for offered amounts
of flexible power by FCR market participants [68]. Frequency Restoration Reserve (FRR)
is activated either automatically (aFRR) or manually (mFRR) and restores the frequency
to its nominal value after successful stabilization by FCR. Furthermore, a TSO can use
Replacement Rerserve (RR) to free activated capacities in mFRR. The automatically ac-
tivated FCR and aFRR have a fast response and short but frequent activation events,
whereas the manually activated mFRR and RR have a slow response and longer but less
frequent activation events. In accordance with the response time of the reserve services
between the overall system imbalance and the engagement in frequency control, aFRR
and mFRR are secondary and tertiary reserve respectively [66] [47] (see Figure 5).

3.4 Capacity- and Energy Market

Reserve markets are organized in two stages, referred to as the market for reservation of
the balancing capacity (unit currency in EUR/MW) firstly, and the market for activation
of the balancing energy (unit currency EUR/MWh) secondly (see Figure 6). FCR does
not have a balancing energy market (BEM), but only a balancing capacity market (BCM).
FCR is activated proportionally among all accepted capacity bids. For aFRR, mFRR and
RR holds that participants who are cleared in the balancing capacity stage must submit
their offers in the balancing energy state at a desired price.

3.5 Participation in Flexibility Services

To participate in flexibility services, assets on energy sites need to work together in so-
called pools to offer the required capacities at the required moment to the market. If we
examine aFRR participation restrictions in the Netherlands, an engagement of at least
24 hours is required to place bids. The ramp rates of CHP assets are not fast enough
for aFRR response time of 30 seconds (see Section 3.3), and the capacity of batteries is
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Figure 5: Ancillary services ordered by activation time [3]

Figure 6: Electricity market timeline presented in [50]
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not sufficient to deliver 24 hours, as shown in Figure 7. The pool benefits from the fast
response time of batteries to deliver FCR and first phase aFRR, and the sustained output
capacity of CHP assets for the long term engagement.

Figure 7: Engagement requirements of Dutch Balancing markets [4]
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4 Energy Management System Description

To control a set of energy assets efficiently, a smart integrated system is required. An
Energy Management System (EMS) optimizes the ensemble, adhering to timeseries, sys-
tem constraints and ambiant conditions. This section describes the optimization problem,
formulated as a MILP with a Rolling Modeling Horizon (Section 2.3). System details and
a mathematical formulation are provided.

4.1 Input Data

To describe energy sites, assets a ∈ A are classified by the following types, where A
represents the set of all assets on the controlled site.

∀a ∈ A : a =



SITE if a represents the whole site,

LOAD if a consumes electricity,

GENERATOR if a produces electricity,

STORAGE if a stores electricity,

CONVERTER if a converts (other inputs to) electricity,

INTERMITTENT if a produces electricity from a RES.

(1)

To contribute to maintaining grid stability and generate extra profits, assets can be con-
nected to ancillary services (Section 2.2). The EMS simulates asset operation and revenue
potential based on system parameters. Parameters represent system characteristics and
remain constant during simulation. They are hard coded in the model describing the
optimization problem. Examples of parameters are modeling horizons, efficiency rates,
state-of-charge (SOC) limits, operational costs, consumption- and production forecasts,
electricity market engagements, wheather- and electricity forecasts, and heat congestion
details.
Considering electricity market engagement, positive engagement means purchase and neg-
ative engagement means sale. Imbalances occur in the case that an asset was committed,
or engaged, in energy markets (Section 3), and can somehow not follow the agreed trans-
action. Positive imbalance (or being long) means that there is less energy consumed
than purchased, and/or there is more energy produced than sold. In the case of a neg-
ative imbalance (or being short), there is more energy consumed than purchased and/or
less energy produced than sold. The classification of electricity markets is presented in
Equation 2.

∀f ∈ F : f =



Long Term if f is engaged in the long term aggregated electricity market,

Day Ahead if f is engaged in the Day Ahead electricity market,

Intraday if f is engaged in the Intraday electricity market,

FCR if f is engaged in the FCR balancing electricity market,

aFRR if f is engaged in the aFRR balancing electricity market,

mFRR if f is engaged in the mFRR balancing electricity market.

(2)
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4.2 Problem Statement

A Mixed Integer Linear Program (MILP) to solve an optimization problem consists of an
objective function and constraints. In order to formulate the objective function, decision
variables are introduced.

4.2.1 Decision Variables

The decision variables are the variables the solver seeks to determine in order to optimize
the objective function while satisfying the given constraints. Decision variables can either
be boolean, integer, or continuous, depending on the possible values they can take at the
given decision step t ∈ T . T represents the set of decision steps of equal length, covering
the modeling horizon, as discussed in Sections 1 and 2.3. Boolean variables xt are also
referred to as flags, indicating whether a certain condition is met over decision step t.

∀t ∈ T : xt =

{
1 if the condition is satisfied,

0 otherwise.
(3)

Integer variables yt at decision step t ∈ T are defined as follows

∀t ∈ T, yt ∈ Z (4)

Continuous variables or floats zt at decision step t ∈ T are defined as follows

∀t ∈ T, zt ∈

{
R+ if the variable only takes positive values,

R otherwise.
(5)

When developing an objective function that translates the intensions of the optimization,
the problem is formulated as a minimization problem. The decision variables represent
costs that describe system needs. These costs stand for operational costs, trading costs and
violation costs. Operational costs stand for start-up costs, (dis)charge costs, curtailment
costs (in case an intermittent generation asset is forced to reduce output), and electricity
costs. Trading costs represent DA- FCR- and aFRR- trading network costs, see Section 3
for more details on energy trading- and market concepts. Violation costs are the category
of imbalance costs, physical violations, reserve violation costs, and artificial penalty costs.
Imbalance costs arise in the case that there is a difference between real grid exchanges
and electricity market engagements. Physical violation costs represent the exceeding of
physical limits of the system. Reserve violation costs are penalties for failing to deliver
contracted reserve capacities. As discussed in Section 1, constraints are formulated with
decision variables to translate the characteristics and limits of the system. To include
customized preferences, artificial penalty costs are introduced to hierarchy constraints
based on importance or to encourage certain solver behavior. Section 5.3 treats the
usefulness and application of violation decision variables in more detail.
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4.2.2 Objective Function and Constraints

The mathematical formulation of the optimization problem is presented in equation 6 and
Table 1 provides descriptions of the used variables. The physical balance of the system
is preserved with power- and heat balance constraints (6d, 6d). The market engagement
is controlled by imbalance- and certification constraints (6e, 6g), and it is ensured that
if an asset participates in an electricity market, it will not inject power into the system
(6f). The latter will be explained in further detail in Section 5.2.
As explained in Section 4.2.1, decision variables describe the system and are combined
such that they represent costs that are minimized in the objective. In the objective func-
tion (6a), a generalized notation for the costs is used, e.g. x(a,t)i represents one of the m
costs that are related to an asset a ∈ A at decision step t ∈ T , for some i ∈ {1, ...,m}.
Likewise, w(a,f,t)k represents one of the l costs related to an asset a ∈ A that can be used
to participate in electricity market f ∈ F at decision step t ∈ T , for some k ∈ {1, ..., l}.
Cost variables are expressed in currency units and Engagement-, Imbalance, Heat- and
Power variables are expressed in kW . Model 6 presents a selection of system constraints in
order to maintain a global overview of the most relevant functionalities considered in this
research. The omitted constraints include import and generation limits for power, con-
sumption and injection limits for heat, network and heat congestion constraints, bounds
on the minimum and maximum number of consecutive decision steps for asset operation,
grid operation mode constraints, non-linear variable cost segments for generators, charge
and discharge rate constraints for storage assets, and SOC bounds that account for the
minimum storage level required to initiate engagement periods.
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minimize
∑
t∈T

∑
a∈A

x(a,t)1 + ...+ x(a,t)m + ya + zt1 + ...+ ztn +
∑
f∈F

w(a,f,t)1 + ...+ w(a,f,t)l

(6a)

subject to ∀t ∈ T, ∀f ∈ F, ∀a ∈ A (6b)∑
a∈Ap

PowerOuta,t + Et =
∑
a∈Ac

PowerIna,t − PowerDeficitt + PowerExcesst

(6c)∑
a∈Bp

HeatOuta,t =
∑
a∈Bc

Heatina,t − HeatDeficitt + HeatExcesst (6d)

Et =
∑
a∈A

Engagementa,f,t − Imbalancet (6e)

PowerOuta,t ≤ (1− EngagementF laga,f,t) ∗MaxPowerOuta,t (6f)∑
t∈T

Engagementa,f,t ≤ CertifiedPowera,f (6g)

PowerOuta,t ∈ R ∀a ∈ Ac (6h)

{Et, Imbalancet} ⊆ R (6i)

PowerIna,t ∈ R ∀a ∈ Ap (6j)

HeatOuta,t ∈ R ∀a ∈ Bc (6k)

HeatIna,t ∈ R ∀a ∈ Bp (6l)

{PowerDeficitt, PowerExcesst, HeatDeficitt, HeatExcesst} ⊂ R≥0

(6m)

Engagementa,f,t ∈ R (6n)

EngagementF laga,f,t ∈ {0, 1} (6o)

MaxPowerOuta,t ∈ R (6p)

CertifiedPowera,f ∈ R (6q)
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Notation Description
Set
A set of assets on site
T set of decision steps in the optimization window
F set of electricity markets
Ac set of flexible and non-flexible load units and converter assets consuming power, Ac ⊂ A
Ap set of (intermittent) dispatchable generators and storage assets producing power, Ap ⊂ A
Bc set of non-flexible load units consuming heat, Bc ⊂ A
Bp set of dispatchable generators, storage assets and converter assets producing heat, Bp ⊂ A
Decision variables
x(a,t)i costs x for asset a ∈ A at decision step t ∈ T , i = 1...m
ya costs y for asset a ∈ A
ztj costs z at decision step t ∈ T , j = 1...n
w(a,f,t)k costs w for asset a ∈ A and electricity market f ∈ F at decision step t ∈ T , k = 1...l
PowerOuta,t Power produced by asset a ∈ Ap at decision step t ∈ T
PowerIna,t Power consumed by asset a ∈ Ac at decision step t ∈ T
Et Power imported from the main grid at decision step t ∈ T
PowerDeficitt Average power deficit over decision step t ∈ T
PowerExcesst Average power excess over decision step t ∈ T
HeatIna,t Heat consumed by asset a ∈ Bc at decision step t ∈ T
HeatOuta,t Heat produced by asset a ∈ Bp at decision step t ∈ T
HeatDeficitt Average heat deficit over decision step t ∈ T
HeatExcesst Average heat excess over decision step t ∈ T
Imbalancet Difference between real grid exchanges and market engagements at decision step t ∈ T
EngagementF laga,f,t Flag indicating if asset a ∈ A is engaged (1) on electricity market f ∈ F at decision step t ∈ T or not (0)
Input parameters
m number of cost variables that are indexed over a ∈ A, t ∈ T
n number of cost variables that are indexed over t ∈ T
l number of cost variables that are indexed over a ∈ A, f ∈ F, t ∈ T
Engagementa,f,t Total engagement of asset a ∈ A on electricity market f ∈ F at decision step t ∈ T
MaxPowerOuta,t Maximum power produced by asset a ∈ Ap at decision step t ∈ T
CertifiedPowera,f Maximum engagement certified of asset a ∈ A on electricity market f ∈ F over the optimization window

Table 1: Notation and Description of Elements in Model 6
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5 Warm Start Strategies

As discussed in Section 2.4, using warm starts are an appropriate way to efficiently model
energy problems. For the EMS described in Section 4, we discuss multiple configurations
of warm starts for numerous problem instances. The goal of a warm start is to efficiently
use previous solutions as an input for a next optimization, resulting in a reduced running
time.

5.1 MIP Start Configurations in CPLEX

IBM ILOG CPLEX Optimization Studio offers diverse built-in warm start strategies
that help CPLEX find an initial solution [5]. We discover multiple configurations of
AddMIPStart and ReadMIPStart. AddMIPStart helps CPLEX using an initial solution
to find the optimal solution faster and is suitable for multi-staged energy management
applications. The built-in function allows you to assign values to decision variables. The
values can be derived from earlier feasible solutions, but do not have to be [63][6]. A
combination of readMIPStart and writeMIPStart offers another environment to apply
warm start strategies in CPLEX using an mst file format [7] and shows great potential for
MILP scheduling optimization problems [76][8][9]. Applying the writeMIPStart function,
if not specified otherwise, all solutions of the discrete decision variables are stored in an
mst file. For writeLevel = 1, all decision variables of the current solution are stored,
including the continuous ones.
As discussed in section 2.5, CPLEX applies a branch and bound algorithm to arrive
at optimal solutions. Facet defining inequalities in the problem formulation, together
with other combinatorial and mixed-integer inequalities, are used as cutting planes [44].
The incorporation of cutting planes enhances the B&B algorithm, and the hybrid result
is referred to as the Branch and Cut (B&C) method. CPLEX processes the data of
provided MIP starts before launching B&C during an optimization. The best of the
potential solutions defined by the MIP Starts is fed to the algorithm as an incumbent
solution, strongly reducing the size of B&C trees.
You can provide CPLEX with multiple MIPStarts and specify the way they are treated.
CPLEX decides how to construct starting points from the supplied combinations of dis-
crete and continuous variables and their assigned values, combined with the specified
Effort Level. The Effort level of the supplied MIPStarts for the current problem can be
specified individually and their implications can be found in Table 2. In case multiple
MIPStarts are applied, CPLEX treats the first MIPStarts with effort level 4, and the
others with effort level 1. In the mst file format, for each provided solution, the Effort
level can be specified individually.
In order to perform operations on decision variables before solving the model, model
needs to be defined and created in a separate file. To this end, we consider an orchestra-
tion configuration that calls the model from this file, loads MIPstarts and consequently
solves it. Although warm start strategies can significantly accelerate convergence, re-
peated applications can cause computational overhead. It is therefore crucial to balance
informativeness and conciseness, providing the algorithm with effective initial guidance
without overwhelming it with excessive or low-quality starting points.
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Level Effect
0 AUTO: Lets CPLEX choose level 1-5 automatically.
1 Checks feasibility of the corresponding MIP start.

Values for all variables in the problem, both discrete and continuous need to be specified.
If any values are missing, CPLEX does not process this MIP start.

2 Solves the fixed LP problem specified by the MIP start.
Values for all discrete variables need to be provided for this effort level.
If values for any discrete variables are missing, CPLEX does not process the MIP start

3 Solves a subMIP.
The value of at least one discrete variable at this effort level needs to be specified.

4 Attempts to repair the MIP start if it is infeasible, according to the parameter that sets
the number of attempts to repair infeasible MIP start.
The value of at least one discrete variable at this effort level needs to be specified, too.

5 Does not delay processing to perform the usual checks. CPLEX checks only whether
the MIP start is a complete solution;
if the MIP start is not a complete solution, CPLEX rejects it.
If the MIP start is a complete solution, CPLEX performs no further checks. At this level,
CPLEX does not delay processing to check whether any constraints in the MIP start were
designated as lazy constraints in the model, for example.
If the solution defined by the MIP start is infeasible, behavior is undefined,
as a consequence of this lack of checking

Table 2: MIPStart Effort Levels and their effect [5]

5.2 Nominal Scenario Description

An appropriate nominal case that could serve as baseline for run time experiments is
chosen to be an optimization of the Energy Management System described in Section 4
that takes approximately 7 minutes to converge. This is considered to be a manageable
duration, on which the impact of improvement will be clearly visible. The chosen baseline
scenario is the following: An increased modeling horizon (See section 2.3) of 48 hours is
chosen, enlarging the input data set (See section 4.1). This results in a greater number of
forecast values to be handled, a larger feasible solution set, and an increased computational
complexity. The standard configuration of the input data of our baseline problem instance
contains aFRR engagements. The market engagement blocks energy generation from the
assets that are capable of providing aFRR service. This constraint prevents these assets
from producing as discussed in Section 4, precisely in constraint 6f. aFRR engagements
are thus removed from the scenario to bring in degrees of freedom to the optimization,
giving the model the option to discover power production for these assets. This enlarges
the feasible region by reducing constraint tightness, making convergence to the optimal
solution more difficult. The difference is shown in Table 3, where the engagement of aFRR
speeds up optimization by 47.73%.

Baseline Running time: 413.50 s

Configuration Difference in Running Time (%)
Scenario with aFRR engagements −47.73

Table 3: Running Time Reduction for Scenario with aFRR engagements
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5.3 Model without Violation Decision Variables

5.3.1 Handling of Violations

As discussed in Section 4, the EMS handles violations and violation costs. A violation is
introduced to temporarily allow the relaxation of constraints, against an artificial penalty
described by a violation cost that is minimized in the objective function.
A generalized framework for handling violation variables is presented as follows.

∀t ∈ T, LHSt = RHSt (7)

becomes
∀t ∈ T, LHSt = RHSt +Deficitt − Excesst (8)

In equation 8, LHSt and RHSt stand for the left-hand side and right-hand side of the
constraint, respectively, and are linear combinations of the problem decision variables.
Furthermore, {Deficitt, Excesst} ⊂ R≥0. A customized penalty cost is assigned to each
violation and total penalty costs are minimized in the objective function.
Two implementations are presented in Equations 6d and 6c. Other examples of violations
contain deficits in the pool compared to what is engaged (see Section 3.5), the exceeding
of battery limits (see Section 5.5.1), and violations of the constraints described at the end
of Section 4.2.2.

In a cost minimazation problem, each violation is assigned an artificial penalty cost.
Violations improve robustness as the model remains feasible under slight bending of a
constraint, in a controlled and penalized way. The inclusion of violation decision variables
gives the model more decisions to make, and therefore elevates complexity. Removing
violations hence takes away robustness, but reduces complexity. For optimization of
instances where no violations were addressed, feasibility is maintained when removing
all violation variables from the objective function and constraints. After observing that
the violations were not activated—that is, all violation variables were zero in the optimal
solution—they were removed from the model, and the baseline scenario was re-evaluated.

5.3.2 Removal of Violations

Removing the violation decision variables from the model shows significant running time
reduction for the baseline problem instance as presented Test case 1 in Table 4, and
feasibility is maintained. It is also examined whether warm starting power- and storage
targets in the violation-free model can further reduce computation time. The results are
presented in Table 4, test case 2 and 3, and we observe no further computational gains with
respect to the baseline. The same holds for applying warm starts to discrete variables
in the model without violations, as observed in case 5 to 9 for different configurations
discussed in Section 5.1.
Based on the result of Test case 1, further testing is conducted using warm starts in which
the violation variables are initialized at zero in the model with violations. The motivation
behind this approach is to create a model that is both robust and efficient, maintaining
feasibility at all times while minimizing the computational effort associated with exploring
the solution space introduced by the violation decision variables.
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Baseline Running Time: 413.50 s

Test case Warm Start Strategy Decision Variables Difference in Running Time (%)
1 N.A. N.A. −33.63
2 AddMIPStart PowerTargetp, StorageTargets −7.12
3 AddMIPStart PowerTargetp −10.02
4 AddMIPStart IsGenOn −11.00
5 AddMIPStart IsCharging −30.8
6 readMIPStart IsGenOn(0) −8.52
7 readMIPStart IsCharging(4), isDisCharging(4) −34.01
8 readMIPStart All discrete decision variables(4) −31.60
9 readMIPStart All discrete decision variables(0) +13.68

Table 4: Warm Start Strategy Tests for the Model without Violations for the Baseline
described in Section 5.2

5.4 Warm Starts of Violation Decision Variables

Based on the observations in Section 5.3, the hypothesis is tested whether performing
warm starts on violation decision variables improves the running time of the EMS opti-
mization.

5.4.1 Deployment Strategy and Results

With the AddMIPStart configuration described in Section 5.1, the warm start of Power
Targets of Dispatchable Generators, Intermittent Generators, and Converter Assets is
tested and the results are displayed in Table 5. The Storage Targets are considered for
BESS and a heat buffer, that stores heat. See Section 4.1 for more details on the classifi-
cation of the assets and input data. The order in which the AddMIPStart functions are
called in the orchestration matters, as discussed in Section 5.1. In case multiple orders
of decision variable configurations are tested, for example for Test case 6, the average
Difference in Running time is mentioned in Table 5.
In Test case 9, warm starting PowerDeficit before PowerTarget slightly speeds up the code,
where the reversed order slowed down the code by 11.01%, in Test case 3. This underlines
the importance of regulating effort levels of MIPStarts combinations, using mst files (See
section 5.1). In the mst files, there exist multiple configurations to store the solutions of
the decision variables selected for warm start initialization. They can eather be provided
as multiple separate solutions each corresponding to small sets of the selected decision
variables, or as one solution containing the values of all decision variables. Each solution
provided in the mst file is accompanied with its own EffortLevel, denoted in brackets in
Table 5, starting from test case 15.
Case 8 supports the hypothesis of Section 5.3, showing a 16.15% running time reduction
compared to the Baseline by applying a warm start of the violation variable PowerDeficit.
As observed in cases 9 up to 19, not all warm starts of (combinations of) violation decision
variables are beneficial for reducing running time. Test case 13 presents another running
time reduction, this time of 19.27%, by performing a warm start of SOCmaxExcess. Mul-
tiple (combinations of) warm start configurations for SOCmaxExcess and PowerDeficit
are tested in case 14 to 19.
The results support the conclusion that a synergy is observed in case 16 for the warm start
of PowerDeficit in combination with SOCmaxExcess, compared to individual warm
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starts in cases 8 and 13. It can be concluded that a duo warm start with SOCMaxExcess
is more beneficial for PowerDeficit, whereas for SOCMaxExcess it is more beneficial to
warm start individually. For SOCmaxExcess, the most successful configuration is at
effort level 0, reducing the running time by 26.17%.

Baseline Running time: 413.50 s

Test case Warm Start Strategies Decision Variables Difference in Running Time (%)
1 AddMIPStart PowerTargetp +21.4
2 AddMIPStart PowerTargetp +169.28
3 AddMIPStart PowerTargetp, PowerDeficit +11.01
4 AddMIPStart StorageTargets +7.90
5 AddMIPStart StorageTargets +14.12
6 AddMIPStart PowerTargetp, StorageTargets +10.42
7 AddMIPStart PowerTargetp, StorageTargets +17.70
8 AddMIPStart PowerDeficit −16.15
9 AddMIPStart PowerDeficit, PowerTargetp −1.85
10 AddMIPStart PowerExcess +9.43
11 AddMIPStart HeatExcess −1.43
12 AddMIPStart SOCstrictMinDeficit +213.78
13 AddMIPStart SOCMaxExcess −19.27
14 AddMIPStart PowerDeficit, SOCMaxExcess −5.41
15 readMIPStart {PowerDeficit, SOCmaxExcess}(4) −7.24
16 readMIPStart SOCmaxExcess(4), PowerDeficit(4) −22.62
17 readMIPStart SOCmaxExcess(4) −26.20
18 readMIPStart SOCmaxExcess(0) −26.71
19 readMIPStart PowerDeficit(0) −12.55

Table 5: Warm Start Strategy Tests for the Model with Violations for the Baseline de-
scribed in Section 5.2

Test case Index
2 p = {GENERATOR,CONVERTER, INTERMITTENT}

s = {STORAGE (E), STORAGE (H)}
3 p = GENERATOR

Table 6: Index Specification representing Assets for the Decision Variables in Table 4

Test case Index
1 p = GENERATOR
2 p = CONVERTER
3 p = INTERMITTENT ∩GENERATOR
4 s = STORAGE (E)
5 s = STORAGE (H)
6 p = {GENERATOR,CONVERTER, INTERMITTENT}

s = {STORAGE (E), STORAGE (H)}
7 p = GENERATOR

s = STORAGE (E)
9 p = GENERATOR

Table 7: Index Specification representing Assets for the Decision Variables in Table 5
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5.5 Reformulations

Building on the findings presented in previous Sections, this Section revisits two key com-
ponents of the baseline scenario: the SOC violation limits and the Day-Ahead electricity
prices. In both cases, warm start experiments are repeated to empirically assess the effects
of the adjustments.

5.5.1 Bounding SOC Limit Violations

In Section 5.4, the strong impact of a warm start of SOCMaxExcess can be attributed to
the occcurrence of negative Day-Ahead prices in the baseline scenario. In case of negative
Day Ahead prices, there is no incentive to generate electricity locally and inject it into the
main grid, as this would result in financial losses. Instead, the system takes advantage of
the low Day-Ahead prices and charging of storage assets is pushed to the maximum. As a
consequence, possible violations of SOC limits are explored. Precise and tight bounding
of the violation of storage capacity is therefore crucial to prevent excessive search of the
solver. Motivated by this insight, the SOC bounds presented in Equations 9a and 9b were
revised to explicitly include limits on the violations, presented in Equations 9c and 9d.

∀s ∈ S ∀t ∈ T ∀f ∈ F

SOCTargets,t ≤ MaxSOCs − EngPowerf,s,t ∗
EngUpEnergyf
MaxEnergys,t

∗ 100 + SOCMaxExcesss,t

(9a)

SOCTargets,t ≥ MinSOCs + EngPowerf,s,t ∗
EngDwnEnergyf
MaxEnergys,t

∗ 100− SOCMinDeficits,t

(9b)

SOCMaxExcesss,t ≤ 100−MaxSOCs + EngPowerf,s,t ∗
EngUpEnergyf
MaxEnergys,t

∗ 100 (9c)

SOCMinDeficits,t ≤ MinSOCs + EngPowerf,s,t ∗
EngDwnEnergyf
MaxEnergys,t

∗ 100 (9d)

{SOCMaxExcesss,t, SOCMinDeficits,t} ⊂ R+ (9e)

{MaxSOCs,MinSOCs, EngUpEnergyf , EngDwnEnergyf ,MaxEnergys,t, SOCTargets,t} ⊂ R
(9f)

EngPowerf,s,t ∈ Z (9g)
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Notation Description
Set
S set of electrical storage assets
T set of decision steps in the optimization window
F set of electricity markets that allow engaged volumes coming from BESSs
Decision variables
SOCTargets,t SOC Target expressed as a % of asset’s s ∈ S maximum electrical energy storage capacity at decision step t ∈ T
SOCMaxExcesss,t SOC max excess expressed as a % for asset s ∈ S at decision step t ∈ T
SOCMinDeficits,t SOC min deficit expressed as a % for asset s ∈ S at decision step t ∈ T
EngPowerf,s,t asset’s s ∈ S engaged power expressed in MW on market f ∈ F at decision step t ∈ T
EngUpEnergyf battery’s minimum energy upward needed to enter energy market f ∈ F expressed in kWh/MW engaged
EngDwnEnergyf battery’s minimum energy downward needed to enter energy market f ∈ F expressed in kWh/MW engaged
Input parameters
MaxSOCs maximum state of charge of s ∈ S expressed as a % of asset’s maximum electrical energy storage capacity
MinSOCs minimum state of charge of s ∈ S expressed as a % of asset’s maximum electrical energy storage capacity
MaxEnergys,t maximum energy capacity expressed in kWh for s ∈ S over t ∈ T

Table 8: Notation and Description of Elements in Equation 9

Constraints 9c and 9d allow temporary crossing of SOC limits and regard for the com-
mitted upward and downward power band for participation in electricity markets like
FCR (see Section 3.3). Upward energy is energy that will be injected from the battery to
the grid, and downward energy will be absorbed from the main grid in the battery. As
discussed in Seciton 5.2, aFRR engagement blocks battery usage, hence aFRR /∈ F for
Equation 9 for this EMS.

In Table 9, we observe that the addition of bounds for SOCMaxExcess and SOCMinDeficit
reduces the running time by 36.60% and therefore has a greater impact on the running
time than performing a MIPStart on SOCMaxExcess. Beneficial warm starts can hence
point out potential improvements in your problem definition, after revision of limit con-
straints that concern the warm started decision variable.

Baseline Running time: 413.50 s

Configuration Difference in Running Time (%)
Upperbound SOCmaxExcess and SOCMinDeficit −36.60

Table 9: Running Time Reduction from introducing Upperbounds for Violation Decision
Variables

When taking the model with upper-bounded SOC violation limits, as described above,
as the baseline, a significant slowdown is observed when a warm start is applied to
SOCMaxExcess (See Table 10). This suggests that warm starting violation decision
variables that are already tightly constrained by the model offers no added value in this
case. It is important to note that bounding violation decision variables is not always
straightforward. As such, exploring warm start strategies for violation decision variables
remains relevant and potentially beneficial.

Baseline Running time: 262.16 s

Test case Warm Start Strategies Decision Variables Difference in Running Time (%)
1 readMIPStart SOCMaxExcess(0) +199.42

Table 10: Warm Start Strategy Tests for the Model with Violations for the Baseline
described in Section 5.5.1

39



5.5.2 Model Comparison for Scenario with Positive Day-Ahead Prices

As discussed in Section 5.5.1, scenarios with negative Day-Ahead (DA) prices significantly
influence the utilization of storage assets. To mitigate this effect and provide a more
neutral test environment, a scenario with strictly positive DA prices is introduced. This
adjustment also allows for a clearer investigation of warm start strategies applied to
decision variables beyond the ones previously tested.
A baseline for the same EMS from Section 4 is considered without aFRR engagements.
The modeling horizon is 50 hours and the DA prices are strictly positive. The versions of
the model with and without the bounds presented in Section 5.5.1 are considered for this
scenario. The hypothesis that the bounds on the SOC limits violations have a smaller
effect is supported in Table 11, which shows only a slight decrease in running time for the
model including the bounds.

Variation of the Model Running time
Model without bounds on SOC limit violation variables 220.58s
Model with bounds on SOC limit violation variables 209.71s

Table 11: Model comparison for the Model with Violations for the Baseline described in
Section 5.5.2

From Table 11 we observe that for the positive Day-Ahead prices scenario, the model with
bounds on the SOC limit violation variables is favorable compared to the one without
bounds. As a baseline for the next experiment is thus chosen the model with bounds and
from now on warm start strategy readMIPStart is consistently use to control Effort Levels
described in Section 2.

Baseline Running time: 209.71 s

Test case Decision Variables Difference in Running Time (%)
1 All decision variables(0) +4.92
2 All decision variables (1) −3.74
3 IsGenOn, PowerTargetp −
4 All discrete decision variables (0) −2.43
5 All discrete decision variables (5) −12.32

Table 12: Warm Start Tests for the Model with Violations and for the Baseline described
in Section 5.5.2

We observe for case 3 where p = GENERATOR that CPLEX can reject the warm start
of certain (combinations of) variables at all Effort Levels. The results in Table 12 show a
running rime reduction for test cases 2, 4 and 5, where large sets of decision variables are
warm started. This observation supports the further exploration of warm start strategies
for all variables, as well as discrete variables exclusively, at different Effort Levels.
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5.6 Solver Behavior under Warm Start Strategies

This section examines convergence to the optimal solution of three different warm start
strategies in various scenarios and analyzes the results using solver logs and the theoretical
principles underlying solver dynamics. The algorithmic structures and CPLEX solver
progression follow the descriptions in [61] and [10].

5.6.1 Solver Dynamics

To understand how providing warm starts can potentially improve solver performance, it
is important to initially elaborate on the solution path of the CPLEX Solver. Tradition-
ally, Mixed Integer programming for a minimization problem can be viewed as having two
main parts, one in which the upper bound for the solution is decreased using heuristics,
and the other in which the lower bound is increased using cutting planes [25].
The Branch and Bound method exploits both approaches and proceeds as follows: All
integer and binary variables of the MILP are relaxed and this LP relaxation is referred
to as the root node. If its solution is integral, the optimum is found. If not, the objective
value of the fractional solution is a dual bound for the root node. Primal search is con-
ducted at the root node to find a first, hence best, feasible integer solution, or incumbent.
The incumbent can be obtained through various methods, including heuristics, as well as
from user-provided MIP Starts. The objective value of the incumbent becomes the primal
bound. Interleaved with the primal search, CPLEX generates cutting planes at the root,
that represent valid inequalities satisfied by all feasible integer solutions, but violated by
the current fractional LP solution. The tightened LP provides a new dual bound closer
to the best found integer solution and heuristics are applied to find better feasible integer
solutions. If the obtained integral solution results in a better objective value than the
primal bound, the Best Integer is updated accordingly. This process continues recursively
until either the LP solution is integer-feasible and matches the Best Integer, or the LP
solution is not integer-feasible and no further cuts can be found. In the first case, the
optimal solution is found and the algorithm terminates.
If the LP solution is not integer-feasible and no further cuts can be found, the algorithm
proceeds by branching: it creates child nodes by tightening the bounds of discrete vari-
ables. At each node, the LP relaxation is solved to obtain a new dual bound for that
subproblem. If the solution is integer-feasible, Best Integer is updated. If the bound is
worse than the Best Integer, the node is pruned. In addition to solving the LP, CPLEX
may generate local cutting planes that are valid for only the current node’s feasible re-
gion. These local cuts further tighten the node’s LP relaxation, potentially improving the
bound or enabling earlier pruning. The Best Bound is the best of all dual bounds among
active nodes. The algorithm continues until all nodes are either solved or pruned and the
optimal solution is obtained from.
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5.6.2 Warm Start Setup and Logging

This section discusses the warm start strategies for discrete variables for multiple scenarios
and Effort Levels. A Baseline scenario similar to the ones described in Sections 5.2 and
5.5.2 is created. The nominal scenario has positive Day Ahead prices, a modeling horizon
of 36 hours and is configured without aFRR participation. Afterwards, a warm start
on Effort Level 0 is applied to all decision variables from the mst file that was created
in the prior Baseline run. Subsequently, the optimal solutions of the discrete variables
are extracted, and stored in a separate mst file. The problem is likewise warm started
from this renewed mst file, this time on Effort Level 2. While converging to the optimal
solution, the solver keeps track of the Solution Gap between the primal and dual bound,
defined as:

Solution Gap =
|Best Integer− Best Bound|

|Best Integer|
(10)

The CPLEX execution log also displays the presolve summary, the number of generated
cuts, and intermediate values of the objective function, the best integer solution, and the
best bound. The results are presented Tables 13 and 14. To calculate the running times,
the average is taken from multiple runs of the same instance. The CPLEX execution logs
supporting the data can be found in Appendix B.1.

Strategy Baseline WS All Variables (0) WS Discrete Variables (2)
First presolve Elimination Count
Rows 14114 14114 14114
Columns 15287 15287 15287
Initial Value
Best Integer 8.01272e9 −2004.5594 −2004.5594
Best Bound −2114.6839 −2114.6839 −2114.6839
Gap 100% 5.49% 5.49%
Second presolve Elimination Count
Rows 837 1408 1349
Columns 1293 1535 1513

Table 13: Comparison of Log Data before the Optimal Solution is obtained

Strategy Baseline WS All Variables (0) WS Discrete Variables (2)
Result
Running Time 142.36 s 166.79 s 142.35 s
Objective −2004.5594 −2004.5594 −2004.5594
Cut Count
Clique cuts 1 15 15
Implied bound cuts 1407 1964 2972
MIR cuts 733 325 325
Total 4640 4453 6393

Table 14: Comparison of Log Data After the Optimal Solution is obtained
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5.6.3 Solver Path under Warm Start Strategies

As observed in Table 13, the initial presolve phase is unaffected by warm start strategies.
However, their application substantially enhances the incumbent solution. In Table 14, a
total number of generated cuts and a time of convergence of equivalent order is observed
across all scenarios. This raises the question how the small initial gap influences solver
dynamics.
The equal problem size of the Reduced MIP After Presolve in all three scenarios indicates
that providing a warm start does not change the presolve outcome. After the first restart,
however, we observe in Table 13 that more rows and columns are eliminated during
presolve in the warm started scenarios. This is consistent with the notion that a strong
incumbent enables reduced-cost fixing and additional presolve tightening [10] [20].
The most striking difference between the Baseline log and warm startede scenarios is
the progression of the MIP Gap, calculated according to Equation 10. As explained
in Section 5.6.1, the first integer solution for the baseline is obtained via primal search
Starting heuristics, such as Fix and Propagate and Simple Local Search, which often yield
solutions far from optimal [37], like 8.01272e9 in Table 13. Afterwards, the algorithm
relies on primal search Improvement heuristics, such as Rounding and Diving Heuristics
and Local Branching. These heuristics exploit LP-relaxations, and rapidly improve the
primal bound in early iterations [11]. As described in Section 5.6.1, the branch-and-bound
algorithm reduces the primal–dual gap by interleaving these primal heuristics with cut
generation. Once a reasonably good incumbent is found, the solver alternates between
improving the incumbent and tightening the dual bound from LP relaxations, which
eventually closes the gap and proves optimality.
For the warm start scenarios, the optimal integer solution is provided. Consequently, the
initial Gap is very small at the root node and uniquely defined by the dual bound. Primal
search to find a better incumbent is no longer relevant, so primal search heuristics are not
invoked in the same way. The algorithm immediately focuses on lifting the lower bound
by generating cutting planes and branching to close the gap and prove optimality of the
incumbent [57][42].
This explains the relatively high number of cuts observed in warm start runs, given the
small initial gap observed in Table 14. Progress in gap closure must come exclusively
from strengthening the dual bound. While a strong incumbent prunes large suboptimal
regions of the search space, it can also reduce the role of primal heuristics and thus shift
the computational burden toward bound proving. This aligns with prior findings that
proving optimality with a known incumbent may still require extensive cut generation
and branching [17][42].
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5.7 Deployment of Warm Start Strategies across Scenarios

To see whether the events described in Section 5.6.2 occur consistently when applying
warm start strategies, the same tests were conducted for other scenarios. A selection of
the log output data and a description of the scenarios are presented in Tables 15 and 16,
respectively.

Data Scenario BL WSA (0) WSD (2)

Initial Gap (%)

1 100 5.49 5.49
2 100 N.A. 36.52
3 100 4.98 4.98
4 100 4.10 4.10
5 100 4.66 4.66

Running Time∗ (%)

1 142.36 s +17.16 −7 ∗ 10−3

2 262.17 s N.A. +42.79
3 425.39 s −11.74 −2.13
4 39.41 s −53.92 −8.17
5 209.71 s +6.76 −12.11

Clique Cuts

1 1 15 15
2 97 N.A. 84
3 283 249 226
4 73 147 58
5 200 304 49

Cover Cuts

1 1917 1646 2265
2 3265 N.A. 4544
3 6932 6240 6198
4 2290 1960 2704
5 5876 4125 4547

Implied Bound Cuts

1 1407 1964 2972
2 3282 N.A. 3785
3 5353 5119 5669
4 4089 3941 4243
5 8475 8025 8634

Mixed Integer Rounding Cuts

1 733 325 325
2 558 N.A. 666
3 1725 2196 2695
4 1165 1604 1486
5 3849 4093 4962

Total Cut Count

1 4640 4453 6393
2 7722 N.A. 9489
3 16191 15844 16583
4 9852 9694 10429
5 20321 19429 20914

Table 15: Comparison of Logs of Warm Start Strategies for different Scenarios
∗ Relative difference compared with baseline of scenario
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Scenario Description
1 EMS instance with a horizon of 36 hours from Section 5.6.2, only positive DA prices
2 EMS instance with a horizon of 48 hours from Section 5.5.1, includes negative DA prices
3 EMS instance with a horizon of 48 hours, only positive DA prices
4 EMS instance with a horizon of 36 hours, only positive DA prices
5 EMS instance with a horizon of 50 hours, only positive DA prices
Abbreviation
BL Baseline
WSA (0) Warm Start Strategy for All Decision Variables at Effort Level 0
WSD (2) Warm Start Strategy for all Discrete Decision Variables at Effort Level 2

Table 16: Specification of Scenarios and Abbreviations in Table 15. None of the tested
scenarios is aFRR engaged.

5.7.1 Discussion of Results

Table 15 unfolds important insights on the application of Warm Start in different environ-
ments. A striking result is the poor solver performance in scenario 2 for a warm start on
Effort Level 2. The input data of scenario 2 contains several negative Day Ahead prices.
The fast convergence of the baseline scenario is related to the fact that the model is heavily
constrained in scenarios with negative Day Ahead prices, as discussed in Section 5.5. The
system relies on storage mechanisms and other assets, like generators, are blocked. This
reduces computational complexity, and the solution is found rather fast, following the
steps from Section 5.6.1. The optimal solution values of the discrete variables provided
in WSD (2), in contrast, clearly provide less guidance for the LP-relaxation of the root
node than in the other scenarios, resulting in a high initial gap compared to the other
scenarios. Proving optimality following the steps from Section 5.6.3 while closing a gap
of 36.52% initiated extensive generation of cuts and a costly convergence, as observed in
Table 15.
Across the five tested scenarios, the WSD (2) strategy proves to be beneficial for all tested
horizons, provided that Day-Ahead prices remain strictly positive. In contrast, the WSA
(0) strategy is less favorable, as it is rejected in scenario 2 and shows adverse effects in
scenarios 1 and 5. Nevertheless, the acceleration of convergence by 53.92% observed in
scenario 4 represents a promising outcome, which merits closer examination in future
analyses.
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5.8 Rolling Horizon Environment

As discussed in Sections 2.3 and 2.4, warm starting instances in Rolling Horizon (RH)
applications can provide significant benefits in solver performance. In the practical ap-
plication, the baseline scenario adopts an RH framework with a 15-minute resolution and
a planning horizon of 36 hours. In the empirical evaluation, by contrast, the problem is
tested in a static setting: individual instances are provided with their own optimal feasible
solution for a selected subset of variables.
A central challenge in this context arises from the fact that consecutive RH instances are
never identical. While warm starts can improve efficiency, they also introduce risks if the
incumbent from the previous run is no longer feasible or representative of current system
conditions. This makes the design of effective warm start strategies crucial for ensuring
both solver efficiency and robustness. This section therefore discusses solver dynamics in
RH optimization, and how both convergence and consistency are maintained.

5.8.1 Incumbents and Primal Heuristics

Considering the optimal solution of t − 1 as a warm start for the problem instance at
decision step t can greatly improve solver performance, if applied correctly. Due to envi-
ronmental changes, the incumbent coming from the optimal solution at t− 1 will deviate
from the objective function value for decision step t. As discussed in Section 5.6.1, the
initial gap will change compared to the solver log for decision step t accompanied with
its own incumbent. Recall that the numerical value of the root LP is untouched by warm
start strategies, as it is obtained purely from the model’s constraints and objective. As
discussed in Section 5.6.3, a perfect warm start incumbent shifted the solver’s workload
primarily to lower bound improvement, or optimality verification, rather than incumbent
improvement. In the static empirical evaluations, the upper bound is fixed by an optimal
incumbent, and further effort is devoted to improving the lower bound. In RH practical
applications, there will be room for upper bound improvement, and the small ∼ 5% initial
gaps observed in Table 15 will increase, since the objective function value of t, referred
to as O, will land between this the LB from its root LP relaxation, and the suboptimal
accepted incumbent from t− 1, referred to as U . This is captured in

LB ≤ O ≤ U (11)

A high quality, but imperfect incumbent can, once accepted and feasible, trigger primal
heuristics in the search for better feasible solutions to close the gap observed from the
latter inequality in Equation 11. The primal heuristics relaxation-induced Neighborhood
search (RINS) requires an incumbent and becomes available [5].

5.8.2 Feasibility Requirements

As discussed in Section 5.8.1, O needs to be found between LB and U . If an incumbent
with costs U is provided, MILP solvers apply a global cutoff: implicit constraints prevent
the solver from exploring nodes where LB ≥ U . As a consequence, the solver immedi-
ately performs strong branching or cutting with knowledge of the upper bound U for the
objective function. Furthermore, the objective cut can be installed, in the form of the

46



constraint O ≤ U [97].
To benefit from warm start strategies, U needs to be a feasible incumbent. This is why
partial warm starts are considered to derive initial feasible incumbents. A fixed-LP test
fixes the binary variables of the problem with the submitted binary values and solves
the LP to complete the continuous variables [37]. An elastic safety net in the form of
slack variables with large penalties can be included so that feasibility of the incumbent is
always guaranteed [99].

5.8.3 Effort Levels and Stability Strategies

In Energy Management System (EMS) optimization, multiple solutions often exist with
nearly identical costs. However, these solutions can differ substantially in operational
profiles, such as charging and discharging patterns, ramping decisions, or investment
strategies. Warm start strategies provide a mechanism to favor consistency across runs by
preventing the solver from deviating toward vastly different but equally optimal solutions.
This consistency not only avoids undesirable oscillations but also reduces transition costs,
for example those related to ramping, startups, or shutdowns.
With a partial warm start that proposes incumbents derived from a selection of variables,
you can build in feasibility checks before choosing to adopt the incumbent. With Warm
Start Level 2, an LP is solved, where the discrete variables are fixed by the provided
solution. If it is feasible, this solution will serve as the incumbent for the rest of the run,
as discussed in Section 5.8.2 [5].
More advanced stability strategies that avoid oscillations in RH solutions contain a warm
fix and trust region. Warm fix for scheduling purposes involves setting the first steps of
your optimization to the solution previously obtained such that only beyond that window
the solution can diverge. This strategy not only improves continuity, but also leaves fewer
free binaries in the MILP and, therefore, reduces computational complexity [57]. Another
approach is to constrain the level of deviation of the new solution from the old by specifying
a trust region. An example of a trust region is a percentage of binary decisions that needs
to remain unchanged [37]. Stability can also by preserved by penalizing deviation in the
objective function. A complex but very effective method is to carry over cuts and reuse
the branch-and-bound information of previous runs between separate solves [42] [46]. This
method re-optimizes branch-and-bound, using the reduced feasible region or final search
frontier of the preceding run. For nearly identical consecutive runs, the reuse of the search
tree and dual bounds of the search tree can greatly improve solver performance [57].

5.8.4 Resolution and Recency Stability

The higher the resolution, the smaller the difference between consecutive optimal solu-
tions. The stability or rate of change between consecutive runs is often measured in the
number of changes in binary decisions between runs. Successive optimal schedules that
differ only marginally illustrate the concept of recency stability.. In high-resolution RH
applications, [57] states that warm start methods eventually make the solver choose the
same integer decisions as before, except for the last time step added at the end.
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5.9 Cutting Planes

5.9.1 Effectiveness

The addition of cutting planes is a very useful way to increase the Best Bound and remove
suboptimal branches of the search tree [61]. However, each cut is an additional constraint
that makes the LP-relaxation larger and potentially harder to solve. Hence, the more
cuts added, the larger the inherent matrix, possibly increasing the processing time at
the nodes. Generating too many cutting planes that barely tighten the relaxation can
lead to slower convergence, hence the solver must balance cut effectiveness and compu-
tational complexity [89]. Moreover, different classes of cuts target different structures of
the problem, making their usefulness strongly depend on the problem [98].

5.9.2 Impact of Warm Starts, Horizons, and Scenario

Providing an incumbent objective value helps the solver to prune portions of the search
tree in an early stage. Any node with a worse LP-relaxation than the incumbent, where
LB > U (see Section 5.8.1), can be pruned without branching [5]. Furthermore, both
the structure of the problem and the suggested solution greatly influence the underlying
solver algorithm.
The manner in which a MILP instance is expressed greatly affects the optimal basis
returned by the LP solver, guiding further cutting-plane generation, primal heuristics,
and branching. The selection of the optimal basis, even the first one within the optimal
face of the very first LP relaxation, appears to be a crucial decision for the evolution of
the whole MIP enumeration. [36] proposes an algorithm that samples the optimal face of
the initial LP relaxation, and for each of the samples, executes the solver’s default cutting
plane loop and applies the default primal heuristics. Afterwards, for every different initial
optimal basis, cutting planes and feasible solutions are collected and used as input for a
final run. The algorithm greatly reduced the variability of the root node, execution time,
and the number of branch-and-bound nodes and is adopted by CPLEX.
Larger optimization windows imply larger MILPS with more variables and constraints,
leading to weaker initial LP-relaxations. Thus, there are more degrees of freedom to
tighten, promoting increased cut generation. Alternating scenario input data, however,
can also drastically guide cut generation in other directions. The same model structure
with different data can be easy or hard to solve, depending on how the data influence
the tightness of the formulation [36]. Machine Learning approaches improve state based
node selection within a branch-and-bound tree. [100] applies a method that considers
multiple state-action pairs that lead to good solutions, instead of only the top solution.
Moreover, the algorithm chooses only to discover only the node’s children, instead of the
entire sub-tree below the child. These contributions respectively help the solver in a deep
learning context, and to find solutions quickly.
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5.9.3 Empirical Analysis

Tables 14 and 15 report the total number of cuts generated in each scenario and demon-
strate varying amounts for the different classes of cuts across the scenarios. The differences
in the types and numbers of cuts generated in the scenarios are discussed.
As discussed in Section 5.9.2, a strong LP-relaxation for a short horizon is confirmed
in Scenario 4. Furthermore, scenarios 1 and 4, optimized over a window of 36 hours,
generated significantly less cuts in total compared with the 48 and 50 horizon instances,
except for scenario 2. This can be explained by the difference in supplied scenario data,
in this case negative day-ahead prices, influencing unit commitment and binary decision
patterns. As observed, this can lead to fewer fractional values and less cutting planes
over a longer horizon.
The substantial choice for cover cuts, implied bound cuts, and mixed integer rounding
cut in EMS optimization, can be explained as follows, where definitions and applications
comply with [98], [96], [10].

• Cover cuts strengthen the LP relaxation in knapsack-like constraints by eliminating
infeasible subsets of binary variables whose summed contributions exceed capacity.
These are common in scheduling and commitment problems, making them relevant
to treat capacity-related constraints in EMS models.

• Implied Bound cuts reflect relationships between constraints, linking binary and
continuous variables by enforcing implications. The model has over 18000 indicator
constraints, that generate many implied bound inequalities. The subject of indicator
constraints will be treated in more detail in Section 6.

• Mixed Integer Rounding (MIR) cuts are highly effective for tightening mixed-integer
knapsack constraints. CPLEX contains a parameter specifying if and to what extent
the user wants the solver to generate MIR cuts. The increased generation of MIR
Cuts for warm start strategies across all scenarios accept scenario 1 motivates to
investigate alternative efforts, potentially improving efficiency.
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6 Linearity and Reformulations

In the context of Mixed Integer optimization models, the linear programming formulation
or LP-formulation, arises from relaxing the integral values. The so-called LP-relaxation
of the problem has polyhedral properties. That is, the feasible region or set of variables
that satisfies the relaxed constraints is a polytope and the optimal solution always lies at
a vertex. In some problems, absolute value expressions require workarounds to define the
feasible region of a MILP. The statements in Section 6.1 up to 6.3 follow [16], [12] and
[13].

6.1 Absolute Value Expressions

Implementing absolute values of decision variables removes the linearity of your model.
Requiring an absolute value forces positive values, creating a V shape in previously linear
graphs that had a constant rate of change. The handling of absolute values in (MI)LP for-
mulations requires the introduction of auxiliary binary variables and indicator constraints,
which is done as follows:
Consider the absolute value of variable x,

|x| =

{
−x, if x < 0

x, if x ≥ 0
(12)

When dealing with constraints involving absolute value expressions, such as |X| ≤ C with
C ≥ 0, the inequality can be reformulated as a system of linear constraints

X ≤ C (13)

−X ≤ C (14)

creating a convex feasible region [−C,C]. However, in order to satisfy the constraint
|X| ≥ C with C > 0, X must satisfy one of the following equations.

X ≥ C (15)

−X ≥ C (16)

which results in a non-convex feasible region (−∞,−C] ∪ [C,∞), where non-convexity is
caused by the gap between −C and C. X cannot satisfy Equations 15 and 16 at the same
time if C > 0, which makes it impossible to reformulate constraints of the form |X| ≥ C to
a linear equivalent. This could be reformulated as that only one of the Equations 15 and
16 can be active at a given time. The same holds for equality constraints |X| = C, where
the feasible region {C,−C} is also non-convex and the solution needs to be approximated
using disjunctions.
The introduction of indicator constraints is used to handle absolute values in MILP.
Indicator constraints enable the expression of absolute values by identifying a binary
variable b and a large constant M . Equations 15 and 16 are reformulated as
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X +Mb ≥ C (17a)

−X +M(1− b) ≥ C (17b)

b ∈ {0, 1} (17c)

The introduction of indicator constraints enables the user to reformulate and express
particular modeling constructs, such as absolute value expressions, in MILP applications.
However, it comes with the introduction of binary variables and indicator constraints,
increasing the computational complexity of models.

6.2 Global and Local Optima

As concluded from Table 19, both the linear and non-linear problem formulation provide
the same, global optimal objective function value. This touches on a critical aspect in the
MILP and MINLP optimization domain, namely the ability to guarantee globally optimal
solutions. In convex optimization, where the feasible region is convex, every local optimum
is also a global optimum. This guarantee is broken once non-convex constraints , like |X| ≥
C as discussed in Section 6.1, are introduced. Other examples of non-convex constraints
include constraints that multiply decision variables, called bilinear terms, or piecewise
constraints. Introducing constraints that lead to non-convexity—such as those creating
multiple disjoint or curved feasible regions—can prevent local-search-based solvers from
finding the global optimum. The Branch and Bound method used by CPLEX, however,
always guarantees to find a global optimum, which can be explained by the process of how
solutions are treated, as presented in Section 5.6.1. The algorithm recursively examines
each branch and the final solution is guaranteed to be globally optimal, because no better
solution in any part of the feasible region can exist.
As demonstrated in Section 6.3, non-convex formulations can require workarounds and
reformulations that place considerable demands on the solver, resulting in large-scale
models and extended run times.

6.3 Empirical Validation of Efficient Formulation

We investigate a Unit Commitment Energy problem in which absolute value expressions
arise. The Section explores their linear reformulation and evaluates the efficiency of
different formulations in terms of performance and structure.

6.3.1 Battery Cycles in Energy Optimization

Battery degradation has a large economic impact in energy applications. The degradation
of batteries therefore constraints Unit Commitment or Dispatch Scheduling problems. The
degradation is quantified and monitored with factors including state of charge, ramp rates,
and maximum daily number of cycles. The lifetime of Battery Energy Storage Systems is
limited by the maximum number of cycles it can perform. Short-term quantification and
control of degradation can have a large impact on long-term profits and results [40].
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A battery cycle is defined as one full charge and one full discharge of the battery. To
quantify cycles partially, industries and research refer to the concept of Equivalent Full
Cycles (EFC) [86]. An EFC equals the energy throughput of a BESS relative to its total
available capacity. For example, charging and discharging half of the available capacity
twice uses ∼1 EFC. Mathematically, this results in the following variable definitions and
constraints in a MILP energy optimization

∀t ∈ T ∀s ∈ S

∆Es,t = (Charges,t −Discharges,t) ∗ StepInHours (18a)

CycleContributions,t =
|∆Es,t|
2Emaxs

∀Emaxs ̸= 0 (18b)

Es,t, CycleContributions,t ∈ R (18c)

Charges,t, Discharges,t ∈ R+ (18d)

Emaxs ∈ R (18e)

StepInHours ∈ R (18f)

We obtain a factor 2 in the denominator to secure that we need two full transfers of Emaxs

to obtain a cycle. The transferred charged or discharged energy hence contributes to half
cycles.
Battery operational constraints prevent BESSs from both charging and discharging at a
given time step t. This is captured in the following system of constraints:

∀t ∈ T ∀s ∈ S

Charges,t ≤ Chargemaxs,t ∗ IsChargings,t (19a)

Charges,t ≥ Chargemins,t ∗ IsChargings,t (19b)

Disharges,t ≤ Dischargemaxs,t ∗ IsDischargings,t (19c)

Disharges,t ≥ Dischargemins,t ∗ IsDischargings,t (19d)

IsChargings,t + IsDischargings,t ≤ 1 (19e)

{Charges,t, Discharges,t} ⊂ R+ (19f)

{IsChargings,t, IsDischargings,t} ⊂ {0, 1} (19g)

From the systems of equations 18 and 19, we observe that

∀t ∈ T ∀s ∈ S

|∆Es,t| = (Charges,t +Discharges,t) ∗ StepInHours (20)

and conclude
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∀t ∈ T ∀s ∈ S

CycleContributions,t =
(Charges,t +Discharges,t) ∗ StepInHours

2Emaxs

∀Emaxs ̸= 0 (21)

Notation Description
Set
S set of electrical storage assets
T set of decision steps in the optimization window
Decision variables
Es,t Incremental energy charge of storage asset s ∈ S at decision step t ∈ T expressed in kWh
CycleContributions,t The number of cycles performed by storage asset s ∈ S at decision step t ∈ T
Charges,t Charged power of storage asset s ∈ S at decision step t ∈ T expressed in kW
Discharges,t Discharged power of storage asset s ∈ S at decision step t ∈ T expressed in kW
IsChargings,t Flag indicating whether storage asset s ∈ S is charging (1) or not (0)at decision step t ∈ T
IsDischargings,t Flag indicating whether storage asset s ∈ S is discharging (1) or not (0) at decision step t ∈ T
Input parameters
Emaxs Maximal nominal energy capacity of storage asset s ∈ S expressed in kWh
StepInHours Optimization step duration (15 minutes) expressed in hours (0.25)

Table 17: Notation and Description of Elements in Equations 18 up to 21

6.3.2 Solver Behavior Comparison

IBM ILOG CPLEX Optimization Studio has an abs function and, therefore, allows ab-
solute value expressions of decision variables. The solver linearizes them by introducing
indicator constraints, as discussed in Section 6.1. As discussed in Section 6.3.1, multiple
formulations are possible to define the EFC-constraint of a BESS. To analyze the impact
of the constraint formulation, different Branch and Cut proceedings are compared using
the absolute value formulation of the Cycle Contribution Constraint in Equation 18b and
the linear formulation in Equation 21, respectively.
The Energy Management System described in Section 4 serves as the basis for the com-
parison of the Cycling Constraint formulation for 3 scenarios with shared properties. The
scenarios are stripped from aFRR engagements to authorize the usage of the BESS, as
explained in Section 5.2. Furthermore, it is shown that negative prices push storage ca-
pacities to their limits. Thus, scenarios with positive Day-Ahead prices are compared,
such that potential differences in Branch and Bound proceedings between scenarios can-
not be related to negative prices. The pre- and post-solve data is presented in Table 18
and Table 19, respectively. The CPLEX execution logs supporting the reported data can
be found in Appendix B.2.
We observe an impressive reduction in the size of the problem in the linear formulation
in Table 18. As discussed in Section 6.1, CPLEX no longer introduces auxiliary variables
and indicator constraints presented in Equation 17 to approach the cycle contribution.
On average in the scenarios, as a consequence, the solver produces ∼ 71 times fewer
indicator constraints in the linear formulation. The rest of the counts together reflect
an inflation by a factor ∼ 9.7 of structural elements such as rows, columns and binaries
across all scenarios in the case of the non-linear formulation. The notion of activation
indicates that the indicator constraints inequalities in the non-linear formulation are not
all valid. The high number of integer and binary variables that do not all represent
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Scenario Horizon 50 hours Horizon 48 hours Horizon 36 hours
Count

Rows
Non-linear (abs) formulation 64664 61274 41664
Linear formulation 5921 5610 4481

Columns
Non-linear (abs) formulation 65095 61657 41835
Linear formulation 6817 6458 5087

Binary Variables
Non-linear (abs) formulation 16382 15531 10576
Linear formulation 1742 1659 1312

Indicator constraints
Non-linear (abs) formulation 29678 28124 18816
Linear formulation 398 380 288

Table 18: Comparison of Pre-Solve Data

valid inequalities in the non-linear formulation results in a dense constraint matrix. This
gives the LP relaxation more chances to produce non-integral solutions, increasing the
integrality gap. Therefore, it is harder for the LP relaxation to closely approximate the
integer feasible region, which weakens the relaxation. Consequently, the solver needs to
add valid inequalities, or cuts, to remove fractional solutions and the need for extensive
branching of these nodes.

Scenario Horizon 50 hours Horizon 48 hours Horizon 36 hours
Count

Cover Cuts
Non-linear (abs) formulation 5876 6932 2290
Linear formulation 60 97 72

Implied Bound Cuts
Non-linear (abs) formulation 8475 5353 4089
Linear formulation 228 89 203

Flow Cuts
Non-linear (abs) formulation 1707 1764 2179
Linear formulation 352 260 183

Mixed Integer Rounding Cuts
Non-linear (abs) formulation 3849 1725 1165
Linear formulation 259 307 215

Objective Value
Non-linear (abs) formulation -2605.93 -1305.63 -2848.62
Linear formulation -2605.93 -1305.63 -2848.62

Total Solve time
Non-linear (abs) formulation 207.89 sec 420.75 sec 39.41 sec
Linear formulation 12.47 sec 18.64 sec 5.27 sec

Table 19: Comparison of After-Solve Data

In Table 19, we observe a consistent and significant reduction in total runtime when
using the linear formulation of the cycling constraint compared to the formulation using
absolute value expressions. This difference can be attributed to the weaker LP relaxation
of the absolute value formulation. In the non-linear case, absolute value constraints are
typically modeled via indicator constraints and auxiliary binary variables, resulting in a
non-convex feasible region, as explained in Section 6.1. When the problem is relaxed, the
integer restrictions are temporarily ignored and the LP solver allows artificial solutions
that interpolate between disjunctive branches of the model, such as values that lie between
the positive and negative branches of the absolute value. As stated before, these do not
correspond to feasible integer solutions and as a result, the LP relaxation is weak, the
integrality gap is large, and the solver must perform extensive cutting to converge to an
optimal integer solution. Table 19 confirms this reasoning, showing that the nonlinear
formulation yields, on average, ∼ 19.5 times more cuts across all scenarios.
By contrast, Equation 21 in the linear formulation provides a tight LP relaxation. It
defines a hyperplane that lies on a facet of the feasible polytope of the LP relaxation,
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forming part its boundary. This means that the constraint directly bounds the solution
space in a way that is both valid and tight for the integer model. As a result, there
is no need to simulate disjunctive behavior using binary variables and indicator logic as
the LP relaxation already captures the structure of the solution space well. The linear
formulation converges ∼ 18.4 times faster on average over the scenarios, corresponding to
a 94.57% decrease in running time.

6.4 Warm Start Strategies for Linear Configuration

A larger modeling horizon of 72 hours is considered to potentially observe a significant
impact on running time when applying warm start strategies, now that the running times
for smaller modeling horizons have considerably decreased. The results of the deployment
of warm start strategies in the reformulated problem are presented in Table 20. The
extended horizon leaves more room for the LP-relaxation to explore low costs across
numerous data points, causing a large initial gap.
As discussed in Section 5.7.1, closing a large initial solution gap, following the steps in
Section 5.6.3, is costly. It is observed in Tables 15 (scenario 2) and 20 that proving
optimality of a high quality incumbent, provided from a warm start, starting from a low
quality LB, results in an increased running time. In case of a warm start, a shift of
focus of the solver to repairing a weak initial LP-relaxation without using primal search
heuristics occurs. This shift results in an increased amount of generated Cover cuts. This
corresponds to the description of the function of Cover cuts in Section 5.9.3, and can
equally be obtained in Tables 15 (scenario 2) and 20

6.4.1 Log data

Strategy BL WSA (0) WSD (2)
Data
Initial Gap (%) 100 14.36 14.36
Maximal Reported Gap∗ (%) 150.15 14.36 14.36
Running Time∗∗ (%) 235.75 s +58.18 +65.91
Clique Cuts 1 5 4
Cover Cuts 67 134 153
Implied Bound Cuts 148 77 102
Flow Cuts 670 459 449
Mixed Integer Rounding Cuts 733 564 519
Total Cut Count 2084 1475 1442

Table 20: Log Data of Warm Start Strategies for Scenario with a Modeling Horizon of 72
Hours
∗ During incumbent finding, the Gap can deviate from 100%
∗∗ relative difference compared with baseline of scenario
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7 Model Conversion and Benders Decomposition

7.1 Conversion to Python

In order to access parameters defined for the Python API of CPLEX, the model described
in Section 4 is converted to python, using the docplex package [10]. The usage of the
package is presented in Appendix C.1.

7.2 Model Without Violations

In the converted model, the violation decision variables are not concluded, as it is observed
in Section 5.3 that their removal caused running time reduction of 33.63% compared to
the model with violations. Their removal is safe regarding feasibility, since their optimal
solution value was zero for all tested scenarios. Tables 21, 22 and 23 respectively show the
comparison of the model sizes, the log data, and the scenario descriptions for the models
with- and without violations across different scenarios.

Configuration With Violations Without Violations
S Data

1

Presolve Count
Row Elimination 19122 20975
Column Elimination 21449 15128
Coefficient Modification 4 517

Reduced MIP Count
Rows 61275 59807
Columns 61658 59143
Nonzeros 169076 164232

2

Presolve Count
Row Elimination 13809 17067
Column Elimination 15150 14101
Coefficient Modification 18 834

Reduced MIP Count
Rows 4481 3196
Columns 5087 2665
Nonzeros 104070 18927

3

Presolve Count
Row Elimination 36075 42148
Column Elimination 39614 34451
Coefficient Modification 18 1645

Reduced MIP Count
Rows 12486 9548
Columns 14187 8024
Nonzeros 104070 60069

4

Presolve Count
Row Elimination 26830 31477
Column Elimination 29591 25763
Coefficient Modification 4 1116

Reduced MIP Count
Rows 9462 7264
Columns 10748 6100
Nonzeros 76247 44400

Table 21: Comparison of Log Pre-Solve Data of Different Scenarios of Models with and
without Violation Decision Variables
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Configuration With Violations Without Violations
Data Scenario

Maximal Reported Gap ∗ (%)
1 115.04 171.23
2 109.77 435.00
3 391.77 264.80
4 150.15 159.24

Running Time∗∗ (%)
1 413.50 s −33.63
2 5.27 s −74.76
3 2419.20 s −45.89
4 235.75 s +35.70

Clique Cuts
1 120 183
2 N.A. 15
3 N.A 40
4 1 3

Cover Cuts
1 5683 3234
2 72 N.A.
3 18 6
4 67 5

Implied Bound Cuts
1 5004 3325
2 203 47
3 86 191
4 148 49

Mixed Integer Rounding Cuts
1 2060 511
2 215 153
3 339 1044
4 959 425

Total Cut Count
1 14578 7846
2 732 404
3 1155 2295
4 2084 1292

Table 22: Comparison of Logs of Different Scenarios of Models with and without Violation
Decision Variables
∗ During incumbent finding, the Gap can deviate from 100%
∗∗ Relative difference compared with model with violations
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Scenario Description

1

EMS instance from Section 5.4, with a horizon of 48 hours that solves
the non-linear model configuration, without bounds
on SOC limit violation decision variables.
The scenario contains negative Day Ahead prices, and no aFRR engagements.

2

EMS instance from Section 6, with a horizon of 36 hours that solves
the linear model configuration, with bounds
on SOC limit violation decision variables.
The scenario contains strictly positive Day Ahead prices, and no aFRR engagements.

3

EMS instance from Section 6, with a horizon of 96 hours that solves
the linear model configuration, with bounds
on SOC limit violation decision variables.
The scenario contains strictly positive Day Ahead prices, and no aFRR engagements.

4

EMS instance from Section 6, with a horizon of 72 hours that solves
the linear model configuration, with bounds
on SOC limit violation decision variables.
The scenario contains strictly positive Day Ahead prices, and no aFRR engagements.

Table 23: Specification of Scenarios in Tables 21 and 15. None of the tested scenarios
contain aFRR engagements.

Table 21 indicates that removing violation decision variables from your model, reduces the
number of rows, columns, and nonzeros in the reduced MIP, thereby decreasing the overall
model size. The absence of violation decision variables also triggers the modification of
coefficients during Presolve. The number of eliminated rows and columns during Presolve,
however, remains of the same order of magnitude for both models with and without
violations.
Table 22 shows that the removal of violation variables improves runtime performance in
three out of four scenarios. The increased convergence time observed for the model with
violations in scenario 4 is difficult to attribute to model size, presolve activity, reported
MIP gaps, or cutting-plane generation, as its behavior is otherwise consistent with the
other scenarios. Notably, this specific instance with a horizon of 72 hours converges very
quickly in the model with violations. Even with an increase of 35.60%, the model still
converges rapidly given the instance size.
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7.3 Empirical Study of Benders Decomposition

7.3.1 Algorithmic Structure

Section 2.5 describes how Benders Algorithm can strongly accelerate models with both
continuous and discrete variables. Benders Decomposition separates the problem into
a master and one or more subproblems. The Master problem solves the complicating
variables, supported by the idea that if these will be fixed, the problem would be easier
to solve. In a MILP EMS optimization, the discrete decisions contain dispatch decisions
like GeneratorOn/Off, Is(dis)Charging and market engagements (DayAheadOffer), and
therefore offer valuable insights for the optimization. The continuous variables represent
power- and heat flows and energy levels of the assets. Benders Decomposition isolates the
discrete variables in the master problem and the continuous variables in a subproblem
and generates Benders Cuts to link them.

7.3.2 Implementation and Results

The Python API allows to define models and use the CPLEX solver in a Python envi-
ronment using the package docplex. The package allows you to annotate your decision
variables with 0 for the variables in the Master Problem, and 1, 2, 3,... according to the
subproblem division, where the variables in the same subproblem should get equal anno-
tation. Variables that participate in the same constraint should be annotated to the same
subproblem. Once the model is annotated, a Benders Strategy could be defined, that
will be treated according to Table 24. Table 25 presents the results of the deployment of
Benders Algorithm with strategies 1, 2, and 3 for a scenario with a horizon of seven days.
Consequently, Table 26 presents the results of the deployment of Benders Algorithm with
strategies -1, 1, and 2 for a scenario with a horizon of four days. The Execution Log of
one of the runs is presented in Appendix C.2.

Strategy Name Effect
−1 OFF Ignores Benders annotations and executes conventional Branch and Bound
0 AUTO CPLEX uses available annotations of the master problem and attempts

to partition the subproblems further before applying Benders to solve the model.
1 USER Benders algorithm is applied according to the annotations specified by the user.
2 WORKERS CPLEX accepts the master as given and

attempts to decompose the remaining elements into disjoint
subproblems to assign to workers before solving with Benders.

3 FULL CPLEX ignores annotations and performs presolve.
Subsequently the solver atuomatically generates a Benders partition
with integer variables in the master and continuous linear variables into
disjoint subproblems. If the problem contains either only or no integers,
CPLEX reports an error.

Table 24: Benders Strategies and their Effect [14]
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Strategy 1⋆ 2⋆⋆ 3⋆⋆

Data
Reduced MIP Model Size
Rows 20179 20179 20179
Columns 16880 16880 16880
Nonzeros 118051 118051 118051
Binaries 5122 5122 5122
First cycle
Initial Best Integer 9917.50 9916.82 9917.89
Final Best Integer 9917.50 9916.82 9917.89
Initial Best Bound -10000.00 -10000.00 -10000.00
Final Best Bound -5928.89 -5949.62 -4195.38
Iteration Count 25541 29033 30346
Final Gap (%) 159.80 159.98 142.18
Elapsed time 82.00 74.17 76.27
Termination
Total Tree Size 54612 42278 41091
Best Integer -561.13 -1528.18 -1400.78
Best Bound -4206.91 -4087.34 -3974.35
Final gap (%) 649.73 167.47 193.05
Iteration Count 1574465 1421717 902192
Benders Cuts Count 2325 N.A.⋆ N.A.⋆

Other Cuts Count 63 N.A.⋆ N.A.⋆

Table 25: Log Data of Benders Strategies for Scenario with a Modeling Horizon of 168
Hours
⋆ Terminated after ∼ 1230s
⋆⋆ Terminated with exit code −1 after ∼ 1000s
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Strategy -1 1⋆ 2⋆⋆

Data
Reduced MIP Model Size
Rows 9548 11209 11209
Columns 8024 9394 9394
Nonzeros 60069 64289 64289
Binaries 2879 2880 2880
First cycle
Initial Best Integer 6068.07 6637.67 6638.50
Final Best Integer -2410.66 6637.67 6638.50
Initial Best Bound -10000.00 -10000.00 -10000.00
Final Best Bound -2675.68 -3137.76 -3061.74
Iteration Count 25541 26776 23140
Final Gap (%) 10.99 147.27 146.12
Elapsed time 5.55 20.88 17.91
Termination
Total Tree Size 674900 22115 77072
Best Integer -2602.12 -1125.67 -1643.02
Best Bound -2602.55 -3115.91 -3041.18
Final gap (%) 0.02 176.81 85.10
Iteration Count 12269594 382916 1454124
Benders Cuts Count N.A. 1607 3984
Other Cuts Count 2295 48 32
Solve Time 1308.92 N.A. N. A.

Table 26: Log Data of Benders Strategies for Scenario with a Modeling Horizon of 96
Hours
⋆ Terminated with exit code 0 after 213s
⋆⋆ Terminated with exit code 0 after time limit 1800s
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7.3.3 Discussion of Results

The MILP representing the EMS described in Section 4 includes 18 discrete and 83 con-
tinuous decision variables, all stored in dictionaries. For most of these variables, four
target values are determined each hour, leading to a substantial overall variable count for
the solver, as observed in the model sizes in Tables 25 and 26.
Note that the gap increases while the algorithm proceeds, as the gap represents the dif-
ference of the best bound relative to the incumbent. The absolute difference between the
Best Integer and the Best Bound, decreases. An identical initial Best Bound is observed
across all strategies, since the same initial LP relaxation is solved, regardless of whether
Strategy −1 (conventional Branch and Cut) or a Benders Strategy is chosen. Later bound
improvements in Benders strongly depend on the strength of the master problem formu-
lation. Weak masters and subsequent Benders cuts that do not constrain the feasible
space sufficiently lead to poor progress unless continuous components are integrated more
tightly [70]. Continuous variables can be integrated by adding constraints that connect
discrete and continuous variables, for example.
The constraint coupling inherent to energy optimization models is weakly represented by
Benders cuts. As discussed in Sections 5.6.1, 5.8.1 and 5.9, standard Branch and Cut
exploits cross-variable interactions through global cuts and heuristics. Benders algorithm
does not succeed in linking the Master and Subproblem in the same profound way, and
needs many Benders cuts, without reaching the same pace of convergence as conven-
tional Branch and Cut. Benders decomposition tend to perform poorly in tightly coupled
MILPs, since cuts generated from subproblems fail to capture cross-variable dependencies.
The art is to integrate enough continuous relaxations to strengthen the master, and to
avoid excessive interdependencies among continuous variables that result in over-coupled
decompositions [71].
It is observed that the incumbent does not improve in early iterations when Benders
strategies are applied. Benders strategies mainly improve the lower bound, but do not
contribute to finding good primal feasible solutions. Strategy −1 in Table 26, however,
benefits from the primal heuristics mentioned in Sections 5.6.1 and 5.6.3 in generating
strong incumbents. Enhancing Benders with advanced techniques, such as Pareto-optimal
cuts or stabilization methods, can mitigate this drawback [48] [64]. Hybrid strategies
combining primal heuristics and cut generation have also been proposed to accelerate
convergence [38]. In both the four- and seven-day scenario, Strategy 2 provides the best
feasible integer solution in the given time, out of the tested Benders strategies. This can
be related to the strategy’s feature described Table 24, that assigns disjoint subproblems
to workers, reducing cut generation overhead. This hybrid approach of decomposition
and parallel subproblem solving allows Strategy 2 to achieve better dual bounds while
efficiently identifying feasible integer solutions.
It is concluded that the success of Benders is highly sensitive to decomposition quality,
cut strength and solver integration.
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8 Challenges and Sugggestions for Future Research

The results presented throughout this research inspire to explore more problem formula-
tions, methods, strategies, and scenarios.

8.1 Custom Environments for Warm Start Strategies

The extensive testing of warm start strategies in a wide range of environments and sce-
narios reveals great potential, once applied in the right context. EMSs are known to
demonstrate complex behavior as many combinations of input data are possible. The
variability can be thought of as its strength that, provided an efficient formulation for a
specific EMS, a warm start in the right configuration greatly improves solver performance.
Choosing the Effort Level however, is delicate as we observe in Tables 12 and 15, where
warm starts are rejected by CPLEX. Other solvers like Gurobi can be considered in such
cases to execute fully supported warm start strategies.
The beneficial configurations of initialization strategies and problem formulations within
the scope of this research motivate investigating conditional guidance of the solver towards
the most beneficial strategy, based on the provided scenario input data. By exploiting
past experience across scenarios, horizons, and environments, the solver can be guided to
decide whether a warm start is likely to be beneficial or whether an alternative initializa-
tion should be preferred. Future research could further develop and test such conditional
warm start mechanisms, particularly those leveraging machine learning to recognize pat-
terns of success and dynamically adapt initialization strategies to the given EMS context.
Repeated large-scale testing across a broader set of scenarios could provide valuable in-
sights into consistency, guidelines, and general principles in RH MILP energy optimization
field.
As discussed in Section 5.9, the type and quantity of cuts are closely related to performance
and solvers continuously improve their effective cutting strategies. The variability of input
data can be used to guide the solver in a favorable direction at an early stage. Supervised
learning strategies for node selection could, for example, prevent extensive branching in
suboptimal directions of large branch-and-bound search trees caused by large amounts of
fractional variables. Observations in Section 5.9.3, however, inspire to avoid such exten-
sive sampling for scenarios with few fractional variables, as a consequence of the provided
input data. Root LP-relaxation sampling strategies and the usage of machine learning can
greatly improve node selection guiding the solver into the efficient generation of cutting
planes.

8.2 Rolling Horizon

Feasibility conditions play a central role in the rolling horizon application of warm start
strategies, as discussed in Section 5.8.2. Robust warm starts in a rolling horizon environ-
ment require careful testing of the proposed initialization methods. Real-time evaluation
will help identify the challenges and opportunities associated with providing (parts of) the
solution from t− 1. At the solver-specific level, actions could be informed by prior knowl-
edge or learning-based methods, guiding the solver towards the most effective initialization
strategy in light of the incumbent from t − 1 and the scenario input data. Such mecha-
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nisms may include conditional rules or loop structures that, for example, assess whether
the incumbent from t− 1, when used as a warm start at t, produces an acceptable initial
gap relative to the LP relaxation of t. If the initial gap violates a predefined limit, the
solver could discard or adjust the warm start and instead rely on violation variables or al-
ternative initialization strategies providing a faster route to feasibility and optimality. In
addition, varying temporal horizons may be considered for industrial processes or assets
that are constrained on different temporal bases. The conditional mechanisms suggested
in Section 8.1 can be used to decide the most efficient temporal resolutions, given the
provided input data.

8.3 Problem Formulation and Algorithm Design

Problem formulations were consistently observed to have a decisive impact on solver per-
formance. Furthermore, the (non-)beneficial applications of warm start strategies pointed
towards opportunities for more efficient formulations. For instance, Table 15 shows a high
initial gap for scenario 2, once provided with a warm start of the discrete decision vari-
ables on Effort Level 2. This observation suggests that the problem should be bounded
more tightly using valid inequalities or reformulations that restrict infeasible fractional
solutions. This would narrow the search space for unrealistically low costs causing the
weak Lower Bound. Reformulation aims to improve the LB in scenarios in which dis-
crete decisions are monotone, such as the total blockage of assets in case of negative DA
prices and aFRR engagements. In general, tighter bounding is expected to improve initial
bounds across a wide range of EMS scenarios, and more specifically to reduce initial gaps
when warm starts provide a high-quality incumbent.
Benders decomposition is most effective when the master problem provides strong guid-
ance to the subproblems. However, when the master is too weak, either due to a high
number of complicating variables or excessive interdependencies between constraints, gen-
erated cuts carry limited information. In such cases, convergence can be slow and the
benefits of decomposition weaken compared to solving the full MILP directly. Alternative
annotations could improve the guidance level of the master problem. Similar to warm
start strategies for certain Effort Levels, Benders strategies can be rejected in the doc-
plex environment, and other solvers like Gurobi can be considered to implement custom
Benders using callbacks, an approach that provides great control over the formulation.
Hybrid formulations that combine Benders with Dantzig-Wolfe or Branch and Cut can
be explored to leverage both primal heuristics and multiple types of cut generation.
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9 Discussion and Conclusion

The contribution of this research lies in providing an extensive performance analysis of
initialization strategies for EMS optimization across a broad range of scenarios. Numer-
ous cycles of testing, reflection, and reformulation of warm start strategies have been per-
formed throughout this study. Strategies can work accelerating or decelerating, depending
on environmental conditions and problem formulations. The baseline comparisons, refor-
mulations, and validation experiments confirmed both the potential benefit of a warm
start strategy, once accurately targeted, and the importance of efficient problem formu-
lation. The study systematically explored diverse problem formulations, from which key
insights are derived. The conclusion of this work is structured into categories of problem
formulations and initialization strategies that demonstrated the greatest impact on solver
performance throughout the research. For each category, the key results are presented.

9.1 Market Engagement, DA Prices, and Horizons

EMS optimization problem instances vary greatly in degrees of freedom, as discussed
in Sections 5.2, 5.5.2 and 5.9.2. Engagement in the aFRR market narrows the feasible
solution region by deactivating a group of assets. A scenario with aFRR participation
converged 48% faster than its equivalent without aFRR engagements, as a consequence
of fewer degrees of freedom for the solver to search for feasible solutions. Moreover, it is
observed throughout this research that DA price profiles have a great impact on solver
performance. We observed in Table 15 for scenarios 2 and 3, identical except for their
DA price profiles, that scenario 2 containing negative DA prices converged 38% faster
than the same scenario with a strictly positive DA price profile. Across the tested cases
with strictly positive DA price profiles, we observed an increase in cut generation for
further modeling horizons. Note that augmented cut generation did not always imply
slow convergence, as the 50 hours horizon scenario outperformed both scenarios with a
horizon of 48 hours in terms of running time.

9.2 Violation Decision Variables

Sections 5.3 and 7.2 discussed the impact on solver performance and model robustness
as a consequence of the inclusion of violation decision variables. Table 22 showed an
acceleration of at least 34% when the violation decision variables were removed of the
model in three out of four scenarios and a deceleration of 36% of the last scenario. Sections
5.5.1 and 5.5.2 showed a reduction in running time by 37% and 5%, respectively, once
bounds for violation decision variables were provided.
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9.3 Linearity

Solver dynamics concerning the treatment of nonlinearities was analyzed in Section 6 and
reformulations were presented to avoid them. Reformulation accelerated convergence to
the optimal solution, and the linear formulation converged 18 times faster on average
over the tested scenarios, corresponding to a 95% decrease in running time. It is there-
fore advisable to eliminate nonlinearities where possible and apply linear reformulations,
provided that solution quality is not compromised.

9.4 Benders Decomposition

Section 7 presented an empirical analysis and reflection of a Benders Decomposition.
A Benders Decomposition was applied to the linear formulation of the model without
violation decision variables. Across three tested Benders Strategies for the scenario with
a seven-day horizon, Strategy 2 provided the best feasible integer solution in the given time
frame. The four-day horizon scenario converged for conventional Branch and Cut (B&C)
and obtained no benefits in terms of running time from adopting a Benders Decomposition
with Benders Strategies 1 and 2. Across the tested Benders Strategies for this scenario,
Strategy 2 again provided the best feasible integer solution in the given time frame, that
deviated 163% from the optimal feasible solution obtained from B&C.

9.5 Warm Start Strategies and Outlook

Results of warm start strategies for different variable sets and Effort Levels for diverse
scenarios, alternating market engagements, price profiles, and tightness of problem def-
initions were presented in Tables 5, 15, 20. For an optimization with a horizon of 48
hours and a scenario containing negative DA prices, the most effective warm start accel-
erated convergence by 27%. Across five different scenarios ((Table 15)), varying in horizon
length, DA price profile, and environmental and system conditions, the warm start of all
variables on Effort Level 0 and the warm start of all discrete variables on Effort Level 2
were tested. The latter strategy appeared to be beneficial in terms of running time for all
scenarios with strictly positive DA prices. The most effective warm start of this compari-
son improved the running time by 54% by adopting a warm start of all variables on Effort
Level 0. The success of the warm start strategy depended on the size and formulation of
the problem, the specified Effort Level, and is scenario-specific for the optimization of En-
ergy Management Systems. Also, note that for the same scenario, but with a different or
more efficient problem formulation, warm starts may lose their effect. This was observed
after adding bounds in Table 10, or in the linear formulation in Table 20.

The synthesis of the findings of this research into categorized takeaways, together with
the proposed directions for future work in Section 8, provides guidance on efficient formu-
lations that support effective initialization and enhance solver performance. The broad
range of strategies, formulations, algorithms, and scenarios considered ensures that the re-
sults of this thesis remain relevant across diverse users and system configurations, thereby
contributing to scalable and widely applicable optimization practices.
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A CPLEX OPL Codes

A.1 Orchestration to run warm start strategies
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<?xml version = "1.0" encoding="UTF-8" standalone="yes"?> 
<CPLEXSolutions version="1.2"> 
 <CPLEXSolution version="1.2"> 
  <header 
    problemName="MicrogridOptimizer5" 
    solutionName="m1" 
    solutionIndex="0"  
    MIPStartEffortLevel="0" 
    writeLevel="1"/> 
  <variables> 
   <variable name="ImportTarget#0" index="0" value="0"/> 
   <variable name="ImportTarget#1" index="1" value="0"/> 
Is the mst file layout 

 

Reformulations of constraints in CPLEX  

 

//dexpr float CyclingStepContribution[s in isE_STORAGES][t in 
isDECISION_STEPS] = (nomEnergyMax[s] > 0.0 ? abs(StorStepDCEnergyIn[s][t]) 
/ (2 * nomEnergyMax[s]) : 0.0); 
dexpr float CyclingStepContribution[s in isE_STORAGES][t in 
isDECISION_STEPS] = (nomEnergyMax[s] > 0.0 ? (StorDCPowerCharge[s][t] + 
StorDCPowerDischarge[s][t]) * assetStepDurationInHours / (2 * 
nomEnergyMax[s]) : 0.0); 
 

// DC Charge Power 
// forall (s in isE_STORAGES, t in isDECISION_STEPS) 
//   ctStorDCPowerCharge: StorDCPowerCharge[s][t] == 
//    sum(se in 1..chargeStorSegNbr[chargeVarEffModelId[s]]) 
//      (  (storChargeSegSlope[chargeVarEffModelId[s]][se] > 0.0 ? 
StorACSegPowerCharge[s][se][t] / 
storChargeSegSlope[chargeVarEffModelId[s]][se] : 0.0) 
//       - (storChargeSegSlope[chargeVarEffModelId[s]][se] > 0.0 ? 
storChargeSegOrdinate[chargeVarEffModelId[s]][se] / 
storChargeSegSlope[chargeVarEffModelId[s]][se] : 0.0) 
//       * StorACSegChargeFlag[s][se][t] 
//      ); 
 forall (s in isE_STORAGES, t in isDECISION_STEPS) 
   ctStorDCPowerCharge: StorDCPowerCharge[s][t] == 
StorACPowerCharge[s][t] * assetChargeEfficiency[s];      
 
// DC Discharge Power 
// forall (s in isE_STORAGES, t in isDECISION_STEPS) 
//   ctStorDCPowerDischarge: StorDCPowerDischarge[s][t] == 
//    sum(se in 1..dischStorSegNbr[dischVarEffModelId[s]]) 
//      ( (storDischSegSlope[dischVarEffModelId[s]][se] > 0.0 ? 
StorACSegPowerDischarge[s][se][t] / 
storDischSegSlope[dischVarEffModelId[s]][se]: 0.0) 

//      - (storDischSegSlope[dischVarEffModelId[s]][se] > 0.0 ? 
storDischSegOrdinate[dischVarEffModelId[s]][se] / 
storDischSegSlope[dischVarEffModelId[s]][se] : 0.0) 
//      * StorACSegDischFlag[s][se][t]); 
 forall (s in isE_STORAGES, t in isDECISION_STEPS) 
   ctStorDCPowerDischarge: StorDCPowerDischarge[s][t] ==
 StorACPowerDischarge[s][t] / assetChargeEfficiency[s];   
 
// Upperbound SOCmaxExcess 
 forall (s in isE_STORAGES, t in isDECISION_STEPS) 
   ctSOCmaxExcessbound: SOCmaxExcess[s][t] <= 100 - storElecMaxSOC[s] 
+ FCRPower_MW[s][assetStepFCRStep[t]] * (storEnergyUp1MWFCR / 
storMaxDCEnergy[s][t])*100;  
 
// Upperbound SOCstrictMinDeficit  
   forall (s in isE_STORAGES, t in isDECISION_STEPS) 
     ctSOCstrictMinDeficitbound: SOCstrictMinDeficit[s][t] <= 
storStrictElecMinSOC[s] + FCRPower_MW[s][assetStepFCRStep[t]] * 
(storEnergyDwn1MWFCR / storMaxDCEnergy[s][t]) * 100 - 0; 
 

A.2 MST file format and Constraint Formulation
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Model with violations, 36h scenario no ws 
OBJ = -2004.559432251 
Status = 102 
 
Checking license ... 
License found. [0,06 s] 
Version identifier: 22.1.2.0 | 2024-12-09 | 8bd2200c8 
CPXPARAM_Tune_Display                            3 
CPXPARAM_Output_WriteLevel                       1 
CPXPARAM_MIP_Tolerances_MIPGap                   0.00014999999999999999 
Legacy callback                                  pi 
Tried aggregator 3 times. 
MIP Presolve eliminated 14114 rows and 15287 columns. 
MIP Presolve modified 18 coefficients. 
Aggregator did 1583 substitutions. 
Reduced MIP has 41892 rows, 42390 columns, and 116704 nonzeros. 
Reduced MIP has 10633 binaries, 102 generals, 0 SOSs, and 18814 indicators. 
Presolve time = 0,31 sec. (540,86 ticks) 
Probing fixed 0 vars, tightened 286 bounds. 
Probing time = 0,70 sec. (27,27 ticks) 
Tried aggregator 1 time. 
Detecting symmetries... 
MIP Presolve eliminated 120 rows and 0 columns. 
Reduced MIP has 41772 rows, 42390 columns, and 116464 nonzeros. 
Reduced MIP has 10634 binaries, 420 generals, 0 SOSs, and 18814 indicators. 
Presolve time = 0,12 sec. (102,99 ticks) 
Probing time = 0,11 sec. (10,84 ticks) 
Clique table members: 19316. 
MIP emphasis: balance optimality and feasibility. 
MIP search method: dynamic search. 
Parallel mode: deterministic, using up to 12 threads. 
Root relaxation solution time = 1,67 sec. (2995,09 ticks) 
 
        Nodes                                         Cuts/ 
   Node  Left     Objective  IInf  Best Integer    Best Bound    ItCnt     
Gap 
 
*     0+    0                       8,01272e+09                            
---  
*     0+    0                       1,59078e+08                            
---  
      0     0    -2114,6839   489   1,59078e+08    -2114,6839       35  
100,00% 
*     0+    0                       1,46489e+08    -2114,6839           
100,00% 
*     0+    0                       1,46483e+08    -2114,6839           
100,00% 
      0     0    -2065,8626   400   1,46483e+08    Cuts: 1729     5364  
100,00% 
*     0+    0                      7471299,5743    -2065,8626           
100,03% 
      0     0    -2056,6027  1539  7471299,5743    Cuts: 9285     9429  
100,03% 

*     0+    0                      6031944,8371    -2056,6027           
100,03% 
      0     0    -2044,6550   901  6031944,8371    Cuts: 5009    13163  
100,03% 
*     0+    0                      5428216,6318    -2044,6550           
100,04% 
      0     0    -2042,9573   948  5428216,6318    Cuts: 1256    14061  
100,04% 
*     0+    0                      2394385,5485    -2042,9573           
100,09% 
      0     0    -2042,6685  1071  2394385,5485     Cuts: 503    14370  
100,09% 
      0     0    -2042,4244   926  2394385,5485     Cuts: 373    14689  
100,09% 
      0     0    -2041,3315  1165  2394385,5485     Cuts: 452    15269  
100,09% 
*     0+    0                      1872103,5855    -2041,3315           
100,11% 
      0     0    -2040,9186  1123  1872103,5855     Cuts: 133    15413  
100,11% 
*     0+    0                      1321251,0607    -2040,9186           
100,15% 
      0     0    -2040,6874   948  1321251,0607     Cuts: 234    15660  
100,15% 
*     0+    0                      1321251,0400    -2040,6874           
100,15% 
      0     0    -2040,6874   946  1321251,0400       Cuts: 4    15665  
100,15% 
      0     0    -2040,6874   944  1321251,0400     Covers: 1    15668  
100,15% 
*     0+    0                         4883,7485    -2040,6874           
141,79% 
*     0+    0                        -1498,2172    -2040,6874            
36,21% 
      0     2    -2040,6874   944    -1498,2172    -2040,6874    15668   
36,21% 
Elapsed time = 18,17 sec. (23122,56 ticks, tree = 0,02 MB, solutions = 13) 
     11     9    -1873,0705   772    -1498,2172    -2040,5926    17300   
36,20% 
     39    22    -1921,0048   883    -1498,2172    -2029,5009    20641   
35,46% 
    107    79    -1989,1106   239    -1498,2172    -2027,9620    34670   
35,36% 
    194   142    -1871,5616   357    -1498,2172    -2027,9620    45024   
35,36% 
    293   262    -1998,3737   298    -1498,2172    -2027,9620    50788   
35,36% 
    362   313    -1896,3755   460    -1498,2172    -2027,9620    56367   
35,36% 
    473   394    -1900,9793   160    -1498,2172    -2027,9620    58888   
35,36% 
    583   510    -1977,3723   354    -1498,2172    -2027,9620    61968   
35,36% 

    693   580    -1966,5812   225    -1498,2172    -2027,9620    65279   
35,36% 
*   854+  723                        -1885,0250    -2027,9620             
7,58% 
*   925+  794                        -1903,4233    -2027,9620             
6,54% 
*   928+  804                        -1961,4237    -2027,9620             
3,39% 
    959   796    -1906,1581     6    -1961,4237    -2027,9620    74704    
3,39% 
Elapsed time = 31,52 sec. (26263,14 ticks, tree = 15,79 MB, solutions = 15) 
*  1019+  818                        -1981,4763    -2027,9620             
2,35% 
   1120   164    -1994,7191   271    -1981,4763    -2027,9620    90810    
2,35% 
   1334   249    -1983,4549   246    -1981,4763    -2025,5693   102949    
2,23% 
   1607   430    -1983,5345   229    -1981,4763    -2014,1263   121442    
1,65% 
*  1688+  449                        -1982,5673    -2014,1263             
1,59% 
*  1754+  448                        -1982,8136    -2014,1263             
1,58% 
*  1795+  533                        -1988,2981    -2014,1263             
1,30% 
*  1855+  533                        -1988,3403    -2014,1263             
1,30% 
   1918   614    -1991,0112    53    -1988,3403    -2014,1263   141735    
1,30% 
*  2182+  379                        -1990,3018    -2014,1263             
1,20% 
*  2204+  565                        -1994,0717    -2014,1263             
1,01% 
   2232   434    -1992,9326     2    -1994,0717    -2014,1263   153887    
1,01% 
*  2344+  358                        -1996,4621    -2014,1263             
0,88% 
*  2449+  444                        -1998,7811    -2013,7368             
0,75% 
   2547   325    -2001,7534   154    -1998,7811    -2012,1484   162357    
0,67% 
*  2585+  444                        -1998,8234    -2012,1484             
0,67% 
*  2697+  321                        -2004,3394    -2011,2590             
0,35% 
*  2715+  345                        -2004,3816    -2011,2590             
0,34% 
   2865   262    -2004,4373     2    -2004,3816    -2010,7946   170329    
0,32% 
   3216   289    -2008,0465   316    -2004,3816    -2010,4075   177815    
0,30% 
   3540   468    -2004,3836     1    -2004,3816    -2010,4075   181984    
0,30% 

   3898   653    -2004,3836     1    -2004,3816    -2010,4075   192029    
0,30% 
Elapsed time = 71,36 sec. (35815,85 ticks, tree = 11,65 MB, solutions = 42) 
 
Performing restart 1 
 
Repeating presolve. 
Tried aggregator 2 times. 
MIP Presolve eliminated 837 rows and 1293 columns. 
MIP Presolve modified 153 coefficients. 
Aggregator did 177 substitutions. 
Reduced MIP has 40758 rows, 40920 columns, and 113469 nonzeros. 
Reduced MIP has 10500 binaries, 172 generals, 0 SOSs, and 18814 indicators. 
Presolve time = 0,19 sec. (126,95 ticks) 
Tried aggregator 1 time. 
MIP Presolve modified 111 coefficients. 
Reduced MIP has 40900 rows, 40920 columns, and 113753 nonzeros. 
Reduced MIP has 10500 binaries, 172 generals, 0 SOSs, and 18672 indicators. 
Presolve time = 0,09 sec. (91,64 ticks) 
Represolve time = 0,95 sec. (330,80 ticks) 
   3930     0    -2035,6599  1079    -2004,3816    Cuts: 3361   226183    
0,30% 
   3930     0    -2033,1649  1089    -2004,3816    Cuts: 1234   227067    
0,30% 
   3930     0    -2031,3167  1411    -2004,3816     Cuts: 735   228188    
0,30% 
   3930     0    -2029,3291  1455    -2004,3816    Cuts: 1465   229094    
0,30% 
   3930     0    -2026,7252  1449    -2004,3816    Cuts: 1902   230298    
0,30% 
   3930     0    -2024,1830  1405    -2004,3816    Cuts: 1179   231126    
0,24% 
   3930     0    -2022,4757  1489    -2004,3816    Cuts: 1706   232456    
0,22% 
   3930     0    -2021,8468  1510    -2004,3816    Cuts: 1179   232906    
0,18% 
   3930     2    -2021,8464  1510    -2004,3816    -2007,7009   233004    
0,17% 
   3952     4    -2005,3194   825    -2004,3816    -2007,7009   236398    
0,17% 
   4009    19    -2007,1091   537    -2004,3816    -2007,7009   240792    
0,17% 
   4413   242    -2005,2863   215    -2004,3816    -2007,7009   255697    
0,17% 
   4827   427    -2004,5114    50    -2004,3816    -2007,7009   270117    
0,17% 
   5329   653    -2004,4214    45    -2004,3816    -2007,7009   283435    
0,17% 
*  5528   777      integral     0    -2004,4507    -2007,7009   292469    
0,16% 
*  5536   736      integral     0    -2004,5113    -2007,7009   287584    
0,16% 
   5878   618        cutoff          -2004,5113    -2006,7035   308825    
0,11% 
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   6272   517        cutoff          -2004,5113    -2006,2103   335992    
0,08% 
Elapsed time = 139,44 sec. (95983,85 ticks, tree = 8,04 MB, solutions = 44) 
*  6319+  552                        -2004,5594    -2006,2103             
0,08% 
 
GUB cover cuts applied:  4 
Clique cuts applied:  1 
Cover cuts applied:  1917 
Implied bound cuts applied:  1407 
Flow cuts applied:  425 
Mixed integer rounding cuts applied:  733 
Lift and project cuts applied:  76 
Gomory fractional cuts applied:  77 
 
Root node processing (before b&c): 
  Real time             =   17,72 sec. (22930,34 ticks) 
Parallel b&c, 12 threads: 
  Real time             =  123,17 sec. (73629,84 ticks) 
  Sync time (average)   =   27,37 sec. 
  Wait time (average)   =    0,06 sec. 
                          ------------ 
Total (root+branch&cut) =  140,89 sec. (96560,18 ticks) 
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

Model with violations, ws m1 effort level 0 
OBJ = -2004.559432251 
Status = 102 
 

Checking license ... 
License found. [0,06 s] 
Version identifier: 22.1.2.0 | 2024-12-09 | 8bd2200c8 
CPXPARAM_Tune_Display                            3 
CPXPARAM_Output_WriteLevel                       1 
CPXPARAM_MIP_Tolerances_MIPGap                   0.00014999999999999999 
Legacy callback                                  pi 
Reduced MIP has 39349 rows, 59548 columns, and 119960 nonzeros. 
Reduced MIP has 14458 binaries, 144 generals, 0 SOSs, and 19104 indicators. 
Presolve time = 0,08 sec. (455,04 ticks) 
1 of 1 MIP starts provided solutions. 
MIP start 'm1' defined initial solution with objective -2004,5594. 
Tried aggregator 3 times. 
MIP Presolve eliminated 14114 rows and 15287 columns. 
MIP Presolve modified 18 coefficients. 
Aggregator did 1583 substitutions. 
Reduced MIP has 41892 rows, 42390 columns, and 116704 nonzeros. 
Reduced MIP has 10633 binaries, 102 generals, 0 SOSs, and 18814 indicators. 
Presolve time = 0,17 sec. (540,86 ticks) 
Probing fixed 0 vars, tightened 286 bounds. 
Probing time = 0,44 sec. (27,27 ticks) 
Tried aggregator 1 time. 
Detecting symmetries... 

MIP Presolve eliminated 120 rows and 0 columns. 
Reduced MIP has 41772 rows, 42390 columns, and 116464 nonzeros. 
Reduced MIP has 10634 binaries, 420 generals, 0 SOSs, and 18814 indicators. 
Presolve time = 0,11 sec. (102,99 ticks) 
Probing time = 0,09 sec. (10,84 ticks) 
Clique table members: 19316. 
MIP emphasis: balance optimality and feasibility. 
MIP search method: dynamic search. 
Parallel mode: deterministic, using up to 12 threads. 
Root relaxation solution time = 1,28 sec. (2995,09 ticks) 
 
        Nodes                                         Cuts/ 
   Node  Left     Objective  IInf  Best Integer    Best Bound    ItCnt     
Gap 
 
*     0+    0                        -2004,5594                            
---  
      0     0    -2114,6839   489    -2004,5594    -2114,6839       35    
5,49% 
      0     0    -2052,8748   473    -2004,5594    Cuts: 3100     5413    
2,41% 
      0     0    -2041,1164  1308    -2004,5594    Cuts: 6452     8619    
1,82% 
      0     0    -2038,8089  2028    -2004,5594    Cuts: 3634    11080    
1,71% 
      0     0    -2038,2992  1936    -2004,5594     Cuts: 505    11659    
1,68% 
      0     0    -2038,0591  1933    -2004,5594     Cuts: 301    11813    
1,67% 
      0     0    -2038,0090  1930    -2004,5594     Cuts: 181    11870    
1,67% 
      0     0    -2037,9798  1952    -2004,5594      Cuts: 35    11907    
1,67% 
      0     2    -2037,9798  1952    -2004,5594    -2037,9798    11907    
1,67% 
Elapsed time = 11,25 sec. (15083,45 ticks, tree = 0,02 MB, solutions = 1) 
      5     3    -2027,8877  1867    -2004,5594    -2037,6489    12491    
1,65% 
     17     5    -2006,2421   732    -2004,5594    -2030,2806    15212    
1,28% 
     35     6        cutoff          -2004,5594    -2013,7108    21726    
0,46% 
     50     9    -2006,1928   511    -2004,5594    -2013,7108    22780    
0,46% 
     74    10        cutoff          -2004,5594    -2013,6904    24471    
0,46% 
     94    14    -2008,2029   535    -2004,5594    -2013,0194    25845    
0,42% 
    146    25        cutoff          -2004,5594    -2012,5867    26872    
0,40% 
    227    59        cutoff          -2004,5594    -2012,5867    28469    
0,40% 
    305    94        cutoff          -2004,5594    -2012,5867    32055    
0,40% 

    684   247    -2006,2296   336    -2004,5594    -2012,5867   100649    
0,40% 
Elapsed time = 23,98 sec. (18539,82 ticks, tree = 3,44 MB, solutions = 1) 
   1087   447    -2005,5067   269    -2004,5594    -2011,6400   117701    
0,35% 
   1439   641    -2007,6792   402    -2004,5594    -2011,5994   152068    
0,35% 
   1680   735    -2006,0835   328    -2004,5594    -2011,3309   169634    
0,34% 
   2031   816    -2005,2997   394    -2004,5594    -2009,5654   182489    
0,25% 
   2379   923    -2007,2363   323    -2004,5594    -2008,9978   198591    
0,22% 
   2736   974    -2007,8866   430    -2004,5594    -2008,5982   211535    
0,20% 
   3104  1057    -2004,9620   269    -2004,5594    -2008,1899   233223    
0,18% 
   3494  1094    -2005,4022   277    -2004,5594    -2007,6225   239889    
0,15% 
   3839  1144        cutoff          -2004,5594    -2007,4188   260922    
0,14% 
   4245  1112    -2005,6782   322    -2004,5594    -2007,1429   272136    
0,13% 
Elapsed time = 70,25 sec. (28109,29 ticks, tree = 18,79 MB, solutions = 1) 
   4645  1065    -2005,4159   247    -2004,5594    -2006,3062   285374    
0,09% 
   4955  1011        cutoff          -2004,5594    -2006,0594   302062    
0,07% 
   5295   994    -2004,7074   374    -2004,5594    -2005,8204   321380    
0,06% 
   5609  1057        cutoff          -2004,5594    -2005,7203   348949    
0,06% 
   5920  1078    -2005,4269   303    -2004,5594    -2005,6183   399448    
0,05% 
   6198  1065    -2004,7153   282    -2004,5594    -2005,5922   448021    
0,05% 
   6494  1041        cutoff          -2004,5594    -2005,5063   494215    
0,05% 
   6783   932        cutoff          -2004,5594    -2005,3664   568617    
0,04% 
   7082   850    -2004,8739   280    -2004,5594    -2005,1769   613730    
0,03% 
   7463   815    -2005,0180   452    -2004,5594    -2005,0730   663598    
0,03% 
Elapsed time = 114,36 sec. (37672,42 ticks, tree = 16,00 MB, solutions = 1) 
 
Performing restart 1 
 
Repeating presolve. 
Tried aggregator 2 times. 
MIP Presolve eliminated 1408 rows and 1535 columns. 
MIP Presolve modified 2165 coefficients. 
Aggregator did 279 substitutions. 
Reduced MIP has 40208 rows, 40576 columns, and 111247 nonzeros. 

Reduced MIP has 10390 binaries, 30 generals, 0 SOSs, and 18691 indicators. 
Presolve time = 0,19 sec. (152,98 ticks) 
Tried aggregator 2 times. 
MIP Presolve eliminated 8 rows and 2 columns. 
MIP Presolve modified 13987 coefficients. 
Aggregator did 123 substitutions. 
Reduced MIP has 40096 rows, 40451 columns, and 111013 nonzeros. 
Reduced MIP has 10267 binaries, 30 generals, 0 SOSs, and 18672 indicators. 
Presolve time = 0,11 sec. (111,72 ticks) 
Represolve time = 0,89 sec. (372,15 ticks) 
   7695     0    -2033,8690  1464    -2004,5594    Cuts: 5152   744232    
0,02% 
   7695     0    -2031,3002  1370    -2004,5594     Cuts: 742   745418    
0,02% 
   7695     0    -2029,3038  1416    -2004,5594    Cuts: 1217   746114    
0,02% 
   7695     0    -2028,0688  1767    -2004,5594    Cuts: 1215   747216    
0,02% 
   7695     0    -2025,8716  1958    -2004,5594     Cuts: 956   747975    
0,02% 
   7695     0    -2025,0377  2133    -2004,5594    Cuts: 1099   748774    
0,02% 
   7695     2    -2025,0377  2133    -2004,5594    -2005,0180   748774    
0,02% 
   7702     4    -2011,0689   755    -2004,5594    -2005,0180   751359    
0,02% 
   7705     3    -2021,5623  1420    -2004,5594    -2005,0180   749251    
0,02% 
   7711     3    -2017,6034   783    -2004,5594    -2005,0180   756044    
0,02% 
   7740    10    -2007,5453   504    -2004,5594    -2005,0180   760670    
0,02% 
   7942    40        cutoff          -2004,5594    -2005,0180   768618    
0,02% 
 
GUB cover cuts applied:  3 
Clique cuts applied:  15 
Cover cuts applied:  1646 
Implied bound cuts applied:  1964 
Flow cuts applied:  400 
Mixed integer rounding cuts applied:  325 
Lift and project cuts applied:  42 
Gomory fractional cuts applied:  58 
 
Root node processing (before b&c): 
  Real time             =   10,80 sec. (14792,59 ticks) 
Parallel b&c, 12 threads: 
  Real time             =  146,72 sec. (71950,32 ticks) 
  Sync time (average)   =   39,07 sec. 
  Wait time (average)   =    0,05 sec. 
                          ------------ 
Total (root+branch&cut) =  157,51 sec. (86742,91 ticks) 
 
 



XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

Model with violations, ws discrete vars level 2 

OBJ = -2004.559432251 

Status = 102 

Checking license ... 
License found. [0,03 s] 
Version identifier: 22.1.2.0 | 2024-12-09 | 8bd2200c8 
CPXPARAM_Tune_Display                            3 
CPXPARAM_Output_WriteLevel                       1 
CPXPARAM_MIP_Tolerances_MIPGap                   0.00014999999999999999 
Legacy callback                                  pi 
Reduced MIP has 39349 rows, 59548 columns, and 119960 nonzeros. 
Reduced MIP has 14458 binaries, 144 generals, 0 SOSs, and 19104 indicators. 
Presolve time = 0,06 sec. (455,04 ticks) 
1 of 1 MIP starts provided solutions. 
MIP start 'All discrete variables from m1' defined initial solution with 
objective -2004,5594. 
Tried aggregator 3 times. 
MIP Presolve eliminated 14114 rows and 15287 columns. 
MIP Presolve modified 18 coefficients. 
Aggregator did 1583 substitutions. 
Reduced MIP has 41892 rows, 42390 columns, and 116704 nonzeros. 
Reduced MIP has 10633 binaries, 102 generals, 0 SOSs, and 18814 indicators. 
Presolve time = 0,17 sec. (540,86 ticks) 
Probing fixed 0 vars, tightened 286 bounds. 
Probing time = 0,38 sec. (27,27 ticks) 
Tried aggregator 1 time. 
Detecting symmetries... 
MIP Presolve eliminated 120 rows and 0 columns. 
Reduced MIP has 41772 rows, 42390 columns, and 116464 nonzeros. 
Reduced MIP has 10634 binaries, 420 generals, 0 SOSs, and 18814 indicators. 
Presolve time = 0,09 sec. (102,99 ticks) 
Probing time = 0,08 sec. (10,85 ticks) 
Clique table members: 19316. 
MIP emphasis: balance optimality and feasibility. 
MIP search method: dynamic search. 
Parallel mode: deterministic, using up to 12 threads. 
Root relaxation solution time = 1,28 sec. (3004,12 ticks) 
 
        Nodes                                         Cuts/ 
   Node  Left     Objective  IInf  Best Integer    Best Bound    ItCnt     
Gap 
 
*     0+    0                        -2004,5594                            
---  
      0     0    -2114,6839   489    -2004,5594    -2114,6839       35    
5,49% 
      0     0    -2057,4959   586    -2004,5594    Cuts: 2953     6194    
2,64% 

      0     0    -2041,1702  1860    -2004,5594    Cuts: 9366     9769    
1,83% 
      0     0    -2040,1836  1836    -2004,5594    Cuts: 1186    10871    
1,78% 
      0     0    -2039,6099  1870    -2004,5594     Cuts: 318    11186    
1,75% 
      0     0    -2039,4375  1863    -2004,5594     Cuts: 283    11345    
1,74% 
      0     0    -2038,9032  1889    -2004,5594      Cuts: 81    11481    
1,71% 
      0     0    -2038,8726  1884    -2004,5594      Cuts: 40    11490    
1,71% 
      0     0    -2038,8219  1860    -2004,5594     Cuts: 114    11598    
1,71% 
      0     0    -2038,6836  1882    -2004,5594      Cuts: 31    11629    
1,70% 
      0     2    -2038,6836  1882    -2004,5594    -2038,6836    11629    
1,70% 
Elapsed time = 11,25 sec. (14690,35 ticks, tree = 0,02 MB, solutions = 1) 
      5     3    -2028,2951  1882    -2004,5594    -2038,4791    11928    
1,69% 
     12     4    -2023,7855   769    -2004,5594    -2030,6103    12905    
1,30% 
     23     7        cutoff          -2004,5594    -2023,0400    15737    
0,92% 
     52    11        cutoff          -2004,5594    -2013,2398    20099    
0,43% 
     96    29    -2009,1312   486    -2004,5594    -2012,8228    21747    
0,41% 
    189    51    -2007,2346   515    -2004,5594    -2011,9973    24410    
0,37% 
    275    80    -2005,2157   409    -2004,5594    -2011,9973    27931    
0,37% 
    359    91    -2004,6993   479    -2004,5594    -2011,9973    30303    
0,37% 
    471    95    -2006,1419   491    -2004,5594    -2011,9973    32429    
0,37% 
    872   232    -2004,6093   181    -2004,5594    -2010,7463    41246    
0,31% 
Elapsed time = 22,91 sec. (18109,33 ticks, tree = 3,08 MB, solutions = 1) 
   1204   327    -2005,6508   405    -2004,5594    -2010,7463    62884    
0,31% 
   1538   471        cutoff          -2004,5594    -2010,0032    97483    
0,27% 
   1796   542    -2006,2727   360    -2004,5594    -2009,3926   121879    
0,24% 
   2167   653    -2004,9215   253    -2004,5594    -2009,1795   142549    
0,23% 
   2679   832    -2004,6109   171    -2004,5594    -2006,8949   167116    
0,12% 
   3066   966    -2006,4546   222    -2004,5594    -2006,6053   196512    
0,10% 
   3403  1169    -2004,9143   269    -2004,5594    -2006,6052   241787    
0,10% 

   3714  1275        cutoff          -2004,5594    -2006,6052   269594    
0,10% 
   4133  1417    -2004,9395   313    -2004,5594    -2006,6052   298055    
0,10% 
   4536  1587    -2005,5844   313    -2004,5594    -2006,6052   345078    
0,10% 
Elapsed time = 64,58 sec. (27677,84 ticks, tree = 28,83 MB, solutions = 1) 
   4970  1714    -2006,3014   378    -2004,5594    -2006,6052   383843    
0,10% 
   5395  1931        cutoff          -2004,5594    -2006,6052   430260    
0,10% 
   5800  2008    -2004,6755   258    -2004,5594    -2006,3842   450792    
0,09% 
 
Performing restart 1 
 
Repeating presolve. 
Tried aggregator 2 times. 
MIP Presolve eliminated 1349 rows and 1513 columns. 
MIP Presolve modified 1953 coefficients. 
Aggregator did 273 substitutions. 
Reduced MIP has 40278 rows, 40604 columns, and 111560 nonzeros. 
Reduced MIP has 10403 binaries, 40 generals, 0 SOSs, and 18686 indicators. 
Presolve time = 0,16 sec. (126,57 ticks) 
Tried aggregator 2 times. 
MIP Presolve eliminated 2 rows and 2 columns. 
MIP Presolve modified 13140 coefficients. 
Aggregator did 128 substitutions. 
Reduced MIP has 40162 rows, 40474 columns, and 111327 nonzeros. 
Reduced MIP has 10275 binaries, 40 generals, 0 SOSs, and 18672 indicators. 
Presolve time = 0,11 sec. (108,64 ticks) 
Represolve time = 0,86 sec. (337,05 ticks) 
   5824     0    -2033,9019   982    -2004,5594    Cuts: 3440   509333    
0,09% 
   5824     0    -2029,0664  1282    -2004,5594     Cuts: 976   510742    
0,09% 
   5824     0    -2028,1444  1836    -2004,5594    Cuts: 1451   512201    
0,09% 
   5824     0    -2026,3530  1595    -2004,5594    Cuts: 3162   513441    
0,09% 
   5824     0    -2024,7278  1963    -2004,5594    Cuts: 1960   514294    
0,09% 
   5824     0    -2024,2133  2095    -2004,5594    Cuts: 1951   515120    
0,09% 
   5824     0    -2023,4747  2338    -2004,5594    Cuts: 1235   515965    
0,09% 
   5824     2    -2023,4747  2338    -2004,5594    -2006,3842   515965    
0,09% 
   5833     3    -2011,3395  1415    -2004,5594    -2006,3842   517876    
0,09% 
   5903    31    -2013,4879  1648    -2004,5594    -2006,3842   521357    
0,09% 
   6030   105    -2006,6353   545    -2004,5594    -2006,3842   539469    
0,09% 

   6245   205    -2004,6215   178    -2004,5594    -2006,3842   566634    
0,09% 
   6556   239    -2012,8821  1350    -2004,5594    -2006,3842   615808    
0,09% 
   6895   255        cutoff          -2004,5594    -2006,3842   683334    
0,09% 
Elapsed time = 138,78 sec. (90353,11 ticks, tree = 5,49 MB, solutions = 1) 
 
GUB cover cuts applied:  5 
Clique cuts applied:  15 
Cover cuts applied:  2265 
Implied bound cuts applied:  2972 
Flow cuts applied:  663 
Mixed integer rounding cuts applied:  325 
Lift and project cuts applied:  72 
Gomory fractional cuts applied:  73 
 
Root node processing (before b&c): 
  Real time             =   10,86 sec. (14393,32 ticks) 
Parallel b&c, 12 threads: 
  Real time             =  128,89 sec. (76490,81 ticks) 
  Sync time (average)   =   26,24 sec. 
  Wait time (average)   =    0,04 sec. 
                          ------------ 
Total (root+branch&cut) =  139,75 sec. (90884,13 ticks) 
 
 



SCENARIO 1 : 
 
LINEAR  
 
Checking license ... 
License found. [0,05 s] 
Version identifier: 22.1.2.0 | 2024-12-09 | 8bd2200c8 
Legacy callback                                  pi 
Tried aggregator 3 times. 
MIP Presolve eliminated 19519 rows and 21330 columns. 
MIP Presolve modified 4 coefficients. 
Aggregator did 1885 substitutions. 
Reduced MIP has 5921 rows, 6817 columns, and 46983 nonzeros. 
Reduced MIP has 1742 binaries, 65 generals, 0 SOSs, and 398 indicators. 
Presolve time = 0,09 sec. (90,41 ticks) 
Probing fixed 0 vars, tightened 398 bounds. 
Probing time = 0,01 sec. (1,91 ticks) 
Cover probing fixed 0 vars, tightened 1 bounds. 
Tried aggregator 1 time. 
Detecting symmetries... 
Reduced MIP has 5921 rows, 6817 columns, and 46983 nonzeros. 
Reduced MIP has 1742 binaries, 272 generals, 0 SOSs, and 398 indicators. 
Presolve time = 0,02 sec. (18,56 ticks) 
Probing time = 0,02 sec. (1,79 ticks) 
Cover probing fixed 0 vars, tightened 1 bounds. 
Clique table members: 479. 
Tightened 1 constraints. 
MIP emphasis: balance optimality and feasibility. 
MIP search method: dynamic search. 
Parallel mode: deterministic, using up to 12 threads. 
Root relaxation solution time = 0,09 sec. (64,08 ticks) 
 
        Nodes                                         Cuts/ 
   Node  Left     Objective  IInf  Best Integer    Best Bound    ItCnt     
Gap 
 
      0     0    -2727,4332   436                  -2727,4332      906          
*     0+    0                       1,15041e+10    -2727,4332           
100,00% 
*     0+    0                       3,77280e+08    -2727,4332           
100,00% 
      0     0    -2694,2250   526   3,77280e+08    Cuts: 1218     2108  
100,00% 
*     0+    0                       1,75310e+07    -2694,2250           
100,02% 
      0     0    -2667,0175   295   1,75310e+07     Cuts: 982     2702  
100,02% 
      0     0    -2655,1678   242   1,75310e+07     Cuts: 385     2971  
100,02% 
*     0+    0                       1,53273e+07    -2655,1678           
100,02% 
      0     0  -1,00000e+75     0   1,53273e+07    -2655,1678     2971  
100,02% 

      0     0    -2650,1648   281   1,53273e+07     Cuts: 156     3115  
100,02% 
*     0+    0                       1,23045e+07    -2650,1648           
100,02% 
      0     0    -2645,1722   262   1,23045e+07      Cuts: 98     3198  
100,02% 
*     0+    0                       1,13766e+07    -2645,1722           
100,02% 
Detecting symmetries... 
      0     0    -2641,9385   243   1,13766e+07      Cuts: 76     3266  
100,02% 
*     0+    0                       1,08779e+07    -2641,9385           
100,02% 
      0     0    -2641,6540   243   1,08779e+07      Cuts: 30     3290  
100,02% 
      0     0    -2641,6362   243   1,08779e+07       Cuts: 9     3305  
100,02% 
*     0+    0                      3064894,1918    -2641,6362           
100,09% 
      0     0    -2641,5839   440  3064894,1918      Cuts: 12     3317  
100,09% 
*     0+    0                       477383,6585    -2641,5839           
100,55% 
Detecting symmetries... 
      0     2    -2641,5839   440   477383,6585    -2636,4472     3317  
100,55% 
Elapsed time = 2,49 sec. (1861,79 ticks, tree = 0,02 MB, solutions = 9) 
    280   190    -2575,0900   364   477383,6585    -2625,7352     9592  
100,55% 
    921   810    -2370,8396   220   477383,6585    -2625,7352    14065  
100,55% 
   1493  1285    -2538,1049   182   477383,6585    -2625,7352    24833  
100,55% 
*  2099+ 1635                       226151,2997    -2625,7352           
101,16% 
   2426  1989    -2443,5473   117   226151,2997    -2625,7352    36246  
101,16% 
*  2970+ 2381                       112033,9018    -2625,7352           
102,34% 
*  3215+ 2599                        -2514,7356    -2625,7352             
4,41% 
*  3364  2795      integral     0    -2531,6311    -2625,7352    41026    
3,72% 
*  3449  2759      integral     0    -2586,0906    -2625,7352    40901    
1,53% 
   3852   380    -2608,4240   307    -2586,0906    -2625,5708    47192    
1,53% 
 
Performing restart 1 
 
Repeating presolve. 
Tried aggregator 3 times. 
MIP Presolve eliminated 553 rows and 1036 columns. 
MIP Presolve modified 246 coefficients. 

Aggregator did 506 substitutions. 
Reduced MIP has 4862 rows, 5275 columns, and 43710 nonzeros. 
Reduced MIP has 1711 binaries, 99 generals, 0 SOSs, and 398 indicators. 
Presolve time = 0,08 sec. (110,20 ticks) 
Tried aggregator 1 time. 
MIP Presolve eliminated 6 rows and 4 columns. 
MIP Presolve modified 73 coefficients. 
Reduced MIP has 4856 rows, 5271 columns, and 43690 nonzeros. 
Reduced MIP has 1707 binaries, 99 generals, 0 SOSs, and 398 indicators. 
Presolve time = 0,03 sec. (24,71 ticks) 
Represolve time = 0,14 sec. (165,77 ticks) 
*  3891+    0                        -2586,3318    -2625,5705             
1,52% 
   3891     0    -2624,0279   156    -2586,3318     Cuts: 399    54113    
1,46% 
   3891     0    -2620,0988   124    -2586,3318     Cuts: 211    54304    
1,31% 
   3891     0    -2618,2842   149    -2586,3318     Cuts: 167    54446    
1,24% 
   3891     0    -2617,2728   147    -2586,3318     Cuts: 116    54544    
1,20% 
*  3891+    0                        -2587,7112    -2617,2728             
1,14% 
*  3891+    0                        -2596,7449    -2617,2728             
0,79% 
   3891     0    -2615,9257   153    -2596,7449     Cuts: 166    54657    
0,74% 
*  3891+    0                        -2599,6219    -2615,9257             
0,63% 
*  3891+    0                        -2601,2439    -2615,9257             
0,56% 
   3891     0    -2614,3067   148    -2601,2439     Cuts: 111    54781    
0,50% 
*  3891+    0                        -2601,3564    -2614,3067             
0,50% 
   3891     0    -2611,9954   148    -2601,3564     Cuts: 131    54901    
0,41% 
*  3891+    0                        -2601,3857    -2611,9954             
0,41% 
*  3891+    0                        -2601,5204    -2611,9954             
0,40% 
   3891     0  -1,00000e+75     0    -2601,5204    -2611,9954    54901    
0,40% 
   3891     0    -2611,2521   127    -2601,5204      Cuts: 68    54991    
0,37% 
*  3891+    0                        -2601,6621    -2611,2521             
0,37% 
   3891     0    -2611,0632   104    -2601,6621      Cuts: 78    55072    
0,36% 
   3891     0    -2610,9490   131    -2601,6621      Cuts: 60    55126    
0,36% 
*  3891+    0                        -2602,0524    -2610,9490             
0,34% 

   3891     0    -2610,2371   130    -2602,0524      Cuts: 54    55189    
0,31% 
*  3891+    0                        -2603,5739    -2610,2371             
0,26% 
   3891     0    -2609,7426   123    -2603,5739      Cuts: 33    55248    
0,24% 
*  3891+    0                        -2603,5747    -2609,7426             
0,24% 
*  3891+    0                        -2605,0911    -2609,7426             
0,18% 
*  3891+    0                        -2605,3536    -2609,7426             
0,17% 
   3891     0  -1,00000e+75     0    -2605,3536    -2609,7426    55248    
0,17% 
   3891     0    -2609,4923   128    -2605,3536      Cuts: 47    55322    
0,16% 
   3891     0    -2609,4299   121    -2605,3536      Cuts: 35    55347    
0,16% 
   3891     0    -2609,3659   121    -2605,3536      Cuts: 59    55401    
0,15% 
   3891     0    -2609,3511   120    -2605,3536      Cuts: 27    55423    
0,15% 
   3891     0    -2608,9171    90    -2605,3536      Cuts: 40    55507    
0,14% 
*  3891+    0                        -2605,9241    -2608,9171             
0,11% 
*  3891+    0                        -2605,9264    -2608,9171             
0,11% 
   3891     0  -1,00000e+75     0    -2605,9264    -2608,9171    55507    
0,11% 
   3891     0    -2608,5952    81    -2605,9264      Cuts: 37    55549    
0,10% 
   3891     0    -2608,2266    94    -2605,9264      Cuts: 59    55600    
0,09% 
   3891     0    -2608,1817   101    -2605,9264      Cuts: 20    55645    
0,09% 
   3891     1    -2608,1468   101    -2605,9264    -2608,1817    55645    
0,09% 
   3900     2    -2605,9997    49    -2605,9264    -2606,1937    55769    
0,01% 
 
GUB cover cuts applied:  2 
Clique cuts applied:  4 
Cover cuts applied:  60 
Implied bound cuts applied:  228 
Flow cuts applied:  352 
Mixed integer rounding cuts applied:  259 
Zero-half cuts applied:  3 
Lift and project cuts applied:  76 
Gomory fractional cuts applied:  130 
 
Root node processing (before b&c): 
  Real time             =    2,27 sec. (1847,70 ticks) 
Parallel b&c, 12 threads: 

B.2 Execution Logs for the (Non-) Linear Formulations from
Section 6.3.2
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  Real time             =   10,20 sec. (6807,97 ticks) 
  Sync time (average)   =    0,92 sec. 
  Wait time (average)    
=    0,03 sec. 
                          ------------ 
Total (root+branch&cut) =   12,47 sec. (8655,67 ticks) 
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
 
SCENARIO 1 : 
 
NONLINEAR  
 
Checking license ... 
License found. [0,05 s] 
Version identifier: 22.1.2.0 | 2024-12-09 | 8bd2200c8 
CPXPARAM_Tune_Display                            3 
CPXPARAM_Output_WriteLevel                       1 
CPXPARAM_TimeLimit                               1800 
CPXPARAM_MIP_Tolerances_MIPGap                   0.00014999999999999999 
Legacy callback                                  pi 
Tried aggregator 3 times. 
MIP Presolve eliminated 20349 rows and 22225 columns. 
MIP Presolve modified 4 coefficients. 
Aggregator did 2072 substitutions. 
Reduced MIP has 64664 rows, 65095 columns, and 178438 nonzeros. 
Reduced MIP has 16382 binaries, 65 generals, 0 SOSs, and 29678 indicators. 
Presolve time = 0,30 sec. (1160,40 ticks) 
Probing fixed 0 vars, tightened 398 bounds. 
Probing time = 0,78 sec. (44,84 ticks) 
Tried aggregator 1 time. 
Detecting symmetries... 
MIP Presolve eliminated 465 rows and 0 columns. 
Reduced MIP has 64199 rows, 65095 columns, and 177508 nonzeros. 
Reduced MIP has 16382 binaries, 272 generals, 0 SOSs, and 29678 indicators. 
Presolve time = 0,22 sec. (239,71 ticks) 
Probing time = 0,17 sec. (15,35 ticks) 
Clique table members: 30143. 
MIP emphasis: balance optimality and feasibility. 
MIP search method: dynamic search. 
Parallel mode: deterministic, using up to 12 threads. 
Root relaxation solution time = 3,14 sec. (5938,72 ticks) 
 
        Nodes                                         Cuts/ 
   Node  Left     Objective  IInf  Best Integer    Best Bound    ItCnt     
Gap 
 
*     0+    0                       8,91716e+09                            
---  
*     0+    0                       4,07409e+07                            
---  
      0     0    -2727,4332   496   4,07409e+07    -2727,4332    16348  
100,01% 

*     0+    0                       3,60006e+07    -2727,4332           
100,01% 
      0     0    -2694,5696   546   3,60006e+07    Cuts: 1805    18403  
100,01% 
      0     0    -2683,3806  1329   3,60006e+07    Cuts: 9015    19947  
100,01% 
*     0+    0                       1,91662e+07    -2683,3806           
100,01% 
      0     0    -2663,6625  3075   1,91662e+07    Cuts: 9685    25793  
100,01% 
      0     0    -2652,4738  3720   1,91662e+07    Cuts: 5194    29895  
100,01% 
*     0+    0                       1,77766e+07    -2652,4738           
100,01% 
      0     0    -2650,5920  3702   1,77766e+07    Cuts: 2014    30652  
100,01% 
      0     0    -2647,7131  3971   1,77766e+07    Cuts: 1111    31354  
100,01% 
      0     0    -2645,9520  3949   1,77766e+07     Cuts: 371    31803  
100,01% 
*     0+    0                       1,20391e+07    -2645,9520           
100,02% 
      0     0    -2641,2223  3821   1,20391e+07     Cuts: 555    32245  
100,02% 
      0     0    -2640,8633  3822   1,20391e+07     Cuts: 497    32499  
100,02% 
      0     0    -2640,4958  3904   1,20391e+07      Cuts: 88    32537  
100,02% 
      0     0    -2640,4855  3904   1,20391e+07      Cuts: 46    32559  
100,02% 
      0     0    -2640,4855  3904   1,20391e+07      Cuts: 14    32565  
100,02% 
*     0+    0                        -2544,0257    -2640,4855             
3,79% 
      0     2    -2640,4855  3904    -2544,0257    -2640,4855    32565    
3,79% 
Elapsed time = 21,81 sec. (27809,54 ticks, tree = 0,02 MB, solutions = 7) 
      7     9    -2565,5888  3456    -2544,0257    -2639,3831    32929    
3,75% 
*    10+    1                        -2584,3853    -2639,3831             
2,13% 
     12     3    -2633,2555  3832    -2584,3853    -2639,3831    32642    
2,13% 
     36    11    -2587,0302  3695    -2584,3853    -2627,5409    33569    
1,67% 
     54    20    -2620,4317  3053    -2584,3853    -2626,8714    34754    
1,64% 
    111    56    -2604,9560  3089    -2584,3853    -2625,0266    36718    
1,57% 
    164   114    -2602,4525  2499    -2584,3853    -2625,0266    39179    
1,57% 
    193   132    -2597,7900  2141    -2584,3853    -2625,0266    40612    
1,57% 

    249   147    -2601,0892  2802    -2584,3853    -2625,0266    41388    
1,57% 
    353   239    -2587,8659  2746    -2584,3853    -2625,0266    44038    
1,57% 
*   599+  422                        -2587,7234    -2625,0266             
1,44% 
    685   522    -2611,3449  2412    -2587,7234    -2625,0266    54597    
1,44% 
Elapsed time = 37,06 sec. (30960,84 ticks, tree = 10,55 MB, solutions = 10) 
*   690+  501                        -2587,8675    -2625,0266             
1,44% 
*   707+  547                        -2592,7261    -2625,0266             
1,25% 
    975   652    -2601,0108   192    -2592,7261    -2625,0266    67606    
1,25% 
*   981+  602                        -2594,4905    -2625,0266             
1,18% 
*  1089+  651                        -2596,3355    -2625,0266             
1,11% 
   1223   731    -2599,2490   106    -2596,3355    -2625,0266    72834    
1,11% 
*  1254+  707                        -2597,6020    -2625,0266             
1,06% 
*  1361+  763                        -2601,0652    -2625,0266             
0,92% 
   1429   863    -2605,9789  1552    -2601,0652    -2625,0266    77416    
0,92% 
*  1495+  760                        -2601,1816    -2625,0266             
0,92% 
*  1543+  759                        -2601,2094    -2625,0266             
0,92% 
   1603   837    -2605,7745  1546    -2601,2094    -2625,0266    87573    
0,92% 
*  1674+  847                        -2601,4113    -2625,0266             
0,91% 
*  1688+  880                        -2602,0080    -2625,0266             
0,88% 
   1843   885    -2611,1716  2525    -2602,0080    -2624,3358    92275    
0,86% 
*  1987+ 1065                        -2602,1243    -2624,3358             
0,85% 
*  2018+ 1064                        -2602,1522    -2624,3358             
0,85% 
   2018  1116    -2602,8158   365    -2602,1522    -2624,3358    96859    
0,85% 
*  2091+ 1114                        -2602,1790    -2624,3358             
0,85% 
*  2097+ 1080                        -2602,8724    -2624,3358             
0,82% 
   2261  1107    -2605,3024   187    -2602,8724    -2624,3358   102839    
0,82% 
*  2420+ 1228                        -2603,7849    -2620,2037             
0,63% 

   2491  1276    -2605,9535  1657    -2603,7849    -2620,0625   107476    
0,63% 
*  2622+ 1204                        -2603,9290    -2620,0625             
0,62% 
*  2699+ 1203                        -2604,1063    -2620,0625             
0,61% 
   2752  1236    -2604,2507     2    -2604,1063    -2620,0625   113588    
0,61% 
*  2768+ 1302                        -2604,2950    -2620,0071             
0,60% 
   3011  1371    -2606,5749  2548    -2604,2950    -2618,3314   121111    
0,54% 
Elapsed time = 85,86 sec. (40539,95 ticks, tree = 33,82 MB, solutions = 34) 
   3266  1597    -2604,7906  1709    -2604,2950    -2617,5654   129045    
0,51% 
   3543  1801    -2604,7641   227    -2604,2950    -2617,3005   134360    
0,50% 
   3831  2022        cutoff          -2604,2950    -2616,9459   141832    
0,49% 
*  3908+ 1990                        -2604,4920    -2616,9459             
0,48% 
   3967  2074    -2604,4391     0    -2604,4920    -2616,9459   143325    
0,48% 
 
Performing restart 1 
 
Repeating presolve. 
Tried aggregator 3 times. 
MIP Presolve eliminated 2174 rows and 2579 columns. 
MIP Presolve modified 688 coefficients. 
Aggregator did 389 substitutions. 
Reduced MIP has 61636 rows, 62127 columns, and 170494 nonzeros. 
Reduced MIP has 15865 binaries, 52 generals, 0 SOSs, and 29678 indicators. 
Presolve time = 0,70 sec. (794,44 ticks) 
Tried aggregator 1 time. 
MIP Presolve eliminated 8 rows and 0 columns. 
MIP Presolve modified 2818 coefficients. 
Reduced MIP has 61826 rows, 62127 columns, and 170862 nonzeros. 
Reduced MIP has 15865 binaries, 52 generals, 0 SOSs, and 29480 indicators. 
Presolve time = 0,17 sec. (143,74 ticks) 
Represolve time = 1,95 sec. (1110,58 ticks) 
   3969     0    -2629,7246  1639    -2604,4920    Cuts: 8520   193627    
0,48% 
   3969     0    -2622,7513  1327    -2604,4920    Cuts: 1142   194182    
0,48% 
   3969     0    -2620,8302  1160    -2604,4920     Cuts: 795   194933    
0,48% 
   3969     0    -2618,7300  1080    -2604,4920     Cuts: 549   195708    
0,48% 
   3969     0    -2616,9205  1111    -2604,4920     Cuts: 295   196169    
0,48% 
   3969     0    -2615,8753  1079    -2604,4920     Cuts: 494   196681    
0,44% 



   3969     0    -2615,0798  1137    -2604,4920     Cuts: 585   197261    
0,41% 
   3969     0    -2614,1962   949    -2604,4920     Cuts: 646   197636    
0,37% 
   3969     0    -2613,7147   958    -2604,4920     Cuts: 503   198106    
0,35% 
   3969     0    -2613,5487  1025    -2604,4920     Cuts: 489   198621    
0,35% 
   3969     0    -2613,2055  1010    -2604,4920     Cuts: 430   199005    
0,33% 
*  3969+    0                        -2604,9575    -2613,2055             
0,32% 
   3969     0    -2612,7337  1024    -2604,9575     Cuts: 503   199529    
0,30% 
   3969     0    -2612,5449   989    -2604,9575     Cuts: 132   199633    
0,29% 
   3969     0    -2612,4050  1004    -2604,9575     Cuts: 382   199737    
0,29% 
   3969     0    -2611,8855  1004    -2604,9575     Cuts: 125   199960    
0,27% 
   3969     0    -2611,7196   946    -2604,9575     Cuts: 178   200230    
0,26% 
   3969     0    -2611,5325   944    -2604,9575     Cuts: 140   200409    
0,25% 
   3969     0    -2611,4603   940    -2604,9575     Cuts: 302   200594    
0,25% 
   3969     0    -2611,3946   984    -2604,9575      Cuts: 45   200681    
0,25% 
   3969     0    -2611,3664   929    -2604,9575     Cuts: 128   200726    
0,25% 
*  3969+    0                        -2605,0601    -2611,3664             
0,24% 
   3969     0    -2611,2578   902    -2605,0601      Cuts: 63   200789    
0,24% 
   3969     0    -2611,2192   905    -2605,0601      Cuts: 34   200819    
0,24% 
   3969     0    -2611,1693   905    -2605,0601      Cuts: 74   200898    
0,23% 
   3969     2    -2611,1642   901    -2605,0601    -2611,1693   200898    
0,23% 
   3990     4    -2605,5741   587    -2605,0601    -2609,8542   201558    
0,18% 
   4040    19    -2605,8454   232    -2605,0601    -2607,0521   204008    
0,08% 
   4214    82        cutoff          -2605,0601    -2606,8871   207433    
0,07% 
*  4297+  101                        -2605,4085    -2606,8871             
0,06% 
   4493   162    -2605,5253    58    -2605,4085    -2606,8871   212440    
0,06% 
*  4549+  194                        -2605,7956    -2606,8871             
0,04% 
*  4634+  242                        -2605,8157    -2606,6594             
0,03% 

*  4637+  229                        -2605,9258    -2606,6594             
0,03% 
 
GUB cover cuts applied:  9 
Clique cuts applied:  200 
Cover cuts applied:  5876 
Implied bound cuts applied:  8475 
Flow cuts applied:  1707 
Mixed integer rounding cuts applied:  3849 
Lift and project cuts applied:  57 
Gomory fractional cuts applied:  148 
 
Root node processing (before b&c): 
  Real time             =   21,36 sec. (27479,95 ticks) 
Parallel b&c, 12 threads: 
  Real time             =  186,53 sec. (116935,58 ticks) 
  Sync time (average)   =   34,10 sec. 
  Wait time (average)   =    0,10 sec. 
                          ------------ 
Total (root+branch&cut) =  207,89 sec. (144415,53 ticks) 
 
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
 
SCENARIO 2 : 
 
LINEAR  
 
Checking license ... 
License found. [0,06 s] 
Version identifier: 22.1.2.0 | 2024-12-09 | 8bd2200c8 
Legacy callback                                  pi 
Tried aggregator 3 times. 
MIP Presolve eliminated 18707 rows and 20570 columns. 
MIP Presolve modified 4 coefficients. 
Aggregator did 1825 substitutions. 
Reduced MIP has 5610 rows, 6458 columns, and 44550 nonzeros. 
Reduced MIP has 1659 binaries, 56 generals, 0 SOSs, and 380 indicators. 
Presolve time = 0,11 sec. (85,70 ticks) 
Probing fixed 0 vars, tightened 380 bounds. 
Probing time = 0,02 sec. (1,82 ticks) 
Cover probing fixed 0 vars, tightened 1 bounds. 
Tried aggregator 1 time. 
Detecting symmetries... 
Reduced MIP has 5610 rows, 6458 columns, and 44550 nonzeros. 
Reduced MIP has 1659 binaries, 236 generals, 0 SOSs, and 380 indicators. 
Presolve time = 0,03 sec. (17,55 ticks) 
Probing time = 0,01 sec. (1,70 ticks) 
Cover probing fixed 0 vars, tightened 1 bounds. 
Clique table members: 457. 
Tightened 1 constraints. 
MIP emphasis: balance optimality and feasibility. 
MIP search method: dynamic search. 

Parallel mode: deterministic, using up to 12 threads. 
Root relaxation solution time = 0,09 sec. (59,17 ticks) 
 
        Nodes                                         Cuts/ 
   Node  Left     Objective  IInf  Best Integer    Best Bound    ItCnt     
Gap 
 
      0     0    -1370,6485   347                  -1370,6485      888          
*     0+    0                       1,75622e+10    -1370,6485           
100,00% 
*     0+    0                       3,91874e+08    -1370,6485           
100,00% 
      0     0    -1350,4109   437   3,91874e+08    Cuts: 1025     1867  
100,00% 
*     0+    0                       6,03047e+07    -1350,4109           
100,00% 
*     0+    0                       3,45039e+07    -1350,4109           
100,00% 
      0     0    -1331,3691   387   3,45039e+07     Cuts: 989     2657  
100,00% 
*     0+    0                       3,16263e+07    -1331,3691           
100,00% 
      0     0    -1327,8803   345   3,16263e+07     Cuts: 949     3075  
100,00% 
*     0+    0                       3,16263e+07    -1327,8803           
100,00% 
      0     0  -1,00000e+75     0   3,16263e+07    -1327,8803     3075  
100,00% 
      0     0    -1325,9308   260   3,16263e+07     Cuts: 558     3362  
100,00% 
*     0+    0                      1293202,1184    -1325,9308           
100,10% 
      0     0    -1325,4425   249  1293202,1184     Cuts: 145     3472  
100,10% 
Detecting symmetries... 
      0     0    -1325,1513   241  1293202,1184      Cuts: 81     3544  
100,10% 
      0     0    -1323,4529   236  1293202,1184      Cuts: 84     3665  
100,10% 
      0     0    -1323,0398   234  1293202,1184      Cuts: 97     3737  
100,10% 
*     0+    0                       886240,6772    -1323,0398           
100,15% 
*     0+    0                       886240,5239    -1323,0398           
100,15% 
*     0+    0                       886220,7250    -1323,0398           
100,15% 
      0     0  -1,00000e+75     0   886220,7250    -1323,0398     3737  
100,15% 
      0     0    -1322,8187   228   886220,7250      Cuts: 45     3779  
100,15% 
      0     0    -1322,6919   223   886220,7250      Cuts: 27     3804  
100,15% 

*     0+    0                       709742,9862    -1322,6919           
100,19% 
      0     0    -1322,6177   309   709742,9862      Cuts: 10     3811  
100,19% 
*     0+    0                        -1267,8734    -1322,6177             
4,32% 
      0     0  -1,00000e+75     0    -1267,8734    -1322,6177     3811    
4,32% 
Detecting symmetries... 
      0     2    -1322,6177   337    -1267,8734    -1322,5200     3811    
4,31% 
Elapsed time = 2,86 sec. (2145,21 ticks, tree = 0,02 MB, solutions = 12) 
*    20+    3                        -1274,8855    -1322,4915             
3,73% 
*    79+   11                        -1277,3367    -1322,2726             
3,52% 
    347   248    -1279,3203   169    -1277,3367    -1322,2726     9915    
3,52% 
*   393+  267                        -1284,4637    -1322,2726             
2,94% 
*   578+  327                        -1285,0890    -1322,2726             
2,89% 
    765   522    -1285,3810   164    -1285,0890    -1322,2726    16152    
2,89% 
*  1329+  790                        -1291,8303    -1322,2726             
2,36% 
   1376   926    -1316,0580   231    -1291,8303    -1322,2726    20109    
2,36% 
*  1549+  930                        -1295,7698    -1322,2726             
2,05% 
*  1663+  930                        -1300,3509    -1322,2726             
1,69% 
*  1862+  923                        -1304,2182    -1322,2726             
1,38% 
*  2012+  921                        -1304,6476    -1322,2726             
1,35% 
   2067  1263    -1298,7883   125    -1304,6476    -1322,2726    24216    
1,35% 
   2714   914    -1309,8407   189    -1304,6476    -1320,7480    29504    
1,23% 
   3374  1424    -1315,8493   235    -1304,6476    -1320,7480    36381    
1,23% 
   3880  1768    -1309,9602   138    -1304,6476    -1320,4183    43393    
1,21% 
 
Performing restart 1 
 
Repeating presolve. 
Tried aggregator 3 times. 
MIP Presolve eliminated 875 rows and 1255 columns. 
MIP Presolve modified 1326 coefficients. 
Aggregator did 385 substitutions. 
Reduced MIP has 4350 rows, 4818 columns, and 40373 nonzeros. 
Reduced MIP has 1556 binaries, 20 generals, 0 SOSs, and 376 indicators. 



Presolve time = 0,09 sec. (103,22 ticks) 
Tried aggregator 1 time. 
MIP Presolve modified 84 coefficients. 
Reduced MIP has 4538 rows, 4818 columns, and 40749 nonzeros. 
Reduced MIP has 1556 binaries, 20 generals, 0 SOSs, and 188 indicators. 
Presolve time = 0,02 sec. (16,43 ticks) 
Represolve time = 0,16 sec. (155,62 ticks) 
   3898     0    -1319,7694   203    -1304,6476     Cuts: 727    50205    
1,16% 
   3898     0    -1318,0361   196    -1304,6476     Cuts: 244    50394    
1,03% 
   3898     0    -1316,7294   191    -1304,6476     Cuts: 215    50593    
0,93% 
   3898     0    -1315,2042   182    -1304,6476     Cuts: 163    50767    
0,81% 
*  3898+    0                        -1304,6811    -1315,2042             
0,81% 
   3898     0  -1,00000e+75     0    -1304,6811    -1315,2042    50767    
0,81% 
   3898     0    -1314,4521   213    -1304,6811     Cuts: 162    50911    
0,75% 
   3898     0    -1313,7328   223    -1304,6811     Cuts: 204    51084    
0,69% 
   3898     0    -1313,2596   203    -1304,6811     Cuts: 123    51234    
0,66% 
   3898     0    -1313,0150   194    -1304,6811     Cuts: 109    51341    
0,64% 
*  3898+    0                        -1305,0588    -1313,0150             
0,61% 
   3898     0    -1312,5828   203    -1305,0588     Cuts: 131    51461    
0,58% 
   3898     0    -1312,0914   208    -1305,0588     Cuts: 100    51569    
0,54% 
   3898     0    -1311,7814   196    -1305,0588      Cuts: 87    51667    
0,52% 
   3898     0    -1311,4759   180    -1305,0588     Cuts: 116    51791    
0,49% 
   3898     0    -1311,3811   193    -1305,0588      Cuts: 53    51862    
0,48% 
   3898     0    -1311,2520   185    -1305,0588      Cuts: 89    51936    
0,47% 
   3898     0    -1311,1484   188    -1305,0588      Cuts: 47    51994    
0,47% 
   3898     0    -1310,9169   182    -1305,0588      Cuts: 28    52038    
0,45% 
   3898     0    -1310,8706   188    -1305,0588      Cuts: 75    52074    
0,45% 
   3898     0    -1310,8135   163    -1305,0588      Cuts: 46    52107    
0,44% 
   3898     0    -1310,7928   161    -1305,0588      Cuts: 29    52138    
0,44% 
*  3898+    0                        -1305,1112    -1310,7928             
0,44% 

   3898     0    -1310,7616   159    -1305,1112      Cuts: 31    52165    
0,43% 
   3898     0    -1310,7507   158    -1305,1112    MIRcuts: 9    52175    
0,43% 
   3898     1    -1310,5657   116    -1305,1112    -1310,7507    52184    
0,43% 
   3921     8    -1306,5934   105    -1305,1112    -1309,8608    52632    
0,36% 
*  4358+   41                        -1305,3827    -1307,4264             
0,16% 
*  4443+   21                        -1305,6317    -1307,2275             
0,12% 
 
GUB cover cuts applied:  4 
Clique cuts applied:  5 
Cover cuts applied:  97 
Implied bound cuts applied:  89 
Flow cuts applied:  260 
Mixed integer rounding cuts applied:  307 
Zero-half cuts applied:  2 
Lift and project cuts applied:  54 
Gomory fractional cuts applied:  41 
 
Root node processing (before b&c): 
  Real time             =    2,77 sec. (2128,99 ticks) 
Parallel b&c, 12 threads: 
  Real time             =   15,88 sec. (11413,51 ticks) 
  Sync time (average)   =    1,71 sec. 
  Wait time (average)   =    0,02 sec. 
                          ------------ 
Total (root+branch&cut) =   18,64 sec. (13542,51 ticks) 
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
 
SCENARIO 2 : 
 
NONLINEAR  
 
Checking license ... 
License found. [0,05 s] 
Version identifier: 22.1.2.0 | 2024-12-09 | 8bd2200c8 
CPXPARAM_Tune_Display                            3 
CPXPARAM_Output_WriteLevel                       1 
CPXPARAM_MIP_Tolerances_MIPGap                   0.00014999999999999999 
Legacy callback                                  pi 
Tried aggregator 3 times. 
MIP Presolve eliminated 19505 rows and 21449 columns. 
MIP Presolve modified 4 coefficients. 
Aggregator did 2003 substitutions. 
Reduced MIP has 61274 rows, 61657 columns, and 169075 nonzeros. 
Reduced MIP has 15531 binaries, 56 generals, 0 SOSs, and 28124 indicators. 
Presolve time = 0,25 sec. (1057,48 ticks) 
Probing fixed 0 vars, tightened 380 bounds. 

Probing time = 0,69 sec. (42,54 ticks) 
Tried aggregator 1 time. 
Detecting symmetries... 
MIP Presolve eliminated 465 rows and 0 columns. 
Reduced MIP has 60809 rows, 61657 columns, and 168145 nonzeros. 
Reduced MIP has 15531 binaries, 236 generals, 0 SOSs, and 28124 indicators. 
Presolve time = 0,19 sec. (227,05 ticks) 
Probing time = 0,12 sec. (14,69 ticks) 
Clique table members: 28777. 
MIP emphasis: balance optimality and feasibility. 
MIP search method: dynamic search. 
Parallel mode: deterministic, using up to 12 threads. 
Root relaxation solution time = 2,89 sec. (4749,41 ticks) 
 
        Nodes                                         Cuts/ 
   Node  Left     Objective  IInf  Best Integer    Best Bound    ItCnt     
Gap 
 
*     0+    0                       1,37966e+10                            
---  
*     0+    0                       1,93670e+08                            
---  
      0     0    -1370,6485   398   1,93670e+08    -1370,6485    16317  
100,00% 
*     0+    0                       4,98459e+07    -1370,6485           
100,00% 
      0     0    -1350,3530   448   4,98459e+07    Cuts: 2449    19540  
100,00% 
*     0+    0                       3,59090e+07    -1350,3530           
100,00% 
      0     0    -1334,5070  1755   3,59090e+07    Cuts: 9309    23292  
100,00% 
*     0+    0                      7219987,3709    -1334,5070           
100,02% 
      0     0    -1329,9822  3292  7219987,3709    Cuts: 5688    27993  
100,02% 
      0     0    -1327,8490  3516  7219987,3709    Cuts: 3506    30326  
100,02% 
*     0+    0                      4042204,1268    -1327,8490           
100,03% 
      0     0    -1327,1232  3663  4042204,1268     Cuts: 834    31567  
100,03% 
      0     0    -1326,5047  3510  4042204,1268    Cuts: 1872    32388  
100,03% 
      0     0    -1326,1327  3746  4042204,1268     Cuts: 424    33160  
100,03% 
*     0+    0                      3792713,4627    -1326,1327           
100,03% 
      0     0    -1326,0238  3908  3792713,4627     Cuts: 811    33624  
100,03% 
      0     0    -1325,9556  4005  3792713,4627     Cuts: 136    33736  
100,03% 
      0     0    -1325,9556  4004  3792713,4627      Cuts: 14    33743  
100,03% 

*     0+    0                      3316347,8081    -1325,9556           
100,04% 
*     0+    0                      2493592,4896    -1325,9556           
100,05% 
*     0+    0                      2145887,3102    -1325,9556           
100,06% 
*     0+    0                       404077,3738    -1325,9556           
100,33% 
*     0+    0                        -1187,3115    -1325,9556            
11,68% 
      0     2    -1325,9556  4004    -1187,3115    -1325,9556    33743   
11,68% 
Elapsed time = 22,12 sec. (26498,63 ticks, tree = 0,02 MB, solutions = 12) 
      7     5    -1300,2503  3702    -1187,3115    -1325,6535    34311   
11,65% 
     15     9    -1306,7491  3108    -1187,3115    -1325,6535    35217   
11,65% 
     31    25    -1316,4082  3290    -1187,3115    -1325,1811    40545   
11,61% 
     60    27    -1296,6989  2812    -1187,3115    -1325,1811    42196   
11,61% 
    115    75    -1286,5972  2330    -1187,3115    -1325,0170    53613   
11,60% 
    162   132    -1321,0294  2918    -1187,3115    -1325,0170    67533   
11,60% 
*   171+  122                        -1229,7842    -1325,0170             
7,74% 
    185    85    -1293,4217  2134    -1229,7842    -1325,0170    56692    
7,74% 
*   186+  103                        -1260,4299    -1325,0170             
5,12% 
*   200+   87                        -1270,3015    -1325,0170             
4,31% 
    219   188    -1289,4564   965    -1270,3015    -1325,0170    82469    
4,31% 
*   239+  131                        -1274,4362    -1325,0170             
3,97% 
    264   209    -1289,1816  1921    -1274,4362    -1325,0170    88396    
3,97% 
    415   318    -1293,7174  1763    -1274,4362    -1325,0170   110277    
3,97% 
Elapsed time = 35,12 sec. (29772,51 ticks, tree = 6,67 MB, solutions = 17) 
*   470+  348                        -1281,3419    -1325,0170             
3,41% 
*   543+  358                        -1282,1542    -1325,0170             
3,34% 
    616   396    -1298,0079   889    -1282,1542    -1325,0170   135433    
3,34% 
*   625+  382                        -1287,0533    -1325,0170             
2,95% 
*   692+  377                        -1288,9133    -1325,0170             
2,80% 
    828   418    -1310,8617  1928    -1288,9133    -1325,0170   171245    
2,80% 



    978   514    -1289,5304   450    -1288,9133    -1325,0170   185078    
2,80% 
   1128   616    -1302,2776  1842    -1288,9133    -1323,3964   200256    
2,68% 
   1302   766    -1306,3406  1959    -1288,9133    -1323,3964   223607    
2,68% 
   1488   949    -1292,3664   217    -1288,9133    -1323,3964   249495    
2,68% 
*  1498+  765                        -1299,4077    -1323,3964             
1,85% 
*  1510+  758                        -1305,2914    -1323,3964             
1,39% 
*  1528+  878                        -1305,2914    -1323,3964             
1,39% 
   1642   289        cutoff          -1305,2914    -1323,3964   266930    
1,39% 
   1802   350    -1308,9735  1407    -1305,2914    -1323,0514   285568    
1,36% 
   1968   496    -1307,1748  1158    -1305,2914    -1322,1032   322611    
1,29% 
   2178   607    -1305,6930  1641    -1305,2914    -1321,8582   347223    
1,27% 
Elapsed time = 79,16 sec. (39341,91 ticks, tree = 10,95 MB, solutions = 24) 
   2340   770    -1306,2248   214    -1305,2914    -1321,6055   370474    
1,25% 
   2543   814    -1309,1821  1657    -1305,2914    -1321,3035   379589    
1,23% 
*  2609+  890                        -1305,3258    -1321,3035             
1,22% 
   2717   951    -1314,6938  2219    -1305,3258    -1320,3562   395964    
1,15% 
   2930  1086    -1310,5304  1726    -1305,3258    -1318,4810   420894    
1,01% 
   3130  1213    -1313,2943  1937    -1305,3258    -1318,0254   440973    
0,97% 
   3316  1317    -1315,0735  2022    -1305,3258    -1317,6617   455409    
0,95% 
   3529  1530    -1307,3298  1902    -1305,3258    -1317,4682   492271    
0,93% 
   3692  1716    -1308,2987  1669    -1305,3258    -1317,2567   524921    
0,91% 
   3825  1746    -1305,5589   244    -1305,3258    -1317,2567   529293    
0,91% 
   3831  1759    -1311,4602  2526    -1305,3258    -1317,2567   533279    
0,91% 
Elapsed time = 118,61 sec. (48959,36 ticks, tree = 42,94 MB, solutions = 
25) 
 
Performing restart 1 
 
Repeating presolve. 
Tried aggregator 3 times. 
MIP Presolve eliminated 2175 rows and 2551 columns. 
MIP Presolve modified 350 coefficients. 

Aggregator did 384 substitutions. 
Reduced MIP has 58250 rows, 58722 columns, and 161099 nonzeros. 
Reduced MIP has 14997 binaries, 20 generals, 0 SOSs, and 28124 indicators. 
Presolve time = 0,53 sec. (747,29 ticks) 
Tried aggregator 1 time. 
MIP Presolve modified 1739 coefficients. 
Reduced MIP has 58440 rows, 58722 columns, and 161479 nonzeros. 
Reduced MIP has 14997 binaries, 20 generals, 0 SOSs, and 27934 indicators. 
Presolve time = 0,16 sec. (139,06 ticks) 
Represolve time = 1,56 sec. (1039,28 ticks) 
   3832     0    -1323,4037  3526    -1305,3258    Cuts: 9726   603952    
0,90% 
   3832     0    -1321,0413  3984    -1305,3258    Cuts: 4272   607299    
0,90% 
   3832     0    -1319,5270  3273    -1305,3258    Cuts: 2606   609365    
0,90% 
   3832     0    -1318,3592  3596    -1305,3258    Cuts: 1440   610970    
0,90% 
   3832     0    -1317,2873  3476    -1305,3258    Cuts: 1972   612284    
0,90% 
   3832     0    -1316,5356  3459    -1305,3258     Cuts: 814   613131    
0,86% 
   3832     0    -1315,7164  3567    -1305,3258     Cuts: 854   614330    
0,80% 
   3832     0    -1315,3055  3548    -1305,3258    Cuts: 1125   615354    
0,76% 
   3832     0    -1314,8519  3570    -1305,3258     Cuts: 338   616245    
0,73% 
   3832     0    -1314,3847  3563    -1305,3258    Cuts: 1023   616942    
0,69% 
   3832     0    -1313,9391  3731    -1305,3258     Cuts: 541   617858    
0,66% 
   3832     0    -1313,2570  3843    -1305,3258     Cuts: 808   619105    
0,61% 
   3832     0    -1312,7673  3938    -1305,3258     Cuts: 346   619455    
0,57% 
   3832     0    -1312,4758  3500    -1305,3258     Cuts: 387   619880    
0,55% 
   3832     0    -1312,2769  3334    -1305,3258     Cuts: 132   620448    
0,53% 
   3832     0    -1312,1334  3417    -1305,3258     Cuts: 614   620906    
0,52% 
   3832     0    -1311,9518  3237    -1305,3258     Cuts: 514   621613    
0,51% 
   3832     0    -1311,9315  3360    -1305,3258     Cuts: 419   622034    
0,51% 
   3832     0    -1311,7999  3340    -1305,3258      Cuts: 36   622173    
0,50% 
   3832     0    -1311,7227  3338    -1305,3258      Cuts: 29   622196    
0,49% 
   3832     0    -1311,6727  3336    -1305,3258      Cuts: 15   622220    
0,49% 
   3832     0    -1311,4963  3520    -1305,3258      Cuts: 92   622305    
0,47% 

   3832     0    -1311,4454  3239    -1305,3258      Cuts: 52   622398    
0,47% 
   3832     0    -1311,4295  3243    -1305,3258     Cuts: 130   622424    
0,47% 
   3832     2    -1311,4295  3243    -1305,3258    -1311,4295   622424    
0,47% 
   3844     7    -1306,7781  3120    -1305,3258    -1311,2192   622625    
0,45% 
   3968    65        cutoff          -1305,3258    -1311,2192   641137    
0,45% 
   4083   111        cutoff          -1305,3258    -1311,2192   664312    
0,45% 
   4225   171    -1305,5488  1816    -1305,3258    -1310,8963   680034    
0,43% 
   4397   278    -1307,4115  1330    -1305,3258    -1310,7915   701257    
0,42% 
   4589   359    -1306,2706  2973    -1305,3258    -1310,2292   731879    
0,38% 
   4743   399    -1306,9360  1521    -1305,3258    -1310,2292   754103    
0,38% 
   4950   452    -1306,1916  1028    -1305,3258    -1309,1211   768753    
0,29% 
   5210   620    -1305,4801  1039    -1305,3258    -1309,1211   804894    
0,29% 
Elapsed time = 280,72 sec. (204065,62 ticks, tree = 9,77 MB, solutions = 
25) 
   5432   770        cutoff          -1305,3258    -1309,1211   832560    
0,29% 
   5650   903    -1306,4967   762    -1305,3258    -1307,9111   853770    
0,20% 
   5938  1014    -1305,6319   748    -1305,3258    -1307,9111   866941    
0,20% 
   6185  1160    -1305,9061   922    -1305,3258    -1307,9111   898890    
0,20% 
   6473  1413    -1305,6319   653    -1305,3258    -1307,9111   928527    
0,20% 
   6760  1588    -1305,6319   474    -1305,3258    -1307,9111   948606    
0,20% 
   7083  1783    -1305,6318   141    -1305,3258    -1307,9111   972172    
0,20% 
   7433  1983    -1305,3261   785    -1305,3258    -1307,9111   991678    
0,20% 
   7846  2403    -1305,6318    48    -1305,3258    -1307,9111  1014783    
0,20% 
*  8183  2605      integral     0    -1305,6317    -1307,9111  1026566    
0,17% 
   8193  2687        cutoff          -1305,6317    -1307,9111  1029572    
0,17% 
Elapsed time = 321,39 sec. (213631,77 ticks, tree = 64,45 MB, solutions = 
26) 
   8394  1600    -1305,6546   885    -1305,6317    -1307,5344  1042658    
0,15% 
   8435  1657    -1305,6320   772    -1305,6317    -1307,5344  1044069    
0,15% 

   8512  1723    -1305,6320   728    -1305,6317    -1307,4844  1045591    
0,14% 
   8621  1710    -1306,8265  1378    -1305,6317    -1307,4653  1052663    
0,14% 
   8720  1830    -1305,6320   632    -1305,6317    -1307,4653  1056029    
0,14% 
   8791  1869    -1306,3178  1032    -1305,6317    -1307,4621  1068376    
0,14% 
   8864  1923    -1306,1818   873    -1305,6317    -1307,4621  1075582    
0,14% 
   8980  1969    -1306,0199   922    -1305,6317    -1307,4621  1082349    
0,14% 
   9072  2014    -1305,6319   330    -1305,6317    -1307,4621  1091156    
0,14% 
   9192  2028    -1306,5891  1049    -1305,6317    -1307,4096  1100715    
0,14% 
Elapsed time = 338,56 sec. (223311,61 ticks, tree = 46,03 MB, solutions = 
26) 
   9423  2176    -1305,6319   760    -1305,6317    -1307,4096  1112967    
0,14% 
   9685  2306    -1305,6319   958    -1305,6317    -1307,4096  1125035    
0,14% 
   9944  2520    -1305,6320   757    -1305,6317    -1307,4096  1136631    
0,14% 
  10205  2646    -1305,6319   639    -1305,6317    -1307,4096  1138247    
0,14% 
* 10256  2712      integral     0    -1305,6318    -1307,4096  1144311    
0,14% 
  10468  2988    -1305,6320   672    -1305,6318    -1307,4096  1164627    
0,14% 
  10683  3142    -1305,6319   673    -1305,6318    -1307,2401  1174169    
0,12% 
  10840  3180    -1305,6319   635    -1305,6318    -1307,2201  1174207    
0,12% 
  10939  3331    -1305,8761   925    -1305,6318    -1307,2201  1191866    
0,12% 
  11020  3336    -1306,2171  1049    -1305,6318    -1307,2201  1197291    
0,12% 
  11111  3374    infeasible          -1305,6318    -1307,1433  1222291    
0,12% 
Elapsed time = 366,31 sec. (232898,25 ticks, tree = 82,31 MB, solutions = 
27) 
  11208  3348    -1306,1687   740    -1305,6318    -1307,0800  1249163    
0,11% 
  11312  3329    -1306,3556  1980    -1305,6318    -1307,0772  1261928    
0,11% 
  11376  3318    -1305,9056  1139    -1305,6318    -1306,9483  1273313    
0,10% 
  11462  3314    -1305,6567   818    -1305,6318    -1306,9260  1292099    
0,10% 
  11564  3291        cutoff          -1305,6318    -1306,9260  1329204    
0,10% 
  11654  3293    -1306,1571   736    -1305,6318    -1306,8339  1338104    
0,09% 



  11769  3290        cutoff          -1305,6318    -1306,8115  1359983    
0,09% 
  11864  3256        cutoff          -1305,6318    -1306,8101  1384781    
0,09% 
  11956  3230        cutoff          -1305,6318    -1306,7967  1406172    
0,09% 
  12049  3206        cutoff          -1305,6318    -1306,7967  1421600    
0,09% 
Elapsed time = 387,36 sec. (242540,15 ticks, tree = 77,31 MB, solutions = 
27) 
  12125  3263    -1306,6074  1246    -1305,6318    -1306,7361  1388061    
0,08% 
  12156  3196    -1305,9774   920    -1305,6318    -1306,6383  1422621    
0,08% 
  12189  3128        cutoff          -1305,6318    -1306,6383  1463847    
0,08% 
  12247  3123        cutoff          -1305,6318    -1306,6279  1472539    
0,08% 
  12315  3110    -1306,1254   752    -1305,6318    -1306,5961  1484907    
0,07% 
  12386  3059        cutoff          -1305,6318    -1306,5789  1499944    
0,07% 
  12462  3024        cutoff          -1305,6318    -1306,5743  1520441    
0,07% 
  12549  2984        cutoff          -1305,6318    -1306,5446  1545208    
0,07% 
  12612  2992    -1305,6389  1043    -1305,6318    -1306,4401  1543913    
0,06% 
  12690  2916        cutoff          -1305,6318    -1306,4401  1570473    
0,06% 
Elapsed time = 405,06 sec. (252362,31 ticks, tree = 71,35 MB, solutions = 
27) 
  12783  2872        cutoff          -1305,6318    -1306,3404  1583188    
0,05% 
  12913  2835    -1306,0514   758    -1305,6318    -1306,3404  1591455    
0,05% 
  13114  2744        cutoff          -1305,6318    -1306,2834  1617719    
0,05% 
  13397  2519        cutoff          -1305,6318    -1306,1058  1670330    
0,04% 
  13595  2443    -1305,6658   932    -1305,6318    -1305,9319  1682385    
0,02% 
 
GUB cover cuts applied:  8 
Clique cuts applied:  283 
Cover cuts applied:  6932 
Implied bound cuts applied:  5353 
Flow cuts applied:  1764 
Mixed integer rounding cuts applied:  1725 
Zero-half cuts applied:  1 
Lift and project cuts applied:  76 
Gomory fractional cuts applied:  49 
 
Root node processing (before b&c): 

  Real time             =   21,67 sec. (26195,67 ticks) 
Parallel b&c, 12 threads: 
  Real time             =  399,08 sec. (231458,50 ticks) 
  Sync time (average)   =   76,68 sec. 
  Wait time (average)   =    0,09 sec. 
                          ------------ 
Total (root+branch&cut) =  420,75 sec. (257654,17 ticks) 
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
 
SCENARIO 3 : 
 
LINEAR  
 
Checking license ... 
License found. [0,70 s] 
Version identifier: 22.1.2.0 | 2024-12-09 | 8bd2200c8 
Legacy callback                                  pi 
Tried aggregator 3 times. 
MIP Presolve eliminated 13809 rows and 15150 columns. 
MIP Presolve modified 18 coefficients. 
Aggregator did 1388 substitutions. 
Reduced MIP has 4481 rows, 5087 columns, and 32022 nonzeros. 
Reduced MIP has 1312 binaries, 72 generals, 0 SOSs, and 288 indicators. 
Presolve time = 0,05 sec. (60,41 ticks) 
Probing fixed 0 vars, tightened 289 bounds. 
Probing time = 0,00 sec. (1,34 ticks) 
Cover probing fixed 0 vars, tightened 1 bounds. 
Tried aggregator 1 time. 
Detecting symmetries... 
MIP Presolve eliminated 1 rows and 1 columns. 
MIP Presolve modified 1 coefficients. 
Reduced MIP has 4480 rows, 5086 columns, and 31991 nonzeros. 
Reduced MIP has 1313 binaries, 300 generals, 0 SOSs, and 288 indicators. 
Presolve time = 0,02 sec. (13,34 ticks) 
Probing time = 0,00 sec. (1,27 ticks) 
Clique table members: 371. 
MIP emphasis: balance optimality and feasibility. 
MIP search method: dynamic search. 
Parallel mode: deterministic, using up to 12 threads. 
Root relaxation solution time = 0,05 sec. (45,97 ticks) 
 
        Nodes                                         Cuts/ 
   Node  Left     Objective  IInf  Best Integer    Best Bound    ItCnt     
Gap 
 
      0     0    -2965,5239   410                  -2965,5239      762          
*     0+    0                       9,20186e+09    -2965,5239           
100,00% 
*     0+    0                       4,21656e+08    -2965,5239           
100,00% 
      0     0    -2906,7786   421   4,21656e+08     Cuts: 857     1657  
100,00% 

      0     0    -2882,3189   135   4,21656e+08     Cuts: 732     2014  
100,00% 
*     0+    0                       1,76759e+07    -2882,3189           
100,02% 
      0     0    -2873,3978   121   1,76759e+07     Cuts: 205     2133  
100,02% 
*     0+    0                      5225708,7541    -2873,3978           
100,05% 
      0     0    -2872,3603   104  5225708,7541      Cuts: 84     2181  
100,05% 
*     0+    0                      4914100,1486    -2872,3603           
100,06% 
      0     0  -1,00000e+75     0  4914100,1486    -2872,3603     2181  
100,06% 
      0     0    -2872,0269   107  4914100,1486      Cuts: 31     2214  
100,06% 
Detecting symmetries... 
*     0+    0                      2470628,2655    -2872,0269           
100,12% 
      0     0    -2871,8066   105  2470628,2655      Cuts: 18     2231  
100,12% 
      0     0    -2871,6423   105  2470628,2655      Cuts: 10     2237  
100,12% 
      0     0    -2871,5878   186  2470628,2655    MIRcuts: 1     2239  
100,12% 
*     0+    0                      1452373,5520    -2871,5878           
100,20% 
*     0+    0                      1452373,4327    -2869,9945           
100,20% 
*     0+    0                       418037,6190    -2869,9945           
100,69% 
*     0+    0                       106451,8479    -2869,9945           
102,70% 
      0     0  -1,00000e+75     0   106451,8479    -2869,9945     2239  
102,70% 
Detecting symmetries... 
      0     2    -2871,5878   186   106451,8479    -2869,9945     2239  
102,70% 
Elapsed time = 1,09 sec. (946,54 ticks, tree = 0,02 MB, solutions = 10) 
*    16+    2                       106446,2040    -2855,7129           
102,68% 
*    17+   10                        29288,4956    -2855,7129           
109,75% 
*    19+    6                        29255,3690    -2855,7129           
109,76% 
*    29+    8                        29250,1962    -2853,9621           
109,76% 
*    63+    8                        29250,1961    -2853,9621           
109,76% 
*   162+   95                        29244,4130    -2853,3746           
109,76% 
*   163+  110                        29240,0234    -2853,3746           
109,76% 

*   180+  129                        29204,5524    -2853,3746           
109,77% 
*   276+  167                        29204,3871    -2853,3746           
109,77% 
*   279+  178                        29194,2378    -2853,3746           
109,77% 
    380   283    -2835,4193   100    29194,2378    -2853,3746     6395  
109,77% 
*   637+  394                        -2789,2101    -2853,3746             
2,30% 
*   671+  434                        -2832,1795    -2853,3746             
0,75% 
   1150   515    -2841,9076    73    -2832,1795    -2853,3746    10727    
0,75% 
*  1165+  420                        -2832,5497    -2853,3746             
0,74% 
*  1316   584      integral     0    -2838,3061    -2853,3746    11464    
0,53% 
*  1634   643      integral     0    -2846,7366    -2851,8789    13654    
0,18% 
*  1701   721      integral     0    -2847,7574    -2851,8623    13882    
0,14% 
*  1734+  389                        -2848,3615    -2851,8623             
0,12% 
   1774   301    -2850,6483    93    -2848,3615    -2851,8623    14183    
0,12% 
*  2372   390      integral     0    -2848,6245    -2851,4944    16998    
0,10% 
   2728   329    -2851,1522    67    -2848,6245    -2851,3341    19438    
0,10% 
   3365   511    -2848,7729    57    -2848,6245    -2851,2060    30412    
0,09% 
   3836   517        cutoff          -2848,6245    -2850,2679    40724    
0,06% 
   4500   355        cutoff          -2848,6245    -2849,6609    53531    
0,04% 
 
Cover cuts applied:  72 
Implied bound cuts applied:  203 
Flow cuts applied:  183 
Mixed integer rounding cuts applied:  215 
Lift and project cuts applied:  5 
Gomory fractional cuts applied:  54 
 
Root node processing (before b&c): 
  Real time             =    1,05 sec. (949,33 ticks) 
Parallel b&c, 12 threads: 
  Real time             =    4,22 sec. (1740,95 ticks) 
  Sync time (average)   =    0,85 sec. 
  Wait time (average)   =    0,00 sec. 
                          ------------ 
Total (root+branch&cut) =    5,27 sec. (2690,29 ticks) 
 
 



XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
 
SCENARIO 3 : 
 
NONLINEAR  
 
Checking license ... 
License found. [0,03 s] 
Version identifier: 22.1.2.0 | 2024-12-09 | 8bd2200c8 
CPXPARAM_Tune_Display                            3 
CPXPARAM_Output_WriteLevel                       1 
CPXPARAM_MIP_Tolerances_MIPGap                   0.00014999999999999999 
Legacy callback                                  pi 
Tried aggregator 3 times. 
MIP Presolve eliminated 14415 rows and 15903 columns. 
MIP Presolve modified 18 coefficients. 
Aggregator did 1519 substitutions. 
Reduced MIP has 41664 rows, 41835 columns, and 115008 nonzeros. 
Reduced MIP has 10576 binaries, 72 generals, 0 SOSs, and 18816 indicators. 
Presolve time = 0,17 sec. (535,60 ticks) 
Probing fixed 0 vars, tightened 289 bounds. 
Probing time = 0,42 sec. (27,31 ticks) 
Tried aggregator 1 time. 
Detecting symmetries... 
MIP Presolve eliminated 435 rows and 0 columns. 
MIP Presolve modified 1 coefficients. 
Reduced MIP has 41229 rows, 41835 columns, and 114138 nonzeros. 
Reduced MIP has 10577 binaries, 300 generals, 0 SOSs, and 18816 indicators. 
Presolve time = 0,12 sec. (150,34 ticks) 
Probing time = 0,11 sec. (10,73 ticks) 
Clique table members: 19091. 
MIP emphasis: balance optimality and feasibility. 
MIP search method: dynamic search. 
Parallel mode: deterministic, using up to 12 threads. 
Root relaxation solution time = 1,56 sec. (2791,76 ticks) 
 
        Nodes                                         Cuts/ 
   Node  Left     Objective  IInf  Best Integer    Best Bound    ItCnt     
Gap 
 
*     0+    0                       9,02352e+09                            
---  
*     0+    0                       2,97149e+08                            
---  
      0     0    -2965,5239   385   2,97149e+08    -2965,5239       41  
100,00% 
*     0+    0                      1811606,6221    -2965,5239           
100,16% 
      0     0    -2898,1959   443  1811606,6221     Cuts: 988     3158  
100,16% 
      0     0    -2879,5567   228  1811606,6221    Cuts: 9459     3992  
100,16% 

      0     0    -2873,9978   382  1811606,6221    Cuts: 1042     4837  
100,16% 
*     0+    0                      1811606,6219    -2873,9978           
100,16% 
      0     0  -1,00000e+75     0  1811606,6219    -2873,9978     4837  
100,16% 
      0     0    -2872,8199   500  1811606,6219     Cuts: 447     5007  
100,16% 
      0     0    -2872,7707   394  1811606,6219     Cuts: 214     5111  
100,16% 
      0     0    -2872,7588   487  1811606,6219     Cuts: 108     5199  
100,16% 
      0     0    -2872,7282   477  1811606,6219     Cuts: 122     5308  
100,16% 
      0     0    -2872,7282   475  1811606,6219       Cuts: 5     5312  
100,16% 
*     0+    0                       926367,5343    -2872,7282           
100,31% 
*     0+    0                        29212,3929    -2872,7282           
109,83% 
      0     2    -2872,7282   475    29212,3929    -2872,7282     5312  
109,83% 
Elapsed time = 8,92 sec. (10876,07 ticks, tree = 0,02 MB, solutions = 6) 
      4     4    -2855,7634   480    29212,3929    -2860,5543     5836  
109,79% 
     17    18    -2852,1856   271    29212,3929    -2854,2059     9438  
109,77% 
     41    25    -2828,2763   257    29212,3929    -2853,8297    11320  
109,77% 
     72    61    -2814,6385   208    29212,3929    -2853,8297    23295  
109,77% 
    128    96    -2829,4909   104    29212,3929    -2853,8297    34531  
109,77% 
    215   168    -2750,9324   628    29212,3929    -2853,8297    40826  
109,77% 
*   236+  122                        -2814,6737    -2853,8297             
1,39% 
    265   145    -2850,8141   255    -2814,6737    -2853,8297    48476    
1,39% 
*   271+  127                        -2824,7015    -2853,8297             
1,03% 
    340   125    -2848,1058    36    -2824,7015    -2853,8297    50566    
1,03% 
    413   165    -2844,6750    14    -2824,7015    -2853,8297    54044    
1,03% 
*   648+  264                        -2828,1011    -2853,5442             
0,90% 
*   717   373      integral     0    -2840,9986    -2853,5442    62111    
0,44% 
Elapsed time = 20,70 sec. (13753,67 ticks, tree = 4,29 MB, solutions = 9) 
*   749   333      integral     0    -2841,9001    -2853,5442    60862    
0,41% 
*   855+  280                        -2847,0990    -2853,5442             
0,23% 

*  1070   142      integral     0    -2847,2027    -2853,5442    68331    
0,22% 
*  1120   146      integral     0    -2848,6245    -2853,5442    71062    
0,17% 
*  1182   132      integral     0    -2848,6245    -2852,6036    70924    
0,14% 
   1440   143    -2848,6251     1    -2848,6245    -2851,6696    75391    
0,11% 
   1958   345    -2848,6263     3    -2848,6245    -2851,6615    84441    
0,11% 
   2420   425        cutoff          -2848,6245    -2851,4644    89948    
0,10% 
 
Clique cuts applied:  73 
Cover cuts applied:  2290 
Implied bound cuts applied:  4089 
Flow cuts applied:  2179 
Mixed integer rounding cuts applied:  1165 
Lift and project cuts applied:  1 
Gomory fractional cuts applied:  55 
 
Root node processing (before b&c): 
  Real time             =    8,61 sec. (10689,36 ticks) 
Parallel b&c, 12 threads: 
  Real time             =   30,80 sec. (7637,98 ticks) 
  Sync time (average)   =   11,09 sec. 
  Wait time (average)   =    0,00 sec. 
                          ------------ 
Total (root+branch&cut) =   39,41 sec. (18327,34 ticks) 
 



C Python Codes

C.1 Benders Decomposition from Section 7.1

1 import docplex .mp
2 import pandas as pd
3 from c o l l e c t i o n s import d e f a u l t d i c t
4 import math
5 ### MODEL ###
6 from docplex .mp. model import Model
7 from numpy . d i s t u t i l s . ex t ens i on import cxx ex t r e
8 from docplex .mp. s o l u t i o n import So lveSo lu t i on
9 s o l = So lveSo lu t i on #(name=”Microgr idOt imize rSo lut ion ”)

10 m = Model (name = ”Microgr idOptimizer ” )
11 # m. parameters . benders . s t r a t e gy = 3 #CPLEX igno r e s any annotat ion f i l e

supp l i ed with the model ; CPLEX app l i e s p r e s o l v e ; CPLEX then
automat i ca l l y gene ra t e s a Benders pa r t i t i on , putt ing i n t e g e r v a r i a b l e s
in master and cont inuous l i n e a r v a r i a b l e s i n to d i s j o i n t subproblems .
CPLEX then s o l v e s the Benders decomposit ion o f the model

12 # m. parameters . benders . s t r a t e gy = 1 #of m. context . cp l ex parameter s . . .
Benders i s guaranteed and own s e l e c t i o n o f annotat ions are used

13 # m. parameters . benders . s t r a t e gy = 2 #CPLEX accept s the master as g iven and
attempts to decompose the remaining e lements in to d i s j o i n t subproblems
to a s s i gn to workers . I t then s o l v e s the Benders decomposit ion o f the
model

14 # m. parameters . benders . s t r a t e gy = 0 #AUTO I f annotat ions s p e c i f y i n g a
Benders p a r t i t i o n o f the cur rent model are ava i l ab l e , CPLEX attempts to
decompose the model . CPLEX uses the master as g iven by the annotat ions ,
and attempts to p a r t i t i o n the subproblems fur the r , i f p o s s i b l e , b e f o r e
apply ing Benders a lgor i thm to so l v e the model

15 m. parameters . benders . s t r a t e gy = −1 #Ignore any . benders annotat ion va lue s
and so l v e mono l i t h i c a l l y

16 m. t ime l im i t = 30∗60
17 m. parameters . mip . t o l e r a n c e s . mipgap . s e t ( 1 . 5 e−4)
18

19 #dec i s i o n va r i ab l e annotat ions
20

21 InterGenActivePower = m. con t i nuou s va r d i c t ( [ ( i , t ) f o r i in isINTER E GENS
f o r t in isDECISION STEPS ] , name=’ InterGenActivePower ’ , lb=0)

22 f o r v in InterGenActivePower . va lue s ( ) :
23 v . benders annotat ion = 1 # cont inuous v a r i a b l e s in Subproblem 1
24

25

26 IsCharging = m. b i n a r y va r d i c t ( [ ( s , t ) f o r s in isE STORAGES . union (
isH STORAGES) f o r t in isDECISION STEPS ] , name=’ IsCharging ’ )

27 f o r v in IsCharging . va lue s ( ) :
28 v . benders annotat ion = 0 # d i s c r e t e v a r i a b l e s in Masterproblem 0
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Python log 4D scenario Benders Strategy 2:  

C:\Users\florine.laseur\Envs\venv36\Scripts\python.exe 
C:\Users\florine.laseur\Downloads\MicrogridOptimizer.py  

constraint atteint 

CPXPARAM_TimeLimit                               1800 

CPXPARAM_Read_DataCheck                          1 

CPXPARAM_Benders_Strategy                        2 

CPXPARAM_MIP_Tolerances_MIPGap                   0.00014999999999999999 

Tried aggregator 2 times. 

MIP Presolve eliminated 41474 rows and 34065 columns. 

MIP Presolve added 3 rows and 0 columns. 

MIP Presolve modified 974 coeXicients. 

Aggregator did 4398 substitutions. 

Reduced MIP has 11209 rows, 9394 columns, and 64289 nonzeros. 

Reduced MIP has 2880 binaries, 278 generals, 0 SOSs, and 0 indicators. 

Presolve time = 0.06 sec. (77.50 ticks) 

Found incumbent of value 6638.501746 after 0.14 sec. (176.46 ticks) 

Tried aggregator 1 time. 

MIP Presolve eliminated 291 rows and 0 columns. 

MIP Presolve added 3 rows and 0 columns. 

MIP Presolve modified 289 coeXicients. 

Reduced MIP has 10921 rows, 9394 columns, and 63703 nonzeros. 

Reduced MIP has 2881 binaries, 277 generals, 0 SOSs, and 0 indicators. 

Presolve time = 0.02 sec. (19.66 ticks) 

 

        Nodes                                         Cuts/ 

   Node  Left     Objective  IInf  Best Integer    Best Bound    ItCnt     Gap 

 

      0     0   -10000.0000                        Benders: 1        0          

      0     0   -10000.0000                        Benders: 1        2          

      0     0    -9981.9257                        Benders: 1      391          

      0     0    -8555.7099                        Benders: 1      743          

      0     0    -8555.7099                        Benders: 1      744          

      0     0    -8552.8823                        Benders: 1      748          

      0     0    -8552.8823                        Benders: 1      749          

      0     0    -7787.6659                        Benders: 1      981          

      0     0    -7787.6659                        Benders: 1      982          

      0     0    -7787.6659                        Benders: 1      983          

      0     0    -7787.6659                        Benders: 1      984          

      0     0    -7787.6659                        Benders: 1      985          

      0     0    -7787.6659                        Benders: 1      986          

      0     0    -7586.8181                        Benders: 1     1084          

      0     0    -7586.8181                        Benders: 1     1088          

      0     0    -7586.8181                        Benders: 1     1092          

      0     0    -7586.8181                        Benders: 1     1095          

      0     0    -7586.8181                        Benders: 1     1097          

      0     0    -7586.8181                        Benders: 1     1100          

      0     0    -5753.9000                        Benders: 1     1455          

      0     0    -5745.7640                        Benders: 1     1498          

      0     0    -5745.7640                        Benders: 1     1499          

      0     0    -5638.8802                        Benders: 1     1664          

      0     0    -5638.8802                        Benders: 1     1665          

      0     0    -5638.8802                        Benders: 1     1666          

      0     0    -5638.8802                        Benders: 1     1667          

      0     0    -5638.8802                        Benders: 1     1668          

      0     0    -5429.4721                        Benders: 1     1787          

      0     0    -4767.9968                        Benders: 1     2196          

      0     0    -4767.9968                        Benders: 1     2197          

      0     0    -4767.9968                        Benders: 1     2198          

      0     0    -4767.9968                        Benders: 1     2199          

      0     0    -4767.9968                        Benders: 1     2200          

      0     0    -4767.9968                        Benders: 1     2201          

      0     0    -4036.9365                        Benders: 1     2443          

      0     0    -3998.6244                        Benders: 1     2513          

      0     0    -3998.6244                        Benders: 1     2514          

      0     0    -3998.6244                        Benders: 1     2515          

      0     0    -3998.6244                        Benders: 1     2516          

      0     0    -3998.6244                        Benders: 1     2517          

      0     0    -3998.6244                        Benders: 1     2518          

      0     0    -3913.5818                        Benders: 1     2594          

      0     0    -3913.5818                        Benders: 1     2595          

      0     0    -3913.5818                        Benders: 1     2596          

      0     0    -3913.5818                        Benders: 1     2597          

      0     0    -3913.5818                        Benders: 1     2598          

      0     0    -3913.5818                        Benders: 1     2599          

      0     0    -3823.0472                        Benders: 1     2638          

      0     0    -3785.3986                        Benders: 1     2648          

      0     0    -3785.3986                        Benders: 1     2649          

      0     0    -3785.3986                        Benders: 1     2650          

      0     0    -3447.8010                        Benders: 1     2875          

      0     0    -3447.8010                        Benders: 1     2938          

      0     0    -3446.5949                        Benders: 1     2986          

      0     0    -3441.6310                        Benders: 1     3014          

      0     0    -3440.2138                        Benders: 1     3044          

      0     0    -3433.9332                        Benders: 1     3101          

      0     0    -3432.8156                        Benders: 1     3115          

      0     0    -3428.2316                        Benders: 1     3154          

      0     0    -3423.4392                        Benders: 1     3192          

      0     0    -3404.4283                        Benders: 1     3238          

      0     0    -3401.5072                        Benders: 1     3260          

      0     0    -3397.0912                        Benders: 1     3291          

      0     0    -3360.4188                        Benders: 1     3359          

      0     0    -3357.1261                        Benders: 1     3385          

      0     0    -3350.5524                        Benders: 1     3416          

      0     0    -3349.0237                        Benders: 1     3431          

      0     0    -3339.0067                        Benders: 1     3492          

      0     0    -3337.4171                        Benders: 1     3510          

      0     0    -3329.5977                        Benders: 1     3549          

      0     0    -3325.2051                        Benders: 1     3574          

      0     0    -3315.7861                        Benders: 1     3629          

      0     0    -3315.7861                        Benders: 1     3630          

      0     0    -3312.0503                        Benders: 1     3658          

      0     0    -3309.2843                        Benders: 1     3683          

      0     0    -3306.7112                        Benders: 1     3715          

      0     0    -3302.4107                        Benders: 1     3765          

      0     0    -3300.5003                        Benders: 1     3787          

      0     0    -3297.4654                        Benders: 1     3821          

      0     0    -3295.4696                        Benders: 1     3843          

      0     0    -3293.8666                        Benders: 1     3861          

      0     0    -3286.5462                        Benders: 1     3917          

      0     0    -3280.4774                        Benders: 1     3948          

      0     0    -3277.3876                        Benders: 1     3995          

C.2 Benders Execution Log from Section 7.3.2
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      0     0    -3274.8096                        Benders: 1     4032          

      0     0    -3272.5525                        Benders: 1     4082          

      0     0    -3266.6328                        Benders: 1     4167          

      0     0    -3265.5703                        Benders: 1     4193          

      0     0    -3264.0914                        Benders: 1     4224          

      0     0    -3260.8495                        Benders: 1     4265          

      0     0    -3259.7125                        Benders: 1     4283          

      0     0    -3257.6007                        Benders: 1     4320          

      0     0    -3257.2427                        Benders: 1     4336          

      0     0    -3255.8026                        Benders: 1     4367          

      0     0    -3254.9246                        Benders: 1     4398          

      0     0    -3249.8774                        Benders: 1     4432          

      0     0    -3248.9549                        Benders: 1     4450          

      0     0    -3248.2493                        Benders: 1     4470          

      0     0    -3245.3022                        Benders: 1     4529          

      0     0    -3244.2895                        Benders: 1     4557          

      0     0    -3242.7284                        Benders: 1     4587          

      0     0    -3241.9477                        Benders: 1     4610          

      0     0    -3241.0976                        Benders: 1     4648          

      0     0    -3239.3743                        Benders: 1     4683          

      0     0    -3238.3677                        Benders: 1     4709          

      0     0    -3236.7286                        Benders: 1     4746          

      0     0    -3236.3708                        Benders: 1     4758          

      0     0    -3235.2569                        Benders: 1     4786          

      0     0    -3233.1829                        Benders: 1     4826          

      0     0    -3232.5889                        Benders: 1     4851          

      0     0    -3232.5235                        Benders: 1     4863          

      0     0    -3228.4322                        Benders: 1     4910          

      0     0    -3228.0011                        Benders: 1     4936          

      0     0    -3226.4407                        Benders: 1     4986          

      0     0    -3226.2776                        Benders: 1     4998          

      0     0    -3223.6762                        Benders: 1     5049          

      0     0    -3222.8324                        Benders: 1     5086          

      0     0    -3222.5138                        Benders: 1     5107          

      0     0    -3222.1887                        Benders: 1     5123          

      0     0    -3221.2933                        Benders: 1     5159          

      0     0    -3220.6231                        Benders: 1     5200          

      0     0    -3220.3420                        Benders: 1     5212          

      0     0    -3219.8894                        Benders: 1     5231          

      0     0    -3219.8198                        Benders: 1     5232          

      0     0    -3219.8198                        Benders: 1     5236          

      0     0    -3219.8198                        Benders: 1     5241          

      0     0    -3219.0483                        Benders: 1     5270          

      0     0    -3190.2110                        Benders: 1     5450          

      0     0    -3190.2110                        Benders: 1     5451          

      0     0    -3190.2110                        Benders: 1     5452          

      0     0    -3190.2110                        Benders: 1     5453          

      0     0    -3190.2110                        Benders: 1     5454          

      0     0    -3190.2110                        Benders: 1     5455          

      0     0    -3188.9774                        Benders: 1     5502          

      0     0    -3165.3285                        Benders: 1     5632          

      0     0    -3165.3285                        Benders: 1     5633          

      0     0    -3165.3285                        Benders: 1     5634          

      0     0    -3165.3285                        Benders: 1     5635          

      0     0    -3165.3285                        Benders: 1     5665          

      0     0    -3165.3285                        Benders: 1     5666          

      0     0    -3164.7955                        Benders: 1     5697          

      0     0    -3163.2869                        Benders: 1     5708          

      0     0    -3161.7550                        Benders: 1     5746          

      0     0    -3161.7550                        Benders: 1     5755          

      0     0    -3161.7550                        Benders: 1     5756          

      0     0    -3161.7550                        Benders: 1     5757          

      0     0    -3161.7550                        Benders: 1     5758          

      0     0    -3161.7550                        Benders: 1     5759          

      0     0    -3135.8323                        Benders: 1     5833          

      0     0    -3135.7373                        Benders: 1     5839          

      0     0    -3135.7373                        Benders: 1     5840          

      0     0    -3135.7373                        Benders: 1     5841          

      0     0    -3135.7373                        Benders: 1     5842          

      0     0    -3135.7373                        Benders: 1     5843          

      0     0    -3134.1608                        Benders: 1     5848          

      0     0    -3133.1999                        Benders: 1     5851          

      0     0    -3133.1999                        Benders: 1     5852          

      0     0    -3133.1999                        Benders: 1     5894          

      0     0    -3130.2908                        Benders: 1     5914          

      0     0    -3130.0108                        Benders: 1     5927          

      0     0    -3130.0108                        Benders: 1     5928          

      0     0    -3128.7059                        Benders: 1     5951          

      0     0    -3127.3721                        Benders: 1     5975          

      0     0    -3125.7926                        Benders: 1     6005          

      0     0    -3124.4240                        Benders: 1     6069          

      0     0    -3124.0034                        Benders: 1     6087          

      0     0    -3123.0005                        Benders: 1     6118          

      0     0    -3121.4226                        Benders: 1     6172          

      0     0    -3120.5049                        Benders: 1     6205          

      0     0    -3120.5049                        Benders: 1     6206          

      0     0    -3120.2811                        Benders: 1     6222          

      0     0    -3117.9365                        Benders: 1     6246          

      0     0    -3117.0126                        Benders: 1     6282          

      0     0    -3116.4047                        Benders: 1     6319          

      0     0    -3114.6715                        Benders: 1     6367          

      0     0    -3114.0409                        Benders: 1     6390          

      0     0    -3112.7446                        Benders: 1     6454          

      0     0    -3112.1845                        Benders: 1     6489          

      0     0    -3111.8791                        Benders: 1     6524          

      0     0    -3111.4309                        Benders: 1     6562          

      0     0    -3110.7168                        Benders: 1     6600          

      0     0    -3110.0873                        Benders: 1     6636          

      0     0    -3109.5627                        Benders: 1     6674          

      0     0    -3109.2508                        Benders: 1     6697          

      0     0    -3108.7090                        Benders: 1     6748          

      0     0    -3108.0374                        Benders: 1     6790          

      0     0    -3107.3688                        Benders: 1     6844          

      0     0    -3107.1320                        Benders: 1     6869          

      0     0    -3106.3718                        Benders: 1     6927          

      0     0    -3105.9564                        Benders: 1     6991          

      0     0    -3105.6469                        Benders: 1     7018          

      0     0    -3105.0954                        Benders: 1     7069          

      0     0    -3104.5700                        Benders: 1     7102          

      0     0    -3104.2340                        Benders: 1     7140          

      0     0    -3103.1973                        Benders: 1     7173          

      0     0    -3096.3569                        Benders: 1     7262          



      0     0    -3095.4750                        Benders: 1     7336          

      0     0    -3094.9722                        Benders: 1     7414          

      0     0    -3093.7220                        Benders: 1     7497          

      0     0    -3093.2321                        Benders: 1     7542          

      0     0    -3093.0204                        Benders: 1     7597          

      0     0    -3092.8250                        Benders: 1     7667          

      0     0    -3092.5408                        Benders: 1     7726          

      0     0    -3092.2579                        Benders: 1     7778          

      0     0    -3091.9543                        Benders: 1     7822          

      0     0    -3091.9261                        Benders: 1     7850          

      0     0    -3091.9261                        Benders: 1     7851          

      0     0    -3091.6421                        Benders: 1     7913          

      0     0    -3091.5600                        Benders: 1     7944          

      0     0    -3091.4956                        Benders: 1     7958          

      0     0    -3090.1957                        Benders: 1     8058          

      0     0    -3089.5760                        Benders: 1     8169          

      0     0    -3089.5760                        Benders: 1     8170          

      0     0    -3089.2630                        Benders: 1     8239          

      0     0    -3089.2630                        Benders: 1     8240          

      0     0    -3088.3845                        Benders: 1     8312          

      0     0    -3087.8485                        Benders: 1     8396          

      0     0    -3087.5320                        Benders: 1     8434          

      0     0    -3087.5320                        Benders: 1     8435          

      0     0    -3086.5535                        Benders: 1     8502          

      0     0    -3086.1974                        Benders: 1     8549          

      0     0    -3085.9462                        Benders: 1     8601          

      0     0    -3085.5086                        Benders: 1     8674          

      0     0    -3085.0942                        Benders: 1     8741          

      0     0    -3084.3066                        Benders: 1     8806          

      0     0    -3084.1651                        Benders: 1     8844          

      0     0    -3083.8044                        Benders: 1     8924          

      0     0    -3083.4778                        Benders: 1     8986          

      0     0    -3083.1802                        Benders: 1     9046          

      0     0    -3082.2689                        Benders: 1     9163          

      0     0    -3082.2330                        Benders: 1     9195          

      0     0    -3081.5713                        Benders: 1     9280          

      0     0    -3080.9625                        Benders: 1     9368          

      0     0    -3080.6468                        Benders: 1     9440          

      0     0    -3080.5027                        Benders: 1     9497          

      0     0    -3080.3015                        Benders: 1     9567          

      0     0    -3079.9342                        Benders: 1     9630          

      0     0    -3072.9773                        Benders: 1     9856          

      0     0    -3072.7514                        Benders: 1     9882          

      0     0    -3072.7514                        Benders: 1     9883          

      0     0    -3071.7701                        Benders: 1     9934          

      0     0    -3071.6486                        Benders: 1     9969          

      0     0    -3070.8300                        Benders: 1    10069          

      0     0    -3070.8300                        Benders: 1    10070          

      0     0    -3070.2310                        Benders: 1    10136          

      0     0    -3069.8839                        Benders: 1    10195          

      0     0    -3069.0022                        Benders: 1    10301          

      0     0    -3068.5549                        Benders: 1    10363          

      0     0    -3068.2031                        Benders: 1    10408          

      0     0    -3067.2432                        Benders: 1    10512          

      0     0    -3066.6661                        Benders: 1    10583          

Tried aggregator 1 time. 

MIP Presolve eliminated 5 rows and 1 columns. 

MIP Presolve modified 206 coeXicients. 

Reduced MIP has 1753 rows, 3158 columns, and 338002 nonzeros. 

Reduced MIP has 2880 binaries, 277 generals, 0 SOSs, and 0 indicators. 

Presolve time = 0.13 sec. (170.69 ticks) 

Probing fixed 0 vars, tightened 3 bounds. 

Probing time = 0.00 sec. (4.08 ticks) 

Tried aggregator 1 time. 

MIP Presolve eliminated 2 rows and 0 columns. 

MIP Presolve modified 2 coeXicients. 

Reduced MIP has 1751 rows, 3158 columns, and 337982 nonzeros. 

Reduced MIP has 2882 binaries, 275 generals, 0 SOSs, and 0 indicators. 

Presolve time = 0.09 sec. (83.93 ticks) 

Probing time = 0.00 sec. (3.64 ticks) 

Clique table members: 474. 

MIP emphasis: balance optimality and feasibility. 

MIP search method: dynamic search. 

Parallel mode: deterministic, using up to 12 threads. 

Root relaxation solution time = 0.44 sec. (415.83 ticks) 

*     0+    0                         6638.5017    -3066.2477           146.19% 

      0     0    -3065.9992   133     6638.5017    -3065.9992    11456  146.19% 

      0     0    -3061.7457   133     6638.5017       Cuts: 5    11519  146.12% 

      0     0    -3061.7396   131     6638.5017       Cuts: 2    11529  146.12% 

      0     0    -3061.7396   131     6638.5017    Benders: 1    11530  146.12% 

      0     0    -3061.7396   131     6638.5017    Benders: 1    11531  146.12% 

 

Repeating presolve. 

Tried aggregator 1 time. 

Reduced MIP has 1751 rows, 3158 columns, and 337982 nonzeros. 

Reduced MIP has 2882 binaries, 275 generals, 0 SOSs, and 0 indicators. 

Presolve time = 0.05 sec. (66.32 ticks) 

Probing time = 0.06 sec. (3.64 ticks) 

Tried aggregator 1 time. 

Reduced MIP has 1751 rows, 3158 columns, and 337982 nonzeros. 

Reduced MIP has 2882 binaries, 275 generals, 0 SOSs, and 0 indicators. 

Presolve time = 0.06 sec. (66.30 ticks) 

Represolve time = 0.22 sec. (163.43 ticks) 

Probing time = 0.00 sec. (3.64 ticks) 

Clique table members: 468. 

MIP emphasis: balance optimality and feasibility. 

MIP search method: dynamic search. 

Parallel mode: deterministic, using up to 12 threads. 

Root relaxation solution time = 0.56 sec. (504.79 ticks) 

*     0+    0                         6638.5017    -3061.7396           146.12% 

      0     0    -3061.7396   131     6638.5017    -3061.7396    23136  146.12% 

      0     0    -3061.7396   131     6638.5017       Cuts: 5    23139  146.12% 

      0     0    -3061.7396   131     6638.5017    Benders: 1    23140  146.12% 

      0     2    -3061.7396   131     6638.5017    -3061.7396    23140  146.12% 

Elapsed time = 17.91 sec. (15856.85 ticks, tree = 0.01 MB, solutions = 0) 

      2     4    -3020.2047    69     6638.5017    -3061.7300    23380  146.12% 

     12    14    -3053.1932    73     6638.5017    -3060.4201    23786  146.10% 

     24    25    -3016.8925    45     6638.5017    -3060.4201    24382  146.10% 

    104    55    -3041.4095    53     6638.5017    -3053.2381    25783  145.99% 

    139    75    -2927.2862    58     6638.5017    -3053.2381    27100  145.99% 

    164   104    -2677.0603    62     6638.5017    -3053.2381    28691  145.99% 

    191   128    -3017.5263    36     6638.5017    -3053.2381    29421  145.99% 



    234   163    -3016.8488    42     6638.5017    -3053.2381    30430  145.99% 

    307   219    -2996.4301    42     6638.5017    -3053.2381    31544  145.99% 

    601   450    -3016.6635    26     6638.5017    -3053.2381    36127  145.99% 

Elapsed time = 24.25 sec. (19175.83 ticks, tree = 6.45 MB, solutions = 0) 

    841   738    -3015.6719    35     6638.5017    -3053.2381    41062  145.99% 

   1152  1011    -3014.7547    21     6638.5017    -3053.2381    47521  145.99% 

   1493  1227    -2993.3153    36     6638.5017    -3053.2381    52332  145.99% 

   1747  1574    -2988.9404    74     6638.5017    -3053.2381    63610  145.99% 

   1938  1772    -2996.4153    18     6638.5017    -3053.2381    73341  145.99% 

   1988  1845    -3027.6009    37     6638.5017    -3053.2381    78831  145.99% 

   1990  1992    -3056.0792   153     6638.5017    -3053.2381   112103  145.99% 

   1991  1993    -3052.1029   147     6638.5017    -3052.0419   112176  145.97% 

   1996  1284    -2988.9377    66     6638.5017    -3048.2038   112559  145.92% 

   2009   274    -3030.5373    42     6638.5017    -3042.5974   113946  145.83% 

Elapsed time = 46.89 sec. (39779.78 ticks, tree = 5.22 MB, solutions = 0) 

   2085    58    -2978.8559    45     6638.5017    -3042.5974   115288  145.83% 

   2219   153    -2980.4389    27     6638.5017    -3042.5620   119057  145.83% 

   2308   245    -3028.3325    41     6638.5017    -3042.5620   123303  145.83% 

   2451   376    -2637.1714     4     6638.5017    -3042.5620   127641  145.83% 

   2619   507    -2979.2952    35     6638.5017    -3042.5620   133275  145.83% 

   2754   659    -3025.6056    36     6638.5017    -3042.5620   138117  145.83% 

   2941   867    -2980.6201    37     6638.5017    -3042.5620   144142  145.83% 

   3130   946    -3019.8885    22     6638.5017    -3042.5620   146071  145.83% 

   3406  1166    -3019.5543    12     6638.5017    -3042.5620   151244  145.83% 

   3612  1347    -3027.9928    35     6638.5017    -3042.5620   155295  145.83% 

Elapsed time = 68.39 sec. (49427.79 ticks, tree = 2.31 MB, solutions = 0) 

   3846  1649    -3014.8560    18     6638.5017    -3042.5620   162523  145.83% 

   4080  1789    -3023.6079    37     6638.5017    -3042.5620   168531  145.83% 

   4311  2089    -3014.1305    10     6638.5017    -3042.5620   171379  145.83% 

   4516  2326    -3018.4538    29     6638.5017    -3042.5620   177770  145.83% 

   4658  2412    -3016.5305    18     6638.5017    -3042.5620   180665  145.83% 

   4785  2666    -2949.7345    33     6638.5017    -3042.5620   185742  145.83% 

   5077  2916    -2598.6448    12     6638.5017    -3042.5620   189063  145.83% 

   5331  3162    -2598.4419    14     6638.5017    -3042.5620   192600  145.83% 

   5577  3268    -2997.0915    30     6638.5017    -3042.5620   194329  145.83% 

   5846  3461    -2991.3714    11     6638.5017    -3042.5620   196569  145.83% 

Elapsed time = 90.92 sec. (59387.74 ticks, tree = 5.94 MB, solutions = 0) 

   6087  3681    -2947.1477    19     6638.5017    -3042.5620   200685  145.83% 

   6456  4171    -2863.2466     8     6638.5017    -3042.5620   208529  145.83% 

   6837  4276    -3026.5455    20     6638.5017    -3042.5620   210262  145.83% 

   7126  4884    -2908.9267    12     6638.5017    -3042.5620   214924  145.83% 

   7468  5187    -2978.3357     7     6638.5017    -3042.5620   219032  145.83% 

   7796  5413    -2378.6818     7     6638.5017    -3042.5620   220680  145.83% 

   8218  5768    -2539.1406    10     6638.5017    -3042.5620   222530  145.83% 

   8567  5736    -2456.9393    11     6638.5017    -3042.5620   222820  145.83% 

   8852  6568    -3027.8064    11     6638.5017    -3042.5620   228038  145.83% 

   9103  6797    -2455.0237     8     6638.5017    -3042.5620   230681  145.83% 

Elapsed time = 116.09 sec. (68966.77 ticks, tree = 11.77 MB, solutions = 0) 

   9348  7138    -3022.7292     9     6638.5017    -3042.5620   234194  145.83% 

   9589  7389    -2078.4385     9     6638.5017    -3042.5620   237967  145.83% 

   9809  7583    -3039.7535    56     6638.5017    -3042.5620   241626  145.83% 

   9959  7626    -2420.2291    12     6638.5017    -3042.5620   241959  145.83% 

  10127  7908     -909.9732     1     6638.5017    -3042.5620   245707  145.83% 

  10215  8048    -2661.1041    20     6638.5017    -3042.5620   249315  145.83% 

  10381  8155    -2651.8692    10     6638.5017    -3042.5620   249937  145.83% 

  10509  8353    -2017.2033    14     6638.5017    -3042.5620   253846  145.83% 

  10619  8454    -2385.8274    12     6638.5017    -3042.5620   255343  145.83% 

  10743  8469    -2379.0054    12     6638.5017    -3042.5620   255524  145.83% 

Elapsed time = 139.95 sec. (78571.28 ticks, tree = 14.79 MB, solutions = 0) 

  10823  8651    -3014.2345    31     6638.5017    -3042.5620   259098  145.83% 

  10969  8708    -2374.2926    15     6638.5017    -3042.5620   259181  145.83% 

  11056  8841    -3034.1695    22     6638.5017    -3042.5620   262910  145.83% 

  11168  8952    -2300.9785    10     6638.5017    -3042.5620   264400  145.83% 

  11274  9053    -2407.3358     8     6638.5017    -3042.5620   264741  145.83% 

  11420  9258    -2405.1936     5     6638.5017    -3042.5620   267879  145.83% 

* 11455+ 9263                        -1627.4764    -3042.5620            86.95% 

  11535  9196    -3027.5112     8    -1627.4764    -3042.5620   270250   86.95% 

  11613  9224    -3026.5703    12    -1627.4764    -3042.5620   270506   86.95% 

  11698  9327    -3033.1504    85    -1627.4764    -3042.5620   273489   86.95% 

  11761  9445    -3029.6234    12    -1627.4764    -3042.5620   277180   86.95% 

Elapsed time = 163.98 sec. (88216.08 ticks, tree = 16.86 MB, solutions = 1) 

  11848  9434    -3023.8696    25    -1627.4764    -3042.5620   277809   86.95% 

  11914  9510    -3041.2849    74    -1627.4764    -3042.5620   281966   86.95% 

  12068  9545    -3037.4966    68    -1627.4764    -3042.5620   285417   86.95% 

  12141  9756    -3022.7155    35    -1627.4764    -3042.5620   293877   86.95% 

  12245  9790    -3036.0696    63    -1627.4764    -3042.5620   295483   86.95% 

  12319  9943    -3035.7727    50    -1627.4764    -3042.5620   302734   86.95% 

  12414 10010    -3008.1774    10    -1627.4764    -3042.5620   304726   86.95% 

  12511 10041    -3024.3048    26    -1627.4764    -3042.5620   306820   86.95% 

  12638 10132    -3024.1690    56    -1627.4764    -3042.5620   312098   86.95% 

  12751 10272    -3036.2534    72    -1627.4764    -3042.5620   316012   86.95% 

Elapsed time = 192.84 sec. (97862.08 ticks, tree = 18.54 MB, solutions = 1) 

  12839 10495    -3038.7220    30    -1627.4764    -3042.5620   321616   86.95% 

  12973 10462    -3019.2880    38    -1627.4764    -3042.5620   321305   86.95% 

  13112 10672    -3038.1835    29    -1627.4764    -3042.5620   328030   86.95% 

  13260 10637    -2895.8139     8    -1627.4764    -3042.5620   327139   86.95% 

  13436 10834    -3022.2727    28    -1627.4764    -3042.5620   332255   86.95% 

  13628 10989    -2881.2777     7    -1627.4764    -3042.5620   332842   86.95% 

  13830 11290    -3036.8090    23    -1627.4764    -3042.5620   340656   86.95% 

  13986 11456    -2631.9426     8    -1627.4764    -3042.5620   344667   86.95% 

  14175 11648    -3035.6237    12    -1627.4764    -3042.5620   347095   86.95% 

  14306 11823    -2315.8835     3    -1627.4764    -3042.5620   351691   86.95% 

Elapsed time = 223.13 sec. (107429.54 ticks, tree = 21.33 MB, solutions = 1) 

  14437 11765    -3032.4358     5    -1627.4764    -3042.5620   350243   86.95% 

  14579 12098    -3024.5292    44    -1627.4764    -3042.5620   356799   86.95% 

  14714 12166    -3025.3230    15    -1627.4764    -3042.5620   357145   86.95% 

  14882 12406    -3029.2104    19    -1627.4764    -3042.5620   361387   86.95% 

  14977 12432    -3024.9127    15    -1627.4764    -3042.5620   362068   86.95% 

  15115 12597    -3006.7035    26    -1627.4764    -3042.5620   363166   86.95% 

  15219 12713    -3035.8133    34    -1627.4764    -3041.7867   366719   86.90% 

  15321 12808    -1827.1548     6    -1627.4764    -3041.7867   367969   86.90% 

  15404 12829    -3029.4716    33    -1627.4764    -3041.7867   369702   86.90% 

  15784 13299    -3032.1466    49    -1627.4764    -3041.7867   382329   86.90% 

Elapsed time = 261.59 sec. (119973.59 ticks, tree = 24.07 MB, solutions = 1) 

  16291 13726    -3034.0793    18    -1627.4764    -3041.7867   391277   86.90% 

  16530 14129    -2953.2067    18    -1627.4764    -3041.7867   399187   86.90% 

  16986 14247    -1964.4663     3    -1627.4764    -3041.6694   401193   86.89% 

  17387 14709    -3038.6037    52    -1627.4764    -3041.6694   411547   86.89% 

  17658 15182    -2795.4929     1    -1627.4764    -3041.6694   424147   86.89% 

  17833 15297    -3002.7809     1    -1627.4764    -3041.6694   425636   86.89% 

  18043 15544    -2377.6311     6    -1627.4764    -3041.6694   433856   86.89% 

  18255 15698    -2310.2334     4    -1627.4764    -3041.6694   438922   86.89% 



  18519 16107    -1638.0274     1    -1627.4764    -3041.6694   449052   86.89% 

  18833 16201    -3035.2516    17    -1627.4764    -3041.6694   452947   86.89% 

Elapsed time = 379.33 sec. (158222.20 ticks, tree = 29.88 MB, solutions = 1) 

  19135 16579    -2877.9128    49    -1627.4764    -3041.6694   462586   86.89% 

  19456 16863    -3015.9011    40    -1627.4764    -3041.6694   472390   86.89% 

  19754 17117    -2037.3597     7    -1627.4764    -3041.6694   474669   86.89% 

  20010 17508    -1646.2419     1    -1627.4764    -3041.6694   483325   86.89% 

  20204 17732    -3007.6057    23    -1627.4764    -3041.4388   488673   86.88% 

  20450 17783    -3040.1870    44    -1627.4764    -3041.4388   494059   86.88% 

  20649 18157    -3025.6465    15    -1627.4764    -3041.4388   509378   86.88% 

  20852 18315    -2587.7090     1    -1627.4764    -3041.4388   518430   86.88% 

  21057 18637    -2671.2811     1    -1627.4764    -3041.4388   532354   86.88% 

  21228 18729    -2614.3454    14    -1627.4764    -3041.4388   536421   86.88% 

Elapsed time = 507.97 sec. (196559.51 ticks, tree = 35.20 MB, solutions = 1) 

  21419 18896    -3040.7255    69    -1627.4764    -3041.4388   546851   86.88% 

  21603 19042    -3036.0740    29    -1627.4764    -3041.4388   552884   86.88% 

  21793 19151    -3041.2279    77    -1627.4764    -3041.3305   559011   86.87% 

  21985 19391    -2985.9142    34    -1627.4764    -3041.3305   571852   86.87% 

  22143 19567    -2984.8577    43    -1627.4764    -3041.3305   582593   86.87% 

  22308 19802    -3038.5139    38    -1627.4764    -3041.3305   590637   86.87% 

  22530 19827    -3037.7789    34    -1627.4764    -3041.2653   591732   86.87% 

  22730 20077    -2984.0851    28    -1627.4764    -3041.2653   603187   86.87% 

  22893 20295    -3037.3613    48    -1627.4764    -3041.2653   612317   86.87% 

  23068 20520    -2779.6258    23    -1627.4764    -3041.2653   622403   86.87% 

Elapsed time = 639.36 sec. (234951.37 ticks, tree = 38.74 MB, solutions = 1) 

  23200 20766    -3038.3912    52    -1627.4764    -3041.2653   635945   86.87% 

  23364 20753    -3034.5951    34    -1627.4764    -3041.2653   635030   86.87% 

  23567 20978    -2896.6289    47    -1627.4764    -3041.2653   648452   86.87% 

  23740 20986    -2774.5374    67    -1627.4764    -3041.2591   649371   86.87% 

  23906 21276    -2698.0103    32    -1627.4764    -3041.2591   662866   86.87% 

  24134 21462    -3035.1884    19    -1627.4764    -3041.2591   673292   86.87% 

  24380 21637    -3040.1268    58    -1627.4764    -3041.2591   685279   86.87% 

  24513 21871    -3040.6512    68    -1627.4764    -3041.2591   693545   86.87% 

  24655 21931    -2868.6235    48    -1627.4764    -3041.2591   695617   86.87% 

  24800 22136    -3038.0563    53    -1627.4764    -3041.2591   709383   86.87% 

Elapsed time = 762.63 sec. (273344.86 ticks, tree = 42.83 MB, solutions = 1) 

  25022 22301    -3034.0829    56    -1627.4764    -3041.2591   715109   86.87% 

  25305 22574    -2868.1206    34    -1627.4764    -3041.2591   725484   86.87% 

  25520 22693    -2865.2732    22    -1627.4764    -3041.2591   730836   86.87% 

  25624 23139    -3036.1771    31    -1627.4764    -3041.2591   743664   86.87% 

  25803 23169    -3035.6788    25    -1627.4764    -3041.2591   744216   86.87% 

  25980 23254    -2684.3773     5    -1627.4764    -3041.2591   746446   86.87% 

  26130 23479    -3041.1481   124    -1627.4764    -3041.2591   756564   86.87% 

  26320 23597    -2918.6500    55    -1627.4764    -3041.2278   766231   86.87% 

  26540 23819    -3008.9873    26    -1627.4764    -3041.2270   779079   86.87% 

* 26676+23982                        -1643.0230    -3041.2270            85.10% 

  26726 24081    -3039.6587    64    -1643.0230    -3041.2270   791395   85.10% 

Elapsed time = 890.94 sec. (311673.35 ticks, tree = 46.26 MB, solutions = 2) 

  26933 24050    -3027.9893    70    -1643.0230    -3041.2270   792547   85.10% 

  27155 24182    -3028.3826    25    -1643.0230    -3041.2268   796070   85.10% 

  27319 24510    -3026.9509    31    -1643.0230    -3041.2268   813771   85.10% 

  27504 24575    -3036.3860    33    -1643.0230    -3041.2268   820211   85.10% 

  27721 24787    -3020.5402    44    -1643.0230    -3041.2102   832100   85.10% 

  27961 25265    -2888.3978    28    -1643.0230    -3041.2102   859683   85.10% 

  28151 25193    -3039.2814    63    -1643.0230    -3041.2102   855685   85.10% 

  28272 25602    -3031.4794    45    -1643.0230    -3041.2102   878900   85.10% 

  28376 25742    -3040.5636    81    -1643.0230    -3041.2102   887524   85.10% 

  28487 25886    -3038.5752    54    -1643.0230    -3041.2102   895019   85.10% 

Elapsed time = 1022.77 sec. (350022.20 ticks, tree = 49.86 MB, solutions = 2) 

  28663 25887    -2972.0587    49    -1643.0230    -3041.2102   894587   85.10% 

  28920 26191    -3040.1359    64    -1643.0230    -3041.2102   914263   85.10% 

  29124 26288    -2748.5795    56    -1643.0230    -3041.2102   918297   85.10% 

  29324 26405    -2955.2053    44    -1643.0230    -3041.2102   927624   85.10% 

  29525 26448    -3031.6764    41    -1643.0230    -3041.2102   930527   85.10% 

  29730 27041    -3037.5623    43    -1643.0230    -3041.2102   964818   85.10% 

  29917 26941    -3033.3667    80    -1643.0230    -3041.2102   960268   85.10% 

  30114 27368    -3032.8517    77    -1643.0230    -3041.2102   981279   85.10% 

  30317 27506    -3031.1342    50    -1643.0230    -3041.2102   990248   85.10% 

  30524 27692    -3024.4796    19    -1643.0230    -3041.2102   994730   85.10% 

Elapsed time = 1158.47 sec. (388366.95 ticks, tree = 54.52 MB, solutions = 2) 

  30731 27713    -3040.6744    84    -1643.0230    -3041.2102   995545   85.10% 

  30934 27776    -3034.4965    94    -1643.0230    -3041.2067  1001946   85.10% 

  31142 28279    -3034.0730    75    -1643.0230    -3041.2067  1028072   85.10% 

  31354 28581    -3000.9784    39    -1643.0230    -3041.2067  1041609   85.10% 

  31628 28514    -3037.7121    46    -1643.0230    -3041.2067  1035343   85.10% 

  31843 28705    -3032.0714    58    -1643.0230    -3041.2024  1050573   85.10% 

  32110 29225    -3031.1558    41    -1643.0230    -3041.2024  1072513   85.10% 

  32364 29345    -3040.1616    62    -1643.0230    -3041.2024  1079395   85.10% 

  32631 29809    -3032.8109    70    -1643.0230    -3041.2024  1099966   85.10% 

  32887 29928    -3039.4534    84    -1643.0230    -3041.2024  1105002   85.10% 

Elapsed time = 1292.02 sec. (426624.44 ticks, tree = 58.99 MB, solutions = 2) 

  33098 30315    -3030.4702    43    -1643.0230    -3041.1954  1122262   85.10% 

  33316 30507    -3038.8484    52    -1643.0230    -3041.1954  1131067   85.10% 

  33566 30403    -3028.6751    31    -1643.0230    -3041.1954  1123612   85.10% 

  33801 30809    -3038.4279    61    -1643.0230    -3041.1924  1146499   85.10% 

  34016 30823    -3024.6896    70    -1643.0230    -3041.1924  1149496   85.10% 

  34233 31050    -3035.9753    64    -1643.0230    -3041.1924  1156464   85.10% 

  34419 31218    -3033.0093    64    -1643.0230    -3041.1924  1168628   85.10% 

  34586 31540    -3034.9001    47    -1643.0230    -3041.1887  1185927   85.10% 

  34791 31741    -3039.9764    54    -1643.0230    -3041.1887  1198534   85.10% 

  34923 32010    -3034.1485    44    -1643.0230    -3041.1887  1209450   85.10% 

Elapsed time = 1431.94 sec. (465033.24 ticks, tree = 63.54 MB, solutions = 2) 

  35062 32200    -3030.3662    40    -1643.0230    -3041.1887  1218800   85.10% 

  35253 32319    -3037.9065    48    -1643.0230    -3041.1887  1227668   85.10% 

  35402 32335    -3034.1741    33    -1643.0230    -3041.1887  1224499   85.10% 

  35516 32729    -3038.2208    50    -1643.0230    -3041.1879  1253654   85.10% 

  35624 32960    -2976.5849    46    -1643.0230    -3041.1879  1261362   85.10% 

  35756 33047    -3009.5439     8    -1643.0230    -3041.1879  1265741   85.10% 

  35948 33168    -3011.3400    25    -1643.0230    -3041.1877  1274374   85.10% 

  36212 33154    -2952.0175    27    -1643.0230    -3041.1877  1271735   85.10% 

  36376 33328    -2931.5141    19    -1643.0230    -3041.1877  1279263   85.10% 

  36550 33551    -3016.8751    62    -1643.0230    -3041.1874  1294004   85.10% 

Elapsed time = 1557.95 sec. (503469.95 ticks, tree = 68.10 MB, solutions = 2) 

  36733 33857    -3040.6732   103    -1643.0230    -3041.1874  1307904   85.10% 

  36991 33661    -2920.5611    55    -1643.0230    -3041.1874  1302799   85.10% 

  37269 34322    -3023.3226    33    -1643.0230    -3041.1867  1336348   85.10% 

  37552 34502    -3013.7918    61    -1643.0230    -3041.1867  1342903   85.10% 

  37801 34672    -3032.6161    26    -1643.0230    -3041.1867  1347920   85.10% 

  37996 34783    -3022.0815    25    -1643.0230    -3041.1836  1350813   85.10% 

  38278 35294    -3012.0703    28    -1643.0230    -3041.1836  1370630   85.10% 

  38440 35557    -3034.7666    65    -1643.0230    -3041.1836  1383482   85.10% 

  38563 35715    -3019.3819    37    -1643.0230    -3041.1826  1389481   85.10% 



  38709 35807    -3040.6002    82    -1643.0230    -3041.1826  1392056   85.10% 

Elapsed time = 1694.34 sec. (541716.67 ticks, tree = 72.22 MB, solutions = 2) 

  38866 35820    -3040.0085    66    -1643.0230    -3041.1826  1392875   85.10% 

  39039 36138    -3034.3812    61    -1643.0230    -3041.1826  1409749   85.10% 

  39207 36362    -3039.1743    60    -1643.0230    -3041.1826  1419086   85.10% 

  39370 36209    -3030.8644    28    -1643.0230    -3041.1768  1414371   85.10% 

  39501 36479    -3013.6799    40    -1643.0230    -3041.1768  1428252   85.10% 

  39669 36671    -3029.1664    23    -1643.0230    -3041.1768  1437866   85.10% 

  39853 36767    -3035.9410    46    -1643.0230    -3041.1768  1442185   85.10% 

  40108 36964    -3038.5100    62    -1643.0230    -3041.1768  1454124   85.10% 

 

Benders cuts applied:  3984 

Cover cuts applied:  11 

Implied bound cuts applied:  2 

Flow cuts applied:  2 

Mixed integer rounding cuts applied:  8 

Zero-half cuts applied:  8 

Gomory fractional cuts applied:  1 

 

Root node processing (before b&c): 

  Real time             =   17.78 sec. (15836.47 ticks) 

Parallel b&c, 12 threads: 

  Real time             = 1783.31 sec. (559252.66 ticks) 

  Sync time (average)   =  188.30 sec. 

  Wait time (average)   =    0.07 sec. 

                          ------------ 

Total (root+branch&cut) = 1801.09 sec. (575089.14 ticks) 

Model: MicrogridOptimizer 

 - number of variables: 47857 

   - binary=12681, integer=402, continuous=34774 

 - number of constraints: 57078 

   - linear=57078 

 - annotations: 47857 

   - variables: 47857 

 - parameters: 

     parameters.timelimit = 1800.00000000000000 

     parameters.benders.strategy = 2 

     parameters.mip.tolerances.mipgap = 0.00015000000000 

 - objective: minimize 

 - problem type is: MILP 

Solve status:  JobSolveStatus.FEASIBLE_SOLUTION 

Model status: JobSolveStatus.FEASIBLE_SOLUTION 

Objective value: -1643.0229762199456 

 

Process finished with exit code 0 

 


	Introduction
	Relevance
	Energy Management Systems and Initialization Strategies
	Stakeholders and Electricity Markets
	Importance of Efficient Modeling

	Motivation: Computational Limits
	Thesis Contribution
	Initialization Strategies
	Reformulations and Algorithm Design
	Implementation

	Thesis Structure

	Literature Review
	Drivers and Challengers of Renewable Energy Integration
	Grid Balancing and Flexibility Services
	Rolling Horizon MILP optimization
	Warm Starts and Initialization Strategies
	Model predictive control (MPC)
	Particle Swarm Optimization (PSO)
	Reinforcement Learning
	Conclusion and Future Research

	Energy Markets
	Shared Responsibilities between TSOs and DSOs
	Day-Ahead and Intraday
	Balancing services
	Capacity- and Energy Market
	Participation in Flexibility Services

	Energy Management System Description
	Input Data
	Problem Statement
	Decision Variables
	Objective Function and Constraints


	Warm Start Strategies
	MIP Start Configurations in CPLEX
	Nominal Scenario Description
	Model without Violation Decision Variables
	Handling of Violations
	Removal of Violations

	Warm Starts of Violation Decision Variables
	Deployment Strategy and Results

	Reformulations
	Bounding SOC Limit Violations
	Model Comparison for Scenario with Positive Day-Ahead Prices

	Solver Behavior under Warm Start Strategies
	Solver Dynamics
	Warm Start Setup and Logging
	Solver Path under Warm Start Strategies

	Deployment of Warm Start Strategies across Scenarios
	Discussion of Results

	Rolling Horizon Environment
	Incumbents and Primal Heuristics
	Feasibility Requirements
	Effort Levels and Stability Strategies
	Resolution and Recency Stability

	Cutting Planes
	Effectiveness
	Impact of Warm Starts, Horizons, and Scenario
	Empirical Analysis


	Linearity and Reformulations
	Absolute Value Expressions
	Global and Local Optima
	Empirical Validation of Efficient Formulation
	Battery Cycles in Energy Optimization
	Solver Behavior Comparison

	Warm Start Strategies for Linear Configuration
	Log data


	Model Conversion and Benders Decomposition
	Conversion to Python
	Model Without Violations
	Empirical Study of Benders Decomposition
	Algorithmic Structure
	Implementation and Results
	Discussion of Results


	Challenges and Sugggestions for Future Research
	Custom Environments for Warm Start Strategies
	Rolling Horizon
	Problem Formulation and Algorithm Design

	Discussion and Conclusion
	Market Engagement, DA Prices, and Horizons
	Violation Decision Variables
	Linearity
	Benders Decomposition
	Warm Start Strategies and Outlook

	References
	CPLEX OPL Codes
	Orchestration to run warm start strategies
	MST file format and Constraint Formulation

	CPLEX Execution Logs
	Warm Start Execution Logs from Section 5.6.2
	Execution Logs for the (Non-) Linear Formulations from Section 6.3.2

	Python Codes
	Benders Decomposition from Section 7.1
	Benders Execution Log from Section 7.3.2


