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1
INTRODUCTION

1.1. MOTIVATION
Fluid-structure Interaction (FSI) is a scientific discipline spanning physics and engineering, which deals

with the study of the interaction of solid or flexible structures with internal or surrounding fluid flows. FSI
problems are encountered in many different branches of science and engineering, such as aerodynamics,
hydrodynamics, structural dynamics, and hemodynamics covering problems across a wide range of time and
space scales.

Fluid–structure interactions are a crucial issue in the design of many engineering systems, e.g. offshore
and marine, aerospace, engines, building structures and artificial heart valves. Tacoma Narrows Bridge (1940)
is one of the most infamous examples of large-scale failure caused by FSI. Aircraft wings and turbine blades
can break due to FSI oscillations. Fluid–structure interaction has to be taken into account for the analysis of
artificial heart valves.

Studies on the fluid-structure interaction are increasingly more important because they give insight to
many complex problems in the offshore and marine field. For those offshore platforms placed on a certain
location for long term, the extreme wave slamming impact should be predicted and simulated because of the
potentially severe damage. FSI also occurs in containers, where liquid oscillations due to the container mo-
tion impose substantial magnitudes of forces and moments to the container structure that affect the stability
of the container. Vortex-induced vibrations (VIV) can result in fatigue and instability on offshore structures
as well. All of those topics mentioned above need to be analysed with the techniques of FSI methods.

There is a need for data collection for the studies on the fluid-structure interaction mechanism. Since
most of the numerical simulation of FSI problems are performed by the combination of fluid solver and struc-
ture solver with partitioned method, a simulation with monolithic method can provide data as a comparison.
Meanwhile, experimental measurements and analytical solutions are also in need. Therefore, a numerical
simulation of FSI problem will be performed in this thesis.

1.2. SCOPE OF WORK
In this study, a numerical simulation on the fluid structure interaction behaviour of a flexible membrane

and the water free surface will be performed in Matlab in accordance with Rizos’ experiment. The topology
of the experiment will be modelled. Models of uncoupled standing waves in a container and vibrating thin
structure as well as coupled FSI condition will be set-up and tested in 2D and 3D. This numerical simulation
work will not only be helpful to the comprehension of the experiment, but also benefit the development of
numerical computations on FSI as a library of code. Then a comparison among the the numerical result, the
analytical solution and the experiment measurement in 3D would be possible.

Specifically, six numerical conditions will be modelled in this research. Model 1, the 2D standing wave
in a rectangular tank; Model 2, the 1D vibrating pinned-pinned Euler Bernoulli beam in the vacuum; Model

1
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3, the 2D fluid-beam interaction; Model 4, the 3D standing wave in a cylindrical container; Model 5, the 2D
vibrating thin membrane in the vacuum; Model 6, the 3D fluid-membrane interaction.

1.3. OBJECTIVES
• Set-up the structured grids of the 2D fluid and structural domains within the 2D Cartesian coordinate

system in accordance with Rizos’ Experiment.

• Set-up the structured grids of the 3D fluid and structural domains within the 3D Cylindrical coordinate
system in accordance with Rizo’s Experiment.

• Apply the fluid structure interaction condition. Specifically, the fluid pressure acts on the structure sur-
face (dynamic part) and the structure forces the fluid moving with the velocity as the structure velocity
(kinematic part).

• Establish the one-step monolithic implicit algorithm with the structured grids and the interaction con-
dition.

• Numerically simulate Rizo’s experiment in both 2D and 3D.

• In 3D FSI system, compare the numerical period of the membrane with the analytical solution (Dami-
ete Briggs, 2017).

1.4. STRUCTURE OF THE THESIS
Chapter 1 is a general introduction of this study. It elaborates the initial motivation of this research topic

and the objectives to achieve. It gives an outline of the entire work.

Chapter 2 acts as the literature review for background knowledge of numerical algorithms for FSI prob-
lems. It tells the story about our current understanding towards FSI and some recent simulation work on
related topics.

Chapter 3 introduces the assumptions being adopted in this study. It will specify the properties of the
fluid and the structure, which will be taken into account in the numerical models.

Chapter 4 elaborates the derivation of the governing equations related to this FSI model. The clarifica-
tion about the simplifications and linearizations will be provided in detail.

Chapter 5 introduces the numerical settings being adopted in this study. The spacial discretization
methods and time marching methods used in FSI models are illustrated in this section. The reason for the
choice of certain scheme are also explained.

Chapter 6 is the practice of six models. Results from numerical simulations are presented and analysed.

Chapter 7 serves as the final conclusion of the entire study. Some recommendations are made depending
on the practice and results in this work.



2
LITERATURE REVIEW AND INTRODUCTION

TO RIZOS’ EXPERIMENT

2.1. LITERATURE REVIEW
The fluid-structure interaction (FSI) refers that a solid structure interacts with a fluid flow. There are two

typical conditions. One is that the solid structure is submerged, partially or fully, in the ambient fluid flow,
e.g., a ship on the sea. The other one is that the fluid flow is constrained in a solid structure, e.g., the water flow
in a pipe. With the naturally nonlinear properties of fluid dynamics (White 2006), FSI problems have strong
nonlinearity (Chakrabarti, 2005). Coupled with structural dynamics, several difficulties also arise due to the
multidisciplinary. Because of these reasons, analytical solutions are impossible for most FSI problems. Ex-
periment researches are limited due to the contaminated data, the scope and the non-replicability. Therefore
numerical simulations are always a wise option to conduct the research on the mechanism in complicated
fluid structure interaction conditions.

With the increasingly powerful computer technology, fruitful achievements are obtained in plenty of
fields related to FSI. David Kamensky et al (2015) simulated the coupling of the bioprosthetic heart valve and
the surrounding blood flow under physiological conditions, with the modified penalty method on the inter-
faces. Jens Neumann and Holger Mai (2013) conducted an areoelastic simulation of an aeroelastic experi-
ment on the gust load on the elastic wing using a finite element structural model and a RANS fluid dynamics
model. David Ferràs et al (2016) simulated the fluid-structure interaction in straight pipelines to study the
friction coupling mechanisms to validate their hypothesis that complements the skin friction with a dry fric-
tion effect. J.Yan et al (2016) applied FSI principles onto floating offshore wind turbines with FEM-based
moving-mesh in the fluid domain and isogeometric techniques in the structure domain.

There are numerous techniques related to fluid structure interaction. The fundamentals are the spacial
discretization, the time marching algorithm and the time integration.

2.1.1. SPATIAL DISCRETIZATION

Different treatments of meshes is a significant classification of the FSI solution procedures. They are
commonly the comforming mesh methods and non-conforming mesh methods.

CONFORMING MESH

The conforming mesh methods consider the interface conditions as physical boundary conditions. The
interface location should be solved from the computational process thus meshes are updated with time
marching [7]. The merit of the conforming mesh is that it allows straightforward discretized governing equa-
tions with less cross terms, and produces a relatively higher quality mesh in physical space due to smoothness
[8]. Gino Moretti (1980) gave a comprehensive review of the classic techniques of the conforming mesh. One

3
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(a) Conforming mesh (b) Non-conforming mesh

Figure 2.1: Conforming and non-conforming meshes for aerofoil

example of the conforming mesh in aerofoil is shown in the figure 2.1a.

NON-CONFORMING MESH

Most non-conforming mesh methods are based on the immersed methods. A immersed method treats
the interface boundary conditions as constrains ,i.e., an extra force term, imposed on the governing equa-
tions. This force term is usually computed explicitly with the transferred information from the structural
domain. The location of the immersed boundary is updated by the structure velocity after solving the effects
of fluid structure interaction. The Eulerian method is conventionally used in fluid dynamics while the La-
grangian method is conventionally preferred in structure dynamics [10]. One example of the non-conforming
mesh is shown in the figure 2.1b.

2.1.2. TIME MARCHING
Another criterion to classify the fluid structure interaction algorithms is the procedure to solve the fluid

structure interaction, i.e., the monolithic methods and the partitioned methods. See the figure 2.2.

(a) Monolithic

(b) Partitioned

Figure 2.2: Monolithic and partitioned

MONOLITHIC METHODS

A monolithic method simultaneously solve the coupled system in a single loop, one-step or iterated,
with consistent time integration schemes for all physical fields[11]. If iteration is in need, it can also accel-
erate convergence of the coupled solution [12]. The biggest strength is that monolithic methods are uncon-
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ditionally stable and more accurate. Larger time step sizes can be used for the same level of accuracy [13].
The weakness is that there are seldom numerical tools coupling the fluid domain and the structure domain.
Considerable efforts are required to develop and maintain a specialized code for a single FSI problem.

PARTITIONED METHODS

In a partitioned algorithm, the coupled fluid structure interaction problem is solved separately in one
fluid and one structure sub-domain. The fluid and structure sub-problems are integrated in time in an alter-
nating way, and the coupling conditions are enforced asynchronously [14]. Within one time updating step,
partitioned methods are less expensive than the monolithic methods by saving the computational cost per
time step. However solutions of fluid and structure system are usually staggered in time and it could lead to
temporal errors [15]. Partitioned algorithms are able to make use of the available numerical tools for the fluid
domain and the structural domain respectively, as long as the interface boundary condition and the informa-
tion exchanging are well defined [16].

In general, monolithic approaches are more expensive within one time step but larger time step sizes
can be employed while partitioned approaches are less expensive within one time step but smaller time step
sizes are required.

Strong coupling and loose coupling are different techniques for the information exchanging. In strongly
coupled approaches, the fluid and structure system are sub-iterated to convergence in each time step. In
loosely coupled approached two domains only exchange data once or limited times in each time step.

2.1.3. TIME INTEGRATION
The time proceeding algorithms are necessary for both fluid and structural dynamics because of the

time-dependent term in the governing equations. The proceeding algorithms are generally classified into ex-
plicit and implicit.

EXPLICIT

Explicit methods calculate the state of a system at the current time level from the state of the system at
the old time level(s). The explicit method is less complex mathematically due to the straightforward method
to solve the new stages based on the information on old stages. The explicit scheme is illustrated in the figure
2.3a. Explicit methods are conditionally stable and need smaller time steps.

IMPLICIT

Implicit methods find a solution by solving algebra equations involving both the current state and the
old one(s). Since new quantities appear on both the left and right side of the equation, it is said to be im-
plicit. Because of this algebra relation, implicit methods can be much harder to implement and need more
computational effort. The implicit scheme is illustrated in the figure 2.3b. In general, implicit methods are
unconditionally stable and allows relatively bigger time steps.

(a) Explicit (b) Implicit (c) Combination

Figure 2.3: Explicit and Implicit
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COMBINATION EX-IMPLICIT

Combined explicit-implicit methods are often used in numerical models. In a complex system, one may
calculate some parts explicitly while update some parts implicitly. The combined methods are shown in the
figure 2.3c.

HIGHER-ORDER INTEGRAL TECHNIQUES

The the numerical integration methods to solve an ordinary equation, or the ordinary (time-dependent)
part in a partial derivative equation, can be generalized into the following form

yn+1 =
I∑

i=1
ai yn+1−i +∆t

J∑
j=1

b j f n+1− j +∆t
M∑

m=1
cmkm (2.1)

In eq.2.1, y is the states of the variables on the time levels, f the time-derivatives one the time levels and
k the time derivatives on sub-stages between two time levels. The superscripts indicate the time levels. a, b
and c are coefficients with respect to different methods.

In general, techniques treating different terms on the right hand side (RHS) classify different time inte-
gration methods.

• 1st Term (BDM)
The techniques that use the time derivative on the current time level and states of the variables on
some old-time levels are the backward differentiation method (BDM). It is a kind of linear multi-step
time integration. It is derived from the Lagrange interpolation polynomial. The general form of BDM is
given by

yn+1 =
I∑

i=1
ai yn+1−i +bi∆t f n+1 (2.2)

• 2nd Term (AM)
Another linear time integration is to use the state of variables on the last old-time level and time deriva-
tives on some old-time levels, i.e., the Adam methods (AM). It can be both explicit, e.g., Adam-Bashforth,
and implicit e.g.,Adams-Moulton. It is derived from the polynomial interpolation. The general form is
given by

AB :yn+1 = yn +∆t
J∑

j=1
b j f n+1− j

AM :yn+1 = yn +∆t
J∑

j=1
b j f n+2− j

(2.3)

• 3rd Term (RKM)

Time integration can also be performed with a multi-stage method. It divides one time span between
two time levels into several sub-stages. By introducing the sub-stages and using the corresponding
information, a higher order accuracy can be obtained. The most well-known multi-stage method is the
Runge Kutta method (RKM). It can be both explicit and implicit. The general form of RKM is given by

yn+1 =yn +∆t
M∑

m=1
cmkm

km = f

(
t n + cm∆t , yn +∆t

S∑
s=1

dms ks

)
,m = 1, · · · ,S

(2.4)
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Kennedy et al (2000) made a comparison of explicit third-, fourth-, and fifth-order Runge–Kutta schemes
and concluded that in most cases the performance of higher order methods depends on the error toler-
ance and the order. R.W. MacCormack (2011) reviewed the development of implicit schemes for com-
putational fluid dynamics. Hester et al (2002) compared the backward differentiation formulas (BDF)
and explicit, singly diagonally implicit Runge–Kutta (ESDIRK) methods for the unsteady Compressible
Navier–Stokes equations and came up with an original set of ESDIRK coefficients.

2.2. DESCRIPTION OF RIZOS’ EXPERIMENT

Lampros Rizos conducted the experiment using a rigid transparent cylinder container and a driven
rigid cylinder with flexible plate at the bottom. The figure 2.4 illustrate the arrangement of the experi-
ment conceptually and intuitively.

(a) Experiment concept (b) Experiment photo

Figure 2.4: Rizos’ experiment

The inner cylindrical structure (plunger) consists of an outer shell and an inner hollow cylinder. At the
bottom of the plunger the flexible plate is positioned between the shell and the hollow cylinder. This
way the plate’s boundaries remain fixed. The whole assembly is placed inside a container partly filled
with water. Two tiny holes, drilled at the circumference of the plunger assembly, let the water enter
the interior ensuring that the water level inside the plunger is the same as its draft. In this way, the
unfavourable effects of hydrostatic pressure acting on the plate are eliminated. The plunger is attached
to an oscillator that imposes a sinusoidal vertical motion. This means that the excitation is imposed
directly to the edges of the flexible structure (base excitation).

The plunger is driven by the motor in different frequencies (1-6 Hz) with different motion amplitudes
(5-10 mm). The motion and deflection of the plate are measured by a 3D image of the plate and a track
of a single point on the plate. Additionally, the oscillation force is also monitored. The experiment
configurations and the result analysis are reported in Rizos’ graduation thesis, Reduced - complexity
experiment for validating Fluid-Structure Interaction in ComFLOW, 2016.





3
ASSUMPTIONS

In this section, the fundamental hypothesis will be illustrated, and the governing linear equations for
fluid and structure will be derived.

3.1. FLUID

3.1.1. ASSUMPTION FOR FLUID

INCOMPRESSIBLE

In another word, the water density, ρ, is constant, homogeneous and isotropic in the fluid domain. It
can be treated as a constant in the partial derivatives:

ρ = const ant (3.1)

INVISCID

The inviscid assumption is the cornerstone of hydrodynamics. This means that, in the equations of fluid
dynamics, the dynamic viscous coefficient, µ, and, equivalently, the kinematic viscous coefficient, ν, are zero:

µ= ν= 0 (3.2)

When viscous forces are neglected, the Navier-Stokes equation can be simplified to a form known as the
Euler equation. Using the Euler equation, many fluid dynamics problems involving low viscosity can be read-
ily solved. However, the assumed negligible viscosity is no longer valid in the region of fluid near the structure
boundary. In the fluid dynamics theorem, boundary layers are usually used to describe the flow near a struc-
ture, in which the fluid is treated as viscous fluid and out of which the fluid is regarded as inviscid flow. In
complex CFD models, different techniques are applied to tackle the boundary condition near a structure.

In this model, the viscous boundary will be neglected due to the particular spatial discretization method,
the staggered mesh, which will be discussed later.

FREE SURFACE

Free surface refers to a surface of a body without normal stress perpendicular or shear stresses parallel
to it. The fluid domain is a model representing water held in a container without a cap. Without constrains
from above, the fluid will form a free surface in the gravitation field. The variation of the surface elevation, ζ,
is the well-known surface gravitational water wave. The free surface gives 2 boundary conditions of the fluid
domain on the top:

• The kinematic BC is that the time derivative of the position of surface elevation is equal to the normal
velocity of the fluid on the free surface

9
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∂ζ

∂t
= w (3.3)

where w refers to the vertical component of fluid velocity.

• The dynamic BC is that the pressure imposed on the free surface is equal to the atmospheric pressure,
psur f . In our case, the atmospheric pressure is taken to be zero

psur f = 0 (3.4)

SMALL ELEVATION

The small elevation ensures that the model is a linear system. On one hand, the conclusions from linear
wave theorem can be used to demonstrate and check the results of numerical simulation. On the other hand,
some second power terms and second order terms in the fluid governing equation can be neglected.

3.1.2. DISCRETIZATION OF FLUID
The fluid domain is discretized with Finite Volume Method (FVM). The properties of fluid flow are nat-

urally defined by flux. The biggest advantages of FVM is that the governing equations are derived from flux
conservative form in arbitrary control volume, in which the flux is naturally conserved.

The structured-mesh will be applied because of the simple geometry of fluid structure domain. The
shapes of control volumes are different in 2D Cartesian coordinates and 3D Polar coordinates. Staggered
scheme will be used to represent the fluid flow properties. The arrangements of staggered mesh are shown in
the figure 3.1

Figure 3.1: Discretization of fluid domain, FVM Staggered mesh

The faces(boundary edges) of a control volume is denoted in blue, pressure (scalar property) in green
and velocity (flux property) in red. On a staggered grid the scalar variables (pressure and density) are stored
in the cell centers of the control volumes, whereas the velocity or momentum variables are located at the cell
faces. In accordance with the average principle of the FVM, the pressure in a control volume is the equal to
the pressure at its center, while the flux through a certain surface of a control volume is equal to the flux at
the center of that surface.

From the figure 3.1, it can be seen that there are no tangential velocities on along the mesh faces. So the
issue about validation of inviscid fluid in the boundary layer near a structure can be eliminated.

3.2. STRUCTURE

3.2.1. ASSUMPTION FOR STRUCTURE

ZERO THICKNESS

The structure parts, both rigid and flexible, are assumed to be thin, approaching zero thickness. This
will simplify the geometry of the numerical model and give more convenience to the option of grid size of the
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fluid domain. However, this assumption is not essential in the numerical model. As long as the thin thickness
is valid, no matter zero or other small velues, the governing equations will not change. The negative influence
of thickness lies in the spatial discretization. If a certain structural thickness accounts for the size of all, or
some, then fluid meshes should be adjusted.

NO GRAVITY IN THE STRUCTURAL DOMAIN

The structure is assumed to be weightless when the self-gravity (the body force) is considered as a load.
Similar to the small thickness assumption, weightlessness will make no difference in the set of governing
equations nor the spatial discretization. The reason why this assumption is necessary is that the self-gravity
will force the structure deviate from its balance position at rest. When the structure starts to vibrate, it is more
convenient to observe its dynamic behaviors in comparison of its eigenmode.

It is worth noticing that the term zero self-gravity is not equal to being massless. Mass gives inertial
property to the structural, making the dynamic analysis valid.

WATER TIGHT

The structure is, of course, water tight. In another word, the water particles cannot penetrate through
the structure. This ensures that, on the interface between fluid and structure, the normal velocities of the
fluid is the same as the normal velocities of the structure:

∂z

∂t
= wi nter f ace (3.5)

Or equivalently:
ż = wi nter f ace (3.6)

Where z and ż refer to the normal displacement and the normal velocity (the time derivative of displacement)
of the structure, respectively.

RIGID & FLEXIBLE PARTS

• Outer Container
The wall and the bottom of the outer container are rigid and fixed.

• Inner Container
The wall of the inner container is fixed and rigid, whereas the bottom is flexible. The boundary con-
dition of its edge connecting to the wall is zero displacement. The boundary condition of the rotation
will be dependent of the structural model respectively, such as cable, beam, membrane and shell.

LINEAR MODEL

To be consistent with the linear FSI system, the linear model of the structure should be chosen. Small de-
flection is necessary within the linear structural dynamical theorem. This is guaranteed by the low elevation
of the water wave (linear wave). The pressure fluctuation in the fluid domain is largest on the fluid surface
and smallest on the bottom. So there is little difference of total pressure between the fluid above and beneath
the flexible structure. The small pressure difference, i.e., the external load, acting on the structure will not
result in large structural deflection. Therefore the linear structural model is valid.

3.2.2. STRUCTURAL MODELS

TWO-DIMENSIONAL MODELS

The flexible bottom will be modelled as a 1D Euler Bernoulli beam in the 2D numerical simulation.

The reason for choosing a bending beam model instead of a tensioning string model is that Rizos’ exper-
iment was not done in 2D but only in 3D. The string in the 2D fluid domain is more like a membrane in the
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3D fluid domain. But in 2D numerical simulation, the one-dimensional beam models are more popular than
the one-dimensional cable model in the offshore applications. Additionally, the beam model is fourth order
partial derivative equation while the cable model second order. It will be easy to implement the second order
partial derivative in the numerical model when the fourth order has already been proven and implemented.

As for the parameters of the beam, they can be set similar to cable material. This means that the numeri-
cal models, especially the stiff matrix, is built in accordance with an Euler Bernoulli beam but its stiffness can
be set flexible as a cable.

THREE-DIMENSIONAL MODELS

The 2D thin membrane model is used to perform the 3D numerical simulation.

3.2.3. DISCRETIZATION

The Finite Difference Method (FDM) is an intuitively direct way to interpret the structural equation of
motion. It is simpler to implement. A significant weakness of FDM is that it requires structured grids. In this
research, the entire domain is of simple geometry and the fluid domain has already been implemented in
structured meshes. Thus, FDM will be applied to the structural domain.

The structure is discretized into a finite number of nodes. In this research, the structured nodes with
equal distance will be applied. It is illustrated in the figure 3.2.

(a) Beam nodes (b) Membrane nodes

Figure 3.2: Discretization of structure domain, FDM nodes

All the properties of the structural dynamics such as mass, load, displacements and velocities, are stored
on those nodes. The structure is assumed homogeneous, so the evenly distributed mass is divided into sev-
eral point masses on the nodes. The distributed pressure is also divided among the nodes.

3.3. FLUID-STRUCTURE COUPLING CONDITION
Information should be mutually transferred between fluid domain and structure domain in the dynamic

models.

From previous literature review, it can be seen that the dynamic properties of the dynamical models are:
the movement displacement on the interface, the movement velocity on the interface and the force acting on
the interface.

3.3.1. DISPLACEMENT

Generally speaking, the movement of the interface boundary will influence the shape of fluid grids as
well as the local distribution of the fluid pressure.
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MESH MOVEMENT

The displacements of the interface are involved with the deflection of the structure as well as the move-
ment of the mesh in fluid domain. Take the 2D Cartesian coordinates system for example:(see figure 3.3)

(a) Domain at rest (b) Domain with deflection,1st kind (c) Domain with deflection,2nd kind

Figure 3.3: Mesh shape changes due to structural deflection

As shown in the figure 3.3a, the grids of fluid domain keep their structured shape (rectangular) when the
flexible bottom is at rest.

When the structure is forced to deflect, the shape of the total fluid volume changes accordingly. In this
illustration, it is assumed that the structure deflects slowly, so the fluid surface will stay as calm as still water.
There are two techniques to tackle the mesh shape. The first, and the most common, one is shown in the fig-
ure 3.3b. The fluid boundary on the interface follows exactly the deflection of the structure. The grids deform
gradually from bottom to top level. On the water surface the boundary precisely follows the waterline, i.e.,
the still water surface in this illustration case.

The second is that only those meshes near the interface boundary deform, and the other meshes keep
their form, see the figure 3.3c. The advantage of this technique is the possible instability in the numerical
algorithm because of the relative larger difference between the size of the deformed meshes and that of the
unreformed ones. But in this research, the small amplitudes limitation is imposed to both water wave and
structural deflection. So the pre-mentioned differences will be kept small and will not cause instability.

PRESSURE INTERPOLATION

The deformation of the fluid grids on the bottom layer will change the center positions of these grids as
well as the distances from center to interface boundary. This will result in deviation of pressure because that
the pressure is stored in the center of the fluid grids. This issue will be treated in the following part.

3.3.2. VELOCITY
The normal components of the fluid on the interface is equal to the structure movement velocity ac-

cording to the water-tight condition. And, the tangential velocity of the fluid on the interface is out of con-
sideration due to the Eulerian staggered mesh scheme. It can be represented as eq 3.5 or eq 3.6. So the first
interface boundary condition is:

wi nter f ace = ż (3.7)

So on the interface the structure movement velocities are will be solved first. Then the fluid velocities on
the interface can be obtained readily. Notice that fluid velocities need to be calculated according to the aver-
age principle because the position of structure nodes are not aligned with stored positions of fluid velocities.
It will be explained in detail for every numerical model in Chapter 5.

3.3.3. FORCE
The fluid always exerts force to the structure on the interface and vice versa. In accordance with the

Newton’s Third Law, these two forces have the same absolute value and opposite directions. In the fluid
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structure interaction model, it is more convenient to use pressure instead of force. So the second interface
boundary condition is:

ps = p f ,b (3.8)

where

ps - the pressure acting on the structure

p f ,b - the pressure of fluid meshes acting on the bottom layer.

The pressure is stored in the centers of the fluid meshes. Thus, the pressure on the structural upper
surface and lower surface should be extrapolated from the fluid mesh above interface and mesh beneath the
interface respectively.

As mentioned in the previous section, the deformation of the mesh on the bottom layer has effects the
pressure interpolation on the interface in numerical model. The pressure in the fluid domain consists of two
parts, namely static pressure and dynamic pressure. The static pressure depends on the water depth while
the dynamic pressure varies with wave. The deformation of fluid meshes due to structural deflection is shown
in figure 3.4:

Figure 3.4: Influence of structure displacement on pressure interpolation

STATIC PRESSURE

The pressure difference between the upper surface and the lower surface of the structure is constant
because the structure is submerged in the water. Since pressure is stored in the mesh center, there is a missing
part of the pressure acted on upper surface and an extra part of the pressure acted on the lower surface. In
the fixed girds, the miss part and the extra part are equal to 1

2ρg∆z. This results in extra buoyancy. Therefore,
an artificial boundary condition is applied to tackle the extra buoyancy, represented by an imposed extra
external load pextr a ,

pextr a =−ρg∆z (3.9)

where the minus sign indicates that the extra pressure is directed downward, opposite the buoyancy.

The displacements of the structure are not able to change this difference. So, the displacement of struc-
tural movement, z has no influence on the static pressure.

DYNAMIC PRESSURE

The differences in every fluid mesh are a higher-order small value because a) the dynamic pressure mag-
nitude is directly determined by the wave amplitude, which is a small value in this research, and b) the dy-
namic pressure decays exponentially with the increase of water depth. Such a small value can be neglected
in our numerical model.

Based on the above discussion, a conclusion can be drawn that the displacement of the flexible bottom
in the model does not influence the interface boundary conditions. Therefore, in this research, it is assumed
that the fluid grids will not deform even though the structure moves and deflects.
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GOVERNING EQUATIONS

In this section, the fundamental physical concepts and the governing equations related with FSI are pre-
sented and explained.

4.1. FLUID DOMAIN

4.1.1. CONSERVATION OF MASS: CONTINUITY EQUATION
The equation of continuity for fluids in the most common general form is given by:

Dρ

Dt
+ρ∇∇∇···V = 0 (4.1)

VELOCITY VECTION V
V is a vector, or a one-dimensional tensor, representing the velocity field:

V = (ui ,u j ,uk )T (4.2)

MATERIAL DERIVATIVE
Dρ
Dt

Dρ
Dt is the material derivative, substantial derivative, or total derivative of the fluid density. Define ∂

∂t as
the time derivative of a property considering the property for a point fixed in space during dt. The material
derivative D

Dt of any property of the fluid Q is related to the time derivative ∂
∂t by the general form:

DQ

Dt
= ∂Q

∂t
+ (V ·∇)Q (4.3)

OPERATOR ∇
When applied to a scalar, the operator ∇ indicates the gradient of that scalar

∇ρ = ∂ρ

∂xi
i + ∂ρ

∂x j
j + ∂ρ

∂xk
k (4.4)

When applied to a vector, the operator ∇ represents the divergence of that vector,

∇∇∇···V = divV

=
(
∂

∂xi
,
∂

∂x j
,
∂

∂xk

)
· (ui ,u j ,uk

)
= ∂ui

∂xi
+ ∂u j

∂x j
+ ∂uk

∂xk

(4.5)

The mass conservation relation can be transformed using eq.4.3 as

15
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∂ρ

∂t
+ (V ·∇)ρ+ρ∇∇∇···V = 0 (4.6)

Building on the product rule, the second term in eq.4.6 can be written as

V ·∇ρ =∇· (ρV
)−ρ∇·V (4.7)

Substituting eq.4.7 into eq.4.6, the continuity equation eq.4.1 can finally be rewritten as

∂ρ

∂t
+ρ∇∇∇···V = 0 (4.8)

In this research, the fluid is considered as incompressible fluid. In another word, the fluid density is
constant. Recall eq.3.1:

ρ = const ant (4.9)

Under this assumption, both the time derivative and spatial partial derivatives of fluid density are zero.

∂ρ

∂t
= 0

∇ρ = 0
(4.10)

The mass flux balance equation for incompressible fluid can be obtained by substituting eq.4.10 into the
continuity equation eq.4.8

∇∇∇···V = ∂ui

∂xi
+ ∂u j

∂x j
+ ∂uk

∂xk
= 0 (4.11)

4.1.2. CONTINUITY EQUATION IN CONSERVATIVE FORM
As demonstrated in the previous subsection, the fluid meshes are assumed to be fixed. They will not

deform regardless of the elevation of free surface or the displacement of structure.

In the fixed Euler mesh system, the original continuity equation eq.4.8 can be interpreted as that, for an
observer fixed in space, the change of density at that location is related to the mass flow into and out of the
control volume fixed in space. Integration of eq.4.8 over a fixed control volumeΩ,∫

Ω

(
∂ρ

∂t
+ρ∇∇∇···V

)
dΩ= 0 (4.12)

SinceΩ does not depend on time, the time derivative can be moved out of the integral. Then use Gauss’s
integration formula,

∂

∂t

∫
Ω
ρdΩ+

∫
S
ρV ·n dS = 0 (4.13)

where n is the vector defining the external normal to the surface of the control volume. S represents the
surfaces of a control volume. The fluid density is constant and this time derivative is zero in the incompress-
ible fluid, ∫

S
V ·n dS = 0 (4.14)

4.1.3. CONSERVATION OF MOMENTUM: NAVIER-STOKES EQUATIONS

NAVIER-STOKES EQUATION

The well-known Newton’s second law, expresses a proportionality between applied force and the result-
ing acceleration of a particle. Hence it can be written for a control volume:

ρ
DV

Dt
= f = fb + fs (4.15)

where f is the applied force per unit volume on the fluid control volume. The applied force f can be split
into two parts: body forces fb and surface forces fs .
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The body forces are those that apply to the entire fluid volume. Considering that there is no chemical
reaction in the given fluid and ignoring magnetohydrodynamic effects, the only body force is the gravity. In
both the Cartesian Coordinates and the Cylinder Coordinates,

fb = ρg = ρ (
0,0,−g

)T (4.16)

The surface forces are those stresses on the surfaces of the control volume. It is represented by a tensor τi j .
The stress tensors on a structured grid of the control volume in the Cartesian Coordinates is shown in the
figure 4.1.

Figure 4.1: Notation for stress tensors in the Cartesian Coordinates

In figure 4.1, the vectors are shown in the Cartesian Coordinates. But the concept can be extended to any
coordinate system. The stress tensor, τi j represents the stress in j direction on a face perpendicular to the i
axis.

The stress tensor can be written as

τi j =
τx1x1 τx1x2 τx1x3

τx2x1 τx2x2 τx2x3

τx3x1 τx3x2 τx3x3

 (4.17)

τi j is a symmetric tensor, that is, τi j = τ j i . Notice that 3 tensor components exist on every surface of the
control volume, total net force, in x1-direction for instance, is given by

dF1,net =
(
∂τ11

∂x1
d x1

)
d x2d x3 +

(
∂τ21

∂x2
d x2

)
d x1d x3 +

(
∂τ31

∂x3
d x3

)
d x1d x2 (4.18)

Dividing by the volume, d xi d x j d xk , and consider τxi x j = τx j xi the stress in i -direction can be obtained

f1 = ∂τ11

∂x1
+ ∂τ21

∂x2
+ ∂τ31

∂x3
(4.19)

The stresses in 3 directions are given by

f1 =∂τ11

∂x1
+ ∂τ21

∂x2
+ ∂τ31

∂x3

f2 =∂τ12

∂x1
+ ∂τ22

∂x2
+ ∂τ32

∂x3

f3 =∂τ13

∂x1
+ ∂τ23

∂x2
+ ∂τ33

∂x3

(4.20)

It can be seen from the above eq.4.19, the surface forces can be represented as the divergence of the
stress tensor. Thus, the total vector surface force is

fs =∇∇∇···τi j =
∂τi j

∂x j
(4.21)
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•
∂τi j

∂x j

The right-hand-side term
∂τi j

∂x j
is an expression in the tensor sense. It represents a tensor given by

∂τi j

∂x j
=


∂τx1 x1
∂x1

+ ∂τx1 x2
∂x2

+ ∂τx1 x3
∂x3

∂τx2 x1
∂x1

+ ∂τx2 x2
∂x2

+ ∂τx2 x3
∂x3

∂τx3 x1
∂x1

+ ∂τx3 x2
∂x2

+ ∂τx3 x3
∂x3

 (4.22)

In a Newtonian fluid, the viscous stress is linearly proportional to the strain. The general deformation
law for a Newtonian viscous fluid, the stress tensor is given by

τi j =−pδi j +µ
(
∂ui

∂x j
+ ∂u j

∂xi

)
+δi jλ∇·V (4.23)

• −pδi j

The first term on RHS, δi j , is the Kronecker delta function (δi j = 1 if i = j and δi j = 0 if i 6= j ). This term
implies that the stress tensor is associated with normal pressure in each direction.

• µ
(
∂ui
∂x j

+ ∂u j

∂xi

)
In the second term on RHS, µ, is the dynamic viscosity coefficient. From this term, it can be seen that
the stress tensor is associated with the gradient of velocities on the surfaces of a control volume, whose
result is a tensor.

• δi jλ∇·V
The third term on RHS, λ, is the bulk viscosity coefficient, or namely Lamé’s constant, which is associ-
ated with the volume expansion. This term relates the stress tensor to the elongation of the volume in
the normal directions.

The conservation equation of momentum for a Newtonian (linear) viscous fluid can be readily obtained
now by substituting the stress expression, eq.4.23, into the Newton’s second law, eq.4.15. The result is the
famous Navier-Stokes equations, which is given in vector notation:

ρ
DV

Dt
= ρg −∇p + ∂

∂x j

[
µ

(
∂ui

∂x j
+ ∂u j

∂xi

)
+δi jλ∇∇∇···V

]
(4.24)

SIMPLIFICATION AND LINEARIZATION

Firstly, the assumption of incompressible fluid, i.e., the constant density, makes terms associated with
bulk changing vanish due to the continuity equation, eq.4.11.

Secondly, the assumption of inviscid flow, i.e., µ= 0, eliminates the tensor term in the bracket.

Therefore, Navier-Stokes equation, eq.4.24 reduces to Euler’s equation

ρ
DV

Dt
= ρg−∇p (4.25)

Substitute the material derivative eq.4.3 to Euler’s equation eq.4.25

ρ
∂u j

∂t
+ ∂ui u j

∂xi
= ρg j − ∂p

∂x j
(4.26)

As stated in Chapter 1, the objective is to develop a linear algorithm. Thus, the cross terms in Euler’s
equations are neglected for the sake of linearity. Another reason is that the velocities of water particles de-
pend on the wave amplitude (particle velocities are linearly proportional to wave amplitudes in the linear
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wave theory). Thus the velocities are small values because of the small wave elevations. The cross terms in
eq.4.26 can be neglected since they are higher order small values.

Finally, the equations of momentum conservation reduce to

ρ
∂u j

∂t
= ρg j − ∂p

∂x j
(4.27)

Or equivalently,

∂u j

∂t
= g j − 1

ρ

∂p

∂x j
(4.28)

4.1.4. CONSERVATION OF MOMENTUM IN CONSERVATIVE FORM
For the sake of convenience, the derivation will be performed from the governing equation of fluid 4.25,

considering the assumptions of incompressible and inviscid fluid.

In a control volume, integrating momentum and force over that fixed control volume:

ρ

∫
Ω

∂V

∂t
dΩ+

∫
S
ρV (V ·n)dS = ρ

∫
Ω

g dΩ+
∫

S
(−pn)dS (4.29)

For the sake of linearity, the second term on the LHS is neglected. The eq.4.29 reduces to

ρ

∫
Ω

∂V

∂t
dΩ= ρ

∫
Ω

g dΩ−
∫

S
pn dS (4.30)

4.2. GOVERNING EQUATIONS IN DISCRETIZED FLUID DOMAIN

4.2.1. GOVERNING EQUATIONS IN 2D CARTESIAN COORDINATES
As shown in fig.3.1, in 2D Cartesian Coordinates, a structured control volume is constrained by the north-

ern and southern sides and the eastern and western sides, whose length are ∆x and ∆z respectively.

i and j are the consequence number in the center of the control volume. i + 1
2 is the eastern side of the

control volume while i − 1
2 the western side. j + 1

2 is the northern side of the control volume while j − 1
2 the

southern side.

MASS BALANCE

• Strong Form

∂u

∂x
+ ∂w

∂z
= 0 (4.31)

Or in discretized form
ui+ 1

2
−ui− 1

2

∆x
+

w j+ 1
2
−w j− 1

2

∆z
= 0 (4.32)

• Weak Form (
ui+ 1

2
−ui− 1

2

)
∆z +

(
w j+ 1

2
−w j− 1

2

)
∆x = 0 (4.33)

MOMENTUM BALANCE

• Strong Form

∂u

∂t
=− 1

ρ

∂p

∂x

∂w

∂t
=−g − 1

ρ

∂p

∂z

(4.34)
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Or in discretized form
∂ui+ 1

2

∂t
=− 1

ρ

pi+1 −pi

∆x

∂w j+ 1
2

∂t
=−g − 1

ρ

p j+1 −p j

∆z

(4.35)

• Weak Form (
∂ui+ 1

2

∂t

)
∆z =

(
− 1

ρ

pi+1 −pi

∆x

)
∆z(

∂w j+ 1
2

∂t

)
∆x =

(
−g − 1

ρ

p j+1 −p j

∆z

)
∆x

(4.36)

4.2.2. GOVERNING EQUATIONS IN 3D CYLINDER COORDINATES
As shown in fig.3.1, in 3D Cylinder Coordinates, a structured control volume is constrained by six sides.

i , j and k are the consequence number in the center of the control volume. i + 1
2 is the outer side of the

control volume while i − 1
2 the inner side. ri is the radial distance from the center of the cylinder to the center

of the i th cell. rp,i is the radial distance from the center of the cylinder to the outer side of the i th cell while
rm,i to the inner side. j + 1

2 is the right side of the control volume while j − 1
2 the left side. k + 1

2 is the upper
side of the control volume while k − 1

2 the lower side.

The area of the outer side is rp,i∆φ∆z while the inner side rm,i∆φ∆z. The area of the left and right side

is ∆r∆z. The area of the upper and lower side is ∆φ
2 (r 2

p,i − r 2
m,i ).

MASS BALANCE

• Strong Form
∂u

∂r
+ 1

r

∂v

∂φ
+ ∂w

∂z
= 0 (4.37)

Or in the discretized form

ui+ 1
2
−ui− 1

2

∆r
+ 1

r

v j+ 1
2
− v j− 1

2

∆φ
+

wi+ 1
2
−wi− 1

2

∆z
= 0 (4.38)

• Weak Form

(
ui+ 1

2
rp,i −ui− 1

2
rm,i

)
∆φ∆z +

(
v j+ 1

2
− v j− 1

2

)
∆r∆z +

(
wk+ 1

2
−wk− 1

2

) ∆φ
2

(r 2
p,i − r 2

m,i ) = 0 (4.39)

MOMENTUM BALANCE

• Strong Form
∂u

∂t
=− 1

ρ

∂p

∂r

∂v

∂t
=− 1

ρ

∂p

r∂φ

∂w

∂t
=− g − 1

ρ

∂p

∂z

(4.40)

Or in discretized form,

∂ui+ 1
2

∂t
=− 1

ρ

pi+1 −pi

∆r

∂v j+ 1
2

∂t
=− 1

ρ

p j+1 −p j

ri∆φ

∂wk+ 1
2

∂t
=− g − 1

ρ

pk+1 −pk

∆z

(4.41)
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• Weak Form

∂ui+ 1
2

∂t
rp,i∆φ∆z =− 1

ρ

pi+1 −pi

∆r
rp,i∆φ∆z

∂v j+ 1
2

∂t
∆r∆z =− 1

ρ

p j+1 −p j

ri∆φ
∆r∆z

∂wk+ 1
2

∂t

∆φ

2
(r 2

p,i − r 2
m,i ) =

(
−g − 1

ρ

pk+1 −pk

∆z

)
∆φ

2
(r 2

p,i − r 2
m,i )

(4.42)

4.2.3. FREE SURFACE BOUNDARY CONDITION

As a boundary condition, the free surface provides a relation between the meshes on the top layer in the
fluid domain and the ghost meshes above the surface. See fig. 4.2

Figure 4.2: Ghost mesh

The pressure on the top mesh boundary is the average pressure of the fluid top mesh and that of the
ghost mesh. And the pressure on the top mesh boundary is equal to the static pressure due to the surface
elevation.

ρgζn = 1

2
(pn

g +pn+1
top ) (4.43)

Hence, the pressure of the ghost mesh is expressed as

pn
g = 2ρgζn −pn+1

top (4.44)

It is noticeable that in this equation, the old surface elevation is substituted into the Poisson equation.
This BC makes the algorithm for the fluid domain have explicit properties to some extent. The time step sizes
are limited by the requirement of the stability. But it hardly results in numerical dissipation due to the explic-
itness.

4.3. STRUCTURE DOMAIN
The general form of a structural system without damping is given by

M · z̈ = q −K · z (4.45)

In discretized structural domain, M represents the mass matrix while K the stiffness matrix.

In this research, models of the one-dimensional Euler-Bernoulli beam and the two-dimensional mem-
brane will be tested.

In this part, the discretized expressions are omitted, since the Finite Difference Method is a direct imple-
mentation of the structural governing equation.
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4.3.1. 1D EULER-BERNOULLI BEAM

The equation of motion of the one-dimensional Euler-Bernoulli beam is given by

ρs A
∂2z

∂t 2 +E I
∂4z

∂x4 = q (4.46)

where ρs is the density of beam, A the area of the cross section of beam, z the displacements of beam, E
the Young’s modulus, I the moment of inertia and a the external load, i.e., the force acted by fluid in this case.

4.3.2. 2D MEMBRANE

The equation of motion of the two-dimensional thin membrane in the Polar Coordinates is given by

ρs
∂2z

∂t 2 −T

(
∂2z

∂r 2 + 1

r

∂z

∂r
+ 1

r 2

∂2z

∂φ2

)
= q (4.47)

where ρs is the density of membrane, z the displacements of membrane, T the tension, q the external
load, i.e., the pressure acted on by fluid in this case, and r -θ the radial and angular coordinate respectively.

4.4. TIME MARCHING

4.4.1. FLUID DOMAIN TIME MARCHING

CONTROL VOLUME

Eq.4.11 and eq.4.14 give the mass-balanced relation (velocities related) in a control volume at any time
stage. It is independent of time updating. Eq.4.27, eq.4.28 and eq.4.30 provide a momentum-balanced rela-
tion (pressure and velocities related) in a control volume between any two-time steps in succession. It can be
used to perform the time update of velocity.

Rewriting eq.4.27 the fluid velocities on a time level can be represented by pressure gradients and the
corresponding old time level. The pressure can be on old time level, i.e., explicit method, or on new time
level, i.e., implicit. In this research, the implicit updating is applied.

un+1
j = un +

(
g j − 1

ρ

∂pn+1

∂x j

)
∆t (4.48)

Where the superscript n +1 represents those variables on new time level while n the old time level. ∆t is the
time step size.

Substitute the new-level velocities into continuity equation 4.11, the Poisson equation can be obtained.

Op ·pn+1 +bn = q n (4.49)

It is the second order partial derivative function, which is the well-known Poisson equation. The vari-
ables with superscript n+1 are unknowns that are required to solve while those with n are knowns. Op is the
matrix operator that is timed with the pressure vector p . bn represents the vector boundary condition while
q n the product associated with variables on the previous time level. It is a time-update independent equa-
tion with only one unknown, new time-stage pressure pn+1. Therefore, the pressure can be solved. In the
uncoupled situation that there is no flexible bottom, the pressures of the fluid domain can be solved through

pn+1 =O−1
p · (q n −bn)

(4.50)

Back to eq.4.48, the velocities on a new time level can be updated by the new pressure.
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FREE SURFACE

The free surface has two functions in the time updating. The first function is that the free surface pro-
vides boundary conditions for the fluid domain during the beginning of a time step. With this boundary
condition and other boundary conditions (structure related) the velocities and pressure at a new time stage
can be solved. The second one is that the free surface will be then updated by the new fluid velocities on the
water surface according to eq.3.3.

4.4.2. STRUCTURE DOMAIN TIME MARCHING
The first order backward Euler method can be used in the numerical algorithm for the structural dynam-

ics. It is a efficient way but has numerical dissipation due to the nature of the implicitness. This will cause
issues about the accuracy.

The numerical dissipation can be reduced by decreasing the time step size and raising the integration
order. The precondition is to obtain better accuracy without increasing computational effort significantly.
For the sake of computational efficiency, both these two methods will be applied in the numerical models.

In some complex CFD models, RKM is popular due to the degree of accuracy. However, it requires infor-
mation on the sub-stages between an old-time level and a new-time level. To obtain the required information,
the Poisson equation for the fluid domain should be solved on every sub-stage. It is not a wise choice for this
research because that the computation process for fluid domain is much larger than the structure domain
and the numerical dissipation does not lie in the fluid domain.

On the other hand, BDM and AM can raise the time integration order by using the information obtained
previously. They can also keep the linearization of the system. Therefore, the second order Adams–Moulton
method, i.e., the trapezoidal rule, will be applied in the numerical simulation as a comparison with the first
order implicit method, i.e., the backward Euler method (1st BE).

As an illustration, a pinned-pinned beam under the excitation of a point load (see fig.4.3a) is tested with
3 different time integration methods, 1st BE, 2nd Trapezoidal and 4 5th RK (ODE45). ODE45 is based on an
explicit Runge-Kutta (4,5) formula, with variable time step sizes. For this example, ODE45 is more accurate
because of the higher order and the controllable time steps. The test results are shown in the figure 4.3b.

It can been seen that, with the same time step size, the 1st BE is less accurate and loses details in the
steep part of the variations. On the other hand, the trapezoidal rule has better performance and agree with
the result of ODE45 in this relatively simple model.

1ST ORDER BACKWARD EULER METHOD

The displacements and velocities can be computed based on the kinematics of structure

zn+1 = zn +∆t żn+1

żn+1 = żn +∆t z̈n+1
(4.51)

Note that the dynamic equation of motion can also be written in a matrix form for the discretized nodes[
z
ż

]n+1

=
[

z
ż

]n

+∆t

[
ż
z̈

]n+1

(4.52)

Using the dynamic governing equation of the structure,

z̈n+1 = M−1 · f n+1 −M−1 ·K · zn+1 (4.53)

The equation 4.52 can be rewritten splitting unknowns and knowns[
I −∆t I

∆t M−1 ·K I

]
·
[

z
ż

]n+1

=
[

z
ż

]n

+
[

0
∆t M−1 · f

]
(4.54)

In the uncoupled system that the structure is not submerged in water, the unknown displacements and
velocities can be solved through
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(a) Track of the beam middle point and point load

(b) Track of the beam middle point and point load

Figure 4.3: Comparison 1st BE, 2nd Trapezoidal and ODE45

[
z
ż

]n+1

=
[

I −∆t I
∆t M−1 ·K I

]−1

·
([

z
ż

]n

+
[

0
∆t M−1 · f

])
(4.55)

2ND ORDER TRAPEZOIDAL METHOD

The displacements and velocities can be computed using the trapezoidal rule

zn+1 = zn + 1

2
∆t

(
żn+1 + żn)

żn+1 = żn + 1

2
∆t

(
z̈n+1 + z̈n) (4.56)

Using the dynamic governing equation of the structure,

z̈n+1 = M−1 · f n+1 −M−1 ·K · zn+1

z̈n = M−1 · f n −M−1 ·K · zn
(4.57)

The equation 4.52 can be rewritten splitting unknowns and knowns

[
I −∆t

2 I
∆t
2 M−1 ·K I

]
·
[

z
ż

]n+1

=
[

I ∆t
2 I

−∆t
2 M−1 ·K I

]
·
[

z
ż

]n

+
[

0
1
2∆t M−1 · ( f n+1 + f n

)] (4.58)

In the uncoupled system that the structure is not submerged in water, the unknown displacements and
velocities can be solved through

[
z
ż

]n+1

=
[

I −∆t I
∆t M−1 ·K I

]−1

·
([

I ∆t
2 I

−∆t
2 M−1 ·K I

]
·
[

z
ż

]n

+
[

0
1
2∆t M−1 · ( f n+1 + f n

)])
(4.59)
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4.4.3. FSI TIME MARCHING

When the flexible structure is submerged in the water, the new pressures of fluid domain as well as the
new displacements and velocities of structure domain can be solved through the matrix equation combining
eq.4.49 and the matrix equation for structure (eq.4.54 for backward Euler method or eq.4.58 for trapezoidal
method).

O ·U n+1 +bn = q n (4.60)

• U n+1 is the term containing the unknowns of the fluid pressure, the structural displacements and the
structural velocities.

U =
p

z
ż

n+1

(4.61)

• O is the combined matrix operator which will be multiplied with the unknown vector.

• bn represents the boundary conditions in the governing equations of fluid and structure.

bn =
b f

bz

bż

n

(4.62)

Where b f , bz and bż are terms related to the boundary conditions of the fluid (pressure), the structural
displacements and the structural velocities, respectively.

• q is the term associated with variables on the old time stage. These variables are unknown on the old
time stage, but known on the current stage. It will be called product or products in this thesis.

q n =
q f

qz

qż

n

(4.63)

Where q f , qz and qż are terms related to the boundary conditions of the fluid (pressure), the structural
displacements and the structural velocities, respectively.

Eq.4.60 can be solved through

pn+1 =O−1 · (q n −bn) (4.64)

The unknown new fluid velocities can be updated using eq.4.48. The velocities of the free surface can
be updated with two different methods. One is to use the momentum equation just as the update of other
velocities. The other one is to use the continuity equation for every grid on the top layer of the fluid domain.
In this research the later one is applied. The reason is that the first updating method needs the pressure of
the ghost meshes. The ghost mesh pressures are the value on old time level. This will generates a local error
on every time step and will result in considerable global error in the system as time advances.

Obtaining the velocities, the new surface elevations can be updated using eq.3.3, or rewritten as

ζn+1 = ζn +∆t w n+1 (4.65)
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Figure 4.4: Algorithm process

4.4.4. GENERAL PROCESS
Based on the algorithms discussed in the previous subsections, the algorithm process of the fluid struc-

ture interaction in this research can be illustrated in the figure 4.4.

In the very beginning of the computation, the initial conditions, surface elevation ζ0, fluid velocities
v0 = (u0, v0, w0)T , structural deflection z0 and structural velocities ż0 should be predefined. In the other time
stages, the initial condition is the input values on the old time level n.

Given the initial conditions for a time stage ζn , vn , zn and żn , new fluid pressures pn+1, structural dis-
placements zn+1 and velocities żn+1 can be solved through the combined Poisson equation. The new fluid
pressures can be used to update the new fluid velocities vn+1. Then the new free surface elevation ζn+1 can
be obtained. Finally the solved new values n+1 for the this time stage will become the initial conditions n for
the next time stage.

In general, the computation on every time stage is in a linear process, from the known values on the
old-time level n to the new-time level n +1.



5
NUMERICAL MODELLING

Six numerical fluid dynamic interaction models are described in this chapter. These models are split into
two groups, two-dimensional and three-dimensional, from uncoupled fluid domains and structure domains
to coupled FSI domains.

The algorithm principles of computation has been presented in Chapter 4. They will be omitted in this
chapter. Specific models and some techniques used to handle issues in each model will be discussed in detail.

5.1. 2D STANDING WAVE IN RECTANGULAR TANK
The rectangular tanker is partially filled with water with free surface. The wall and the bottom of the

container is fixed and rigid. In the two-dimensional model, the tanker is assumed to be infinitely long in the
transverse direction, normal to the section shown on the paper. See fig.5.1

Figure 5.1: Model 1, 2D standing wave in rectangular tank

5.1.1. GOVERNING EQUATIONS
As demonstrated in section 5.4.1, the new time pressure can be solved through Poisson equation. Recall

eq.4.49,

Op ·pn+1 +bn = q n (5.1)

For the sake of convenience, a representation is used in this model. The cell which will be solved through
a particular equation in the set of equations, i.e., a row of the matrix equation, is called the central cell with
subscript i , j . The cell that is over the central cell is called the northern cell with subscript i , j +1. The cell that
is beneath the central cell is called the southern cell with subscript i , j −1. The cell that is on the left side of
the central cell is called the western cell with subscript i −1, j . The cell that is on the right side of the central
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28 5. NUMERICAL MODELLING

cell is called the southern cell with subscript i +1, j .

The structured grids with equal cell length are used in this model. All the mesh length in horizontal di-
rection,∆x, are equal and the lengths in vertical direction,∆z, are as well. ∆x and∆z may or may not be equal.

RELATIONS AMONG GRIDS: Op

The operator Op gives the relation of each grid with its adjacent grids. Every cell inside the fluid domain
is related to four adjacent grids, thus an equation for a central cell contains five elements, one representing
the central cell itself and four related to the adjacent cells.

BOUNDARY CONDITIONS: bn

b is the Dirichlet boundary condition that contains information about boundaries, which can change as
time advances (the free surface elevation)or be a constant (the rigid bottom).

On the bottom, the boundary condition can be evaluated using the velocity update equation 4.48. It
ends up with g∆t in the equations.

On the free surface, the boundary condition can be obtained through eq.4.44 and eq.4.48. It ends up
with a term related to the local surface elevation, 2ρgζn , which is on the old-time level.

OLD-TIME-LEVEL PRODUCTS q n

It can be seen from the momentum balance eq.4.35, the new-time velocities can be always represented
by new pressures and old velocities. Substitution of eq.4.35 into mass balance eq.4.33, a mass balance relation
that is on the old-time stage emerges. It is exactly the products term. The mass balance is unconditionally
valid any time. Therefore, the products term is equal to zero in this model.

TIME UPDATE

The time update in this model is the same as the method described in section 4.4.1.

5.1.2. EIGEN MODES

According to the linear wave theory, the eigen modes of the free surface in a two-dimensional tank are
the standing waves. In the case of 100% reflection that the amplitude of incident wave ai n is equal to the
reflected wave ar e , the wave elevation is given by

ζ(x, t ) = 2ai n cos(kx)sin(ωt ) (5.2)

From eq.5.2 it can be seen that the eigen modes are of the shape of the cosine function. The wave length
Lw ,is equal to the length of the tank Lt divided by an arbitrary positive integer divided by 2.

Lw = Lt
1
2 n

(5.3)

Where n = 1,2,3, · · · .
The figure 5.2 shows the first, second and fourth mode of the standing wave.

When an eigen wave mode is defined as the initial condition, the numerical computation will produce a
standing wave that is of the same shape as the initial wave varying in a sine function about time t .
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(a) 1st mode (b) 2nd mode (c) 4th mode

Figure 5.2: 2D standing wave modes, model 1

Figure 5.3: Model 2, 2D (1D) Beam in vacuum

5.2. 2D EULER BERNOULLI BEAM IN VACUUM

In this model, the Euler-Bernoulli beam is placed in vacuum. It is designed to test the stiffness matrix,
i.e., the 4th order derivative with respect to space, and the dynamic mechanism. The static response to static
load, free vibration with and the response to periodic excitation are tested.

In the figure 5.3, the real nodes are those with the serial number from 1 to M. In order to be consistent
with the discretization of the fluid domain, the distance between two nodes is designed to be ∆x. The other
nodes are fictional nodes. They will be used to derive the proper boundary condition in the discretized matrix
operator and finally eliminated.

Those nodes that have no relation to boundary conditions are called internal nodes while those related
to boundary condtions are called boundary nodes. In this model, boundary nodes are the first and the second
node near the left tip of the beam, and last and the second last node near the right tip.

5.2.1. GOVERNING EQUATIONS

The partial derivative equations of the EOM for Euler Bernoulli beam are given by eq.4.46. In this model,
the discretized governing equation can be rewritten in matrix as, recalling eq.4.45:

M · z̈ = q −K · z (5.4)

MASS MATRIX M

M is the mass matrix that will be multiplied with the vector of the acceleration of the beam nodes. In
this model, the total beam mass is evenly redistributed into the beam nodes. Hence M is a diagonal matrix
with identical element ρs A. A is the section area of the beam.

STIFFNESS MATRIX K

K is the stiffness matrix that will be timed by the vector of the displacement of the beam nodes.

• Internal Nodes
The stiffness operator, M , which is a 4th order partial derivative can be represented by the Taylor series
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expansion with 6th order error around 5 adjacent points.
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Then these five equations are timed with unknown coefficients a,b,c,d and e, respectively,

a ·eq(5.5a)+b ·eq(5.5b)+ c ·eq(5.5c)+d ·eq(5.5d)+e ·eq(5.5e)
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Set the coefficient for the fourth order partial derivative z ′′′′
m one and the those for the other order partial

derivatives zero. Solving the algebraic equations yields

a = 1

b =−4

c = 6

d =−4

e = 1

(5.7)

Using these values to check coefficient for the fifth order term,
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(5.8)

Therefore the 4th order spatial partial derivative can be given in its general form by

∂4z

∂x4 = (1)wm−2 + (−4)wm−1 + (6)wm + (−4)wm+1 + (1)wm+2

∆x4 +O(∆x2) (5.9)

• Boundary Nodes
The boundary conditions for a hinged beam are zero displacements and zero bending moments at the
ends of the beam. Take the left end for instance,
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z1 = 0 (5.10)

E I z ′′
1 = 0 (5.11)

From eq.5.11, the frictional nodes can be represented by the real nodes,

z0 =−z2 (5.12)

Finally, the stiffness matrix of the one-dimensional Euler Bernoulli beam is of the form shown in the
figure 5.4 (assume 11 nodes)

Figure 5.4: 2D stiffness matrix, model 2

5.2.2. EIGEN MODES
The analytical solution of a hinged beam reads

z(x, t ) =
∞∑

n=1
(An sin(ωn t )+Bn cos(ωn t ))sin

(
βn x

)
(5.13)

Where

βn = ω2
n

E I
ρA

(5.14)

ωn =
√

E I

ρA

(nπ

L

)2
(5.15)

Whereωn is the natural frequencies of the hinged beam and n represents natural numbers (positive integers).

It can be seen from the term si n(βn x) that the eigen modes of the hinged beam is of the shape of si n(n π
2 ).

The first natural mode of the pined beam is a sine function with a half period while the nth mode with n times
of a half period.

(a) 1st mode (b) 2nd mode (c) 4th mode

Figure 5.5: 2D beam free vibration modes, model 2

The figure 5.5 shows the first, second and fourth mode of the free vibration of the pinned beam.

When an eigen mode deflection is defined as the initial condition, the numerical computation should
produce a free vibration in the same mode.
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5.3. 2D FSI WITH FREE SURFACE: WAVE AND FLEXIBLE BOTTOM
The third model the 2D fluid structure interaction model, taking free surface into account. A smaller

rectangular water tank, called ’container’, is placed in a lager tank, called ’tank’. The structures of tanks are
rigid except the bottom of the container. The flexible bottom is modelled as an Euler-Bernoulli beam. The
free surfaces in these two tanks have the same height when the water is at rest. It is designed to test the com-
bination model of model of FSI and free surfaces. See fig.5.6.

Figure 5.6: Model 3, 2D FSI with free surface and flexible bottom

5.3.1. GOVERNING EQUATION
As described in section 4.4.3, the combined Poisson Equation can solve the new pressures of the the fluid

domain and the new displacements and velocities of the structure domain. Recall eq. 4.60

O ·U n+1 +bn = q n (5.16)

OPERATOR O
The operator O represents not only the relation among fluid grids and the relation between new dis-

placements and new velocities, but also the interface boundary condition between the two domains, fluid
and structure. For the sake of convenience, the fluid domain is divided into three domains, domain 1, do-
main 2 and domain 3. The operator O is of the following form shown in fig.5.7

Op(1)p(1) relates pressures in fluid domian 1 to the equation of the pressures in the fluid domain 1. Op(1)ż

relates the structure velocities to the equation of the pressures in the fluid domain 1. The other sub-operators
follow the rules above.

’Zeros’ means that a variable is not relevant to another variable in a equation, thus all the elements in
’Zeros’ are equal to zero.

INTERFACE BOUNDARY CONDITIONS

The variables are stored in different position because of FVM in the fluid domain and FDM in the struc-
ture domain. In general, the averaging principle is used to deal with the information transfer between the
fluid domain and the structure domain.

• Fluid pressure → structure surface load
The pressure on each node of the structure is the average pressure from the adjacent fluid cells. The
average pressure is equal to the summation of the force coming from contributing parts of associated
fluid cells divided by the summation of the area of those parts.
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Figure 5.7: 2D Poisson operator with free surface, model 3

qs =
∑

(p f · Ai n)∑
Ai n

(5.17)

The beam nodes are always the joint points of two neighboring fluid control volume. In 2D model, the
load pressure acted on beam nodes are the average pressure of the two neighboring control volumes.

qsm = 1

2

(
p fi ,i n +p fi+1,i n

)
(5.18)

Where the subscript i n indicates the interface boundary.

In the discretized computation, the fluid pressures are not stored on the interface boundary but at
center of the CVs. Hence artificial boundary condition is imposed. Please see section 4.3.3 and the
equation 3.9.

• Structure velocity → fluid velocity
The velocities that are used in the fluid control-volume is average velocity through the interface. The
average velocity is equal to the total flux through the interface divided by the area of the interface.
For the same reason as the pressure coupling, the velocity through the interface of a CV is the average
velocity of the two beam neighboring nodes on that CV.

wi ,i n = 1

2
(żm + żm+1) (5.19)

OLD-TIME-LEVEL PRODUCTS: qn

Due to the mass balance equation, the net flux in every mesh is zero. For those meshes that are not on
the interface boundary, the flux terms are all on the RHS of the equation, included in qn . But for those meshes
that are on the interface boundary, the flux terms associated with the new structural velocities are left on the
LHS of the equation. Therefore, the products terms qn are not equal to zero for the boundary meshes but
the other meshes are. qn for boundary meshes can be evaluated by the summation of the flux through all the
sides of a boundary mesh except the interface side.
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5.3.2. INITIAL CONDITIONS
The initial conditions can be defined by an initial water wave or an initial structural deflection, or even

both.

• Initial Wave

An initial water wave can be defined in the container, i.e., the Domai n1. When it is assumed that there
is no structural deflection, the average still water line is unchanged in the container as well as in the
tank due to the conservation of mass.

• Initial Deflection

When an initial structural deflection is defined, the average still water surface may change. It depends
on the mode shape of the deflection. For instance, if the initial deflection is defined as the first mode
as fig.5.5a, the still surface in the Domai n1 will be lower while the still surface in the Domai n3 and
Domai n4 will be higher.

5.4. 3D STANDING WAVE IN CYLINDER
As shown in figure 5.8, the cylinder tanker with rigid lateral wall and rigid bottom is filled with water.

The governing equation of the fluid is represented with finite volume method in 3-D cylinder coordinate. The
initial wave is defined by the first kind of the Bessel function.

Figure 5.8: Model 4, 3D standing wave in cylinder

The discretization of the fluid field is the same as described in the section 3.1.2. See the figure 3.1. The i -
direction is the radial direction pointing outwards. The j -direction is the angular direction pointing counter-
clockwise. The k-direction is the vertical direction pointing upwards. For the sake of convenience, a represen-
tation is used in this model. The cell that will be solved through a particular equation in the set of equations,
i.e., a row of the matrix equation, is called the central cell with subscript i , j ,k.The cell that is on the side that
is in the positive radial direction of the central cell is called the outer cell with subscript i +1, j ,k. The cell that
is on the side that is in the negative radial direction of the central cell is called the inner cell with subscript
i −1, j ,k. The cell that is on the side that is in the positive angular direction of the central cell is called the
right cell with subscript i , j +1,k. The cell that is on the side that is in the negative angular direction of the
central cell is called the left cell with subscript i , j −1,k. The cell that is above the central cell is called upper
cell with subscript i , j ,k+1. The cell that is beneath the central cell is called lower cell with subscript i , j ,k−1.

The structured grids with equal length in every direction are used in this model. The radial length in the
radial direction is ∆r , the angular length ∆φ and the vertical length ∆z.
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5.4.1. GOVERNING EQUATIONS
As demonstrated in section 5.4.1, the new time pressure can be solved through Poisson equation. Recall

eq.4.49,

Op ·pn+1 +bn = q n (5.20)

RELATION AMONG GRIDS: Op

Like the situation of 2D model, the operator Op gives the relation of each grid with its adjacent grids.
Every cell inside the fluid domain is related to six adjacent grids, as described above. Thus an equation for a
central cell contains seven elements, one representing the central cell itself and six associated with the adja-
cent cells.

BOUNDARY CONDITIONS: bn

bn consists of the Dirichlet boundary conditions about free surface and the container bottom. The same
principles as that in model 1 are applied in this model. The BC ends up with g∆t on the bottom and 2ρgζn

on the surface.

OLD-TIME-LEVEL PRODUCTS: qn

The Old-Time-Level Products: qn are equal to zero in this model due to the mass balance equation.

5.4.2. EIGEN MODES
A special analytical solution for a standing wave in cylinder coordinate is given by the zero order Bessel

functions of the first kind.

J0(r ) = 1

π

∫ π

0
e i r cosθdθ (5.21)

The shape of the zero order Bessel functions of the first kind is shown in the figure 5.9.

Figure 5.9: Bessel function 0th order 1st kind, model 4

The wave lengths in the Bessel function are the distance from the first peak, i.e., 0, to the following peaks.
A standing wave can be defined if the radial of the cylinder container is equal to the distance from first peak
to a trough or peak. In other wards, they are the eigen modes of the free surface in a cylinder.
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(a) 1st mode (b) 2nd mode (c) 4th mode

Figure 5.10: 3D standing wave modes, lateral section, model 4

The figure 5.10 shows the lateral section of some modes of the standing wave in a cylinder.

When an eigen wave is defined as the initial condition, the numerical computation will produce a stand-
ing wave that is of the same shape as the initial eigen wave varying in a sine function about time t.

5.5. 3D THIN MEMBRANE IN VACUUM
In this model, a 2-D membrane is placed in vacuum and attached to a fix frame. It is designed to test the

discretized stiffness matrix in the 2-D polar coordinate.

The discretization of the membrane is shown in the figure 5.11.

Figure 5.11: Model 5, 3D (2D) membrane in vacuum

The nodes are ranged in the polar coordinates, r -φ. m represents the sequence number in the radial
direction while n in the angular direction. Every node is marked by the subscript m,n. At the very center of
the membrane, there is only one nodes thus it is represented by 1.

5.5.1. GOVERNING EQUATIONS
The partial derivative equations of the EOM for thin membrane are given by eq.4.47. In this model, the

discretized governing equation can be rewritten in matrix as, recalling eq.4.45:

M · z̈ = q −K · z (5.22)

MASS MATRIX M
M is the mass matrix that will be multiplied with the vector of the acceleration of the membrane nodes.

In this model, the total membrane mass is evenly redistributed into the membrane nodes. Thus M is a diag-
onal matrix with identical element ρs .

STIFFNESS MATRIX K
K is the matrix that will be multiplied with the vector of the displacement of the beam nodes. It involves

three terms of spatial partial derivative.

K =−T

(
∂2

∂r 2 + 1

r

∂

∂r
+ 1

r 2

∂2

∂φ2

)
(5.23)
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The partial derivatives for membrane in polar coordinates can be derived through the same principle as
those applied in model 2. The derivation process is omitted here. If the membrane is discretized as fig.5.11,
the partial derivative are shown in the figure 5.12.

(a) ∂2

∂r 2
(b) ∂

∂r (c) ∂2

∂φ2

Figure 5.12: Membrane’s 3 partial derivatives, model 5

It is noticeable that r = 0 at the center of the membrane. The first rows of the second and third matrix
will not show up in the governing equation for the center point.

5.5.2. EIGEN MODES

The eigen modes of the vibrations of a circular membrane attached to a rigid frame is a combination of
the Bessel function of the first kind and the second kind. For the sake of convenience, the first kind Bessel
function will be illustrated in the figure 5.13.

(a) 1st mode (b) 2nd mode (c) 3rd mode

Figure 5.13: 3D membrane free vibration modes, lateral section, model 5

When an eigen mode deflection is defined as the initial condition, the numerical computation should
produce a free vibration in the same mode.

5.6. 3D FSI WITH FREE SURFACE: WAVE AND FLEXIBLE BOTTOM

In this model, two cylinder containers are partially filled with water. The still water levels are the same.
The bottom of the inner cylinder is flexible. When initial wave of the fluid or initial deflection of the mem-
brane is defined, the fluid or structure will start to move after released and influence each other. In this way,
the FSI mechanism can be reveal.

As shown in fig.5.14, the fluid domain in the smaller cylinder container is labelled as Domai n1. The fluid
domain in the larger cylinder tank is split into two domains, namely Domai n2 and Domai n3. Domai n2
is the outer circle area around the smaller cylinder. Domai n3 is the fluid domain beneath Domai n1 and
Domai n2.
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Figure 5.14: Model 6

5.6.1. GOVERNING EQUATIONS

The governing equation of this model is the same as what is discussed in the section 5.4.3. A combined
Poisson Equation is used to solve the new pressures of the fluid domain and the new displacements and
velocities of the structure domain. Recall eq.4.60

O ·U n+1 +bn = q n (5.24)

OPERATOR: O
The operator O represents relation between variables, including interface boundary conditions. It has

the form shown in the figure 5.15.

Figure 5.15: 3D Poisson operator, model 6

INTERFACE BOUNDARY CONDITIONS

The variables are stored in different position because FVM is used in the fluid domain while FDM is used
in the structure domain. Information can be transferred between the fluid domain and the structure domain
based on the averaging method. The coupling grids are shown in the figure 5.16a.
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(a) 3D coupling grids (b) 3D pressure coupling (c) 3D velocity coupling

Figure 5.16: 3D coupling conditions, model 6

• Fluid pressure → structure surface load
The pressure on each node of the structure is the average pressure of the four adjacent fluid cells. The
average pressure is equal to the summation of the force coming from contributing parts of associated
fluid cells divided by the summation of the area of those parts.

In 3D model, the membrane nodes are always the joint points of the four neighboring fluid control
volume. The coupling condition is shown in the figure 5.16b. The pressure acted on the membrane
node m,n is calculated with

pm,n,i n = pi−1, j−1 · A1 +pi−1, j · A2 +pi , j−1 · A3 +pi , j · A4

A1 + A2 + A3 + A4
(5.25)

Where the subscript i n indicates the interface boundary, p the fluid pressure and A the area of a certain
part.

• Structure velocity → fluid velocity
The velocity that is used in the fluid control-volume is average velocity through the interface. The
average velocity is equal to the total flux through the interface divided by the area of the interface. The
velocity coupling condition is shown in the figure 5.16c. In 3D model the normal velocity of a boundary
control volume on its interface side is calculated with

wi , j ,i n = pm,n,i n · A5 +pm,n+1,i n · A6 +pm+1,n,i n · A7 +pm+1,n+1,i n · A8

A5 + A6 + A7 + A8
(5.26)

OLD-TIME-LEVEL PRODUCTS: q n

Like the situation in model 3, the products term q n are equal to zero for the meshes that are not on the
interface boundary. q n for boundary meshes can be calculated by the summation of the flux through all the
sides of a boundary mesh except the interface side. The interface side is associated with the structure veloci-
ties.

5.6.2. INITIAL CONDITIONS
The initial conditions can be defined by an initial water wave or an initial structural deflection, as stated

in the section 6.4.2. The shape of the initial wave or deflection can be read in the section 6.5.2 or the section
6.6.2.

It is noticeable that if an initial deflection is defined, the still water level in the inner cylinder and outer
cylinder will change slightly due to the mass balance.





6
NUMERICAL SIMULATIONS AND RESULTS

In this section, all the numerical computation configurations, processes and results are presented. The
analysis of each result is also elaborated in each subsection.

6.1. 2D FREE SURFACE STANDING WAVE IN RECTANGULAR TANK
The test for the model 1, 2D standing wave in the rectangular tank, is performed in this section.

6.1.1. MODEL PARAMETERS
To test the first model, some parameters should be set in advance, including the size of the water tank,

the discretization of the fluid domain and the initial condition.

Generally, these parameters can be set arbitrarily. But they should be valid both in reality and in this
model. Those invalid conditions violate either the physical sense or the assumptions in this research. An
unrealistic example is to set the depth of the tank shallower than the amplitude of the wave. It will make
the profile of the surface wave penetrate through the water tight bottom. Another example is to set the wave
amplitude larger than a fluid mesh. It will make the assumption of the fluid discretization method in this
research invalid.

As shown in the figure 5.1, the prescribed parameters are shown in the table 6.1.

Physical Meaning Symbol Value Unit

Water density ρ 1000 kg /m3

Gravitational acceleration g 9.81 m/s2

Tank length Lt 1 m
Tank depth D t 0.5 m

Wave amplitude ζa 0.001 m

Table 6.1: Parameters of Model 1

For the rectangular structured grids to be generated, the fluid domain is equally divided in to several hor-
izontal fractions Nh and vertical fractions, Nv . Then the size of the grids can be obtained, namely∆x = Lt /Nh

for horizontal length and ∆z = D t /Nv for vertical length.

6.1.2. ANALYTICAL PERIOD
The eigen modes of the standing wave are related to the tank length, while the eigen frequencies of

standing wave are related to the eigen modes. Thus, the length of the tank can be related to the analytical

41
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frequencies through the 2D dispersion relation.

According to the dispersion relation, the wave length and period, or equivalently, the wave number k
and frequency ω, can be solved mutually. By definition:

ω2 = g k tanh(kD t ) (6.1)

If the second eigen mode of the standing wave is defined as the initial condition (fig.5.2b), the wave
number k for the standing wave in the tank can be calculated by:

k = 2π

Lt
(6.2)

The analytical period of the standing wave can be solved readily:

Tana = 2π

ω
(6.3)

Given the prescribed parameters in the above table, the analytical period of the standing wave Tana =
0.8018s.

6.1.3. MESH AND TIME-STEP SIZE

Under a given numerical algorithm, the mesh size ∆x ∆z and the time-step size ∆t may affect the re-
sults of the simulation. The influences include the computational stability, the order of the accuracy and the
smoothness of the result.

In this model, the numerical period is solved by running the code and identify the locations of peaks or
troughs. The influence of the discretization will be performed through the comparison between the period
of the standing wave of the numerical results and that of the analytical solution.

SPATIAL DISCRETIZATION ∆x AND ∆z

When the fluid domain is discretized by the different number of fractions, by Nh and Nv , the obtained
numerical periods are different but around the analytical solution. For the sake of convenience, the fluid do-
main will be discretized into square grids with equal horizontal and vertical lengths, i.e., ∆x =∆z.

In this test, the mesh sizes are treated as variable while the time-step size a given parameter,∆t = 0.008s.
The results of the tests for different mesh sizes are shown in the table 6.2.

Nh 4 8 10 20 30 40 50 100
Nv 2 4 5 10 15 20 25 50

Mesh size 0.25m 0.125m 0.1m 0.05m 0.033m 0.025m 0.02m 0.01m
Period 0.944s 0.928s 0.808s 0.808s 0.808s 0.808s 0.8s 0.8s

Table 6.2: Numerical periods of standing wave for different mesh sizes

The results can also be illustrated in the figure 6.1a

One can see that the numerical period will approach the analytical solution when the mesh size becomes
increasingly smaller. The best numerical estimation of the wave period is 0.8s in this test because of the given
time step size ∆t = 0.008s. The best option of the time step size is a value that is closer to a value that can
aliquot the analytical wave period.
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∆t 0.05s 0.025s 0.01s 0.0075s 0.005s 0.0025s 0.001s
Period 0.8s 0.8s 0.8s 0.8025s 0.8s 0.8025s 0.802s

Table 6.3: Numerical periods of standing wave for different time step sizes

TIME DISCRETIZITION ∆t
In this test, the different time-step sizes ∆t are variabels while the mesh sizes given parameters are,

∆x =∆z = 0.025m. The results of the tests for different mesh sizes are shown in the table 6.3.

The results can also be illustrated in the figure 6.1b.

It can be seen that the system is unstable if the time-step size is too large. Generally, the biggest stable
time-step size should be around one twentieth of the wave period. In the stable range, the numerical period
will approach the analytical solution when the time-size becomes increasingly smaller. The best option of
the time step size is a value that is closer to a value that can aliquot the analytical wave period.

(a) Wave period depends on mesh size (b) Wave period depends on time-step size

Figure 6.1: Wave period depends on discretization, model 1

6.1.4. SIMULATION RESULTS
To test the model 1, simulations will be performed using different configurations, coarse and fine mesh

sizes, bigger and smaller time-step sizes. The configurations are shown in the table 6.4.

Conf.1 Conf.2 Conf.3 Conf.4
∆x =∆z 0.1m 0.1m 0.01m 0.01m
∆t 0.05s 0.008018s 0.05s 0.008018s

Table 6.4: Parameter configurations, model 1

As stated in the previous section, the initial surface wave is defined as the second eigen mode of the
standing wave. The discretized initial wave is shown in the figure 6.2.

The elevation of the free surface is stored in the horizontally central position in a fluid grid. For each
even Nh , the elevation at the exact central point cannot be recorded. The green marker represents the record
point. It is one of the two points that are nearest to the exact central point.

The interpolation may be used to get the elevation at the exact central point. But it has less meaning. It
is partly because that the pressure in the fluid is also stored at the center. And it is partly because that inter-
polation is not exact solution and will generate errors too. Therefore, the interpolation for the exact center
will not be used here.



44 6. NUMERICAL SIMULATIONS AND RESULTS

(a) Coarse mesh (b) Fine mesh

Figure 6.2: Initial wave, model 1

The figure 6.3 shows the results of the numerical model 1. The curves represent the surface elevation
at the recording point (fig.6.2) with time advancing. The amplitudes of the coarse grids are smaller than one
because that the recording point is not exactly the central point of the wave length.

(a) Configuration 1 (b) Configuration 2 (c) Configuration 3 (d) Configuration 4

Figure 6.3: Elevation at Recording Point, model 1

The figure ??fig:Elevation at Recording Point shows that the 2D standing wave in a rectangular tank is
numerically modelled by this algorithm. First of all, the amplitude of the surface elevation does not change
in the numerical simulation when the time-step size is in the stable range. Secondly, smaller time steps will
generate smoother simulation. Last but not the least, the mesh sizes have more influence on the numerical
frequency of the standing wave.

6.2. 2D EULER BERNOULLI BEAM IN VACUUM
The test for the model 2, 2D Euler Bernoulli beam in vacuum, is performed in this section.

6.2.1. MODEL PARAMETERS
To maintain consistency with the geometry in model 1, the length of the beam is set to one meter. It is

pinned at the left and right ends. According to its governing equation 4.46, the dynamic properties of a non-
damped free vibration are determined by the inertia and the stiffness. In the 2D beam model, the inertial part
is the product of the beam density ρs and the cross-section area of the beam A. The stiff part is the product
of the Young’s module E and the moment of inertia of the cross-section area I .

The beam cross-section is a square shape and its width is set equal to the vertical mesh size in the model
1, i.e., ∆z. Thus, the cross-section of the beam A and the moment of inertia of the cross section area I can
be calculated by ∆z. A typical value of the Young’s module is 210GPa. But as discussed in the section 4.2.2,



6.2. 2D EULER BERNOULLI BEAM IN VACUUM 45

the beam can be set not so stiff in order to mimic the membrane material in 3D. Consequently, the Young’s
module is set 1GPa.

A =∆z2 (6.4)

I = ∆z4

12
(6.5)

The table 6.5 shows the value of the parameter settings in the model 2.

Meaning Length Shape Density Area Young’s Module Moment Load
Symbol Ls Square ä ρs A E I q

Value 1 - 7800 0.0001 1E9 8.3333E-10 0
Unit m - kg /m3 m2 Pa m4 N

Table 6.5: Parameters of Model 2

6.2.2. ANALYTICAL PERIOD

The analytical eigen frequencies and eigen modes can be solved through the equation of motion of the
beam with the given parameters. For a beam pinned at both ends, the analytical natural frequenciesωs,n can
be found as

ωs,n =
√

E I

ρA

(
nπ

Ls

)2

(6.6)

Where n = 1,2,3, · · · . With the given parameters in the previous subsection, the first eigen frequency of the
beam ωs = 10.2014r ad/s.

The analytical period of the first free vibration mode is solved readily through eq.6.3 and ends up with
0.61591s.

6.2.3. BEAM NODES AND TIME-STEP SIZE

The eigen frequencies can be solved through the inertia matrix and stiffness matrix in the numerical 2D
Euler Bernoulli model. It does not need to run the simulation and take observe the period through the results
of the simulation.

The numerical eigen frequencies are given by the eigen values of the inertia matrix and stiffness matrix.
The first several numerical eigen frequencies shall be close to the analytical eigen frequencies. Consider the
first eigen frequency and the first eigen mode of the Euler Bernoulli beam. The different numerical eigen
periods can be obtained when the beam is discretized into different numbers of nodes. A test is performed to
reveal the relation between node numbers and the numerical periods, see fig.6.4.
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(a) Num. period and ana. period (b) Error rate in percentage

Figure 6.4: Numerical first eigen period and node numbers, model 2

It can be seen that the numerical first eigen period of the beam will approach the analytical solution
when the beam is discretized into more nodes. If the beam is discretized into 101 nodes, 100 segments in
another word, the error rate is less than 0.06%.

The time step size can be set equal to the analytical first period divided by a number, e.g., 100.

6.2.4. SIMULATION RESULTS
In order to test the model 2, the simulation will be performed with 3 time integration methods, 1st order

backward Euler (BE), 2nd order trapezoidal rule (Trapezodial) and explicit, singly diagonally implicit Runge-
Kuuta (ESDIRK). The recording point is exactly at the central point of the beam.

1ST ORDER BACKWARD EULER (BE)
The simulation is performed with different time step sizes. The results are shown in the figure 6.5.

(a) ∆t = Ts
200 (b) ∆t = Ts

500 (c) ∆t = Ts
1000

Figure 6.5: Elevation at Recording Point, model 2

The figure 6.5 shows that the transverse vibration of an Euler-Bernoulli beam is modelled by this algo-
rithm. However, it is obversely that the beam vibration is damped and the damping part is from the numerical
dissipation in the implicit algorithm.

The implicit dissipation depends on the order of the time integration and the time step size. From
fig.6.5a to fig.6.5c, the damping becomes increasingly less when the time step size is increasingly smaller.
Thus, decreasing the time step size is a way to decrease the numerical damping, but not the most efficient
way for the sake of computational cost.
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2ND ORDER TRAPEZOIDAL ( TRAPEZOIDAL)
The simulation results with the trapezoidal method are shown in the figure 6.6.

(a) ∆t = Ts
30 (b) ∆t = Ts

50 (c) ∆t = Ts
300

Figure 6.6: Elevation at Recording Point, Trapezoidal, model 2

It is clear that for a simple beam model, the trapezoidal rule generates simulation with better results than
the backward Euler rule.

EXPLICIT, SINGLY DIAGONALLY IMPLICIT RUNGE-KUUTA (ESDIRK)
As a test, the beam vibration is simulated with two multi-stage higher order time integration methods,

4th order implicit Runge Kutta method. Three time step sizes (the same as what used in the trapezoidal rule
test) are tested. The results are shown in the figure 6.7.

(a) ∆t = Ts
30 (b) ∆t = Ts

50 (c) ∆t = Ts
300

Figure 6.7: Elevation at Recording Point, 4th IRK, model 2

The multi-stage higher order time integration method that can minimize the numerical dissipation to
the greatest extent. It works efficiently in the structure domain. With higher order multi-stage time integra-
tion, even relatively large time step size, ∆t = Ts

30 can produce the stable, smooth and undamped result. It can
be also found that the numerical dissipation does not influence the numerical period significantly.

From the comparison between fig.6.6 and fig.6.7, it can be seen that the trapezoidal rule can deliver good
simulation with less computational effort and acceptable accuracy.

6.3. 2D FLUID STRUCTURE INTERACTION (FREE SURFACE AND BEAM)
In this section, the 2D FSI simulation, the model 3, will be performed by combining the standing wave,

the model 1, and the pin-pin Euler Bernoulli beam, the model 2.

6.3.1. MODEL PARAMETERS
The geometry of model 3 is designed consistent with the model 1 and the model 2. Parameters of the

model 3 (see fig.5.6)are listed in the table 6.6.



48 6. NUMERICAL SIMULATIONS AND RESULTS

Physical Meaning Symbol Value Unit

Water density ρ 1000 kg /m3

Gravitational acceleration g 9.81 m/s2

Tank length Lt 2 m
Tank depth D t 1 m

Container length Lc 1 m
Container depth Dc 0.5 m
Wave amplitude ζa 0.001 m
Structure density ρs 7800 kg /m3

Cross Area A 0.0001 m2

Young’s module E 1E9 Pa
Inertia moment I 8.333E-10 m4

Horizontal mesh length ∆x 0.01 m
Vertical mesh length ∆z 0.01 m

Time step size 1 ∆t1 0.0031 s
Time step size 2 ∆t2 0.0012 s
Time step size 3 ∆t2 0.00031 s

Table 6.6: Parameters of Model 3

6.3.2. INITIAL CONDITIONS

(a) Zero-IC (b) Initial wave IC (c) Initial deflection IC

Figure 6.8: 3 initial conditions, model 3

ZERO-INITIAL CONDITION

The zero-initial condition means to set all the initial conditions to be on its balance position at rest. The
free surface position is the still water level; the velocities of the fluid particles (or the finite control volumes)
are zero; the structure is on its position at rest without loads. See fig.6.8a. With the zero-initial condition, the
simulation should yield a static result.

INITIAL WAVE IN THE SMALL CONTAINER

If the bottom beam is so stiff that the deflection of the beam, under the excitation of the water wave, is
extremely small. The free surface in the small container will keep its shape of standing wave while the am-
plitude of the free surface elevation in the big container will be in the same magnitude as the beam deflection.

INITIAL DEFLECTION CONDITION

The initial deflection condition means to define the initial deflection in the structure domain. In this
model, it is defined as the second eigen mode of the beam in the vacuum.

In accordance with mass conservation, the still water level will change when the initial deflection of the
beam is defined. Intuitively, if the beam deflects upwards, the water level in the inner cylinder will moves
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upwards while the water level in the outer cylinder will moved downwards. See the figure 6.8c.

Note that the deflection and the still water surface are not the same as that in the simulation. The de-
flection shown in fig.6.8c is too large to apply the linearization. Thus, it is just a sketch to verify the mass
conservation in the applied numerical algorithm.

6.3.3. SIMULATION RESULTS

RESULT WITH ZERO INITIAL CONDITION

Figure 6.9: Initial zero results, model 3

The simulation result with zero initial condition, i.e., no initial wave or initial structure deflection, is
shown in the figure 6.9. It can be seen that the surface elevation and the beam deflection vary quite slowly.
The magnitude of the variation is about 10−12m. Thus the system can be regarded as static. The variation is
due to the numerical error, e.g., truncation errors and round errors. Numerically, the truncation errors and
the round errors exists in the discretization and algorithm.
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RESULT WITH INITIAL WAVE (STRONG BEAM STIFFNESS)

Figure 6.10: Initial wave results, model 3

The simulation result with the initial wave in the small container is shown in the figure 6.10. A standing
wave is observed in the small container. The beam and the free surface in the large tank moves in ignorable
magnitude, about 10−9m. It is also noticeable that there is heavily numerical damping in the structure do-
main. The reason is that the natural frequency is extremely because the beam is extremely stiff. The time step
that causes slight numerical dissipation for the mediately stiff beam will cause severe numerical dissipation
for the extremely stiff beam.

RESULT WITH INITIAL DEFLECTION

In the simulation with initial beam deflection, two time integration methods are tested, which are the
1st BE and the Trapezoidal rule. In each method, three different time step sizes ∆t are also tested. The figure
6.11a shows the results of BE method, with∆t1 = Ts

200 = 0.0031s,∆t2 = Ts
500 = 0.0012s and∆t2 = Ts

2000 = 0.00031s.
The results of the trapezoidal method is shown in the figure 6.11b. The time step sizes used within trapezoidal
rule are ∆t1 = Ts

200 = 0.0031s, ∆t2 = Ts
500 = 0.0012s and ∆t2 = Ts

1000 = 0.00061s respectively.

Several phenomena can be observed in the results. First of all, there is numerical dissipation in the sys-
tem. First of all, the numerical dissipation exists in the numerical model. The dissipation is smaller when
smaller time step or higher order integration method is used. Building on the results of the model 1 and the
model 2, the numerical dissipation comes from the 1st order backward Euler time integration. Secondly, the
frequency of the beam in the fluid structure interaction is smaller than that in the vacuum. The time span of
the numerical simulation is equal to twenty periods of the beam in the vacuum. In the FSI simulation, the
beam vibrates about 18.5 circles. Thus, added mass due to the ambient fluid is observed. Thirdly, the beam
does not vibrate in the second eigen mode exactly due to the free surface. It deviates from the eigen mode
slightly. Additionally, the free surface moves not only up and down, but also with wave shape. Therefore, 2D
fluid structure interaction is modelled with the algorithm in this research.

The frequency of the wet beam numerical is slightly different from the frequency of the dry beam. The
difference is small. It is because that the 2D model is assumed slender. The fluid pressure has less influence
on the beam because that the interface area is small. An extreme scenario is the width and thickness of the
beam are so small approaching zero. Then the beam vibration will hardly feel the ambient water because
the interface area is zero. But a condition described by the 2D FSI model is unrealistic. The reason is that
the beam movement will influence not only the ambient fluid in the plane but also the ambient fluid around
it. The influence of the beam movement will be transferred to the whole water surface instead of only the
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(a) BE results, 3 ∆t

(b) Trapezoidal results, 3 ∆t

(c) Comparison BE vs. Trapezoidal, ∆t = 1
500 T

Figure 6.11: Track of 4 record points, BE vs. Trapezoidal, initial deflection IC, model 3
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surface in the plane.

6.4. 3D FREE SURFACE STANDING WAVE IN CYLINDER CONTAINER
The test for the model 4, 3D standing wave in the cylinder container, is performed in this section.

6.4.1. MODEL PARAMETERS

As shown in the figure 5.1, the prescribed parameters are shown in the table 6.7.

Physical Meaning Symbol Value Unit

Water density ρ 1000 kg /m3

Gravitational acceleration g 9.81 m/s2

Container radial Rc 0.5 m
Container depth Dc 0.25 m
Wave amplitude ζa 0.001 m

Table 6.7: Parameters of Model 4

6.4.2. ANALYTICAL PERIOD

The eigen modes of the standing wave are related to the cylinder radial, while the eigen frequencies of
standing wave are related to the eigen modes. Thus, the radial of the cylinder can be related to the analytical
frequencies through the 3D dispersion relation.

When a first kind of Bessel function shape is defined as the initial wave elevation, a dispersion relation
can be found relating the radial wave number and the eigen frequency. By definition:

ω2 = g

Rc
k tanh

(
k

Dc

Rc

)
(6.7)

If the 0th order 1st eigen mode of the Bessel function is defined as the initial wave (fig.5.10a), the wave
number k for the standing wave in the tank is equal to the 2nd root of the 1st order:

k0,1 =α1,2 = 3.8317 (6.8)

Substitution of the given values into eq.6.7 yields the natural frequency of the standing wave ω0,1 =
8.4846r ad/s. Thus the natural frequency of the 0th order 2nd mode standing shape T0,1 = 0.74054s

The figure 6.12 shows that the numerical period of the standing wave depends on the total computa-
tional mesh number N and the time step size ∆t . Finer meshes and smaller time step size can produce more
accurate simulation.

6.4.3. MESH AND TIME STEP SIZE

MESH SIZE

In order to generate the structured grids, the fluid domain is equally divided in to 30 fractions in the
horizontal direction Nr = 30, 24 fractions in the angular direction Na = 24 and 15 fractions in the vertical
direction Nv = 15. Then the size of the grids can be obtained, namely ∆r = Rc

Nr
= 0.0167m, ∆p = 2π

Na
= 15◦ and

∆z = Dc
Nv

= 0.0167m.
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(a) Tnum vs. meshes number N (b) Tnum vs. ∆t

Figure 6.12: Period depends on mesh and time step size, model 4

TIME STEP SIZE

The time step size is set equal to the natural period of the standing wave divided by 300, i.e., ∆t = T0,1
300 =

0.0025s.

6.4.4. SIMULATION RESULTS

As stated in the previous subsection, the initial free surface elevation is defined as the 1st mode of the
0th order of the first kind of the Bessel function. It is shown in the figure 6.13.

(a) 2D (b) 3D

Figure 6.13: Initial wave, model 4

With this initial condition and the given parameters, the simulation result is shown in the figure 6.14.
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Figure 6.14: Track of center point,model 4

From fig.6.14, the motion will keep it mode and amplitude in the numerical simulation. The total time
span of the simulation is equal to ten analytical periods. The numerical simulation also experiences ten cy-
cles. Thus the 3D standing wave in a cylinder can be modelled by this numerical algorithm. For the same
reason in the model 2 (2D standing wave), the numerical period slightly deviates from the analytical solution
due to the mesh and time step sizes.

6.5. 3D MEMBRANE IN VACUUM

The test for the model 5, the thin membrane in the vacuum, is performed in this section.

6.5.1. MODEL PARAMETERS

In order to be consistent with the geometry in model 4, the radial of the circle membrane R is set 0.5m.
The boundary edge is fixed. From its equation of motion 4.47, the dynamic properties of an undamped free
vibration are determined by the inertia and the stiffness. In this model, the inertial part is the density of the
membrane ρs = 1kg /m2 while the stiff part is the uniform tension in the membrane T = 500N /m2.

6.5.2. ANALYTICAL PERIOD

In the thin membrane model, the analytical frequency with a given eigen mode of the 1st kind Bessel
function is given by

ωsm,n =
√

T

ρs

αm,n

R
(6.9)

Where the subscript m is the mth order of the Bessel function, the subscript n is the nth mode of the Bessel
function andα is the solution of the root where the Bessel function cross the zero height. In this research, the
1st root of the 0th order Bessel function , i.e., m = 0 and n = 1 is chosen.

Substitution of the parameters into eq.6.9 yieldsωsm,n = 107.5471r ad/s. Thus the corresponding natural
period is Tsm,n = 0.0584s.

6.5.3. MESH AND TIME STEP SIZE

From the figure 6.15 it has been demonstrated that the finer grids size will generate a more accurate
numerical natural period. As long as the time step size ∆t is in the stable range, its influence on period is
limited. In this subsection, the circle membrane will be discretized into 30 fractions in the radial direction
and 24 fractions in the angular direction, i.e. ∆r = 0.0167m and ∆φ= 15◦. The time step size is calculated by
∆t = Ts

Ni nteg er
and Ni nteg er can be set to make the system stable.
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(a) Tnum vs. grids number N (b) Tnum vs. ∆t

Figure 6.15: Period depends on mesh and time step size, model 4

6.5.4. SIMULATION RESULTS
The discretized initial deflection is defined as the 1st eigen mode of the 0th Bessel function shape, as

shown in fig.6.16a in 2D and 6.16b in 3D.

(a) 2D (b) 3D

Figure 6.16: Discretized initial deflection, model 5

To test the model 5, the simulation will be performed with different time integration methods, 1st order
BE and 2nd order Trapezoidal. Within each method, 3 different time step sizes are used respectively. The total
time span of the simulation is equal to ten periods of the membrane free vibration.

1ST ORDER BACKWARD EULER (BE)
The time plots of the recording point is shown in the figure 6.17.

The same as the model 2, the transverse vibration of a thin membrane is modelled by the discussed al-
gorithm but numerical damping exists. The damping part is from the numerical dissipation in the implicit
algorithm.

The implicit dissipation depends on the order of the time integration and the time step size. From
fig.6.17a to fig.6.17c, the damping is increasingly less when the time step size becomes increasingly smaller.
Thus, decreasing the time step size is a way to decrease the numerical damping, but not the most efficient
way for the sake of computational cost. Another way to reduce the numerical damping is higher order time
integration.

2ND ORDER TRAPEZOIDAL RULE ( TRAPEZOIDAL)
The simulation results of the Trapezoidal method is shown in the figure 6.18.
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(a) ∆t = Ts
200 (b) ∆t = Ts

500 (c) ∆t = Ts
1000

Figure 6.17: Elevation at Recording Point, 1st order BE, model 5

(a) ∆t = Ts
200 (b) ∆t = Ts

500 (c) ∆t = Ts
1000

Figure 6.18: Elevation at Recording Point, 2nd order trapezoidal, model 5

The trapezoidal simulation results shows that, for the simple membrane vibration, the trapezoidal rule is
a effective and efficient method to reduce the numerical dissipation. In the model 5, results of the 2nd Adam
Moulton method with d t = 1

200 T is more accurate than 1st backward Euler method with d t = 1
1000 T . For the

2nd Adam Moulton method, even ∆t = 1
50 T is allowed.

6.6. 3D FLUID STRUCTURE INTERACTION (FREE SURFACE AND MEMBRANE)
In this section, the 3D FSI simulation, the model 6, will be performed by combining the standing wave,

the model 4, and the membrane, the model 5.

6.6.1. MODEL PARAMETERS

The geometry of model 6 is designed consistent with the model 4 and the model 5. Parameters of the
model 6 (see fig.5.14)are listed in the table 6.8.

6.6.2. INITIAL CONDITIONS

ZERO IC
Zero IC here is the same as zero IC in the subsection 6.3.2. The free surface position is the still water level;

the velocities of the fluid particles (or the finite control volumes) are zero; the structure is on its position at
rest without external loads.

INITIAL WAVE IN SMALL CONTAINER

As the same principle in the subsection 6.3.2, if the bottom membrane is so stiff and the initial wave is
defined in the small cylinder, the standing wave will be observed in cylinder. The initial wave is defined as
the second mode of the 0th 1st kind of the Bessel function. This initial condition is shown in the fig.6.19.
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Physical Meaning Symbol Value Unit

Water density ρ 1000 kg /m3

Gravitational acceleration g 9.81 m/s2

Small cylinder radial Ri n 0.5 m
Small cylinder depth Di n 0.25 m

Big cylinder radial Rout 1 m
Big cylinder depth Dout 0.5 m
Structure density ρs 1 kg /m2

Uniform tension T 500 N /m2

Radial mesh length ∆r 0.05 m
Angular mesh length ∆φ 20 deg r ee
Vertical mesh length ∆z 0.05 m

Time step size 1 ∆t1 0.00515 s
Time step size 2 ∆t2 0.00206 s
Time step size 3 ∆t3 0.00103 s

Table 6.8: Parameters of Model 6

(a) 2D section profile (b) 3D profile

Figure 6.19: Initial wave, model 6

INITIAL DEFLECTION

• FSI Coupled Eigen Mode
The nth eigen mode of the 0th order 1st kind of the Bessel function shape of the membrane in this FSI
model W0,n is given by Damiete Briggs (2017),

W0,n = γ′0
(
1− J0(µr )

J0(µRi n)

)
(6.10)

In eq.6.10, J0 is the 0th 1st kind of the Bessel function. r is the arbitrary position in radial direction
between the center and the membrane edge. γ′0 is a constant determined by the order, the rank number
and amplitudes of the Bessel functions. It defines the amplitude of the eigen mode. µ is the nth eigen
frequency of the 0th order 1st kind of the Bessel function shape of the membrane in this FSI model. It
is also given by Damiete Briggs (2017),

µ0,n =
√
ρs

T
ωm (6.11)

Where ωm is called mathematical frequency. With the given parameters, the FSI frequency µ0,1 =
6.0980r ad/s. Thus the eigen frequency of the FSI coupled system T f si = 1.03s.

The initial condition is defined as the membrane initially deflects in the FSI eigen mode introduced
above, the free surface is the still water level. The initial membrane deflection is calculated by eq.6.11
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and is shown in 2D section profile, (fig.6.20a) and 3D profile (fig.6.20b).

(a) 2D section profile (b) 3D profile (c) 2D section profile (d) 3D profile

Figure 6.20: Initial membrane deflection, FSI mode, model 6

For the same reason stated in the subsection 7.3.2, the deflection of the bottom membrane will influ-
ence the still water level in the two cylinders. The initial condition for the entire model is shown in 2D
(fig.6.20c) and 3D (fig.6.20d).

• Eigen Mode of Membrane in Vacuum
As a comparison, an initial deflection condition with the eigen mode of the membrane in the vacuum
is also defined as shown in the figure 6.21.

(a) 2D section profile (b) 3D profile (c) 2D section profile (d) 3D profile

Figure 6.21: Initial membrane deflection, vacuum membrane mode, model 6

6.6.3. SIMULATION RESULTS
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RESULT WITH ZERO IC

Figure 6.22: Zero IC results, model 6

The simulation results in a zero-initial condition, i.e., no initial wave or initial deflection, is shown in the
figure 6.22. It can be seen that the surface elevation and the beam deflection change quite slowly. The mag-
nitude of the variation is about 10−11m. Thus, the system can be regarded as static. The variation is due to
the error in the mathematical and numerical system. For instance, mathematically, the convective terms are
ignored in the momentum balance equation; numerically, the truncation errors and the round errors exists
in the discretization and algorithm.

RESULT WITH INITIAL WAVE (STRONG BEAM STIFFNESS)

Figure 6.23: Initial wave results, model 6

The simulation resulted from the initial wave in the small cylinder is shown in the figure 6.23. The free
surface in the small cylinder keeps its initially defined shape and moves as a standing wave. The movement
of the membrane and the free surface in big cylinder are in ignorable magnitude. As stated in the subsection
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6.3.3, the movement of the membrane is damped quickly because the stiffer membrane has higher natural
frequencies.

RESULT WITH INITIAL DEFLECTION

In the simulation with initial membrane deflection, two time integration methods are tested, which are
the 1st BE and the Trapezoidal rule. In each method, different time step sizes are also tested respectively.

• Results of Initial condition in FSI Coupled Eigen Mode
The simulation is conducted in two time integration techniques, the 1st order BE and the 2nd order
Trapezoidal. The initial condition is that the membrane deflects in the FSI coupled eigen mode while
the water levels stay at rest. See the figure 6.24

The results of the BE method are shown in the figure 6.24a. The results of the Trapezoidal method are
shown in the figure 6.24b. Three different time step sizes are used in these two simulations. As a com-
parison, the figure 6.24c shows the simulation results with the same time step size ∆t = 1

500 Tana but
with different time integration, BE and Trapezoidal, respectively.

It is clearly that there are wave envelope in the vibration of the membrane. The wave envelope implies
that there are different frequencies and the frequencies, or the dominant frequencies among those
components, are close to each other. The frequency components can be identified using the Fourier
transform. The figure 6.25 shows the spectrum of the motion of the recording point 2 (the membrane
deflection) in the frequency domain.

Figure 6.25: Spectrum of membrane vibration, model 6

According to the spectrum in the frequency domain, there are two dominant peak frequencies, ω1 =
6.0977rad/s and ω2 = 6.7075rad/s, respectively.

Several phenomena can be observed in fig.6.24 and 6.25.

Firstly, the numerical dissipation can be reduced by decreasing the time step size and increasing the or-
der of time integration. Trapezoidal rule has better performance regarding the accuracy and efficiency.
According to the results of the model 4 and the model 5, the numerical dissipation comes from the 1st
order backward Euler time integration in the structure domain, not the fluid domain.

Secondly, the membrane does not vibrates exactly in its FSI coupled eigen mode. The deviation is due
to the state of the fluid domain of the initial condition, especially the initial water level. In the vibration
process, when the coupled system reaches the steady-states, the fluid domain will never be as defined
as the initial condition used in this research. The movement of the water level will exert influence on the
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load acted on the membrane surface and change the mode slightly. However, the numerical frequency
of the membrane in the fluid structure interaction, ω1 = 6.0977rad/s is close to the natural frequency
from the analytical analysis performed by Damiete Briggs, ωana = 6.098rad/s. The total tested time
span is equal to twenty times of the analytical natural periods of the FSI membrane. In the numeri-
cal model, the membrane experiences approximately nineteen and three fourth periods. Except the
influence of the initial condition, the difference in period is also due to the mesh size in the spacial
time discretization. Limited by computational capability, the 3D FSI model is simulated with relatively
coarse grids.

Additionally, the free surface moves not only up and down, but also with wave shape. It demonstrates
that the model is mass-conserved and can simulate the phenomenon of the wave-radiation.

Therefore, 3D fluid structure interaction is modelled in this research.

• Results of Initial Condition in Vacuum Membrane Eigen Mode
As a comparison, another initial condition is defined and simulations are performed. The membrane
initially deflects in the eigen mode as the membrane is placed in the vacuum. Two time integration
techniques and two time step sizes are tested. The results are shown in the figure 6.26.

It can be seen that the amplitude of the membrane vibration varies as well. This is an indirect evidence
of the influence of the fluid states on the membrane eigen modes.

Other phenomena observed in this simulation is omitted here. They are the same as the results of the
simulation with FSI coupled deflection modes.
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(a) BE results

(b) Trapezoidal results

(c) Comparison BE vs. Trapezoidal, ∆t = 1
1000 T

Figure 6.24: Track of 4 record points, BE vs. Trapezoidal, initial FSI deflection, model 6
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(a) BE results

(b) Trapezoidal results

(c) Comparison BE vs. Trapezoidal, ∆t = 1
1000 T

Figure 6.26: Track of 4 record points, BE vs. Trapezoidal, initial vacuum membrane deflection, model 6





7
CONCLUSIONS AND RECOMMENDATIONS

7.1. CONCLUSIONS
In this study, the FSI performance of the flexible structure and the water in the cylinder container with

free surface are tested through numerical simulation in 2D and 3D.

As in most CFD cases, the finite volume method with staggered mesh is suitable for the fluid domain in
this FSI model. For the structure domain, the finite difference method is an efficient way of discretization. For
the model in this research, this kind of combination of FVM and FDM is effective and efficient within both the
2D Cartesian coordinate system and the 3D Polar coordinate system. The finer grids and nodes can generate
smoother and more accurate simulations. Information can be transferred through the interface boundary
between the fluid domain and the structure domain using the averaging method.

The one-step, implicit, monolithic algorithm is established to solve the numerical model from a time
step (old) to the next time step (new). The 1st order implicit method, or backward Euler method, is an ef-
ficient time integration method due to its low order and unconditional stability. But it generates numerical
dissipation. The numerical dissipation does not lie in the fluid domain, but in the structural domain. It is be-
cause that it is not completely implicit in the fluid domain due to the free surface. The numerical dissipation
depends on the time step size. It can be reduced by decreasing the time step.

The 2nd order Adams–Moulton method, the trapezoidal rule, is implemented in the structural sub-
domain for the FSI problem. This method can effectively reduce the numerical dissipation and deliver more
accurate simulations without increasing the computational costs drastically. In the model 6, with the same
time step size ∆t = 1

500 T , the peak values of the membrane with the 2nd order Adam Moulton method is
9.33% larger than that of the 1st order backward Euler method after ten periods’ simulation.

The numerical simulation provides an insight of the FSI mechanism. The most significant one is the
added mass effect within the submerged structure. The added mass will reduce the natural frequency of a
structure in water. In the 2D model, the frequency of the submerged beam is slightly different from that of
the dry beam. In the 3D model, the natural frequency of the submerged membrane is decreased drastically.
This is the direct evidence of the added mass. Furthermore, the obtained frequency from the numerical sim-
ulation agrees with the analytical eigen frequency given by D. Briggs. Another noticeable FSI mechanism is
the deflection of the structure will radiate waves to the water in the outer container. The variation of the free
surface elevation consists of the movement of the average water level and the radiated and reflected wave.

All in all, the algorithms are an effective and efficient method to estimate 3D FSI mechanism with the ob-
jective to conduct initial investigation to the fluid structure interaction phenomena. The simulation can give
a quick and intuitive prediction about the FSI experiment to researchers working on hydrodynamics and/or
structural dynamics.

65



66 7. CONCLUSIONS AND RECOMMENDATIONS

7.2. RECOMMENDATIONS
There is still space for further improvement of the numerical algorithm.

First of all, more tests with finer meshes are in need to verify the convergence of numerical results to
the analytical solution, especially for the 3D model. In order to perform these tests, more powerful computa-
tional resource is required.

Secondly, some techniques are needed to deal with the numerical dissipation due to the implicit method.
It is a good option to implement higher order multi-step BDF or AM to increase the order of the time inte-
gration. Hence, the numerical dissipation reduced. For instance, further researches can use 4th order AM
method combined with controllable time step sizes. Another way to increase the order of time integration
is to apply the multi-stage method, i.e., the Runge Kutta method. It is recommended more for partitioned
algorithms. The reason is that RKM requires the fluid pressures on every stage thus the feedback mechanism
behaves in explicitness better than in implicitness.

Thirdly, the model can be developed from linear to non-linear, but the algorithm will change thoroughly.
The linear system is based on the Euler equation (Navier-Stocks equation of inviscid flow) and neglecting the
convection terms. In order to generate more precise simulation, the cross terms should be taken into account.
Under this condition, iterations are in necessary to tackle the cross terms. Then computational expense of a
fully coupled monolithic method will increases. Therefore, the partitioned methods are recommended.

Finally, the numerical model is still different from the measured data from Rizos’ lab experiment. Much
more effort can be invested on developing this model to fully simulate Rizos’ lab experiment, which can
model the fluid domain disturbed by a driven oscillator with the flexible bottom.
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