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1.1

LITTORAL DRIFT IN THE SURF ZONE

Lecture, held at the Hydraulic Researgh Station, Wallingford
‘ on December 15, 1970 2

INTRODUCTION

I should like to talk about the question of what happens to a
coast after the building of constructions such as groynes or harbour
moles,

So first, (in chapter 1) we shall consider the forces acting
on the grains in the surf zone, then (in chapter 2) some transport
‘formulae, used in the Netherlands and finally (chapter 3) mathe-

matical models of coasts with groynes or harbour moles.

FORCES IN THE BREAKER ZONE

Shear stress over the bottonm

Most probable the waves stir up the sand grains and the currents
trénsport them. So it is worth while to estimate the shear stress of
the water over the bottom, which causes the stirring up.

The waves give an orbital velocity u (changing constantly) and
a longshore velocity v (remaining almost stationary). In the breaker
zone the waves are nearly perpendicular to the coast, and thus the
resultant velocity will be about Vu? + v2 at every moment (fig. 1%)

v
é“ " Longshore vel, v
Orbital vel. u
v
. a . . b '
Fig. 1° Water velocities , Fig. 1 Bottom shear stress

revised, April 1971
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The shear stress T has of course the same direction as the

instantaneous velocity and has the magnitude (fig. 1b):

T-= -'2-85 (0 + va).

h

Q

proportional to the square of the water velocity and to the specific

weight p g, Ch being the Chezy-coefficient.

The longshore component 'tlongshore of this velocity is (fig. 1b): &

- 'Zlongshore = 7>
Ch

However, this reasoning is a little over-simplified as it is
, . \/ .2 2 . :
assumed that the combined velocity u + v has a logarithmic

distribution over the vertical.

Probably the BIJKER-approach [1] is better; he considers the shear
stress on the boundary layer and finds instead of (1%) ([1], formula

1I1.3.14 with ¢ = 0°):

T =/OV‘2 \/p__L L + 1

longshore g -v2

in which p is a constant (=0.42),K is the constant of VON KARMAN

(=0.4) and v, is the boundary shear stress:

n
<

2
&/C,

Ve

This can be reduced to a shape similar to (12):

2

pKC
T PR VQ\ h 2 b
lon ehoro 2 v u + Vv * o o * e o ¢« o @ (1 )
g8 ch q;

to compare with (1%):

facdl -4 2 2 a
longshore -~ — 2 VY yu +V A

However, it remains a curious fact, that the BIJKER-solution [1] does

—/2'5 V re u2 + v2 e o6 e o © © © o 8 e @ (qa)
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not tend to (1“) for long-period waves; this justifies future
research in this field.
In the meantime we shall assume that (1b) is valid.

Averaged over a wave period T'longshore amounts to:

longshore

? =C£%V\/(;<ChU/V'E)2+'2 00000000(2)
h

The value of the term "pKC /\ g" usually equals approximately 2
H
to 3 and hence the term "(pKC Q/VFE is usually large with
2
respect to v in the surf zone.
Fig. 2 shows the factor \pru u/\/_) ‘v

2 in the case

'pKChu/ Vg = 5v.

~Nco ;
©lal

(4

A

[

£L

n

o

c

2

(o ‘lv‘\/(pkchu/\/_g-)2+v2

W2

Fig. 2 —t

longshore and orbital velocity as function of t/T

%¥hen v is small with respect to u, becomes approximately

T longshore

2 ~
Tlongshore =. -T["PK Vf/8. /Juv' o e o o o o s o o @ (3)




-4 -

The factor 8 g/Ch2 has been replaced by the DARCY-WEISBACH friction
coefficient £ in (3).
In his paper on longshore currents, BOWEN [2] linearises the

relation between T pottom and v:

Tbgttgm=cfv.......".....‘.....<[+)

(c; equals " c" in BOWEN's notation)..

From (3) we find, that the factor c_. is proportional to fi:

f

Cf="27r_lpK Vf/8tpﬁ 00.00..000000(5)

fin the breaker zone equals (linear theory):

R (3

,z,
N
gl

Taking the ratio between H and D in the case of a spilling breaker

equal to A2, we find:
ﬁ = '2—g VgD s - . e ® & e 8 & ® e ® o @ & o e o » o(6b)

In the case of a wave spectrum, it might be questionable as to which 11
should be taken.

In order to get the mean longshore velocity, it seems reasonable, since
e is proportional to 1, to take the fi, corresponding to the mean wave
height.

We defing:

A, = H/D in the breaker zone . . N ¢

One finds for ces from (5) and (6b):
1 \Veon
Cf—mpKAapng r.r’ulooo.coooooo‘(B)
In many paperS‘[h], [5], [6] about longshore velocity the shear stress

is taken proportional to v2. It appears to be much larger than this

however.
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‘the shear stress without waves:
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BIJKER [1] ’ [7] computed the longshore component of the shear stress

more accurately than by the rough approximation given here.

pKCy § .
/T as a function of = , in which T _ is
o Ve v o

He computed 1'1ongshore

- Rg 2
'Co Ghz v
From (2) can be derived:

T
longshore _ \ﬁp KCh 2)2 + 1
To Ve v

. . L] L] . . . L] . - . ° . [ ] (2

This function, computed by BIJKER is shown in annex 1 (solid line).

As an interrupted line is shown the approximation according to (3):

Tlongshore _ 2 p K Ch
T, T Vg

It is curious, that BIJKER uses in [?7] the EAGLESON computation for the

.t..t.o..oouo.(}b)

<[

longshore velocity, which is based on proportionality of T with v2.

Radiation stress

We have considered the friction; now we shall consider the driving
force in the breaker zone.

The driving force of the wave is the longéhore component of the
"radiation stress" [8] , [9] . This radiation stress can be visualized

in the set-up of waves on a sloping beach. It consists of two components:

1° the average pressure S over a wave period
differs (in second order) from the hydro-
7.
static pressure. This first component is ///gAss/pqufé*
%
v

thus an isotropic pressure. "

27 flux of momentum can be considered as a

force; through any cross-section per unit Fig. 3
of time and per unit of area a flux,ovn,v
is transported, if v is the component of
the velocity perpendicular to the area. .
The average over a wave period is not equal to zero; Therefore
this second component of the radiation stress is an unidirectional
force.
Combined, the first and the second component give a stress field with
different principal stresses. It can be\visually demonstrated in a Mohr

circle (fig. 4).

S U SO SO N i L N - B i e
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Fig.lo Mohr circle, representing the radiation stress.

Now the "radiation stress" is by definition this stress field, but

integrated over the depth:

7
radiation stress =-/[ (p +/ovi) dz B ).

=D
in which z is the vertical component with respect to the still-water
level and 7 is the water level.
In fact, the "radiation stress" is not a stress, but a force per unit
of length. The dimension is [mt-z].

LONGUET-HIGGINS and STEWART [8] computed the first and second
component (fig. 4):

7

/(p-p)dz=(n-%)E W
-D ° (isotropie)
&ooocoooooo.o(“o)

2 )
and j;uz dz = n E
-D (in the direction of u)/

in which E is the wave energy per unit of area and n is the ratio be-
tween phase and group velocity.

So the principal stress in the direction of wave propagation is

(n = % + n) E; in the direction of the wave crest on the other hand,
where the momentum pu2 gives no component, it is (n - 3) E.

Thus (fig. 4), the radius of the Mohr circle, representing this stress
field is 4 nE and therefore, in a vertical plane, making an angle ¢
with the wave crest, the shear force Fwave is 3+ nE sin 2¢ .

The force, perpendicular to this plane, (14n - 3)E + % nE cos 2¢,

causes set-up, and the above mentioned shear force a longshore velocity.

%e consider the water mass above a rigid slope z = my up to the

breaker line (fig. 5).
On this mass the shear force mentioned in 1.2 acts in the plane ABCD.

Calling this shear force Fwave' this force equals:




il
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=34nEsin2¢. . . . (11)

wave
In the breaker zone may be stated: breaker e
\ L~
n=1..-oaoo'0(12) : ;
1 = 2 : C
E:-ngbr oooo-(13) ] ;
_ 8 ‘ i - Fig. 5¢
Hbr = Aa Dbr e o o o o(18) ‘ . Plan view.
pa -
L~
C
Thus for the wave force is found: E ”
2 | 2

1 2
Fuave = TE P8 AZ Dhr sin 2 ¢
St T s e e s (15)
The tidal force on this triangular

prism of water equals:

- L =
Fiide =P8 3x ° (area)

oh 1 2
2/08 -D-—-x .ﬁnbr .00(16)

in which h is the elevation of the

water level and x the longshore

direction. Fig. 5°

iConsider a progressive tidal

wave with amplitude 2:
h'—'ECOS(Ut-KX) "‘00...000.00...000.(1_7)

In this case the ratio of wave force to tidal force equals:

2 . ‘
F wave AZ m sin 2 ¢ br
F = 8K 2 N L ] . L] . L ) L] L] L ] * L . * L] - * * (18)
7 tide .

Measurements of SVASEK [11] and KOELE/de BRUYN [12] showed, that in

the breaker zone the ratio between H and D in the prototype,

sign
for gentle sloping beaches is about .4 to .5.
Thus the ratio between H and D will be about .3 to .4.
Theoretically, for a solitary wave on 'a flat bottom, the ratio is
.78 and in the laboratory, on slopes of about 1 : & or 1 : 10 values
up to 1.1 are measured.

From (17) it can be seen, that often the wave force is large
with respect to the tidal force in the breaker zone. This may be

illustrated with the following example:




Q

{

1.4

F
wave . _ -2 A

o 20 sin Z?br if m =10 tide = 628 km
tlde AZ = .L" 2 = 1 )

(tidal difference = 2m)

Experiments by OPDAM [13] confirm this theory.

Longshore velocitx

---------- - s @ E» an G ) A Al
-y i 1 turbulent X
Now we consider a "slice" dy (znEsin 29) Ashear stress

7 R /D /D

from the triangular prism

mentioned in 1.3.

Acting on the bottom is the
shear stress, CeVa treated
in 1.1,

We assume a surging break-

er§ in this case the shear

stress F“". mentioned in Fig.6§ Stresses on AA'BB'CC'DD’

1.2 acts on the planes ABCD

and A'B'C'D' in opposite

direction. This force F'avo however, differs on both planes and thus
the resultant force equals:

forcebywaves=%§'(‘a’nE5in2Ly>.oo *® o ¢ o o o o 0(19)

This resultant force is shown in fig. 6 on the upper plane ABB'AY,
although it naturally does not work on this plane.

Also acting on the planes ABCD and A'B'C'D' is a turbulent shear force
(Reynold stress). BOWEN [2] takes this force into account as a force Ry

per unit area:
R=Ah"—2'.oo-ocuootooco-.ooocooo(zo)

A literature review concerning the magnitude of the factor Ah valid \
in the breaker zone, indicates, that this force is not able to change
the distribution of the longshore velocity over the breaker zone

significantly (in the prototype).
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In the stationary case all the longshore forces have to be in

equilibrium. Neglection of the turbulent shear stress R_ leads to:

J
c v=3—(a}ﬁEsin2<p)
£ dy
v=J—-§—(~}nEsin2(y) (21)
cf dy ® L * . L ] * . L . L d L * . L)

Substitution of (5) and taking n=1 in the breaker zone:

V8- 1 d .
v = . ] T (E sin(?cos (-P) e o o & o o s o o (22)
PK A2 P\ fgDh v

In the case of parallel'depth contours in the breaker zone, this can
be written more simply.

In the breaker zone y is mostly small and therefore .the approximation
cos @ =~ cos Por is good and cosq:“ sufficiently accurate.

With respect to sin¢ , Snell's law can be applied.
) c D
Blnq"'—" 'C_—Sin(?br = B—Bln(Pbr e © © e © © o o o o o (233)
br br

This is a better approximation than BOWEN [2] applies: he takes G=Py .
in the breaker zone. '
Using (7) and Snell's law:

E sin g coscp:.—.%pg st;hq cos ¢, .

1 2,2 i .
BPE Ay D (D/Dbr) Bingp, cos ¢,

E sin¢g COSC?:-:%,Og AzaDziDbr-iéincp‘br cos @,

d R d . 4D

3y (E 8ing cos ¢ ) = 355 (E sing cc:scp)dy

d . 2,14, -+ |

e (E sing cos¢ )= Tgﬂg A,D'°D,  “sing, cosqp, tge e

in which xp is the beach slope at depth D, When this slope is negative,

b is of course zero.

Substituting this result in (22) =&
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ny8 1 5 2,14 [ -1 , T
v = . . ghA, D °D sinc¢, cosy, tgo &

PK A, " o\Eg 16 PE %2 br br " Tour °%D

TA

i‘ .
2 D \/
5 L (Fb—r-) gD Sinq br CcoOs ‘.Pbr tg o(Do « o o (an) K

Substituting p = 45, K = .4, T = 3,14

15,44 Azf'ig* DDbr-i sing,  cosp,  tEX) . . . . e e ... (24®)

v =
v = 5,46 A DD -1 sin ¢ cos tg ¢ (2L+c)1)

* 2 ch br br <f br D - . . L] L) L] . [ ] . L] L L]
TRANSPORT FORMULAE
BIJKER-method

BIJKER [1],.[7], [11] assumes, that the waves stir the material
and the currents transport it.

The bottom load he computes according to an adapted method of
FRIJLINK [16] ") and the suspended load according to EINSTEIN [15] or
VANONI [16]. ‘

Bottom load

The bottom load Sb per m' of coastal profile equals, according
to BIJKER: :

S = stream parameter . e—stlrrlng parameter. o o o o o (25a) 2)

b

In the surf zone the stirring parameter is proportional to dm/ﬁ
(approximately), in which dm is the mean grain diameter. As for sand
grains (in prototype circumstances) the stirring parameter is very small

and (25) may be simplified to: ‘

szstraam parameter = Ah dEVf/B.' e o o o o e o ¢ o o o @ (26)

“in which Aq =5 according to BIJKER,

) In appendix B the formula, derived here, will be compared with other for-
mulae, based on a momentum approach. Of much importance is appen@lx Cy in
which the influence of short-crested waves is considered, as derived by

BATTJES.

2) In appendix A the full formulae are given,
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Analogous to EINSTEIN, BIJKER states:

S

-8 r ( depth D ’ fall velocity w )=
Sb ® %4 ‘ripple height K shear stress velocity v/

f1(:{—). ;!':) c e . (27)

in which Ss is the suspended load and v,' is the combined shear stre$f

caused by waves and current and therefore also a function of depth.
It is useful to get an impression of the influence of the depth

on the ratio between suspended transport and bottom transport and put

Qm] (27) in the form:

Ss D dm
'S_b-—-f(i'ﬁ")o-oo-ooooovocooo-ooooa(28)

But the influence of viscosity makes a dimensionless plot according

to (28) impossible. However, it is possible to plot:

o, @ (29)
Sb—exﬁﬁx‘OOOOOOQO'QQ-'oooooooo g

in which w is a function of dm and viscosity. Assuming that K is
Qﬂh constant over the breaker zone (which is questionable) the second
! parameter is indepen@ant of the depth.
The function f1 from (27) is a known function, given in appendix A.
As will be shown also in appendix A, in the case of small value of v/i,

for v! can be written:

V.'z%—g— ﬁ

* * L] - - L] L] . L] L d L] * L ] L] L L] * L] L L4 L] [ ) L] (30)

which is curiously enough independant of f.
Thus for w/v,' can be 'ritten, using (6b)

w N & 1D
v,'T AZPK V—v ZPE W \/—_

1) In appendix A the full formulae are given




il
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Hence, for given values of D/K and w/VgK according to (29), the
corresponding value of w/v,' can be found from (31) and then, from
the given f, according to (27) the ratio Ss/sb can be found. When
D/K and w/|/gk are known, also Ss/sb is known (if v/ is small).

Annex 2 gives SS/Sb as a function of D/K for various values of
w/VEE. The accuracy of the calculation is confined by the accuracy
of the graphs of the EINSTEIN integrals 11 and 12, mentioned in the
appendix.

We may confine ourselves to the region:

10 < D/K < 500
. [ ] - * . [ ] [ ] L ] L ] L ] L] 2 L] ® L] ® (-] (32)
and. .03<W/A, ek < .15

Then for every value of '/A2 VgK as a good fit a straight line can
be drawn on double-logarithmic paper, giving the relation between
SS/Sb and the dimensionless depth D/K:

2 VFE w
§£z9‘10‘* (__—r—) 1.18 + 0.188.A2PR‘W‘ . o .’ e 6 o o (33)
b 1.‘&,10 K :

Using A, = .78, p = .45, K = .4 and within the limits mentioned in
(32) this becomes:

5, 4 ( D . \1.2 to 1.6 (54)
—-29 10 ) ® o & @ 06 0 4 o> 0 B 8 6 B }
Sp 7t 1.8,10°K

As can be seen from annex 2 the ratio Ss/sb is large in the whole

region and thus:

S'zs Q@ ° e ° L] o ® ° L L L] L] ° L L4 [ ] L] ® L . L] L L ] . (35)

B

From (26), (34), (35):

9,10“ Ay 1.2 to 1.6

g = (D) A VI/8ay o v u v o . (36)
(1.‘*.101"')1.2 to 106 K - ‘ m
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Annex 3 gives as a practical example a comparison between the
results of the exact computation according to the BIJKER-method
(s01id line) and the results according to the approximation of
eq.(33) (interrupted line).

The upper figures concern a short-period wave, the lower figures
a wave of long period; the left-hand figures concern a shorter
wave period than the right-hand figures,

For large values of D and short wave period, deviations occur,
because in this case the orbital velocity is not proportional to
VgD (no shallow-water wave), |

Small values of D and large values of v are not 1ikeiy to occur

simultaneously.

Cele SVASEK-method (adapted to parallel depth contours)

SVASEK [11] assumes, that the littoral drift between two depth
contours is proportional to the
longshore component of the loss
of energy flux between these fgﬁﬁﬂﬁ%%i
depth contours. ‘
Now the energy flux across AQ .. sinpa{ECcos )
a depth contour (per unit length T

of the depth contour) equals , @99&9/’
EC cos@ and the longshore '

component EC sin¢ cos ¢ . As D+l 4D D-} D

the energy E is proportional to

B®, SVASEK finds ( [11], formula Fig. 7

5-7):

AQ = A, (Fc)ainq;coscp..'...;......(37)
In the breaker zone we may assume:

HeAD..o.(D) C=A D v v v nneean (38

2 3

If the Bernoulli second-order theory for the solitary wave is used,




Q

Ll

2.3
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C equals:

C = Vg (D + H)
and thus A3 = V1 + A2

Substituting (7) and (38) in (37) yields for A(ﬁzc):
2 3.2
A, Ag gD )

A (Fc)

A(I‘?C) 0.-.0.00-.00..(39)

n

When all cohtour lines are assumed parallel, we may use Snell's law
(23a), and with the same aséumptions as in 1.4 we find:
5 2, 2. -t .
AQ = A1 A A}‘ D D ADSilCPbr co.Qbr e 8 o o & o (“0)
It should be noted, that A(Qdenbtes the littoral drift between
two depth contours, where S denotes the littoral drift per m' of

coastal profile:

A

- A8
S - AD tguD . L . L 4 L] L] L d Ld . L ] L] L] - * L] * L 2 . L] * .(l+1)

Integration of (40) over the surf zone yields:

D
Q = /brAq= 2 A," A22 As 'g% DbrE% sin¢, cos¢, ...(k2)
o

CERC-formula.

The formula of the Coastal Engineering Research Center can be
written as:

-2 2

. 2 '
Q = 10“. 10 Hsign CO Kr s51n CPbr cos ?br ¢ ® o - 0(“3)'

in which Kr is the refraction coefficient and Q the total littoral
drift over the surf zone.

Conservation of wave energy between wave rays gives:




Q

Q

2.4

- 15 =

T2 2 _ 2 . 2 3 24
no H CO KI‘ = Hbr cbr = AZ A58 Dbr S e e e e e e e e (LH'{')
2 2 _, 42 ¢ k22,24 g 2t
sign o r o r no 2 3 br

in which no..the ratio between group velocity and phase velocity in

deep wateryequals %:

a - 2 in23
Thus.Q = A1 A2 A3 g Dbr Bin(Pbr COSCPbr‘ - e o o o @ ¢ o o o (45)

Comparison with (42) shows, that:

O R IL R

(o]

=506‘10-200000o.oooooooooo-(l“6)

-4
-
"
op ¥
=3
-

The SVASEK-formula is a variation on the CERC-formula, but it
adds an estimation of the distribution of the littoral drift over the

surf zone.

Comparison of the BIJKER-_ang SVASEK-method.

BIJKER [7J uses EAGLESON [5] for the computation of the littoral
current; however, it seems am improvement to use the computation of
chapter 1.1 and 1.4,

Therefore we substitute v from (22) in the formula (36) for S.

A first-sight comparisen between BIJKER/BOVEN and SVASEK shows:

BIJKER/BOWEN : S .,°. D 0.7 to 1.1

E% (E sinp cos®) o o o o » o+ (47)
g

SVASEK (fig.?): § .°. sin¢ 3y

(BC COBP) o v o o o o o o o o o +(48)
The formulae (47) and (48) look quite similar. A more quantitive
comparison can be given by the substitution of v from (24) in the
formula (3%6) for S:
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BIJKER/BOW?N:
h , . 102t°106 *
9410 'A_A —
= ‘ 2 h T D .. D
S-{ T g ;Y(E) (3——)nggDi.:in@brcoambrtgun...(%9)
(1.4e10") b 2

SVASEK (40), (41), (46)

: 3
2 z . )
S =34, 4, A} D(i)D ) VgD sing, cos @, B .« . o 0 . .(50)

br
The formulae look quite similar; in (50) pte2 to 1.6 is replaced
by D. The influence of the ratio A =’H/D in the breaker zone

2
seems more in the SVASEK-formula than in the BIJKER-formula.

However, the influence of A, in the BIJKER-formula is also hidden
in the exponent '"1.2 to 1.6" as (33) shows. BOWEN uses the linear
theory, which is the reason, that the factor "AB" does not occur
in (49). The use of the linear theory in SVASEK's' formula would
yield: A3 = 1.

For a better comparison, some numerical values will be
substituted in (49) and (50) according to the next table.

» assumed data
A |5.6 4 107 p A5
1)
Ay . 28 K ol
-4

A3 V1.28 dm 2 « 10 m
A, 5 w | 2.4 4 107° m/sec

K |3 s 107% n

1)
A_ has been chosen in this way, that (H . ). _ = 0.,4D and

2 sign’br

—

2 ) 2 ”
(Hsign)br =2 H pp* according to SVASEK's assumptions.




- 17 -

Computation:

The exponent of D in (33) equals:

2\2 w 2\Vz 2.441072
1.18 + O.188tA2pK'm 1.18 + 0.188‘ 0028‘0045t0.l§‘m“

1,18 + 0.188456.064.42610"° = 1,645

i}

Thus the coefficient before (49) equals:

4
9410 AZAQ

: b
T.645 ¢

) 4
T 9!10 00.28‘5 it -
" K ¢ s 2410
% PK " (1.&.161*.3.10"2)1-6‘45 % O.Es.o,‘l;‘ *

12.6‘104

4.1.o9~1o'3
2.07‘10

(1.410K)

i}

il

6.636107°

This can be compared with the coefficient before (50):
3 A1A22A3 = 345.64107240.28%« V1.28 = 15.24107°

Therefore, in this case the results are comparable when K=2 cm and
D=1 me

3,  MATHEMATICAL COASTAL MODELS [47], [18]

How can we apply this knowledge to the computation of the

sedimentation and accretion near groynes and harbour moles?

Q

| The construction of groynes has the following effects:
1. Prevention of the littoral sand drift in the area between the
coastline and the head of the groyne;

2. Prevention of the longshore current in the same area;

3, Formation of a sheltered area at the lee-side of the groyne caused

by diffraction;

4, Changing the wave height by reflection.
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fwmc direction
‘\obstruc(ion against longshore current
/

TTTTTT /’ l
4 - obstruction against longshore sanddrift
tormation of a sheltered area

Fig. 8 The sffects of the construction of a groyne

The obstruction against sand drift has been treated for the
first time by PELNARD-CONSIDERE [19].
PELNARD-CONSIDERE assumes, that the profile of the coast always
remains the equilibrium profile, so that he only needs to '
consider one coastline, being one of the contour lines. He assumes
no tidal currents, constant wave direction, small angle of wave
incidence and a linear relation between the angle of wave inci-

dence and the littoral drift.

| - WAVE INCIDENCE
Q@
f :

Q
Qp =

s m

—

%
Fig. 9  Littoral drift along the coast

For the littoral drift he assumes:

Q=Qo‘q%§---.nooo-oooocooo.ooooo(51)

in which:
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Q = littoral drift
Q" littoral drift at the point where %?& =0
a :
q = E%: = the derivate of the littoral drift Q to the angle

of wave incidence ¢.

He finds, that the accretion is proportional to the curvature of

the coast:

2

ﬂgqa 0'000000000000000(52>
ot Dtot X
in which Dtot is the depth, up to where it is assumed, that sand
Gﬁi transport takes place,
contour lines paratie!
to coastline in x
breaker-zone
Dpr. DOy,
flat at
: depth Dy, | N 7
A N
contour tines éovﬁ;l y -——
ke
Fig. 10¢
~~ 0

Dbr.

-

Fig. 10b Profile A-A'

The constants QO and q can be computed with the SVAéEK-theory.
With the topography according to fig. 10 for Qo can be found
from (45):

i 2 2% .. :
Qo = A1 A2 A} g Dbr Sln(Pbr COS(.Pbr e o o o ® o o o o o (53)

. 2, %, 2% \
q—A1AA Dr COSE‘Pbro.oo-o.'oooo.o(su)




However, if one takes diffraction near a harbour mole into account,
the wave height and wave direction change and therefore Q0 (the
transport when the coastline ie parallel to the x-axis) and %%,vary

in the coastal direction.

I assumed, thet the littoral drift is proporticnal to the
square of the wave height and proportional to the angle of wave
incidence,

For the calculation of the coastlines a computer program has
been developed. Fig. 11 showe the calculated development of & coast
with one groyme, Comparison of the interrupted and the solid line
gives an impression of the influence of diffraction. The inter-

rupted lines give the erosion according to PELRARD-CONSIDERE.

Wave incidence .-

- P - =
?j$><t=/som %;/ e
/_/ T 1210081 =

- —

< 7

*?/ T te2008t —

BN

-
- " PELNARD - CONSIDERE

Fig.“ Accretion and erosion near a groyne, numerical solution with diffraction (one line theory).
The dotted lines at the right hand gives erosion ~‘according to Pelnard - Considere.

With the computer program we calculated the behaviour of the
coastline between two groynes with the influence of diffraction. The
result is shown in fig. 12,

g

b
-
e
(1))

AN

200 At
100 At
50 At

24 At
16 At
8 At

iy

\

A

e

Fig. 2 Behavior of the coastline between two groynes (one-line theory)
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An extension of this theory was made, dropping the assumption
of an equilibrium profile. '

The coast was schematized by two

) “ﬂf‘:jAEﬂﬂJr_—j"T;__i lines, one represe?ting the beach,
ou | 1 7 - W_WJ the other one the inshore. Dependant
! 7 on the distance between these lines,
ﬁg.iélsmmmuw profile x- axis on- and offshore transpoert was

acsumed (fig, 13, fig. 14),

w4 Taking diffraction into account, the

X
\\\\\\\-:ﬁrf developmert of a coaet in case of one
H

3 groyne and between an infinite row of

-
A, % N groynes could be computed.
i : The results are shown in fig. 15 and
Littorol  drift along x
Fig. 14 beack and inshore

16 respectively,

Wave incidence

Fig. 15 Accretion and erosion near a groyne,numericat solution with diffraction

(two-line theory)
Wave incidencc&
pL

=\
W §

s 16At
j “
vV
\//////
”’/////Fa§\\ ' \Tﬁ /§§;
LAt ‘
# s 7

Fig.16 Behaviour of beach and inshore between two groynes. (two-line theory)
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In the annexes 4 and 5 some preliminary results are shown in which
the waves come first 25 time steps from one direction and then
switch: 50 time steps from the other direction, 50 time steps from
the first direction and so on. However, the results are still
inaccurate., ,

Annex 4 shows the development of a coast near 1 groyne and
annex 5 between two groynes, The vertical scale is 5 times ex-

aggerated with respect to the horizontal scale.

WOW CHANOES THE TRANSPORT|

ALONO THE INSHORE, 3
WHEN THE INSHORE 2
DIRECTION _CHANDES ?

HOW CHANGES THE I

OFFSHORE TRANSPONI

WHEN THE PROFILE

CHANOES ?
WHAT IS THE LITIORAL
. - ORIFT FAR  FROM

3
\

! THE CONSTRUCTION
© ALONG THE BEACH?
[Whauindd

H

i
HOW CHANOES

THE BEACK YRANSPFONT m

WHEH THE SEACH

DIRECHON CHANDES?

&4

Fig. 17

For this solutions the following variables have to be known (fig.17).

1° The littoral drift QO' along the beach, far from the cornstruc-
tion .
2° The change of the littoral drift along the beach, when the
beach direction ch : o1
ea recticn changes: q, = ie
30 The change of the littoral driftdalong the instore, when the
02

inshore direction changes: q, = <o

LY The change in offshore transport when the profile changes.

Little is yet known about the last-mentioned variable, although
preliminary reseasrch has slready been done.

The coefficients Q°1, Qg0 Q02 and q, are computed with the
SVAéEK-theory in [20] . Assuming a topography according to fig. 18,
one finds the following results, valid for small angle of wave

incidence:
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1 2 3 1 13 ‘0
2 3 2 3 -3 . '
o = 7 - -
Qo2 = Aq Ay A? g (Dbr D,”) Dop  BiDGL_ o o . .(57)
. 2 3 -
qz = A1 Ae A% 8% (Dbr" D13) Db' iq . o e L] . . . . (58)
¢+ must be stressed that ur to now only contour lines
araliel to Yy-line X
the obstructiorn against longshore sand- ;iL;;_zu

drift and the formation of a sheltered
area has been investigated.

In the future, the effect of the cb-
structinn of the longshore current
with its effects as entrainment of
littoral drift to the

formation of a scour hole in front of

inshore and

the groyne will be investigated, as
well as the variation of the set-up
near the groyne because of changing
wave conditions.

Some preliminary research in this

field has already been done,

1,
¢br

when the waves enter on the flat at depth Dbr

>

RS EE
contour lines
paraliel to x-axis
outside breaker-zone

o A
contour lines
parallel to
Yy-line

on beach

Yy —

a
Fig 18 Upper view

Fig 18P Protile A-A'

is the angle of the wave crest with the x-axis,

(tig., 10°)
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APPENDIX A

FRIJLINK formula.
The following text has been rewritten from BIJKER [7],page 2.
The notation has been adapted.

"Most bed load formulae may be written in the form:

S

e ————1-);—- (DI) ocooo.ococo.oooo(A")

£(d ga)

in which A = relative apparent density, d = grain size, D = water depth,

I is energy gradient, & = ripple coefficient1)

and g = acceleration of
gravity. i '
FRIJLINK [14] suggested, starting from the formula of Kalinske, to write

formula (A1) in the following way !

S a éﬁl%s
) b ; = b e “ ¢ 6 e o 5 5 ® o e & * e o .(Aa)
d(/&l'/p) .

where C, resistance coefficient and T = bed shear = pgDI = pg Vv /02 !
In an earlier paper BIJKER [1] called the first term the transport

parameter and the exponent of e in the second term the stirring parameter

BIJKER formula

BIJKER [1] replaces. in (A2) the shear stress T, by the mean resultant

bed shear Tr of the combination of waves and current:
[ . 2
Yo
'tr = 1 + ‘a’ (gT) tc e ® ¢ e o o ° e e o o & o ‘o .(A})
in Which E: pK Ch/vg— e o e o o o e e o & s o » o o .(Au)
The shear stress velocity v, =\ﬁ%ﬂp = v Vg /Ch is thus replaced by:

' v ’ 5.2 % ’
V.:E;VE-§1+%(€-V—)} .....-....-..o(AS)

¥
Usually the ripple factor .. is taken as u = (Ch/ch )3/2

C,' = 18 log 12 D/4 and

C, = 18 log 12 D/k

1)

s, in which

h

1)




Q
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Substitution of (A3) in (A2) yields:

2
Ad Ch

_ \[ a2 . =0.27
S, = A, dv|g/Cy . /“V2{1+%(59;,9)2} e o s o o o o (A6)

The factor A# should be choosen = 5, according to BIJKER.

With respect to the suspended load BIJKER assumes that the bottom
load is transported in a layer immediately above the bed with a
thickness equal to that of the fictiteous bed roughness K, from

which ( [7]; page 9) as mean concentration C.

K in this bottom layer

is found:

C. =5y /v

K = Sb / 6.35 V*K s ® o o e o o e s o ‘(A7)

O=I

Furthermore BIJKER uses EINSTEIN [15], except that he changes the

factor " 11.6 c, Va &" of EINSTEIN into %1%% 8, = 1.83 §, according

to (AD):
s_ = 1.8 Sb[I1ln33D/K+IZ]1) N O X:)

in which 11 and 12 are the EINSTEIN-integrals:

(K)z-1 1
I1=0216(_?"—R-)—z"/ (1_;_1)2 dy .....o..-..(A9)
D" x/p
K z=1 1
(5) 1o
12=.216ﬁ—)-;/ (_yz)z 1n y dy S ¢ X [e))
1e =
D%/

in which z = w/K v,
The values of the integrals can be found from graphs in the paper of

EINSTEIN, giving I1 and I, respectively as a function of K/D and z.

2

1) . _ . _
cp. EINSTEIN: S, = 11.6 c, v, 8 [I1 1n 33 D/K + 12} » ¢, being con

centration in bottom layer with tichness a.
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Reduction of the BIJKER-formula for small values of v/uo

For small values of v/u_ (A5) can be reduced in the following way:

oo (e an?)

Neglection of v with respect to £ u (in which § is about 3):

chh

according to (30).
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APPENDIX B 1)

COMPARISON LONGSHORE=-CURRENT FORMULAE

In this appendix the longshore-current formula (24) with its evaluation
will be compared with other longshore~current formulae.

As noted by GALVIN [24] s, equations to predict longshore current
velocity can be grouped into three classes, according to the predomi-
nant theory as follows: (1) conservation of momentum; (2) conservation
of mass; (3) emperical correlation of data.

The developed theory falls in the first category and in order to
show it in its content it is sufficient to consider only the most impor=-
tant theories in this category:

EAGLESON [5] , PUTNAM, MUNK and TRAYLOR [4] , LONGUET HIGGINS [21] .

Comparison EAGLESON and BAKKER

We shall now compare the EAGLESON - approach [5] for computation of the

longshore current with the approach developed in the present report

which results in (24).

1. EAGLESON investigates the growth of a longshore current, i.e. he
allows a variation of the longshore current in coastal direction
(= x-direction). This is more sophisticated than the present theory.
So we have to compare the limiting uniform, fully-developed current
of EAGLESON with the present solution.

2. EAGLESON assumes a uniform distributioﬁ of u sin¢g (i.e. the long-

shore component of the water velocity) in the surf zone in y-direction

for any value of x and t. He thus assumes that the longshore current
in the breaker zone is no function of y.

In the present theory it has been shown, that both u and sin¢ vary
with D/Db

3. In fig B1 the variations of the longshore component of the water

o and thus u sin¢g varies with D/Dbr'

velocity according to EAGLESON and according to the present theory

are shown.

appendix B and C are composed July, 1971,
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Fig. B\OVoriutions in longshore water velocity u sin.\p according to EAGLESON

SN/

NN

T
b o : .
Fig.B 1 Variations in ilongshore water veilocity u sini according to BAKKER

EAGLESON assumes a bottom friction equal to of u52/8 (fig. B 1%);

averaged over time and over the whole breaker zone, this gives a

total friction force over the breaker zone (ef EAGLESON formula 3,18):
.  secok

' Dy 2
friction force = 1/6 r PV
m s8ing

Per unit of mass, this gives a force, in the opposite direction to

the longshore current, equal to:

/

Dbr £/6 m sing

2
Dbr / 2 m

2
oV

friction force per unit of mass

1]

friction force per unit of mass

f v2 sin (B1)
30 D ¢ o o s e s o o

Compare the present report, (3):

T . ~
l‘z‘gsmre %pk %. [“ ”] e e e e o s (B2)




Note the difference between D and D in (B1) and (B2);
in (B1) ‘P = ‘pbro

Mind, that in (B2) 4 is proportional to \/gD and v is found

br

to be proportional to D.

The formulae (B1) and (B2) have the same construction. The
bracketed sections are more or less similar, but EAGLESON takes
the friction force proportional to v2/sincp instead of uv. The
coefficients outside the brackets have the same order of magni-
tude:

taking f = .03, the coefficient in (B1) equals .01 and in (B2)

it is:

i . 5\ [
. -%pK\l}{:Z—%l:—;—g—’ﬁ 9—@92=o.oo7

Se The total generating force of'the longshore current is in both
cases the same; i.e. the impulsive force in longshore direction
of the waves. '

However, EAGLESON distributes the force uniformly over the volume
of the surf zone; in this report on the other hand the force per

unit of mass appears to be proportional to:

a (DZ% sine, )

d (E sin 9) 1 . L1 . D%
dD D *° dD D"
6. The resulting longshore velocity.
~q , Taking sino ~m, n_ = 1 and cos ¢, =~ 1, EAGLESON finds:

E br
m. . 51n<pbr

instead of (24):

v = 15,44 Am br

!5',L Sil“pbr
br
Summarizing:
EAGLESON takes the influence of the bottom slope m too small and
a uniform instead of a triangular distribution of the velocity over

the surf zone.
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He takes the bottom friction proportlonal to v /slnq; instead of propor-
ti onal to uv. However, the factor v /s::.nq; 8till gives a considerable
inc rease of shear stress, in relation to the v2, used by PUTNAM, MUNK
and TRAYLOR (ef B2),

we 6hall now consider the difference in the numerical values of the

1on gshore velocity according to BAKKER and EAGLESON respectively.

7 .
BAKKER 3 x 15,44
= Vm
VEAGLESON Vi

V 5.A KKER denotes the mean velocity in the surf zome = 4 x maximum velocity.

KE
BAK R = 8 9 v; L * * L L] ® L] L d L] L] L] L L 4 L) L4 (B})
VEAGLESON

The next table gives the value of this relation for various values of m.

m VBAKKER / YEAGLESON
1:10 : 2,8
1:20 2,0
1:50 1.26
1:100 0.89

For Steep slopes the assumption of BAKKER, that the turbulent shear stress

can be neglected, will not be valid and thus the longshore velocities will
pe too high in that case.

Comparison between PUTNAM, MUNK and TRAYLOR and BAKKER

Another momentum approach is from PUTNAM, MUNK and TRAYLOR (1949) [4] .
pifferences with the BAKKER computations are:

1. PUTNAM c.s. assume a uniformly distributed longshore current velocity
v in the surf zone.

2, A different momentum flow is assumed.
It is assumed, that the inflow of water in the breaker zone has a
longshore component of its velocity equal to C sin ¢, and that fhe

outflow of the water from the surf zone takes place with a longshore
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velocity component v, thus giving an excess of momentum equal to:
flux of momentum per unit length
in longshore direction = (C siny - v),oF cos /T,
F being the cross-sectional area of a breaking wave crest.
It is of crucial importance, that PUTNAM c.s. use the solitary
wave theory instead of the linear wave theory, thus assuming,
that after each wave there elapses some time without waves, in
which time the surplus of water in the surf zone has the opportu-
nity to flow back out of the surf zone (with longshore velocity v).
They assume a solitary wave of maximum wave height, being 0.78 D
(which is correct, MacCOWAN [22]) and a wave velocity
¢ =\g (D + H) =\1.78gD (which is not correct; should be {1.56gD
according to MacCOWAN, as the formula C = |g(D+H) only holds for
low solitary waves).
As F equals (MUNK [23] ):

2
F =4 D°\[a,/3,

they find for the flux of momentum:

flux of momentum = 4\/0.78/3 (/ODZ/T);(\/2.28 gD sing -v) cos(p .

To get an impression of the order of magnitude, we neglect v for

a while:

flux of momentum = . ' “\/2.28;0. 8/05ir Dbi% T.1 sin¢ cos¢g

to compare with'1/8/ogH2sinq cos ¢

L]

2 2
1/8 A,” pg D, sing cosg

Taking in the second case also A 0.78, the ratio between the

2
fluxes equals: :
, 3
fluXpyonam et a1 _ 32 (2.28 Dbr>
T1uXp)aLESON et a1  (0.78)>/2  \>¥2T L
flux ' D
PUTNAM et al _ _ 16,5 _br 'S : TS

flUXpAGLESON et al °
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4, PUTNAM et al assume the frictional force per unit mass:

2
frictional force per unit of mass = é . %—— e o o o o s o+ (BS)

br
to compare with (B1) and (B2).
However it must be stated, that PUTNAM et al replace "f/8" by a
factor "K'" without mentioning the relation between K and the
DARCY-WEISBACH friction coefficient.
As can be expected, they find rather high values for "K" (about
3 to 40 times the expected values, cf EAGLESON [5], table I).

Comparison LONGUET-HIGGINS [21] and BAKKER

LONGUET-HIGGINS finds as formula for the littoral current in the

surf zone (in case of absence of horizontal mixing) (cf (55) of [21]):

A
v = % '5'8 (%——)% v gD Sin CPbr tgoﬁ ¢ o © © o o o .(86)
br
to compare with (24):
. A
_5n 2 D ¥ ,
v = %— PKVI/8 (Dbr) \/El; sing, cosqp,  tgoC o . o .(24)

The formulae are very similar; indepently both authors came to
. 2)

nearly the same conclusions.

LONGUET-HIGGINS, the most important difference is the factor:

As for neglection of cos <Pbr by

Vi/8
pK '

which orginates in the assumptions of friction according to BIJKER,

) In this formula the notation has been adapted: "aﬂ'—*Aa/Z; ner - £/8;

"h'"—D; s—tgoc .

At the time of the lecture in the Hydraulic Res. Station and during
the writing of the manuscript the paper of Longuet-Higgins was not
known to the author.

2)
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APPENDIX C

SHORT CRESTED WAVES

According to a private communication of BATTJES the kind of wave,
which generates the longsh6re current, is of crucial importance.

In the afore-mentioned approach it is assumed, that the waves were
long-crested; however, in the prototype, short-crested waves can be

expected.,

Citing BATTJES:
"The surface elevation is supposed to be the result of the super-
position of a large number of long-crested progressive sinusoidal

component-waves in random phase (Longuet-Higgins, 1957). A two-

" dimensional energy spectrum G(w, ©) is defined for wave frequency w0

and wave direction /0/<T such that the component-waves with angular
frequency in the interval (w, w+ »w) and direction of propagation in
the interval (6, 6 + 26) together contribute an amount G(w, ©)24 DO
to the total variance of the water surface 7. For convenience, G(w, @)

is factorized as follows:
G(wq o) = H(w) f(gg w) ° e L) 3 ° ] 'y ° ¢ L) ° ° 3 ° (C1)

such that:
¢

’/f(g'w)d0=1 -ooo-oooooo-co(ca)

H(w) is the energy frequency spectrum, f(©, &) gives the angular
distribution of the energy. ‘
The average energy content of the waves per unit area is given

(to second order) by
) oo T , o0 )
o U o ’

So far BATTJES, R
Several authors (PIERSON, 1955, COTE et al (SWOP), 1960, KRYLOV et al)
have investigated the function f(6, W),

1)

BATTJES continues by investigating the influence of the various
assumptions about f(6, w) on the radiation stress more generally and
more thoroughly than done here. ‘
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We shall investigate the influence of the shear stress, making use of
the simple assumption of PIERSON [25] about £(@,w) in which £(6, W)
ie not even a function of W: 4
2 2
f = "7-[_ coB O ® e+ » ® e » ® o =

. o a‘(Ch)

Assume © = O for the mean wave direction ¢.

The component waves with wave direction 6 with respect to ¢ give a

shear stress equal to:

T: % nE Sin 2 (‘Pe 9) @ e o e o o s & o e e e & e o (CS)

Thus the total shear force changes to a kind of "mean value':

/2
T= / %nE{sinz(cr'-o)}r(o)do Gt e e e e e e . (C6)
12
Using (C5) .
n/2
’F:%nE.%— fsinZ(‘P-O)cosZOdO S ()
-n/2
/2
T:v}nE.—.:.(-/ sin 2 (¢ - 8) (1 + cos 2 ©) 4@
-T2 '
TVZ
T= % nE . —%[—} cos 2 ‘(@—0)‘
. 12
/2 .
+ / (8in 2¢ cos 20 - cos 2¢ 8in 20) cos 20 dO}
-T/2
/2
%:%nE.—%- l:sin 2¢ / 0052 20 dO}
-T2
T= § nE 8in 2¢ .%.g

al
0
"

nE sin 2¢




Conclusion:

T IS HALF THE VALUE OF T, OCCURRING WITH LONG-CRESTED WAVES!

The same result was obtained earlier and more general by

BATTJES [27].
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LIST OF SYMBOLS

coefficient in (46): ratio between littoral drift and

longshore component of wave energy flux.

coefficient in (37) (Svasek formula)

ratio‘between H and D (?7)

Froude number: ratio C/ VES

coefficient in BIJKER-formula (A6)

turbulence coefficient in (20) :

concentration of sediment in bottom layer (with height'a‘= 24)
coefficient of bottom friction ='rbottom/v

1

celerity of wave propagation

‘Chegy coefficient

mean grain diameter

vater depth

depth of beach area (fig. 13)
depth of inshore area (fig. 13)
= D1 + D2

breaker depth

wave energy per unit of area

shear force per unit of length, integrated over the depth

(component Sxy of radiation stress tensor)

tidal force per unit of length, integrated over the depth.
Dany-Weisbach friction coefficient
acceleration of gravity

tidal elevation above the mean water level
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mean wave height

breaker wave height

ripple height

refraction coefficient

bottom slope

ratio group-/fase velocity

constant, indicating the ratio between the orbital bottom

velocity according to the linear theory and the orbital velo-

city, significant for the shear stress c¢f [1]. chapter III. 5.

in eq (9): water pressure

mean water pressure (averaged over a wave period)

derivative of Q to ¢ (indicating how much the littoral drift

changes when the wave direction changes)

derivative of Q, to <{1

dgrivative of Q2 to (72

littoral drift
littoral drift

littoral drift

_ littoral drift

the x-axis

littoral drift

the x-axis

littoral drift

to the x-axis

along the coast
along the beach
along the inshore

along the coast, when the coast'is parallel to
along the beach when the beach is parallel to

along the inshore when the inshore is parallel

bottom transport per unit of time and length, integrated over

the depth
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suspended transport per unit of time and length, integrated
over the depth

orbital velocity

. maximum orbital velocity

longshore velocity
shear stress velocity

shear stress velocity, including the effect of orbital veloecity
(A5)

velocity component in a direction normal to a certain plane
still water, fall velocity

abcissa, in wmean longshore direction

ordinate, in seaward direction (perpendicular teo x-direction)
wkxv,'

amplitude of a tidal wave

relative apparent density

wave elevation above mean water level

constant of von Karman

ripple coefficient

Pk C, /Ve

specific density

angle of wave incidence

breaker angle

shear stiress

longshore component of the shear stress

wave frequency
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