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 A B S T R A C T

Frequency-domain representations are crucial for the design and performance evaluation of controllers in 
multirate systems, specifically to address intersample performance. The aim of this paper is to develop an 
effective frequency-domain system identification technique for closed-loop multirate systems using solely slow-
rate output measurements. By indirect identification of multivariable time-invariant representations through 
lifting, in combination with local modeling techniques, the multirate system is effectively identified. The 
developed method is capable of accurate identification of closed-loop multirate systems within a single 
identification experiment, using fast-rate excitation and inputs, and slow-rate outputs. Finally, the developed 
framework is validated using a benchmark problem consisting of a multivariable dual-stage actuator from a 
hard disk drive, demonstrating its applicability and accuracy.
. Introduction

Multirate sampling is becoming more common in mechatronics as 
ncreasing complexity results in multiple systems, sensors, and ac-
uators with different sampling rates being interconnected. Common 
xamples of multirate systems include sampled-data control systems [1] 
nd hard disk drives [2,3]. Traditional system identification techniques 
or multirate closed-loop systems are generally hampered due to the 
ack of Linear Time Invariant (LTI) properties of the closed-loop.
Frequency Response Functions (FRFs) are widely used for represent-

ng mechatronic systems, and are fast, accurate, and cost-effective [4]. 
hey are suitable for closed-loop systems [5] and directly enable 
he analysis of stability, performance, and robustness [6]. Tradition-
lly, FRFs were measured using random broadband excitation signals 
n combination with averaging and windowing techniques, having 
idespread applications in mechatronics such as [7]. The advantages 
f periodic signals, including multisines, were recognized following the 
se of random excitation signals, as demonstrated for mechatronics 
n [8]. More recently, FRF identification has been improved through 
he use of local modeling techniques [4, Chapter 7], particularly in sup-
ressing the transient behavior. Furthermore, local modeling directly 

I This research has received funding from the ECSEL Joint Undertaking under grant agreement 101007311 (IMOCO4.E), which receives support from the 
uropean Union Horizon 2020 research and innovation programme.
∗ Corresponding author.
E-mail address: m.j.v.haren@tue.nl (M. van Haren).

identifies multivariable systems using significantly less data, as seen in 
mechatronic applications such as vibration isolation systems [9] and 
deformable mirrors [10].

The development of identification methods for FRFs of multirate 
systems has been limited. Several approaches are developed to identify 
an FRF beyond the Nyquist frequency of a slow-rate output for open-
loop single-input single-output systems using swept sines [11] or local 
modeling techniques [12]. While parametric identification techniques 
for multirate systems such as [13] have been alternatively developed, 
the non-parametric FRFs frequently used in mechatronics are not di-
rectly identified. These methods do not account for closed-loop and 
multivariable effects, or focus on parametric models, and therefore 
cannot identify multivariable FRFs for closed-loop multirate systems.

Although FRF identification has significantly progressed, an effec-
tive multivariable FRF identification technique for closed-loop multi-
rate systems beyond the Nyquist frequency of a slow-rate output is 
still lacking. In this paper, FRFs of multirate systems are effectively 
identified through synergistic use of time-invariant representations by 
lifting and local modeling techniques. The developed method is directly 
capable of identifying multi-input multi-output systems beyond the 
ttps://doi.org/10.1016/j.mechatronics.2025.103311
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Nyquist frequency of a slow-rate output, and is highly suitable for 
lightly-damped systems. The contributions of this paperinclude the 
following.

(C1) Indirect FRF identification of closed-loop multirate systems
through lifting to a multivariable time-invariant representation, 
enabling systematic identification beyond the Nyquist frequency 
of a slow-rate output.

(C2) Efficient single-experiment FRF identification of the time-
invariant representations through local modeling.

(C3) Validation of the developed framework on an benchmark chal-
lenge of a dual-stage actuator of a hard disk drive.

Notation. Fast-rate signals are denoted by subscript ℎ, and slow-rate 
signals with subscript 𝑙, which have been downsampled by a factor 
𝐹 ∈ Z>0, with integers Z. Fast-rate and slow-rate signals consists of 
respectively 𝑁 and 𝑀 = 𝑁

𝐹  data points. The 𝑁-points and 𝑀-points 
Discrete Fourier Transform (DFT) for finite-time fast-rate and slow-rate 
signals is given by 

𝑋ℎ(𝑘) =
𝑁−1
∑

𝑛=0
𝑥ℎ(𝑛)𝑒−𝑗𝜔𝑘𝑛𝑇ℎ ,

𝑋𝑙(𝑘) =
𝑀−1
∑

𝑚=0
𝑥𝑙(𝑚)𝑒−𝑗𝜔𝑘𝑚𝑇𝑙 =

𝑀−1
∑

𝑛=0
𝑥ℎ(𝑛𝐹 )𝑒−𝑗𝜔𝑘𝑛𝑇𝑙 ,

(1)

with complex variable 𝑗 =
√

−1, sampling times 𝑇ℎ and 𝑇𝑙 = 𝐹𝑇ℎ, 
discrete-time indices for fast-rate signals 𝑛 ∈ Z[0,𝑁−1] and slow-rate 
signals 𝑚 ∈ Z[0,𝑀−1], and frequency bin 𝑘 ∈ Z[0,𝑁−1], that relates to 
the frequency grid 

𝜔𝑘 = 2𝜋𝑘
𝑁𝑇ℎ

= 2𝜋𝑘
𝑀𝑇𝑙

∈ R[

0,2𝜋∕𝑇ℎ
). (2)

2. Problem formulation

In this section, a motivating application and the identification set-
ting are shown for multirate closed-loop identification. Additionally, 
a frequency-domain analysis of the multirate closed-loop is shown. 
Finally, the problem treated in this paperis defined.

2.1. Motivating application

The problem addressed in this paperis directly motivated by a 
benchmark dual-stage actuator hard disk drive challenge [3], which 
has seen various applications in control, including [14–16]. The dual-
stage actuator hard disk drive shown in Fig.  1 exemplifies a closed-loop 
multirate system with slow-rate position measurements. The dual-stage 
actuator system consists of a Voice Coil Motor (VCM) and a lead-
zirconate-titanate (PbZrTi) piezoelectric actuator, denoted with PZT. 
The goal of the dual-stage actuator system is to minimize the tracking 
error of the magnetic head with respect to a track on the hard disk, 
as shown in Fig.  1. The output is sampled at a slow-rate since the 
magnetic head position is determined based on a limited amount of 
sectors written on the disk. The PZT actuator has high stiffness, and 
therefore high-frequent resonance modes. By sampling the input to the 
actuators at a higher rate compared to the output, it enables active 
control of the resonances beyond the Nyquist frequency of the slow-
rate output by means of feedback control [3]. The dual-stage actuator, 
with higher input sampling rate than output sampling rate, directly 
motivates the development of identification techniques for fast-rate 
systems in multirate closed-loop using slow-rate outputs.

2.2. Identification setting

The goal is to identify a non-parametric FRF of fast-rate system 𝑃
having 𝑛𝑦 outputs and 𝑛𝑢 inputs, using slow-rate output 𝑦𝑙(𝑚) ∈ R𝑛𝑦 , 
fast-rate excitation signal 𝑟 (𝑛) ∈ R𝑛𝑢 , and fast-rate input 𝑢 (𝑛) ∈ R𝑛𝑢 , 
ℎ ℎ

2 
Fig. 1. (Left:) Photograph of hard disk drive with dual-stage actuator, consisting of a 
VCM and a PZT actuator. (Right:) Schematic overview of hard disk drive with dual-stage 
actuator.

Fig. 2. Multirate feedback loop considered, where fast-rate system 𝑃 is to be identified.

as shown in Fig.  2. The set of systems 𝑃  that is considered is described 
by the LTI discrete-time rational transfer function 

𝑃 (𝑞) =
𝐵 (𝑞)
𝐴 (𝑞)

(3)

where 𝑞−1 denotes the lag operator 𝑞−1𝑥(𝑛) = 𝑥(𝑛 − 1), and 𝐴(𝑞)
and 𝐵(𝑞) are polynomial matrices in 𝑞. The interpolator 𝑢 consists 
of a zero-order hold filter and an upsampler 𝑢 = 𝑍𝑂𝐻 (𝑞)𝑢, with 
upsampler [17] 

𝜈ℎ(𝑛) = 𝑢𝜈𝑙(𝑚) =

⎧

⎪

⎨

⎪

⎩

𝜈𝑙
(

𝑛
𝐹

)

for 𝑛
𝐹 ∈ Z,

0 for 𝑛
𝐹 ∉ Z.

(4)

The zero-order hold filter is defined by 

𝑍𝑂𝐻 (𝑞) =
𝐹−1
∑

𝑓=0
𝑞−𝑓 . (5)

The downsampler 𝑑 is described by [17] 
𝜈𝑙(𝑚) = 𝑑𝜈ℎ(𝑛) = 𝜈ℎ(𝐹𝑚). (6)

2.3. Frequency-domain analysis of multirate closed-loop

The fast-rate output 𝑦ℎ of the closed-loop system in Fig.  2 for exci-
tation signal 𝑟ℎ and noise 𝜖ℎ = 𝐻𝑒ℎ, with 𝑒ℎ zero-mean, independent, 
and identically distributed noise, is given by 
𝑦ℎ =

(

𝐼 + 𝑃𝑢𝐶𝑑
)−1 (𝑃𝑟ℎ + 𝜖ℎ

)

. (7)

Taking the DFT (1) on both sides of (7), the output is described in the 
frequency-domain by [18] 
𝑌ℎ(𝑘)=𝑃 (𝛺𝑘)𝑅ℎ(𝑘)+𝐸ℎ(𝑘)−𝑃 (𝛺𝑘)𝑍𝑂𝐻 (𝛺𝑘)

(

𝐼+𝐶(𝛺𝑘)𝑃𝑙(𝛺𝑘)
)−1

⋅𝐶(𝛺𝑘)

(

1
𝐹

𝐹−1
∑

𝑓=0
𝑃 (𝛺𝑘+𝑓𝑀 )𝑅ℎ(𝑘 + 𝑓𝑀) + 𝐸ℎ(𝑘 + 𝑓𝑀)

)

+ 𝑇𝑌 (𝛺𝑘),
(8)

with generalized frequency variable 𝛺𝑘 = 𝑒−𝑗𝜔𝑘𝑇ℎ , transient contri-
bution 𝑇𝑌

(

𝛺𝑘
)

∈ C𝑛𝑦 , which includes leakage and occurs due to 
finite-length signals [19], and 

𝑃𝑙(𝛺𝑘) =
1
𝐹

𝐹−1
∑

𝑃 (𝛺𝑘+𝑓𝑀 )𝑍𝑂𝐻 (𝛺𝑘+𝑓𝑀 ). (9)

𝑓=0
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The transient of the noise system 𝐻 is typically neglected, since it is 
negligible compared to its steady-state response [4, Section 6.7.3.4]. 
The fast-rate output 𝑦ℎ in (7) and (8) is downsampled with (6), as 
shown in Fig.  2, having DFT [17] 

𝑌𝑙(𝑘) =
1
𝐹

𝐹−1
∑

𝑓=0
𝑌ℎ(𝑘 + 𝑓𝑀). (10)

2.4. Problem definition

The slow-rate output (10) is influenced by multiple contributions 
of the excitation signal 𝑟ℎ due to the multirate closed-loop and the 
downsampling operation, as shown in (8) and (10). Consequently, 
LTI identification techniques that assume the frequency separation 
principle are not capable of identifying the multirate system.

Therefore, the problem considered in this paperis as follows. Given 
fast-rate excitation signal 𝑟ℎ, fast-rate input to the system 𝑢ℎ, and slow-
rate output of the system 𝑦𝑙 as shown in Fig.  2, identify the fast-rate 
FRF 𝑃 (𝛺𝑘) for all 𝑘 ∈ Z[0,𝑁−1].

3. Lifted closed-loop identification

In this section, multirate closed-loop systems are identified through 
lifting them to multivariable time-invariant representations. Further-
more, the time-invariant representations are indirectly identified in 
a single identification experiment. The developed approach is then 
summarized in a procedure.

3.1. Multirate identification through lifting

The fast-rate system 𝑃  is identified using slow-rate output mea-
surement through lifting the input–output behavior. Given a signal 
𝑥ℎ(𝑛) ∈ R𝑛𝑥 , the lifted signal 𝑥(𝑚) ∈ R𝐹𝑛𝑥  is defined as 
𝑥(𝑚) = 𝑥ℎ(𝑛)

=
[

𝑥⊤ℎ (𝑚𝐹 ) 𝑥⊤ℎ (𝑚𝐹 + 1) ⋯ 𝑥⊤ℎ (𝑚𝐹 + 𝐹 − 1).
]⊤ (11)

For LTI system 𝑃 , the FRF of lifted system 𝑃 = 𝑃−1 is given by [20] 

𝑃
(

𝛺𝐹
𝑘

)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑃 (0) (𝛺𝐹
𝑘

)

𝛺𝐹
𝑘 𝑃

(𝐹−1)
(

𝛺𝐹
𝑘

)

𝛺𝐹
𝑘 𝑃

(𝐹−2)
(

𝛺𝐹
𝑘

)

⋯ 𝛺𝐹
𝑘 𝑃

(1) (𝛺𝐹
𝑘

)

𝑃 (1) (𝛺𝐹
𝑘

)

𝑃 (0) (𝛺𝐹
𝑘

)

𝛺𝐹
𝑘 𝑃

(𝐹−1)
(

𝛺𝐹
𝑘

)

⋯ 𝛺𝐹
𝑘 𝑃

(2) (𝛺𝐹
𝑘

)

⋮ ⋮ ⋮ ⋱ ⋮

𝑃 (𝐹−1)
(

𝛺𝐹
𝑘

)

𝑃 (𝐹−2)
(

𝛺𝐹
𝑘

)

𝑃 (𝐹−3)
(

𝛺𝐹
𝑘

)

⋯ 𝑃 (0) (𝛺𝐹
𝑘

)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

(12)

where 𝑃 (

𝛺𝐹
𝑘
)

∈ C𝐹𝑛𝑦×𝐹𝑛𝑢  is described using 

𝑃 (𝑖) (𝛺𝐹
𝑘
)

=
𝛺𝑖

𝑘
𝐹

𝐹−1
∑

𝑓=0
𝑃
(

𝜙𝑓𝛺𝑘
)

𝜙𝑓𝑖, 𝜙 = 𝑒
2𝜋𝑗
𝐹 . (13)

Clearly, from the distinctive structure of 𝑃  in (12) and its entries 
described with (13), the original system 𝑃  is recovered using the first 
row of 𝑃  as 

𝑃
(

𝛺𝑘
)

= 𝑃 [1,1]
(

𝛺𝐹
𝑘
)

+ 𝑒𝑗𝜔𝑘𝑇𝑙
𝐹−1
∑

𝑓=1

(

𝑒−𝑗𝜔𝑘𝑇ℎ
)−(𝐹−𝑓 ) 𝑃 [1,𝑓+1]

(

𝛺𝐹
𝑘
)

, (14)

where 𝑃 [𝑖,𝑖]
(

𝛺𝑘
)

∈ C𝑛𝑦×𝑛𝑢  indicates the [𝑖, 𝑖]th block of 𝑃 .
The first row of the lifted system 𝑃  is described by using the slow-

rate output measurements 𝑦𝑙 through 𝑑−1 =
[

𝐼 0 ⋯ 0
] [1, 

Section 8.3], resulting in the LTI behavior 
𝑦𝑙 = 𝑑

(

𝑃𝑢ℎ + 𝜖ℎ
)

= 𝑑−1 (𝑃−1𝑢 + −1𝜖
)

[ ] ( ) (15)

= 𝐼 0 ⋯ 0 𝑃 𝑢 + 𝜖 .

3 
Therefore, by multivariable LTI identification of [𝐼 0 ⋯ 0
]

𝑃  us-
ing slow-rate outputs 𝑦𝑙 shown in (15), the fast-rate system 𝑃  is 
recovered by utilizing (14). However, the input 𝑢 and the noise 𝜖
are correlated, since the system is operating in multirate closed-loop, 
resulting in a biased FRF estimate [4, Section 2.6].

3.2. Indirect closed-loop identification

By performing indirect identification, the bias observed for direct 
closed-loop identification of the first row of 𝑃  is effectively avoided [4, 
Section 2.6.4]. First, lift the excitation signal 𝑟 = 𝑟ℎ and describe the 
lifted input 𝑢 in closed-loop as 
𝑢ℎ = 𝑢 =𝑆 𝑟 + 𝐶𝑆 𝜖

=
(

𝐼 +𝑢𝐶𝑑𝑃
)−1 −1𝑟

+
(

𝐼 +𝑢𝐶𝑑𝑃
)−1 𝑢𝐶𝑑−1𝜖,

(16)

with lifted sensitivity 𝑆 and lifted control sensitivity 𝐶𝑆. Similarly, the 
slow-rate output 𝑦𝑙 in closed-loop is given by 
𝑦𝑙 = 𝑑

(

𝐼 + 𝑃𝑢𝐶𝑑
)−1 (𝑃−1𝑟 + −1𝜖

)

= 𝑑−1
(

𝐼 + 𝑃𝑢𝐶𝑑
)−1 (𝑃−1𝑟 + −1𝜖

)

=
[

𝐼 0 ⋯ 0
] (

𝑃𝑆 𝑟 + 𝑆 𝜖
)

∶ = 𝑃𝑆[1,∶]𝑟 + 𝑆[1,∶]𝜖

(17)

with lifted process-sensitivity 𝑃𝑆. The first row of 𝑃  is determined 
indirectly by 
[

𝐼 0 ⋯ 0
]

𝑃 =
[

𝐼 0 ⋯ 0
]

𝑃𝑆 𝑆−1 = 𝑃𝑆[1,∶]𝑆
−1. (18)

Subsequently, the system 𝑃  is determined with (14).
In summary, the original system 𝑃  is recovered via the first row 

of its lifted representation 𝑃 , which is determined using the lifted 
sensitivity 𝑆 and the first row of the lifted process sensitivity 𝑃𝑆[1,∶]. 
The lifted (process) sensitivity can be indirectly identified using multi-
variable identification techniques utilizing the slow-rate output 𝑦𝑙 and 
the fast-rate signals 𝑟ℎ and 𝑢ℎ.

3.3. Multivariable identification through local modeling

In this section, the lifted closed-loop systems are effectively iden-
tified using multivariable local rational modeling [9]. In a local fre-
quency window 𝑟 ∈ Z[−𝑛𝑤 ,𝑛𝑤], the DFTs of the lifted input to the system 
𝑢 and the slow-rate output 𝑦𝑙 from (16) and (17) are approximated by 
neglecting the noise as 

𝑍(𝑘 + 𝑟)∶=

[

�̂� (𝑘 + 𝑟)

𝑌𝑙(𝑘 + 𝑟)

]

=

[

�̂�
(

𝛺𝑘+𝑟
)

𝑃𝑆[1,∶]
(

𝛺𝑘+𝑟
)

]

𝑅(𝑘 + 𝑟)+

[

𝑇𝑈
(

𝛺𝑘+𝑟
)

𝑇𝑌𝑙
(

𝛺𝑘+𝑟
)

]

∶ = 𝐺
(

𝛺𝑘+𝑟
)

𝑅(𝑘 + 𝑟) + 𝑇𝐺
(

𝛺𝑘+𝑟
)

,

(19)

with multivariable system 𝐺 (

𝛺𝑘+𝑟
)

∈ C𝑛𝑢𝐹+𝑛𝑦×𝑛𝑢𝐹  and transient
𝑇𝐺

(

𝛺𝑘+𝑟
)

∈ C𝑛𝑢𝐹+𝑛𝑦 . The multivariable system and transient are 
modeled using the local rational models 
𝐺
(

𝛺𝑘+𝑟
)

= 𝐷
(

𝛺𝑘+𝑟
)−1 𝑁

(

𝛺𝑘+𝑟
)

,

𝑇𝐺
(

𝛺𝑘+𝑟
)

= 𝐷
(

𝛺𝑘+𝑟
)−1 𝑀

(

𝛺𝑘+𝑟
)

(20)

with 

𝑁
(

𝛺𝑘+𝑟
)

= 𝐺
(

𝛺𝑘+𝑟
)

+
𝑅𝑛
∑

𝑠=1
𝑁𝑠(𝑘)𝑟𝑠,

𝑀
(

𝛺𝑘+𝑟
)

= 𝑇𝐺
(

𝛺𝑘+𝑟
)

+
𝑅𝑚
∑

𝑠=1
𝑀𝑠(𝑘)𝑟𝑠,

𝐷
(

𝛺𝑘+𝑟
)

= 𝐼 +
𝑅𝑑
∑

𝑠=1
𝐷𝑠(𝑘)𝑟𝑠.

(21)
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The decision parameters 𝐺 (

𝛺𝑘+𝑟
)

, 𝑇𝐺
(

𝛺𝑘+𝑟
)

, 𝑁𝑠(𝑘) ∈ C𝑛𝑢𝐹+𝑛𝑦×𝑛𝑢𝐹 , 
𝑀𝑠(𝑘) ∈ C𝑛𝑢𝐹+𝑛𝑦 , and 𝐷𝑠(𝑘) ∈ C𝑛𝑢𝐹+𝑛𝑦×𝑛𝑢𝐹+𝑛𝑦  are determined by 
minimizing the weighted difference between approximated outputs 
(19) and measured outputs 𝑍(𝑘+𝑟), resulting in the linear least squares 
problem 

𝛩(𝑘) = argmin
𝛩

𝑛𝑤
∑

𝑟=−𝑛𝑤

‖

‖

‖

‖

𝐷
(

𝛺𝑘+𝑟
)

(

𝑍(𝑘 + 𝑟) −𝑍(𝑘 + 𝑟)
)

‖

‖

‖

‖

2

2

= argmin
𝛩

𝑛𝑤
∑

𝑟=−𝑛𝑤

‖

‖

‖

𝐷
(

𝛺𝑘+𝑟
)

𝑍(𝑘 + 𝑟) −𝑁
(

𝛺𝑘+𝑟
)

𝑅(𝑘 + 𝑟) −𝑀
(

𝛺𝑘+𝑟
)

‖

‖

‖

2

2
,

(22)

which has a unique closed-form solution [9].

Remark 1.  Note that an unweighted version of (22) can be min-
imized as well, either directly with non-linear optimization or by 
using iterative reweighted solutions such as the Sanathanan-Koerner 
algorithm [21]. However, these optimization strategies generally do 
not guarantee convergence to a global minimizer, and the weighted 
least-squares criterion (22) is especially effectively for practical appli-
cations [9,22].

Remark 2.  Generally the cost function (22) has a unique closed-form 
solution only if the excitation signal 𝑅(𝑘 + 𝑟) is sufficiently ‘rough’ in 
the window 𝑟 ∈ Z[−𝑛𝑤 ,𝑛𝑤] [19]. For example, orthogonal random-phase 
multisines [23] fulfill this condition.

3.4. Procedure lifted closed-loop identification

The main results in Section 3 are summarized in Procedure 3.4. 

Procedure 3 (Lifted closed-loop FRF identification of multirate system). 

1. Construct excitation signal 𝑟ℎ.
2. Excite system in Fig.  2 with 𝑟ℎ and record slow-rate output 𝑦𝑙 and 
fast-rate input to the system 𝑢ℎ.

3. Lift fast-rate signals 𝑢ℎ and 𝑟ℎ into 𝑢 = 𝑢ℎ and n𝑟 = 𝑟ℎ using 
(11).

4. Take DFT of 𝑟, 𝑢, and 𝑦𝑙 using (1).
5. For frequency bins 𝑘 ∈ Z[0,𝑁−1] identify 𝑃

(

𝛺𝑘
) using the developed 

approach as follows.
(a) Determine 𝐺 (

𝛺𝑘
) in (19), (20) and (21) by minimizing the 

linear least squares problem in (22).
(b) Compute the first row of 𝑃 (

𝛺𝑘
) with (18), using ̂𝑆 (

𝛺𝑘
) and 

𝑃𝑆[1,∶]
(

𝛺𝑘
) contained in 𝐺 (

𝛺𝑘
)

.
(c) Recover original fast-rate system 𝑃 (𝛺𝑘) using (14).

4. Benchmark simulation

In this section, the developed framework is validated on a bench-
mark dual-stage actuator hard disk drive challenge, leading to contri-
bution C3. The benchmark challenge is introduced, followed by the 
results.

4.1. Dual-stage actuator hard disk drive identification setup

The benchmark challenge is a high-fidelity simulator of a dual-stage 
actuator hard disk drive developed by the IEEJ research committee of 
precision servo systems [3], consisting of a VCM and PZT actuator as 
shown in Fig.  1 and Section 2.1. The setup has 𝑛𝑦 = 1 outputs, which 
is the position of the magnetic head, and 𝑛𝑢 = 2 inputs for the VCM 
and PZT actuator. The system is in closed-loop control as shown in 
Fig.  3. The fast-rate noise 𝜖ℎ is introduced by measurement noise and 
fan-induced vibration, while the VCM input is disturbed by rotational
4 
Fig. 3. Feedback structure considered for identification of the PZT and VCM actuators 
𝑃𝑝 and 𝑃𝑣 of the hard disk drive in Fig.  1.

Fig. 4. The FRFs of 𝐹𝑝 ( ) and 𝐹𝑣 ( ) show that the filters suppress dynamics 
beyond the Nyquist frequency of the slow-rate output 𝑦𝑙 ( ).

vibrations from other drives 𝑑ℎ. The slow-rate noise 𝜖𝑙, or repeatable 
run-out, is caused by the oscillations of target tracks on the disk. The 
disturbance spectra of 𝜖ℎ, 𝑑ℎ, and 𝜖𝑙 are seen in [3]. The system is 
under multirate closed-loop feedback control with controllers 𝐶𝑝 and 
𝐶𝑣 sampled at 𝑇𝑙, given by 

𝐶𝑣(𝑞) =
0.65 + 0.020𝑞−1 − 0.63𝑞−1

1 − 1.4𝑞−1 + 0.51𝑞−2
,

𝐶𝑝(𝑞) =
0.01346 + 0.01346𝑞−1

1 − 0.8825𝑞−1
.

(23)

In addition to the feedback controllers, the feedback loop contains 
two filters 𝐹𝑝 and 𝐹𝑣 sampled at 𝑇ℎ, which consist of Notch filters to 
suppress high-frequent resonant behavior of the systems 𝑃𝑝 and 𝑃𝑣. The 
FRFs of 𝐹𝑝 and 𝐹𝑣 are seen in Fig.  4. To design filters 𝐹𝑝 and 𝐹𝑣 such 
that they effectively suppress the resonant behavior, it is crucial to have 
an accurate model of fast-rate systems 𝑃𝑝 and 𝑃𝑣.

The excitation signals 𝑟𝑝 and 𝑟𝑣 for the PZT and VCM actuators 
are random phase multisines with a flat amplitude spectrum exciting 
all frequencies having root-mean-square values of 3.6 ⋅ 10−9 and 8.0 ⋅
10−8. The maximum position of the PZT is 48.7 nm, and hence, does 
not exceed its stroke limit of 50 nm [3]. Additional settings during 
identification are seen in Table  1. The polynomial degrees for local 
modeling in (21) are chosen as 𝑅𝑛 = 𝑅𝑚 = 𝑅𝑑 = 3, with window size 
𝑛𝑤 = 30. The denominator matrix 𝐷𝑠(𝑘) in (21) is parameterized using 
the multi-input single-output parameterization [9] as 

𝐷𝑠(𝑘) = diag
(

𝑑𝑠,1(𝑘), ⋯ , 𝑑𝑠,𝑛𝑢𝐹+𝑛𝑦 (𝑘)
)

. (24)

The total amount of decision parameters in (22) is given by (𝑛𝑢𝐹 +
𝑛𝑦)(𝑛𝑢𝐹 (𝑅𝑛 + 1) + 𝑅𝑚 + 1 + 𝑅𝑑 ) = 115. Least-squares problem (22) 
has a unique closed-form solution since 𝑈 (𝑘 + 𝑟) and 𝑌𝑙(𝑘 + 𝑟) contain 
(2𝑛𝑤 + 1)(𝑛𝑢𝐹 + 𝑛𝑦) = 305 data points, and the excitation signal is a 
random-phase multisine, see Remark  2.

4.2. Identification results

The identified FRFs of the VCM and PZT actuator 𝑃𝑣 and 𝑃𝑝 are seen 
in Figs.  5 and 6. Additionally, the resonant dynamics of the PZT around 
44000 Hz are enlarged in Fig.  7. The following observations are made 
with respect to the identified FRFs in Figs.  5, 6, and 7.
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Table 1
Identification settings.
 Variable Abbreviation Value Unit 
 Slow sampling time 𝑇𝑙

1
50400 s  

 Fast sampling time 𝑇ℎ
1

100800 s  
 Downsampling factor 𝐹 2 –  
 Number of samples N 3600 –  

Fig. 5. The developed lifted closed-loop identification technique with local rational 
modeling ( ) identifies the VCM 𝑃𝑝(𝛺𝑘) accurately, even beyond the Nyquist fre-
quency of the slow-rate output 𝑦𝑙 ( ).

Fig. 6. The developed lifted closed-loop identification technique with local rational 
modeling ( ) identifies the PZT 𝑃𝑝(𝛺𝑘) accurately, even beyond the Nyquist frequency 
of the slow-rate output 𝑦𝑙 ( ).

• While the system is operating in multirate closed-loop, the devel-
oped method identifies the FRFs of the VCM and PZT accurately, 
even beyond the Nyquist frequency of the slow-rate output 𝑦𝑙.

• The FRF quality is lower at low frequencies for the PZT. This 
occurs because the gain of the PZT at low frequencies is estimated 
simultaneously with its resonant behavior at high frequencies 
since these frequencies alias to the same frequency in 𝑦𝑙, resulting 
in a low ‘‘signal-to-signal’’ ratio. Similarly, the FRF quality of the 
VCM is lower at high frequencies.

These observations show that the developed approach is capable 
of single-experiment identification of the multivariable fast-rate system 
while operating in multirate closed-loop using solely slow-rate position 
measurements of the actuator.

5. Conclusions

The results in this paperdemonstrate the effective FRF identifica-
tion of a dual-stage actuator hard disk drive operating in closed-loop 
beyond the Nyquist frequency of a slow-rate output. The key idea 
is to identify time-invariant representations of the multirate system 
through lifting the fast-rate signals. Additionally, the bias which is 
generally observed for direct identification of closed-loop systems is 
avoided through indirectly identifying the system. The time-invariant 
lifted representation of the multirate system is naturally multivariable, 
5 
Fig. 7. The resonant dynamics of the PZT ( ) are accurately identified using the 
developed approach ( ) beyond the Nyquist frequency of the slow-rate output 𝑦𝑙 .

and therefore, local modeling techniques are utilized to effectively 
identify the multivariable system in a single identification experiment. 
Furthermore, the approach is directly suitable for multivariable system 
identification. The framework is validated using a benchmark dual-
stage actuator hard disk drive, demonstrating accurate identification 
of the multi-input single-output actuator operating in multirate closed-
loop utilizing only slow-rate position measurements. The developed 
approach is crucial in control design of multirate systems, including 
multivariable and closed-loop systems with slow-rate outputs.
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