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ABSTRACT
This work proposes a periodic bus holding control method where the bus
holding times of all running trips are computed simultaneously within each
optimization timeperiod; thus, increasing the coordination among running
buses for avoiding bus bunching. This paper considers the adverse effects
of the bus holding control in the in-vehicle travel times of on-board pas-
sengers and performs holistic bus holding decisions by modelling the bus
holding problem as a discrete, nonlinear, constrained optimization prob-
lem. Given the computational complexity of the bus holding problem, an
alternatingminimizationapproach is introduced for computing theoptimal
holding times at each optimization instance. The performance of the peri-
odic control method is evaluated against the performance of event-based
control methods using 5-month automated vehicle location and auto-
mated passenger count data from bus line 1 in Stockholm for contacting
simulation-based experiments.

ARTICLE HISTORY
Received 22 January 2018
Accepted 9 April 2019

KEYWORDS
Dynamic bus holding;
nonlinear programming;
periodic control; discrete
optimization; bus bunching

1. Introduction

Transport authorities use punctuality-based key performance indicators (KPIs) to evaluate the per-
formance of low-frequency bus services and regularity-based KPIs to evaluate the performance of
high-frequency services (Trompet, Liu, and Graham 2011; Gkiotsalitis and Stathopoulos 2016). In the
case of high-frequency bus services (i.e. bus lines withmore than 5 buses per hour), themost common
objective of the bus operations is tomaintain an appropriate headway amongbuses in order to ensure
that the waiting times of passengers at stops are close to the planned ones.

In most cases, the dispatching times of bus trips are evenly distributed along the day in order to
improve the regularity of services (Ceder 2009; Ceder, Hassold, and Dano 2013). However, given the
spatio-temporal variations of traffic and passenger demand, some buses are delayed at some spe-
cific segments of the line during the actual operations. These delays have two adverse effects: (i) they
increase the headway of the delayed bus from its preceding one; and (ii) they increase the passenger
loadof thedelayedbus that needs to accommodatemorepassengerswhoarewaiting for an extended
time. This causes a ‘domino effect’ that makes it difficult for a delayed bus to recover and leads to
bus bunching, i.e. Gkiotsalitis and Maslekar (2018a) reported that the service regularity deteriorates
significantly when the actual travel times differ by more than 30% from their expected values.

Several metropolises with high-frequency bus services such as London, Singapore, Hong Kong,
Barcelona (to name a few) have adopted specific KPIs to evaluate the regularity of the running services
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based on the waiting times of passengers (TfL 2016; LTA 2016). For this purpose, real-time automated
vehicle location (AVL) information from the Fleet Telematic System (FTS) of each bus is collected and
the recorded arrival times of buses at stops are used for evaluating the performance of the services. To
provide an example, the land transport authority (LTA) in Singapore provides bonuses of up to 6000
Singaporean dollars on a monthly basis if the excessive waiting time of passengers is improved by
0.1min - LTA (2016).

This pressure on bus operators to improve the regularity of their services has led to the introduc-
tion of real-time control systems that enable the communication between bus drivers and operational
command centers. Nevertheless, most control options are currently based on ad-hoc rules (Cats
et al. 2012; Laskaris et al. 2016)which are triggeredwhen a specific event occurs (i.e. a bus arrives late at
a stop). Thus, they are not capable of finding a good trade-off between the in-vehicle travel times and
the waiting times of passengers at stops as demonstrated in Hans, Chiabaut, and Leclercq (2015). In
this study, we investigate this issue and we provide a periodic holding control method that improves
the service regularity while considering the in-vehicle travel times.

1.1. Related studies

In general, the daily operations of a bus line are formed on the basis of an extensive tactical planning
process that involves the planning of bus frequencies, crew and vehicle schedules (Kepaptsoglou and
Karlaftis 2009; Farahani et al. 2013; Gkiotsalitis and Cats 2018; Gkiotsalitis, Wu, and Cats 2019). During
the tactical planning phase, the dispatching time of each bus trip is defined and the daily timetable
is generated. Nevertheless, tactical planning assumes that the trip travel times remain stable during
the actual operations or variate very little from their expected values. This is rarely the case though
and several studies have proposed the introduction of real-time corrective actions that can reduce the
waiting time variation of passengers at stops. Specifically, these studies have investigated the effect
of different corrective measures and can be categorized as:

(1) Robust slack time planning. The negative repercussions of corrective actions can cause delays
to the dispatching times of future trips that can affect the crew schedules and destabilize the
daily plan. Bus operators introduce long slack times to ensure that potential delays are not prop-
agated, thus requiring more buses for maintaining the same frequency level. Daganzo (2009),
Zhao, Dessouky, and Bukkapatnam (2006), Xuan, Argote, and Daganzo (2011) and Adamski and
Turnau (1998) have studied this problem and have introduced robust optimization methods for
calculating efficient slack times which can resist the propagation of delays due to bus holding.
These slack times reduce the utilization of buses compared to the case where they are defined
basedonempirical rules. To compute theseoptimal slack times, Xuan,Argote, andDaganzo (2011)
assumed that the link travel time noise follows the normal distribution and tested the effect of
different bus holding options to the overall delay of each trip with the use of simulations.

(2) Bus Holding control. The plurality of studies on the bus holding problem (Daganzo 2009; Koehler,
Kraus, and Camponogara 2011; Hickman 2001; Eberlein, Wilson, and Bernstein 2001; Laskaris
et al. 2018) focus on optimizing the bus holding times at stops for reducing the waiting times
of passengers. Such studies have a pre-defined target for the waiting time of passengers at each
stop (i.e. scheduled waiting time) and employ heuristics for computing the optimal bus hold-
ing times at some bus stops for adhering to the target waiting times. The work of Bartholdi and
Eisenstein (2012) is an exception because its objective was to reduce the waiting time variance
without adhering to a specific target waiting time. It should be noted here that, as a general prac-
tice, buses are not held at every stop because this will increase the passenger inconvenience.
In contrary, bus holding is only allowed at a pre-determined sub-set of important bus stops,
known as control points.In most of these works, the implications of the bus holding measures
to the future trips are not considered and it is assumed that the slack times are long enough to
ensure that delays are not propagated. Fu and Yang (2002) tested two of the most common bus
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holding strategies: (i) the one-headway-based control where a bus is held at a control point stop
based on its time headway with its preceding bus and (ii) the two-headway-based control that
considers the headways between its preceding and its following bus. In addition, several works
have also considered the travel time noise when computing the bus holding times (Chen, Adida,
and Lin 2013; Daganzo 2009). For instance, Hickman (2001) introduced stochasticity at the sin-
gle holding problem by modeling it as a convex quadratic program in a single variable. Finally,
Daganzo and Pilachowski (2011) and Zhao, Bukkapatnam, and Dessouky (2003) proposed dis-
tributed control models where buses act as agents that communicate in real-time to achieve
dynamic coordination.

(3) Holding at only one decision point (i.e. last stop). Other methods are controlling the buses at one
decision point. For instance, in the work of Berrebi, Watkins, and Laval (2015), the buses were not
held at control points but only at the last stop (terminal). This problem has been studied since
the 1990s (Dessouky et al. 1999; Strathman et al. 1999). In such problems, the holding control is
reduced to a dispatching time adjustment problem. This simplification reduces the complexity of
the bus holding problem because there is only one decision to be made for each trip.

(4) Mixed strategies. Several studies have utilizedmixed strategies such as a simultaneous dispatching
time and bus holding control (Dessouky et al. 2003; Alesiani and Gkiotsalitis 2018) or introducing
stop-skipping, interlining and other measures (Cats et al. 2011, 2012; Diab and El-Geneidy 2012).
In particular, the stop-skipping problem has gained significant attention (Furth 1987; Delle Site
and Filippi 1998; Fu, Liu, and Calamai 2003; Liu et al. 2013) andmixed strategies that include stop-
skipping have been deployed on routes with Origin-Destination (OD) demand peaks at specific
segments.

(5) Holding for Transfer Synchronization. A distinct line ofworks has applied bus holding for improving
the network synchronization. Hall, Dessouky, and Lu (2001) addressed the real-time bus hold-
ing problem for improving synchronization, where bus trips were held at the transfer stops in
order to perform the transfer. Hall, Dessouky, and Lu (2001) minimized the transfer times assum-
ing stochastic bus arrivals at transfer stops that follow a normal distribution. Gkiotsalitis and
Maslekar (2018b) addressed the holding problemat the dispatching stop for reducing the transfer
waiting times and improving the service regularity of each line. In the same direction, Gavriilidou
andCats (2018) devised twocontrol strategies that strive to improveboth the single-line regularity
and the transfer synchronizations with bus holding. Finally, several other works have addressed
the dynamic dispatching time problem considering the objective of increasing the number of
synchronizations (Ceder, Golany, and Tal 2001; Ibarra-Rojas and Rios-Solis 2012).

1.2. Focus of this study

Our study is one of the first to examine how a set of holistic holding time decisions can be deter-
mined while ensuring that the potential repercussions due to the holding time decisions are taken
into consideration. This is a very important issue andwas also investigated by Sánchez-Martínez, Kout-
sopoulos, and Wilson (2016) who produced plans of holding times that accounted not only for the
current state of the system, but also for expected travel time and demand changes. For making such
holistic holding timedecisions,we consider the effects of different holding time combinations and this
results in a decision-making processwhere all holding time options for all running buses are evaluated
simultaneously.

This holistic approach increases the complexity of the bus holding control which is no longer
event-based (i.e. a holding time is not decided when a bus arrives at one control point stop), but time-
window-based (i.e. the holding times of all running buses within a specific time period are decided
and updated at the beginning of the time period). For this reason, this work proposes in Sections 2, 3
a space-time model that describes the kinematics of running buses within specific time windows and
models the bus holding problemof all running buses as amulti-constrained, non-convex optimization
problem. Then, a specific solutionmethod is proposed in Section 4 based on alternatingminimization
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for relaxing the non-convexity of the optimization problem. For providing an exact solution in real-
time, a further relaxation is proposed that turns the problem into an Integer Quadratic Programming
(IQP) problem and a Branch-and-Bound (B&B) method is introduced.

Themain contributions of thiswork to the state-of-the-art are (i) the introductionof a time-window-
basedmodel thatmakes holistic decisions regarding holding times instead of performing event-based
decisions; (ii) the explicit consideration of domino effects due to bus holdings, such as the increase of
the in-vehicle travel times and the delay of future trip departures (also known as ‘schedule sliding’),
with the use of amulti-constrainedmodeling approach; and (iii) the introduction of a constraint-based
model for enabling schedule-based dispatches rather than the headway-based dispatches that are
proposed inmost works in literature (Daganzo and Pilachowski 2011). The schedule-based dispatches
are used because bus operators prefer fixed dispatching times for trips in order to avoid interference
with the crew schedules and ensure that many buses, that do not belong exclusively to a particular
line, will be available for interlining operations if needed.

To summarize our contribution, this work develops a novel time-window-basedmodel using com-
mon assumptions/constraints adopted from past literature and additional objectives and constraints,
such as the ones described in (ii)–(iii). Then, we introduce a solution method that can solve the model
within a reasonable computational time.

2. Bus kinematic model for a periodic optimization instance

During the daily bus operations, the running buses, N = {1, 2, . . . , n, . . . , |N|}, are expected to serve
a number of predefined bus stops. Before proceeding further, it is important to declare the main
assumptions of this work:

Assumption 2.1: The number of trips of a bus line are defined during the tactical planning phase and
cannot be modified during the actual operations.

Assumption 2.2: Bus operators can apply bus holding control measures at control stops and cannot
modify the scheduled dispatching times of buses except in the case of emergency (i.e. due to severe
traffic delays).

Assumption 2.3: Overtaking between buses of the same line is not allowed (a reasonable and
very common assumption used in most related works Xuan, Argote, and Daganzo 2011; Sun and
Hickman 2008; Chen, Adida, and Lin 2013).

Assumption 2.4: Service supply, which is determined at the frequency settings stage, is sufficient for
satisfying the passenger demand. This implies that all passengers can be served by the first arriving
vehicle even if the number of boardings is increaseddue to longer headways (see also Eberlein,Wilson,
and Bernstein 2001; Hickman 2001).

Assumption 2.5: Our holding method can be applied on high-frequency services (headways of up
to 12min) where we assume that passenger arrivals at stops are random since they cannot coordi-
nate their arrivals with the arrivals of buses (see Osuna and Newell 1972; Hickman 2001; Wu, Liu, and
Jin 2016; Vuchic 2017).

Assumption2.6: Dwell times arenegligibly small so thatwedonot have additional passenger arrivals
during the limited time a bus is waiting at a stop (see Marguier 1985; Hickman 2001).

As itwill bedemonstrated later on, thiswork appliesbusholdingsmeasures that arenot expected to
postpone the departures of future trips operated by the same buses. This is a significant step towards
ensuring that holding will not result in schedule sliding. In addition, this allows the discretization of
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the daily time horizon into a set of times periods M = {τ , τ + δ, τ + 2δ, . . . , τ + |M|δ} within which
periodic optimizations of the holding measures are allowed to carry out. This rolling horizon opti-
mization approach has been also applied in many studies that focus on stop-skipping (Fu, Liu, and
Calamai 2003).

Theperiodic, time-window-basedoptimizationdiffers from the event-basedheadwayoptimization
proposed in most studies (Fu and Yang 2002; Yu and Yang 2009). In a periodic optimization holding
control, it is assumed that within a time period δ, the link travel times of trips are available from a
link travel time prediction model and the time period δ is short enough so that these travel times are
relatively stable. Given the short time window, δ, of rolling horizons, we assume that the stochastic
nature of the transit operations can be approximated by a deterministic model because the variance
of the stochastic elements becomes very small (Eberlein, Wilson, and Bernstein 2001).

In addition, the periodic optimization control is time-based and an optimization that computes all
the holding times of the runningbuses is appliedonly at thebeginningof theoptimization timeperiod
m ∈ M. As will be demonstrated in the experimental results in Section 5.1.4, time-window-based opti-
mization is beneficial in scenarioswhere the travel timeprediction errors are up to 50%because, unlike
event-based methods, the holistic bus holding decisions can coordination multiple trips.

The expected arrival time of a running bus at one future bus stop, s′, during the periodic optimiza-
tion periodm = {τ +mδ, τ + (m+ 1)δ} is:

am,n,s′(x) = (τ +mδ)+ ξβn,m ,ρn +
s′−1∑
i=ρn

tm,n,i +
s′−1∑
i=ρn

dm,n,i +
s′−1∑
i=ρn

xm,n,i (1)

where am,n,s′ is the expected arrival time of trip n at stop s′ during themth optimization time period,
ρn is the next bus stop of trip n given its current position at the beginning of the mth optimization
time period and ξβn,m ,ρn is the expected travel time from the position of trip n at the beginning of the
optimization, which is denoted as βn,m, to its next bus stop ρn. The expected arrival of the bus at stop
s′ is affected also by the expected dwell time of trip n at each stop i which is denoted as dm,n,i and the
holding times at each stop xm,n,i as it is illustrated in Figure 1.

Figure 1 shows that the expected arrival time of a bus trip at a stop s′ is equal to the accumulation
of the link travel times, the dwell times and the bus holding times from its current position, βn,m, until
stop s′ plus the timestamp τ +mδ that denotes the beginning of the optimization time periodm ∈ M.

In Equation (1) the link travel times and the dwell times of the bus trip n aremodeled as parameters.
However, in real-world operations these two parameters have some degree of randomness due to
exogenous reasons. Several works such as Shalaby and Farhan (2003), Mazloumi et al. (2011), Chien,
Ding, and Wei (2002), Hans et al. (2015) have focused on predicting the travel times of bus operations

Figure 1. Bus movement illustration.
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based on bus data with the use of several techniques spanning from time series analysis to artificial
neural networks.

By using the predicted link travel time and dwell time values at the time periodmth, the headway
between a bus trip n and its preceding trip n−1 at stop s can be estimated as:

hm,n,s(x) = am,n,s(x)− am,n−1,s(x) (2)

and its valuedependson the appliedbusholdingmeasuresx. Finally, in high-frequency serviceswhere
passenger arrivals at stops are random and follow the uniform distribution (Osuna and Newell 1972),
the waiting time of passengers who are willing to board on bus trip n is:

wm,n,s(x) = hm,n,s(x)
2

= am,n,s(x)− am,n−1,s(x)
2

(3)

Note that Equation (3) makes use of assumption (2.4) which implies that residual capacity is
sufficient so that all waiting passengers are able to board.

3. Model formulation

In this section, we rigorously formulate the mathematical model in order to solve the periodic bus
holding optimization problem.

3.1. Parameters and decision variables

Parameters
S = {1, 2, . . . , s, . . . , |S|} set of bus stops
N = {1, . . . , n, . . . , |N|} set of daily trips
J set of bus stops where bus holdings are allowed
υn scheduled dispatching time of each trip n ∈ N
un scheduled arrival time of each trip n ∈ N at the terminal |S|
kn embedded slack time for each trip n ∈ N
rn required resting time for each trip n ∈ N before the dispatching of the next

trip operated by the same bus
fn the next trip after trip n that is operated by the same bus
δ time duration of each periodic optimization time period
M = {τ , . . . , τ + |M|δ} set of daily periodic optimization time periods
m identifier of a periodic optimization time period
βn,m location of bus trip n at the start of optimization periodm
bs,s+1 travel distance between bus stops s and s+1
αn,s the recorded arrival time of trip n at stop swhich is set equal to zero if such

information is not available yet
am,n,s expected arrival time of trip n at stop s during the mth optimization time

period without considering bus holdings
dm,n,s expected dwell time of bus trip n at stop s during the mth optimization

time period
tm,n,s expected link travel timeof tripnbetween consecutive bus stops s and s+1

during themth optimization time period
ζs desired waiting time of passengers at stop s according to the planned

schedule
Bs passenger arrival rate at stop s
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Decision variables
x = {xm,n,s} holding times for each trip n ∈ N at each stop s ∈ S during the mth optimization time

period

Variables
am,n,s(x) expected arrival time of trip n at stop s during the mth optimization time period as a

function of the bus holding times
hm,n,s(x) headway between bus trips n−1 and n at stop s during themth optimization time period

The aim of this research is to find the optimal holding times, x, for the running buses at each opti-
mization time period. During the mth periodic optimization period, the active and inactive decision
variables can be defined by the following inequalities:

xm,n,s =
{
xm,n,s = 0 if am,n,s < τ +mδ ∨ am,n,s > τ + (m+ 1)δ ∨ s ∈ J

xm,n,s ∈ q if τ +mδ ≤ am,n,s ≤ τ + (m+ 1)δ ∧ s /∈ J
(4)

where J is the set of control point stops at which a but trip can be held at. Equation (4) contains a series
of inequalities that determine whether a bus holding decision variable xm,n,s is equal to zero (inactive)
or can take values from a candidate set q. From Equation (4), it is evident that if the expected arrival
time of a bus trip n at one stop s is before the start of themth optimization window {τ +mδ} or after
the end of themth optimization window {τ + (m+ 1)δ}, then there is no need to make a decision for
that holding time during this optimization time window.

In principle, the admissible set q cannot contain negative values. Many studies such as Lee
et al. (2002) have shown that a vehicle driver has a minimum response time of � 1.5 s and if a driver is
requested tohold abus at one stop for a very small time (i.e. fewmilliseconds) he/shewill not be able to
implement the holding time request with high accuracy. Cortés et al. (2010) has proposed to discretize
theholding time instructions to 30-s periods (i.e. 0, 30, 60, . . . ) seconds. The same30-s discretization for
the holding time decisions is used in commercial software as it is described in Cats et al. (2012). In this
study, we propose a higher granularity scheme where the holding time instructions can take values
close to the limit of the drivers’ responsiveness and, after adding a small time buffer, we propose a 10-s
discretization scheme for the holding time options. In such case, the minimum driver response time
of � 1.5 s can only affect the holding time suggestion by at most 15%. As a result, the set of holding
time options is q = {0, 10, 20, . . .} seconds.

3.2. Slack time constraints

During the daily scheduling of the bus operations a slack time is allocated to every trip in order to
ensure that the time delay of a bus trip will not postpone the departure of the next trip operated by
the same bus. This slack time is a time buffer and is also used for performing bus holdings at control
points (Newell 1977; Zhao, Dessouky, and Bukkapatnam 2006).

If a bus trip, n, is expected to arrive at terminal |S| at time am,n,|S|(x), then the slack time kn ∈ Z+ is
the extra time that the bus is allowed to remain at the terminal before starting its next trip.

The expected arrival time of a running trip n at terminal |S|, am,n,|S|(x), can be directly linked to the
slack time kn if we consider the scheduled arrival time of trip n at the terminal, un. Satisfying the slack
time constraints can be expressed by the following set of inequalities that consider the scheduled
arrival time of a trip at the terminal and the associated slack time:

am,n,|S|(x) ≤ un + kn ∀n ∈ R (5)

where R is the set of running trips during themth optimization period. The inequalities of Equation (5)
denote that a bus trip n should be anticipated to arrive at the terminal before its scheduled arrival
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time, un, plus the slack time. We should note here that if due to heavy traffic any of these inequality
constraints cannot be satisfied (i.e. the examined trip is delayed beyond the slack time buffer); then,
holding this trip at control point stops is no longer allowed.

3.3. Travel time limits for on-board passengers

As explained at the introduction section, this work has a dual objective of maintaining even headways
at bus stops in order to reduce bus bunching while at the same time minimizing the negative impact
to the on-board passengers. This study imposes strict limits to the travel times of on-board passengers
and thenumber of control point stops that a trip canbeheld at. Regarding the location of control point
stops, several studies such as Abkowitz and Engelstein (1984) proposed that the control point stop
should be the stop just preceding a group of stops with high levels of boarding demand. In practice
though, the control point stops are generally decided by the transport operators during the tactical
planning phase (Shalaby and Farhan 2003; van Oort, Boterman, and van Nes 2012). Therefore, the aim
is to ensure that the on-board passenger travel times remain at acceptable levels since the control
point stops are, in most cases, predefined.

Let assume that gn denotes the total bus holding time that is permitted for a trip n. This cumulative
limit for the holding times, gn, can be used for controlling the maximum amount of holding times
that are allowed for one trip and can ensure that the on-board passengers will not have a travel time
increase of more than gn due to holdings. Depending on the passenger demand of each trip n ∈ N,
the gn values can vary (i.e. trips with higher demand might be allowed to operate without significant
holdings (gn ≈ 0), whereas trips with lower demand might be more flexible and allow more time for
holdings). The cumulative holding time limits, gn, per each trip can be provided from the transport
authority or derived from historical data analysis regarding the passenger demand levels imposing
the following inequality constraints:

|S|∑
s=1

|M|∑
m=1

xm,n,s ≤ gn ∀n ∈ N (6)

One should note that Equation (6) accumulates all the holding times that are calculated during dif-
ferent periodic optimization time periods because the state-spacemodel of this work is implemented
in a rolling-horizon.

3.4. Bounding the upper limits of bus holdings

Each holding time should have an upper limit because one bus cannot be held at one stop for a very
long time since (i) this increases the on-board passengers’ inconvenience; (ii) other buses from the
same or different lines should use the same stop for boardings/alightings. Therefore, several studies
such as Cortés et al. (2010) and Gkiotsalitis and Maslekar (2015) have proposed to impose an upper
limit to the bus holding time which is in the range of 60–90 s depending on the characteristics of the
control point stop. Adopting such upper limit for each holding time, the admissible set of holding
times is modified to:

q = {0, 10, 20, 30, 40, 50, 60, 70, 80, 90} seconds (7)

3.5. Reducing the variance of the actual passenger waiting times from the plannedwaiting
times

Bus operators strive to improve the service reliability by minimizing the passenger waiting time vari-
ance from the planned waiting time, ζs, at each stop s ∈ S (Daganzo 2009; LTA 2016). If the scheduled
waiting time ζs at one stop is different than the actual waiting time of passengers, then the service
reliability deteriorates and the bus operators should take corrective actions.
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Figure 2. Illustration of the running buses at the beginning of themth periodic optimization instance.

Let construct an illustrative example where the trips R = {n, n+ 1, n+ 2, n+ 3} are the running
trips at the start of themth periodic optimization instance as they are presented in Figure 2. In addition,
let J = {s = 3, s = 5, s = 7, s = 9} be the set of the control point stops of the bus service in Figure 2.
If trips R = {n, n+ 1, n+ 2, n+ 3} are the running trips at the mth optimization instance, then trips
Rprior = {1, 2, . . . , n− 1}have already completed their service prior to the start of themth optimization
time period.

In this way, we can split the daily trips N = {1, . . . , n, . . . , |N|} into three sets during the mth opti-
mization instance: (i) the trips that are already completed Rprior = {1, 2, . . . , n− 1}; (ii) the running
trips that are expected to operate during themth time period R = {n, n+ 1, n+ 2, n+ 3}; and (iii) the
remaining trips, Rfuture = {n+ 4, n+ 5, . . . , |N|}, until the end of the day.

Having defined the set of running trips, we proceed one step further by identifying the set of trips
that are expected to arrive at each bus stop s ∈ S during themth optimization time period.

For each bus stop s ∈ S, we initialize a set Rm,s that contains all the bus trips that are expected to
arrive at that stop during the mth optimization time period. As a result, at the start of the periodic
optimization each trip n ∈ N is assigned to a set Rm,s according to the following inequalities:

n =
{
n ∈ Rm,s if αn,|S| = 0 ∧ τ +mδ ≤ am,n,s ≤ τ + (m+ 1)δ ∧ n ∈ R

n /∈ Rm,s otherwise
(8)

where αn,|S| = 0 denotes that trip n has not been completed at the start of themth optimization time
period and τ +mδ ≤ am,n,s ≤ τ + (m+ 1)δ denotes that the expected arrival time of trip n at stop s
lies within the range of themth optimization time period where:

am,n,s = (τ +mδ)+ ξβn,m ,ρn +
s−1∑
i=ρn

tm,n,i +
s−1∑
i=ρn

dm,n,i ∀n ∈ R (9)

In Equation (9), am,n,s is the expected arrival time of trip n at stop s during themth optimization time
period without considering bus holding measures, ρn is the next bus stop of trip n given its current
position at the beginning of themth optimization time period and ξβn,m ,ρn is the expected travel time
from the position of trip n at the beginning of the optimization, which is denoted as βn,m, to its next
bus stop ρn.

After defining the set of trips Rm,s that are expected to arrive at stops during themth optimization
time period, the actual waiting time variance from the scheduled waiting times at stops, ζs, should be
minimized. Using Equation (3), this results in the following objective function:

min
x

f (x) =
∑
s∈S

∑
n∈Rm,s

(
am,n,s(x)− am,n−1,s(x)

2
− ζs

)2

(10)



TRANSPORTMETRICA B: TRANSPORT DYNAMICS 1267

where

am,n,s(x) = (τ +mδ)+ ξβn,m ,ρn +
s−1∑
i=ρn

tm,n,i +
s−1∑
i=ρn

dm,n,i +
s−1∑
i=ρn

xm,n,i ∀n ∈ R. (11)

Remark 3.1: As it is evident from Equation (10), the waiting time variance at each stop is equal to the
sum of half the headway between consecutive running trips (which is equal to the actual passenger
waiting time) subtracted by the scheduled passenger waiting time. One should note though that if n∗
is the first element of set Rm,s, then its preceding trip n∗ − 1 should be considered at the calculation of
the headway even if it does not belong to the set Rm,s in order to have a continuity.

The above-mentioned remark ensures that the actual arrival time of the last trip n∗ − 1 that has
arrived at stop s, (am,n∗−1,s(x) = αm,n∗−1,s), is considered during the periodic optimization and links
the past with the current operations (resulting in a no memory-less Markov process).

According to the above descriptions, the first model that tries to (i) minimize the passenger waiting
time variation at stops, (ii) satisfy the slack time constraints and (iii) limit the travel times of on-board
passengers according to the on-board passenger demand levels can be formulated by combining
equations 10, 5, 6 for the optimization of themth rolling horizon:

(Q) : min
x

f (x) :=
∑
s∈S

∑
n∈Rm,s

(
am,n,s(x)− am,n−1,s(x)

2
− ζs

)2

subject to am,n,|S|(x) ≤ un + kn, ∀n ∈ R

|S|∑
s=1

|M|∑
m=1

xm,n,s ≤ gn, n = 1, . . . , |N|.

xm,n,s =
{
0 if am,n,s < τ +mδ or am,n,s > τ + (m+ 1)δ or s ∈ J

xm,n,s ∈ q if τ +mδ ≤ am,n,s ≤ τ + (m+ 1)δ and s /∈ J

q = {0, 10, 20, . . . , 90} seconds

(12)

3.6. Modeling the dwell times

The dwell time dm,n,s of a bus trip n at stop sduring themth optimization timeperiod can be associated
with the number of boardings and alightings.Many studies, such as Kraft and Bergen (1974), have sug-
gested that thenumberof boardingshas ahigherweighton thedeterminationofdwell times.Detailed
studies suchas Levinson (1983), Guenthner andSinha (1983) andBertini andEl-Geneidy (2004) showed
that there is a linear relationship between the dwell time and the number of boardings where the
dwell time can be equal to a minimum value p0 that can range from 2 to 5 s in case of no boardings
and it increases by p1 = 1.5− 4.5 s for each extra passenger boarding depending on the fare payment
structure.

In accordancewith the above studies, theunderlying relationshipbetween theobserveddwell time
and the number of boardings can be expressed by a linear equation:

dm,n,s = p0 + p1Bn,s (13)

where p0 is expressed in seconds, p1 in seconds per passenger and Bn,s is the expected number of
passengers that will board on trip n at stop s.

If Bs is the number of passengers per second that are expected to arrive at stop s, the number of
passenger boardings, Bn,s, on one trip n at stop s is associated with the headway between trip n and
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its preceding trip n−1 at that stop. Consequently, the boarding time of passengers dm,n,s is:

dm,n,s = p0 + p1Bs(am,n,s − am,n−1,s) (14)

Equation (14) denotes that the dwell time at one stop is proportional to the headway between two
consecutive bus trips n−1, nmultiplied by the passenger arrival rate at that stop. As a result, holding
a running bus n−1 at stop s impacts the dwell time of trip n at stop s:

dm,n,s(x) = p0 + p1Bs(am,n,s(x)− am,n−1,s(x)) (15)

Plugging Equation (11) and (15) into program (Q) yields:

min
x

f (x) :=
∑
s∈S

∑
n∈Rm,s

⎛
⎝1
2

⎛
⎝(τ +mδ)+ ξβn,m ,ρn +

s−1∑
i=ρn

tm,n,i +
s−1∑
i=ρn

dm,n,i(x)+
s−1∑
i=ρn

xm,n,i

⎞
⎠

−1
2

⎛
⎝(τ +mδ)+ξβn−1,m ,ρn−1+

s−1∑
i=ρn−1

tm,n−1,i+
s−1∑

i=ρn−1

dm,n−1,i(x)+
s−1∑

i=ρn−1

xm,n−1,i

⎞
⎠−ζs

⎞
⎠

2

s.t. am,n,|S|(x) ≤ un + kn, ∀n ∈ R

|S|∑
s=1

|M|∑
m=1

xm,n,s ≤ gn, n = 1, . . . , |N|.

xm,n,s =
{
0 if am,n,s < τ +mδ or am,n,s > τ + (m+ 1)δ or s ∈ J

xm,n,s ∈ q if τ +mδ ≤ am,n,s ≤ τ + (m+ 1)δ and s /∈ J

dm,n,s(x) = p0 + p1Bs(am,n,s(x)− am,n−1,s(x))

q = {0, 10, 20, . . . , 90} seconds
(16)

Remark 3.2: From the model of the mth periodic optimization described in Equation (16), one can
note that the dwell time of a trip at a stop is affected by the holding times. This results in an open-loop
relationship between the arrival times of trips at stops and the dwell times because the dwell time
modifications impact the arrival times of trips at stops according to Equation (15) and the arrival time
modifications are modifying again the dwell times expressed in Equation (11) leading to a recursive,
non-convex optimization problem.

4. Solutionmethod

4.1. Decoupling the arrival and dwell times with alternatingminimization

The authors utilize the alternating minimization method for non-convex optimization by solving iter-
atively the model (Q̃) of Equation (18) where at each iteration the dwell time values are assumed
to remain stable resulting in a simpler sub-problem with a convex objective function. The alternat-
ing minimization method initializes the problem by assuming that the optimal bus holding times are
equal to zero. For this initial solution, xκ , where xκ

m,n,s = 0, ∀xκ
m,n,s ∈ xκ , the resulting dwell times are

computed:

dm,n,s = p0 + p1Bs(am,n,s(xκ )− am,n−1,s(xκ )) (17)

Then, (Q̃) computes the new optimal solution xκ+1 under the assumption of fixed dwell time val-
ues which were computed by Equation (17). After that, the dwell time values are updated for the bus
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holding solution xκ+1 and the program (Q̃) is solved iteratively until a termination criterion is satisfied.

(Q̃) : min
xκ+1

f (xκ+1) :=
∑
s∈S

∑
n∈Rm,s

⎛
⎝1
2

⎛
⎝(τ +mδ)+ ξβn,m ,ρn +

s−1∑
i=ρn

tm,n,i +
s−1∑
i=ρn

dm,n,i +
s−1∑
i=ρn

xκ+1
m,n,i

⎞
⎠

− 1
2

⎛
⎝(τ +mδ)+ ξβn−1,m ,ρn−1 +

s−1∑
i=ρn−1

tm,n−1,i +
s−1∑

i=ρn−1

dm,n−1,i

+
s−1∑

i=ρn−1

xκ+1
m,n−1,i

⎞
⎠− ζs

⎞
⎠

2

s.t. am,n,|S|(xκ+1) ≤ un + kn, ∀n ∈ R

|S|∑
s=1

|M|∑
m=1

xκ+1
m,n,s ≤ gn, n = 1, . . . , |N|.

xκ+1
m,n,s =

{
0 if am,n,s < τ +mδ or am,n,s > τ + (m+ 1)δ or s ∈ J

xκ+1
m,n,s ∈ q if τ +mδ ≤ am,n,s ≤ τ + (m+ 1)δ and s /∈ J

dm,n,s = p0 + p1Bs(am,n,s(xκ )− am,n−1,s(xκ ))

q = {0, 10, 20, . . . , 90} seconds
(18)

The alternating minimization approach is formed in such a way that, even if the main problem is
non-convex, each alternating step in isolation is tractable as summarized in Algorithm 1.

Algorithm 1 Iterative optimization of the holding times at themth time period
1: function ALTERNATING MINIMIZATION(x)
2: Set iteration κ ← 0;
3: Initialize the problem by setting all holding times to zero for this iteration (xκ

m,n,s =
0, ∀xκ

m,n,s ∈ xκ );
4: while a convergence criterion is not achieved do
5: Compute each dwell time dm,n,s(xκ ) according to Equation 17;
6: For each dwell time, set dm,n,s ← dm,n,s(xκ );
7: Given the expected dwell times dm,n,s for that holding solution xκ , compute a new

holding solution xκ+1 by solving (Q̃) with Algorithm 2;
8: Set κ ← κ + 1 for updating solution xκ with xκ+1;
9: end while

10: return the final solution xκ which is considered as the optimal one
11: end function

Examining the program (Q̃) that should be solved in every iteration, one can note that the con-
straints of this optimization problem are linear inequalities and the objective function has a nonlinear
form of least absolute deviations.

4.2. Reformulating to an integer quadratic programming (IQP) problem

Note that the bus holding optimization problem of Equation (16) is already reformulated into an alter-
nating minimization problem where at each iteration program (Q̃) should be solved (Algorithm 1).
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Plugging Equation (11) into (Q̃) yields:

min
xκ+1

f (xκ+1) :=
∑
s∈S

∑
n∈Rm,s

⎛
⎝1
2

⎛
⎝am,n,s +

s−1∑
i=ρn

xκ+1
m,n,i

⎞
⎠− 1

2

⎛
⎝am,n−1,s +

s−1∑
i=ρn−1

xκ+1
m,n−1,i

⎞
⎠− ζs

⎞
⎠

2

s.t. am,n,|S|(xκ+1) ≤ un + kn, ∀n ∈ R

|S|∑
s=1

|M|∑
m=1

xκ+1
m,n,s ≤ gn, n = 1, . . . , |N|.

xκ+1
m,n,s =

{
0 if am,n,s < τ +mδ or am,n,s > τ + (m+ 1)δ or s ∈ J

xκ+1
m,n,s ∈ q if τ +mδ ≤ am,n,s ≤ τ + (m+ 1)δ and s /∈ J

q = {0, 10, 20, . . . , 90} seconds

(19)

and (Q̃) can be expressed as an Integer Quadratic Programming (IQP) problem:

(Q̃) : min
xκ+1

f (xκ+1) :=
∑
s∈S

∑
n∈Rm,s

⎛
⎜⎝1
4

⎛
⎝ s−1∑

i=ρn

xκ+1
m,n,i

⎞
⎠

2

+ 1
4

⎛
⎝ s−1∑

i=ρn

xκ+1
m,n−1,i

⎞
⎠

2

− 1
2

⎛
⎝ s−1∑

i=ρn

xκ+1
m,n,i

⎞
⎠
⎛
⎝ s−1∑

i=ρn

xκ+1
m,n−1,i

⎞
⎠

+
(
am,n,s − am,n−1,s

2
− ζs

) s−1∑
i=ρn−1

xκ+1
m,n,i

−
(
am,n,s − am,n−1,s

2
− ζs

) s−1∑
i=ρn−1

xκ+1
m,n−1,i +

(
am,n,s − am,n−1,s

2
− ζs

)2
⎞
⎠

s.t. am,n,|S|(xκ+1) ≤ un + kn, ∀n ∈ R

|S|∑
s=1

|M|∑
m=1

xκ+1
m,n,s ≤ gn, n = 1, . . . , |N|.

xκ+1
m,n,s =

{
0 if am,n,s < τ +mδ or am,n,s > τ + (m+ 1)δ or s ∈ J

xκ+1
m,n,s ∈ q if τ +mδ ≤ am,n,s ≤ τ + (m+ 1)δ and s /∈ J

q = {0, 10, 20, . . . , 90} seconds

(20)

4.3. Solving the discrete bus holding problemwith branch and bound

Program (Q̃) expressed in Equation (20) is an NP-Hard, IQP optimization problem. For this reason, we
deploy the branch-and-bound (B&B) method that is proposed by Land and Doig (1960) and is one of
the most common approaches for solving discrete, NP-Hard problems.

The B&B method explores branches of a dynamically generated tree which represent subsets of
the solution set of discrete options. In contrary to the brute-force algorithm that explores the solution
space exhaustively, the B&B method uses upper and lower bounds for pruning the set of candidate
solutions. In such way, if the estimation of the upper and lower bounds is effective, the exploration
effort is significantly reduced.

In order to define the lower bound (LB) of our problem, we allow the holding times to take any real
value from 0 to 90 seconds instead of values from the discrete set q = {0, 10, 20, . . . , 90}. Then, (Q̃)
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becomes a continuous Quadratic Programming problem (Equation (21)) that can be solved in polyno-
mial time with an exact optimization algorithm such as the Active Set method (for more information
regarding the Active Set method, one can refer to Murty and Yu (1988) or Nocedal andWright (2006)).

min
xκ+1

f (xκ+1)

s.t. am,n,|S|(xκ+1) ≤ un + kn, ∀n ∈ R

|S|∑
s=1

|M|∑
m=1

xκ+1
m,n,s ≤ gn, n = 1, . . . , |N|.

xκ+1
m,n,s =

{
0 if am,n,s < τ +mδ or am,n,s > τ + (m+ 1)δ or s ∈ J

xκ+1
m,n,s ∈ R≥0 if τ +mδ ≤ am,n,s ≤ τ + (m+ 1)δ and s /∈ J

(21)

By solving the continuous QP of Equation (21), the lower bound of the problem is established
because any discrete solution has inferior performance compared to the global optimum solution of
the continuous problem. Initially, the B&B enumeration tree has only one node: the tree root, which
is the solution x∗ of the continuous QP problem of Equation (21) and the lower bound is the value of
f (x∗). The objective of the B&Bmethod is to find the optimal discrete solution by efficiently exploring
the solution space using upper and lower bounds for pruning the set of candidate solutions.

For exploring the solution space, a typical iteration has three main components: selection of the
node to process, branching and bound calculation. If it can be established that the subspace of a node
cannot contain the discrete optimal solution, the whole subspace is discarded, else it is stored in the
pool of nodes that remain active A = �− F where � is the set of all generated nodes and F is the set
of discarded nodes.

Initially, the selection of the node to process is trivial because we have only one node (the root
x∗). x∗ is the best solution so far, known as incumbent solution. However, this is not the solution of our
discreteproblem (Q̃)of Equation (20) and thus theupperboundof thatproblem is set tobupper ←+∞
because at this stage it is unknown. Then, new branches and nodes are dynamically generated.

During branching, the search space is split into smaller spaces and the problem of Equation (20)
is minimized on those smaller spaces for calculating the lower bounds of these spaces (branches). A
continuous search space is split into smaller search spaces (branches) by assigning a discrete value to
a variable xκ+1

m,n′ ,s′ ∈ xκ+1. After doing that, the resulting node will have as a lower bound the objective
function value of the solution of the restricted continuous QP of Equation (22).

min
xκ+1

f (xκ+1)

s.t. am,n,|S|(xκ+1) ≤ un + kn, ∀n ∈ R

|S|∑
s=1

|M|∑
m=1

xκ+1
m,n,s ≤ gn, n = 1, . . . , |N|.

xκ+1
m,n,s =

{
0 if am,n,s < τ +mδ or am,n,s > τ + (m+ 1)δ or s ∈ J

xκ+1
m,n,s ∈ R≥0 if τ +mδ ≤ am,n,s ≤ τ + (m+ 1)δ and s /∈ J

xκ+1
m,n,s = xm,n′ ,s′ if n = n′ and s = s′

(22)

The objective function value of the optimal solution of the restricted continuous QP of a node is its
lower bound. That is, if we continue branching from this node the newly generated sub-problems
would return inferior objective function values because more of their continuous variables will be
discretized.

The node for the new B&B iteration is the node i from the set A = �− F that has the lowest bound
valueof all other nodes j ∈ A. If after anumberof B&B iterationswehaveanodeatwhich all busholding



1272 K. GKIOTSALITIS AND O. CATS

times x′ have been assigned values from the discrete set q (that is, x′ | xκ+1
m,n,s ∈ q, ∀n, s), then we have

a first possible solution for the IQP problem. Note that the performance of this solution, f (x′), is our
incumbent upper bound and we set bupper ← f (x′).

Then, we can proceed with pruning the solution space. This means that any node that has a higher
LB value than the incumbent upper bound, bupper, is excluded from further consideration because
branching from this node cannot improve its LB score that is already higher than bupper. In addition, if
later onwe find another possible IQP solutionwith lower objective function value thanbupper, then this
becomes the incumbent discrete solution and the bupper value is updated accordingly. The procedure
continues until there are no remaining nodes at the set Awhich means that all branching possibilities
have been exhausted according to the steps of Algorithm 2.

Algorithm 2 Solving the IQP problem with B&B
1: function B&B

2: Initialize sets A← ∅, �← ∅ and F← ∅;
3: Compute the LB of (Q̃) by solving the continuous problem of Equation (21);
4: Use this solution as the root of the enumeration tree and add it to sets A,Q;
5: while A �= ∅ do
6: Find the node i ∈ Awith the lowest LB score;
7: From node i, split the search space into smaller spaces;
8: Add the newly generated nodes to the set �;
9: Compute the LB of each newly generated node by solving the respective QP problem of

Equation (22);
10: Set A← �− F;
11: for All discrete solutions in Awith variable values from the set q do
12: Find the discrete solution with the lowest LB score;
13: Set bupper to the lowest LB score of that discrete solution or to+∞ in case such

solution does not exist yet;
14: end for
15: Set F← F + {i}
16: if a node j ∈ A has a LB value higher than bupper then
17: Erase this node by setting F← F + {j}
18: end if
19: end while
20: return optimal solution of the IQP program (Q̃);
21: end function

5. Numerical experiments

5.1. Small-scale demonstration of one optimization instance

Let consider again the scenario of Figure 2 where at themth optimization instance we have four run-
ning bus trips n, n+1, n+2, n+3, whereas n−1 is the previous trip of trip n that was completed prior to
the start of themth optimization time period. Let also the time duration δ of the periodic optimization
to be equal to 10min (600 s) and the predicted link travel times within this optimization period to be
equal to the values of Table 1. Table 1 presents also the expected passenger arrival rate at each stop
within themth optimization time period.

Let the expected travel times of the running trips from their current position to the position of
their closest stop to be ξβ ,n,ρn=9 = 35 s, ξβ ,n+1,ρn=7 = 25 s, ξβ ,n+2,ρn=5 = 42 s, ξβ ,n+3,ρn=3 = 47 s. If the
starting time of themth optimization period is (τ +mδ)→ 09 : 10, or else the 33,000th second from
the beginning of the day, it lasts until the 33,600th second of the day. For this 10-minute period,



TRANSPORTMETRICA B: TRANSPORT DYNAMICS 1273

Table 1. Predicted link travel times, tm,s , in seconds and passenger arrival rates, Bs , in passengers per second at
each stop s.

Control point stops, J = (3, 5, 7, 9)

Bus stops, s 1 2 3 4 5 6 7 8 9 10
Arrival rate, Bs 0.4 0.72 0.5 0.76 0.42 0.38 0.37 0.31 0.15 0

Travel times, tm,n+3,s 120 130 142 145 138 105 125 105 115 N/A
Travel times, tm,n+2,s 120 130 142 145 138 105 125 105 115 N/A
Travel times, tm,n+1,s 120 130 142 145 138 105 125 105 115 N/A
Travel times, tm,n,s 120 130 142 145 138 105 125 105 115 N/A

Table 2. Arrival times of trips at stops in seconds (the actual arrival times of trips that have already arrived at stops prior to time
τ +mδ are in bold).

Bus stops, s

Trips 1 2 3 4 5 6 7 8 9 10

n+3 32,688.5 32,834 33,158 33,494.6 34,014.7 34,477.7 34,941.8 35,485 36,014 36,373.2
n+2 32,338.5 32,484 32,652.5 32,845.2 32,998.7 33,235.5 33,450 33,686.7 33,887.9 34,051.5
n+1 32,043 32,180 32,353.5 32,540.7 32,701 32,868.7 33,065.6 33,294.3 33,500.2 33,669.6
n 31,746 31,876.5 32,051 32,243 32,404 32,563.7 32,710 32,882 33,060.8 33,216.8
n−1 31,441 31,581 31,751 31,943 32,108 32,266 32,411 32,586 32,741 32,896

the expected arrival times of buses at stops if we do not consider the impact of the holding times
are computed from Equation (11) and presented in Table 2. For the computation of the expected
arrival times, the dwell times have also been computed assuming parameter values p0 = 5 s and
p1 = 1.5 s/passenger and the passenger arrival rates are presented in Table 1.

In Table 2, the actual arrival times of previous trips aremarkedwith bold to differ from the expected
ones during the mth optimization time period. At the same table, all arrival times which are in italic
denote that the bus trip is not expected to arrive at that stop during themth optimization time period.
For instance, trip n+3 is expected to arrive at stop 4, whereas trip n+2 is expected to arrive at stop 7
and trip n+1 at stop 9. From Table 2, one can infer easily the bus stop arrivals during themth optimiza-
tion timeperiod (they are 9 in total). According to Equation (8), the trips that are expected to serve each
bus stop within the mth optimization period are: Rm,s=1 = ∅, Rm,s=2 = ∅, Rm,s=3 = {n+ 3}, Rm,s=4 =
{n+ 3}, Rm,s=5 = ∅, Rm,s=6 = {n+ 2}, Rm,s=7 = {n+ 1, n+ 2}, Rm,s=8 = {n+ 1}, Rm,s=9 = {n, n+ 1},
Rm,s=10 = {n}.

5.1.1. Waiting time variance without bus holding control
If the scheduled waiting time of passengers at each stop is 2.5min: 2ζs = 300 s ∀s ∈ S, then for bus
holdings equal to zero (initial solution κ = 1,where xκ

m,n,s = 0, ∀xκ
m,n,s ∈ xκ ), the expectedwaiting time

variance of passengers at themth optimization instance is:

f (xκ ) =
∑
s∈S

∑
n∈Rm,s

(
am,n,s(xκ )− am,n−1,s(xκ )

2
− ζs

)2

= 52954.07 s2

5.1.2. Computing the optimal bus holding solution with brute-force
Proceedingwith the optimization, the holding times should also ensure that the slack time constraints
are satisfied and the on-board passenger travel timeswill not be significantly affected. Let assume that
the scheduled arrival times of bus trips at the last stop un, ∀n ∈ R and the slack times kn, ∀n ∈ R are
provided by the transport operator and their values are presented in Table 3. Table 3 also presents the
upper limits of the accumulated holding times per trip, gn, given the anticipated on-board passenger
levels of each trip.

From Equation (4), the decision variables of the optimization problem are the holding times of the
running trips at control point stops xκ

m = (xκ
m,n+3,3, x

κ
m,n+2,7, x

κ
m,n+1,7, x

κ
m,n+1,9, x

κ
m,n,9). Starting from the
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Table 3. Scheduled arrival times of trips at the last stop, un ;
slack times, kn ; and upper limits for the accumulated holding
times for each trip, gn , in sec.

Trips un in sec. kn in sec. gn in sec.

n+3 36,370 240 300
n+2 34,050 240 300
n+1 33,680 240 280
n 33,218 240 300

Figure 3. Evaluating |q||xm| = 105 = 100,000 bus holding options with Brute Force. The globally optimal solution is (0,90,0,20,0)
sec with a performance of 45,571.03 s2.

initial solutionwhere all holding timeswere set to zero, xκ
m,n,s = 0, ∀xm,n,s ∈ xκ , the next solution of the

alternating minimization, xκ+1, can be computed by solving (Q̃). Before proceeding with such com-
putation, we present in Figure 3 the brute-force solutionwhere the objective function of Equation (16)
is evaluated by testing all possible discrete holding time combinations at control point stops from the
set {0, 10, 20, . . . , 90} seconds. As it is presented in Figure 3, the number of holding time combina-
tions that are evaluated is exponential, |q||xm|, where |xm| is the number of active decision variables
at themth optimization time period. Due to the exponential computational cost, this small-scale sce-
nario requires 100,000 evaluations of the potential bus holding combinations for finding the global
optimum; thus, prohibiting the use of brute-force for near real-time optimization.

5.1.3. Demonstrating the computing steps of the alternatingminimizationmethod
In this sub-section, we demonstrate the optimization steps of the alternating minimization method
that reduces significantly the computational complexity of solving program (Q), enabling its appli-
cation for periodical bus holding control. The optimization is performed in a computing machine
with a 2.40 GHz processor and 16GB RAM and the alternating minimization algorithm presented in
Algorithm 1 is programmed in Python 2.7. At each iteration of the alternating minimization, the IQP
program (Q̃) is solvedwith the use of B&B that is also programmed in Python. In addition, the CVXOPT
library in Python is used for solving the QP sub-problems according to Algorithm 2.

Initially, the optimal bus holding solution is set equal to xκ
m = (0, 0, 0, 0, 0) that results in an objec-

tive function score f (xκ ) � 52, 954.07 as it is presented in Figure 4(a). After that, the dwell times are
updated according to Equation (15) and the problem is optimized again with the use of the B&B
method of Algorithm 2 resulting in a new solution xκ+1

m = (0, 90, 0, 20, 0) with an objective function
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Figure 4. Bus holding control with alternating minimization. (a) Alternating minimization and (b) expected passenger waiting
times.

score f (xκ+1) � 45, 571.03. After this step, the dwell times are updated again according to the incum-
bent solution xκ+1

m = (0, 90, 0, 20, 0) and the alternatingminimization terminates at the 11th iteration
because a further improvement cannot be achieved.

Our alternating minimization approach that solves (Q̃) in each iteration for obtaining a solution
of the main program (Q) converges rapidly. In addition, its solution xκ+11

m = (0, 90, 0, 20, 0) s which
is presented in Figure 4(a) is equivalent to the globally optimal solution of Figure 3 obtained after
solving program (Q) with brute-force. Figure 4(b) shows the waiting times of passengers at stops
that are expected to be served by the running trips within the mth optimization period: Rm,s=1 = ∅,
Rm,s=2 = ∅, Rm,s=3 = {n+ 3}, Rm,s=4 = {n+ 3}, Rm,s=5 = ∅, Rm,s=6 = {n+ 2}, Rm,s=7 = {n+ 1, n+ 2},
Rm,s=8 = {n+ 1}, Rm,s=9 = {n, n+ 1}, Rm,s=10 = {n}. The waiting times of the first five running trips
are unaffected by the bus holding control measures because these trips had already served those bus
stops before arriving at a control point stop. In contrary, the effect of the bus holding measures is evi-
dent at the passenger waiting times for trip n+1 at stop 8 (Rm,s=8 = {n+ 1}), for trips n,n+1 at stop
9 (Rm,s=9 = {n, n+ 1}) and for trip n at stop 10 (Rm,s=10 = {n}) resulting in a �14% reduction of the
passengers’ waiting time variance from the desired waiting times.

To demonstrate the optimality gap/computational efficiency of alternating minimization com-
pared to brute-force, we optimize program (Q) in a number of random (idealized) scenarios with
different number of running trips. The results are reported in Table 4.

Theoptimality gapof alternatingoptimization is negligible (order ofmagnitudeof 0–0.1%)because
the alternating minimization relaxes only the dwell times and this relaxation appears to have a small
impact on the computation of the key performance indicator.We should note here that dynamic hold-
ing decisions have to be made within a matter of several seconds. A brute-force solution will thus
become prohibitive when the number of holding decisions exceeds six whereas even ten decisions
can be made by the proposed algorithm at the same performance level.

Table 4. Optimality gap and computational cost of alternating optimization compared to brute-force.

Solution performance (s2) Computational cost

Number of
holding decisions

Brute-Force
(global optimum)

Alternating
optimization Brute-Force

Alternating
optimization

Optimality
gap

5 45,571.03 45,571.03 0.53 s 0.34 s 0.00%
6 53,612.06 53,612.06 5.71 s 0.93 s 0.00%
7 58,341.17 58,341.17 50.01 s 1.82 s 0.00%
8 63,572.07 63,572.07 6min 96 s 2.29 s 0.00%
9 64,671.33 64,675.21 1 h 3min 3.04 s 0.06%
10 73,458.21 73,479.5 11 h 57min 4.62 s 0.03%
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5.1.4. Comparing the time-window-based optimization against the one-headway-based
approach
The proposed periodic bus holding optimization approach can be compared against event-based
approaches such as the one-headway-based approach.

Initially, we solve the same problem with the use of the one-headway-based method. By sim-
ple inspection, it is evident that when bus trip n arrives at the control point stop s= 9 it is
33,060.8−32,741= 319.8 s behind its preceding trip. This results in a passenger waiting time of 159.9 s
which is higher than the targetwaiting time of 150 s. As a result, it is not recommended to hold this trip
at stop s= 9.Whenbus trip n+1 arrives at control point stop s= 9 it is also 33,500.2−33,060.8= 439.4 s
behind its preceding trip, n, and since 439.4 > 2ζs no holding is applied for this trip also.

Following the same approach for the remaining running trips, the resulting solution of the one-
headway-based method is: x = (0, 0, 0, 0, 0) s. Since all bus trips exhibited higher headways than the
target values when they arrived at the control points, no holdingmeasures were applied. This myopic
control approach has inferior performance compared to the time-window-based method because
there are indeed holding time options that can reduce the variance of passenger waiting times when
all running trips are optimized in a holistic manner as demonstrated in Sub-section 5.1.3.

The disadvantage of the time-window-based optimization compared to the one-headway-based
approach is that it relies more on the accurate estimation of the link travel times to determine the
bus holding times. To conduct a fair comparison, we also consider this aspect by introducing a travel
time noise to the near future operations and investigating to what extent the performance of the bus
holding times computed by the time-window-based method are affected by this.

For this purpose, the optimal solution of the periodic optimization x = (0, 90, 0, 20, 0) sec is evalu-
ated with the use of the function:

f (x) =
∑
s∈S

∑
n∈Rm,s

(
am,n,s(x)+

∑s−1
i=1 θn,i − am,n−1,s(x)−

∑s−1
i=1 θn−1,i

2
− ζs

)2

(23)

where each θn,i ∼ N(0, σ 2) is a link travel time noise for the estimated link travel time tm,n,i that follows
the normal distribution with mean value equal to zero and variance σ 2

n,i. Many studies such as Xuan,
Argote, and Daganzo (2011) have used the normal distribution to sample the noise of link travel times
in order to introduce stochasticity. In this validation setting, we also use the normal distribution and
we use the two standard deviations from the mean, σn,i, to set the lower and upper bounds of the
allowed link travel time variations from the estimated value. Note that two standard deviations from
the mean account for 95.45% of the values of a normal distribution.

For our investigation, four main scenarios are generated (one where the standard deviation σn,s of
the normal distribution is equal to 10% of the expected link travel time tm,n,s for each trip n ∈ N and
stop s ∈ S, one where it is equal to 20%, one at 50% and one at 80%). At each one of these four scenar-
ios, we run 1,000 simulations where at each simulation the link travel time noise values are sampled
from the corresponding normal distribution.

The performance of the periodically optimized bus holding times in the presence of noise is com-
pared against the performance of the one-headway-based solution and the results are summarized in
Figure 5. In Figure 5, the Tukey boxplot convention is utilized (plotting the lowest datum still within
1.5 the interquartile range (IQR) of the lower quartile, and the highest datum still within 1.5 IQR of the
upper quartile).

Figure 5 demonstrates the improvement when using the proposed time-window-based holding
solution against using the one-headway-based solution in the presence of different link travel time
noise levels. The time-window-based optimization approach performs better than the one-headway-
based method for travel time noise of 10% and 20%. However, for noise levels of 50% and 80% the
improvement is significantly lower demonstrating that when the estimated link travel time values
deviate significantly from the actual ones the comparison between the two methods is inconclusive.
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Figure 5. Comparative Analysis of the periodic optimization and the one-headway-based approach in the presence of travel time
noise.

Finally, Figure 5 presents also two instances of the results of the one-headway-based bus holding
measures and theperiodic optimizationbusholdingmeasureswhen the actual link travel times exhibit
noise levels of 10% and 80%. An important observation from these two subplots is that the bus hold-
ing measures for noise levels of 10% maintain a passenger waiting time variance close to the desired
passenger waiting times whereas when the noise levels are in the range of 80% thewaiting times vary
significantly from their target values due to bus bunching.

5.2. Application: bus line 1 in stockholm

Our application uses data from the eastbound direction of bus line 1 in Stockholm. Line 1 connects the
main eastern harbor to a residential area in thewestern part of the city through the commercial center.
Detailed, 5-month datasets of Automatic Vehicle Location (AVL) and Automatic Passenger Counting
(APC) data are available for this line that serves 33 bus stops and has four (4) control point stops as
presented in Figure 6.
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Figure 6. Eastbound direction of Bus Line 1 in Stockholm that serves 33 bus stops from which 4 are control point stops.

Figure 7. Relation between the estimated link travel times and their predictors (daily trips and bus stops).

The5-monthAVLdata is used for estimating the link travel timesof the118daily trips that operate in
the eastbounddirection (direction 1) from07:00 until 19:00. The time period 07:00–19:00 is selected as
themain focus area of the daily operations since trips prior to 07:00 and after 19:00 do not experience
significant spatio-temporal link travel time variations due to road traffic.

In this work, we utilize the Support Vector Regression (SVR) method for performing a supervised
learning taskwhere the target values of the training are theobserved link travel times. The SVRmethod
is trainedwith the use of historical data sets of observed link travel times and returns the expected val-
ues tm,n,s presented in Figure 7. If needed, the SVR can be substituted by any other supervised learning
method that can be applied to regression problems.

After that, we perform a time-widow-based bus holding control on the daily operations where the
entire day is split in 10-min periods within which an optimization occurs. For applying the computed
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bus holdingmeasures, we import the Stockholm city network in the open source Simulation of Urban
MObility (SUMO) using OpenStreetMaps. The AVL data from the actual bus operations of one day
was used for replicating the daily operations in SUMO. To this end, we updated automatically the
parameters of traffic scenarios with the use of the Constrained Optimization BY Linear Approximation
(COBYLA) algorithm from the SciPy library in Python. COBYLA computes the optimal parameter values
of traffic flows and traffic signal cycles byminimizing the root-mean-square error (RMSE) between the
actual and simulated arrival times of buses at stops.

COBYLA updates the simulation parameter values at each iteration until reaching an acceptable
RMSE error that indicates that the simulated arrival times of buses at stops are sufficiently simi-
lar to the actual ones, thus allowing us to accept the simulation as a proxy of the real operations.
COBYLA was used for calibrating the simulation parameters as instructed by the guidelines of SUMO.
Calibrating the simulation parameters is a standard process in SUMO and a benchmark calibration
with COBYLA is in Smilowitz et al. (1999). In our case, we adapt this calibration method to our
dataset.

The vehicle parameters of the running buses (i.e. acceleration, max. speed, deceleration, vehicle
length) are communicated to SUMO using an.xml file that follows the guidelines of SUMO (2017).
Table 5 summarizes the main elements of the application that performs |M| = 72 periodic optimiza-
tions from 07:00 until 19:00 and the vehicle parameter values of the simulated bus trips. In addition,
the daily boarding rates expressed as number of boarding passengers per hour are derived from the
APC data. For demonstration purposes, the hourly boardings from 08:00 until 12:00 are presented in
Figure 8.

The results of the bus holding control in the eastbound direction of line 1 in Stockholm are pre-
sented in Figure 9 where the computed bus holding measures at every 10-min optimization horizon
are applied in SUMO. In the same figure, the results of the one-headway-based controlmethod are pre-
sented where the variance of the passenger waiting times from their target values is evaluated every
10min.

Table 5. Application characteristics of the bus holding control in bus line 1, direction 1 operating in Stockholm.

Daily trips Daily period Time-window Daily data Bus holding control Simulation calibration

N= 118 07:00–19:00 δ = 10min AVL & APC Implemented RMSE minimization
|M| = 72 in SUMO of simulated data

Simulation – Bus parameters: acceleration/deceleration/max. speed
2.61 m/s2/4.68 m/s2/100.00 km/h

Figure 8. Number of passenger boardings per hour at each bus stop (from 08:00 until 12:00).
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Figure 9. Results of the bus holding control in the eastbound direction of line 1 in Stockholm.

5.3. Discussion

5.3.1. Simulation results
This work evaluated the performance of the bus holding control measures computed by the pro-
posed time-window-based optimization method and the results of each 10-min time window were
presented in Figure 9. Furthermore, the one-headway-based bus holding method was also applied
in the same scenario resulting in a higher waiting time variance from the desired passenger waiting
times. The main reason behind the improved performance of the time-window-based method com-
pared to the event-based methods is that the proposed time-window-based optimization method
evaluates the bus holding options holistically within each time window; thus, enabling the coordina-
tion of the running buses.

The improvement with the use of the time-window-based optimization method is in the range of
0–17% as it is presented in Figure 9. At some cases, the average waiting time difference of passengers
at stops from the desired values was only 3 s whereas in others increased up to 58 s (i.e. during the
time period 10:00–10:10).

Even if the evaluation analysis of other works such as Fu and Yang (2002) showed that different
event-basedmethods lead to similar passengerwaiting time reductions, this simulation-basedanalysis
demonstrated that the proposed time-window-basedmethod can improve the waiting time variance
of passengers byup to�17%while improving also the average in-vehicle travel timesby�5%because
the time-window-based optimization process considers the slack time and in-vehicle travel time con-
straints. Nevertheless, theperformanceof the time-window-based controlmight deterioratewhen the
timewindowchanges (i.e. it is smaller or larger than 10min). It can alsodeterioratewhen the estimated
link travel times differ significantly from their actual values as presented in Figure 5 for noise levels of
50% and more.

5.3.2. Sensitivity analysis of the time interval of a periodic optimization
In the simulation of bus line 1 in Stockholm the time interval of an optimization time window was
set to 10min and the daily period from 07:00 until 19:00 was split into |M| = 72 sub-periods. A differ-
ent time interval has an impact on time-window-based optimization, but does not affect event-based
approaches because they only optimize the holding time of one bus at a time. Therefore, we perform a
sensitivity analysis of the time-window-based holding solution for different timewindow intervals and
we report the results in Figure 10. This sensitivity analysis is performedby runningmultiple simulations
using the simulation scenario described in Sub-section 5.2 and changing only the time window inter-
vals of the time-window-based control. The external factors of the simulation scenario are the same as
in Sub-section 5.2 for limiting the bias in our comparison.
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Figure 10. Daily standard deviation of the Passenger Waiting times per trip when applying the time-window-based approach and
the one-headway-based approach for different time intervals ranging from 2 to 20min.

Keyobservations fromFigure 10 are: (i) for a very small time interval of the time-window-basedopti-
mization the results are very similar to the event-based approach. This can be explained because in a
very small time window (i.e. 2min) we cannot coordinate toomany buses, thus resembling the event-
based method which makes holding decisions for one bus at a time; (ii) the waiting time variation is
reduced when using time intervals for the periodic optimization in the range of 8–10min; (iii) increas-
ing the time intervals of the periodic optimization beyond a certain value (10min in our application)
deteriorates the solution performance because our coordinated holdings do not have the opportunity
to make use of real-time information to adjust accordingly in case of travel time changes.

5.3.3. Limitations of the proposed time-window-based bus holdingmethod
• Our control method adjusts the holding times of buses at stops and is therefore suitable for cor-

recting the effects ofmild disruptions to the service regularity. In the case of severe disruptions, bus
operators should consider more radical measures such as changes in the planned service provision
and resource allocation (i.e. rescheduling, trip cancellation, short-turning, expressing).

• Our holding method is designed for high-frequency services with headways of up to 12min.
• Ourwork is suitable in the context where service supply is sufficient to ensure that there are no pas-

sengerswho are unable to board due to overcrowding. In contextswhere this assumption is invalid,
wewould have to add thewaiting times of stranded passengers to our objective function, resulting
in a different optimization problem that will strive to optimize both the headway variability and the
bus load.

6. Conclusion

This study proposed a time-window-based bus holding method for improving the waiting time vari-
ance of passengers from the plannedwaiting time values. Time-window-based holding has been pro-
posed by Eberlein, Wilson, and Bernstein (2001) and extended by Delgado, Munoz, and Giesen (2012)
and Sánchez-Martínez, Koutsopoulos, and Wilson (2016). Our approach further advances this stream
of research by considering the domino effects due to holding with the use of multi-constrained mod-
eling that addresses potential schedule sliding(s). In addition, it introduces a novel solution method
using alternating optimization that solves an IQP at each iteration with B&B which proves to return a
solution within a reasonable time (Figure 4(a)).

The performance of our approachwas evaluated against the one-headway-basedmethodwith the
use of different travel time noise scenarios. Our holding control exhibited an improved performance
withwaiting timevariance improvements of up to 17% in some specific timeperiods. Nevertheless, the
analysis demonstrated that if the estimated link travel times differ significantly from the actual ones
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(i.e. noise levels of 50% ormore) the computed control measures of the time-window-based approach
have an equivalent performance with the control measures of the one-headway-based method.

Although the effect of the travel time noise was considered in the validation phase, the developed
time-window-based model does not consider the travel time stochasticity when computing the bus
holdingmeasures. Works in event-based bus holding control such as Hickman (2001) have considered
the stochasticity of travel times in simple holding models that hold a bus at only one control point
stop. However, the complex nature of the time-window-based optimization that requires the simulta-
neous determination of the holding times of all running trips complicates the computation of holding
measures with stochastic optimization and this can be a very interesting topic for future investigation.

Finally, the vast majority of dynamic bus holding works – with the exception of the recent works of
Wu, Liu, and Jin (2017, 2018) – have not considered insofar the effect of holdingmeasures on bus loads
thatmight yield increasedwaiting times to passengers who are unable to board due to overcrowding.
Although this effect is not covered in our study and is not considered as a key performance indicator
of regularity-based services (Trompet, Liu, and Graham 2011), it is worth to be investigated in future
research along the direction of the works of Wu, Liu, and Jin (2017, 2018).
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