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Temporal neural operator for 
modeling time-dependent physical 
phenomena
Waleed Diab1 & Mohammed Al Kobaisi1,2

Neural Operators (NOs) are machine learning models designed to solve partial differential equations 
(PDEs) by learning to map between function spaces. Neural Operators such as the Deep Operator 
Network (DeepONet) and the Fourier Neural Operator (FNO) have demonstrated excellent 
generalization properties when mapping between spatial function spaces. However, they struggle 
in mapping the temporal dynamics of time-dependent PDEs, especially for time steps not explicitly 
seen during training. This limits their temporal accuracy as they do not leverage these dynamics in the 
training process. In addition, most NOs tend to be prohibitively costly to train, especially for higher-
dimensional PDEs. In this paper, we propose the Temporal Neural Operator (TNO), an efficient neural 
operator specifically designed for spatio-temporal operator learning for time-dependent PDEs. TNO 
achieves this by introducing a temporal-branch to the DeepONet framework, leveraging the best 
architectural design choices from several other NOs, and a combination of training strategies including 
Markov assumption, teacher forcing, temporal bundling, and the flexibility to condition the output on 
the current state or past states. Through extensive benchmarking and an ablation study on a diverse 
set of example problems we demonstrate the TNO long range temporal extrapolation capabilities, 
robustness to error accumulation, resolution invariance, and flexibility to handle multiple input 
functions.

Keywords  Neural operators, Scientific machine learning, Climate modeling, Weather forecast, Carbon 
sequestration

Time-dependent Partial Differential Equations (PDEs) are fundamental tools for modeling the dynamic 
behavior of complex physical, biological, and environmental systems, including fluid dynamics, heat transfer, 
wave propagation, and biological processes. Despite their widespread applicability, significant challenges hinder 
their use in real-world scenarios. Many problems lack analytical solutions, necessitating computationally 
intensive numerical simulations. Moreover, incomplete or uncertain knowledge of the underlying physics can 
lead to inaccuracies in model formulation. In domains such as climate and weather forecasting, the availability 
of vast observational data presents both an opportunity and a challenge: integrating large-scale heterogeneous 
datasets–often marred by noise, gaps, and inconsistencies–into high-fidelity simulations requires advanced data 
assimilation techniques and substantial computational resources1,2. These limitations underscore the need for 
alternative approaches that can effectively leverage available data while mitigating computational and modeling 
burdens.

In recent years, machine learning for scientific computing applications has gained wide spread popularity 
due to its high potency in handling large volumes of data. Physics-Informed Neural Networks (PINNs)3 have 
been introduced as a deep learning framework that can learn nonlinear dynamics by incorporating physical 
laws, expressed as partial differential equations (PDEs), directly into the loss function; thus ensuring that the 
model adheres to the governing physical principles while fitting observed data. However, PINNs have not 
shown significant computational gains compared to traditional numerical methods, particularly when dealing 
with large-scale simulations or stiff systems, where the iterative nature of training deep neural networks can 
result in slower run-times and higher resource consumption4–6. Neural operator learning, which aims to learn 
mappings between function spaces rather than individual point-wise solutions, was later introduced through 
the Deep Operator Network (DeepONet)7. This approach enables models to generalize more effectively across 
varying inputs and provides a significant advantage in handling diverse physical systems. Architectures like 
the DeepONet7 and the Fourier Neural Operator (FNO)8 exemplify this approach. These architectures have 
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demonstrated superior scalability and computational efficiency when solving complex partial differential 
equations, especially in large-scale and high-dimensional problems.

While neural operators7–13 provide a promising approach to address the challenges of solving time-dependent 
PDEs, they often struggle with extrapolation beyond the temporal training horizon10,14–17. This limitation 
hampers their effectiveness for long-term predictions, as performance typically degrades when forecasting 
solutions beyond the temporal range of the training set. Moreover, these architectures often rely on fixed spatio-
temporal grids which further reduces their flexibility in handling variable resolutions.

In this work, we introduce the Temporal Neural Operator (TNO), a novel neural operator architecture 
that enables simultaneous generalization to new PDE instances and temporal extrapolation beyond the 
training dataset with negligible error accumulation over time. The TNO extends the DeepONet framework 
by introducing a novel temporal branch and by incorporating architectural elements and training strategies 
inspired by prior Neural Operator (NO) research7,8,10,18,19. The TNO architecture includes several design 
components that contribute to its performance. First, the branch network of the TNO includes an encoder 
layer, a processing layer, and a nonlinear activation. The encoder is inspired by the Fourier Neural Operator 
(FNO)8, where a linear transformation is used to lift the input functions into a higher-dimensional latent space. 
This lifting step is critical, as the raw input function space may not sufficiently capture the complexity of the 
operator learning domain. The subsequent processor layer serves as a feature extractor that enables the network 
to learn a compact representation of the target solution space. This processor may take various forms, including 
feedforward neural networks (FNNs), recurrent neural networks (RNNs), long short-term memory (LSTM) 
networks, convolutional neural networks (CNNs), U-Nets, or spectral/Fourier layers. The choice of architecture 
is problem-dependent; in this study, we consistently employ a U-Net architecture due to its proven efficacy 
in feature extraction9,20–24. Second, the trunk network is implemented as an FNN to provide a continuous 
representation over the spatio-temporal domain. This continuity enables interpolation in time and supports 
temporal super-resolution. This design choice aligns with earlier work on operator learning over continuous 
input spaces7,10. Third, inspired by the Multiple-input Operator Network (MIONet)18, we introduce a temporal 
branch (t-branch) that explicitly models the temporal dynamics of the system. Like the branch, the t-branch 
consists of an encoder, a processor, and an activation layer. The t-branch architecture may differ from that of the 
branch, provided the latent representations produced are of compatible dimensions to permit a valid Hadamard 
(element-wise) product during fusion. Finally, a decoder maps the fused latent representation back to the output 
solution space. This component is also influenced by the FNO8 design. Although we employ an FNN decoder to 
maintain continuity in the output field, alternative choices such as CNNs may achieve comparable performance 
depending on the application.

To enable resolution-agnostic training and inference, we apply downsampling to the input fields before 
processing them with the U-Net/CNN and then apply corresponding upsampling to the output. These operations 
allow the TNO to handle data across a range of discretizations and to perform super-resolution prediction. We 
use interpolation-based schemes (e.g., bilinear) to preserve spatial smoothness and reduce aliasing artifacts. 
To further mitigate this issue, we note that the initial condition provided to the TNO is given at the target 
output resolution. As a result, the network directly predicts the temporal evolution at the desired spatial scale, 
significantly reducing the risk of losing fine-scale structures during downsampling or upsampling.

Building on Brandstetter et al.19, we apply temporal bundling, whereby the model predicts a block of future 
timesteps in a single forward pass. Bundling cuts the number of inference steps, which limits cumulative 
distribution shifts and curbs error growth over long roll-outs. During training, we optionally employ 
teacher forcing, a sequence learning strategy in which the model is provided with the ground-truth values of 
previous timesteps rather than its own predictions. This technique helps stabilize learning and reduces error 
accumulation in autoregressive rollout. In combination, these architectural and training strategies enable the 
TNO to effectively capture both spatial and temporal dependencies, while improving computational efficiency, 
accelerating training, and reducing long-term prediction error. This results in a flexible and scalable framework 
for learning parametric solution operators of time-dependent PDEs.

In this work, we propose a simple trick that enables the TNO to learn 3D problems by conditioning on 
one spatial axis (e.g., depth or level), which allows it to learn 2D slices independently using 2D operations. 
This approach leads to significant reductions in training cost. This trick is demonstrated in our first example 
of a 3D global daily air temperature prediction, along with long-term temporal extrapolation. In the second 
example, we showcase the TNO’s zero-shot super-resolution capability using historical daily observational air 
temperatures over Europe. Here, the TNO is trained on historical air temperature data at a 0.25◦ grid resolution, 
and tested on future air temperature data at a 0.1◦ grid resolution. The TNO demonstrates superb performance 
in the simultaneous temporal extrapolation and super-resolution with high accuracy and error invariance to 
resolution. In the third example, we validate the TNO’s ability to generalize across diverse input functions and 
variables on a carbon sequestration dataset which tracks both saturation and pressure buildup. Despite the 
limited number of available time steps, the diversity of PDE variables, and the complexity of the problem, the 
TNO achieves robust temporal extrapolation and generalization performance. The three examples presented 
herein encapsulate the versatile potential of TNO to tackle complex, time-dependent real-world problems. 
Overall, we make the following key contributions:

•	 Architecture We introduce the temporal-branch (t-branch), encoder layers and U-Net blocks in the branch 
and t-branch, we replace the dot product with the Hadamard product, and introduce a decoder Feed-Forward 
Neural Network (FFN).

•	 Training We devise a flexible training strategy with temporal-bundling to encourage stable long rollouts into 
the future and reduce error accumulation, as well as teacher forcing for accelerated training.
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•	 Flexibility The TNO is a flexible framework which can be conditioned autoregressively or on a memory of 
past states.

•	 Efficiency We demonstrate how to utilize the strong generalization capabilities of the TNO to model 3D prob-
lems using 2D operations.

The combination of strong generalization to multiple new PDE parameters, long accurate temporal extrapolation 
with minimal error accumulation, flexible input and output step size, in addition to the TNO low memory 
footprint, and super resolution capabilities, positions the TNO as the State-Of-The-Art in neural operator 
learning for time dependent PDEs. To strengthen this claim, the TNO capabilities are demonstrated on three 
real-world challenging problems.

Time-dependent partial differential equations
Time-dependent partial differential equations (PDEs) describe the spatio-temporal evolution of a solution, 
denoted as u(t, x), across a temporal domain t ∈ [0, T ] and a spatial domain x = [x1, x2, ..., xm] ∈ X ⊆ Rm, 
where m is the spatial dimension. We allow u(t, x) ∈ Rn′

 to be either scalar- or vector-valued (so n′ = 1 in the 
scalar case). These PDEs relate the temporal derivative ut to the spatial derivatives ux, uxx,..., through a general 
functional form F, such that:

	 ut = F (t, x, u, ux, uxx, ...).� (1)

One way for analyzing the temporal dynamics of these systems is offered by operator learning, which focuses 
on identifying mappings between function spaces. In this context, we define a time evolution operator 
G∆t : R>0 × Rn → Rn′

, where n is the number of spatial degrees of freedom at a given time after discretization, 
and n′ is the dimensionality of the output (often n′ = n, but not necessarily). Specifically, the solution at a future 
time t + ∆t is obtained by applying this operator to the spatial profile of the solution at the current time t, 
denoted as u(t, ·):

	 u(t + ∆t) = G∆t(t, u(t, ·)).� (2)

The operator G acts on function spaces, mapping u ∈ U  to u′ ∈ U ′, where the input function u ∈ U  is mapped 
to the output function u(t + ∆t) ∈ U ′. Here, u : X → Rn, u′ : X ′ → Rn′

, and the spatial domain is defined 
such that X ∈ Rm, and X ′ ∈ Rm′

. Equation 2 implicitly assumes a Markov property for neural operators, 
where future state of the system depends only on the current state and not on the history of past states. As 
such, we say that the neural operator is autoregressively parametrized. Alternatively, the neural operator can 
be conditioned on the memory of past system states. Consequently, equation 2 can be extended to an arbitrary 
number of input time steps L and output time steps K, where K is the temporally bundled predictions19.

Extending the single-step formulation, we define a history of L past states of the solution as

	 Uhist(t) = {u(t − (l − 1)∆t, ·)}L
l=1,� (3)

and a bundle of K future states as

	 Ufut(t) = {u(t + k∆t, ·)}K
k=1.� (4)

The extended time evolution operator, denoted by GL→K
∆t , maps the input history to the sequence of future 

states:

	 Ufut(t) = GL→K
∆t (t, Uhist(t)).� (5)

More explicitly, this can be written as:

	




u(t + ∆t, ·)
u(t + 2∆t, ·)

...
u(t + K∆t, ·)


 = GL→K

∆t


t,




u(t − (L − 1)∆t, ·)
...

u(t − ∆t, ·)
u(t, ·)





 .

Many architectures25–29 approach neural operator learning of time dependent PDEs by utilizing a memory 
module to keep a compressed memory of the system past states, which is akin to choosing L > 1. On the 
other hand, choosing L = 1 regains the autoregressive approach found in many other architectures11,12,30. 
Choosing L = 1 or L > 1 is problem specific, however, we found that it is always a good idea to choose K > 1 
as it reduces the number of solution calls. Moreover, K = Kmax, that is, predicting all available time steps at 
once may cause a neural operator to lose its ability to learn temporal dynamics, and subsequently the temporal 
extrapolation ability.

The TNO learns the time evolution operator from the data and effectively predicts the future states of the 
system governed by the PDE without explicit knowledge of the underlying differential equation F. This data-
driven approach provides a direct pathway for forecasting the temporal behavior of PDE solutions based on 
observed or computed past states. In theory, a well-trained model can be rolled-out indefinitely; in practice 
however, error accumulation with excessive successive roll-outs render most temporal neural operators useless 
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after a relatively short time horizon. Alternatively, one can obtain predictions for longer time horizons by training 
a temporal operator for large ∆t, which can limit the accumulation of errors, but does not eliminate it entirely.

Temporal neural operator (TNO)
The Deep Operator Network (DeepONet)7 consists of two primary components: a branch network (bi), which 
processes input functions, and a trunk network (tTi), which processes query locations. The learned operator Gθ  
approximates a nonlinear operator that maps an input function v to its output at a query point y, and is expressed 
as:

	
Gθ(v)(y) =

p∑
i=1

bi · Ti =
p∑

i=1

bi(v(x1), v(x2), . . . , v(xm)) · Ti(y).� (6)

The branch network takes as input a discretized representation of the function v, evaluated at a set of predefined 
sensor points {xi}m

i=1. This results in the input vector [v(x1), v(x2), . . . , v(xm)]T , which the branch network 
maps to a feature vector [b1, b2, . . . , bp]T ∈ Rp. The trunk network takes the query location y as input and outputs 
another feature vector [t1, t2, . . . , tp]T ∈ Rp. Here, p is the latent dimension of the learned representation space. 
The output of the DeepONet is the inner product of these two feature vectors which yields Gθ(v)(y).

We extend the DeepONet framework by introducing a temporal branch (t-branch) that processes solution 
snapshots u(t, ·). This t-branch is designed to capture the temporal dynamics of the system and, when trained 
using temporal bundling, enables the model to effectively interpolate and extrapolate in time. The output of 
the proposed Temporal Neural Operator (TNO) is the predicted sequence of future states Ûfut, computed as a 
nonlinear function of the Hadamard product (element-wise multiplication) of the branch, trunk, and t-branch 
outputs. This combined representation is then projected into the output solution space of temporal length K. 
This architecture generalizes the DeepONet by incorporating temporal dynamics directly into the operator 
learning framework:

	 GL→K
θ (Uhist(t))(x) = G (bi(v) ⊙ Ti(t, x) ⊙ tbi(Uhist(t))) , where bi, Ti, tbi ∈ Rp� (7)

where G is the projection to the solution space of size K in time. Here, p denotes the latent dimension of the 
learned representation space, shared across the outputs of the branch, trunk, and temporal-branch networks. 
The Hadamard product combines these three p-dimensional feature vectors into a unified representation, which 
is then mapped by the projection operator G : Rp → RK×d, parametrized as a multilayer perceptron (MLP), to 
predict the future solution sequence Ûfut(t).

As an example, with L = 1 and K = 3, we illustrate how the TNO operates at a given time step t0. The 
input to the TNO at time t0 consists of the triplet {u(t0, ·), (t0, ·), v(t0, ·)}, where (t0, ·) represents the full 
spatio-temporal coordinate field, and v(t0, ·) denotes an auxiliary time-dependent input function (e.g., a forcing 
term or coefficient field). The network predicts a bundle of future solution states {û(t1, ·), û(t2, ·), û(t3, ·)}; 
see Fig. 1 for a visual summary of the training procedure using temporal bundling. Note that this example is 
used solely for illustrative purposes. In practice, the values of L and K are chosen empirically and vary across 
benchmark problems based on prior knowledge of the system’s temporal dynamics, desired prediction horizon, 
and computational considerations. This flexibility highlights a key strength of the TNO architecture, which can 
adapt to different problem settings and rollout strategies.

Temporal bundling enables the TNO to produce multiple future steps in a single forward pass, thereby 
improving efficiency and training stability. Once the initial bundle is predicted, the final output û(t3, ·) is reused 

Fig. 1.  TNO architecture with temporal bundling training procedure. In this figure, L = 1 and K = 3 as an 
example.
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as part of the next input for autoregressive rollout. During training, if teacher forcing is employed, the ground 
truth u(t3, ·) is used instead to stabilize learning and mitigate error accumulation.

The architecture of the TNO is illustrated in Fig. 1 and described in detail next. We remark here that we use 
a U-Net in both the branch and t-branch networks. 

	1.	 Lift the input functions v(ti, ·) and the full solution history Uhist(t) = {u(t − (l − 1)∆t, x)}L
l=1 to sepa-

rate latent representation spaces using two independent linear encoders Pb and Ptb: 

	

hb(v) = Pb(v(ti, ·)) ∈ Rp,

htb(Uhist(t)) = Ptb(Uhist(t)) ∈ Rp.
� (8)

	 The branch encoder processes the input function v, while the t-branch encoder processes the full temporal his-
tory of the solution Uhist. Each encoder maps its input into a latent space of dimension p, but these mappings 
are learned independently.

	2.	 Process the aligned latent representations through U-Net architectures in both the branch and t-branch. 
To handle variability in spatial resolution, the latent feature maps hb(v) and htb(Uhist(t)) are first passed 
through 2D adaptive average pooling to produce a fixed spatial resolution. The pooled features are then 
processed through separate U-Net blocks, followed by bilinear upsampling to restore the feature maps to the 
original spatial resolution H × W  of the input function or data grid: 

	

qb = AdaptiveAvgPool2d(hb(v)) ∈ Rp×S×S ,

qtb = AdaptiveAvgPool2d(htb(Uhist(t))) ∈ Rp×S×S ,

Ub = U-Netb(qb) ∈ Rp×S×S ,

Utb = U-Nettb(qtb) ∈ Rp×S×S ,

Ũb = Upsample(Ub) ∈ Rp×H×W ,

Ũtb = Upsample(Utb) ∈ Rp×H×W .

� (9)

	  We found that it is often beneficial to set the pooling resolution S × S to the lowest available input 
resolution, as this reduces memory usage and improves training efficiency. In practice, it may not be necessary 
to explicitly define or tune S, as the resolution can be inferred from the data or heuristically selected. This 
combination of adaptive pooling, U-Net, and upsampling allows the network to generalize across inputs of 
varying spatial resolutions while maintaining high representational capacity. It decouples the input resolution 
from the network architecture, enabling the model to operate on arbitrary grid sizes during inference without 
retraining.

	3.	 Encode the spatio-temporal coordinates using the trunk network. The trunk takes as input the coordinates 
(t, x), where t ∈ R denotes the time, and x ∈ Rm denotes the spatial location. These coordinates are passed 
through a fully connected feedforward neural network fθ , typically with nonlinear activation functions (e.g., 
hyperbolic tangent), to produce a feature vector in the latent space Rp: 

	 Ti(x, t) = fθ(x, t) ∈ Rp×H×W .� (10)

	  The trunk features ti(x, t) serve as the coordinate-dependent embedding that interacts with the out-
puts of the branch and t-branch through an element-wise (Hadamard) product.

	4.	 The full TNO output can be written in operator form as: 

	 Ûfut(t)(x) = GL→K
θ (Uhist(t))(x) = G

(
Ũb(x, t) ⊙ Ũtb(x, t) ⊙ Ti(x, t)

)
,� (11)

	 where GL→K
θ  denotes the learned operator mapping a temporal history of L past solution states to a bun-

dled prediction of K  future time steps, ⊙ is the Hadamard product along the latent feature dimension 
p, and G : Rp → RK  is a shared MLP decoder applied pointwise over the spatial domain. The output 
GL→K

θ (Uhist(t)) ∈ RK×H×W  represents a temporally bundled solution over the full spatial grid.

The TNO architecture is implemented in PyTorch and trained on an NVIDIA Tesla V100 GPU. The ADAM 
optimizer is used to minimize the mean square error (MSE) loss between the predicted and ground truth 
solutions. The same U-Net architecture is employed for both the branch and temporal branch across all examples. 
Additional architectural details are provided in Supplementary S1, and summarized in Supplementary Table S1.
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Results
Weather forecast for European air temperature
The E-OBS (European Observations) dataset31 is a high-resolution observational climate dataset designed 
for analyzing climate variability and long-term trends across Europe. It covers a broad geographical region 
(approximately 25◦N − 71.5◦N × 25◦W − 45◦E) and includes several decades of daily mean temperature 
measurements. A key feature of E-OBS is its high spatial resolution, available at 0.1◦ and 0.25◦, corresponding to 
regular grids of size 705 × 465 and 201 × 464, respectively. This fine-grained spatial coverage enables detailed 
regional weather and climate analysis. Unlike datasets generated or constrained by numerical models, E-OBS 
is constructed directly from European weather station observations. As a result, the dataset presents unique 
challenges for learning-based models: spatial gaps, temporal discontinuities, and evolving coverage patterns 
introduce inconsistencies that the TNO must learn to handle during training and inference.

For this experiment, we train the TNO with an input bundle size of L = 1 and an output bundle size of 
K = 4, using daily mean temperature and pressure fields as input variables. The training set spans 9,000 days 
from 1997 to 2022. Validation is performed on 360 days from January 1, 2022, to December 26, 2022, and testing 
is conducted on 360 days from January 1, 2023, to December 26, 2023. All training and testing are conducted on 
the lower-resolution version of the dataset (0.25◦, corresponding to a 201 × 464 grid). To evaluate the TNO’s 
resolution invariance, an additional high-resolution test set (0.1◦, 705 × 465) is constructed for the period 
December 26, 2022, to December 31, 2023. This setup allows us to assess whether the TNO can generalize to 
unseen spatial resolutions without retraining.

The training, validation, and testing datasets are standardized using z-score normalization computed from 
per-pixel statistics of the training set. Each training sequence is structured into bundles of nine time steps: the 
first snapshot serves as the initial condition, followed by two rollout windows of size four for autoregressive 
supervision. More details on the training and hyperparameters are provided in Supplementary S2. This dataset 
highlights several key capabilities of the TNO architecture:

•	 Forecasting under real-world observational noise and gaps the TNO effectively learns from gridded observa-
tional data with missing values and temporal-spatial inconsistencies, showcasing robustness to incomplete or 
imperfect datasets.

•	 Multi-day sequence prediction with minimal historical context with an input sequence length of L = 1, the 
TNO successfully generates forecasts over a multi-day horizon (K = 4), demonstrating its ability to model 
short-term atmospheric dynamics with limited history.

•	 Generalization to unseen high-resolution spatial grids the TNO accurately forecasts temperature fields on a 
higher-resolution grid (0.1◦) at test time, despite being trained exclusively on lower-resolution data (0.25◦), 
indicating resolution-invariant generalization.

Results of weather forecast for European air temperature
To evaluate the TNO performance for regional weather forecasting, we utilize a blind test dataset from the year 
2023. During testing, the TNO is initialized with initial conditions comprising daily mean air temperature, 
pressure, and the spatial grid. The model then performs two autoregressive rollouts of size 2 × K , predicting air 
temperatures across successive eight-day intervals. After each prediction cycle, a new initial condition is drawn 
from the ground truth to initialize the next rollout window. This approach simulates a realistic deployment 
setting, where updated observational data is periodically supplied and the model forecasts the near-future 
temperature evolution.

The mean absolute error (MAE) and root mean square error (RMSE) of the predicted temperatures per time 
snapshot is shown in 4, with an overall MAE of 2.68◦C across all snapshots. The results indicate that the TNO 
does not incur significant error accumulation over successive rollouts. Two qualitative examples of predicted 
air temperatures for May 06, 2023 and November 12, 2023 are shown in Figures 2a and 3a, respectively, both of 
which demonstrate excellent agreement with the ground truth. However, it seems that the TNO slightly struggles 
with capturing temperature extremes, which can be observed in the northern most parts of Europe (Fig. 2a, 
where some smoothing also accrues. Two additional trajectories at the lower 0.25◦ resolution are shown in 
Supplementary Figs. S1a and S2a under Supplementary S3. These findings underscore the TNO’s effectiveness in 
temporal extrapolation and its ability to maintain stable prediction quality over extended forecasting horizons.

To assess the TNO’s resolution invariance, we employ a second testing dataset for the same period (2023), 
rendered at a higher resolution of 0.1◦. Remarkably, the TNO achieves an overall MAE of 2.83◦C on this 
dataset–without any additional training or fine-tuning–highlighting the model’s capacity to generalize across 
spatial resolutions. The per-snapshot MAE and RMSE for the high-resolution test set is shown in Fig. 4, and 
corresponding predicted temperature fields for May 06, 2023 and November 12, 2023 are visualized in Figures 2a 
and 3a, respectively. These results further demonstrate the robustness and versatility of the TNO in handling 
variations in spatial discretization while maintaining high predictive accuracy. Despite the excellent agreement 
between the low and high-resolution tests, testing with super resolution data only seems to exacerbate the TNO 
struggle with temperature extremes, as can be seen in Northern parts of Europe and the Middle-East in Fig. 
2b. The smoothing effect is less prevalent in Fig. 3 where the temperature gradient is lower. Two additional 
trajectories at the finer 0.1◦ resolution are shown in Supplementary Figs. S1b and S2b. To improve the TNO 
performance in the super-resolution task, we can opt for fine-tuning the TNO with high-resolution data during 
inference, or train the TNO on both low and high-resolution data simultaneously. Both of these approaches can 
be implemented easily. However, this is beyond the scope of this paper which focuses on the raw performance 
of the TNO.
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Fig. 3.  Qualitative testing performance of the TNO - Winter 2023.

 

Fig. 2.  Qualitative testing performance of the TNO - Summer 2023.
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Ablation study
To asses the contribution of the individual components in our TNO, we evaluate three ablated variants alongside 
the full TNO on the 2023 coarse-grid test set (0.25◦):

•	 TNO without t-Branch the temporal branch is removed, so predictions rely only on the branch (U-Net) and 
trunk.

•	 TNO without U-Net both the branch and temporal branch U-Net blocks are replaced by MLPs.
•	 One step TNO without t-Branch combines the previous two ablations (no t-branch and K = 1).
•	 One step TNO the full TNO architecture (t-branch, U-Net) but predicting one step at a time (K = 1), i.e. no 

temporal bundling.
•	 Full TNO the complete architecture as presented, with t-branch, U-Net spatial encoders, and temporal bun-

dling (L = 1, K = 4).

Figure 4 presents hlper time snapshot RMSE and MAE for these variants on both the coarse (top row) and fine 
(bottom row) grids. On the coarse grid, removing the temporal branch (TNO without tBranch) roughly 
doubles both RMSE and MAE and also eliminates the model’s grid-invariance capability. Replacing the U-Net 
with MLPs (TNO without UNet) leads to a significant increase in spatial error, underscoring the importance 
of deep spatial feature extraction. The combined ablation (OneStep TNO without tBranch) performs 
comparably to TNO without tBranch, indicating that temporal bundling alone cannot compensate for the 
absence of the t-branch. Overall, the Full TNO achieves the lowest RMSE and MAE across all forecast snapshots, 
validating the complementary roles of the U-Net, temporal branch, and temporal bundling. It is worth noting, 
however, that the performance improvement of the U-Net compared to the FNN remains modest. This is likely 
due to the low number of input channels (temperature and surface pressure), which limits the need for deep 
multiscale spatial encoding. Both input fields are relatively smooth and correlated, allowing even the simpler 
FNN-based variant to achieve competitive performance. Note that the ablation experiments were repeated with 
multiple random seeds. Since the results showed low variance across runs, we report outcomes from a randomly 
selected seed.

Fig. 4.  MAE (left) and RMSE (right) on the coarse (top) and fine (bottom) grids. “Multistep” denotes temporal 
bundling (K = 4), “Onestep” predicts one step at a time.

 

Scientific Reports |        (2025) 15:32791 8| https://doi.org/10.1038/s41598-025-16922-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Benchmark comparisons
We compare the full TNO against several state-of-the-art neural operators on the 2023 test sets at both coarse 
(0.25◦) and fine (0.1◦) resolutions. The baselines are:

•	 DeepONet (one-step) Vanilla DeepONet trained autoregressively to predict one day ahead (K = 1), without 
temporal bundling.

•	 DeepONet (multi-step) Vanilla DeepONet with temporal bundling (L = 1, K = 4), predicting four days in 
each forward pass.

•	 Fourier-DeepONet32: A Fourier Neural Operator variant adapted for temporal extrapolation with the same 
bundling (L = 1, K = 4).

•	 TNO (full) The Temporal Neural Operator with t-branch, U-Net spatial encoders, and temporal bundling 
(L = 1, K = 4).

Figure 4 (top row) reports per-snapshot RMSE and MAE for these methods on the coarse grid, while the bottom 
row reports similar results for the fine grid predictions. On the coarse grid, the Full TNO consistently achieves 
the lowest MAE and RMSE at all lead times, outperforming both OneStep and Multi step DeepONets and the 
Fourier-DeepONet by a wide margin. When evaluated at the higher 0.1◦ resolution without any retraining, 
the Full TNO’s error increases only marginally, whereas Fourier-DeepONet and the DeepONet variants suffer 
substantial degradation. These results demonstrate the TNO’s superior accuracy, stability over long horizons, 
and robustness to changes in spatial resolution.

Climate modeling for global air temperature
Modeling the Earth’s climate involves simulating complex, nonlinear, and multi-scale dynamics across interacting 
systems such as the atmosphere, oceans, land, and ice. Traditional approaches, like General Circulation Models 
(GCMs)33, solve time-dependent partial differential equations (PDEs) governing fluid flow, heat transfer, and 
radiation. They are computationally expensive and rely on parameterizations for unresolved processes fraught 
with uncertainty. Recent machine learning advancements, including foundation models34,35, offer data-driven 
alternatives but still require vast datasets and compute budgets36. In contrast, the TNO presented here is designed 
as a lightweight, computationally efficient framework for solving time-dependent PDEs directly from spatio-
temporal data, making it a practical tool for scientific modeling in resource-constrained settings.

Our objective in this experiment is to leverage the TNO to efficiently and accurately model the spatio-
temporal evolution of global air temperature, while reducing computational costs and enabling forecasts across 
all atmospheric pressure levels. This experiment demonstrates three core capabilities of the TNO:

•	 Long-term temporal extrapolation The TNO accurately forecasts global air temperature fields over a five-year 
horizon, demonstrating strong extrapolation performance beyond the temporal range seen during training.

•	 Vertical generalization across pressure levels The model successfully interpolates and extrapolates temperature 
fields at atmospheric pressure levels not included in the training set, highlighting its ability to generalize 
across the vertical dimension.

•	 Computationally efficient 3D modeling via 2D operations By treating the 3D spatio-temporal climate data as 
a collection of 2D slices conditioned on pressure levels, the TNO leverages 2D convolutional architectures to 
efficiently learn in a high-dimensional setting.

•	 Unified multi-level forecasting Unlike models trained on individual pressure levels, the TNO uses a single 
architecture to forecast temperature fields across all levels simultaneously, this reduces model complexity and 
improves generalization.

To evaluate these capabilities, we use the NCEP/NCAR Reanalysis 1 dataset37, which provides daily mean air 
temperature fields on a global 144 × 72 spatial grid (2.5◦ resolution) across 16 pressure levels, spanning from 
1948 to the present. For this experiment, we use data from January 1, 2010 to December 31, 2015 for training, 
January 1, 2016 to December 31, 2018 for validation, and January 1, 2019 to December 31, 2023 for testing.

The temporal branch receives a history of air temperature fields Thist(t), while the branch network is 
conditioned on the atmospheric pressure level P. This formulation allows the TNO to both interpolate and 
extrapolate air temperature across pressure levels, while treating the 3D temperature field as a series of 2D 
slices. To demonstrate this, we train the TNO using data from 12 out of the 16 available pressure levels: 
{1000, 925, 850, 600, 300, 250, 200, 150, 70, 50, 30, 20} mb, holding out 4 pressure levels for 
evaluation.

The dataset was standardized using z-score normalization computed from per-pixel statistics of the training 
set. We define the temperature field at time t and pressure level index p as Tp(x, y, t), where (x, y) denotes spatial 
coordinates on the global grid. For each training example, we construct an input tensor Thist,p ∈ RH×W ×L, 
representing the temperature field at pressure level p over L past time steps. The corresponding target is a tensor 
T̂fut,p ∈ RH×W ×K , representing predicted temperatures at the same level over the next K  time steps. In this 
experiment, we set both the input and output sequence lengths to one year: L = K = 365. During training, 
the TNO is provided with five years of daily temperature data, spanning from January 1, 2010 to December 31, 
2015. The model is trained across 12 distinct pressure levels from the available dataset, with each level treated 
as a separate input condition to the branch network. To improve training efficiency and promote cross-level 
generalization, pressure levels are batched in groups of four. That is, during each training step, the TNO receives 
a batch of four temperature tensors Thist,p corresponding to four distinct pressure levels, and jointly predicts the 
corresponding future sequences T̂fut,p. For each year and pressure level p, the temporal branch receives an input 
tensor Thist,p ∈ R144×72×365 from year t, and the TNO predicts T̂fut,p for year t + 1, using the corresponding 
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ground truth as supervision. This process is repeated sequentially across all training years and level batches. 
Finally, we use teacher forcing during training, where ground truth sequences are used to guide future prediction 
and accelerate convergence. During inference, the TNO generates multi-step forecasts by recursively using 
its own predictions as input. Additional training details and hyperparameter configurations are provided in 
Supplementary S4.

Results of global air temperature forecast
To evaluate the performance of the TNO, we use a blind test set comprising five 
years of daily mean air temperature data, spanning all 16 atmospheric pressure levels 
{1000, 925, 850, 700, 600, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 20} mb, from January 
1, 2019 to December 31, 2023. This setup is designed to test the TNO’s ability to (i) extrapolate temperature 
fields forward in time, and (ii) interpolate and extrapolate across pressure levels not included in training. The 
evaluation metric used is the relative L2 error, computed across all spatial grid points and time steps.

This task represents a challenging generalization scenario in which the TNO must forecast into an unseen 
temporal domain and make predictions at pressure levels it has not encountered during training. As shown in 
Fig. 5d, the TNO achieves strong performance in both respects, with a mean relative L2 error of 0.016. The error 
is generally higher at higher-altitude (lower-pressure) levels, likely due to data imbalance across pressure levels 
in the training set.

Additionally, at 1000 mb–the lowest atmospheric level–the TNO achieves accuracy on par with the Ditto 
transformer38, which was trained specifically for that level and for the same extrapolation period. However, 
unlike Ditto, the TNO generalizes across all levels with a single unified model. Figure 5a and   5b show a 
visual comparison between the TNO’s predictions and the ground truth air temperature fields at 1000 mb for 
selected dates from the testing period (2020–2023), while Fig. 5c show a visual comparison between the TNO’s 
predictions and the ground truth air temperature fields at 700 mb. Additional qualitative and quantitative results 
are provided in Supplementary S5, where two more examples of air temperature fields at 1000 mb are shown in 
Supplementary Fig. S3, and three additional examples of air temperature field at various other pressure levels are 
shown in Supplementary Fig. S4.

Geologic carbon sequestration
In geological carbon sequestration (GCS), captured CO2 is injected into deep subsurface formations for 
long-term storage, thereby reducing atmospheric emissions39. Accurate predictions of CO2 plume migration 
and pressure evolution are essential for ensuring containment, optimizing injection strategies, and satisfying 
regulatory monitoring requirements. Modeling GCS processes involve complex, coupled multiphase flow and 
transport governing PDEs. Simulations are computationally demanding, as they must span decades and account 
for site-specific heterogeneities40–42.

In this final example, we employ the TNO to model CO2 plume migration and pressure buildup in an 
underground geological storage site. We utilize the dataset published in9 to evaluate the TNO’s performance for 
GCS problems. The same dataset was used in our earlier work10 to train various neural operator architectures; 
however, none of those architectures, including9, were able to extrapolate well beyond the temporal training 
horizon of the dataset. In this work, we evaluate the TNO’s ability to (i) extrapolate plume migration and pressure 
buildup over extended timescales, and (ii) generalize across varying geological conditions, embedding both the 
elliptic and hyperbolic PDE dynamics in its learned operator.

Training and inference for GCS
We base our experiments on the benchmark GCS dataset from9, which comprises 5,500 realizations of input–output 
mappings for gas saturation Sg  and pressure buildup ∆P . Each realization contains solutions at 24 successively 
coarsening time snapshots {1 day, 2 days, 4 . . . , 323 days, 1.3 years, . . . , 21.1 years, 30 years}. The original 
split (9:1:1) allocates 4,500 realizations for training, 500 for validation, and 500 for testing. To evaluate long-term 
extrapolation, we restrict both training and validation to the first 16 snapshots {1 day, . . . , 1.8 years}, reserving 
the final 8 snapshots {2.6 years, . . . , 30 years} for blind testing of temporal extrapolation and generalization.

Each input realization consists of four spatial fields–horizontal permeability kx, vertical permeability 
ky , porosity ϕ, and perforation height hperf (each ∈ RH×W )–and five scalars: initial reservoir pressure Pinit, 
injection rate Q, temperature T , capillary scaling λ, and irreducible water saturation Swi. The outputs are the 
saturation field Sg ∈ RH×W  and pressure buildup field ∆P ∈ RH×W . We direct the readers to the original 
paper9 for more details on the reservoir description, the numerical simulation, the generation of the field maps 
and all other sampling techniques for the inputs.

Our objective in this experiment is to leverage the TNO to efficiently and accurately model the spatio-
temporal evolution of CO2 plume migration and pressure buildup in subsurface formations, while reducing 
computational cost and enabling long-term forecasts under heterogeneous geological conditions. This 
experiment demonstrates three core capabilities of the TNO:

•	 Long-term temporal extrapolation Evaluate forecasting accuracy for saturation and pressure fields over mul-
ti-decadal horizons beyond the training time window (t > 1.8 years).

•	 Generalization to unseen geological conditions Test robustness to new input functions including diverse per-
meability, porosity fields, and well-configuration not seen during training.

•	 Coupled multiphysics modeling Examine the TNO’s capacity to concurrently capture elliptic pressure dynam-
ics and hyperbolic saturation transport within a unified operator framework.
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Following the TNO architecture (Fig. 1), the four input fields and five scalars are encoded by the branch network; 
the initial condition Sg(x, y, t0), ∆P(x, y, t0) is processed by the t-branch, and the temporal grid is handled by 
the trunk. We set the history length and forecast horizon to L = 1 and K = 3, respectively, during training and 
testing. More information about training and hyperparameters can be found in Supplementary S6.

Fig. 5.  Testing performance of the TNO for Global Temperature Forecast. Note that the initial condition of 
year 2019 are excluded from the error calculation.
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Results of geologic carbon sequestration
To assess the performance of the TNO in simultaneous generalization and temporal extrapolation tasks for both 
CO2 saturation and pressure buildup, we utilize the testing dataset which consists of 500 previously unseen 
realizations. Importantly, time snapshots beyond 1.8 years were excluded during training, which allows us to 
classify performance on any time snapshot within the training time range as generalization, and performance 
beyond 1.8 years as simultaneous generalization and temporal extrapolation. The mean absolute error serves as 
the primary metric for quantifying TNO performance. For CO2 saturation specifically, error calculations are 
restricted to the CO2 saturation plume region, as saturation values outside this area remain zero. Figure 6 shows 
the MAE for the saturation 6a and for the pressure buildup 6b. Both figures clearly demonstrate that the TNO 
effectively generalizes and extrapolates to unseen realizations of gas saturation and pressure buildup, as well as 
to time snapshots not included in the training data. There is, however, a slight decline in solution quality towards 
the end of the temporal domain, which is to be expected since we are further out in the extrapolation. Figures 7 
and 8 show an example of CO2 saturation plume and CO2 pressure buildup towards the end of the extrapolation 
period, respectively. Two more examples of CO2 saturation plume with different input parameters are shown in 
Supplementary Figs. S5 and S6, and two additional pressure buildup examples with different input parameters 
are shown in Supplementary Figs. S7 and S8 under Supplementary S7).

Fig. 7.  An example of CO2 saturation performance in simultaneous extrapolation and generalization. Row 
1: Input reservoir properties: radial permeability (kr), vertical permeability (kz), and porosity (ϕ). Row 2: 
Ground truth saturation field. Row 3: TNO predicted saturation. Row 4: Absolute error.

 

Fig. 6.  Evaluation metrics of simultaneous generalization and extrapolation to unseen realizations and time 
snapshots for all CO2 saturation and pressure buildup (dP) time snapshots. Extrapolation begins after 1.8 
years. Results are averaged over 500 realizations.
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Discussion
This paper introduces the Temporal Neural Operator (TNO) for reliable generalization and temporal 
extrapolation of parametric time-dependent PDEs. The TNO’s performance was evaluated across three distinct 
problem domains: forecasting global air temperature across all atmospheric levels for climate modeling, 
predicting regional air temperatures for Europe and adjacent regions, and modeling flow and transport in 
geologic carbon sequestration, involving the tracking of CO2 saturation plume and pressure buildup. Despite 
the diverse nature of these problems and the unique challenges posed by their respective datasets, the TNO 
consistently demonstrated remarkable performance. These results further highlight our model’s versatility in 
handling complex spatio-temporal dynamics across various scientific applications.

The TNO addresses several longstanding challenges in Scientific Machine Learning (SciML). Namely, 
simultaneous long-term extrapolation and generalization, grid invariance, computational efficiency and low 
memory foot-print. The TNO is a lightweight, efficient architecture that can operate seamlessly on a single off-
the-shelf GPU. For example, in the climate modeling problem, the TNO utilizes only 7.5 GB of GPU memory 
(see Table 1 for a complete summary on TNO performance). The TNO requires about 3.63 seconds per epoch 
(batch size of 4) for a total training time of only 7.2 minutes. Moreover, we take advantage of the generalization 
properties of the TNO to interpolate between atmospheric levels, which reduces the complexity of the 3D 
problem to a 2D learnable problem without any loss of information. By feeding the spatio-temporal grid to the 
trunk of the TNO, we learn the temporal dimension through a feed-forward neural network, further reducing 
the dimensionality of the problem. Importantly, the dimensionality reduction techniques applied in this example 
are confined to the learning process and do not alter the problem formulation itself. This level of flexibility and 
adaptability underscores the TNO’s robust learning capacity and efficiency.

In the weather forecasting problem, the TNO grid invariance capabilities were demonstrated. The TNO is 
trained on air temperature data of resolution 0.25◦ taken from the E-OBS (European Observations) dataset31. 
TNO is then tested on unseen data with a resolution of 0.1◦. The accuracy in the temporal extrapolation task is 
quite remarkable given that no additional training or fine-tuning was needed, despite the inherent challenges 
in the dataset due to missing sensor data in some daily measurements and the changing areal coverage of the 

Dataset Trainable parameters (Million) GPU memory (GB) Time/Epoch (s)

Global temperature forecast 0.12 6.4 39.0

European temperature forecast 39.4 12.2 3.63

Carbon sequestration - GS 2.66 4.3 211.0

Carbon sequestration - dP 7.41 7.5 447.0

Table 1.  Performance summary of the TNO.

 

Fig. 8.  An example of pressure buildup (dP) performance in simultaneous extrapolation and generalization. 
Row 1: Input reservoir properties: radial permeability (kr), vertical permeability (kz), and porosity (ϕ). Row 2: 
Ground truth pressure buildup field. Row 3: TNO predicted pressure buildup. Row 4: Absolute error.
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dataset. Moreover, while the resolution generalization study in the E-OBS dataset focuses on horizontal spatial 
refinement, we note that extending this to homogeneously refined 3D grids (e.g., including vertical atmospheric 
levels) may introduce additional challenges due to the increased spatial variability and anisotropy. We expect the 
TNO to remain effective when the initial conditions are defined on the target resolution, but further empirical 
validation is needed to fully characterize performance under vertical refinement.

In the geological carbon sequestration problem, the TNO was trained on data representing the first two years 
of CO2 storage, corresponding to 16 time steps. Despite the limited temporal scope of the training data and the 
inherent complexity of the problem, the TNO demonstrated exceptional capabilities. It effectively generalized to 
new instances of the problem, which involved nine varying PDE parameters, while simultaneously extrapolating 
temporal dynamics for up to 30 years. This performance highlights the TNO’s robustness and reliability, even in 
scenarios with limited data.

Data availability
The raw data required to reproduce the European temperature forecasts is available from the EU-FP6 pro-
ject UERRA https://www.uerra.eu and the Copernicus Climate Change Service, and the data providers in the 
ECA&D project https://www.ecad.eu. The raw data required to reproduce the global temperature forecasts are 
available on the NOAA Physical Sciences Laboratory website (https://psl.noaa.gov/data/gridded/index.html). 
The raw data required to reproduce the geologic carbon sequestration dataset is available on ​h​t​t​p​s​:​​​/​​/​d​r​i​v​​e​.​g​o​o​
g​l​​e​.​c​​​o​m​/​d​r​i​​​v​e​/​f​o​​l​d​​e​r​s​/​​1​f​Z​Q​​f​​M​n​_​v​s​​j​K​U​X​A​f​​​R​V​0​q​_​g​​s​w​t​l​8​​J​E​​k​V​G​​o​?​u​s​p​=​s​h​a​r​i​n​g and in the U-FNO paper4. For 
more information about the data used in the study please contact the corresponding author.
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