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Part I

I N T R O D U C T I O N A N D T H E O R E T I C A L B A C K G R O U N D





1
I N T R O D U C T I O N T O H A M I LT O N - J A C O B I E Q U AT I O N S

The study of Hamilton-Jacobi equations has garnered significant interest in recent years
due to its wide-ranging applications across numerous fields. These equations emerge
from various contexts, including control problems, mean–field games and large devia-
tion theory.

In this thesis we focuses on well-posedness of Hamilton-Jacobi equations and their
application to the large deviation theory. Specifically, we will explore the following ques-
tions:

• What are the existing limitations and gaps in Hamilton-Jacobi theory, and how
does this thesis contribute to filling these gaps?

• Are there specific examples or cases that existing approaches do not adequately
address? If so, how does this thesis provide a more comprehensive framework to
cover them?

• How does the connection between Hamilton-Jacobi equations and Large deviations
theory lead to new insights, and in what ways does this link extend the scope of
both theories?

We start our discussion with a typical basic example arising from control theory. The
first section offers a basic and informal introduction to the topic and may be skipped by
expert readers already familiar with the subject.

1.1 A T O Y E X A M P L E F R O M C O N T R O L T H E O RY

Consider a scenario in which one wishes to fly from Delft to Naples. The objective is
to reach the destination in an optimal manner, minimising the total cost of the flight.
This cost may be a function of several factors, including fuel consumption, time, and
passenger comfort. It is necessary to control the flight path, speed and altitude in order
to ensure that the objective is achieved. In the field of control theory, this scenario can be
framed as an optimal control problem, where the objective is to minimise a cost function.

In this context, the term y(s) denotes the position of the aircraft at a given time point
s, whereas ẏ(s) represents its velocity. We now introduce the control variable, denoted
by ω : [0,→) ↑ Θ, which maps from the interval [0,→) to the set of parameters that in-
fluence the evolution of the system and are under our control. These parameters include
factors such as engine power, steering, and acceleration, which together determine the
aircraft’s motion. The set of all control variables is denoted by Ctrl.

The motion of the aircraft is then described by the following ordinary differential
equation (ODE):

3
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{
ẏ(s) = f(y(s), ω(s)) t < s < T ,

y(t) = x,
(1.1.1)

where f : R
d ↓ Θ ↑ R

d represents the effective speed of the system, determined by
the chosen control inputs.

We then denote by yx,ω(s) the solution of the ODE (1.1.1) for a particular choice of
starting point x ↔ R

d and control ω ↔ Ctrl.
In this context, the controlled evolution is associated with a cost functional C, which

represents the cost of flying from Delft to Naples. This functional is typically expressed
as follows:

C(x, t, ω) := g(yx,ω(T )) +
∫

T

t

r(yx,ω(s), ω(s)) ds.

• g(y(T )) is the terminal cost that reflects how well the final state y(T ) meets the
desired target (Naples),

• r(y(s), ω(s)) is the running cost (e.g., fuel consumption),
• t is the starting time when the plane leaves,
• T is the final time when the plane reaches the final destination.

We then ask the following question:
Can we control the system such that we fly from x = yx,ω→(t) to y = yx,ω→(T ) minimizing

the cost?
or, mathematically,
can we find a ω→ such that the following function

v(x, t) = C(x, t, ω→) = inf
ω↑Ctrl

C(x, t, ω)

exists? and is this function unique?
The function v(x, t) is called value function and plays an important role in this thesis.

We will indeed prove that the value function is in some sense a solution to a partial
differential equation (PDE) called Hamilton-Jacobi-Bellman (HJB) equation. In this way,
answering to the question above is equivalent to prove the existence and uniqueness of
a solution (we will explain later in which sense) to the related Hamilton-Jacobi-Bellman
equation.

1.1.1 The Dynamic Programming principle and the related Hamilton-Jacobi-Bellman equation

An essential property of the value function that is significant in optimal control theory
is the Dynamic Programming principle. (DPP)

In this section, we present an informal overview of the principle and demonstrate
how it can be used to derive a Hamilton-Jacobi equation. For a precise statement, we
refer the reader to further sections.



1.1 A T O Y E X A M P L E F R O M C O N T R O L T H E O R Y 5

In general, DPP is based on the idea that to solve a complex problem one can break it
down into simpler sub-problems and solve them sequentially. Let us once more consider
the journey from Delft to Naples. We start from a point x in the space R

d at a time t ↗ 0,
and we consider a first small trip in the small time interval [t, t+ ∆t]. Select any control
parameter, denoted by ε ↔ Θ, and apply the constant control ω(s) ↘ ε over the time
interval [t, t+∆t]. The system evolves to the point yx,ε(t+∆t). At this point, we switch to
the optimal control strategy for the remaining time interval, [t+∆t,T ]. We now calculate
the total cost of the trip.

Over the interval [t, t+ ∆t], the system evolves according to the dynamics:

ẏ(s) = f(y(s),ε), y(t) = x.

The cost for this period is:
∫

t+∆t

t

r(yx,ε(s),ε) ds.

The cost from time t + ∆t to T is the minimum cost starting from yx,ε(t + ∆t), i.e.,
v(yx,ε(t+ ∆t), t+ ∆t). Thus, the total cost is:

∫
t+∆t

t

r(yx,ε(s),ε) ds+ v(yx,ε(t+ ∆t), t+ ∆t), (1.1.2)

optimized over the interval [t, t + ∆t]. The Dynamic Programming principle roughly
states that the value function v(x, t) is the minimum of (1.1.2). To be more precise,

v(x, t) = inf
ε↑Ctrl

{∫
t+∆t

t

r(yx,ε(s),ε) ds+ v(yx,ε(t+ ∆t), t+ ∆t)

}
. (DPP)

The idea behind this principle is that, at any point t, the optimal cost to go from state x
is the sum of:

• The cost accumulated from t to an intermediate time t+ ∆t,
• The optimal cost-to-go from t+ ∆t onward.

We use now (DPP) to obtain the inequality

v(x, t) ≃
∫

t+∆t

t

r(yx,ε(s),ε) ds+ v(y(t+ ∆t), t+ ∆t).

To convert this inequality into a differential form, we rearrange the terms and divide
by ∆t > 0

v(yx,ε(t+ ∆t), t+ ∆t) ⇐ v(x, t)
∆t

+
1

∆t

∫
t+∆t

t

r(yx,ε(s),ε) ds ↗ 0.

Taking the limit as ∆t ↑ 0, we obtain

vt(x, t) +⇒xv(yx,ε(t), t) · ẏx,ε(t) + r(yx,ε(t),ε) ↗ 0. (1.1.3)
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Since yx,ε(·) satisfies the ODE

ẏ(s) = f(y(s),ε), t ≃ s ≃ t+ ∆t, y(t) = x,

we substitute this into (1.1.3), leading to

vt(x, t) + f(x,ε) ·⇒xv(x, t) + r(x,ε) ↗ 0.

This inequality holds for any control parameter ε ↔ Θ, so we can write:

⇐vt(x, t) + sup
ω↑Θ

{⇐f(x, ω) ·⇒xv(x, t) ⇐ r(x, ω)} ≃ 0.

We now prove that the expression above actually equals zero. Suppose that there
exists a control ε→(·) optimizing (DPP), that is,

∫
t+∆h

t

r(yx,ε→(s),ε→(s)) ds+ v(yx,ε→(t+ ∆t), t+ ∆t) = v(x, t).

Rearranging and dividing by ∆t we obtain

v(yx,ε→(t+ ∆t), t+ ∆t) ⇐ v(x, t)
∆t

+
1

∆

∫
t+∆t

t

r(yx,ε→(s),ε→(s)) ds = 0.

Taking the limit as ∆t ↑ 0, and assuming ε→(t) = ε→ ↔ Θ, we have:

vt(x, t) +⇒xv(x, t) · ẏx,ε→(t) + r(x,ε→) = 0,

or equivalently,

⇐vt(x, t) ⇐ f(x,ε→) ·⇒xv(x, t) ⇐ r(x,ε→) = 0,

for some ε→ ↔ Θ. This means that v(x, t) is the solution of the Hamilton-Jacobi equation

⇐ut(x, t) +Hu(·, t)(x) = 0, (1.1.4)

with the Hamiltonian H given by

Hu = sup
ω↑Θ

{⇐f(x, ω) ·⇒xu(x, t) ⇐ r(x, ω)} .

When the Hamiltonian has a representation as the supremum of a function, the equation
is called Hamilton-Jacobi-Bellman equation.

The derivation of the Hamilton-Jacobi-Bellman equation that we have showed above
relies on several assumptions. In particular, the proof sketched above is based on the
assumption of the existence of optimal controls and the regularity of the value function,
specifically its differentiability. Nevertheless, in numerous real-world problems, such
assumptions are overly restrictive.
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For instance, it is possible that the value function will not always be smooth, and
that its differentiability may be compromised. Furthermore, it is not always the case
that optimal controls can be identified. These challenges demonstrate that the classical
approach, while valuable, is not a comprehensive solution for all control problems. It is
therefore necessary to develop a more general framework that can accommodate non-
smoothness and irregularities.

In order to overcome such limitations, we will use the concept of viscosity solution.
Viscosity solutions represent a weak solution concept for Hamilton-Jacobi equations,
offering particular utility in instances where the value function exhibits a lack of regu-
larity. This approach does not necessitate the differentiability of the solution; instead, it
focuses on the definition of the solution through the use of subsolutions and supersolu-
tions.

Viscosity solutions will provide the necessary generalization to handle cases where
classical solutions are inapplicable, ensuring the existence and uniqueness of solutions
even in more complex scenarios.

1.1.2 Viscosity solutions: a conceptual overview

In this section, we provide a heuristic introduction to the concept of viscosity solutions
and show that the value function is indeed a viscosity solution of the Hamilton-Jacobi-
Bellman equation (1.1.4).

The concept of viscosity solutions, introduced by Crandall and Lions in the 80s [CL83],
provides a powerful framework for analyzing Hamilton-Jacobi equations, for example
in optimal control problems where the value function may lack smoothness. Viscosity
solutions are defined through comparisons with test functions, allowing us to make
sense of the solution even when it is not differentiable.

Consider the Hamilton-Jacobi equation

u(x) ⇐Hu(x) = 0. (1.1.5)

The concept of viscosity solutions is built upon the maximum principle. The latter essen-
tially states that if we take two functions, u and f , in the domain of an operator H that
satisfies the maximum principle and we find a point x0 such that

(u⇐ f)(x0) = sup
x

(u⇐ f)(x),

then,

Hu(x0) ≃ Hf(x0).

Heuristically, if H satisfies the maximum principle, u is a classical solution of (1.1.5), ϑ
is a test function in the domain of H and x0 is a point such that

u(x0) ⇐ ϑ(x0) = sup
x

(u⇐ ϑ)(x),
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xx0

u(x)

ϑ(x)

Figure 1: An illustration of ω touching from above u in x0.

by the maximum principle we can then write

0 = u(x0) ⇐Hu(x0)

↗ u(x0) ⇐Hϑ(x0).

This justifies the following informal definition. We will give the precise definition in
Section 1.2.1.

Assume that at some x0, a continuous function u can be "touched from above" by
some smooth function ϑ at x0. By this, we mean that the difference u(x) ⇐ ϑ(x) has a
vanishing (local) maximum in a neighborhood of x0 (see Figure 1).

Then, u is called a viscosity subsolution of the Hamilton-Jacobi equation (1.1.5) if, for
every smooth test function ϑ that touches u from above at a point x0, we have:

u(x0) ⇐Hϑ(x0) ≃ 0.

Similarly, v is a viscosity supersolution if the inequality holds in the opposite direction
when ϑ touches v from below. A viscosity solution is a function that is both a subsolution
and a supersolution.

This definition allows us to extend the concept of solutions to a much broader class
of functions, particularly in cases where classical solutions do not exist or are difficult
to compute.

1.1.3 The value function as a viscosity solution

To conclude the discussion started in Section 1.1, we now provide an informal sketch
of the proof that the value function v(x, t), which represents the minimal cost of the
control problem, is a viscosity solution to the equation (1.1.4). Here we will assume that
the value function is bounded and continuous (but not that it is differentiable).

For a time-dependent Hamilton-Jacobi equation, as the one in (1.1.4), the subsolution
property is translated in the following way:
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If v(x, t) ⇐ ϑ(x, t) has a local maximum in (x0, t0), then

ϑt(x0, t0) ⇐Hϑ(·, t0) ≃ 0.

Assume that (x0, t0) as above exists. To prove that v is a subsolution to (1.1.4) we need
to show that

⇐ϑt(x0, t0) + sup
ω↑Θ

{⇐f(x0, ω) ·⇒xϑ(x0, t0) ⇐ r(x0, ω)} ≃ 0.

Assume by contradiction that this is not true, i.e., assume that there exists a parameter
ω ↔ Θ and a > 0 such that

⇐ϑt(x, t) ⇐ f(x, ω) ·⇒xϑ(x, t) ⇐ r(x, ω) ↗ a > 0, (1.1.6)

for all points (x, t) close enough to (x0, t0). Moreover, since (x0, t0) is a local maximum
of u⇐ ϑ, we can also write

v(x, t) ⇐ ϑ(x, t) ≃ v(x0, t0) ⇐ ϑ(x0, t0), (1.1.7)

for all points (x, t) close to (x0, t0).
Consider now the constant control variable ω(t) ↘ ω for t0 ≃ s ≃ T . If we choose

∆t small such that the dynamics yx0,ω(s) is close to the starting point x0 in the interval
[t0, t0 + ∆t], we can write

⇐ϑt(yx0,ω(s), s) ⇐ f(yx0,ω(s), ω) ·⇒xϑ(yx0,ω(s), s) ⇐ r(yx0,ω(s), ω) > 0.

Using (1.1.7), we find

v(yx0,ω(t0 + ∆t), t0 + ∆t) ⇐ v(x0, t0) ≃ ϑ(yx0,ω(t0 + ∆t), t0 + ∆t) ⇐ ϑ(x0, t0) (1.1.8)

=
∫

t0+∆t

t0

d

dt
ϑ(yx0,ω(s), s) ds

=
∫

t0+∆t

t0

ϑt(yx0,ω(s), s) +⇒xϑ(yx0,ω(s), s) · ẏx0,ω(s) ds

=
∫

t0+∆t

t0

ϑt(yx0,ω(s), s) + f(yx0,ω(s), ω) ·⇒xϑ(yx0,ω(s), s) ds.

In addition, (DPP) provides the inequality

v(x0, t0) ≃
∫

t0+∆t

t0

r(yx0,ω(s), ω) ds+ v(yx0,ω(t0 + ∆t), t0 + ∆t). (1.1.9)

Combining (1.1.8) and (1.1.9), we find
∫

t0+∆t

t0

⇐ϑt(yx0,ω(s), s) ⇐ f(yx0,ω(s), ω) ·⇒xϑ(yx0,ω(s), s) ⇐ r(yx0,ω(s), ω) ds ≃ 0,



10 I N T R O D U C T I O N T O H A M I LT O N - J A C O B I E Q U AT I O N S

that contradicts (1.1.6). This prove that v is a subsolution to the equation

⇐ut + sup
ω↑Θ

{⇐f(x0, ω)⇒xϑ(x0, t0) ⇐ r(x0, ω)} = 0.

The proof that v is also a supersolution follows similarly.
As illustrated above, the concept of viscosity solutions permits one to consider the

case of a non-differentiable value function. It is important to note, however, that the ex-
ample provided above in the context of control theory is just one of numerous instances
where Hamilton-Jacobi equations are encountered. Indeed, these equations can be ob-
served in a variety of contexts, including stochastic control, financial mathematics, and
game theory. In these scenarios, the Hamiltonian can exhibit significantly greater com-
plexity than that considered previously.

We can then ask the following question:
Can we prove the existence and uniqueness of viscosity solutions for a general Hamil-

ton-Jacobi equation? Under which condition on the Hamiltonian and the value func-
tion?

Furthermore, it is worthwhile to consider the journey from Delft to Naples once more.
The flight path is not merely a straight line in Euclidean space; rather, it is subject to the
influence of the Earth’s curvature. It is therefore reasonable to ask whether it is possible
to set up a framework on a general Riemannian manifold. This leads us to a broader in-
vestigation into the properties of Hamilton-Jacobi equations in more complex settings.
When dealing with irregular Hamiltonians or setting the problem on a general Rieman-
nian manifold, it is necessary to adapt the mathematical framework in order to account
for these challenges. This thesis aims to explore these extensions by providing insights
into the conditions needed for the existence and uniqueness of viscosity solutions in
more general cases.

1.2 I N T R O D U C T I O N T O H A M I LT O N - J A C O B I E Q U AT I O N S : C O N C E P T S A N D C O N -
T E X T

In this thesis we study three type of Hamilton-Jacobi equations:
First-order elliptic equations:

f(x) ⇐ ϖH(x,⇒f(x)) = h(x) ϖ > 0; (1.2.1)

First-order parabolic equations:

ϱtf(x, t) + ϖf(x, t) ⇐H(x,⇒xf(x, t)) = 0 ϖ ↗ 0; (1.2.2)

and Second-order elliptic equations:

f(x) ⇐ ϖH(x, f(x),⇒f(x),⇒2f(x)) = h(x) ϖ > 0. (1.2.3)

We will specify later the type of Hamiltonians that we consider and their domains and
the sets in which we consider the above equations. The aim of this work is to study well-
posedness for viscosity solutions of equations of the type as in (1.2.1), (1.2.2) and (1.2.3).
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It is then natural to start introducing the notions of viscosity solutions and comparison
principle. This is done in the following Section 1.2.1. Later, in Sections 1.2.2 and 1.2.4 we
will discuss in details first and second-order Hamilton-Jacobi equations respectively.

1.2.1 Viscosity solutions and comparison principle

Consider the following boundary value problem:

|u↓(x)| = 1 in (⇐1, 1), u(⇐1) = u(1) = 0.

The above problem is known as the “one dimensional Eikonal problem”. Three observations
can be done (see also Figure 2):

1. There is no classical solution, i.e., a C1- function, to the above problem. This is not
hard to show and follows by Rolle’s theorem.

2. There are infinitely many weak solutions, i.e. continuous functions which satisfy
the equation at almost every point (Figure 2 shows three of them).

3. We need a criterion that allows us to choose a single solution in order to ensure the
well-posedness of the problem. For example, if u is a solution almost everywhere,
then ⇐u is also a solution. Therefore, to select a unique solution, we need to avoid
the symmetry, for instance.

This is not an atypical situation. Consequently, it is important to develop a theory that
permits merely continuous functions to serve as solutions to the Hamilton-Jacobi equa-
tion, while also offering a method to identify the appropriate solution from among the
weak solutions to the problem.

The theory of viscosity solutions was introduced by M.G. Crandall and P.L. Lions in the
80s in [CL83]. The notion of a viscosity solution is derived from the concepts of subsolu-
tions and supersolutions. The idea is to “replace” the differential Du(x) at a point x where
it does not exist with the differential Dϑ(x) of a smooth function ϑ touching the graph of
u, from above for the subsolution condition and from below for the supersolution one,
at the point x. We give below the definition. For simplicity, we first consider the case
where E ⇑ R

d is a compact set and the elliptic case. Let H ⇓ C(E)↓C(E) (we identify
H with its graph), ϖ > 0 and h ↔ Cb(E) and consider the following Hamilton-Jacobi
equation

f(x) ⇐ ϖHf(x) = h(x). (1.2.4)

Definition 1.2.1. A bounded, upper semi-continuous function u is a viscosity subsolution
of (1.2.4) if for every ϑ ↔ C1(E) and x0 ↔ E such that u(x0) ⇐ ϑ(x0) = supx u(x) ⇐ ϑ(x),
we have

u(x0) ⇐ ϖHϑ(x0) ≃ h(x0).

A bounded,lower semi-continuous function v is a viscosity supersolution of (1.2.4) if for
every ϑ ↔ C1(E) and x0 ↔ E such that u(x0) ⇐ ϑ(x0) = infx u(x) ⇐ ϑ(x), we have

u(x0) ⇐ ϖHϑ(x0) ↗ h(x0).
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A bounded, continuous function u is a viscosity solution of (1.2.4) if it is both a subsolu-
tion and a supersolution.

An similar definition for the time-dependent version of equation (1.2.4) can be written
similarly. Later, at the end of this section, we will present an equivalent definition of
viscosity solution involving generalized differentials, which we postponed for now to
maintain the clarity of the discussion.

Remark 1.2.2. It is evident that any solution in the classical sense is also a viscosity so-
lution. Conversely, if a viscosity solution u is differentiable at a point x, it satisfies the
equation in the classical sense at that point. Thus, the concept of a viscosity solution
includes that of a classical solution.

We now revisit the Eikonal problem and show that only u1(x) = 1 ⇐ |x| (in red in
Fig. 2) is a viscosity solution. The notion of viscosity solutions thus proves to be an
effective framework for selecting a unique solution among many weak solutions. We
only study what happens in the origin, since this is the critical point of this equation.
Let ϑ ↔ C1(⇐1, 1) be a test function such that

u1(0) ⇐ ϑ(0) = sup
x

(
u1(x) ⇐ ϑ(x)

)
.

In this case, ϑ↓(0) ↔ [⇐1, 1], which implies that u1 satisfies the conditions of a viscosity
subsolution. Furthermore, u1 is also a viscosity supersolution because no function ϑ ↔
C1(⇐1, 1) exists such that

u1(0) ⇐ ϑ(0) = inf
x

(
u1(x) ⇐ ϑ(x)

)
.

For weak solutions with a downward edge, such as the blue and green solutions in
Fig. 2, these functions fail to qualify as supersolutions. Specifically, at the point x where
the edge occurs, for any ϑ ↔ C1(⇐1, 1) such that

u(x) ⇐ ϑ(x) = inf
x

(
u(x) ⇐ ϑ(x)

)
,

we find that ϑ↓(x) ↔ (⇐1, 1), which violates the supersolution condition.
Thus, we conclude that u1 is the unique viscosity solution.
The uniqueness of viscosity solutions is often given in terms of the comparison princi-

ple.

Definition 1.2.3. We say that a Hamilton-Jacobi equation satisfies the comparison princi-
ple if for a subsolution u and a supersolution v we have u ≃ v.

Remark 1.2.4. The comparison principle implies the uniqueness of viscosity solutions.
Indeed, suppose that u and v are two solutions of the same equation satisfying the com-
parison principle. Then, by using that u is a subsolution and v is a supersolution, we get
u ≃ v from the comparison principle. By interchanging the role of u and v, we get the
opposite inequality.
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⇐1 1

⇐1

1

x

y

Figure 2: Visualization of the Eikonal problem. The red curve corresponds to the unique viscos-
ity solution u1(x) = 1⇐ |x|, while the blue and green curves represent weak solutions
with downward edges.

When the set E is not compact, we need to introduce another definition of viscosity
sub-supersolution. This is because in a non-compact setting the point x0 ↔ E such that
u(x0) ⇐ ϑ(x0) = supx u(x) ⇐ ϑ(x) (or u(x0) ⇐ ϑ(x0) = infx u(x) ⇐ ϑ(x)) might not exist.
We solve this issue by considering sequences of optimizers.

Definition 1.2.5. A bounded, upper semi-continuous function u : E ↑ R is called a
(viscosity) subsolution to (1.2.4) if, for all (f , g) ↔ H , there exists a sequence (xn)n↑N ⇓ E
such that

lim
n↔↗

u(xn) ⇐ f(xn) = sup
x↑E

u(x) ⇐ f(x),

lim sup
n↔↗

u(xn) ⇐ ϖg(xn) ⇐ h(xn) ≃ 0.

A bounded, lower semicontinuous function v : E ↑ R is called a (viscosity) supersolution
to (1.2.4) if, for all (f , g) ↔ H , there exists a sequence (xn)n↑N ⇓ E such that

lim
n↔↗

v(xn) ⇐ f(xn) = inf
x↑E

v(x) ⇐ f(x),

lim inf
n↔↗

v(xn) ⇐ ϖg(xn) ⇐ h2(xn) ↗ 0.

In the case where the test functions f ↔ D(H) have compact sub-superlevel sets, the
above definition can be simplified by considering the limit point x0 of the sequences xn.
This is shown in the following lemma.

Lemma 1.2.6. Consider the Hamilton-Jacobi equation (1.2.4).
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(a) Assume that every f ↔ D(H) has compact sublevel sets, and let u : E ↑ R be bounded
and upper semicontinuous. Then, u a viscosity subsolution to (1.2.4) if and only if, for all
(f , g) ↔ H , there exists some x0 ↔ E with

u(x0) ⇐ f(x0) = sup
x↑E

u(x) ⇐ f(x),

u(x0) ⇐ ϖg(x0) ≃ h(x0).

(b) Assume that every f ↔ D(H) has compact superlevel sets, and let v : E ↑ R be bounded
and lower semicontinuous. Then, v is a viscosity supersolution to (1.2.4) if and only if, for
all (f , g) ↔ H , there exists some x0 ↔ E with

v(x0) ⇐ f(x0) = inf
x↑E

v(x) ⇐ f(x),

v(x0) ⇐ ϖg(x0) ↗ h(x0).

Proof. We only show Part (a). Part (b) follows analogously.
First, assume that u is a viscosity subsolution to (1.2.4) and let (f , g) ↔ H . Then, there

exists a sequence (xn)n↑N ⇑ E such that

lim
n↘↗

u(xn) ⇐ f(xn) = sup u(x) ⇐ f(x) =: C,

lim sup
n↘↗

u(xn) ⇐ ϖg(xn) ⇐ h(xn) ≃ 0.

In particular, there exists some n0 ↔ N with

u(xn) ⇐ f(xn) ↗ C ⇐ 1 for all n ↔ N with n ↗ n0.

Since u is bounded, it follows that

f(xn) ≃ 1⇐ C + ⇔u⇔↗ for all n ↔ N with n ↗ n0.

As f has compact sublevel sets, there exists a subsequence (xnk)k↑N with xnk ↑ x0 ↔ E.
Since u(xn) ⇐ f(xn) ↑ C as n ↑ →, it follows that

C = lim
k↔↗

u(xnk) ⇐ f(xnk) ≃ u(x0) ⇐ f(x0),

where in the last step, we used that u is upper semicontinuous and f is continuous.
Therefore, we have shown that

u(x0) ⇐ f(x0) = C = lim
k↔↗

u(xnk) ⇐ f(xnk),

which, since f is continuous, implies that

u(x0) = lim
k↔↗

u(xnk).

Now, since g and h are continuous, we find that

u(x0) ⇐ ϖg(x0) ⇐ h(x0) = lim
k↔↗

u(xnk) ⇐ ϖg(xnk) ⇐ h(xnk)

≃ lim sup
n↘↗

u(xn) ⇐ ϖg(xn) ⇐ h(xn) ≃ 0.

For the other implication, one chooses xn = x0 for all n ↔ N.
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The following discussion, which stems from the above lemma, will play a key role in
our strategy and will appear frequently throughout this thesis.

Suppose we want to prove the comparison principle for

f(x) ⇐ ϖHf(x) = h(x), (1.2.5)

with D(H) = Cb(E), ϖ > 0 and h ↔ Cb(E). We then need to prove that for every sub-
solution u and supersolution v to (1.2.5), u ≃ v. Of course, we want to use the unique
information that we have about u and v, that is, u is a subsolution and v is a superso-
lution. We hence need to consider test functions. Note that the test functions are in the
domain of the Hamiltonian H and keep in mind Lemma 1.2.6. We now perform a trick:

Suppose we can find two Hamiltonians H1,H2 with domains D(H1) and D(H2) re-
spectively, and such that

1. Every viscosity subsolution of (1.2.5) is also a viscosity subsolution of f(x) ⇐
ϖH1f(x) = h(x);

2. Every viscosity supersolution of (1.2.5) is also a viscosity supersolution of f(x) ⇐
ϖH2f(x) = h(x).

If we then prove that for every subsolution u of f⇐ϖH1f = h and every supersolution
v of f ⇐ ϖH2f = h,

sup
x

u⇐ v ≃ 0,

we also automatically proved the comparison principle for f⇐ϖHf = h. The advantage
here is that we can choose the domain of H1,H2 (so we can choose the test functions) as
soon as we prove 1 and 2.

For this reason, we will often work with a pair of Hamilton-Jacobi equations

f ⇐ ϖH1f = h1, (1.2.6)
f ⇐ ϖH2f = h2, (1.2.7)

with ϖ > 0, h1 ↔ Cl(E) and h2 ↔ Cu(E) and H1 ⇓ Cl(E)↓C(E) and H2 ⇓ Cu(E)↓C(E).
In this scenario, we consider the following definitions.

Definition 1.2.7. • We say that a bounded, upper semi-continuous function u is a
viscosity subsolution of the system (1.2.6)-(1.2.7) if it is a viscosity subsolution of
(1.2.6) as in Definition 1.2.5.

• We say that a bounded, lower semi-continuous function v is a viscosity superso-
lution of the system (1.2.6)-(1.2.7) if it is a viscosity supersolution of (1.2.7) as in
Definition 1.2.5.

• We say that the system (1.2.6)-(1.2.7) satisfies the comparison principle if for all u
subsolution of (1.2.6) and v supersolution of (1.2.7), supx u⇐ v ≃ suph1 ⇐ h2.

Essentially, we will consider the scenario of Figure 3.
We conclude this section with a different definition of viscosity solutions that involves

generalized differentials. Even if we will always use the definition via test function, this
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H

H1

H2

comparison
sub

super

Figure 3: In this diagram, an arrow connecting an operator A with operator B with
subscript ’sub’ means that viscosity subsolutions of f ⇐ εAf = h (or ϑtf ⇐
Af = 0) are also viscosity subsolutions of f ⇐ εBf = h (or ϑtf ⇐ Bf = 0).
Similarly for arrows with a subscript ’super’.

version will be part of our discussion about second-order Hamilton-Jacobi equations
in Section 1.2.4. We start with the definition of a notion of derivative for non-smooth
functions that generalize the classical notion of derivative by using the Taylor expansion
at a point.

Definition 1.2.8 (Generalized Derivatives). Let S(d) be the set of d↓ d symmetric matri-
ces. For u ↔ USC(E) and x ↔ E, we define the set

J2,+u(x) :=




(p,X) ↔ R
n ↓ S(d)

∣∣∣∣∣∣
u(z + x) ≃ u(x) + p · z + 1

2
↖X · z, z↙

+ o(|z|2) as z ↑ 0




 ,

and for v ↔ LSC(E) and x ↔ E

J2,≃v(x) :=




(p,X) ↔ R
n ↓ S(d)

∣∣∣∣∣∣
v(z + x) ↗ v(x) + p · z + 1

2
↖X · z, z↙

+ o(|z|2) as z ↑ 0




 .

We call J2,+u(x) the second order Super-Jet of u at x and J2,≃v(x) the second order Sub-Jet
of v at x.

Consider again equation (1.2.4). Recall that the Hamiltonian H can be a function of
x, f(x) and its first and second derivative (we only consider first and second-order equa-
tions). To better illustrate the upcoming concept, let us consider an operator H such that
Hf(x) = H(x, f(x),Df(x),D2f(x)).

Definition 1.2.9 (Viscosity solutions via generalized derivatives). A bounded, upper
semi-continuous function u is a viscosity subsolution of (1.2.4) if

u(x) ⇐ ϖH(x, u(x), p,X) ≃ h(x) for all x ↔ E and for all (p,X) ↔ J2,+u(x).

A bounded, lower semi-continuous function v is a viscosity supersolution of (1.2.4) if

v(x) ⇐ ϖH(x, v(x), p,X) ↗ h(x) for all x ↔ E and for all (p,X) ↔ J2,≃v(x).
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As we said above, the notion of viscosity solutions via generalized gradient will be
part of our discussion in Section 1.2.4 but not of our strategy in the next chapters that
will be, instead, only based on the definition via test functions for both first and second-
order equations. For this reason, we do not give here the proof of the equivalence be-
tween the two notions of viscosity solutions. This equivalence is not difficult to prove
and it is based on the fact that the super-jet and the sub-jet can be rewritten as

J2,+u(x) =
{
(Dϑ(x),D2ϑ(x)) |ϑ ↔ C2(E), u⇐ ϑhas a local maximum at x

}
;

J2,≃u(x) =
{
(Dϑ(x),D2ϑ(x)) |ϑ ↔ C2(E), u⇐ ϑhas a local minimum at x

}
.

1.2.2 First-order Hamilton-Jacobi equations

In this section, we introduce the first-order Hamilton-Jacobi (and Hamilton-Jacobi-Bellman
and Isaacs) equations. Throughout the section we will consider equations of the type

u(x) ⇐ ϖH(x,⇒u(x)) = h(x), (1.2.8)

where ϖ is a positive constant and h is a continuous bounded function, and its time–
dependent version

{
ϱtu(x, t) ⇐H(x,⇒xu(t, x)) = 0, if t > 0,
u(0, x) = u0(x) if t = 0.

We set our equations on an open set E ⇓ R
d.

As mentioned in Section 1.2.1, the theory of viscosity solutions for equations of the
above form was introduced in the 1980s by M.G. Crandall and P.L. Lions in their works
[CL81; CL83] continued with L.C. Evans in [CEL84]. Since then, the question of the
well-posedness of Hamilton-Jacobi equations in the viscosity sense has been a topic
of extensive investigation. Over time, the research has been conducted with the clear
objective of expanding the theory to encompass increasingly general classes.

The following section provides an overview of the typical strategy encountered in
the literature when proving the comparison principle for first-order Hamilton-Jacobi
equations. Later, in the beginning of Chapter 2, we briefly discuss our main motivation
to improve this strategy.

1.2.3 Typical strategy for proving the comparison principle

Consider the static equation (1.2.8). Let u be a subsolution and v a supersolution of
(1.2.8). The aim is to prove the comparison principle, i.e.,

sup
x

u(x) ⇐ v(x) ≃ 0.
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The typical strategy is based on the “doubling variables procedure”. The trick consists in
considering the following auxiliary function

Φϑ(x, y) = u(x) ⇐ v(y) ⇐ |x⇐ y|2
ς2

⇐ ς
(
|x|2 + |y|2

)
.

Since u and v are bounded and USC and LSC respectively, Φϑ is bounded from above,
upper semicontinuous and tends to ⇐→ if |x| ↑ → or |y| ↑ →. Hence, it has a global
maximum (xϑ, yϑ). As the doubling variables procedure is a long and technical method,
we break the discussion into simple steps:

Step 1: We want to prove that xϑ and yϑ converge for ς ↑ 0 to the same point. To this
aim, note that Φϑ(xϑ, yϑ) ↗ Φϑ(0, 0), thus

u(xϑ) ⇐ v(yϑ) ↗ u(0) ⇐ v(0) +
|xϑ ⇐ yϑ|2

ς2
+ ς

(
|xϑ|2 + |yϑ|2

)
.

We then obtain that

2(⇔u⇔L↑(Rn) + ⇔v⇔L↑(Rn)) ↗
|xϑ ⇐ yϑ|2

ς2
+ ς

(
|xϑ|2 + |yϑ|2

)
.

This implies that (xϑ ⇐ yϑ) ↑ 0 as ς ↑ 0, and |xϑ|+ |yϑ| ≃ C⇐
ϑ
.

Step 2: We prove that

|xϑ ⇐ yϑ|2
ς2

↑ 0 as ς ↑ 0.

This follows observing that Φϑ(xϑ, yϑ) ↗ Φϑ(xϑ, xϑ) which implies

|xϑ ⇐ yϑ|2
ς2

≃ v(xϑ) ⇐ v(yϑ) + ς(|xϑ|2 ⇐ |yϑ|2)

≃ v(xϑ) ⇐ v(yϑ) + Cς3/2,

and using that v is lower semicontinuous.
Step 3: We want to use now the subsolution and supersolution properties. For that,

we need to find the right test functions. We know that x ∝↑ Φϑ(x, yϑ) has a maximum at
xϑ, which means

x ∝↑ u(x) ⇐
(
|x⇐ yϑ|2

ς2
+ ς|x|2 + (x⇐ xϑ)

2



has a unique (because of the term (x⇐ xϑ)2) maximum at xϑ. As u is a viscosity subsolu-
tion of (1.2.8), using ϑ1(x) =

|x≃yω|2
ϑ2

+ ς|x|2 + (x⇐ xϑ)2 as test function, we have

u(xϑ) ⇐ ϖH

(
xϑ,

2(xϑ ⇐ yϑ)
ς2

+ 2ςxϑ


≃ h(xϑ).
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Similarly, y ∝↑ Φϑ(xϑ, y) has a maximum at yϑ, which yields

y ∝↑ v(y) ⇐
(
⇐ |xϑ ⇐ y|2

ς2
⇐ ς|y|2 ⇐ (y ⇐ yϑ)

2



has a unique (because of the term ⇐(y ⇐ yϑ)2) minimum at yϑ. Since v is a viscosity
supersolution of (1.2.8), using the test function ϑ2(y) = ⇐ |xω≃y|2

ϑ2
⇐ ς|y|2 ⇐ (y ⇐ yϑ)2, we

obtain

v(yϑ) ⇐ ϖH

(
yϑ,

2(xϑ ⇐ yϑ)
ς2

⇐ 2ςyϑ


↗ h(yϑ).

Step 4: This step shows the reason why this method is called the “doubling variables
procedure”. The title is indeed justified by the first of the following series of equalities
and inequalities:

sup
x

(u⇐ v) ≃ sup
x,y

u(x) ⇐ v(y) ⇐ |x⇐ y|2
ς2

≃ lim inf
ϑ↔0

sup
x,y

u(x) ⇐ v(y) ⇐ |x⇐ y|2
ς2

⇐ ς
(
|x|2 + |y|2

)

= lim inf
ϑ↔0

u(xϑ) ⇐ v(yϑ)

≃ lim inf
ϑ↔0

h(xϑ) ⇐ h(yϑ)

+ ϖ


H

(
xϑ,

2(xϑ ⇐ yϑ)
ς2

+ 2ςxϑ


⇐H

(
yϑ,

2(xϑ ⇐ yϑ)
ς2

⇐ 2ςyϑ



≃ lim inf
ϑ↔0

ϖ


H

(
xϑ,

2(xϑ ⇐ yϑ)
ς2

+ 2ςxϑ


⇐H

(
yϑ,

2(xϑ ⇐ yϑ)
ς2

⇐ 2ςyϑ


.

Step 5: Suppose that

lim inf
ϑ↔0


H

(
xϑ,

2(xϑ ⇐ yϑ)
ς2

+ 2ςxϑ


⇐H

(
yϑ,

2(xϑ ⇐ yϑ)
ς2

⇐ 2ςyϑ


≃ 0,

then, the comparison principle follows.
We used the steps above to move the goal from trying to bound the difference between

a subsolution and a supersolution

sup
x

u(x) ⇐ v(x)

to trying to bound the difference

lim inf
ϑ↔0


H

(
xϑ,

2(xϑ ⇐ yϑ)
ς2

+ 2ςxϑ


⇐H

(
yϑ,

2(xϑ ⇐ yϑ)
ς2

⇐ 2ςyϑ


≃ 0. (1.2.9)

This is typically achieved by leveraging the regularity properties of the Hamiltonian.
Over the past 40 years, the primary goal has been to extend this approach to increasingly
broader classes of Hamiltonians. In the following, we give the typical assumptions on
the Hamiltonian that have been used in the literature to prove (1.2.9).
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Theorem 1.2.10. Consider the Hamilton-Jacobi equation (1.2.8). Suppose the Hamiltonian is
continuous and it satisfies one of the following properties:

(I) H(x, p) = H(x) for every x ↔ E, p ↔ R
d.

(II) p ∝↑ H(x, p) is uniformly coercive, that is,

sup
x↑K

lim
|p|↔↗

H(x, p) = → for every compact K.

(III) There exists a constant C > 0 such that
|H(x, p) ⇐H(y, p)| ≃ C(1+ |p|)|x⇐ y|,
|H(x, p) ⇐H(x, q)| ≃ C|p⇐ q|.

Then,

lim inf
ϑ↔0


H

(
xϑ,

2(xϑ ⇐ yϑ)
ς2

+ 2ςxϑ


⇐H

(
yϑ,

2(xϑ ⇐ yϑ)
ς2

⇐ 2ςyϑ


≃ 0. (1.2.10)

Proof. 1. Assume (I). This means that the limit in (1.2.10) is equal to

lim inf
ϑ↔0

H(xϑ) ⇐H(yϑ)

that vanishes by the continuity of H and the fact that xϑ and yϑ converge to the
same point (by Step 1 above).

2. Assume (II). By the supersolution inequality for v in Step 3, we get

H

(
yϑ,

2(xϑ ⇐ yϑ)
ς2

⇐ 2ςyϑ


≃ 1

ϖ
sup
x

(v ⇐ h) < →.

Then, by coercivity, the sequence pϑ =
2(xω≃yω)

ϑ2
is bounded, allowing us to extract

a converging subsequence pϑk . Then, again by continuity of H and Step 1, we can
conclude that

lim inf
ϑ↔0


H

(
xϑ,

2(xϑ ⇐ yϑ)
ς2

+ 2ςxϑ


⇐H

(
yϑ,

2(xϑ ⇐ yϑ)
ς2

⇐ 2ςyϑ



≃ lim inf
k↔↗


H

(
xϑk ,

2(xϑk ⇐ yϑk)
ςk2

+ 2ςkxϑk


⇐H

(
yϑk ,

2(xϑk ⇐ yϑk)
ςk2

⇐ 2ςkyϑk



≃ 0.

3. Assume (III). Then we can write

lim inf
ϑ↔0


H

(
xϑ,

2(xϑ ⇐ yϑ)
ς2

+ 2ςxϑ


⇐H

(
yϑ,

2(xϑ ⇐ yϑ)
ς2

⇐ 2ςyϑ



≃ lim inf
ϑ↔0

H

(
xϑ,

2(xϑ ⇐ yϑ)
ς2

+ 2ςxϑ


⇐H

(
xϑ,

2(xϑ ⇐ yϑ)
ς2



+H

(
xϑ,

2(xϑ ⇐ yϑ)
ς2


⇐H

(
yϑ,

2(xϑ ⇐ yϑ)
ς2



+H

(
yϑ,

2(xϑ ⇐ yϑ)
ς2


⇐H

(
yϑ,

2(xϑ ⇐ yϑ)
ς2

⇐ 2ςyϑ


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By the Lipschitz assumption, we have

H

(
xϑ,

2(xϑ ⇐ yϑ)
ς2

+ 2ςxϑ


⇐H

(
xϑ,

2(xϑ ⇐ yϑ)
ς2


≃ 2Cς|xϑ|,

H

(
xϑ,

2(xϑ ⇐ yϑ)
ς2


⇐H

(
yϑ,

2(xϑ ⇐ yϑ)
ς2


≃ C|xϑ ⇐ yϑ|

(
1+ 2

|xϑ ⇐ yϑ|
ς2


,

H

(
yϑ,

2(xϑ ⇐ yϑ)
ς2


⇐H

(
yϑ,

2(xϑ ⇐ yϑ)
ς2

⇐ 2ςyϑ


≃ 2Cς|yϑ|.

We can then conclude

lim inf
ϑ↔0


H

(
xϑ,

2(xϑ ⇐ yϑ)
ς2

+ 2ςxϑ


⇐H

(
yϑ,

2(xϑ ⇐ yϑ)
ς2

⇐ 2ςyϑ



≃ 2C

(
ς(|xϑ|+ |yϑ|) +

|xϑ ⇐ yϑ|
2

+
|xϑ ⇐ yϑ|2

ς2


= 0,

where the last equality follows from Step 1 and 2 above.

1.2.4 Second-order Hamilton-Jacobi equations

The discussion of Section 1.2.3 can be applied to a general equation

u(x) ⇐ ϖHu(x) = h(x). (1.2.11)

Then, we saw that the comparison principle sup u ⇐ v ≃ 0 for (1.2.11) follows if a in-
equality of the type

lim inf
ϖ↔↗

H
φ
2
d2(·, yϖ)


(xϖ) ⇐H


⇐φ

2
d2(xϖ, ·)


(yϖ) ≃ 0 (1.2.12)

holds. The estimate (1.2.12), then translates into explicit conditions on H (see Proposi-
tion 1.2.10, with φ ↑ → instead of ς ↑ 0). For second order equations, however, this
strategy fails. Consider the basic example of the Laplacian operator Hf(x) = 1

2∆f(x) =
1
2 Tr

(
D2f(x)

)
. The estimate (1.2.12) translates to

H
φ
2
d2(·, yϖ)


(xϖ) ⇐H


⇐φ

2
d2(xϖ, ·)


(yϖ) = 2φ,

which diverges as φ ↑ →. Starting with the works of [Jen88; JLS88] it was realized that
whereas the first-order viscosity solution method explores the optimizers (xϖ, yϖ) only
in a one-dimensional sense (fix yϖ and vary x for the subsolution part, and fix xϖ and
vary y for the supersolution part), for second-order equations, one needs to explore the
neighborhood of the optimizing points in a two-dimensional sense.

We state the key result, Theorem 3.2, of the user’s guide [CIL92], which is formulated
in terms of the second-order sub- and super-jets defined in Definition 1.2.8.
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Theorem 1.2.11 (A simplified version of Theorem 3.2 of [CIL92]). Let u : R
d ↑ R be

upper semi-continuous and v : R
d ↑ R be lower semi-continuous. Suppose (xϖ, yϖ) is such

that

u(xϖ) ⇐ v(yϖ) ⇐
φ

2
d2(xϖ, yϖ) = sup

x,y


u(x) ⇐ v(y) ⇐ φ

2
d2(x, y)


.

Then for any ς > 0 there exist Xϖ,Yϖ ↔ S(d), such that

(φ(xϖ ⇐ yϖ),Xϖ) ↔ J
2,+

u(xϖ), (φ(xϖ ⇐ yϖ),Yϖ) ↔ J
2,≃

v(yϖ)

with, J2,+
u(x) and J

2,≃
v(y) the closures of J2,+u(x) and J2,≃v(y), and

⇐
(
1

ς
+ 2φ

(
0

0


≃

(
Xϖ 0
0 ⇐Yϖ


≃ φ (1+ 2ς)

(
⇐

⇐


. (1.2.13)

Using now the definition of sub- and supersolution via generalized differentials (Defi-
nition 1.2.9) instead of the definition via test functions (Definition 1.2.5), leads for Hf(x) =
1
2∆f(x) = 1

2 Tr
(
D2f(x)

)
to having to establish the estimate

lim inf
ϖ↔↗

1

2
Tr(Xϖ) ⇐

1

2
Tr(Yϖ) ≃ 0. (1.2.14)

We now perform a “trick”. Conjugate the two right-hand matrices (1.2.13) with the ma-
trix

1′
2

( 
,

one then obtains

1

2

(
Xϖ ⇐ Yϖ Xϖ ⇐ Yϖ
Xϖ ⇐ Yϖ Xϖ ⇐ Yϖ


≃

(
0 0
0 0


.

and one observes that (1.2.14) can be estimated by

1

2
Tr(Xϖ) ⇐

1

2
Tr(Yϖ) =

1

4
Tr

(
Xϖ ⇐ Yϖ Xϖ ⇐ Yϖ
Xϖ ⇐ Yϖ Xϖ ⇐ Yϖ


≃ 0

leading to the desired estimate.
A natural question then is: if we can treat Hf(x) = 1

2∆f(x), can we also treat its
discrete variant 1

Hf(x) =
1

2
[f(x+ 1) ⇐ f(x)] +

1

2
[f(x⇐ 1) ⇐ f(x)]?

1 In probabilistic terms, if we can get well-posedness for the generator of Brownian motion, can we can
well-posedness for the generator of the, in some sense, simpler random walk.
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Clearly, this operator suffers from the same divergence as the Laplacian as in (1.2.14),
but Theorem 1.2.11 is not directly of use either.

We will see in Chapter 6 that we can interpret Theorem 1.2.11 as the construction of
two test functions ϑ,↼ ↔ C2 that are squeezed in between u and v on one-hand and ϖ

2 d
2

on the other. To be more precise:

u(xϖ) ⇐ ϑ(xϖ) = sup u⇐ ϑ and v(yϖ) ⇐ ↼(yϖ) = inf v ⇐ ↼,

and

ϑ(xϖ) ⇐ ↼(yϖ) ⇐
φ

2
d2(xϖ, yϖ) = sup

x,y


u(x) ⇐ v(y) ⇐ φ

2
d2(x, y)


. (1.2.15)

As before, the comparison principle now follows from the estimate

lim inf
ϖ↔↗

Hϑ(xϖ) ⇐H↼(yϖ) ≃ 0.

We will show a new strategy to prove (1.2.15), demonstrating its applicability to differ-
ent types of operators, including the two considered above.
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In recent years, Hamilton-Jacobi (HJ) equations have been shown to be versatile in a
wide range of applications, including control theory and mean-field games. However,
our primary motivation for this research stems from the field of large deviations theory
(LD).

In our quotidian experiences, we frequently encounter predictable patterns: for in-
stance, the outcome of a die roll tends to average 3.5 over repeated trials, or a weather
station records temperatures within a typical range. However, it is the rare and extreme
deviations from these patterns, such as rolling a series of sixes or an unprecedented
heat wave, that can have significant impacts on systems ranging from games to global
infrastructure. The analysis and quantification of these rare events are the focus of a
mathematical framework known as large deviations theory, which aims to explore the
underlying mechanisms giving rise to such phenomena.

“Any large deviation is done in the least unlikely of all the unlikely ways.” - Frank den
Hollander, Large Deviations, ([Hol00]).

Essentially, even though a rare event may seem highly unlikely, it does not happen in
a random or chaotic manner; instead, it follows a particular pattern that is, indeed, the
least improbable of the rare possibilities. This is an important concept in large deviations
theory because we are not just looking at the possibility of rare events but also how
they actually happen. Instead of just saying that a rare event might occur, we want to
understand how it happens in the most probable or typical way given that it is rare.
This is crucial for predicting or modeling rare phenomena, especially when systems are
complex, as it helps us focus on the most likely paths or trajectories that lead to these
rare outcomes.

The first complete framework for large deviation theory was created by Srinivasa
Varadhan in his famous paper from 1966 [Var66] (for which he won the Abel’s prize).
Since then, large deviation theory has grown a lot, with lots of studies linking it to other
areas of mathematics and lots of different uses in the natural sciences. We mention a
few of the most important ones here. In 1979, Freidlin and Wentzell, [FW79], introduced
pathwise large deviations for stochastic processes, which offered a new way of look-
ing at the subject. Ellis, in his work from 1985 [Ell85], looked at the link between large
deviations and statistical mechanics, which led to applications in physics. Dembo and
Zeitouni’s 1998 book introduced lots of new ideas that are now used a lot in large de-
viation theory. Den Hollander’s lectures from 2000 give a detailed overview of large
deviations, with lots of examples and applications.

The connection between pathwise Large deviations for stochastic processes and Hamil-
ton - Jacobi equations was first developed by Fleming [Fle77], who characterized the

25
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large deviation convergence for exit probabilities as convergence of solutions for a se-
quence of Hamilton–Jacobi equations. Later, Evans and Ishii [EI85], and Fleming and
Souganidis [FS86] applied the theory of viscosity solutions to this context, enabling
the approach to cover a wider variety of examples. In 2006, Jin Feng and Thomas G.
Kurtz developed a complete and applicable theory to prove large deviations in a metric
space in their monograph [FK06]. The idea is that the large deviations behaviour of a
sequence of processes Xϑ is encoded in the solution of a Hamilton-Jacobi equation with
the Hamiltonian Hϑ that is expressible in terms of the linear generator of the process. The
Large deviations statement can hence be derived by proving the convergence (in terms
of graph convergence) of Hϑ and uniqueness of viscosity solutions (in terms of compar-
ison principle) for the limiting Hamilton-Jacobi equation. We refer to Section 2.2 for the
detailed discussion about the connection between the two theories.

While the connection between large deviations and Hamilton-Jacobi equations is well-
documented in some specific cases, many intriguing examples emerging from the LD
framework remain unexplored in the HJ existing literature. In particular, examples aris-
ing from biology, biochemistry, and systems with multi-scale dynamics often involve
Hamiltonians that contradict the assumptions typically employed in standard approach-
es. These include irregular or non-differentiable Hamiltonians, non-coercive settings, or
scenarios where viscosity solutions lack the usual smoothness, i.e., many examples fall
outside the setting of Theorem 1.2.10. Our aim is to bridge this gap by developing meth-
ods that extend the well-posedness theory for Hamilton-Jacobi equations to encompass
these cases.

This chapter contains an introduction of the large deviations theory (Section 2.1) and
a discussion about its connection with Hamilton-Jacobi equation (Section 2.2).

2.1 I N T R O D U C T I O N T O T H E L A R G E D E V I AT I O N S T H E O R Y

We start this section by presenting two motivating examples that illustrate the need
for large deviations theory, followed by the formal definition of the large deviations
principle (LDP) and its associated rate function.

Example 1: Rolling a Die and Rare Events
Imagine rolling a standard six-sided die n times. Each roll Xi is independent and takes

one of the values {1, 2, 3, 4, 5, 6} with equal probability 1/6. The average outcome of n
rolls is:

X̂n =
1

n

n

i=1

Xi,

while for a single roll, the expected value is:

E[Xi] =
1+ 2+ 3+ 4+ 5+ 6

6
= 3.5.

As we roll the die more times, we might expect X̂n to get closer to this expected value
of 3.5 (we call this fact the law of large numbers). But what if we ask:
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“how likely is an unusually high average?”.
For example, consider the probability that the average result X̂n exceeds 5, meaning

that the rolls are consistently much higher than expected. Achieving such a high average
requires a series of unusually high rolls, which seems improbable. As n increases, it
becomes increasingly rare to observe averages that deviate significantly from 3.5.

Why Is This Important? The probability of observing such extreme deviations decreases
rapidly as n increases. However, quantifying how quickly this probability decreases is
not immediately obvious. This type of question cannot be answered simply by knowing
the expected value or the typical behavior of the die rolls. Instead, large deviations the-
ory provides the tools to quantify the probabilities of rare and extreme outcomes, which
are critical in applications like risk analysis and decision-making under uncertainty.

Example 2: Empirical average
Now consider a more general setting: let X1,X2,X3, . . . be a sequence of independent

and identically distributed (i.i.d.) random variables, each with the same distribution and
expected value µ = E[X1]. The empirical average of the first n observations is defined
as:

X̂n =
1

n

n

i=1

Xi.

The objective is to understand the behavior of this empirical average as n approaches
→. The analysis will begin with two fundamental facts in probability theory, namely the
law of large numbers and the central limit theorem.

Law of Large Numbers (LLN):
The Law of Large Numbers (LLN) states that as n becomes large, the empirical aver-

age X̂n converges to the expected value µ with high probability. More formally, we have
the following:

X̂n ↑ µ almost surely as n ↑ →.

This result is intuitive: as we observe more and more random variables, their average
becomes closer and closer to the expected value of the underlying distribution.

Central Limit Theorem (CLT):
The Central Limit Theorem (CLT) provides a more precise description of the fluctu-

ations of the empirical average around its expected value for large n. It states that the
distribution of the scaled deviation of X̂n from the expected value µ converges to a nor-
mal distribution as n increases. Specifically, for large n, we have:

X̂n ⇐ µ
ϱ⇐
n

d⇐↑ N (0, 1),
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where ↽2 is the variance of Xi. This means that the empirical average X̂n behaves like
a normal random variable with mean µ and variance ϱ

2

n
for large n. Essentially, for large

n, the probability P

∣∣X̂n ⇐ µ
∣∣ ≃ k⇐

n


(i.e., deviations of order O( 1⇐

n
) from the expected

value µ) can be approximated using the cumulative distribution function (CDF) of the
standard normal distribution.

We call deviations of order O( 1⇐
n
) small deviations.

We can summarize the two facts above with Figure 4.

µ

1→
n

Figure 4: The Law of Large Numbers (LLN) and the Central Limit Theorem (CLT) for the empir-
ical average. As the sample size n increases, the distribution of the empirical average
(colored curves) becomes more concentrated around the mean (µ), represented by the
dashed line. The horizontal segment highlights the decreasing standard deviation of
the empirical average, which is proportional to 1→

n
.

Large Deviations Principle (LDP):
Suppose now we want to calculate the probability of a large deviation for the empiri-

cal mean X̂n, specifically:

P(X̂n ↗ µ+ a),

where a > 0 is a fixed constant. This represents the probability that the empirical mean
exceeds the expected value µ by an amount a, which is independent of the number of
observations n. Since this deviation is of order O(1), the fluctuations described by the
central limit theorem, which are of order O(1/

′
n), cannot be applied here. Instead, we

need tools from large deviations theory to quantify the probability of such rare events.
We will compute this probability step by step. We begin by rewriting the probability:

P(X̂n ↗ µ+ a) = P (Sn ↗ n(µ+ a)) ,

where Sn =


n

i=1Xi. By Markov’s inequality, for any ω > 0, we have:

P(Sn ↗ n(µ+ a)) = P(eωSn ↗ eωn(µ+a)) ≃ E[eωSn ]

eωn(µ+a)
.
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The moment generating function of Sn is given by E[eωSn ] =
(
E[eωX1 ]

)n
= enΛ(ω), where

Λ(ω) = lnE[eωX1 ] is the log-moment generating function of X1. Substituting this, we
obtain:

P(Sn ↗ n(µ+ a)) ≃ en(Λ(ω)≃ω(µ+a)).

To tighten the bound, we minimize the exponent over ω > 0. The optimal ω→ satisfies
the equation:

Λ↓(ω→) = µ+ a,

where Λ↓(ω) = d

dω
Λ(ω) is the derivative of the log-moment generating function. Substi-

tuting ω→ back, we find:

P(X̂n ↗ µ+ a) ≃ e≃nI(µ+a),

where I(µ+ a) is the rate function, defined as:

I(µ+ a) = sup
ω>0

{ω(µ+ a) ⇐ Λ(ω)} .

Hence, for large n, the probability P(X̂n ↗ µ+ a) behaves approximately as:

P(X̂n ↗ µ+ a) ∞ e≃nI(µ+a).

More generally, we can write

lim
n↔↗

1

n
ln


P


n

i

Xi ↗ nx


= ⇐I(x).

We say that if X1,X2, . . . are i.i.d. random variables, the distributions of the averages
(X̂n)n satisfy the large deviation principle with rate function I . This is known as Cramer’s
theorem (see [Cra38] or [CT22] for details). With the above examples in mind, we write
now the formal definition of rate function and large deviations principle.

We consider X a Polish space, that is a complete separable metric space. Moreover, for
a random variable Xn we call Pn ↔ P(X ) the law of Xn, that is, Pn(A) = P(Xn ↔ A).

Definition 2.1.1 (Rate function). A function I : X ↑ [0,→] is called a rate function if it is
lower semicontinuous and not identically +→.

A rate function I(x) is said to be good if its level sets

{x ↔ X : I(x) ≃ φ}, for all φ ↔ [0,→),

are compact subsets of X .

Since we will always consider good rate functions, we will often refer to them simply
as “rate functions”.
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Definition 2.1.2 (Large Deviations Principle). A sequence of random variables {Xn}n⇒1

satisfies the Large Deviations Principle (LDP) with rate function I(x) if, for any Borel
measurable set A ⇓ X ,

⇐ inf
x↑A↓

I(x) ≃ lim inf
n↔↗

1

n
lnP(Xn ↔ A⇑) ≃ lim sup

n↔↗

1

n
lnP(Xn ↔ A) ≃ ⇐ inf

x↑A
I(x),

where A⇑ and A denote the interior and closure of A, respectively.

In numerous applications, the focus is not restricted to isolated outcomes, but extends
to the evolution of entire trajectories of a stochastic process over time. This naturally
leads to the study of pathwise large deviations, which extend the large deviations frame-
work to stochastic processes. Rather than analyzing a sequence of random variables, the
focus is now on the likelihood of rare behaviors in the paths of a process. These paths
represent the system’s evolution over a time interval, capturing how it behaves at every
point in time.

For instance, in the context of physical systems, it may be of interest to understand
how a particle moves along an atypical trajectory over time. Similarly, in the domain of
finance, the study of the rare event of a stock price following an unexpected trend can
provide valuable insight. In such scenarios, pathwise large deviations provide a quan-
titative framework for evaluating the probabilities of such rare trajectories. A crucial
reason why pathwise large deviations are important is that they provide insight into
the limiting behavior of stochastic processes. The rate function, which assigns a "cost"
to each trajectory, has two main roles. Firstly, it quantifies how unlikely a path is. Sec-
ondly, it characterizes the most probable way in which rare events occur. This enables
us to describe the asymptotic behavior of the process and identify its limiting properties
in a mathematically rigorous way.

In this thesis, we will focus on pathwise large deviations for Markov processes.

2.2 C O N N E C T I O N B E T W E E N L D T H E O R Y A N D H J E Q U AT I O N S

To explain the connection between large deviations and Hamilton-Jacobi equations, and
in particular to understand the method of Feng and Kurtz, we are naturally led to the
framework of semigroup theory. The key idea is that the evolution of probabilities in
Markov processes can be described by a linear semigroup, while the study of large de-
viations introduces a nonlinear semigroup that emerges from a logarithmic transforma-
tion of the linear one. These semigroups play a central role in deriving large deviation
principles and connecting them to Hamilton-Jacobi equations. To set the stage, we intro-
duce the necessary notations and definitions.

Let E denote a Polish space (complete, separable metric space). We consider a Markov
process X = (Xt)t⇒0, defined by its transition probabilities P (t, x,A) = P(Xt ↔ A |
X0 = x), where t ↗ 0, x ↔ E, and A is a Borel subset of E. Associated with X , we define
the following semigroups:
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Definition 2.2.1 (Linear Semigroup). Let B(E) be the space of bounded measurable
functions on E. The linear semigroup {S(t)}t⇒0 corresponding to the Markov process
X is given by

S(t)f(x) :=
∫

E

f(y)P (t, x, dy),

for f ↔ B(E).

The semigroup property S(t+s) = S(t)S(s) follows from the Chapman-Kolmogorov
equation, which states that the transition probabilities satisfy:

P (t+ s, x,A) =
∫

E

P (t, x, dy)P (s, y,A), ∈x ↔ E,A ⇑ E.

Definition 2.2.2 (Nonlinear Semigroup). Given a sequence of Markov processes {Xn}n↑N,
let their transition probabilities be denoted by Pn(t, x, dy). The nonlinear semigroup
{Vn(t)}t⇒0 associated with Xn is defined as

Vn(t)f(x) :=
1

n
log

∫

E

enf (y)Pn(t, x, dy),

for f ↔ Cb(E).

Note that we can write

Vn(t)f(x) :=
1

n
log

(
Sn(t)e

nf (x)
)
.

Then, the semigroup property Vn(t+ s)f = Vn(t)(Vn(s)f) for Vn holds because:

Vn(t+ s)f(x) =
1

n
log

(
Sn(t+ s)enf (x)

)
.

Since Sn(t) is a semigroup, Sn(t+ s) = Sn(t)Sn(s), so:

Sn(t+ s)enf (x) = Sn(t)
(
Sn(s)e

nf
)
(x).

Substituting this into the expression for Vn(t+ s), we get:

Vn(t+ s)f(x) =
1

n
log

(
Sn(t)(e

nVn(s)f )(x)
)
.

Applying the definition of Vn(t) again, this simplifies to:

Vn(t+ s)f(x) = Vn(t)(Vn(s)f)(x).

After introducing the semigroup framework, we now turn to a key technical condi-
tion required to establish a large deviation principle: exponential tightness. Exponential
tightness ensures that the probability measures under consideration do not spread their
mass too widely in the space, but instead concentrate their mass in compact regions of
the state space, with the probability of escaping these regions decaying exponentially
fast as the scaling parameter n ↑ →.
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Definition 2.2.3 (Exponential Tightness). Let {Pn}n↑N be a sequence of probability mea-
sures on E. We say that {Pn}n↑N is exponentially tight if for every M > 0, there exists a
compact set KM ⇑ E such that:

lim sup
n↔↗

1

n
logPn(K

c

M
) < ⇐M ,

where Kc

M
= E \KM is the complement of KM .

We say that a sequence of Markov processes {Xn} is exponentially tight if the se-
quence of their transition probabilities {Pn} is exponentially tight.

We now present the first theorem, which provides the necessary conditions for estab-
lishing the large deviation principle.

Theorem 2.2.4 (Theorem 5.15 of [FK06]). Let {Vn(t)}t⇒0 be the nonlinear semigroups asso-
ciated with the sequence of Markov processes {Xn}. Suppose the following hold:

(a) {Xn} is exponentially tight,
(b) There exists V (t) : C(E) ↑ C(E) such that for any fn ↔ Cb(E) and f ↔ C(E), the

convergence

lim
n↔↗

⇔fn ⇐ f⇔E ↑ 0,

implies the convergence

lim
n↔↗

⇔Vn(t)fn ⇐ V (t)f⇔ = 0, ∈t ↗ 0, (2.2.1)

(c) {Xn(0)} satisfies a large deviations principle with rate function I0 : CE [0,→) ↑ [0,→].
Then, the sequence {Xn} satisfies a large deviation principle with a rate function I : CE [0,→) ↑
[0,→], given by:

I := I0 + sup
k↑N

sup
(t1,...,tk)

k

i=1

Iti≃ti↔1(x(ti)|x(ti≃1)), (2.2.2)

where

I(x|y) := sup
f↑C(E)

(f(x) ⇐ V (t)f(y)) .

Sketch of the proof. The proof is essentially divided into two steps: first, it follows from
the exponential tightness and the convergence of the semigroups that the large devia-
tions principle for the first marginal implies the large deviations principle for the finite
dimensional marginals (this is Proposition 3.25 of [FK06]). Then, exponential tightness
and large deviations principle for the finite dimensional marginals imply large devia-
tions principle for the entire process (this is Theorem 4.28 of [FK06]).
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Problem 1: The application of Theorem 2.2.4 is often challenging due to the non-linear
nature of the semigroups Vn(t), making them difficult to express explicitly. The task of
identifying a limiting semigroup V (t) is even more complex.

Solution to Problem 1: A solution to Problem 1 takes inspiration from the classical
theory of linear semigroup in which the convergence of a sequence of semigroup is
connected to the convergence of their infinitesimal generators.

Recall that for a linear semigroup {T (t)}t⇒0 on a Banach space X , the infinitesimal
generator A of the semigroup {T (t)} is defined as the limit:

Af = lim
t↔0+

T (t)f ⇐ f

t
, for all f ↔ D(A),

where D(A) is the domain of the generator, consisting of all elements f ↔ X for which
the limit exists. The generator A satisfies the semigroup property, meaning that for all
t ↗ 0,

d

dt
T (t) = AT (t), T (0) = I.

A crucial result from linear semigroup theory is that the convergence of the generators
implies the convergence of the semigroups. Specifically, if An are the generators of the linear
semigroups {Tn(t)}, and if An ↑ A in some appropriate sense, then the semigroups
Tn(t) converge to T (t) as n ↑ →, where T (t) is the semigroup generated by A.

Now, we ask the crucial question: Can we apply a similar result to nonlinear semigroups?
That is, can we find a definition of “generators” of the nonlinear semigroups {Vn(t)}
such that their convergence implies the convergence of the semigroups themselves?

To proceed, let us first recall the generator of a Markov process X(t). Consider a
Markov process {X(t)} on a state space E, governed by transition probabilities P (t, x,A),
where x ↔ E and A ⇓ E is a measurable set. The generator of the Markov process X(t),
denoted L, is defined as the infinitesimal generator of the semigroup S(t) associated to
X(t).

Now, we turn our attention to the nonlinear semigroups {Vn(t)} associated with a
sequence of Markov processes Xn(t).

If we try heuristically to compute the generator as in the linear case, we obtain:

d

dt
Vn(t)f(x)

∣∣∣∣
t=0

=
d

dt

(
1

n
log


Sn(t)e

nf (x)
 ∣∣∣∣

t=0

=
1

n

1

Sn(0)enf (x)
· d

dt


Sn(t)e

nf (x)
 ∣∣∣∣

t=0

=
1

n

1

enf (x)
· d

dt
Sn(t)

∣∣∣∣
t=0

· enf (x)

=
1

n

Ln

(
enf (x)

)

enf (x)
.

This justifies the following definition.
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Definition 2.2.5 (Nonlinear Generator). Let {Vn(t)}t⇒0 be the nonlinear semigroup as-
sociated to a Markov process {Xn}. The nonlinear generator Hn is defined as

Hnf(x) :=
1

n
e≃nf (x)Lne

nf (x),

where Ln is the generator of the linear semigroup Sn(t), and Hn acts on functions in the
domain D(Hn) = {f | enf ↔ D(Ln)}.

To show that the convergence of Hn ↑ H implies the convergence of the nonlinear
semigroups Vn(t) ↑ V (t), we rely on some fundamental results from nonlinear semi-
group theory such as the Crandall-Liggett theorem (see [CL71]). Before stating the theo-
rem, we first recall the key conditions required for its application.

Definition 2.2.6 (Dissipativity). An operator H on a Banach space X is called dissipative,
if for all x, y ↔ D(H) and ϖ > 0, the inequality

⇔x⇐ y⇔ ≃ ⇔x⇐ y ⇐ ϖ(Hx⇐Hy)⇔

holds.

Definition 2.2.7 (Range Condition). We say that an operator H on a Banach space X
satisfies the range condition if, for all ϖ > 0, the range of (1 ⇐ ϖH) is dense in X , that is

rg(1 ⇐ ϖH) = X.

Remark 2.2.8. The range condition for dissipative operators implies the existence of a
unique (classical) solution to the equation (1 ⇐ ϖH)f = h, for every h ↔ D(H) and
ϖ > 0. Indeed, if a dissipative operator H satisfies the range condition, its closure H is
also dissipative and satisfies

rg
(
1 ⇐ ϖH

)
= rg(1 ⇐ ϖH) = X,

that is, for every h ↔ X there exists f ↔ D(H) such that (1 ⇐ ϖH)f = h. Uniqueness
follows immediately from dissipativity.

We now present the theorem which answers the question posed earlier about the
convergence of nonlinear semigroups. The result, given as Proposition 5.5 in [FK06], has
been adapted here to fit our notation. Its proof is based on the Crandall-Liggett theory
of nonlinear semigroups. For a detailed discussion and proof, we refer the reader to
[FK06].

Theorem 2.2.9 (Proposition 5.5 of [FK06]). Let H̃n : B(E) ↑ B(E) and H : C(E) ↑
C(E) be dissipative operators and suppose that each satisfies the range condition with the same
ϖ > 0. Suppose that for all f ↔ D(H) there exist fn ↔ D(H̃n) such that

lim
n↔↗

⇔fn ⇐ f⇔E = 0 and lim
n↔↗

⇔H̃nfn ⇐Hf⇔E = 0

then, there exist Ṽn(t) and V (t) such that, for all f ↔ D(H) and fn ↔ D(H̃n) satisfying
⇔fn ⇐ f⇔E ↑ 0,

lim
n↔↗

⇔Ṽn(t)fn ⇐ V (t)f⇔E = 0.



2.2 C O N N E C T I O N B E T W E E N L D T H E O R Y A N D H J E Q U AT I O N S 35

The following corollary will solve Problem 1 given above.

Corollary 2.2.10 (Corollary 5.19 of [FK06]). Let {Xn} be a sequence of E-valued Markov
processes. Let Hn be their nonlinear generators. Suppose the following hold:

(a) {Xn} is exponentially tight,
(b) there exists H : D(H) ⇓ C(E) ↑ C(E) such that all f ↔ D(H) there exist fn ↔ D(Hn)

such that

lim
n↔↗

⇔fn ⇐ f⇔E = 0 and lim
n↔↗

⇔Hnfn ⇐Hf⇔E = 0

(c) H satisfies the range condition,
(d) {Xn(0)} satisfies a large deviations principle with rate function I0 : CE [0,→) ↑ [0,→].

Then, the sequence {Xn} satisfies a large deviation principle with a rate function I : CE [0,→) ↑
[0,→], given by (2.2.2).

Sketch of the proof: Consider the nonlinear generators Hn = 1
n
e≃nf (x)Lnenf (x) and sup-

pose they converge (in the sense as above) to an operator H that satisfies the range con-
dition. Using some techniques from the linear and nonlinear semigroup theory (such
as the Hille–Yosida approximation), it is possible to show the existence of additional
operators H̃n that are dissipative and verify the range condition and such that H̃n still
converge to H . Then, from this convergence, H inherits the dissipativity (see Lemma
5.7 of [FK06]). Applying Theorem 2.2.9, we can find Ṽn(t) converging to a semigroup
V (t). It is possible to prove that Ṽn(t) “approximate” the nonlinear semigroups Vn, and,
consequently, the convergence (2.2.1) (see Lemma 5.11 of [FK06]). The large deviations
principle then follows from Theorem 2.2.4.

Problem 2: As mentioned in Remark 2.2.8, the range condition for dissipative opera-
tors implies the existence of classical solutions to the equation (1⇐ϖH)f = h. However,
this is a strong condition that is often not satisfied in practice. Consequently, assuming
the range condition can be too restrictive, making the method challenging or even im-
possible to apply in many cases.

Solution to Problem 2: From Theorem 2.2.9 and Corollary 2.2.10, it is evident that es-
tablishing a large deviation principle requires identifying a limit H of the nonlinear gen-
erators Hn that is both dissipative and satisfies the range condition. Instead of enforcing
the range condition directly on H , we use an alternative approach: finding conditions
on H that guarantee the existence of an auxiliary operator Ĥ , which serves as the ap-
propriate limit operator for applying Corollary 2.2.10. This means that the operator Ĥ ,
constructed from H , satisfies the following properties:

1. Ĥ verifies the range condition;
2. Ĥ is dissipative;
3. Hn ↑ Ĥ for n ↑ → (in the appropriate sense).

We now analyze each of these properties and discuss how to construct Ĥ as above. The
idea is to construct Ĥ “extending” H .

Ensuring the range condition for Ĥ : We saw that the range condition guarantees the
existence of a unique solution to (1 ⇐ ϖĤ)f = h. If we can construct a “weak solution”
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Rς,h (the resolvent) to (1 ⇐ ϖH)f = h, then we can define Ĥ by “adding” to H this
resolvent. More precisely, the operator

Ĥ := H ∋
(

Rς,h,
Rς,h ⇐ h

ϖ


, h ↔ C(E)


(2.2.3)

automatically satisfies the range condition.
Thus, the key requirement for constructing Ĥ that satisfies the range condition is

the existence and uniqueness of a “weak” solution to (1 ⇐ ϖH)f = h.
Dissipativity of Ĥ : We saw that the limit operator H inherits the dissipativity as the

limit of dissipative operators. However, we must ensure that adding Rς,h to H does not
violate dissipativity.

In semigroup theory, dissipativity is often implied by the maximum principle (This is
indeed the case of a nonlinear generator of a Markov process). We give here the proper
definition.

Definition 2.2.11 (Maximum principle). We say that an operator H ⇓ C(E) ↓ C(E)
satisfies the maximum principle if, for all f1, f2 ↔ D(H) and x0 ↔ E with

f1(x0) ⇐ f2(x0) = sup
x↑E

{f1(x) ⇐ f2(x)},

we have

Hf1(x0) ≃ Hf2(x0)

and, analogously, for all f1, f2 ↔ D(H) and x0 ↔ E with

f1(x0) ⇐ f2(x0) = inf
x↑E

{f1(x) ⇐ f2(x)},

we have

Hf1(x0) ↗ Hf2(x0).

Now consider the operator Ĥ as in (2.2.3). To preserve the maximum principle for Ĥ ,
we take f ↔ D(H) and assume that x0 satisfies

sup
x

(Rς,h ⇐ f)(x) = (Rς,h ⇐ f)(x0).

Then, using the definition of Ĥ , we obtain

ĤRς,h(x0) ⇐ Ĥf(x0) =
1

ϖ
(Rς,h(x0) ⇐ h(x0)) ⇐Hf(x0)

=
1

ϖ
(Rς,h(x0) ⇐ ϖHf(x0) ⇐ h(x0)) .

Consequently, for dissipativity to hold, we require

Rς,h(x0) ⇐ ϖHf(x0) ⇐ h(x0) ≃ 0.
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The attentive reader may have noticed that the above equation corresponds to the defi-
nition of viscosity subsolution for (1 ⇐ ϖH)f = h (cf. Definition 1.2.5).

Thus, to ensure that Ĥ remains dissipative, we require that Rς,h is a viscosity solu-
tion to the equation (1 ⇐ ϖH)f = h.

Convergence of Hn to Ĥ : Finally, Condition 3 follows from the convergence of Hn to
H as established in Lemma 6.9 of [FK06].

Summary of the key conditions: To ensure that Ĥ satisfies all three required proper-
ties - range condition, dissipativity, and convergence - we need:

1. The nonlinear generators Hn converge to an operator H ;
2. There exists a unique viscosity solution Rς,h to the equation (1 ⇐ ϖH)f = h, for

every ϖ > 0 and h ↔ C(E).
The existence of Rς,h follows from the convergence Hn ↑ H (see Lemma 6.9 of [FK06]),
while uniqueness is ensured by the comparison principle (cf. Definition 1.2.3).

This discussion leads to the following final theorem.

Theorem 2.2.12 (Simplification of Theorems 6.13 and 6.14 of [FK06]). Let {Xn} be a se-
quence of E-valued Markov processes. Let Hn be their nonlinear generators. Suppose the follow-
ing hold:

(a) There exists H : D(H) ⇓ C(E) ↑ C(E) such that all f ↔ D(H) there exist fn ↔
D(Hn) such that

lim
n↔↗

⇔fn ⇐ f⇔E = 0 and lim
n↔↗

⇔Hnfn ⇐Hf⇔E = 0.

(b) For each ϖ > 0, the comparison principle holds for

(1 ⇐ ϖH)f = h. (2.2.4)

(c) {Xn} is exponentially tight,
(d) {Xn(0)} satisfies a large deviations principle with rate function I0 : CE [0,→) ↑ [0,→].

Then,
(a) For each h ↔ C(E), there exists a unique viscosity solution of (2.2.4) which we will denote

by f = Rς,h.
(b) The operator defined as

Ĥ =


ς

(
Rς,h,

Rς,h ⇐ h

ϖ


: h ↔ C(E)


,

extends H , is dissipative and satisfies the range condition.
(e) Letting {Vn(t)} denote the nonlinear semigroup associated to {Xn}, there exists V (t)

such that, for each f ↔ D(H) and fn ↔ D(Hn) satisfying ⇔fn ⇐ ⇀nf⇔ ↑ 0,

lim
n↔↗

⇔Vn(t)fn ⇐ ⇀nV (t)f⇔ = 0.

(d) {Xn} satisfies the large deviations principle with rate function given by (2.2.2).

We can summarize the discussion above with the following diagram.
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Path space Large Deviations Principle (LDP)

Exponential Tightness Vn(t) ↑ V (t)LDP for the first marginal

Hn ↑ HDissipativity of ĤRange condition for Ĥ

comparison principle for (1⇐ ϖH)f = h.

+ +

++

Figure 5: Diagram summarizing the Feng and Kurtz method. An arrow from node A to node B
indicates that A implies B. If there is a "+" symbol between two nodes, it means that all
elements together imply the subsequent node.

O U T L I N E O F T H E T H E S I S

The thesis is organized into three main parts.
The first part, Introduction and theoretical background, consists of Chapter 1 and

Chapter 2. This part provides an overview of the basic ideas and frameworks necessary
to understand the results of this thesis.

Chapter 1 begins by introducing a motivating example from control theory, which
illustrates the relevance and applications of Hamilton-Jacobi equations in practical sce-
narios. This chapter then provides a broad introduction to the mathematical context of
Hamilton-Jacobi equations, focusing on the role of viscosity solutions as a key tool for
analyzing situations where classical solutions may fail.

Chapter 2 begins with an introduction to the field of large deviations. Then, it pro-
vides a discussion about the connection between Large deviations theory and Hamilton-
Jacobi equations.

The second part, Motivations: Examples from a Large Deviations Context, includes
Chapter 3. It presents examples arising from biology and biochemistry, particularly fo-
cusing on large deviations for two-scale Markov processes with homogenization. These
examples highlight how the connection between large deviations with the Hamilton-
Jacobi equations can provide new insights.

The third and last part, Well-Posedness of Hamilton-Jacobi Equations, encompasses
Chapters 4 to 6 and focuses on the rigorous mathematical analysis of Hamilton-Jacobi
equations. Chapter 4 provides a well-posedness result for a general Hamilton-Jacobi-
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Bellman equation that includes the one related to the large deviations problem of Chap-
ter 3. Chapter 5 considers the question of existence of viscosity solutions for first-order
equations. Chapter 6 turns to second-order Hamilton-Jacobi equations, presenting a
new proof of the comparison principle and exploring conditions under which well-
posedness can be established for this more complex class of equations. Together, these
chapters expand the theoretical boundaries of Hamilton-Jacobi equations by develop-
ing techniques that address scenarios beyond the scope of existing literature.

The thesis concludes with a summary of the main findings, reflecting on their contri-
butions to the fields of Hamilton-Jacobi equations and large deviations theory. Appen-
dices include detailed mathematical proofs and supplementary discussions, offering
additional insights and support for the core results presented in the thesis.
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N O TAT I O N S

• R
N – the Euclidean N -dimensional space.

• B(E) – the space of functions u : E ↑ R with ⇔u⇔↗ < +→.
• C(E) – the space of continuous functions u : E ↑ R.
• UC(E) – the space of uniformly continuous functions u : E ↑ R.
• Lip(E) – the space of Lipschitz continuous functions u : E ↑ R.
• Liploc(E) – the space of locally Lipschitz continuous functions u : E ↑ R.
• Ck(E) – for k ↗ 1, the space of of functions with continuous partial derivatives up

to order k.
• Ck

b
(E) - the set of all functions in Ck(E) with bounded derivatives up to order k.

• C↗
c (E) - the set of all smooth functions that are constant outside of a compact set.

• Cu(E) and Cl(E) - the set of continuous functions on E that are uniformly bounded
from above and below, respectively.

• C↗(E) the space of infinitely differentiable functions from E ⇓ R
d to R.

• AC(E) the space of absolutely continuous functions from E ⇓ R
d to R.

• USC(E), LSC(E) – the spaces of lower and upper semicontinuous functions u :
E ↑ R.

• BUSC(E), BLSC(E) – the spaces USC(E) △ B(E) and LSC(E) △B(E).
• P - a probability measure.
• ⇁#P(E) = P(⇁≃1(E)) - the push-forward measure of P.
• P(E) – the space of the probability measures on E.
• ↖x, y↙ – the scalar product of vectors x = (x1, . . . , xN ) and y = (y1, . . . , yN ).
• B(x0, r) – the open ball {x ↔ R

N : |x⇐ x0| < r}.
• B(x0, r) – the closed ball {x ↔ R

N : |x⇐ x0| ≃ r}.
• E - the closure of the set E.
• E⇑ - the interior of a set E.
• Ec - the complement of a set E.
• coE – the convex hull of the set E.
• coE – the closed convex hull of the set E.
• d(x,E) = dist(x,E) – the distance from x to E.
• y ▽ o = min{y, o} for y, o ↔ R.
• y ̸ o = max{y, o} for y, o ↔ R.
• sgn(r) – the sign of r ↔ R (1 if r > 0, -1 if r < 0, 0 if r = 0).
• [x]

Zd = {y ↔ R
d : x ⇐ y ↔ Z

d} the equivalence class of x with respect to the
relation defined by Z

d.
• argmin u – the set of minimum points of u : E ↑ R.
• ⇔u⇔↗ – the supremum norm supx↑E |u(x)| of a function u : E ↑ R.
• w(t) – a modulus of continuity.
• Du(x) – the gradient of the function u at x.
• ∆u = ⇒2u – the Laplacian of the function u.
• D≃u(x),D+u(x) - the subdifferential and superdifferential of u at x.
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• N (µ, ↽2) - the normal distribution with mean µ and variance ↽2.
• CE [0,→) is the space of functions defined on [0,→) and taking value in a metric

space E.





Part II

M O T I VAT I O N S : E X A M P L E S A R I S I N G F R O M A L A R G E
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3
L A R G E D E V I AT I O N S P R I N C I P L E F O R T W O - S C A L E S M A R K O V
P R O C E S S E S I N B I O L O G Y A N D B I O C H E M I S T RY

In this chapter, we prove the large deviations principle for two examples of two-scales
Markov processes via the method through Hamilton-Jacobi equations explained in Chap-
ter 2 . The examples are motivated by applications in biology and biochemistry.

The results presented in Chapter 3.1 are based on:
S.Della Corte and R.C.Kraaij, “Large deviations for Markov processes with switching

and homogenisation via Hamilton-Jacobi equations”, Stochastic Processes and their Appli-
cations, 2024.

The results presented in Chapter 3.2 are based on part of:
S.Della Corte and R.C. Kraaij, “ Well-posedness of a Hamilton-Jacobi-Bellman equa-

tion in the strong coupling regime”, Preprint.

3.1 L A R G E D E V I AT I O N S F O R M A R K O V P R O C E S S E S W I T H S W I T C H I N G A N D H O -
M O G E N I Z AT I O N M O D E L I N G M O T O R P R O T E I N S

In biochemical and biophysical processes occurring in a cell, an important role is played
by several classes of active enzymatic molecules, generally called motor proteins or molec-
ular motors. These motors are protein molecules that convert chemical energy into me-
chanical work and motion (see [JAP97],[KF07],[Kol13],[YFRH02] for more details). In
the last decades, such biological phenomena have been largely investigated and this
analysis was partly possible due to the contribution of the analysis of particular Markov
processes called “switching Markov processes” (see for instance [JAP97], [CKK03], [CHK04],
[PS07] and [YZ10]).

The process that we will consider is such a process. It is a two–component process
(Xt, It) where the first component Xt is a drift–diffusion process and the second compo-
nent It is a jump process on a finite set. In the context of molecular motors, the spatial
component Xt models the location of the motor, for example on a filament, while It
models the molecular configuration. The two processes together evolve in accordance
with the following stochastic differential equation

dXt = ⇐⇒↼(Xt, It)dt+ dBt, (3.1.1)

P


I(t+ ∆t) = j | I(t) = i,X(t) = x


= rij (x)∆t+O(∆t2) as ∆t ↑ 0,

with ↼ ↔ C↗(Rd ↓ {1, . . . , J}), rij ↔ C↗(Rd) and ⇒ is the gradient with respect to x
and Bt is the Brownian motion.

45
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It is clear that the two processes are linked by their rate functions. This means that It
stays in a first discrete state for a random duration while the diffusion component Xt

evolves following a stochastic differential equation with a particular drift. Then, when a
switch of the configurational component occurs, the potential ↼ changes and therefore
Xt diffuses according to a new equation up to another switch of It (see Figure 6 for a
typical behavior of this type of processes). For more details about the construction of
such switching hybrid diffusions see [YZ10].

To allow more flexibility to separate the local dynamics as caused by the internal
switching, and macroscopic effects, e.g. modeling the presence of energy molecules in
the solution, we will work with ↼ϑ and rϑ instead of ↼ and r, and we will typically
assume that {↼ϑ, rϑ}ϑ exhibit a separation of scales. The simplest instance of this separa-
tion of scale is that

↼ϑ(x, i) = ↼1(ςx, i) + ↼2(x, i),

rϑ(x, i, j) = r1(ςx, i, j) + r2(x, i, j),

i.e. ↼1 and r1 model the global macroscopic scale while ↼2 and r2 correspond to the
local dynamics. We will also assume that ↼2 is 1–periodic. Moreover, the most general
context that we will consider is such that the sequences of functions ↼ϑ and rϑ are actu-
ally given by two functions ↼ ↔ C↗(Rd ↓ R

d ↓ {1, . . . , J}) and rij ↔ C↗(Rd ↓ R
d) as

↼ϑ(x, i) = ↼(ςx, x, i),

rϑ(x, i, j) = r(ςx, x, i, j). (3.1.2)

The process arising from the stochastic differential equation with ↼ϑ and rϑ as drift and
rate function will be called (Xϑ

t
, Iϑ

t
). However, we are interested in the macroscopic mo-

tion of the molecule. Therefore, we work with the rescaled process or "zoomed out"
process that we obtain by scaling in space and time by the positive parameter ς > 0.
More precisely, we look at (Y ϑ

t
, Īϑ

t
) := (ςXϑ

ϑ↔1t
, Iϑ

ϑ↔1t
) that evolves according the stochas-

tic differential equation

dY ϑ

t = ⇐⇒↼

(
Y ϑ

t ,
Y ϑ
t

ς
, Īt


dt+

′
ς dBt

P


Īϑ(t+ ∆t) = j | Īϑ(t) = i,Y ϑ(t) = x


=

1

ς
rij


x,

x

ς


∆t+O(∆t2) as ∆t ↑ 0

with ↼ and rij given by (3.1.2), and we are interested in the limit ς ↑ 0.
Intuitively, looking from far away at the process the periodicity becomes smaller and

smaller as ς decreases and the internal flip rate diverges. Thus, we expect the periodicity
and the internal dynamics to homogenise, effectively obtaining a deterministic limit Xt.
The numerical simulation in Figure 7 confirms our intuition. It shows sample paths of
numerical approximations of a particular switching process (Y ϑ

t
, Īϑ

t
) for various ς. The

figure suggests that for small ς, the spatial component Y ϑ
t

tends to concentrate around a
limiting path that, in the case of the simulated process, is a path with constant velocity.
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The aim of this work is to investigate large deviations around such deterministic limit
of this kind of process. Showing a large deviations principle, we then will be able to
characterize the limit path using a Lagrangian rate function. Indeed, we will show in
the main theorem, Theorem 3.1.6, that there exists a non negative rate function (Cf. Def-
inition 2.1.1) I : C

Rd [0,→) ↑ [0,→] with which {Y ϑ
t
}ϑ>0 satisfies a path-wise large

deviation principle in the sense of Definition 2.1.2. Intuitively, it means that

P (Y ϑ ∞ x) ∼ e≃I(x)/ϑ ς ↑ 0,

with I written in terms of a Lagrangian function. This means that Y ϑ has a limit path x̃ ↔
C

Rd and this limit is the unique minimizer of the rate function I. Moreover, for any path
x ∀= x̃ such that I(x) > 0, the probability that Xϑ is close to x is exponentially small in
ς≃1. In Corollary 3.1.8, we characterize the minimum of I by finding a representation of
ϱtx̃ in terms of the drift ↼ similar to what one would expect from an averaging principle.

Our work falls into a long tradition of studying the dynamical large deviations around
limiting trajectories starting with [FW98] for small noise diffusions, and [Lip96] for two-
scale systems. Then, in the last decades it has been used for the study of different kind
of processes (see for instance [BFG13] or [KS20]). Regarding jump-diffusion, there are
very few large deviations results but see for example [Pop18] and [KP17]. More recently,
in [PS19], the authors prove large deviations for a class of switching Markov processes
and apply their result to examples, including the molecular motors model. Regarding
this example, our work removes two unnatural assumptions in [PS19]. Our main contri-
butions are the transition from a compact to a non-compact setting and the introduction
of the global macroscopic effects in rates with the two components ↼1 and r1. These two
facts complicate the proof of large deviations principle. Most important, but without
going into details, we need to prove the comparison principle for a spatially inhomo-
geneous Hamilton–Jacobi–Bellman equation where the two above generalizations intro-
duce non-trivial complications.

Indeed, we prove the large deviations property using the method due to Feng and
Kurtz ([FK06]), explained in Chapter 2, in which a central role is played by associated
Hamilton–Jacobi–Bellmann equations. We will explain in more details the main innova-
tions compared to [PS19] of our work in Section 3.1.9.

The chapter is organized as follows. We first give some preliminary contents in Sec-
tion 3.1.1. The main theorem, the large deviations principle for the switching process
modeling molecular motors, is given in Section 3.1.2 together with its proof. Finally, in
Section 3.1.8 we are able to extract the main mathematical structures that we use in the
previous section and use them in a large deviations result for a more general class of
Switching Markov processes.
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Figure 6: A typical evolution of a process (X(t), I(t))

Figure 7: Sample paths of a numerical simulation of the spatial component Y ω
t of a switching

process for different values of ϖ. We chose a drift ϱi
ω equal to the periodic part ϱ2 for all

i ↔ {1, . . . , 4}. We took ϱ2(xω , i) equal to sin(x/ϖ), cos(x/ϖ), ⇐ sin(x/ϖ) and ⇐ cos(x/ϖ)
for i = 1, 2, 3, 4 respectively and a rate equal to 1. The jump process switches from a
value i ↔ {1, 2, 3} to the value i + 1 and from 4 to 1. In this way, the process starts
diffusing around a minimum of sin(x/ϖ) (i = 1). The first horizontal part of the "stair"
corresponds to this evolution. Then, a switch of Īωt takes place, so the value of i becomes
i = 2, and then the spatial component goes to diffuse around a minimum of cos(x/ϖ),
that is the second horizontal part, until another switch.

3.1.1 Preliminaries

We begin with the definition of the process that we are going to study. It is a two compo-
nent Markov process (Xϑ

t
, Iϑ

t
) to which we refer in all the work with “molecular motors

model” or “motor proteins model”.
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Definition 3.1.1 (Molecular motors). Given an integer J , we consider the setting E =
R

d↓{1, . . . , J}. For all i, j in {1, . . . , J}, let rij ↔ C↗(Rd↓R
d; [0,→)) denote nonnegative

smooth maps, ↼i ↔ C↗(Rd ↓ R
d) a smooth and ⇒↼i its gradient with respect to x. We

suppose that ↼i grows at most linearly in the first component and is periodic in the
second one. Finally, given the following operator

Aϑf(x, i) := ⇐⇒↼i(ςx, x)·⇒xf(·, i)(x)+
1

2
∆xf(·, i)(x)+

J

j=1

rij(ςx, x) [f(x, j) ⇐ f(x, i)] ,

we define the E-valued Markov process (Xϑ
t
, Iϑ

t
)|t⇒0 as the solution to the martingale

problem corresponding to Aϑ. More precisely, (Xϑ
t
, Iϑ

t
) is such that for all f ↔ D( Aϑ),

f(Xϑ(t), Iϑ(t)) ⇐ f(Xϑ(0), Iϑ(0)) ⇐
∫

t

0

Aϑf(X
ϑ(s), Iϑ(s)) ds

is a martingale.

Remark 3.1.2. In our case rij is regular enough that the martingale problem associated to
Aϑ is well posed (see [EK09] and [SV79]).

Remark 3.1.3. It is straightforward to see that the above defined process solves the stochas-
tic differential equation (.0.1) given in the introduction of this chapter.

We firstly study the above particular model for which we prove the large deviations
property. Then, using this model, we lead to a theorem for a general class of processes
called Switching Markov process (see Section 3.1.8).

As mentioned in the introduction of this chapter, we will work with the rescaled pro-
cess (Y ϑ

t
, Īϑ

t
) =

=

ςXϑ

t/ϑ, I
ϑ

t/ϑ


. Then, by the chain rule, the generator becomes

Aϑf(x, i) (3.1.3)

= ⇐⇒↼i


x,

x

ς


⇒xf(·, i)(x) +

ς

2
∆xf(·, i)(x) +

1

ς

J

j=1

rij

x,

x

ς


[f(x, j) ⇐ f(x, i)].

We will assume in the main theorem that the matrix

(Rij(x))ij := ( sup
y↑Rd

rij(x, y))ij

is irreducible. Here we give the rigorous definition.

Definition 3.1.4. We say that a matrix A = (Aij(x))ij↑{1,...,J},x↑Rd is irreducible if there
is no decomposition of {1, . . . , J} into two disjoint sets J1 and J2 such that Aij = 0 on
R

d whenever i ↔ J1 and j ↔ J2.
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The main goal of this work is to prove that the spatial component Y ϑ of the above
Markov process verifies the large deviation principle. We refer to Chapter 2 for the defi-
nitions of Large deviations principle, rate function and exponential tightness.

To prove the exponential tightness we will use the following concept.

Definition 3.1.5 (Compact containment condition). We say that the processes (Zϑ(t))
satisfy the exponential compact containment condition if for all T > 0 and a > 0 there is a
compact set K = K(T , a) ⇓ E such that

lim sup
ϑ↔0

ς logP [Zϑ(t) /↔ K for some t ↔ [0,T ]] ≃ ⇐a.

3.1.2 The large deviations principle

Now we state the main theorem in which we prove sufficient conditions for the large
deviation property for the spatial component of the switching process defined in Defi-
nition 3.1.1.

Theorem 3.1.6 (Large deviation for the "molecular motors model"). Let (Xϑ
t
, Iϑ

t
) be the

Markov process of Definition 3.1.1. Suppose that the matrix Rij = (sup
y↑Rd rij(y))ij is irre-

ducible. Denote Y ϑ
t
= ςXϑ

t/ϑ the rescaled process. Suppose further that at time zero, the family of
random variables {Y ϑ(0)}ϑ>0 satisfies a large deviation principle in R

d with good rate function
I0 : C

Rd [0,→) ↑ [0,→]. Then, the spatial component {Y ϑ
t
} satisfies a large deviation principle

in C
Rd [0,→) with good rate function I : C

Rd [0,→) ↑ [0,→] given in the integral form

I(x) =
{
I0(x(0)) +

↗
0 L (x(t), ẋ(t)) dt if x ↔ AC([0,→);R

d),

→ else,

with L(x, v) = supp{p · v ⇐H(x, p)} the Legendre transform of a Hamiltonian H(x, p) given
in variational form by

H(x, p) = sup
µ↑P(E↗)

∫

E↗
Vx,p(z) dµ(z) ⇐ Ix,p(µ)


, (3.1.4)

where E↓ = T
d ↓ {1, . . . , J},

Vx,p(y, i) =
1

2
p2 ⇐ p ·⇒x↼

i (x, y)

and the map Ix,p : P(E↓) ↑ [0,→] is the Donsker–Varadhan function, i.e.

Ix,p(µ) = ⇐ inf
φ

∫

E↗
e≃φLx,p(e

φ) dµ,

where the infimum is taken over vectors of functions ϕ(·, i) ↔ C2(Td), and Lx,p is the operator
defined by

Lx,pu(z, i) =
1

2
∆zu(z, i)+(p⇐⇒x↼

i(x, z)) ·⇒zu(z, i)+
J

j=1

rij(x, z) [u(z, j) ⇐ u(z, i)] .

(3.1.5)
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Remark 3.1.7. E↓ captures the periodic behaviour and the internal state. In the homogeni-
sation context described in the introduction, E↓ is exactly what is being homogenised
over while Lx,p describes the dynamics on it.

The following corollary characterises the limit process.

Corollary 3.1.8. Consider the same assumptions of Theorem 3.1.6 for the Markov process
(Y ϑ

t
, Iϑ

t
). Then, the spatial component converges almost surely to the path with velocity given by

ϱtx = ϱpH(x, 0) = ⇐
∫

E↗
⇒x↼

i(x, y) dµ→x(y),

with µ→x the unique stationary measure of the operator Lx,0 given in (3.1.5).

Proof. By Theorem A.1 of [PS19], the spatial component Y ϑ
t

converges almost surely to
the set of minimizers of the rate function. More precisely,

d(Y ϑ

t , {I = 0}) ↑ 0 a.s. as ς ↑ 0

where {I = 0} = {x ↔ C
Rd [0,→) : I(x) = 0}. We now prove that this set is actually a

singleton and then characterise the unique element.
With this aim, note that by [Roc70, Theorem 23.5], v is a minimizer of L if and only if

v ↔ ϱpH(x, 0). Moreover, by [HUL01, Theorem 4.4.2],

ϱpH(x, 0)

= co







µ↑P(E↗)

ϱ

∫

E↗
Vx,0 dµ⇐ Ix,0(µ)


for all µ s.t.H(x, 0) =

∫

E↗
Vx,0 dµ⇐ Ix,0(µ)




 ,

where with co we refer to the convex hull of a set and ϱ


E↗ Vx,0 dµ⇐ Ix,0(µ)


is the
differential of the convex functions


E↗ Vx,p dµ⇐ Ix,p(µ) for p = 0.

We know that H(x, 0) = 0 and Vx,0(z) = 0 for all z ↔ E↓. Then, if µ→x is the optimal
measure for H(x, 0), we have that

0 = H(x, 0) =
∫

E↗
Vx,0(z) dµ

→
x ⇐ Ix,0(µ

→
x) = Ix,0(µ

→
x).

We can conclude that the optimal µ→x is the unique stationary measure of Lx,0 (see Propo-
sition 3.1.38 in the appendix for existence and uniqueness of µ→x). We thus find that
ϱpH(x, 0) =


↼

↼p
H(x, p)|p=0


and hence I(x) = 0 ∃¬ ϱtx = ↼

↼p
H(x, 0) for almost all t

and

ϱtx =
ϱ

ϱp
H(x, 0) =

∫

E↗

ϱVx,p(z)
ϱp

∣∣∣∣
p=0

dµ→x(z)

= ⇐
∫

E↗
⇒x↼(x, z) dµ

→
x(z).
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Remark 3.1.9. The above corollary confirms the suggestion of Figure 7 that, when there
is no dependence on x in the drift, the spatial component is converging to a path with
constant speed. Indeed, for small ς, Y ϑ

t
tends to concentrate around a path with a con-

stant velocity v = ϱpH(0).

Using the discussion of Chapter 2 and Theorem 2.2.12, we can prove Theorem 3.1.6.

Proof of Theorem 3.1.6. We claim the following five facts:
1. The nonlinear generators Hϑf = ςe≃f/ϑAϑef/ϑ of Y ϑ

t
converge to a multivalued

operator H :=
{
(f ,Hf ,φ) : f ↔ C2(Rd), Hf ,φ ↔ C(Rd ↓ E↓) and ϕ ↔ C2(E↓)

}
,

2. there exists ϕ̃ such that Hf ,φ̃(x, z) = Hφ̃(x, p, z) = H(x, p) for all z ↔ E↓ and
p = ⇒f ,

3. the comparison principle for (1⇐ ϖH)u = h holds,
4. Y ϑ verifies the exponential tightness property,
5. the rate function (2.2.2) can be represented in the following integral form

I(x) = I0(x(0)) +
∫ ↗

0
L (x(t), ẋ(t)) dt

with L(x, v) = sup
p↑Rd [p · v ⇐H(x, p)] is the Legendre transform of H(x, p) in

(3.1.4).
We prove the above claims respectively in Propositions 3.1.12, 3.1.7, 3.1.25, 3.1.31, 3.1.34
in the following subsections. Then, once the above facts are proved, we can apply Theo-
rem 2.2.12 and the required large deviation property follows.

3.1.3 The convergence of generators and an eigenvalue problem

The first step of the proof of large deviations is based on operator convergence. Since
the process and its limit do not live in the same space, we cannot work with the usual
definition. In the following, we introduce a new definition of limit for functions and
multivalued operator on different spaces.

Definition 3.1.10. Let fϑ ↔ C(Rd↓ {1, . . . , J}) and f ↔ C2(Rd). We say that LIMfn = f
if

⇔fϑ ⇐ f ∅ ⇀ϑ⇔Rd⇓{1,...,J} = sup
Rd⇓{1,...,J}

|fϑ ⇐ f ∅ ⇀ϑ| ↑ 0 as ς ↑ 0,

where ⇀ϑ : R
d ↓ {1, . . . , J} ↑ R

d is the projection

⇀ϑ(x, i) = x.
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Definition 3.1.11 (extended limit of multivalued operators). Let Hϑ ⇓ C(Rd↓{1, . . . , J}).
Define ex⇐ LIMHϑ as the set

ex⇐ LIMHϑ =

=


(f ,H) ↔ C2(Rd) ↓ C(Rd ↓ T

d ↓ {1, . . . , J})| ℜfϑ ↔ D(Hϑ) : f = LIMfϑ

and ⇔H ∅ ⇀↓ϑ ⇐ Hϑfϑ⇔Rd⇓{1,...,J} ↑ 0


,

where ⇀↓ϑ : R
d↓{1, . . . , J} ↑ R

d↓T
d↓{1, . . . , J} is the function ⇀↓ϑ(x, i) =

(
x,

x

ϑ


Zn , i

)
.

The following basic example gives the idea of the intuition behind the definitions
above.

Example: Let Hϑf(x, i) = ⇒f(x) + ς∆f(x). Then, for every f ↔ C2(Rd) and ϕ ↔
C2(Td), we define

fϑ(x, i) = f(x) + ςϕ
x
ς
, i


and H(x, y, i) = ∆ϕi(y)

. Then, (f ,H) ↔ ex⇐ LIMHϑ.

Proposition 3.1.12 (Convergence of nonlinear generator). Let E = R
d ↓ {1, . . . , J} and

let (Y ϑ
t
, Īϑ

t
) be the rescaled Markov process with generator Aϑ from (3.1.3) and let Hϑ be the

nonlinear generators defined in Definition 2.2.5. Then, the multivalued operator H ⇓ C(Rd)↓
C(Rd ↓ T

d ↓ {1, . . . , J}) given by

H :=

(f ,Hf ,φ) : f ↔ C2(Rd),Hf ,φ ↔ C(Rd ↓ E↓) andϕ ↔ C2(E↓)


,

where the images Hf ,φ : R
d ↓ T

d ↓ {1, . . . , J} ↑ R are

Hf ,φ(x, y, i) :=
1

2
∆yϕ

i(y) +
1

2

∣∣⇒f(x) +⇒yϕ
i(y)

∣∣2 ⇐⇒x↼
i(x, y)(⇒f(x) +⇒yϕ

i(y))

+
J

j=1

rij(x, y)

eφ(y,j)≃φ(y,i) ⇐ 1


,

is such that H ⇓ ex ⇐ LIMHϑ. Moreover, for all ϕ parametrising the images we have a map
Hφ : R

d↓R
d↓T

d↓ {1, . . . , J} ↑ R such that for all f ↔ D(H) and any x ↔ R
d, the images

Hf ,φ of H are given by

Hf ,φ(x, z
↓) = Hφ(x,⇒f(x), z↓), for all z↓ ↔ T

d ↓ {1, . . . , J}.

Proof. We want to prove that Hϑ converges to H in terms of Definition 3.1.11. With this
aim, note that, by the definitions of Aϑ and Hϑ, we have

Hϑf(x, i) =
ς

2
∆xf

i(x) +
1

2

∣∣⇒xf
i(x)

∣∣2⇐⇒↼i


x,

x

ς


⇒xf

i(x)

+


rij

x,

x

ς


e(f (x,j)≃f (x,i))/ϑ ⇐ 1


.
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Choosing functions fϑ(x, i) of the form

fϑ(x, i) = f(x) + ς ϕ
x

ς



Zn
, i

= f ∅ ⇀ϑ(x, i) + ς ϕ

x
ς



Zn
, i

,

we obtain,

Hϑ(fϑ)(x, i) =
ς

2
∆f(x) +

1

2
∆yϕ

i

x
ς



Zn


+

1

2

∣∣⇒f(x) +⇒yϕ
i

x
ς



Zn

 ∣∣2

⇐⇒↼i (x, x/ς)

⇒f(x) +⇒yϕ

i

x
ς



Zn


+

J

j=1

rij (x, x/ς)

eφ([

x
ω ]Zn ,j)≃φ([xω ]Zn ,i) ⇐ 1


,

where ⇒y and ∆y denote the gradient and Laplacian with respect to the variable y = x/ς.
We can conclude that

⇔f ∅ ⇀ϑ ⇐ fϑ⇔E = ⇔f(x) ⇐ fϑ(x, i)⇔E = ς⇔ϕ⇔E ↑ 0 as ς ↑ 0,

and

⇔Hf ,φ ∅ ⇀↓ϑ ⇐Hϑfϑ⇔E = sup
(x,i)↑E

∣∣∣∣Hf ,φ


x,
x
ς



Zn
, i

⇐Hϑfϑ(x, i)

∣∣∣∣

=
ς

2
sup

(x,i)↑E
| ∆f(x)| ϑ↔0⇐⇐⇐↑ 0.

Remark 3.1.13. Note that for all f ↔ D(H) the image Hφ has the representation

Hφ(x, p, z) = e≃φ(z) [Bx,p + Vx,p + Rx] e
φ(z)

with p = ⇒f(x) and

(Bx,ph)(y, i) :=
1

2
∆yh(y, i) +

(
p⇐⇒x↼

i(x, y)
)
·⇒yh(y, i)

(Vx,ph)(y, i) :=
(
1

2
p2 ⇐ p ·⇒x↼

i(x, y)


h(y, i),

(Rx h)(y, i) :=
J

j=1

rij(x, y) [h(y, j) ⇐ h(y, i)] .

Proposition 3.1.14 (Existence of an eigenvalue). Let E↓ = T
d ↓ {1, . . . , J} and let Hφ :

R
d ↓ R

d ↓ E↓ ↑ R the images of H given in Proposition 3.1.12. Then, for all p ↔ R
d there

exists an eigenfunction gx,p ↔ C2(E↓ ↓ {1, . . . , J}) with gix,p > 0 and an eigenvalue ϖx,p such
that

[Bx,p + Vx,p + Rx] gx,p = ϖx,pgx,p.



3.1 L D P F O R S W I T C H I N G M A R K O V P R O C E S S E S M O D E L I N G M O T O R P R O T E I N S 55

Proof. We want to solve the following eigenvalue problem

[Lx,p + Rx] gx,p = ϖx,pgx,p (3.1.6)

where Lx,p is a diagonal matrix with (Lx,p)ii = (Bx,p)i + (Vx,p)i and (Rx)ij = rij for
i ∀= j and (Rx)ii =


J

j=1 rij .
Guido Sweers showed (see [Swe92]) that there exists γx,p and gx,p > 0 such that

[⇐Lx,p ⇐Rx] gx,p = γx,pgx,p

when Lx,p is a diagonal matrix with (Lx,p)ii of the type ⇐∆ + p · ⇒ + c. Hence, in our
case, the equality (3.1.6) is verified by taking ϖx,p = ⇐γx,p.

In the next proposition we prove that the images Hφ depend only on x and p.

Proposition 3.1.15. Consider the same setting of Proposition 3.1.14 and let H(x, p) be the
constant depending on p and x given in (3.1.4). Then, for all x, p ↔ R

d there exist a function
ϕx,p ↔ C2(E↓) such that

Hφx,p(x, p, z) = H(x, p) for all z ↔ E↓. (3.1.7)

Proof. By Proposition 3.1.14, there exists a function gx,p and a constant ϖx,p that satisfy
the eigenvalue problem for the operator Lx,p+Rx,p defined in (3.1.6). By the variational
representation established by Donsker and Varadhan in [DV75], the eigenvalue is equal
to the constant H(x, p) defined in (3.1.4). Then, equality (3.1.7) follows from Remark
3.1.13 and Proposition 3.1.14 by choosing ϕx,p = log gx,p.

3.1.4 Regularity of the Hamiltonian

Before proving the comparison principle, we first show that the map p ∝↑ H(x, p), con-
structed out of the eigenvalue problem in Propositions 3.1.14 and 3.1.15, is convex, coer-
cive and continuous uniformly with respect to x.

Proposition 3.1.16 (Convexity and Coercivity of H). The map H : (x, p) ∝↑ H(x, p) in
(3.1.4) is convex in p and coercive in p uniformly with respect to x. Precisely,

lim
|p|↔↗

inf
x↑K

H(x, p) = →

for every K compact set. Moreover, H(x, 0) = 0 for all x ↔ R
d.

Proof. By Proposition 3.1.15 the eigenvalue H(x, p) admits the representation

H(x, p) = ⇐ sup
g>0

inf
z↗↑E↗


1

g(z↓)
[(⇐Bx,p ⇐ Vx,p ⇐Rx)g] (z

↓)



= inf
g>0

sup
z↗↑E↗


1

g(z↓)
[(Bx,p + Vx,p + Rx)g] (z

↓)



= inf
φ

sup
z↗↑E↗


e≃φ(z↗) [(Bx,p + Vx,p + Rx)e

φ] (z↓)

=: inf

φ
sup
z↗↑E↗

F (x, p,ϕ)(z↓),
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where the map F is given by

F (x, p,ϕ)(y, i) =
1

2
∆ϕi(y) +

1

2
|⇒ϕi(y) + p|2 ⇐⇒x↼

i(x, y)(⇒ϕi(y) + p)

+
J

j=1

rij(x, y)

eφ

j(y)≃φ
i(y) ⇐ 1


.

Note that F is jointly convex in p and ϕ. By Proposition 3.1.15, for every x, p there exists
ϕx,p such that equality holds, i.e. for any z↓ ↔ E↓, we have H(x, p) = F (x, p,ϕx,p)(z↓).
Therefore, we obtain for ▷ ↔ [0, 1] and any p1, p2 ↔ R

d with corresponding eigenfunc-
tions eφ1 and eφ2 that

H(x, ▷p1 + (1⇐ ▷)p2) = inf
φ

sup
E↗

F (x, ▷p1 + (1⇐ ▷)p2,ϕ)

≃ sup
E↗

F (x, ▷p1 + (1⇐ ▷)p2, ▷ϕ1 + (1⇐ ▷)ϕ2)

≃ sup
E↗

[▷F (x, p1,ϕ1) + (1⇐ ▷)F (x, p2,ϕ2)]

≃ ▷ sup
E↗

F (x, p1,ϕ1) + (1⇐ ▷) sup
E↗

F (x, p2,ϕ2)

= ▷H(x, p1) + (1⇐ ▷)H(x, p2).

Regarding coercivity of H(x, p), we isolate the p2 term in Vx,p, to obtain

H(x, p) =
p2

2
+ inf

φ
sup
E↗

{
e≃φ [Bx,p ⇐ p ·⇒x↼ + Rx] e

φ
}
.

Any ϕ ↔ C2(E↓) admits a minimum (ym, im) on the compact set E↓, and with the thereby
obtained uniform lower bound

Γ(x, p,ϕ) = sup
E↗


e≃φ(zm) [Bx,p ⇐ p ·⇒x↼ + Rx] e

φ(zm)


↗ e≃φ(zm) [Bx,p ⇐ p ·⇒x↼ + Rx] e
φ(zm)

=
1

2
∆yϕ(ym, im)

︸ ︷︷ ︸
↗ 0

+
1

2
|⇒yϕ(ym, im)︸ ︷︷ ︸

= 0

|2 + (p⇐⇒x↼
im(x, ym)) ·⇒yϕ(ym, im)︸ ︷︷ ︸

= 0

+


j ⇔=i

rij(x, ym)

eφ(ym,j)≃φ(ym,im) ⇐ 1



︸ ︷︷ ︸
↗ 0

⇐p ·⇒x↼
im(x, ym) ↗ ⇐p ·⇒x↼

im(x, ym).

Using the lower bound Γ(x, p,ϕ) ↗ ⇐p ·⇒x↼im(x, ym) ↗ infE↗(⇐p ·⇒x↼), it follows that,
if K is a compact set

inf
x↑K

H(x, p) ↗ p2

2
⇐ sup

x↑K
sup
E↗

(p ·⇒x↼
i(x, y))

↗ 1

4
p2 ⇐ sup

x↑K
sup
E↗

|⇒x↼
i(x, y)|2 |p|↔↗⇐⇐⇐⇐↑ →.
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Regarding H(x, 0) = 0, note that Γ(x, 0,ϕ) ≃ 0 for all x and ϕ. Then we have the first
inequality H(x, 0) ↗ infφ Γ(x, 0,ϕ) ↗ 0. For the opposite inequality we choose the func-
tion ϕ = (1, . . . , 1) in the representation of H.

Proposition 3.1.17 (Continuity of H). The map H : (x, p) ↔ R
d ↓ R

d ↑ H(x, p) ↔ R is
continuous.

We will prove the continuity of H by showing that it is lower and upper semicon-
tinuous. For that, we need the following auxiliary results. In particular, for the lower
semicontinuity we will make use of the Γ–convergence in the sense expressed in the
following lemma in which we prove that property in a general context. Later, we will
use it for J (x, p, ω) = Ix,p(ω).

Lemma 3.1.18 (Γ-convergence). Given two sets U ,V ⇓ R
d and a constant M ↗ 0 we define

ΘU ,V ,M as
ΘU ,V ,M =



x↑U ,p↑V
{ω ↔ Θ|J (x, p, ω) ≃ M}.

Let J : R
d ↓ R

d ↓ Θ ↑ [0,→] satisfy the following assumptions:
(i) The map (x, p, ω) ∝↑ J (x, p, ω) is lower semi-continuous on R

d ↓ R
d ↓ Θ.

(ii) For every x and p fixed and M ↗ 0, there exist Ux and Up open and bounded neighbour-
hoods and a constant M ↓ such that

J (y, q, ω) ≃ M ↓ for all y ↔ Ux, q ↔ Up and ω ↔ Θ{x},{p},M

.
(iii) For all compact sets K1 ⇓ R

d and K2 ⇓ R
d and each M ↗ 0 the collection of functions

{J (·, ·, ω)}ω↑ΘK1,K2,M
is equi-continuous.

Then if xn ↑ x and pn ↑ p, the functionals Jn defined by

Jn(ω) := J (xn, pn, ω)

converge in the Γ-sense to J↗(ω) := J (x, p, ω). That is:
1. If xn ↑ x, pn ↑ p and ωn ↑ ω, then lim infn↔↗ J (xn, pn, ωn) ↗ J (x, p, ω),
2. For xn ↑ x and pn ↑ p and all ω ↔ Θ there are controls ωn ↔ Θ such that ωn ↑ ω and

lim supn↔↗ J (xn, pn, ωn) ≃ J (x, p, ω).

Proof. Let xn ↑ x and pn ↑ p in R
d. If ωn ↑ ω, then by lower semicontinuity (i),

lim inf
n↔↗

J (xn, pn, ωn) ↗ J (x, p, ω).

For the lim-sup bound, let ω ↔ Θ. If J (x, p, ω) = →, there is nothing to prove. Thus
suppose that J (x, p, ω) is finite, i.e., ω ↔ Θ{x},{p},M for some M . Then, by (ii), there exist
a bounded neighborhood Ux of x, a bounded neighborhood Up of p and a constant M ↓

such that for any y ↔ Ux and q ↔ Up,

J (y, q, ω) ≃ M ↓.
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Since xn ↑ x and pn ↑ p, the sequences xn and pn are, for n large, contained in Ux and
Up, respectively. Taking the constant sequence ωn := ω, we thus get that J (xn, pn, ωn) ≃
M ↓ for all n large enough. By (iii), the family of functions {J (·, ·, ω)}ω↑ΘŪx,Ūp,M ↗ is equi-
continuous, and hence

lim
n↔↗

|J (xn, pn, ωn) ⇐ J (x, p, ω)| ≃ 0,

and the lim-sup bound follows.

We can now prove that the function Ix,p in (3.1.4) is Γ-convergent.

Proposition 3.1.19 (Γ-convergence of Ix,p). Let Ix,p : Θ ↑ [0,→] the function defined in
(3.1.4). If xn ↑ x and pn ↑ p, the functionals In(ω) := Ixn,pn(ω) converge in the Γ-sense to
I↗(ω) := Ix,p(ω).

Proof. Using Lemma 3.1.18, we only need to prove that Ix,p verifies the assumptions.
Assumption (i). For any fixed function u ↔ D(Lx,p) such that u > 0, the function

(Lx,pu/u) is continuous. Thus, for any such fixed u > 0 it follows that

(x, p, ω) ∝↑
∫

E↗

Lx,pu

u
dω

is continuous on R
d ↓ R

d ↓ Θ. As a consequence I(x, p, ω) is lower semicontinuous as
the supremum over continuous functions.

Assumption (ii). Fix x, p and M ↗ 0. Let ω ↔ Θx,p,M . Then, Ix,p(ω) = I(x, p, ω) ≃ M .
It follows from [Pin07, Theorem 3] that the density dω

dz
exists. Moreover, by the same

theorem, for all y and q there exist constants c1(y, q), c2(y, q) positive, depending contin-
uously on y and q, but not on ω, such that

Iy,q(ω) ≃ c1(y, q)
∫

E↗
|⇒gω|2 dz + c2(y, q),

where gω = (dω/dz)1/2 is the square root of the Radon–Nykodym derivative. As the
dependence is continuous in y and q, we can find two open neighbourhoods, U ⇓ R

d of
x and V ⇓ R

d of p, such that there exist constants c1, c2 positive, that do not depend on
ω, such that for any y ↔ U and q ↔ V :

Iy,q(ω) ≃ c1

∫

E↗
|⇒gω|2 dz + c2 := M ↓,

obtaining then (ii).
Assumption (iii). By the continuity of rij and ↼, assumption (iii) follows from Theo-

rem 4 of [Pin07].

The following technical lemma will give us the upper semi-continuity of H.
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Lemma 3.1.20 (Lemma 17.30 in [AB06] ). Let X and Y be two Polish spaces. Let ϑ : X ↑
K(Y), where K(Y) is the space of non-empty compact subsets of Y . Suppose that ϑ is upper
hemi-continuous, that is if xn ↑ x and yn ↑ y and yn ↔ ϑ(xn), then y ↔ ϑ(x). Let f :
Graph(ϑ) ↑ R be upper semi-continuous. Then the map m(x) = supy↑↽(x) f(x, y) is upper
semi-continuous.

We can finally prove the continuity of H(x, p).

Proof of Proposition 3.1.17. We have already showed that Ix,p(µ) is lower semicontinuous
and, since Vp(x, i) is continuous and bounded,


E↗ Vx,p dµ is continuous. Then, f(x, p,µ) :=

E↗ Vx,p dµ⇐ Ix,p(µ) is upper semi-continuous.
Let x, p ↔ R

d. We know, by Proposition 3.1.38 in the appendix, that there exists a unique
stationary measure ω0x,p such that for all g ↔ D(Lx,p),

∫

E↗
Lx,pg(z, i)dω

0
x,p = 0. (3.1.8)

Let Lς
x,p = ϖ(ϖ⇐ Lx,p)≃1Lx,p the Hille-Yosida approximation of Lx,p. Then we have

⇐
∫

E↗

Lx,pu

u
dω0x,p = ⇐

∫

E↗

Lς
x,pu

u
dω0x,p +

∫

E↗

(
Lς
x,p ⇐ Lx,p

)
u

u
dω0x,p

≃ ⇐
∫

E↗

Lς
x,pu

u
dω0x,p +

1

infE↗ u
⇔(Lς

x,p ⇐ Lx,p)u⇔E↗

≃ ⇐
∫

E↗
Lς

x,p log u dω
0
x,p + o(1).

Sending ϖ ↑ 0 and using (3.1.8) we have that Ix,p(ω0x,p) = 0. Then, H(x, p) ↗

E↗ Vx,pdω0x,p.

Thus, it suffices to restrict the supremum over ω ↔ ϑ(x, p) where

ϑ(x, p) :=

ω ↔ P(E↓)

∣∣∣ Ix,p(ω) ≃ 2⇔Π(x, p, ·)⇔P(E↗)


,

where ⇔·⇔P(E↗) denotes the supremum norm on P(E↓) and we called for simplicity
Π(x, p, ω) =


E↗ Vx,pdω.

Note that ⇔Π(x, p, ω)⇔P(E↗) < → by definition of Vx,p. It follows that

H(x, p) = sup
ω↑↽(x,p)

∫

E↗
Vx,p dµ⇐ Ix,p(µ)


.

ϑ(x, p) is non-empty as ω0x,p ↔ ϑ(x, p) and it is compact because any closed subset of
P(E↓) is compact. We are left to show that ϑ is upper hemi-continuous. Let (xn, pn, ωn) ↑
(x, p, ω) with ωn ↔ ϑ(xn, pn). We establish that ω ↔ ϑ(x, p). By the lower semi-continuity
of I and the definition of ϑ we find

Ix,p(ω) ≃ lim inf
n

Ixn,pn(ωn) ≃ lim inf
n

2⇔Π(xn, pn, ·)⇔P(E↗) = 2⇔Π(x, p, ·)⇔P(E↗)
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which implies indeed that ω ↔ ϑ(x, p). Thus, upper semi-continuity follows by an appli-
cation of Lemma 3.1.20.

We proceed with proving lower semi-continuity of H. Suppose that (xn, pn) ↑ (x, p),
we prove that lim infnH(xn, pn) ↗ H(x, p). Let ω be the measure such that H(x, p) =
Π(x, p, ω) ⇐ Ix,p(ω).

By Proposition 3.1.19, there are ωn such that ωn ↑ ω and lim supn Ixn,pn(ωn) ≃ Ix,p(ω).
Moreover, Π(xn, pn, ωn) converges to Π(x, p, ω) by continuity. Therefore,

lim inf
n↔↗

H(xn, pn) ↗ lim inf
n↔↗

[Π(xn, pn, ωn) ⇐ Ixn,pn(ωn)]

↗ lim inf
n↔↗

Π(xn, pn, ωn) ⇐ lim sup
n↔↗

Ixn,pn(ωn)

↗ Π(x, p, ω) ⇐ Ix,p(ω) = H(x, p),

establishing that H is lower semi-continuous.

3.1.5 Comparison principle

In this section we prove the comparison principle for the Hamilton–Jacobi equation in
terms of H by using a similar argument presented in Chapter 1.2.2, that is, relating it
to a set of Hamilton-Jacobi equations constructed from H (Figure 8). We introduce the
operators H†,H‡ and H1,H2. In both cases, the new Hamiltonians will serve as natural
upper and lower bounds for Hf(x) = H(x,⇒f(x)) and H respectively, where H and H
are the operators introduced in Propositions 3.1.15 and 3.1.12. These new Hamiltonians
are defined in terms of a containment function Υ, which allows us to restrict our analysis
to compact sets. Here we give the rigorous definition.

Definition 3.1.21 (Containment function). A function Υ : R
d ↑ [0,→) is a containment

function for Vx,p in (3.1.4), if Υ ↔ C1(Rd) and it is such that
• Υ has compact sub-level sets, i.e. for every c ↗ 0 the set {x|Υ(x) ≃ c} is compact ;
• sup

x↑Rd,z↑E↗ Vx,↖Υ(x)(z) < →.

Lemma 3.1.22. The function Υ(x) = 1
2 log

(
1+ |x|2

)
is a containment function for Vx,p.

Proof. Firstly note that Υ has compact sub-level sets. Regarding the second property, by
the definition of Vx,p, we have for every x ↔ R

d and z = (y, i) ↔ T
d ↓ {1, . . . , J},

Vx,↖Υ(x)(y, i) =
x2

2(1+ |x|2)2 ⇐⇒x↼
i(x, y)

x

1+ |x|2 .

Recalling that ↼ grows at most linearly in x, we can conclude that supx,z Vx,↖Υ(z) <
→.

Using the above lemma we are now able to define the auxiliary operators in terms
of Υ. In the following we will denote by C↗

l
(E) the set of smooth functions on E that

have a lower bound and by C↗
u (E) the set of smooth functions on E that have an upper

bound.
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Definition 3.1.23. Fix ⇀ ↔ (0, 1) and given Υ(x) = 1
2 log

(
1+ |x|2

)
, CΥ := supx,z Vx,↖Υ(x)(z)

and Hf(x) = H(x,⇒f(x)), we define
• For f ↔ C↗

l
(E),

f⇀† := (1⇐ ⇀)f + ⇀Υ,

H⇀

†,f (x) := (1⇐ ⇀)Hf(x) + ⇀CΥ,

and set

H† :=

(f⇀† ,H

⇀

†,f )
∣∣∣ f ↔ C↗

l
(E), ⇀ ↔ (0, 1)


.

• For f ↔ C↗
u (E),

f⇀‡ := (1+ ⇀)f ⇐ ⇀Υ,

H⇀

‡,f (x) := (1+ ⇀)Hf(x) ⇐ ⇀CΥ,

and set

H‡ :=

(f⇀‡ ,H

⇀

‡,f )
∣∣∣ f ↔ C↗

u (E), ⇀ ↔ (0, 1)

.

Definition 3.1.24. Fix ⇀ ↔ (0, 1) and given Υ(x) = 1
2 log

(
1+ |x|2

)
, CΥ := supx,z Vx,↖Υ(x)(z)

and Hf(x) = H(x,⇒f(x)), we define
• For f ↔ C↗

l
(E) , ϕ ↔ C2(E↓), ⇀ ↔ (0, 1) set

f⇀1 := (1⇐ ⇀)f + ⇀Υ,
H⇀

1,f ,φ(x, z) := (1⇐ ⇀)Hf ,φ(x, z) + ⇀CΥ,

and set

H1 :=

(f⇀1 ,H

⇀

1,f ,φ)
∣∣∣ f ↔ C↗

l
(E),ϕ ↔ C2(E↓), ⇀ ↔ (0, 1)


.

• For f ↔ C↗
u (E), ϕ ↔ C2(E↓), ⇀ ↔ (0, 1) set

f⇀2 := (1+ ⇀)f ⇐ ⇀Υ,
H⇀

2,f ,φ(x, z) := (1+ ⇀)Hf ,φ(x, z) ⇐ ⇀CΥ,

and set

H2 :=

(f⇀2 ,H

⇀

2,f ,φ)
∣∣∣ f ↔ C↗

u (E),ϕ ↔ C2(E↓), ⇀ ↔ (0, 1)

.

We now prove the comparison principle for f ⇐ ϖHf = h based on the results sum-
marized in Figure 8.
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H

H†

H†

comparison

H1

H2

H

sub

super

sub

super

sub

super

Figure 8: An arrow connecting an operator A with operator B with subscript ’sub’
means that viscosity subsolutions of (1⇐εA)f = h are also viscosity subsolu-
tions of (1⇐εB)f = h. Similarly for arrows with a subscript ’super’. The box
around the operators H† and H‡ indicates that the comparison principle holds
for subsolutions of (1⇐ εH†)f = h and supersolutions of (1⇐ εH‡)f = h.

Theorem 3.1.25 (Comparison principle). Let h ↔ Cb(E) and ϖ > 0. Let u and v be, respec-
tively, any subsolution and any supersolution to (1⇐ ϖH)f = h. Then we have that

sup
x

u(x) ⇐ v(x) ≃ 0.

Proof. Fix h ↔ Cb(E) and ϖ > 0. Let u be a viscosity subsolution and v be a viscosity
supersolution to (1 ⇐ ϖH)f = h. By Figure 8, the function u is a viscosity subsolution
to (1 ⇐ ϖH†)f = h and v is a viscosity supersolution to (1 ⇐ ϖH‡)f = h. Hence by the
comparison principle for H†,H† established in Theorem 3.1.26 below, supx u(x)⇐v(x) ≃
0, which finishes the proof.

The rest of this subsection is devoted to establishing Figure 8. More precisely, we es-
tablish Figure 8 in results 3.1.26, 3.1.27, 3.1.28 and 3.1.33.

The next theorem contains the comparison principle for H† and H‡. The proof follows
the ideas presented in Chapter 1 (see also [BC97] and [CIL92]). In order to be able to use
both the subsolution and supersolution properties in the estimate of supx u(x) ⇐ v(x),
we use the following strategy based on the introduction of double variables.

1. First of all, note that the supremum over x of u(x)⇐ v(x) can be replaced, sending
ς ↑ 0, with the supremum over x and y of the double variables function u(x) ⇐
v(y) ⇐ (2ς)≃1(x⇐ y)2

2. Once the supremum (x,y) is found, we are able to use the sub-super solution prop-
erties in the following way:

• fixing y and optimising over x, it can be used in the application of the subso-
lution property of u

• fixing x and optimising over y, it can be used in the application of the super-
solution property of v.
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Theorem 3.1.26. Let h ↔ Cb(E) and ϖ > 0. Let u be any subsolution to (1⇐ ϖH†)f = h and
let v be any supersolution to (1⇐ ϖH‡)f = h. Then we have that

sup
x

u(x) ⇐ v(x) ≃ 0.

Proof. Following the above steps we define the double variables function

Φϑ,⇁(x, y) =
u(x)
1⇐ ◁

⇐ v(y)
1+ ◁

⇐ |x⇐ y|2
2ς

⇐ ◁

1⇐ ◁
Υ(x) ⇐ ◁

1+ ◁
Υ(y).

Note that the containment function Υ is introduced in order to be able to work in a
compact set, and the positive constant ◁ will allow us to use the convexity of H. Since
Φϑ,⇁ is upper semicontinuous and lim|x|+|y|↔↗ Φ(x, y) = ⇐→, for every ς ↔ (0, 1) there
exists (xϑ, yϑ) such that

Φϑ,⇁(xϑ, yϑ) = sup
Rd⇓Rd

Φϑ,⇁(x, y). (3.1.9)

Suppose by contradiction that 0 = u(x̃) ⇐ v(x̃) > 0 for some x̃. We choose ◁ such that
2⇁

(1≃⇁)(1+⇁)Υ(x̃) < 0/2 and 2⇁
1≃⇁2 (||h||+ CΥ) < 0/2. Then,

Φϑ,⇁(xϑ, yϑ) ↗ Φϑ,⇁(x̃, x̃) > 0 ⇐ 2◁

(1⇐ ◁)(1+ ◁)
Υ(x̃) >

0

2
> 0, (3.1.10)

and
◁

1⇐ ◁
Υ(xϑ) +

◁

1+ ◁
Υ(yϑ) ≃ sup

(
u

1⇐ ◁


+ sup

(
⇐v

1+ ◁


< →.

Therefore there exists R⇁ > 0 such that xϑ and yϑ belong to B(0,R⇁).
Next we observe that by Lemma 3.1 of [CIL87a],

|xϑ ⇐ yϑ|2
ς

↑ 0 as ς ↑ 0+,

and, as a consequence, |xϑ ⇐ yϑ| ↑ 0 as ς ↑ 0+. Define the functions ϕϑ,⇁
1 ↔ D(H†) and

ϕϑ,⇁
2 ↔ D(H‡) by

ϕϑ,⇁
1 (x) = (1⇐ ◁)


v(yϑ)
1+ ◁

+
|x⇐ yϑ|2

2ς
+

◁

1⇐ ◁
Υ(x) +

◁

1+ ◁
Υ(yϑ) + (1⇐ ◁)(x⇐ xϑ)

2



ϕϑ,⇁
2 (y) = (1+ ◁)


u(xϑ)
1⇐ ◁

⇐ |xϑ ⇐ y|2
2ς

⇐ ◁

1⇐ ◁
Υ(xϑ) ⇐

◁

1+ ◁
Υ(y) ⇐ (1+ ◁)(y ⇐ yϑ)

2


.

Using (3.1.9), observe that u⇐ ϕϑ,⇁
1 attains its supremum at x = xϑ, and thus

sup
E

(u⇐ ϕϑ,⇁
1 ) = (u⇐ ϕϑ,⇁

1 )(xϑ).
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Moreover, by addition of the (1 ⇐ ◁)(x ⇐ xϑ)2 term, this supremum is the unique op-
timizer of u ⇐ ϕϑ,⇁

1 . Then, by the subsolution and supersolution properties, taking into
account Lemma 1.2.6,

u(xϑ) ⇐ ϖ


(1⇐ ◁)H

(
xϑ,

xϑ ⇐ yϑ
ς


+ ◁ CΥ


≃ h(xϑ).

With a similar argument for u2 and ϕϑ

2, we obtain by the supersolution inequality that

v(yϑ) ⇐ ϖ


(1+ ◁)H

(
yϑ,

xϑ ⇐ yϑ
ς


⇐ ◁CΥ


↗ h(yϑ). (3.1.11)

By the coercivity property obtained in Proposition 3.1.16 on page 55 and by the inequal-
ity (3.1.11), pϑ := xω≃yω

ϑ
is bounded in ς, allowing us to extract a converging subsequence

pϑk .
We conclude that for each ◁

lim inf
ϑ↔0

Φ(xϑ, yϑ)

≃ lim inf
ϑ↔0

u(xϑ)
1⇐ ◁

⇐ v(yϑ)
1+ ◁

≃ lim inf
k↔↗

ϖH (xϑk , pϑk) +
◁

1⇐ ◁
CΥ ⇐ ϖH (yϑk , pϑk) +

◁

1+ ◁
CΥ

+
h(xϑk)
1⇐ ◁

⇐ h(yϑk)
1+ ◁

≃ lim inf
k↔↗

ϖ [H (xϑk , pϑk) ⇐H (yϑk , pϑk)] +
h(xϑk) ⇐ h(yϑk)

1⇐ ◁2 +
2◁

1⇐ ◁2 (||h||+ CΥ)

≃ 2◁

1⇐ ◁2 (||h||+ CΥ) .

As ◁ is chosen such that 2⇁
1≃⇁2 (||h||+ CΥ) < 0/2, we obtain a contradiction with (3.1.10),

establishing the comparison principle.

Below, we complete the figure by proving the left-hand side of Figure 8.

Lemma 3.1.27. For all h ↔ C(Rd) and ϖ > 0, viscosity subsolutions of (1 ⇐ ϖH)f = h are
viscosity subsolutions of (1⇐ ϖH1)f = h, and viscosity supersolutions of (1⇐ ϖH)f = h are
viscosity supersolutions of (1⇐ ϖH2)f = h.

Proof. Fix ϖ > 0 and h ↔ Cb(E). Let u be a subsolution to (1⇐ ϖH)f = h. We prove it is
also a subsolution to (1⇐ ϖH1)f = h. Fix ⇀ ↔ (0, 1), ϕ ↔ C2(E↓) and f ↔ C↗

l
(E), so that

(f⇀1 ,H
⇀

1,f ,φ) ↔ H1 with f⇀1 and H⇀

1,f ,φ as in Definition 3.1.24. We will prove that there are
(xn, zn) such that

lim
n

u(xn) ⇐ f⇀1 (xn) = sup
x

u(x) ⇐ f⇀1 (x), (3.1.12)

lim sup
n

u(xn) ⇐ ϖH⇀

1,f ,φ(xn, zn) ⇐ h(xn) ≃ 0. (3.1.13)
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Given M := ⇀≃1 supy u(y)⇐ (1⇐ ⇀)f(y) < →, as u is bounded and f ↔ C↗
l
(E), we have

that the sequence xn along which the limit in (3.1.12) is attained, is contained in the
compact set K := {x|Υ(x) ≃ M}. We define γ : R ↑ R as a smooth increasing function
such that

γ(r) =

{
r if r ≃ M ,

M + 1 if r ↗ M + 2.

Denote by f⇀ the function on E defined by

f⇀(x) = γ((1⇐ ⇀)f(x) + ⇀Υ(x)) = γ(f⇀1 (x)).

By construction, f⇀ is smooth and constant outside a compact set and thus lies in D(H).
We conclude that (f⇀,Hfε,(1≃⇀)φ) ↔ H . As u is a viscosity subsolution for (1⇐ϖH)u = h,
there exist xn ↔ E and zn ↔ E↓ with

lim
n

u(xn) ⇐ f⇀(xn) = sup
x

u(x) ⇐ f⇀(x),

lim sup
n

u(xn) ⇐ ϖHfε,(1≃⇀)φ(xn, zn) ⇐ h(xn) ≃ 0. (3.1.14)

Since f⇀1 equals f⇀ in K = {x|Υ(x) ≃ M}, we also have that

lim
n

u(xn) ⇐ f⇀1 (xn) = sup
x

u(x) ⇐ f⇀1 (x),

establishing (3.1.12). Convexity of Hf ,φ(x, z) = Hφ(x,⇒f(x), z) in p and ϕ yields for
arbitrary (x, z) the elementary estimate

Hfε,(1≃⇀)φ(x, z) =H(1≃⇀)φ(x, (1⇐ ⇀)⇒f(x) + ⇀⇒Υ(x), z)

≃ (1⇐ ⇀)Hφ(x,⇒f(x), z) + ⇀H0(x,⇒Υ(x), z)
= (1⇐ ⇀)Hφ(x,⇒f(x), z) + ⇀Vx,↖Υ(x)(z)

≃ H⇀

1,f ,φ(x, z).

Combining the above inequality with (3.1.14), we have

lim sup
n

u(xn) ⇐ ϖH⇀

1,f ,φ(x, z) ⇐ h(xn)

≃ lim sup
n

u(xn) ⇐ ϖHfε,(1≃⇀)φ(xn, zn) ⇐ h(xn)

≃ 0,

establishing (3.1.13). The supersolution statement follows in the same way.

Lemma 3.1.28. Fix ϖ > 0 and h ↔ Cb(E).
(a) Every subsolution to (1⇐ ϖH1)f = h is also a subsolution to (1⇐ ϖH†)f = h.
(b) Every supersolution to (1⇐ ϖH1)f = h is also a supersolution to (1⇐ ϖH‡)f = h.
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The definition of viscosity solutions, Definition 1.2.5, is written down in terms of the
existence of a sequence of points that maximizes u⇐ f or minimizes v⇐ f . Lemma 1.2.6,
instead, gives, for a class of test functions, a definition in terms of a point that maximizes
u⇐f or minimize v⇐f . However, to prove the lemma above, we would like to have the
subsolution and supersolution inequalities for any point that maximizes or minimizes
the difference. This is achieved by the following auxiliary lemma.

Lemma 3.1.29. Fix ϖ > 0 and h ↔ Cb(E).
(a) Let u be a subsolution to (1⇐ ϖH1)f = h, then for all (f , g) ↔ H1 and x0 ↔ E such that

u(x0) ⇐ f(x0) = sup
x

u(x) ⇐ f(x)

there exists a z ↔ E↓ such that

u(x0) ⇐ ϖg(x0, z) ≃ h(x0).

(b) Let v be a supersolution to (1 ⇐ ϖH2)f = h, then for all (f , g) ↔ H2 and x0 ↔ E such
that

v(x0) ⇐ f(x0) = inf
x
v(x) ⇐ f(x)

there exists a z ↔ E↓ such that

v(x0) ⇐ ϖg(x0, z) ↗ h(x0).

For a proof of the above Lemma see Lemma 5.7 of [KS20].

Proof of Lemma 3.1.28. We only prove the subsolution statement. Fix ϖ > 0 and h ↔
Cb(E). Let u be a subsolution of (1 ⇐ ϖH1)f = h. We prove that it is also a subsolu-
tion of (1⇐ ϖH†)f = h. Let f⇀1 = (1⇐ ⇀)f + ⇀Υ ↔ D(H1) and let x0 be such that

u(x0) ⇐ f⇀1 (x0) = sup
x

u(x) ⇐ f⇀1 (x).

For each 0 > 0, since H(x, p) is a principal eigenvalue for Lx,p + Rx (as remarked in
Proposition 3.1.15, there exists a function g such that

H(x0,⇒f(x0)) = g≃1

Lx0,↖f (x0) + Rx0


g. (3.1.15)

As

f⇀1 , (1⇐ ⇀)g≃1


Lx0,↖f (x0) + Rx0


g + ⇀CΥ


↔ H1,

we find by the subsolution property of u and that there exists z such that

h(x0) ↗ u(x0) ⇐ ϖ

(1⇐ ⇀)g≃1


Lx0,↖f (x0) + Rx0


g + ⇀CΥ



= u(x0) ⇐ ϖ ((1⇐ ⇀)H(x0,⇒f(x0)) + ⇀CΥ)

where the second inequality follows by (3.1.15) and it establishes that u is a subsolution
for (1⇐ ϖH†)f = h.
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We conclude this subsection proving the right part of Figure 8.

Proposition 3.1.30. Let the map H : R
d ↓ R

d ↑ R be the eigenvalue (3.1.4) and let H :
D(H) ⇓ C1(Rd) ↑ C(Rd) be the operator Hf(x) := H(x,⇒f(x)). Then, for all ϖ > 0
and h ↔ C(Rd), every viscosity subsolution of (1 ⇐ ϖH)f = h is also a viscosity subsolutions
of (1 ⇐ ϖH†)f = h and every viscosity supersolution of (1 ⇐ ϖH)f = h is also a viscosity
supersolution of (1⇐ ϖH‡)f = h.

Proof. Fix ϖ > 0 and h ↔ Cb(E). Let u be a subsolution to (1⇐ ϖH)f = h. We prove it is
also a subsolution to (1 ⇐ ϖH†)f = h. Fix ⇀ > 0 and f ↔ C↗

,
(E) and let (f ϑ† ,H

⇀

†,f ) ↔ H†

as in Definition 3.1.23. We will prove that

u⇐ f⇀†


(x) = sup

x↑E


u(x) ⇐ f⇀† (x)


,

implies

u(x) ⇐ ϖH⇀

†,f (x) ⇐ h(x) ≃ 0. (3.1.16)

As u is a viscosity subsolution for (1⇐ ϖH)f = h and f⇀† ↔ D(H), if

u⇐ f⇀†


(x) = sup

x


u(x) ⇐ f⇀† (x)


,

then,

u(x) ⇐ ϖHf⇀† (x) ⇐ h(x) ≃ 0. (3.1.17)

Convexity of p ∝↑ H(x, p) yields the estimate

Hf⇀(x) = H(x,⇒f⇀(x))

≃ (1⇐ ⇀)H(x,⇒f(x)) + ⇀H(x,⇒Υ(x))
≃ (1⇐ ⇀)H(x,⇒f(x)) + ⇀CΥ = H⇀

†,f (x).

Combining this inequality with (3.1.17), we have

u(x) ⇐ ϖH⇀

†,f (x) ⇐ h(x) ≃ u(x) ⇐ ϖHf⇀† (x) ⇐ h(x) ≃ 0,

establishing (3.1.16). The supersolution statement follows in a similar way.

3.1.6 Exponential tightness

To establish exponential tightness, we first note that by [FK06, Corollary 4.19] it suffices
to establish the exponential compact containment condition (cf. Definition 3.1.18). This
is the content of the next proposition.
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Proposition 3.1.31. For all K ⇑ E compact, T > 0 and a > 0 there is a compact set K̂K,T ,a ⇑
E such that

lim sup
ϑ↔0

ς logP






t↑[0,T ]

{
Y ϑ(t) /↔ K̂K,T ,a

}
∀= ℑ



 ≃ max{⇐a, lim sup
ϑ↔0

ς logP(Xϑ(0) /↔ K)}.

(3.1.18)

Remark 3.1.32. Note that, since Y ϑ(0) satisfies the large deviations principle by assump-
tion, inequality (3.1.18) gives the searched compact containment condition.

Proof of Proposition 3.1.31. First of all let’s consider ϕ ↘ 0. Note that, by Lemma 3.1.22,
we have supx,z H0(x,⇒Υ, z) = supx,z Vx,↖Υ(x)(z) ≃ CΥ. Choose ◁ > 0 such that TCΥ ⇐
◁ ≃ ⇐a. Since Υ is continuous, there is some c such that the set G := {x |Υ(x) < c+ ◁}
is non empty. Note that G is open and let G be the closure of G. Then, G is compact. Let
f(x) := 1 ∅ Υ where 1 is some smooth increasing function such that

1(r) =

{
r if r ≃ ◁ + c,

2◁ + c if r ↗ ◁ + c+ 2.

It follows that 1∅Υ equals Υ on G and is constant outside of a compact set. Set fϑ = f ∅⇀ϑ,
gϑ = Hϑfϑ and g = Hf ,φ. Note that g(x, z) = Hφ(x,⇒Υ(x), z) if x ↔ G. Therefore, we
have sup

x↑G,z↑E↗ g(x, z) ≃ CΥ. Let 2 be the stopping time 2 := inf
{
t ↗ 0

∣∣Y ϑ(t) /↔ G
}

and let

Mϑ(t) := exp


1

ς

(
f(Y ϑ(t)) ⇐ f(Y ϑ(0)) ⇐

∫
t

0
gϑ(Y

ϑ(s), Īϑ(t))ds


.

By construction Mϑ is a martingale. Let K ⇑ E be compact. We have

P






t↑[0,T ]

{
Y ϑ(t) /↔ G

}
∀= ℑ





≃ P



Y ϑ(0) ↔ K,


t↑[0,T ]

{
Y ϑ(t) /↔ G

}


+ P (Y ϑ(0) /↔ K)

= E


{Y ω(0)↑K}

{⋃
t↘[0,T ]{Y ω(t)/↑G}

}Mϑ(2 )Mϑ(2 )
≃1


+ P (Y ϑ(0) /↔ K)

≃ exp

{
⇐1

ς


inf
y1/↑G

f(y1) ⇐ f(Y ϑ(0))

⇐T sup
y2↑G,i↑{1,...,J}

gϑ(y2, i)

}

↓ E


{Y ω(0)↑K}

{⋃
t↘[0,T ]{Y ω(t)/↑G}

}Mϑ(2 )


+ P (Y ϑ(0) /↔ K) .
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Since sup
x↑G,z↑E↗ g(x, z) ≃ CΥ,φ and g is the limit of gϑ for ς ↑ 0 in the sense of Defini-

tion 3.1.11, we obtain that the term in the exponential is bounded by 1
ϑ
(CΥT ⇐ ◁) ≃ ⇐1

ϑ
a

for sufficiently small ς. The expectation is bounded by 1 due to the martingale property
of Mϑ(2 ). We can conclude that

lim sup
ϑ↔0

ς logP






t↑[0,T ]

{
Y ϑ(t) /↔ KT ,a

}
∀= ℑ



 ≃ max{⇐a, lim sup
ϑ↔0

ς logP (Y ϑ(0) /↔ K)}

where K̂K,T ,a = G.

3.1.7 Action-integral representation of the rate function

In this section we establish a representation of the rate function as an integral of a La-
grangian function L. We refer to this representation as the "action-integral representa-
tion" of the rate function I. We argue on basis of Section 8 of [FK06] for which we need
to check the following two conditions.

Lemma 3.1.33. Let H : R
d↓R

d ↑ R be the map given in (3.1.4) and H : D(H) ⇓ C1(Rd) ↑
C(Rd) the operator Hf(x) := H(x,⇒f(x)). Then:

(i) The Legendre-Fenchel transform L(x, v) := sup
p↑Rd(p · v⇐H(x, p)) and the operator H

satisfy Conditions 8.9, 8.10 and 8.11 of [FK06].
(ii) For all ϖ > 0 and h ↔ C(Rd), the comparison principle holds for (1⇐ ϖH)u = h.

Proof. To prove the first aim, we will show that following items (a), (b) and (c) imply
Condition 8.9, 8.10 and 8.11 of [FK06]. Then, the proof of (a), (b), (c) is shown in [PS19,
Proposition 6.1].

(a) The function L : R
d ↓ R

d ↑ [0,→] is lower semicontinuous and for every C ↗ 0,
the level set {(x, v) ↔ R

d ↓ R
d : L(x, v) ≃ C} is relatively compact in R

d ↓ R
d.

(b) For all f ↔ D(H) there exists a right continuous, nondecreasing function ↼f :
[0,→) ↑ [0,→) such that for all (x, v) ↔ R

d ↓ R
d,

|⇒f(x) · v| ≃ ↼f (L(x, v)) and lim
r↔↗

↼f (r)

r
= 0.

(c) For each x0 ↔ R
d and every f ↔ D(H), there exists an absolutely continuous path

x : [0,→) ↑ R
d such that x0 = x(0) and

∫
t

0
H(x(s),⇒f(x(s))) ds =

∫
t

0
[⇒f(x(s)) · ẋ(s) ⇐ L(x(s), ẋ(s))] ds.

Then regarding Condition 8.9, the operator Af(x, v) := ⇒f(x) ·v on the domain D(A) =
D(H) satisfies (1). For (2), we can choose Γ = T

d ↓ R
d, and for x0 ↔ T

d, take the pair
(x,ϖ) with x(t) = x0 and ϖ(dv ↓ dt) = 00(dv) ↓ dt. Part (3) is a consequence of (a)
from above. Part (4) can be verified as follows. Let Υ the containment function used in
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Definition 3.1.23 and note that the sub-level sets of Υ are compact. Let γ ↔ AC with
γ(0) ↔ K and such that the control

∫
T

0
L(γ(s), γ̇(s)) ds ≃ M

implies γ(t) ↔ K̂ for all t ≃ T , with K̂ compact. Then,

Υ(γ(t)) = Υ(γ(0)) +
∫

t

0
↖⇒Υ(γ(s)), γ̇(s)↙ ds

≃ Υ(γ(0)) +
∫

t

0
L(γ(s), γ̇(s)) +H(γ(s),⇒Υ(γ(s))) ds

≃ sup
y↑K

Υ(y) +M +
∫

T

0
sup
z

H(z,⇒Υ(z)) ds

:= C < →.

Hence, we can take K̂ = {z ↔ R
d|Υ(z) ≃ C}.

Part (5) is implied by (b) from above. Condition 8.10 is implied by Condition 8.11
and the fact that H1 = 0, by Theorem 3.1.16 (see Remark 8.12 (e) in [FK06]). Finally,
Condition 8.11 is implied by (c) above, with the control ϖ(dv ↓ dt) = 0ẋ(t)(dv) ↓ dt.

The comparison principle for H follows from Proposition 3.1.30 and Theorem 3.1.26.

In the following, we prove the integral representation of the rate function. Firstly,
let’s recall that Theorem 2.2.12 gives the existence of a semigroup V (t) and a family
of functions R(ϖ) and let V(t) : C(Rd) ↑ C(Rd) be the Nisio semigroup with cost
function L, that is

V(t)f(x) = sup
γ↑AC

Rd [0,↗)
γ(0)=x


f(γ(t)) ⇐

∫
t

0
L(γ(t), γ̇(s)) ds


.

Let R(ϖ)h be the operator given by

R(ϖ)h(x) = sup
γ↑AC
γ(0)=x

∫ ↗

0
ϖ≃1e≃ς

↔1
t


h(γ(t)) ⇐

∫
t

0
L(γ(s), γ̇(s))


dt.

The proof of the result below is based on the following four main steps.
• Figure 8 on page 62 shows that R(ϖ)h is the unique function that is a sub- and

supersolution to the equations (1⇐ ϖH†)f = h and (1⇐ ϖH‡)f = h respectively.
• R(ϖ)h has been proven to be the unique viscosity solution to (1⇐ϖH)f = h. Then,

again by Figure 8, we must have R(ϖ)h = R(ϖ)h.
• Starting from the equality of resolvents we work to an equality for the semigroups

V (t) and V(t).
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• Recalling that the rate function in Theorem 3.1.6 is given by,

I(x) = I0(x(0)) + sup
k↑N

sup
(t1,...,tk)

k

i=1

Iti≃ti↔1(x(ti)|x(ti≃1))

with It(z|y) = supf↑C(E)[f(z)⇐V (t)f(y)], it is not difficult to realise that, if V (t) =

V(t), it follows that It(y|z) = infγ:γ(0)=z,
γ(t)=y


t

0 L(γ(s), γ̇(s)) ds.

Theorem 3.1.34 (Integral representation of the rate function). The rate function of Theorem
3.1.6 has the following representation

I(x) =
{
I0(x(0)) +

↗
0 L (x(t), ẋ(t)) dt if x ↔ AC([0,→);R

d),

→ else,

where L(x, v) = sup
p↑Rd [p · v ⇐H(x, p)] is the Legendre transform of H.

Proof. Following the above mentioned steps, we recall that, as stated by Theorem 2.2.12,
there exists a family of operators R(ϖ) : Cb(Rd) ↑ Cb(Rd), such that for ϖ > 0 and
h ↔ Cb(Rd), the function R(ϖ)h is the unique function that is a viscosity solution to
(1⇐ ϖH)f = h and such that

lim
m↔↗

∣∣∣∣

∣∣∣∣R
(

t

m

m

f ⇐ V (t)f

∣∣∣∣

∣∣∣∣ = 0 for all f in a dense set D ⇓ Cb(R
d). (3.1.19)

See also [Kra20, Theorem 7.10] or [FK06, Theorem 7.17] for the construction of the opera-
tors R(ϖ). By [KS20, Proposition 6.1] (or [FK06, Chapter 8]), R(ϖ) is the unique viscosity
solution to (1 ⇐ ϖH)f = h. Then, Figure 8 on page 62 shows that it must equal R(ϖ)h.
Moreover, we find by [FK06, Lemma 8.18] (whose assumptions are implied by Lemma
3.1.33 above) that for all f ↔ Cb(Rd) and x ↔ R

d

lim
m↔↗

R

(
t

m

m

f(x) = V(t)f(x). (3.1.20)

We conclude from (3.1.19) and (3.1.20) that V (t)f = V(t)f for all t and f ↔ D. Now re-
call that D is sequentially strictly dense so that equality for all f ↔ Cb(Rd) follows if V (t)
and V(t) are sequentially continuous. The first statement follows by Theorems [Kra22,
Theorem 7.10] and [Kra20, Theorem 6.1]. The second statement follows by [FK06, Lemma
8.22]. We conclude that V (t)f = V(t)f for all f ↔ Cb(Rd) and t ↗ 0. Using Theorem
8.14 of [FK06] and the convexity of v ∝↑ L(x, v) we get the integral representation.

3.1.8 A more general theorem

Analysing the proofs in the previous sections, we can state the following facts:
• In the proof of large deviations principle, the main steps are:
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1. Convergence of the nonlinear operators Hϑ to a multivalued operator H ,
2. comparison principle for (1⇐ ϖH)f = h.

• The existence of an eigenvalue H(x, p) and its convexity, coercivity and continuity
are crucial for our approach to comparison principle and

– the arguments for existence, convexity and coercivity (proofs of Propositions
3.1.3 and 3.1.16) are based on the fact that H(x, p) is the eigenvalue of an
operator of the type Bx,p + Vx,p + Rx with the three operators that verify
particular properties such as coercivity and the maximum principle,

– to show the continuity of H the representation (3.1.4) is needed. In particular,
some properties of V and I , like Γ- convergence, are necessary.

The above observations allow for a straightforward generalization in Theorem 3.1.37
and justify the assumptions of the next subsection. In this section we indeed prove the
large deviation principle for a general switching Markov process. In particular, we will
study the Markov process (Y ϑ

t
, Īϑ

t
), that is the solution to the Martingale problem corre-

sponding to the following operator

Aϑf(x, i) := A
(i)
ϑ f(·, i)(x) +

J

j=1

rij(x, x/ς) [f(x, j) ⇐ f(x, i)] (3.1.21)

with A
(i)
ϑ : D(A(i)

ϑ ) ⇓ C(Rd) ↑ C(Rd) be the generator of a strong R
d-valued Markov

process, with domain D(A(i)
ϑ ).

Here we give the assumptions needed.

Assumption 3.1.35. The nonlinear generators Hϑf = ςe≃f/ϑAϑef/ϑ admits an extended
limit H ⇓ ex⇐ LIMHϑ with H of the type

H :=

(f ,Hf ,φ) : f ↔ C2(Rd), Hf ,φ ↔ C(Rd ↓ E↓) and ϕ ↔ C2(E↓)


.

For all ϕ there exist a map Hφ : R
d ↓ R

d ↓ E↓ ↑ R such that for all f ↔ D(H), x ↔ R
d

and z ↔ E↓, Hφ,f (x, z) = Hφ(x,⇒f , z). Moreover, the image Hφ has the representation

Hφ(x, p, z) = e≃φ(z) [Bx,p + Vx,p + Rx] e
φ(z)

with p = ⇒f(x) and Bx,p,Vx,p,Rx such that
(i) For all p ↔ R

d there exists an eigenfunction gx,p ↔ C2(Rd↓J) with gix,p > 0 and an
eigenvalue H(x, p) such that [Bx,p + Vx,p + Rx] gx,p = H(x, p)gx,p.

(ii) Tx,p = Bx,p + Rx verifies the maximum principle :
if (im, ym) = argminϕ then e≃φ(im,ym)Tx,peφ(im,ym) ↗ 0.

(iii) p ∝↑ Vx,p is coercive uniformly with respect to x.
(iv) p ∝↑ Bx,p and p ∝↑ Vx,p are convex uniformly on compact sets.

The above assumption implies the convergence of the nonlinear operators and the
existence of the principal eigenvalue H. Moreover, it will imply convexity and coercivity
of H(x, p).
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Assumption 3.1.36. The eigenvalue H is of the type

H(x, p) = sup
µ↑P(E↗)

[Λ(x, p,µ) ⇐ Ix,p(µ)]

with

Λ(x, p,µ) =
∫

E↗
Vx,p dµ, and Ix,p(µ) = ⇐ inf

u>0

∫

E↗

(Bx,p + Rx)u
u

dµ,

and the following properties hold
(i) Ix,p satisfies the assumption of Lemma 3.1.18,

(ii) Λ(x, p,µ) is continuous and ⇔Λ(x, p,µ)⇔Θ < →,
(iii) there exists a containment function Υ for Λ in the sense of Definition 3.1.21,
(iv) for all x, there exists a unique measure µ→x such that Ix,0(µ→x) = 0.

Assumption 3.1.36 implies the continuity of H.
We are ready to state the general theorem.

Theorem 3.1.37 (Large deviation for a Switching Markov process). Let (Y ϑ
t
, Īϑ

t
) be the

solution of the Martingale problem corresponding to the operator given in (3.1.21). If Assump-
tions 3.1.35 and 3.1.36 hold and suppose further that at time zero, the family of random variables
{Y ϑ(0)}ϑ>0 satisfies a large deviation principle in R

d with good rate function I0 : R
d ↑ [0,→].

Then, the spatial component {Y ϑ
t
} satisfies a large deviation principle in C

Rd [0,→).

The proof of the above theorem follows the same lines of what is done in Subsection
3.1.5.

3.1.9 Conclusions and comparison with previous works

To conclude our work, in the following we summarize all the main novelties of our
results.

1. We prove large deviations principle for the Markov process defined in Definition
3.1.1. The main steps of the proof are:

a) Convergence of the nonlinear generators Hϑ.
b) Proof of continuity of the Hamiltonian H.
c) Comparison principle for (1⇐ ϖH)u = h.
d) Proof of exponential tightness for Xϑ.
e) Proof of the integral representation of the rate function.

2. We prove the Law of large numbers for the path characterizing the limit process
by calculating its speed. To do so, we also prove existence and uniqueness of the
stationary measure of the operator (3.1.5).

3. We give a general result for a Switching Markov process.
The first result can be seen as an extension of part of the work [PS19]. We elaborate on
the primary distinctions between our work and the previously cited one and how these
distinctions contribute to the increased complexity of the proof of large deviations.
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• We work on R
d and not on the torus T

d. This transition from a compact to a non-
compact set leads to the following significant consequences:

(i) Firstly, in order to prove comparison principle, i.e step 1c, we need to con-
struct four Hamiltonians in terms of a containment function that allows us
to restrict part of our analysis on compact sets. Hence, we need to prove dia-
gram 8. In [PS19], they only need two additional operators defined as multi-
valued limit of the Hamiltonian H .

(ii) Secondly, in a compact setting step 1d is trivial. Indeed, the exponential tight-
ness is implied by exponential compact containment condition that is always
verified in a compact set.

(iii) In the proof of the integral representation of the rate function, step 1e, some
details are not needed in a compact setting as part of condition 8.9 in [FK06].

• We introduce a spatial component x in the rates of the process that forces us to
work with a Hamiltonian depending on both variables x and p. For this reason,
we need to work with a spatially inhomogeneous Hamilton–Jacobi equation. In
particular:

(i) Proving comparison principle one usually wants to bound the difference be-
tween sub-solution and super-solution supE u1⇐u2 by using a doubling vari-
ables procedure and typically ends up with an estimate of the following type

sup
E

(u1 ⇐ u2) ≃ϖ lim inf
ϑ↔0

[H(xϑ,φ(xϑ ⇐ yϑ)) ⇐H(yϑ,φ(xϑ ⇐ yϑ))] (3.1.22)

+ sup
E

(h1 ⇐ h2).

If the Hamiltonian does not depend on x, the final estimate is

sup
E

(u1 ⇐ u2) ≃ϖ lim inf
ϑ↔0

[H(φ(xϑ ⇐ yϑ)) ⇐H(φ(xϑ ⇐ yϑ))] + sup
E

(h1 ⇐ h2)

= sup
E

(h1 ⇐ h2),

that gives immediately comparison principle. This means that step 1c is par-
tially immediate.

(ii) To bound (3.1.22) in the non-spatially homogeneous case, we instead need
to prove some regularity of the Hamiltonian. In particular, we need to prove
continuity of H using some notions as Γ-convergence. If the Hamiltonian de-
pends only on p, continuity, that is step 1b, follows immediately from convex-
ity in p.

3.1.10 Appendix: Uniqueness of the stationary measure

We give here the proof of the existence and uniqueness of the stationary measure.
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Proposition 3.1.38. Under the ussumptions of Theorem 3.1.6, there exists a unique stationary
measure of the operator

Lx,pu(z, i) =
1

2
∆zu(z, i) + (p⇐⇒x↼

i(x, z)) ·⇒zu(z, i) +
J

j=1

rij(x, z) [u(z, j) ⇐ u(z, i)] .

Proof. First of all, note that Lx,p is of the type Tx,p + Rx where Tx,p is a diagonal matrix
with diagonal elements (Tx,p)ii of the type ∆ + p ·⇒+ c and (Rx)ii =


J

j=1 rij .
Let us consider, for some 0 ↔ R, the operator Tx,p + Rx + 0. For the latter operator,

Conditions 1, 2 and 3 of [Swe92] hold. Then, by [Swe92, Theorem 1.1], there exists a
unique function Ψ ⊤ 0 such that (Tx,p + Rx + 0)Ψ = ϖΨ for some ϖ > 0. It follows that
ϖ = 0 and Ψ is the identity function. Hence, ker(Tx,p + Rx) is one-dimensional and it is
spanned by the identity function, i.e., it consists of constants. Let Pt be the semigroup
associated to the generator Lx,p. By [EN00, Corollary V.4.6], Pt is mean ergodic, that
means that the Cesàro mean

C(r) =
1

r

∫
r

0
Ps ds,

has a limit P : Cb(E↓) ↑ Cb(E↓) for r ↑ →. Moreover, by [EN00, Lemma V.4.2], Pf ↔
ker(Lx,p) for every f ↔ Cb(E↓).

Let T : c ↔ ker(Lx,p) ∝↑ c ↔ R. Then, T ∅ P : Cb(E↓) ↑ R is a linear continuous func-
tion on Cb(E↓). Then, by Riesz–Representation theorem, there exists a unique measure
µ such that (T ∅ P )f = ↖f ,µ↙. We show now that µ is the unique invariant measure for
Pt. For all f ↔ Cb(E↓) we have

↖Ptf ,µ↙ = (T ∅ P )(Ptf) = (T ∅ P )f = ↖f ,µ↙,

where in the second equality we used that P = PtP = PPt = P 2 (see [EN00, Lemma
V.4.4]). Moreover, if µ→ is an invariant probability measure for Pt, let Q be the projection
Q : f ↔ Cb(E↓) ∝↑ ↖f ,µ→↙ ↔ ker(Lx,p). We show that P = QP = Q, obtaining then the
uniqueness. On one hand, for f ↔ Cb(E↓)

QPf = ↖Pf ,µ→↙ = ↖↖f ,µ↙,µ→↙ = ↖f ,µ↙ = Pf .

On the other hand,

QPf = lim
r↔↗

↖C(r)f ,µ→↙ = lim
r↔↗

↖f ,C→(r)µ→↙ = ↖f ,µ→↙ = Qf .

3.2 L A R G E D E V I AT I O N S P R I N C I P L E F O R T W O - S C A L E S M A R K O V P R O C E S S E S
M O D E L I N G C H E M I C A L R E A C T I O N S N E T W O R K S

Over the past few decades, there has been significant research conducted on multi-scale
chemical reactions networks (see for example [KK13] and [Bal+06]). They are usually
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described by the use of continuous - time Markov chains with generators of the follow-
ing form

Af(z) =


γ↑Γ

r(z, γ) [f(z + γ) ⇐ f(z)] ,

with z in the space N
J , with J the set of chemical species, and r ↔ C1(NJ ↓ Γ) is a

non-negative smooth function. In the above, the state z is a vector whose components
describe the number of molecules of a chemical species, r is the transition rate of the
reaction, and Γ is the set representing all reactions. In particular, every γ ↔ Γ describes a
reaction in the sense that its i–th component represents the number of molecules of the
i–th species that are used (if the component is negative) or obtained (if the component
is positive) in the reaction.

Motivated by a huge class of examples arising from biochemistry in which two dom-
inant time-scales occur (see, for instance, Example 3.2.2), we will consider a two - scale
process Z = (X,Y ) in the space E0 = N

l ↓ N
m. The amount of molecules of the first

type is an order of magnitude greater than the amount of the second type. For this rea-
son and to be able to study the limit behavior of the process, we consider scaled species
XN = X/N and YN = Y in the space E0

N
=

(
1
N

N
)l ↓ N

m. The time-scale separation
between the slow process XN and the fast process YN is then N and the generator of the
rescaled process ZN = (XN ,YN ) is given by

ANf(x, y) = N


γ=(γx,γy)↑Γ

r(x, y, γ)[f(x+N≃1γx, y + γy)], (3.2.1)

for f ↔ D(AN ) ⇓ C(E0
N
).

In order to gain a more comprehensive understanding of the system and simplify the
limit procedure that will follow, we divide the generator into three distinct parts. These
parts will specifically describe reactions occurring on the macroscopic, microscopic, and
a combination of the two scales, respectively. The generator of (XN ,YN ) is then,

ANf(x, y) =N


γ=(γx,γy)↑Γ1

r(x, y, γ)

f(x+N≃1γx, y) ⇐ f(x, y)


+ (3.2.2)

N


γ=(γx,γy)↑Γ2

r(x, y, γ)

f(x+N≃1γx, y + γy) ⇐ f(x, y)


+

N


γ=(γx,γy)↑Γ3

r(x, y, γ) [f(x, y + γy) ⇐ f(x, y)] ,

where we write

Γ1 =

γ = (γx, γy) ↔ Z

l ↓ Z
m : γyi = 0 ∈i ↔ {1, . . . ,m}


;

Γ2 =
{
γ = (γx, γy) ↔ Z

l ↓ Z
m : ℜi ↔ {1, . . . , l}, j ↔ {1, . . . ,m}|

γxi ∀= 0, γyj ∀= 0
}
;

Γ3 =

γ = (γx, γy) ↔ Z

l ↓ Z
m : γxi = 0 ∈i ↔ {1, . . . , l}


.
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The model is subjected to the following assumption.

Assumption 3.2.1. The molecules that are part of the fast process are subjected to a
conservation law. More precisely, there exists a constant M > 0 such that

m

i=1

Yi = M , and
m

i=1

γy,i = 0 ∈γ ↔ Γ2 ∋ Γ3.

Assumption 3.2.1 allows us to restrict the set of values of YN to the set

FM = {n ↔ N
m :

m

i=1

ni = M},

and, hence, we consider for our analysis of ZN the set

EN =

(
1

N
N

l

↓ FM .

To show an example, we describe in the following the model for enzyme kinetics with
an inflow of the substrate, also called Michaelis–Menten model, studied in [Pop18].

Example 3.2.2. Consider four types of molecules. Namely, S, E, ES and P representing respec-
tively the substrate, enzyme, enzyme–substrate complex and the product. The following four
reactions occur.

(1) ℑ k0
3⇐↑ S

(2) E + S
k1
3⇐↑ ES

(3) ES
k2
3⇐↑ E + S

(4) ES
k3
3⇐↑ P + E.

Let X1,X2,Y 1,Y 2 represent the amount of S,P ,E,ES respectively.
In real-world physical scenarios, the quantities of enzyme molecules and enzyme - substrate

complexes are typically small when compared to the number of substrate and product molecules.
Consequently, it is reasonable to assume that X1 and X2 are an order of magnitude greater then
Y 1 and Y 2. In this way, we lead to the scaled amounts represented by a slow process XN =
(X1/N ,X2/N) and a fast process YN = (Y 1,Y 2).

The generator of the two–scales process ZN = (XN ,YN ) is as in (3.2.2), with the following
rates, each describing one of the reactions above.

(1) r(x, y, (1, 0, 0, 0)) = k0 ↔ R+;
(2) r(x, y, (⇐1, 0,⇐1, 1)) = k1x1y1 k1,↔ R+;
(3) r(x, y, (1, 0, 1,⇐1)) = k2y2 k2 ↔ R+;
(4) r(x, y, (0, 1, 1,⇐1)) = k3y2 k3 ↔ R+.

The above model falls into the class of examples described by (3.2.2).
We are interested in the limit behavior of the two component EN -valued Markov pro-

cess (XN ,YN ). In the limit regime, the fast component YN converges to equilibrium and
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the slow component XN converges to a deterministic limit. To characterize the speed of
convergence, we are interested in the large deviation behavior for the slow process.

We saw in Chapters 2 and 3.1 that the rate function function I of the large deviations
principle is characterized by the unique solution of the Hamilton-Jacobi equation

f ⇐ ϖHf = h (or ϱtf ⇐Hf = 0),

with Hf = H(f ,⇒f) found in three steps:
1. Given the generator AN of the process (XN , IN ), define the non linear generator

HNf = 1
N
e≃NfANeNf for f such that eNf ↔ D(AN );

2. Given f ↔ C(E) and h ↔ C(E ↓R
l) define fN (x, y) = f(x) +N≃1h(x, y) and find

Hh such that limN↔↗HNfN (x, y) = Hh(x,⇒f(x), y);
3. For every x, find hx such that Hhx does not depend on y. Using p = ⇒f(x), this is

equivalent to solving an eigenvalue problem : for all x ↔ E and p ↔ R
n, there exist

H(x, p) and h̄ such that H(x, p, y)h̄(x, y) = H(x, p)h̄(x, y).
In the following, we use the three steps above to obtain the Hamiltonian linked to this
model. Later, in Chapter 4, Theorem 4.6.1, we prove the comparison principle for the
Hamilton-Jacobi equation in terms of this Hamiltonian, implying then Large deviations
principle for the process. For these aims, we need two additional assumptions.

Assumption 3.2.3. The matrix (Rx)y1,y2 =


k↑{2,3}


γ↑Γk :y2=y1+γy
r(x, y1, γ) is irre-

ducible for every x.

Assumption 3.2.4. For all z and γ there exist continuous functions ϑz,γ1 ,ϑz,γ2 : [0,→)l ↑
R such that r(x, z, γ) = ϑz,γ1 (x)ϑz,γ2 (x) and such that

1. inf ϑz,γ2 > 0;
2. if ↖γx, x⇐ y↙ > 0 then ϑz,γ1 (x) < ϑz,γ1 (y);
3. if γxi < 0 and xi = 0 then ϑ1(x) = 0.

Assumption 3.2.3 guarantees the existence of an eigenvalue (i.e. step 3 above).
Assumption 3.2.4 restricts the possible rates, and hence the Hamiltonians that we are

able to treat with our results. First of all, it removes cases of type H(x, p) = x(ep ⇐ 1),
with x ↔ [0,→), for which it is well known that comparison principle fails (see e.g. Ex-
ample E in [SW05]). Moreover, it is straightforward to show Assumption 3.2.4 in many
cases in one dimension, e.g. H(x, p) = x(e≃p⇐1), H(x, p) = xe⇁x(e≃p⇐1) in [0,→). It is
also straightforward to verify the above assumptions for the two-dimensional Example
3.2.2. Regarding higher dimensional cases, the assumption excludes examples in which
there is an interaction between two molecules of the slow process. These cases, indeed,
produce rates of the type rz,γ(x) = xixj with i, j ↔ {1, . . . , l} or such that ↖γx, x⇐ y↙ > 0
and not equal to ϑ1(y) ⇐ ϑ1(x), for which Assumption 3.2.4 does not necessary hold.
However, to our knowledge, examples of this type are largely unexplored.

Cases in higher dimension for which the above assumption holds are e.g. Hamiltoni-
ans of the type H(x, p) = x1(1+ x2)(ep1 ⇐ 1).

Proposition 3.2.5. Consider the Markov process (XN ,YN ) having the operator (3.2.1) as gen-
erator. Suppose Assumptions 3.2.3 and 3.2.4. Then, the following hold:
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1. Let f ↔ C(E) and h ↔ C(E↓FM ). Define fN (x, y) = f(x)+N≃1h(x, y) and HNf =
1
N
e≃NfANeNf provide eNf ↔ D(AN ). Then,

lim
N

HNfN (x, y) = V (y; x,⇒xf(x)) + e≃h(x,y)Lx,↖xf (x)e
h(x,y),

with

V (y; x, p) =


γ=(γx,γy)↑Γ1

r(x, y, γ)(e↙p,γx∝ ⇐ 1) (3.2.3)

+


γ=(γx,γy)↑Γ2

r(x, y, γ)(e↙p,γx∝ ⇐ 1),

and

Lx,pf(x, y) =


γ=(γx,γy)↑Γ2

r(x, y, γ)e↙p,γx∝[f(x, y + γy) ⇐ f(x, y)] (3.2.4)

+


γ=(γx,γy)↑Γ3

r(x, y, γ)[f(x, y + γy) ⇐ f(x, y)].

2. There exists a unique constant H(x, p) and a unique function g(x, y) that solve the eigen-
value problem (V (y; x, p) + Lx,p)g(x, y) = H(x, p)g(x, y).

3. The map H(x, p) : E ↓ R
d ↑ R has the following representation

H(x, p) = sup
ω↑Θ

∫

FM

V (y; x, p) dω(y) + inf
φ↑C2(FM )

∫

FM

e≃φLx,pe
φ dω


,

with Θ = P(FM ).

Proof sketch. Recalling the generator AN in (3.2.2), note that the exponential generator
HN acting on the test functions fN are

HNfN (x, y) =


γ↑Γ1

r(x, y, γ)

eN(f(x+

1
N γx)≃f (x))+h(x+ 1

N γx,y)≃h(x,y) ⇐ 1


+


γ↑Γ2

r(x, y, γ)

eN(f(x+

1
N γx)≃f (x))+h(x+ 1

N γx,y+γy)≃h(x,y) ⇐ 1


+


γ↑Γ3

r(x, y, γ)

eh(x,y+γy)≃h(x,y) ⇐ 1


.

As a consequence, its limit is

lim
N

HNfN (x, y) =


γ↑Γ1

r(x, y, γ)[e↙↖f (x),γx∝ ⇐ 1]

+


γ↑Γ2

r(x, y, γ)[e↙↖f (x),γx∝eh(x,y+γy)≃h(x,y) ⇐ 1]



γ↑Γ3

r(x, y, γ)[eh(x,y+γy)≃h(x,y) ⇐ 1]
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and the first claim is proven.
The second point follows from Assumption 3.2.3 and Perron – Frobenius Theorem.
The third point follows from the fact that, being the eigenvalue of Vx,p + Lx,p, H(x, p)

can be written in the following way

H(x, p) = sup
ω↑Θ

∫

FM

V (y; x, p) dω(y) + inf
φ↑C2(FM )

∫

FM

e≃φLx,pe
φ dω


, (3.2.5)

with Θ = P(FM ) (see [DV75] for more details about the representation of the eigen-
value).

We want to point out that in [Pop18], the author studies the limit behavior of a similar
example following the method developed by Feng and Kurtz described in the steps
above. However, in contrast with what has been done in the work cited above, with our
approach it is not necessary to find and calculate an explicit expression of the eigenvalue
H found in step 3. Therefore, our method presents an effective solution that can be
applied to similar scenarios in which the eigenvalue problem cannot be easily solved.

3.3 C O N C L U S I O N S A N D F U T U R E P E R S P E C T I V E S

In this chapter, we presented two examples of Markov processes from biological and
biochemical contexts, where proving large deviations leads to a comparison principle
for the Hamilton-Jacobi equation. In both cases, the Hamiltonian takes the form:

H(x, p) = sup
ω↑Θ

{Λ(x, p, ω) ⇐ I(x, p, ω)} .

Motivated by these examples, which arise naturally from large deviation principles, we
proceed in the next chapter to prove the comparison principle for HJB equations with
Hamiltonians of the type described above, filling the gap between large deviation theory
and the Hamilton-Jacobi framework.

We now conclude by outlining some promising directions for future work that arise
from the results of this chapter.

• Open problem 1: Extending to an infinite state set for the switching process of
Chapter 3, i.e., J = → in (3.1.1), is not a trivial generalization. It indeed introduces
many technical complications in the method used above. We list here the two main
issue that arise:

– The Hamiltonian of the associated HJ equation is derived by solving an eigen-
value problem, but this approach is often challenging or infeasible for an infi-
nite state space (see [DV75] for related discussions).

– The introduction of an unbounded set of controls adds significant technical
difficulties to the comparison principle proof, which requires careful, case-
specific adjustments.
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We then need different techniques to deal with the above problems such as the
introduction of an upper and lower bound of the Hamiltonian in terms of a Lya-
punov function that allows to restrict on compact sets.

• Open problem 2: Consider the same molecular motors model as above, but now
with the diffusion replaced by an underdamped diffusion. This modification pro-
vides a more realistic representation of particle motion. In this case, the model
becomes a multiscale process (X▷

t
,Y ▷

t
, I▷

t
), governed by the following system of

stochastic differential equations:

dY ▷

t = X▷

t dt,

dX▷

t = F ϑ(Xϑ

t ,Y
ϑ

t , I
ϑ

t ) dt+ dBt

P


I▷(t+ ∆t) = j

∣∣ I▷(t) = i, (X▷(t),Y ϑ(t)) = (x, y)


= r▷ij(x, y)∆t+O(∆t2) as ∆t ↑ 0.

As before, we introduce a rescaling parameter 4 > 0 and study the behavior of
the system in the limit as 4 ↑ 0. However, this case introduces a more com-
plex class of Hamilton-Jacobi equations. Specifically, the resulting Hamiltonian
lacks the coercivity and regularity properties seen in the earlier setting. Moreover,
the associated control problem is no longer on a compact space but on the space
P(Rd ↓ T

d ↓ {1, . . . , J}). Consequently, analyzing this example requires alterna-
tive techniques, such as incorporating a Lyapunov control framework, to handle
the additional complexity.

• Open problem 3: Recently, the study of Markov processes modeling population
dynamics (e.g. population growth, epidemic models, prey-predator systems) has
garnered significant interest. The application of the method explained above to
these models leads to the study of a Hamilton-Jacobi equation with domain that
have corners (see e.g. [KM20], [DIS90]). One has then to deal with possible irregu-
larities of the Hamiltonian at the boundary. Recent works explore the case of jump
processes. To the best of our knowledge cases of diffusion processes with disconti-
nuities at the boundary is open.
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C O M PA R I S O N P R I N C I P L E F O R A F I R S T- O R D E R
H A M I LT O N - J A C O B I - B E L L M A N E Q U AT I O N I N T H E S T R O N G
C O U P L I N G R E G I M E

In Chapter 2, we saw that well-posedness of Hamilton-Jacobi equations plays an im-
portant role in the Large deviations theory. In particular, we presented two examples
arising from biology and biochemistry in which proving large deviations leads to well-
posedness in the viscosity sense of a Hamilton-Jacobi equation with, in both cases, an
Hamiltonian of the following type

H(x, p) = sup
ω↑Θ

{Λ(x, p, ω) ⇐ I(x, p)} . (4.0.1)

In this chapter, we explore the comparison principle for Hamilton-Jacobi-Bellman equa-
tions with a Hamiltonian as in (4.0.1)

The results presented in this chapter are based on:
S. Della Corte and R.C. Kraaij, “Well-posedness of a Hamilton-Jacobi-Bellman equa-

tion in the strong coupling regime”, Preprint, 2023.

4.1 I N T R O D U C T I O N

In this chapter, we study well-posedness of the following Hamilton-Jacobi-Bellman equa-
tion on a subset E ⇓ R

d,

u(x) ⇐ ϖH(x,⇒u(x)) = h(x), (4.1.1)

where ϖ is a positive constant and h is a continuous bounded function, and for the time–
dependent version

{
ϱtu(x, t) ⇐H(x,⇒xu(t, x)) = 0, if t > 0,
u(0, x) = u0(x) if t = 0.

(4.1.2)

In the entire chapter we consider a Hamiltonian of the type

H(x, p) = sup
ω↑Θ

[Λ(x, p, ω) ⇐ I(x, p, ω)] . (4.1.3)

The main goal of this chapter is to prove the comparison principle for viscosity solutions
of the above equations (4.1.1) and (4.1.2), implying also the uniqueness of solutions.

Comparison principle for viscosity solutions has been largely studied in the past years
with an increasingly complex Hamiltonian. Above all, we mention [BC97] for a proof

85
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of comparison principle for equations arising from optimal control problems and [KP17]
for Hamiltonians coming from the theory of large deviations for Markov processes. We
already mentioned in Chapter 1 that, in these settings, the standard assumptions used
to obtain the comparison principle are usually either the modulus continuity of H i.e.

|H(x, p) ⇐H(y, p)| ≃ ε(|x⇐ y|(1+ |p|)),

or uniformly coercivity of H, that is

sup
x↑K

H(x, p) ↑ → if |p| ↑ →.

In the case in which H is in a variational representation as in (4.1.3), the above as-
sumptions can be derived from conditions on Λ and I such that uniformly coercivity
or pseudo-coercivity of Λ and regularity and boundedness of the cost function I and
the existence of a modulus of continuity for it. In [BC97], it is also proved comparison
principle for Hamilton-Jacobi equations with Hamiltonian that satisfies the above con-
ditions locally.

Later, [CIL87a] improved the conditions above by introducing new assumptions on
the growth of the Hamiltonian in the second variable. This conditions are, however, still
typically verified by examples in which at least the cost function is not depending on
momenta.

However, there is a wide class of examples violating the above assumptions. In par-
ticular, this is the case of Hamiltonians arising in the study of systems with multiple
time–scales such as the ones presented in Chapter 3 (see for example also [Pop18]).

We also want to mention that in works as [BS91], [CS97] and [CS05] it is showed com-
parison principle for Hamiltonians with possible unbounded, but still with a modulus
of continuity and not depending on momenta, cost function.

More recently, in [KS21] the authors prove well–posedness for viscosity solutions of
a general Hamilton–Jacobi–Bellman equation that can be applied in many of the above
contexts. It is proved comparison principle under more generic and weaker assump-
tions then the common ones explained above. To be more precised, the authors in [KS21]
prove for the first time comparison principle for an Hamilton–Jacobi–Bellman equation
with Hamiltonian of the type (4.1.3) with Λ that can be non coercive, non pseudo–
coercive and non Lipschitz and I that can be unbounded and discontinuous, but not
depending on momenta p. Our work can then be seen as an extension of the above men-
tioned work as we introduce a cost function I depending on momenta p.

We saw in Chapter 3 that Hamiltonians with a cost function that is unbounded and
discontinuous and depending on momenta are typically the ones that arise in a large
deviations context. In this setting, indeed, it is common to get a cost function that is of
the “Donsker-Varadhan type” (see [DV75]), that is

I(x, p, ω) = ⇐ inf
↽>0

∫
Lx,pϑ

ϑ
dω
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with Lx,p an operator. These types of Hamiltonians are not covered by the previous
mentioned works because of its irregularity and the presence of the momenta in the
cost function.

In section 4.6 we explain in more details how our work includes all the examples
previously covered in works such as [BC97] and [KS21] and we give two extra examples
arising from a large deviations context to show that our work can study new examples
not included previously.

The introduction of the momenta in the function I makes on one hand the setting
even more general including examples arising from problems in homogenisation theory
that could not be treated before, and on the other hand the Hamiltonian more difficult
to treat as it takes into account contributions from both parts Λ and I. For this reason,
it is necessary a change of the starting assumptions based on the difference Λ ⇐ I and
not on the two separate functions.

In the following we present a concise overview of our strategy, without delving deep
into specific details.

We saw in Chapter 1 that proving comparison principle one usually wants to bound
the difference between subsolution and supersolution supE u1 ⇐ u2 by using a doubling
variables procedure and typically ends up with an estimate of the following type

sup
E

(u1 ⇐ u2) ≃ sup
E

(h1 ⇐ h2) + ϖ lim inf
ϑ↔0

lim inf
ϖ↔↗


H


xϖ,ϑ, dx

φ

2
d2(xϖ,ϑ, yϖ,ϑ)



⇐H

yϖ,ϑ,⇐dy

φ

2
d2(xϖ,ϑ, yϖ,ϑ)


. (4.1.4)

Therefore, the aim is usually to bound the difference of Hamiltonians in two sequences
of points, xϖ,ϑ and yϖ,ϑ, obtained as optimizers in the doubling variables procedure, and
corresponding momenta p1ϖ,ϑ = dx

ϖ

2 d
2(xϖ,ϑ, yϖ,ϑ) = ⇐dy

ϖ

2 d
2(xϖ,ϑ, yϖ,ϑ) = p2ϖ,ϑ.

Unlike the approach taken in [KS21] and in [BC97], where Λ and I were worked
on independently, in the strong coupling regime, where I depends on p, we need to
consider their difference as a single function. Indeed, we give assumptions on Λ ⇐ I.
Our main assumptions are as follows:

• Firstly, we rely on the continuity estimate of Λ ⇐ I that is morally the comparison
principle for Λ ⇐ I for fixed ω. Indeed, it enables us to control the difference of H
in (4.1.4) by managing the difference of

(
Λ(xϖ,ϑ, p

1
ϖ,ϑ, ωϖ,ϑ) ⇐ I(xϖ,ϑ, p1ϖ,ϑ, ωϖ,ϑ)

)

⇐
(
Λ(yϖ,ϑ, p

2
ϖ,ϑ, ωϖ,ϑ) ⇐ I(yϖ,ϑ, p2ϖ,ϑ, ωϖ,ϑ)

)

for ωϖ,ϑ optimizing H and well chosen as explained in the next point. See Assump-
tion 4.3.3 (VII) for the rigorous notions.

• In order to get comparison for the Hamilton–Jacobi-Bellman equation in terms of
H by the continuity estimate for Λ ⇐ I, we also need to control the ωϖ,ϑ. For this
reason, we assume the compactness of the level sets of I ⇐ Λ. Using this assump-
tion we are indeed able to prove that the above sequence ωϖ,ϑ is relatively compact,
i.e. (C3). This assumption is made rigorous in Assumption 4.3.3 (V).
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• We assume Γ–convergence for I ⇐ Λ to prove regularity of H. This assumption
is typically true for the most treated examples, e.g. when Λ and I are continuous
or when I arises as a Donsker–Varadhan functional (see [DV75]). See Assumption
4.3.3 (IV).

The rest of the chapter is structured as follows: In Section 4.2 we firstly give some
preliminaries and definitions and an overview of the general setting. In Section 4.3, we
state Theorem 4.3.1 and the assumptions needed to prove it. Then, we prove continuity
of the Hamiltonian in Section 4.4. In Section 4.5 we give the proof of comparison prin-
ciple and we state the existence of solutions. Finally, in Section 4.6 we treat two new
examples to show that our assumptions are well-posed and we compare our work with
the literature.

4.2 P R E L I M I N A R I E S A N D M A I N D E F I N I T I O N S

Throughout the chapter, E will be the set on which we base our Hamilton-Jacobi equa-
tions. We assume that E is an open subset of R

d. We give now some definitions that we
will use to give our assumptions in Section 4.3.

For clarity, we reiterate the definition of our Hamiltonian H : E ↓ R
d ↑ R given by

H(x, p) = sup
ω↑Θ

[Λ(x, p, ω) ⇐ I(x, p, ω)] . (4.2.1)

We start with the definition of continuity estimate. We will apply the definition below
for G = Λ ⇐ I.

The reader familiar with comparison principle recognize the key conditions for es-
tablishing comparison for f ⇐ ϖGf = h and ϱtf ⇐ Gf = 0. The continuity estimate is
indeed exactly the estimate that one would perform when proving the comparison prin-
ciple for the Hamilton-Jacobi equation in terms of the Hamiltonian (4.2.1) (disregarding
the supremum over ω). Indeed, in standard proofs of comparison principle one usually
wants to control the difference of Hamiltonians calculated in particular collections of
points.

Definition 4.2.1 (Continuity estimate). Let G : E ↓R
d ↓ Θ ↑ R, (x, p, ω) ∝↑ G(x, p, ω) be

a function.
Suppose that for each ς and φ ↔ (0,→)2, φ = (φ1,φ2), we have variables (xϖ,ϑ, yϖ,ϑ)

in E2 and variables ωϖ,ϑ in Θ. We say that this collection is fundamental for G with if:
(C1) For each ς, there is a compact set Kϑ ⇓ E such that for all φ we have xϖ,ϑ, yϖ,ϑ ↔ Kϑ

and for all ς > 0, φ2 > 0 there is a compact set K̂ϑ,ϖ2 ⇓ Θ such that ω(ϖ1,ϖ2),ϑ ↔
K̂ϑ,ϖ2 .

(C2) For each ς > 0 and φ2 > 0 we have limϖ1↔↗ φ1d2(xϖ,ϑ, yϖ,ϑ) = 0. For any limit
point (xϖ2,ϑ, yϖ2,ϑ) of (xϖ,ϑ, yϖ,ϑ) as φ1 ↑ →, we have d(xϖ2,ϑ, yϖ2,ϑ) = 0.
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(C3) We have for all ς > 0

sup
ϖ

G

yϖ,ϑ,⇐

2

i=1

φi

2
dyd

2(xϖ,ϑ, ·)(yϖ,ϑ), ωϖ,ϑ


< →,

inf
ϖ

G

xϖ,ϑ,

2

i=1

φi

2
dxd

2(·, yϖ,ϑ)(xϖ,ϑ), ωϖ,ϑ


> ⇐→.

We say that G satisfies the continuity estimate if for every fundamental collection of vari-
ables we have that

lim inf
ϑ↔0

lim inf
ϖ2↔↗

lim inf
ϖ1↔↗

G

xϖ,ϑ,

2

i=1

φidx
1

2
d2(·, yϖ,ϑ)(xϖ,ϑ), ωϖ,ϑ



⇐ G

yϖ,ϑ,⇐

2

i=1

φidy
1

2
d2(xϖ,ϑ, ·)(yϖ,ϑ), ωϖ,ϑ


≃ 0.

Typically, the control on (xϖ,ϑ, yϖ,ϑ) that is assumed in (C1) and (C2) is obtained from
choosing (xϖ,ϑ, yϖ,ϑ) as optimizers in the doubling of variables procedure (see Section
1.2.3 or Lemma 4.5.5), and the control that is assumed in (C3) is obtained by using the
viscosity sub- and supersolution properties in the proof of the comparison principle. To
obtain these sequences in the doubling variable procedure we will include in the test
functions a containment function.

Definition 4.2.2 (Containment function). We say that a function Υ : E ↑ [0,→] is a
containment function for H if Υ ↔ C1(E) and there exists a constant cΥ such that

• For every c ↗ 0, the set {x |Υ(x) ≃ c} is compact;
• supω supx (Λ(x,⇒Υ(x), ω) ⇐ I(x,⇒Υ(x), ω)) ≃ cΥ.

To prove the main results we will also make use of the continuity of H that will be
proved in Proposition 4.4.1 by making use of the notion of Γ-convergence for the func-
tion I ⇐ Λ.

Definition 4.2.3 (Γ-convergence). Let J : E ↓ R
d ↓ Θ ↑ R ∋ {→}. We say that J is

Γ–convergent in terms of (x, p), if
1. If xn ↑ x in E, pn ↑ p in R

d and ωn ↑ ω then lim infn J(xn, pn, ωn) ↗ J(x, p, ω),
2. For xn ↑ x and pn ↑ p and for all ω ↔ Θ there are ωn such that ωn ↑ ω and

lim supn J(xn, pn, ωn) ≃ J(x, p, ω).

For two constants M1,M2 and a compact set K ⇓ E we write

ΘM1,M2,K :=


x,y↑K



ϖ>1


ω | I


x, ϱx

φ

2
d2(x, y), ω


⇐ Λ


x, ϱx

φ

2
d2(x, y), ω


≃ M1,

Λ
(
y, ϱy

⇐φ

2
d2(x, y), ω


⇐ I

(
y, ϱy

⇐φ

2
d2(x, y), ω


≃ M2


.
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4.3 T H E C O M PA R I S O N P R I N C I P L E

We will state our assumption afterwards.

Theorem 4.3.1 (Comparison principle). Consider H : E ↓ R
d ↑ R given by

H(x, p) = sup
ω↑Θ

[Λ(x, p, ω) ⇐ I(x, p, ω)] , (4.3.1)

with Θ a metric space and Λ and I satisfying Assumption 4.3.3. Define the operator Hf(x) :=
H(x,⇒f(x)) with domain D(H) = C↗

cc (E). Then:
(a) For any h1 ↔ Cl(E), h2 ↔ Cu(E) and ϖ > 0, the comparison principle holds for

f ⇐ ϖHf = h1

f ⇐ ϖHf = h1.

(b) For any f0 ↔ Cb(E), the comparison principle holds for
{
ϱtf(t, x) ⇐Hf(t, ·)(x) = 0, if t > 0

f(0, x) = f0(x) if t = 0.

Remark 4.3.2 (Domain). The comparison principle holds with any domain that satisfies
C↗
cc (E) ⇓ D(H) ⇓ C1

b
(E).

We consider the following assumption.

Assumption 4.3.3. The functions H and Λ ⇐ I verify the following properties.
(I) The map p ∝↑ H(x, p) is convex and H(x, 0) = 0 for every x ↔ E.

(II) The function ω ∝↑ Λ(x, p, ω) ⇐ I(x, p, ω) is bounded from above for every x, p.
(III) There exists a containment function Υ : E ↑ [0,→], cf. Definition 4.2.2.
(IV) The function I ⇐ Λ is Γ–convergent in terms of (x, p), cf. Definition 4.2.3.
(V) ∈M1,M2 ↔ R and ∈K compact, the set ΘM1,M2,K is relatively compact.

(VI) ∈x ↔ E , ∈p ↔ R
d and for all small neighborhood of x and p, Ux Vp, there exists a

continuous function g : Ux ↓ Vp ↑ R such that the set

ϑg(y, q) = {ω ↔ Θ | I(y, q, ω) ⇐ Λ(y, q, ω) ≃ g(y, q)}

is non-empty and compact ∈ y ↔ Ux, q ↔ Vp.
(VII) The function Λ ⇐ I verifies the continuity estimate, cf. Definition 4.2.1.

4.3.1 Comments about the assumptions

We give here some conditions that are often easier to show in many examples and that
imply our assumptions.

Lemma 4.3.4. Let H be as in (4.3.1). Suppose the following properties
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(I) The function (x, p, ω) ∝↑ Λ(x, p, ω) is continuous and the map ω ∝↑ Λ(x, p, ω) is bounded
for every x, p.

(II) I is Γ-convergent in terms of (x, p).
(III) I has compact sublevel sets.
(IV) I ↗ 0 and for every x and p there exists a ωx,p such that I(x, p, ωx,p) = 0.

Then, Assumptions 4.3.3 (II),(IV) and (VI) hold.

Proof. Proof of (II): Since Λ in bounded in ω and continuous and I has compact sublevel
sets, Λ ⇐ I is bounded in ω.
Proof of (IV): Since I is Γ-convergent and Λ is continuous, I ⇐ Λ is Γ-convergent.
Proof of (VI): Fix x and p. Let ωx,p be such that I(x, p, ωx,p) = 0. Then, the set

ϑ(x, p) = {ω : I(x, p, ω) ⇐ Λ(x, p, ω) ≃ ⇐Λ(x, p, ωx,p)}

is not empty since ωx,p ↔ ϑ(x, p). Moreover, the above set is a subset of the set

{ω : I(x, p, ω) ≃ 2⇔Λ⇔Θ},

that is compact since it is a sublevel set of I. Then, it follows that ϑ(x, p) is relatively
compact.

Lemma 4.3.5. Let H be as in (4.3.1). Suppose the following properties
(I) There exists a function ϑ : E ↓ R

d ↑ R such that
(i) ϑ is coercive in p, uniformly in x in a compact, that is

lim
p↔↗

sup
x↑K

ϑ(x, p) = →.

(ii) Λ(x, p, ω) ⇐ I(x, p, ω) ↗ ϑ(x, p) for all ω ↔ Θ.
(II) There exists a function J : E ↓ R

d ↓ Θ ↑ R such that
(i) J(x, p, ·) has compact sublevel sets;

(ii) I(x, p, ω) ↗ J(x, p, ω) for all x ↔ E, p ↔ R
d and ω ↔ Θ;

(iii) limω↔↗
Λ(x,p,ω)
J(x,p,ω) = 0 for all x ↔ E, p ↔ R

d.
Then, Assumptions 4.3.3 (V) and (VII) hold.

Proof. Proof of (V): First, recall the definition of ΘM1,M2,K as

ΘM1,M2,K :=


x,y↑K



ϖ>1


ω | I


x, ϱx

φ

2
d2(x, y), ω


⇐ Λ


x, ϱx

φ

2
d2(x, y), ω


≃ M1,

Λ
(
y, ϱy

⇐φ

2
d2(x, y), ω


⇐ I

(
y, ϱy

⇐φ

2
d2(x, y), ω


≃ M2


.

Let ω ↔ ΘM1,M2,K and call p = ϱx
ϖ

2 d
2(x, y) = ϱy

≃ϖ

2 d2(x, y). Since Λ(y, p, ω)⇐ I(y, p, ω) ↗
ϑ(y, p) for some coercive function ϑ, and Λ(y, p, ω) ⇐ I(y, p, ω) ≃ M2, we can conclude
that

ϑ(x, p) ≃ M2.
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By coercivity of ϑ, we can conclude that p lies in a compact set. Then, we can write that

ΘM1,M2,K ⇓


x↑K1



p↑K2

{ω | J(x, p, ω) ⇐ Λ(x, p, ω) ≃ M1} := Θ→.

Then, by the fact that J grows faster then Λ in ω and that J has compact sublevel sets,
we can conclude that Θ→ is compact. Then, ΘM1,M2,K is relatively compact.
Proof of (VII): The continuity estimate follows from the coercivity of ϑ ≃ Λ ⇐ I as in
Proposition 5.15 of [KS21].

4.4 C O N T I N U I T Y O F T H E H A M I LT O N I A N

We start showing that the Hamiltonian is continuous. This is the content of the following
proposition.

Proposition 4.4.1 (Continuity of the Hamiltonian). Consider the map H : E ↓ R
d ↑ R as

in (4.3.1). Suppose Assumption 4.3.3. Then,
(a) (x, p) ∝↑ H(x, p) is continuous;
(b) (x, v) ∝↑ L(x, v) := supp↖p, v↙ ⇐H(x, p) is lower semi-continuous;
(c) For every x, p, there exists ω ↔ Θ such that H(x, p) = Λ(x, p, ω) ⇐ I(x, p, ω).

We will use the following technical result to establish upper semicontinuity of H.

Lemma 4.4.2 (Lemma 17.30 in [AB06]). Let X and Y be two Polish spaces. Let ϑ : X ↑
K(Y), where K(Y) is the space of non-empty compact subsets of Y . Suppose that ϑ is upper
hemi-continuous, that is if xn ↑ x and yn ↑ y and yn ↔ ϑ(xn), then y ↔ ϑ(x).

Let f : Graph(ϑ) ↑ R be upper semi-continuous. Then the map m(x) = supy↑↽(x) f(x, y)
is upper semi-continuous.

Proof of Proposition 4.4.1. Item (c) follows by the boundness and the upper semi-continuity
of Λ ⇐ I that are Assumption 4.3.3 (II) and (IV).

We establish the upper semi-continuity arguing on the basis of Lemma 4.4.2. Firstly,
note that f(x, p, ω) = Λ(x, p, ω) ⇐ I(x, p, ω) is upper semi-continuous by Assumption
4.3.3 (IV). Moreover, by Assumption 4.3.3 (VI), for all small neighborhood of x and p
there exists a continuous function g in these neighborhoods such that there exists ω0(x, p)
for which

I(x, p, ω0(x, p)) ⇐ Λ(x, p, ω0(x, p)) ≃ g(x, p).

Hence, we can write the supremum over ω ↔ Θ as the supremum over ω ↔ ϑ(x, p) where

ϑg(x, p) = {ω ↔ Θ | I(x, p, ω) ⇐ Λ(x, p, ω) ≃ g(x, p)}.

ϑg(x, p) is non empty, since ω0(x, p) ↔ ϑg(x, p), and it is compact for Assumption 4.3.3
(VI). We are left to show that ϑ is upper hemi-continuous. Thus, let (xn, pn) ↑ (x, p)
and ωn ↑ ω with ωn ↔ ϑg(xn, pn). We establish that ω ↔ ϑg(x, p). By the definition of
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ϑg(xn, pn), I(xn, pn, ωn) ⇐ Λ(xn, pn, ωn) ≃ g(x, p). Then, by the lower semi-continuity of
I ⇐ Λ, we can write

I(x, p, ω) ⇐ Λ(x, p, ω) ≃ lim inf
n

I(xn, pn, ωn) ⇐ Λ(xn, pn, ωn)

≃ lim inf
n

g(xn, pn) = g(x, p),

which implies indeed that ω ↔ ϑg(x, p). Thus, upper semi-continuity follows by an ap-
plication of Lemma 4.4.2.

We prove now the lower semi–continuity of H. Precisely, we want to show that if
(xn, pn) ↑ (x, p) then lim infnH(xn, pn) ↗ H(x, p). Let ω ↔ Θ be such that H(x, p) =
Λ(x, p, ω) ⇐ I(x, p, ω). By Assumption 4.3.3 (IV), the function I ⇐ Λ is Γ–convergent in
the sense of Definition 4.2.3. That means that there exist ωn converging to ω such that
lim supn I(xn, pn, ωn) ⇐ Λ(xn, pn, ωn) ≃ I(x, p, ω) ⇐ Λ(x, p, ω). Therefore,

lim inf
n

H(xn, pn) ↗ lim inf
n

[Λ(xn, pn, ωn) ⇐ I(xn, pn, ωn)]

= ⇐ lim sup
n

[I(xn, pn, ωn) ⇐ Λ(xn, pn, ωn)]

↗ ⇐ [I(x, p, ω) ⇐ Λ(x, p, ω)]

= H(x, p),

establishing the lower semi-continuity of H and, hence, the continuity. Moreover, since
the Lagrangian L is the Legendre transform of H, it is lower semi-continuous.

4.5 P R O O F O F T H E M A I N T H E O R E M

In this section we establish Theorem 4.3.1. To prove the comparison principle for f ⇐
ϖHf = h and ϱtf ⇐Hf = 0, we relate them to a set of Hamilton–Jacobi–Bellman equa-
tion with Hamiltonians constructed from H. To do this, we introduce two operators H†
and H‡ that will be respectively an upper and lower bound for H. The two new Hamil-
tonians, defined in Subsection 4.5.1, are constructed in terms of a containment function
Υ that allows us to restrict our analysis to a compact set. Schematically, we will establish
the diagram in Figure 8 on pag. 62.

The arrows will be established in Subsection 4.5.1. Finally, we will establish the com-
parison principle for H† and H‡ in Subsection 4.5.2. The combination of these two results
imply the comparison principle for H as shown in the following.

Proof of Theorem 4.3.1. We only prove the first item. The proof for the time-dependent
case follows the same lines. Fix h1,h2 ↔ Cb(E) and ϖ > 0. Let u, v be a viscosity sub- and
supersolution to f ⇐ ϖHf = h1 and f ⇐ ϖHf = h2 respectively. By Lemma 4.5.3 proven
in Section 4.5.1, u and v are a sub- and supersolution to f⇐ϖH†f = h1 and f⇐ϖH‡f = h2
respectively. Thus supE u⇐ v ≃ supE h1 ⇐ h2 by Proposition 4.5.4 of Section 4.5.2.
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4.5.1 Auxiliary operators

In this section, we repeat the definition of H, and introduce the operators H† and H‡.

Definition 4.5.1. The operator H ⇓ C1
b
(E) ↓ Cb(E) has domain D(H) = C↗

cc (E) and
satisfies Hf(x) = H(x,⇒f(x)), where H is the map

H(x, p) = sup
ω↑Θ

[Λ(x, p, ω) ⇐ I(x, p, ω)] .

We proceed by introducing H† and H‡ serving as natural upper and lower bounds to
H. Recall Assumption (III) and the constant

CΥ := sup
ω

sup
x

Λ(x,⇒Υ(x), ω) ⇐ I(x,⇒Υ(x), ω).

Denote by C↗
,
(E) the set of smooth functions on E that have a lower bound and by

C↗
u (E) the set of smooth functions on E that have an upper bound. The definitions

below are motivated by the convexity of the map p ∝↑ H(x, p).

Definition 4.5.2 (The operators H† and H‡). For f ↔ C↗
,
(E) and ς ↔ (0, 1) set

f ϑ† := (1⇐ ς)f + ςΥ

Hϑ

†,f (x) := (1⇐ ς)H(x,⇒f(x)) + ςCΥ.

and set

H† :=
{
(f ϑ† ,H

ϑ

†,f )
∣∣ f ↔ C↗

,
(E), ς ↔ (0, 1)

}
.

For f ↔ C↗
u (E) and ς ↔ (0, 1) set

f ϑ‡ := (1+ ς)f ⇐ ςΥ

Hϑ

‡,f (x) := (1+ ς)H(x,⇒f(x)) ⇐ ςCΥ.

and set

H‡ :=
{
(f ϑ‡ ,H

ϑ

‡,f )
∣∣ f ↔ C↗

u (E), ς ↔ (0, 1)
}
.

The operator H is related to H†,H‡ by the following Lemma whose proof is standard
and can be found for example in [KS21]. We include it for completeness.

Lemma 4.5.3. Fix ϖ > 0 and h ↔ Cb(E).
(a) Every subsolution to f ⇐ ϖHf = h is also a subsolution to f ⇐ ϖH†f = h.
(b) Every supersolution to f ⇐ ϖHf = h is also a supersolution to f ⇐ ϖH‡f = h.
(c) Every subsolution to ϱtf ⇐Hf = 0 is also a subsolution to ϱtf ⇐H†f = 0.
(d) Every supersolution to ϱtf ⇐Hf = 0 is also a supersolution to ϱtf ⇐H‡f = 0.
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Proof. We only prove (a) as the other claims can be carried out analogously. Fix ϖ > 0
and h ↔ Cb(E). Let u be a subsolution to f ⇐ ϖHf = h. We prove it is also a subsolution
to f ⇐ ϖH†f = h.

Fix ς > 0 and f ↔ C↗
,
(E) and let (f ϑ† ,H

ϑ

†,f ) ↔ H† as in Definition 4.5.2. We will prove
that there are xn ↔ E such that

lim
n↔↗

(
u⇐ f ϑ†

)
(xn) = sup

x↑E

(
u(x) ⇐ f ϑ† (x)

)
, (4.5.1)

lim sup
n↔↗


u(xn) ⇐ ϖHϑ

†,f (xn) ⇐ h(xn)

≃ 0. (4.5.2)

As the function [u⇐ (1⇐ ς)f ] is bounded from above and ςΥ has compact sublevel-
sets, the sequence xn along which the first limit is attained can be assumed to lie in the
compact set

K :=

x |Υ(x) ≃ ς≃1 sup

x

(u(x) ⇐ (1⇐ ς)f(x))


.

Set M = ς≃1 supx (u(x) ⇐ (1⇐ ς)f(x)). Let γ : R ↑ R be a smooth increasing function
such that

γ(r) =

{
r if r ≃ M ,

M + 1 if r ↗ M + 2.

Denote by fϑ the function on E defined by

fϑ(x) := γ ((1⇐ ς)f(x) + ςΥ(x)) .

By construction fϑ is smooth and constant outside of a compact set and thus lies in
D(H) = C↗

cc (E). As u is a viscosity subsolution for f ⇐ϖHf = h there exists a sequence
xn ↔ K ⇓ E (by our choice of K) with

lim
n

(u⇐ fϑ) (xn) = sup
x

(u(x) ⇐ fϑ(x)) ,

lim sup
n

[u(xn) ⇐ ϖHfϑ(xn) ⇐ h(xn)] ≃ 0.

As fϑ equals f ϑ† on K, we have from (5.5.3) that also

lim
n

(
u⇐ f ϑ†

)
(xn) = sup

x↑E

(
u(x) ⇐ f ϑ† (x)

)
,

establishing (4.5.1). Convexity of p ∝↑ H(x, p) yields for arbitrary points x ↔ K the
estimate

Hfϑ(x) = H(x,⇒fϑ(x))

≃ (1⇐ ς)H(x,⇒f(x)) + ςH(x,⇒Υ(x))
≃ (1⇐ ς)H(x,⇒f(x)) + ςCΥ = Hϑ

†,f (x).



96 C O M PA R I S O N P R I N C I P L E F O R A F I R S T- O R D E R H J B E Q U AT I O N

Combining this inequality with (5.5.4) yields

lim sup
n


u(xn) ⇐ ϖHϑ

†,f (xn) ⇐ h(xn)

≃ lim sup

n

[u(xn) ⇐ ϖHfϑ(xn) ⇐ h(xn)]

≃ 0,

establishing (4.5.2). This concludes the proof.

4.5.2 The comparison principle

In the following we prove the comparison principle for the operators H† and H‡.

Proposition 4.5.4. Fix ϖ > 0 and h1,h2 ↔ Cb(E). The following holds:
(a) Let u be a viscosity subsolution to f ⇐ ϖH†f = h1 and let v be a viscosity supersolution

to f ⇐ ϖH‡f = h2. Then we have supx u(x) ⇐ v(x) ≃ supx h1(x) ⇐ h2(x).
(b) Let u be a viscosity subsolution to ϱtf ⇐H†f = 0 and let v be a viscosity supersolution to

ϱtf ⇐H‡f = 0. Then we have supt↑[0,T ],x u(x, t) ⇐ v(x, t) ≃ supx u(x, 0) ⇐ v(x, 0) for
all T > 0.

The strategy of the proof is the same for both equations. In both cases, the aim is to
prove that it is possible to bound the difference of the Hamiltonians, in well-chosen
sequences of points, by using the continuity estimate for Λ ⇐ I. This is the content of
Proposition 4.5.7. With this aim, we use two variants of a classical estimate, that was
proven e.g. in [CIL92, Proposition 3.7], given respectively in Lemma 4.5.5 for the sta-
tionary equation and Lemma 4.5.6 for the evolutionary case.

Lemma 4.5.5. Let u be bounded and upper semi-continuous, let v be bounded and lower semi-
continuous and let Υ be a containment function.

Fix ς > 0. For every φ > 0 there exists (xϖ, yϖ) = (xϖ,ϑ, yϖ,ϑ) ↔ E ↓ E such that

u(xϖ)
1⇐ ς

⇐ v(yϖ)
1+ ς

⇐ φ

2
d2(xϖ, yϖ) ⇐

ς

1⇐ ς
Υ(xϖ) ⇐

ς

1+ ς
Υ(yϖ)

= sup
x,y↑E


u(x)
1⇐ ς

⇐ v(y)
1+ ς

⇐ φ

2
d2(x, y) ⇐ ς

1⇐ ς
Υ(x) ⇐ ς

1+ ς
Υ(y)


.

Additionally, for every ς > 0 we have that
(a) The set {xϖ, yϖ |φ > 0} is relatively compact in E.
(b) All limit points of {(xϖ, yϖ)}ϖ>0 as φ ↑ → are of the form (z, z) and for these limit

points we have

u(z)
1⇐ ς

⇐ v(z)
1+ ς

⇐ 2ς

1⇐ ς2
Υ(z) = sup

x↑E


u(x)
1⇐ ς

⇐ v(x)
1+ ς

⇐ 2ς

1⇐ ς2
Υ(x)


.

(c) We have

lim
ϖ↔↗

φd2(xϖ, yϖ) = 0.
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Lemma 4.5.6. Let u be bounded and upper semi-continuous, let v be bounded and lower semi-
continuous and let Υ be a containment function. Fix ς > 0, ◁ > 0 and T > 0. For every φ > 0
and γ > 0 there exists

(xϖ,γ,ϑ,⇁, tϖ,γ,ϑ,⇁, yϖ,γ,ϑ,⇁, sϖ,γ,ϑ,⇁) ↔ E ↓ [0,T ],↓E ↓ [0,T ],

denoted by (xϖ,γ , tϖ,γ , yϖ,γ , sϖ,γ), such that

u(tϖ,γ , xϖ,γ)
1⇐ ς

⇐ v(sϖ,γ , yϖ,γ)
1+ ς

⇐ φ

2
d2(xϖ,γ , yϖ,γ) ⇐

γ

2
(sϖ,γ ⇐ tϖ,γ)

2

⇐ ς

1⇐ ς
Υ(xϖ,γ) ⇐

ς

1+ ς
Υ(yϖ,γ) ⇐

◁

2
(tϖ,γ + sϖ,γ) + ◁T

= sup
s,t↑[0,T ],x,y


u(t, x)
1⇐ ς

⇐ v(s, y)
1+ ς

⇐ φ

2
d2(x, y) ⇐ γ

2
(s⇐ t)2

⇐ ς

1⇐ ς
Υ(x) ⇐ ς

1+ ς
Υ(y) ⇐ ◁

2
(t + s) + ◁T


.

Additionally, for every ς > 0 and ◁ > 0 we have that
(a) For any γ > 0,

(i) the set {xϖ,γ , yϖ,γ |φ > 0} is relatively compact in E,
(ii) limϖ↔↗ φd2(xϖ,γ , yϖ,γ) = 0,

(iii) all limit points of {(xϖ,γ , yϖ,γ , tϖ,γ , sϖ,γ)}ϖ>0 as φ ↑ → are of the form (zγ , zγ , tγ , sγ).
(b) Let (zγ , zγ , tγ , sγ) be a limit point as in (a)(iii). Then

(i) the set {zγ | γ > 0} is relatively compact in E,
(ii) all limit point of {(zγ , zγ , tγ , sγ)}γ>0 as γ ↑ → are of the form

(z, z,w,w) and for these limit points we have

u(w, z)
1⇐ ς

⇐ v(w, z)
1+ ς

⇐ 2ς

1⇐ ς2
Υ(z) + ◁(T ⇐ w)

= sup
x↑E,t↑[0,T ]


u(t, x)
1⇐ ς

⇐ v(t, x)
1+ ς

⇐ 2ς

1⇐ ς2
Υ(x) + ◁(T ⇐ t)


.

In the following proposition we prove the continuity estimate for H by using the
continuity estimate of Λ ⇐ I.

Proposition 4.5.7. Consider (xϖ,ϑ, yϖ,ϑ) found in Lemma 4.5.5 or Lemma 4.5.6 (for which we
fix γ and ◁) and denote p1ϖ,ϑ := φdx

1
2d

2(·, yϖ,ϑ)(xϖ,ϑ) and p2ϖ,ϑ := ⇐φdy
1
2d

2(xϖ,ϑ, ·)(yϖ,ϑ).
Suppose that

inf
ϖ

H(xϖ,ϑ, p
1
ϖ,ϑ) > ⇐→ (4.5.3)

and

sup
ϖ

H(yϖ,ϑ, p
2
ϖ,ϑ) < →. (4.5.4)

Then, for all ς > 0 there exists a sequence φ(ς) ↑ →, such that

lim inf
ϑ↔0

lim inf
ϖ↔↗

H(xϖ, p
1
ϖ,ϑ) ⇐H(yϖ,ϑ, p

2
ϖ,ϑ) ≃ 0. (4.5.5)
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Proof. We only prove the statement for (xϖ,ϑ, yϖ,ϑ) found in Lemma 4.5.5. The proof in
the context of Lemma 4.5.6 is analogous. The proof is given in two steps. We sketch the
steps, before giving full proof.

Step 1: We will show that there are controls ωϖ,ϑ such that

H(xϖ,ϑ, p
1
ϖ,ϑ) = Λ(xϖ,ϑ, p

1
ϖ,ϑ, ωϖ,ϑ) ⇐ I(xϖ,ϑ, p1ϖ,ϑ, ωϖ,ϑ).

As a consequence we have

H(xϖ,ϑ, p
1
ϖ,ϑ) ⇐H(yϖ,ϑ, p

2
ϖ,ϑ) ≃ Λ(xϖ,ϑ, p

1
ϖ,ϑ, ωϖ,ϑ) ⇐ Λ(yϖ,ϑ, p

2
ϖ,ϑ, ωϖ,ϑ)

+ I(yϖ,ϑ, p2ϖ,ϑ, ωϖ,ϑ) ⇐ I(xϖ,ϑ, p1ϖ,ϑ, ωϖ,ϑ). (4.5.6)

For establishing (4.5.5), it is sufficient to bound the differences in (4.5.6) by using As-
sumption 4.3.3(VII).

Step 2: We verify the conditions to apply the continuity estimate, Assumption 4.3.3
(VII) which then concludes the proof.

Proof of Step 1: Recall that H(x, p) is given by

H(x, p) = sup
ω↑Θ

[Λ(x, p, ω) ⇐ I(x, p, ω)] .

Since Λ(xϖ,ϑ, p1ϖ,ϑ, ·) ⇐ I(xϖ,ϑ, p1ϖ,ϑ, ·) : Θ ↑ R is upper semi-continuous and bounded
by Assumption 4.3.3 (IV) and 4.3.3(II), there exists an optimizer ωϖ,ϑ ↔ Θ such that

H(xϖ,ϑ, p
1
ϖ,ϑ) = Λ(xϖ,ϑ, p

1
ϖ,ϑ, ωϖ,ϑ) ⇐ I(xϖ,ϑ, p1ϖ,ϑ, ωϖ,ϑ). (4.5.7)

Choosing the same point in the supremum of the second term H(yϖ,ϑ, p2ϖ,ϑ), we obtain
for all ς > 0 and φ > 0 the estimate

H(xϖ,ϑ, p
1
ϖ,ϑ) ⇐H(yϖ,ϑ, p

2
ϖ,ϑ) ≃ Λ(xϖ,ϑ, p

1
ϖ,ϑ, ωϖ,ϑ) ⇐ Λ(yϖ,ϑ, p

2
ϖ,ϑ, ωϖ,ϑ)

+ I(yϖ,ϑ, p1ϖ,ϑ, ωϖ,ϑ) ⇐ I(xϖ,ϑ, p2ϖ,ϑ, ωϖ,ϑ).

Proof of Step 2: We will construct for each ς > 0 a sequence φ = φ(ς) ↑ → such that
the collection (xϖ,ϑ, yϖ,ϑ, ωϖ,ϑ) is fundamental for Λ ⇐ I in the sense of Definition 4.2.1.
We thus need to verify for each ς > 0

(i)

inf
ϖ

Λ(xϖ,ϑ, p
1
ϖ,ϑ, ωϖ,ϑ) ⇐ I(xϖ,ϑ, p1ϖ,ϑ, ωϖ,ϑ) > ⇐→,

(ii)

sup
ϖ

Λ(yϖ,ϑ, p
2
ϖ,ϑ, ωϖ,ϑ) ⇐ I(yϖ,ϑ, p2ϖ,ϑ, ωϖ,ϑ) < →

(iii) The set of controls ωϖ,ϑ is relatively compact.
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We will first establish (i) and (ii) for all φ. Then, (iii) will follow from (i) and (ii) and
Assumption 4.3.3(V).

By (4.5.3) and (4.5.7),

⇐→ < inf
ϖ

H(xϖ,ϑ, p
1
ϖ,ϑ) = inf

ϖ
Λ(xϖ,ϑ, p

1
ϖ,ϑ, ωϖ,ϑ) ⇐ I(xϖ,ϑ, p1ϖ,ϑ, ωϖ,ϑ)

establishing (i).
By (4.5.4),

sup
ϖ

Λ(yϖ,ϑ, p
2
ϖ,ϑ, ωϖ,ϑ) ⇐ I(yϖ,ϑ, p2ϖ,ϑ, ωϖ,ϑ) < sup

ϖ

H(yϖ,ϑ, p
2
ϖ,ϑ) < →

implying (ii).

Proof of Proposition 4.5.4. Proof of (a). Fix ϖ > 0 and h1,h2 ↔ Cb(E). Let u be a viscosity
subsolution and v be a viscosity supersolution of f ⇐ ϖH†f = h1 and f ⇐ ϖH‡f = h2
respectively. For any ς > 0 and any φ > 0, define the map Φϖ,ϑ : E ↓ E ↑ R by

Φϖ,ϑ(x, y) :=
u(x)
1⇐ ς

⇐ v(y)
1+ ς

⇐ φ

2
d2(x, y) ⇐ ς

1⇐ ς
Υ(x) ⇐ ς

1+ ς
Υ(y).

Let ς > 0. By Lemma 4.5.5, there is a compact set Kϑ ⇓ E and there exist points
xϖ,ϑ, yϖ,ϑ ↔ Kϑ such that

Φϖ,ϑ(xϖ,ϑ, yϖ,ϑ) = sup
x,y↑E

Φϖ,ϑ(x, y), (4.5.8)

and

lim
ϖ↔↗

φ

2
d2(xϖ,ϑ, yϖ,ϑ) = 0.

For all φ it follows that

sup
E

(u⇐ v) = lim
ϑ↔0

sup
x↑E

u(x)
1⇐ ς

⇐ v(x)
1+ ς

≃ lim inf
ϑ↔0

sup
x,y↑E

u(x)
1⇐ ς

⇐ v(y)
1+ ς

⇐ φ

2
d2(x, y)

⇐ ς

1⇐ ς
Υ(x) ⇐ ς

1+ ς
Υ(y)

= lim inf
ϑ↔0

u(xϖ,ϑ)
1⇐ ς

⇐ v(yϖ,ϑ)
1+ ς

⇐ φ

2
d2(xϖ,ϑ, yϖ,ϑ)

⇐ ς

1⇐ ς
Υ(xϖ,ϑ) ⇐

ς

1+ ς
Υ(yϖ,ϑ)

≃ lim inf
ϑ↔0


u(xϖ,ϑ)
1⇐ ς

⇐ v(yϖ,ϑ)
1+ ς


. (4.5.9)
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At this point, we want to use the sub- and supersolution properties of u and v. Define
the test functions ϕϑ,ϖ

1 ↔ D(H†),ϕ
ϑ,ϖ
2 ↔ D(H‡) by

ϕϑ,ϖ
1 (x) := (1⇐ ς)


v(yϖ,ϑ)
1+ ς

+
φ

2
d2(x, yϖ,ϑ) +

ς

1⇐ ς
Υ(x) +

ς

1+ ς
Υ(yϖ,ϑ)



+ (1⇐ ς)(x⇐ xϖ,ϑ)
2,

ϕϑ,ϖ
2 (y) := (1+ ς)


u1(xϖ,ϑ)
1⇐ ς

⇐ φ

2
d2(xϖ,ϑ, y) ⇐

ς

1⇐ ς
Υ(xϖ,ϑ) ⇐

ς

1+ ς
Υ(y)



⇐ (1+ ς)(y ⇐ yϖ,ϑ)
2.

Using (4.5.8), we find that u⇐ ϕϑ,ϖ
1 attains its supremum at x = xϖ,ϑ, and thus

sup
E

(u⇐ ϕϑ,ϖ
1 ) = (u⇐ ϕϑ,ϖ

1 )(xϖ,ϑ).

Denote p1ϖ,ϑ := φdx
1
2d

2(xϖ,ϑ, yϖ,ϑ). By our addition of the penalization (x ⇐ xϖ,ϑ)2 to
the test function, the point xϖ,ϑ is in fact the unique optimizer, and we obtain from the
subsolution inequality that

u(xϖ,ϑ) ⇐ ϖ

(1⇐ ς)H

(
xϖ,ϑ, p

1
ϖ,ϑ

)
+ ςCΥ


≃ h1(xϖ,ϑ). (4.5.10)

With a similar argument for u2 and ϕϑ,ϖ
2 , we obtain by the supersolution inequality that

v(yϖ,ϑ) ⇐ ϖ

(1+ ς)H

(
yϖ,ϑ, p

2
ϖ,ϑ

)
⇐ ςCΥ


↗ h2(yϖ,ϑ), (4.5.11)

where p2ϖ,ϑ := ⇐φdy
1
2d

2(xϖ,ϑ, yϖ,ϑ). With that, estimating further in (4.5.9) leads to

sup
E

(u⇐ v) ≃ lim inf
ϑ↔0

lim inf
ϖ↔↗


h1(xϖ,ϑ)
1⇐ ς

⇐ h2(yϖ,ϑ)
1+ ς

+
ς

1⇐ ς
CΥ

+
ς

1+ ς
CΥ + ϖ


H(xϖ,ϑ, p

1
ϖ,ϑ) ⇐H(yϖ,ϑ, p

2
ϖ,ϑ)

 
.

Note that, by the subsolution inequality (4.5.10),

⇐→ <
1

ϖ
inf
E

(u⇐ h1) ≃ (1⇐ ς)H(xϖ,ϑ, p
1
ϖ,ϑ) + ςCΥ,

and by the supersolution inequality (4.5.11),

(1+ ς)H
(
yϖ,ϑ, p

2
ϖ,ϑ

)
⇐ ςCΥ ≃ 1

ϖ
sup
E

(v ⇐ h2) < →.

Thus, comparison principle follows from Proposition 4.5.7.
Proof of (b). Let u be a subsolution for H†, and v a supersolution for H‡. Let T > 0 be

fixed.
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For any ◁ > 0, we have

sup
t↑[0,T ],x

u(t, x) ⇐ v(t, x) ≃ sup
t↑[0,T ],x

u(t, x) ⇐ v(t, x) ⇐ ◁t+ ◁T

We next incorporate our Lyapunov type functions

sup
t↑[0,T ],x

u(t, x) ⇐ v(t, x) ⇐ ◁t+ ◁T

= lim
ϑ′0

sup
t↑[0,T ],x

u(t, x)
1⇐ ς

⇐ v(t, x)
1+ ς

⇐ 2ς

1⇐ ς2
Υ(x) ⇐ ◁t + ◁T .

Thus, for any ς > 0, φ, γ > 0, we have

sup
t↑[0,T ],x

u(t, x)
1⇐ ς

⇐ v(t, x)
1+ ς

⇐ 24

1⇐ 42
Υ(x) ⇐ ◁t+ ◁T

≃ sup
s,t↑[0,T ],x,y

u(t, x)
1⇐ ς

⇐ v(s, y)
1+ ς

⇐ φ

2
d2(x, y) ⇐ γ

2
(s⇐ t)2

⇐ ς

1⇐ ς
Υ(x) ⇐ ς

1+ ς
Υ(y) ⇐ ◁

2
(t + s) + ◁T . (4.5.12)

By Lemma 4.5.6, there are

(xϖ,γ , tϖ,γ , yϖ,γ , sϖ,γ) = (xϑ,⇁,ϖ,γ , tϑ,⇁,ϖ,γ , yϑ,⇁,ϖ,γ , sϑ,⇁,ϖ,γ)

optimizing the supremum on the right-hand side and such that

φ

2
d2(xϖ,γ , yϖ,γ) ↑ 0 as φ ↑ →.

First assume tϖ,γ , sϖ,γ > 0. We will aim for a contradiction.
Define the functions f †

ϑ,⇁,ϖ(x) ↔ D(H†) and f ‡
ϑ,⇁,ϖ(y) ↔ D(H‡) by

f †(x) = (1⇐ ς)


v(sϖ,γ , yϖ,γ)

1+ ς
+

φ

2
d2(x, yϖ,γ) +

ς

1+ ς
Υ(yϖ,γ) ⇐ ◁T



+ ςΥ(x),

f ‡(y) = (1+ ς)


u(tϖ,γ , xϖ,γ)

1⇐ ς
⇐ φ

2
d2(xϖ,γ , y) ⇐

ς

1⇐ ς
Υ(xϖ,γ) + ◁T



⇐ ςΥ(y).

Observe that

u(tϖ,γ , xϖ,γ) ⇐ f †(xϖ,γ) ⇐ h1(tϖ,γ) = sup
t↑[0,T ],x

u(t, x) ⇐ f †(x) ⇐ h1(t),

v(sϖ,γ , yϖ,γ) ⇐ f ‡(yϖ,γ) ⇐ h2(sϖ,γ) = inf
t↑[0,T ],y

v(s, y) ⇐ f ‡(y) ⇐ h2(s),
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where h1(t) = (1 ⇐ ς)(⇁2 (t + sϖ,γ) +
γ

2 (t ⇐ sϖ,γ)2) and h2(s) = (1 + ς)(⇐⇁

2 (tϖ,γ + s) ⇐
γ

2 (tϖ,γ ⇐ s)2).
Then, using the sub and supersolution inequalities, dividing them by (1 ⇐ ς) and

(1+ ς) respectively, we find

γ(tϖ,γ ⇐ sϖ,γ) +
◁

2
⇐H(xϖ,γ ,φdx

1

2
d2(·, yϖ,γ)(xϖ,γ)) ⇐

ς

1⇐ ς
cΥ ≃ 0,

γ(tϖ,γ ⇐ sϖ,γ) ⇐
◁

2
⇐H(yϖ,γ ,⇐φdy

1

2
d2(xϖ,γ , ·)(yϖ,γ)) +

ς

1+ ς
cΥ ↗ 0.

Combining the two equations yields

◁ ≃ H(xϖ,γ ,φdx
1

2
d2(·, yϖ,γ)(xϖ,γ)) ⇐H(yϖ,γ ,⇐φdy

1

2
d2(xϖ,γ , ·)(yϖ,γ))

+
2ς

1⇐ ς2
cΥ

sending φ ↑ → and ς ↑ 0, and using Proposition 4.5.7, we get a contradiction for small
ς as ◁ > 0. So it holds that for small ς, large φ and all γ > 0, we have tϖ,γ = 0 or sϖ,γ = 0.

Proceeding from equation (4.5.12), we get

sup
t↑[0,T ],x

u(t, x) ⇐ v(t, x)

≃ sup
t↑[0,T ],x

u(t, x) ⇐ v(t, x) ⇐ ◁t+ ◁T

≃ lim
ϑ′0

sup
s,t↑[0,T ],x,y

u(t, x)
1⇐ ς

⇐ v(s, y)
1+ ς

⇐ φ

2
d2(x, y) ⇐ γ

2
(s⇐ t)2

⇐ ς

1⇐ ς
Υ(x) ⇐ ς

1+ ς
Υ(y) ⇐ ◁

2
(t+ s) + ◁T

≃ lim
ϑ′0

lim
γ↔↗

lim
ϖ↔↗

u(tϖ,γ , xϖ,γ)
1⇐ ς

⇐ v(sϖ,γ , yϖ,γ)
1+ ς

+
ς

1⇐ ς
Υ(xϖ,γ) ⇐

ς

1+ ς
Υ(yϖ,γ) ⇐

◁

2
(tϖ,γ + sϖ,γ) + ◁T

≃ sup
x

u(0, x) ⇐ v(0, x) + ◁T

where we used that u is upper semi-continuous, v is lower semi-continuous, and Lemma
4.5.6 (b)(ii) and the fact that tϖ,γ = 0 or sϖ,γ = 0. As ◁ > 0 was arbitrary, we conclude.

4.6 E X A M P L E S O F H A M I LT O N I A N S

The purpose of this section is to showcase that the method introduced in this paper is
versatile enough to capture interesting examples that could not be treated before. Be-
fore introducing two entirely new examples, we want to emphasize that our approach
enables us to address a wider range of examples compared to previous works.
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4.6.1 Comparison with previous works

First of all, we can address some classic Hamiltonians such as the control Hamiltonian
given for example in [BC97, Theorem 3.1]. It is indeed easy to show that the following
Hamiltonian

H(x, p) = sup
a↑A

{⇐f(x, a) · p⇐ l(x, a)} ,

with A a compact set, f a Lipschitz continuous function and l a non-negative continuous
function that admits a modulus of continuity, verifies our Assumption 4.3.3.

As explained in the introduction, cases in which I is not bounded or not continu-
ous and Λ is not Lipschitz or not coercive are not covered by classical works such as
[BC97]. In [KS21], the authors instead treat these cases, but keeping the cost function
I independent of p. We would like to emphasize that while many of our assumptions
are implied by the assumptions in [KS21], it is not straightforward and clear whether
our assumption (V) can be derived from the assumptions in [KS21] (in particular by
their assumption (I3)). The inclusion of momentum in the cost function adds an ele-
ment of complexity, making it challenging to generalize the previous assumption that
does not account for momentum. Nevertheless, our approach includes all the examples
addressed in [KS21] and more. Indeed, it is possible to prove, by using Lemma 4.3.4 and
Lemma 4.3.5, that the examples showed in [KS21] satisfy our assumptions.

Moreover, we are also able to consider some cases of Hamiltonians with unbounded
(in terms of ω) internal Hamiltonian Λ. This leads to a situation where Assumption (Λ4)
in [KS21] fails. In our case, it may work. The key distinction in our approach, enabling
the success of this class of examples while it remained unaddressed in [KS21], lies in
our treatment of Λ and I in an integrated whole Λ ⇐ I rather than separately and with
two different types of assumptions. In this case, if Λ is not bounded in terms of ω, but
the composite Λ ⇐ I is bounded, our assumptions hold. Consequently, in contrast to
Assumption (Λ4) in [KS21], which solely considers the boundedness of Λ and subse-
quently fails in this scenario, our Assumption 4.3.3 (II) instead requires the bounded-
ness of Λ ⇐ I and consequently holds.

Finally, we want to mention that, in contrast to [KS21], we are able to cover cases
where the cost function I depends on momenta p. For instance, in Chapter 3 or in
[Pop18], it is proved comparison principle with “ad hoc” proofs involving coercivity or
Lipschitz estimates and optimization problems, for an Hamilton–Jacobi–Bellman equa-
tion with an Hamiltonian of the type as in (4.1.3). These examples does not fall into the
cases of [KS21] due to the presence of p in I. Indeed, assumptions as (I5) and (I4) in
[KS21] are not satisfied and quite challenging to modify to incorporate the momenta p.
Our assumptions are instead satisfied.

We also want to mention that in [FK06] it is possible to find some examples of Hamil-
tonians with cost function depending on p. We confidently assert that our results can
cover all these examples.
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We can conclude, then, that our work can be used for a large class of examples includ-
ing examples that fall into previously treated theories, as the ones mentioned above, as
well as those that have been addressed by means of “ad hoc” proofs, as the examples in
Chapter 3 and [Pop18].

4.6.2 Comparison principle for the Hamiltonian of Section 3.2

We can now conclude the discussion started in Chapter 3.2. We saw that to prove large
deviations for the process described in Chapter 3.2, it is necessary to prove the compar-
ison principle for a Hamilton-Jacobi equation with Hamiltonian given by

H(x, p) = sup
ω↑Θ

∫

FM

V (y; x, p) dω(y) + inf
φ↑C2(FM )

∫

FM

e≃φLx,pe
φ dω


, (4.6.1)

with Θ = P(FM ) and V and Lx,p as in (3.2.3) and (3.2.4).
Note that the Hamiltonian is of the form as (4.3.1). We can then prove the comparison

principle by using Theorem 4.3.1. This is the content of the following theorem.

Theorem 4.6.1 (Comparison principle). Consider H : E ↓ R
l ↑ R as in (4.6.1). Suppose

Assumption 3.2.3 and Assumption 3.2.4. Then the comparison principle for

f ⇐ ϖH(x,⇒f(x)) = h and ϱtf ⇐H(x,⇒f(x)) = 0

holds.

Proof. To prove the comparison principle we firstly mention that H(x, p) is of the form
(4.3.1) with Θ = P(FM ) and

Λ(x, p, ω) =
∫

FM

V (y; x, p) dω(y),

and

I(x, p, ω) = ⇐ inf
u↑C2(FM ),inf u>0

∫

FM

Lx,pu

u
dω = ⇐ inf

φ↑C2(FM )

∫

FM

e≃φLx,pe
φ dω.

We can then apply Theorem 4.3.1 to show the comparison principle. In the following we
verify Assumption 4.3.3.

(I) The function p ∝↑ H(x, p) is convex. Moreover, note that Vx,0 = 0. Hence,

H(x, 0) = ⇐ inf
ω

I(x, p, ω) = 0,

being I ↗ 0 (see [DV75]) and there exists a measure ω0x,p such that I(x, p, ω0x,p) = 0,
due to Assumption 3.2.3 (see [Kle14] Theorem 17.51).

(II) ω ∝↑ Λ(x, p, ω)⇐I(x, p, ω) is bounded for every p and x being a continuous function
over a compact set.
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(III) Υ(x) = 1
2 log(1+


l

i=1 x
2
i
) is a containment function since the functions

(r(x, y, γ))

e

x
x2+1

γx ⇐ 1

,

e≃φr(x, y, γ)e
x

1+x2
γxeφ

and
e≃φr(x, y, γ)eφ

are bounded for every γ ↔ Γ, every ϕ ↔ C2(FM ) and every (x, y) ↔ E ↓ FM .
(IV) Let (x, p) ↔ E ↓ R

l. The function V (·, x, p) is continuous and hence (x, p, ω) ∝↑
Λ(x, p, ω) is continuous. Moreover, I is lower semicontinuous, as the supremum
over continuous functions. Then, I⇐Λ is lower semicontinuous and the first prop-
erty of Definition 4.2.3 follows. We prove now that if xn ↑ x and pn ↑ p and for
all ω ↔ Θ, there are ωn such that ωn ↑ ω and

lim sup
n

I(xn, pn, ωn) ≃ I(x, p, ω). (4.6.2)

Then, the Γ– convergence of I ⇐ Λ will follow from (4.6.2) and continuity of Λ.
For any m ↔ N, there exists ϕm ↔ C2(FM ) such that

I(x, p, ω) ≃
∫

FM

e≃φmLx,pe
φm dω +

1

m
.

Then, taking into account the continuity of Lx,p and choosing ωn = ω for every n,
we get

lim sup
n

I(xn, pn, ωn) ≃
∫

FM

e≃φmLx,pe
φm dω +

1

m
.

By letting m to infinity we obtain (4.6.2).
(V) As Θ is compact, any closed subset of Θ is compact.

(VI) As explained above, there exists a measure ω0x,p such that I(x, p, ω0x,p) = 0. Then,
I(x, p, ω0x,p)⇐Λ(x, p, ω0x,p) ≃ ⇐Λ(x, p, ω0x,p). Taking g(x, p) = ⇐Λ(x, p, ω0x,p), ϑg(x, p)
is not empty, as ω0x,p ↔ ϑg(x, p).

(VII) Let (xϖ,ϑ, yϖ,ϑ, ωϖ,ϑ) be a fundamental sequence as in Definition 4.2.1. Set pϖ,ϑ =
φ(xϖ,ϑ ⇐ yϖ,ϑ). We aim to show

lim inf
ϖ↔↗

(Λ ⇐ I) (xϖ,ϑ, pϖ,ϑ, ωϖ,ϑ) ⇐ (Λ ⇐ I) (yϖ,ϑ, pϖ,ϑ, ωϖ,ϑ) ≃ 0.

By the definition of Λ and I in (3.2.5), the difference above is of the type
∫

FM



γ↑Γ1∞Γ2

(r(xϖ,ϑ, z, γ) ⇐ r(yϖ,ϑ, z, γ))

e↙pϑ,ω,γx∝ ⇐ 1


dω+ (4.6.3)

inf
φ↑C2(FM )

∫

FM

e≃φ






γ↑Γ2

r(xϖ,ϑ, z, γ) ⇐ r(yϖ,ϑ, z, γ)



 e↙pϑ,ω,γx∝eφ+

e≃φ






γ↑Γ3

r(xϖ,ϑ, z, γ) ⇐ r(yϖ,ϑ, z, γ)



 eφ dω.
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Note that if r(x, y, γ) is constant in x, the difference above is zero. Hence, we only
take into account the parameters γ such that r depends on x.
Moreover, by the upper bound (C3) in Definition 4.2.1, we find that there is some
φ(ς) such that

sup
ϖ⇒ϖ(ϑ)

Λ(yϖ,ϑ, pϖ,ϑ, ωϖ,ϑ) ⇐ I(yϖ,ϑ, pϖ,ϑ, ωϖ,ϑ) < →. (4.6.4)

If limϖ r(yϖ,ϑ, z, γ) > 0 for all γ, we can conclude by the bound (4.6.4) that e↙pϑ,ω,γx∝

is bounded. Then, by property (C2) of Definition 4.2.1 and continuity of the rates,
(4.6.3) converges to 0 for φ ↑ →.
Consider now all terms γ such that r(yϖ,ϑ, z, γ) ↑ 0 as φ ↑ →. Firstly note that,
by Assumption 3.2.4, (4.6.3) equal to

∫

FM



γ↑Γ1∞Γ2

(ϑz,γ1 (xϖ,ϑ)ϑ
z,γ
2 (xϖ,ϑ)

⇐ ϑz,γ1 (yϖ,ϑ)ϑ
z,γ
2 (yϖ,ϑ))


e↙pϑ,ω,γx∝ ⇐ 1


dω

+ inf
φ↑C2(FM )

∫

FM

e≃φ




γ↑Γ2

(ϑz,γ1 (xϖ,ϑ)ϑ
z,γ
2 (xϖ,ϑ)

⇐ ϑz,γ1 (yϖ,ϑ)ϑ
z,γ
2 (yϖ,ϑ))e

↙pϑ,ω,γx∝


eφ

+ e≃φ






γ↑Γ3

r(xϖ,ϑ, z, γ) ⇐ r(yϖ,ϑ, z, γ)



 eφ dω. (4.6.5)

The last line converges to 0 for φ ↑ → by the continuity of the rates.
If ↖pϖ,ϑ, γx↙ < 0, e↙pϑ,ω,γx∝ is bounded and the first two lines also converge to 0 by
continuity of the rates.
Consider the case ↖pϖ,ϑ, γx↙ > 0.
By Assumption 3.2.4, ϑ1(yϖ,ϑ) > ϑ1(xϖ,ϑ) ↗ 0 and ϑ2(yϖ,ϑ) > 0. Then, we can write
the first two lines of (4.6.5) as

∫

FM



γ↑Γ1∞Γ2

(
ϑz,γ1 (xϖ,ϑ)ϑ

z,γ
2 (xϖ,ϑ)

ϑz,γ1 (yϖ,ϑ)ϑ
z,γ
2 (yϖ,ϑ)

⇐ 1



︸ ︷︷ ︸
(I)

· (ϑz,γ1 (yϖ,ϑ)ϑ
z,γ
2 (yϖ,ϑ))


e↙pϑ,ω,γx∝ ⇐ 1



︸ ︷︷ ︸
(II)

dω

+ inf
φ↑C2(FM )

∫

FM

e≃φ




γ↑Γ2

(
ϑz,γ1 (xϖ,ϑ)ϑ

z,γ
2 (xϖ,ϑ)

ϑz,γ1 (yϖ,ϑ)ϑ
z,γ
2 (yϖ,ϑ)

⇐ 1



︸ ︷︷ ︸
(III)

· (ϑz,γ1 (yϖ,ϑ)ϑ
z,γ
2 (yϖ,ϑ)) e

↙pϑ,ω,γx∝
︸ ︷︷ ︸

(IV )


eφ



4.7 C O N C L U S I O N S A N D F U T U R E P E R S P E C T I V E S 107

For φ ↑ →, by Assumption 3.2.4 (2), (1) and (3) are negative and (2) and (4) are
positive and bounded by (4.6.4). Then, for φ big the second and third lines of (4.6.3)
are bounded above from zero and this concludes the proof.

4.7 C O N C L U S I O N S A N D F U T U R E P E R S P E C T I V E S

In this chapter, we explored the comparison principle for the first-order Hamilton-Jacobi
equations, a fundamental tool in proving the uniqueness of viscosity solutions. We dis-
cussed its significance in ensuring well-posedness and examined the applicability of
our results to different settings. However, models arising from biology, physics, and
biochemistry often describe motion on curved surfaces, naturally leading to Hamilton-
Jacobi equations on manifolds. Extending the analysis of this chapter to this geometric
setting presents several challenges, particularly in adapting the doubling variables tech-
nique, which relies on a well-defined smooth distance function. Nevertheless, recent
advances, such as those in [KRV19], suggest that this extension is feasible with appro-
priate modifications.





5
E X I S T E N C E O F V I S C O S I T Y S O L U T I O N S F O R F I R S T- O R D E R
H A M I LT O N - J A C O B I E Q U AT I O N S V I A LYA P U N O V C O N T R O L

In this chapter, we complete the discussion started in Chapter 4 about the well-posedness
in the viscosity sense for first-order Hamilton-Jacobi equations, by considering the exis-
tence of viscosity solutions for a stationary and time-dependent equation. Moreover, in
this chapter we work on a general d-dimensional smooth manifold.

The results presented in this chapter are based on:
S.Della Corte and R.C. Kraaij, “Existence of viscosity solutions for Hamilton-Jacobi

equations via Lyapunov control”, Preprint, 2024.

5.1 I N T R O D U C T I O N

In this chapter, we present a novel perspective on the existence of viscosity solutions
for both stationary and time-dependent first-order Hamilton-Jacobi equations on a d-
dimensional smooth manifold M. Let H : T →M ↑ R. The specific equations we address
are:

u(x) ⇐ ϖH(x, du(x)) = h(x), (5.1.1)

where ϖ > 0 and h is a bounded continuous function, and its evolutionary version on
M↓ [0,T ]:

{
ϱtu(x, t) + ϖu(x, t) ⇐H(x, dxu(·, t)(x)) = 0, if t > 0,
u(x, 0) = u0(x) if t = 0

(5.1.2)

with ϖ ↗ 0. Our candidate solutions, denoted as Rς,h : M ↑ R and vς : M↓[0,→) ↑ R,
are defined through the control problems:

Rς,h(x) = sup
γ↑Adm,γ(0)=x

Jς(γ), (5.1.3)

where

Jς(γ) =
∫ ↗

0
ϖ≃1e≃ς

↔1
t

(
h(γ(t)) ⇐

∫
t

0
L(γ(s), γ̇(s))


dt

and

vς(x, t) = sup
γ↑Adm,γ(0)=x

Wς(γ, t), (5.1.4)

109
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where

Wς(γ, t) =
∫

t

0
⇐e≃ςsL(γ(s), γ̇(s)) ds+ e≃ςtu0(γ(t)).

Here, L : TM ↑ R is

L(x, v) = sup
p↑T →

xM
↖p, v↙ ⇐H(x, p),

that it the convex conjugate of H (or Legendre transform when H is a convex operator)
and Adm a set of admissible curves.

The new perspective introduced in this work builds on recent comparison principle
results, where an "upper" and "lower" bound of the Hamiltonian are established, as
seen in [Tat92],[Tat94],[CL94] and the works by J. Feng and co-authors [Fen06; FK06;
FMZ21; AF14]. We follow this tradition, particularly drawing on the more recent works
[FK09],[DFL11], [KS21], and [DK24; DCK23], which utilize a specific approach defined
in terms of a Lyapunov function. This Lyapunov function plays a crucial role in our anal-
ysis as well. In line with these works, we introduce two operators, H† and H‡, defined
using the Lyapunov function.

A Lyapunov function Υ is a function such that
1. its sublevel sets are compact;
2. supxH(x, dΥ(x)) < →.
Taking into account the intuition behind a Lyapunov function, our new operators act

on test functions of the type

f† := (1⇐ ς)f(x) + ςΥ,
f‡ := (1+ ς)f(x) ⇐ ςΥ,

where ς ↔ (0, 1), f ↔ D(H) ⇓ Cb(M) and Υ a Lyapunov type function. Then, the actions
of H† and H‡ will be respectively

H†f†(x) := (1⇐ ς)H(x, df(x)) + ςCΥ,

H‡f‡(x) := (1+ ς)H(x, df(x)) ⇐ ςCΥ,

with CΥ that is morally supxH(x, dΥ(x)). The above definitions will be motivated in
Section 5.5 in the case where p ∝↑ H(x, p) is convex on T →

xM. We mention that in the
preceding discussion on the Lyapunov function, the focus was on C1 functions for the
sake of clarity; however, in further sections of this paper, the analysis will be extended
to continuous functions.

We then prove, in Theorems 5.3.3 and 5.3.4, that the upper and lower semi-continuous
regularization of (5.1.3) and (5.1.4) are respectively a viscosity subsolution of the equa-
tions in terms of H† and a viscosity supersolution of the equations in terms of H‡.

Our strategy is based on three main steps, each leveraging the use of the Lyapunov
control and the regularization of candidate solutions. Below, we outline the steps to
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demonstrate that the upper semi-continuous regularization of Rς,h, denoted as (Rς,h)→,
is a subsolution of (5.1.1). The same principles apply to (vς)→ and the supersolution
proof.

1. Optimizers construction. The first step in proving that (Rς,h)→ is a subsolution
involves identifying, for every test function f†, a point x0 that optimizes

sup{(Rς,h)
→ ⇐ f†}. (5.1.5)

Our test function f† is defined in terms of the Lyapunov function Υ, making it a
lower semi-continuous function with compact sublevel sets. This property allows
us to identify a sequence of "almost optimizers" xn for

sup{(Rς,h) ⇐ f†}

that lie in a compact set. We can then extract a limit point that can serve as opti-
mizer of (5.1.5).

2. Containment of control paths. We consider "almost optimizers" γn of the control
problem (5.1.3) started from xn found in the step above. By using the two proper-
ties of the Lyapunov function Υ, we prove that these sequences stay within com-
pact sets.

3. Subsolution property in terms of averages. By using Dynamic Programming
Principle and Young’s inequality, we prove the subsolution inequality in the se-
quences of controls γn and in terms of averages on small intervals [0, tn].
Here, for the supersolution proof, a slightly different analysis is required. Specif-
ically, it is necessary to construct curves that optimize Young’s inequality, as out-
lined in Assumption 5.3.5 (IV).

4. Stability of the averages. To show the final subsolution inequality in x0, we need
to prove that the averages considered in step (3) are "stable". Taking the limit tn ↑
0 and controlling the asymptotic integrability of these averages with Assumption
5.3.5 (V), we obtain the final inequality.

Here, we place our work within the broader framework of current methodologies for
proving the existence of viscosity solutions.

Typically, existence of viscosity solutions proofs are based on two methods. The classi-
cal one, called Perron’s method, was developed by Ishii [Ish87] and relies on the compar-
ison principle for continuous viscosity solutions and on the existence of a subsolution
and a supersolution. This is the case of e.g. [IL90], [CIL92] or more recently [CDL07].

The second method involves the use of the regularity of the Hamiltonian’s coefficients.
This approach includes several key steps. First, under regularity conditions and ana-
logue of Assumption 5.3.5 (V), the regularity of the solution is established and the set of
controls is shown to be complete. Next, optimizers are constructed and the sub-super so-
lution properties are established in these optimizers. Unlike our approach, this method
does not require a separate step to prove stability of the averages, as the regularity con-
ditions and the completeness of the controls suffice to ensure the sub-super solution
inequalities.
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Our method distinguishes itself from the above approaches by relocating the role
of Assumption 5.3.5 (V) from the initial step to the final step and by considering the
"almost optimizers" and the regularization of the candidate solutions. We then gain the
following benefits:

• We avoid a priori analysis of the regularity of the candidate solution;
• We can relax the usual completeness assumption on the set of controls;
• We can relax the traditional assumptions on the Hamiltonian, such as modulus of

continuity or uniform coercivity, which are typically necessary in other methods
to achieve the two points above.

Moreover, our work extends beyond the current literature by also relaxing the typical
assumption of convexity of the Hamiltonian. In this way, we can also consider Hamilton-
Jacobi-Isaacs equations with a Hamiltonian expressed as "sup-inf" or "inf-sup" of a con-
vex operator, as detailed in Section 5.5.

Finally, even if our work is mostly inspired by [FK06, Chapter 8], it diverges also
from it. Firstly, [FK06] prove that the set of controls is complete. Secondly, their proofs
are based on showing properties of (5.1.3) such as the fact that it serves as a classical
“left-inverse” of the equation, that it is a pseudo-resolvent and it is contractive (see Lemma
7.8 and Theorem 8.27 in [FK06]). A similar approach for (5.1.4) is so far lacking. For
this reason, the strategy developed in [FK06] can not be used to establish the existence
of viscosity solutions for the parabolic case (5.1.2). Our approach, instead, is applicable
to both stationary and evolutionary case. Moreover, even if the use of the Lyapunov
control is encoded in the strategy of [FK06] and in particular in their Conditions 8.9, 8.10
and 8.11, we make this approach more explicit by introducing the Lyapunov function
directly to the domain of our Hamiltonians.

The rest of the chapter is structured as follows: in Section 5.2 we give the main def-
initions. Our two main results, namely Theorems 5.3.3 and 5.3.4, are stated in Section
5.3 followed by the assumptions needed to prove them. We prove the main results in
Section 5.4. Finally, in Section 5.5 and Section 5.6 we explore the context of a convex
Hamiltonian and Hamilton-Jacobi-Isaacs equations respectively.

5.2 G E N E R A L S E T T I N G A N D M A I N D E F I N I T I O N S

In this section, we firstly give some notions and definitions used throughout the paper.
Throughout the paper, M will be the d-dimensional smooth manifold on which we

base our Hamilton-Jacobi equations.
The tangent space of M at x ↔ M is denoted by TxM while TM :=

⊔
x↑M TxM is the

tangent bundle on M. We then denote by T →
xM the cotangent space of M, that is the dual

space of the tangent space, and the correspondent cotangent bundle by T →M. We refer to
e.g. [Tu10] for more details about smooth manifolds.

We will also make use of the following notions.

Definition 5.2.1 (Containment function). We call Υ : M ↑ [0,→) a containment function
if
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(a) infx↑M Υ(x) = 0,
(b) for every c ↗ 0 the set {y |Υ(y) ≃ c} is compact.

Definition 5.2.2 (Convergence determining set). Let A ⇓ Cb(M). We say that A is con-
vergence determining if for all xn ↔ M a sequence in M and x0 ↔ M the following
property holds:

lim
n

g(xn) = g(x0) ∈g ↔ A =¬ lim
n

xn = x0.

The candidate solutions will be defined through two control problems. Before present-
ing them, we need to define the set of possible curves on which we set the mentioned
control problems.

Definition 5.2.3 (Control set). We say that Adm ⇓ AC([0,→),M) is a set of admissible
curves if the following two properties hold:

(a) If {γ(t)}t⇒0 ↔ Adm and 2 > 0, then {γ(t+ 2 )}t⇒0 ↔ Adm;
(b) If γ1, γ2 ↔ Adm and 2 > 0 and let γ be the curve defined as

γ(t) =

{
γ1(t) t ≃ 2

γ2(t⇐ 2 ) t > 2 .

Then, {γ(t)}t⇒0 ↔ Adm.

Finally, throughout the whole manuscript we will call L : TM ↑ [0,→] the convex
conjugate of the Hamiltonian, i.e., the function

L(x, v) := sup
p↑T →

xM
[↖p, v↙ ⇐H(x, p)] . (5.2.1)

Remark 5.2.4. By Definition (5.2.1) of L it follows that for all x ↔ M, v ↔ TxM and
p ↔ T →M, the Fenchel–Young’s inequality holds, i.e.,

L(x, v) +H(x, p) ↗ ↖p, v↙. (5.2.2)

5.3 A S S U M P T I O N S A N D M A I N R E S U LT S

In this section, we give our main results, namely Theorems 5.3.3 and 5.3.4.
First of all, we need to define the Hamiltonians and their corresponding equations,

for which we aim to demonstrate the existence of viscosity solutions. This is the con-
tent of the next section. Later, after the statements of our main results, we specify the
assumptions needed to prove them and we comment them.

5.3.1 The upper and lower Hamiltonians

We will work with two sets of equations in terms of an upper and lower bound of the
Hamiltonian Hf(x) = H(x, df(x)).

We proceed by introducing H† and H‡.
Consider Assumption 5.3.5 (III) and the constant CΥ therein.
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Definition 5.3.1 (The operators H† and H‡). For f ↔ C↗
,
(M) and ς ↔ (0, 1) set

f ϑ† := (1⇐ ς)f + ςΥ

gϑ†(x) := (1⇐ ς)H(x, df(x)) + ςCΥ.

and set

H† :=
{
(f ϑ† , g

ϑ

†)
∣∣ f ↔ C↗

,
(M), ς ↔ (0, 1)

}
.

For f ↔ C↗
u (M) and ς ↔ (0, 1) set

f ϑ‡ := (1+ ς)f ⇐ ςΥ

gϑ‡(x) := (1+ ς)H(x, df(x)) ⇐ ςCΥ.

and set

H‡ :=
{
(f ϑ‡ , g

ϑ

‡)
∣∣ f ↔ C↗

u (M), ς ↔ (0, 1)
}
.

We will establish existence of viscosity solutions for the set of stationary Hamilton–
Jacobi equations on a manifold M,

u(x) ⇐ ϖH†u(x) = h†(x), (5.3.1)
v(x) ⇐ ϖH‡v(x) = h‡(x);

where ϖ > 0 and h† and h‡ are two continuous bounded function, and for the set of
evolutionary versions

ϱtu(x, t) + ϖu(x, t) ⇐H†u(x, t) = 0, (5.3.2)
ϱtv(x, t) + ϖv(x, t) ⇐H‡v(x, t) = 0;

with initial datum u0 and ϖ ↗ 0.
In Section 5.5 and Section 5.6, we will show the relationship between the Hamilto-

nian H and the operators H† and H‡ in the scenarios of a convex Hamiltonian and the
Hamilton-Jacobi-Isaacs case, respectively. This explanation will then justify the designa-
tion of “upper and lower Hamiltonians”.

5.3.2 Main results: existence of viscosity solutions

We define now the candidate solutions Rς,h : M ↑ R and vς : M↓ [0,T ] ↑ R through
the control problems

Rς,h(x) = sup
γ↑Adm,γ(0)=x

Jς(γ), (5.3.3)

where Jς(γ) =

 ↗

0
ϖ≃1e≃ς

↔1
t


h(γ(t)) ⇐


t

0 L(γ(s), γ̇(s)) ds

dt and

vς(x, t) = sup
γ↑Adm,γ(0)=x

Wς(γ, t), (5.3.4)

where Wς(γ, t) =


t

0
⇐e≃ςsL(γ(s), γ̇(s)) ds+ e≃ςtu0(γ(t)).
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Remark 5.3.2. We will show later that, by Assumption (IV), there exists a path γ with
cost zero. Then, we are allowed to assume that the class of γ considered in the above
supremum have finite cost.

We give here the statements of the main results that state respectively the existence of
viscosity subsolution and supersolution for the set of equations (5.3.1) and (5.3.2).

We give specifics and the assumptions needed in Section 5.3.3.

Theorem 5.3.3 (Viscosity solution for the stationary equation). Assume that Assumption
5.3.5 holds. For ϖ > 0 and h ↔ Cb(M) define Rς,h as in (5.3.3) and let (Rς,h)→ and (Rς,h)→ be
its upper semi-continuous regularization and the lower semi-continuous regularization respec-
tively. Then, (Rς,h)→ and (Rς,h)→ are respectively a viscosity subsolution of u⇐ ϖH†u = h and
a viscosity supersolution of u⇐ ϖH‡u = h with H† and H‡ defined as in Definition 5.3.1.

Theorem 5.3.4 (Viscosity solution for the evolutionary equation). Assume that Assump-
tion 5.3.5 holds. For T > 0 and ϖ ↗ 0 define vς(x, t) : M ↓ [0,T ] ↑ R as (5.3.4) and let
(vς)→ and (vς)→ be its upper semi-continuous regularization and the lower semi-continuous reg-
ularization in both component respectively. Then, (vς)→ and (vς)→ are respectively a viscosity
subsolution of ϱtu+ϖu⇐H†u = 0 and supersolution of ϱtu+ϖu⇐H‡u = 0 with initial value
u(x, 0) = u0(x) and H† and H‡ defined as in Definition 5.3.1.

5.3.3 Assumptions

To prove our main results we will make use of the following assumptions on the Hamil-
tonian H.

Assumption 5.3.5. Let H : T →M ↑ R and call Hf(x) := H(x, df(x)) and D(H) ⇓
C1
b
(M) its domain. The following properties hold.

(I) H(x, 0) = 0 for all x ↔ M;
(II) The map (x, p) ∝↑ H(x, p) is continuous in x and p;

(III) There exists a containment function Υ as in Definition 5.2.1. Moreover, there exists
a constant CΥ such that for all γ ↔ Adm and T > 0 the following holds

Υ(γ(T )) ⇐ Υ(γ(0)) ≃
∫

T

0
L(γ(t), γ̇(t)) dt+ TCΥ.

(IV) For all f ↔ D(H) x ↔ M and T > 0, there exists γ ↔ Adm such that γ(0) = x and

f(γ(T )) ⇐ f(γ(0)) ↗
∫

T

0
L(γ(t), γ̇(t)) +H(γ(t), df(γ(t))) dt.

(V) For every compact set K and positive constant c,

H(K, c) := sup
|p|∈c

sup
x↑K

H(x, p) < →, H(K, c) := inf
|p|∈c

inf
x↑K

H(x, p) > ⇐→.

(VI) The space D(H) is convergence determining.
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We will now clarify the assumptions above.
The first two assumptions are standard in the context of well–posedness of a Hamilton-

Jacobi equation.
Assumptions (V) and (VI) are technical assumptions that imply that the set of curves

living in a compact set and having finite cost is relatively compact (that is Condition
8.9.3 of [FK06]). We will use them to prove Proposition 5.4.5 and Proposition 5.4.6.

Assumption (IV) implies that for all f ↔ D(H) there exists at least one curve γ ↔
Adm such that the Fenchel–Young’s inequality (5.2.2) applied to x = γ(t), v = γ̇(t) and
p = df(γ(t)) holds with the equality for all t ↔ [0,T ]. This assumption is also given in
[FK06] as Condition 8.11.

Moreover, using Assumption (IV) and with f = 1 and Assumption (I), it follows that
for every x0 ↔ M there exists a path γ starting at x0 such that

∫
t

0
L(γ(s), γ̇(s)) ds = 0.

We want to mention that this assumption is only needed to prove the existence of a vis-
cosity supersolution. In the case where H(x, ·) is convex, Assumption (IV) is equivalent
to solve the differential inclusion

γ̇(t) ↔ ϱpH(γ(t), df(γ(t))),

(see e.g. [CS04] or [Roc70]). We refer to [FK06, Sec. 8.6.3] for general method to prove
the inequality in Assumption (IV).

Finally, Assumption (III) plays a crucial role in many parts of this work. First of all,
defining test functions in terms of a containment function Υ, we can work with the
definitions of viscosity sub/super-solutions that consider optimizer points and not se-
quences (see Lemma 1.2.6 in Section 1). Secondly, the containment function allows us to
prove that curves starting in a compact set and having finite cost stay in a compact set.
This is Condition 8.9.4 of [FK06] and it is the content of Lemma 5.4.4. Moreover, we want
to highlight that the containment function Υ is not assumed to be in the domain of the
Hamiltonian. This allows us to use also functions that are not in C1(M). For instance,
Υ(x) = 1

2 log(1+ |x|2) is a function that typically works as a containment function in the
context of well-posedness of Hamilton-Jacobi equations. We will see in Section 5.5, that
in the context where H is convex and Υ is smooth, assuming that

sup
x

H(x,⇒Υ(x)) < CΥ < →,

the inequality in Assumption (III) is the Fenchel–Young’s inequality (5.2.2) for x = γ(t),
v = γ̇(t), p = dΥ(x) and CΥ as above.

5.4 P R O O F S O F T H E M A I N T H E O R E M S

In this section we give the proofs of Theorems 5.3.3 and 5.3.4. First, we need some results
given in the following subsections.
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5.4.1 Dynamic Programming Principle

We start with an important property of the two value functions, Rς,h and vς in (5.3.3)
and (5.3.4), namely the Dynamic Programming Principle. The proof of the following re-
sults are standard (see for example [BC97]). We include them for completeness.

Proposition 5.4.1 (Dynamic Programming Principle). Consider Rς,h and vς defined as in
(5.3.3) and (5.3.4) respectively. Then, we have the following

(a) For all x ↔ M, ϖ > 0 and all T > 0

Rς,h(x) = sup
γ↑Adm,γ(0)=x

∫
T

0

(
h(γ(t)) ⇐

∫
t

0
L(γ(s), γ̇(s)) ds


ϖ≃1e≃ς

↔1
t dt

+ e≃ς
↔1

TRς,h(γ(T )). (DPP)

(b) For all x ↔ M, ϖ ↗ 0 and 0 < 2 ≃ t,

vς(x, t) = sup
γ↑Adm,γ(0)=x

∫
◁

0
⇐e≃ςsL(γ(s), γ̇(s)) ds+ e≃ς◁

vς(γ(2 ), t⇐ 2 )


.

(DPPt)

Proof. The proofs of the two properties are both based on integral change of variables
that are possible by the definition of Adm which involves piece-wise connectable curves.

Proof of (a). We call uT (x) the right-hand side of (DPP).
Proof of Rς,h(x) ≃ uT (x). If uT (x) = +→, there is nothing to prove. Assume that

uT (x) < +→. We start out with taking any γ in the definition of Rς,h(x) and upper
bound it in terms of uT (x). Thus γ ↔ Adm with γ(0) = x, then,

∫ ↗

0

(
h(γ(t)) ⇐

∫
t

0
L(γ(s), γ̇(s)) ds


ϖ≃1e≃ς

↔1
t dt

=
∫

T

0

(
h(γ(t)) ⇐

∫
t

0
L(γ(s), γ̇(s)) ds


ϖ≃1e≃ς

↔1
t dt

+
∫ ↗

T

(
h(γ(t)) ⇐

∫
t

0
L(γ(s), γ̇(s)) ds


ϖ≃1e≃ς

↔1
t dt

=
∫

T

0

(
h(γ(t)) ⇐

∫
t

0
L(γ(s), γ̇(s)) ds


ϖ≃1e≃ς

↔1
t dt

+
∫ ↗

0


h(γ(t+ T )) ⇐

∫
t+T

0
L(γ(s), γ̇(s)) ds


ϖ≃1e≃ς

↔1(t+T ) dt

=
∫

T

0

(
h(γ(t)) ⇐

∫
t

0
L(γ(s), γ̇(s)) ds


ϖ≃1e≃ς

↔1
t dt

+ e≃ς
↔1

T

∫ ↗

0

(
h(γ̃(t)) ⇐

∫
t

0
L(γ̃(s), ˙̃γ(s)) ds


ϖ≃1e≃ς

↔1
t dt,
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where γ̃(t) = γ(t + T ) that, by Definition 5.2.3 (a) of Adm, is inside the set Adm. Then,
taking the supremum over Adm we obtain that Rς,h(x) ≃ uT (x).

Proof of Rς,h(x) ↗ uT (x). If Rς,h(x) = +→ there is nothing to prove. Thus assume
Rς,h(x) < +→ and consider ς > 0, γ ↔ Adm with γ(0) = x and γ̃ ↔ Adm such that
γ̃(0) = γ(T ) and

Rς,h(γ(T )) ≃
∫ ↗

0

(
h(γ̃(t)) ⇐

∫
t

0
L(γ̃(s), ˙̃γ(s)) ds


ϖ≃1e≃ς

↔1
t dt+ ς.

Define now

γ̄(t) =

{
γ(t) if 0 ≃ t ≃ T ;
γ̃(t⇐ T ) if T ≃ t.

Then, by Definition 5.2.3 (b) of Adm, γ̄ ↔ Adm with γ̄(0) = x, so that

Rς,h(x) ↗
∫ ↗

0

(
h(γ̄(t)) ⇐

∫
t

0
L(γ̄(s), ˙̄γ(s)) ds


ϖ≃1e≃ς

↔1
t dt

=
∫

T

0

(
h(γ(t)) ⇐

∫
t

0
L(γ(s), γ̇(s)) ds


ϖ≃1e≃ς

↔1
t dt

+
∫ ↗

T

(
h(γ̃(t⇐ T )) ⇐

∫
t

0
L(γ̃(s⇐ T ), ˙̃γ(s⇐ T )) ds


ϖ≃1e≃ς

↔1
t dt

=
∫

T

0

(
h(γ(t)) ⇐

∫
t

0
L(γ(s), γ̇(s)) ds


ϖ≃1e≃ς

↔1
t dt

+ e≃ς
↔1

T

∫ ↗

0

(
h(γ̃(t)) ⇐

∫
t

0
L(γ̃(s), ˙̃γ(s)) ds


ϖ≃1e≃ς

↔1
t dt

↗
∫

T

0

(
h(γ(t)) ⇐

∫
t

0
L(γ(s), γ̇(s)) ds


ϖ≃1e≃ς

↔1
t dt

+ e≃ς
↔1

TRς,h(γ(T )) ⇐ ς.

Due to the arbitrariness of ς, we obtain that Rς,h(x) ↗ uT (x) and this conclude the
proof.

Proof of (b). We call v◁ (x, t) the right-hand side of (DPPt).
Proof of vς(x, t) ≃ v◁ (x, t). For t = 2 , (DPPt) is the definition of vς (5.3.4). Suppose

t > 2 . If v◁ (x, t) = +→, there is nothing to prove. Assume that v◁ (x, t) < +→. We start
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out with taking any γ in the definition of vς(x, t) and upper bound it in terms of v◁ (x, t).
Thus γ ↔ Adm with γ(0) = x, then,

∫
t

0
⇐e≃ςsL(γ(s), γ̇(s)) ds+ e≃ςtu0(γ(s))

=
∫

◁

0
⇐e≃ςsL(γ(s), γ̇(s)) ds+

∫
t

◁

⇐e≃ςsL(γ(s), γ̇(s)) ds+ e≃ςtu0(γ(t))

=
∫

◁

0
⇐e≃ςsL(γ(s), γ̇(s)) ds+

∫
t≃◁

0
⇐e≃ςs≃ς◁L(γ(s+ 2 ), γ̇(s+ 2 )) ds

+ e≃ς◁e≃ς(t≃◁ )u0(γ(t))

=
∫

◁

0
⇐e≃ςsL(γ(s), γ̇(s)) ds

+ e≃ς◁

(∫
t≃◁

0
⇐e≃ςsL(γ̃(s), ˙̃γ(s)) ds+ e≃ς(t≃◁ )u0(γ̃(t⇐ 2 ))


,

with γ̃(t) = γ(t + 2 ) that, by Definition 5.2.3 (a) of Adm, is inside the set Adm. Then,
taking the supremum over Adm we obtain the inequality vς(x, t) ≃ v◁ (x, t).

Proof of vς(x, t) ↗ v◁ (x, t). If vς(x, t) = +→ there is nothing to prove. Thus assume
vς(x, t) < → and consider ς > 0, γ ↔ Adm such that γ(0) = x and γ̃ ↔ Adm such that
γ̃(0) = γ(2 ) and

vς(γ(2 ), t⇐ 2 ) ≃
∫

t≃◁

0
⇐e≃ςsL(γ̃(s), ˙̃γ(s) ds+ e≃ς(t≃◁ )u0(γ̃(t⇐ 2 )) + ς.

Define

γ̄(s) =

{
γ(s) if s ≃ 2 ;
γ̃(s⇐ 2 ) if t > 2 .

Then, by Definition 5.2.3 (b) of Adm, γ̄ ↔ Adm and γ̄(0) = x, so that

vς(x, t) ↗
∫

t

0
⇐e≃ςsL(γ̄(s), ˙̄γ(s)) ds+ e≃ςtu0(γ̄(t))

=
∫

◁

0
⇐e≃ςsL(γ(s), γ̇(s)) ds+

∫
t

◁

⇐e≃ςsL(γ̃(s⇐ 2 ), ˙̃γ(s⇐ 2 )) ds

+ e≃ςtu0(γ̃(t⇐ 2 ))

=
∫

◁

0
⇐e≃ςsL(γ(s), γ̇(s) ds+ e≃ς◁

∫
t≃◁

0
⇐e≃ςsL(γ̃(s), ˙̃γ(s)) ds

+ e≃ς◁e≃ς(t≃◁ )u0(γ̃(t⇐ 2 ))

↗
∫

◁

0
⇐e≃ςsL(γ(s), γ̇(s)) ds+ e≃ς◁

vς(γ(2 ), t⇐ 2 ) ⇐ ς.

Due to the arbitrariness of ς we obtain that vς(x, t) ↗ v◁ (x, t) and this conclude the
proof.
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5.4.2 Properties of semi-continuous functions

The following two propositions will be used for Rς,h and vς respectively. We only prove
the first one as the second one follows similarly.

Proposition 5.4.2. Let ϑ : M ↑ R be a bounded function on M and f : M ↑ R a lower
semi-continuous function with compact sublevel sets. Define ϑ→ the upper semi-continuous reg-
ularization of ϑ. Then, there exists a converging sequence xn ↑ x0 such that the following
properties hold.

(a) ϑ(xn) ⇐ f(xn) ↗ sup(ϑ⇐ f) ⇐ 1
n
,

(b) ϑ(x0) ⇐ f(x0) = sup(ϑ⇐ f) = sup(ϑ→ ⇐ f).
(c) limn ϑ(xn) = ϑ→(x0).

Proof. (a) For every n ↗ 1, there exists xn such that

ϑ(xn) ⇐ f(xn) ↗ sup(ϑ⇐ f) ⇐ 1

n
. (5.4.2)

We prove that the sequence {xn}n⇒1 is contained in a sublevel set of f , and, there-
fore, in a compact set. By (5.4.2), for all x ↔ M,

ϑ(xn) ⇐ f(xn) ↗ ϑ(x) ⇐ f(x) ⇐ 1

n
.

Let x̃ be a point in a sublevel set of f of constant C. We get

f(xn) ≃ ϑ(xn) ⇐ ϑ(x̃) + f(x̃) +
1

n
≃ 2⇔ϑ⇔+ C +

1

n
.

Then, for n large the right-hand side of the above inequality is bounded from
above by a constant M . We can conclude that, for n large, xn ↔ {x ↔ M : f(x) ≃
M}. By going to a converging subsequence, we conclude the proof of the firt point.

(b) Let x0 be the limit of the sequence xn. By the upper semi continuity of ϑ→ ⇐ f , we
have

ϑ→(x0) ⇐ f(x0) ↗ lim sup
n

(ϑ→(xn) ⇐ f(xn)) = sup(ϑ→ ⇐ f).

(c) First note that by (a) and (b), we have that

lim
n

ϑ(xn) ⇐ f(xn) = ϑ→(x0) ⇐ f(x0). (5.4.3)

Moreover, by the definition of ϑ→ as the upper semicontinuous regularization of ϑ,
it holds that lim supn ϑ(xn) ≃ ϑ→(x0). We show that lim infn ϑ(xn) ↗ ϑ→(x0).
Suppose by contradiction that lim infn ϑ(xn) = ϑ < ϑ→(x0). Then, consider a sub-
sequence xnm such that lim supn ϑ(xnm) = ϑ. Then,

lim sup
n

ϑ(xnm) ⇐ f(xnm) ≃ lim sup
n

ϑ(xnm) ⇐ lim inf
n

f(xnm)

≃ ϑ⇐ f(x0) < ϑ→(x0) ⇐ f(x0),

that is a contradiction to (5.4.3). This concludes the proof of (c).
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Proposition 5.4.3. Let ϑ : M↓ [0,T ] ↑ R be a bounded function, f : M ↑ R a lower semi-
continuous function with compact sublevel sets and h : [0,T ] ↑ R a C1 function. Define ϑ→

the upper semi-continuous regularization of ϑ in both variables. Then, the following properties
hold.

(a) ℜ (xn, tn) almost optimizing ϑ⇐ f ⇐ h with an error of 1
n

, that is

ϑ(xn, tn) ⇐ f(xn) ⇐ h(tn) ↗ sup(ϑ⇐ f ⇐ h) ⇐ 1

n
,

and such that (xn, tn) has a converging subsequence, still denoted (xn, tn).
(b) The limit point (x0, t0) of the sequence (xn, tn) is optimal for ϑ⇐ f ⇐ h and ϑ→ ⇐ f ⇐ h.
(c) limn ϑ(xn, tn) = ϑ→(x0, t0).

5.4.3 Properties of the controls set

In this subsection we prove some properties of the controls γ ↔ Adm. In particular, we
will prove that curves starting in a compact and having finite cost stay in a compact set.
Additionally, sequences composed of these type of curves will uniformly converge.

We want to emphasize that the assumption of the existence of the containment func-
tion, i.e. Assumption 5.3.5 (III), plays a crucial role here. Indeed, the property given
by the lemma below is usually assumed in an optimal control context (see for example
Condition 8.9.4 in [FK06]). In the following, we are able to prove it by using the compact
sublevel sets of the containment function.

Lemma 5.4.4. Let T > 0 and K0 a compact in M. Let γ ↔ Adm such that γ(0) ↔ K0. If there
exists a constant M = M(T ,K0) such that

∫
T

0
L(γ(t), γ̇(t)) dt < M ,

then, there exists a compact K such that γ(t) ↔ K for all t ≃ T .

Proof. Firstly, recall the containment function Υ and the constant CΥ given in Assump-
tion (III). Then,

Υ(γ(T )) ≃ Υ(γ(0)) + CΥT +
∫

T

0
L(γ(t), γ̇(t)) dt

≃ sup
K0

Υ + CΥT +M := M̄ .

Then, the result follows with K = {x ↔ E : Υ(x) ≃ M̄} and by the property of Υ of
having compact sublevel sets.

We show now that sequences of curves lying in a compact set and having finite cost
are uniformly convergent. More precisely, we have the following proposition.
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Proposition 5.4.5. Let T > 0 and K ⇓ M a compact set. Let γn ↔ Adm a sequence of
admissible curves such that γn(t) ↔ K, for every n and t ≃ T . Let Tn ↔ [0,T ] such that Tn ⊥ 0.
Let xn := γn(0) converge to x0 ↔ E. If,

sup
n

sup
t∈Tn

1

t

∫
t

0
L(γn(s), γ̇n(s)) ds < →, (5.4.4)

then,

lim
n

γn(tn) = x0,

for all tn vanishing sequence faster then Tn.

Proof. We will show the convergence by proving that for every function g ↔ D(H) it
holds that

lim
n

g(γn(tn)) = g(x0).

Then, the result will follow by Assumption 5.3.5 (VI).
Let g ↔ D(H). First of all, we show that for all n ↗ 1

|g(γn(tn)) ⇐ g(γn(0))| ≃ tn ·M ,

with M > 0. To this aim, note that by the Frenchel–Young’s inequality (5.2.2) applied to
x = γ(t), v = γ̇(t) and p = dg(γ(t)),

|g(γn(tn)) ⇐ g(γn(0))| ≃
∫

tn

0
↖dg(γn(s)), γ̇n(s)↙ ds

≃
∫

tn

0
L(γn(s), γ̇n(s)) ds+

∫
tn

0
H(γn(s), dg(γn(s))) ds

≃ M · tn,

where the last bound follows from the assumption on L, the continuity of H and the
fact that γn(s) lies on a compact set for all s ↔ [0,T ]. Then, by triangular inequality it
follows that

|g(γn(tn)) ⇐ g(x0)| ≃ |g(γn(tn)) ⇐ g(γn(0))|+ |g(γn(0)) ⇐ g(x0)|
≃ tn ·M + |g(γn(0)) ⇐ g(x0)|.

Sending n ↑ → and using the continuity of g, the claim follows. That concludes the
proof.

Finally, in order to apply the proposition above, we will need to show condition (5.4.4).
The following proposition, give us a property that implies condition (5.4.4).
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Proposition 5.4.6. Let T > 0, K a compact set and C1,C2 ↗ 0. Let γn ↔ Adm a sequence of
admissible curves such that γn(t) ↔ K, for every n and t ≃ T . Let Tn ↔ [0,T ] such that Tn ⊥ 0.
Moreover, let f ↔ D(H) such that the following holds for every n and t ≃ Tn

∫
t

0
L(γn(s), γ̇n(s)) ds ≃ C1

∫
t

0
↖df(γn(s)), γ̇n(s)↙+ C2t. (5.4.5)

Then,

sup
n

sup
t∈Tn

1

t

∫
t

0
L(γn(s), γ̇n(s)) ds < →.

Proof. Let t ≃ Tn. Let ↼f ,K be a function as in Lemma 5.4.7. Then,
∫

t

0
L(γn(s), γ̇n(s)) ds ≃ C1

∫
t

0
↖df(γn(s)), γ̇n(s)↙ ds+ C2t (5.4.6)

≃ C1

∫
t

0
↼f ,K(L(γn(s), γ̇n(s))) ds+ C2t.

Moreover, by the fact that ↼f ,K is non decreasing and the fact that 0f ,K (r)
r

converges to
0 for r ↑ →, there exist 0 < m < 1 and r→ ↗ 1 such that 0f ,K (r)

r
≃ m for every r ↗ r→.

We get
∫

t

0
↼f ,K(L(γn(s), γ̇n(s))) ds

≃
∫

{s↑[0,t] :L(γn(s),γ̇n(s))⇒r→}

↼f ,K (L(γn(s), γ̇n(s)))
L(γn(s), γ̇n(s))

L(γn(s), γ̇n(s)) ds

+
∫

{s↑[0,t] :L(γn(s),γ̇n(s))∈r→}
↼f ,K(L(γn(s), γ̇n(s)))

≃
∫

t

0
mL(γn(s), γ̇n(s)) ds+

∫
t

0
↼f ,K(r→) ds

≃
∫

t

0
mL(γn(s), γ̇n(s)) ds+ t↼f ,K(r→). (5.4.7)

Combining (5.4.6) and (5.4.7) leads to

sup
n

sup
t∈Tn

(
1

t

∫
t

0
L(γn(s), γ̇n(s)) ds


≃ M ,

for some M > 0, establishing the claim.

The following technical lemma is inspired by Lemma 10.21 in [FK06].

Lemma 5.4.7. For every f ↔ D(H) and compact set K ⇓ M there exists a right continuous,
non decreasing function ↼f ,K : [0,→) ↑ [0,→) such that
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(a) limr↔↗
0f ,K (r)

r
= 0;

(b) |↖df(x), q↙| ≃ ↼f ,K(L(x, q)) for all x ↔ K, q ↔ TxM.

Proof. First recall that by Assumption (V),

H(K, c) := sup
|p|∈c

sup
x↑K

H(x, p) < → for all c > 0.

Using the definition of L we obtain that

L(x, v)
|v| ↗ sup

|p|=c

↖p, v↙
|v| ⇐ H(K, c)

|v| = c⇐ H(K, c)
|v| .

It follows that

lim
N↔↗

inf
x↑K

inf
|v|=N

L(x, v)
|v| = +→.

Define

ϕ(s) = s inf
x↑K

inf
|v|⇒s

L(x, v)
|v| .

Then ϕ is strictly increasing and r≃1ϕ(r) ↑ → for r ↑ →. Moreover, for every f ↔ D(H)
and a compact set K there exists a constant Cf ,K > 0 such that

|↖df(x), q↙| ≃ Cf ,K |q| for all x ↔ K.

We define

↼f ,K(r) := Cf ,Kϕ≃1(r).

Then, ↼f ,K is such that r≃1↼f ,K(r) ↑ 0 for r ↑ → and since

ϕ

C≃1
f ,K |↖df(x), q↙|


≃ ϕ(|q|) ≃ L(x, q),

we can conclude that |↖df(x), q↙| ≃ ↼f ,K(L(x, q)).

5.4.4 Proofs of Theorems 5.3.3 and 5.3.4

Proof of Theorem 5.3.3. The subsolution property. Let f ϑ† as in Definition 5.3.1. By Proposi-
tion 5.4.2, with ϑ = Rς,h and f = f ϑ† , there exists a sequence xn in a compact set K0 that
is converging to a point x0 and such that

Rς,h(xn) ⇐ f ϑ† (xn) ↗ sup(Rς,h ⇐ f ϑ† ) ⇐
1

n2
, (5.4.8)

(Rς,h)
→(x0) ⇐ f ϑ† (x0) = sup((Rς,h)

→ ⇐ f ϑ† ).
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and

lim
n

Rς,h(xn) = (Rς,h)
→(x0). (5.4.9)

It thus suffices to establish that

(Rς,h)
→(x0) ⇐ ϖgϑ†(x0) ⇐ h(x0) ≃ 0. (5.4.10)

Let γn ↔ Adm such that γn(0) = xn and almost optimizing (DPP) at pag. 117, that is

Rς,h(xn) ⇐ e≃ς
↔1 1

nRς,h

(
γn

(
1

n


(5.4.11)

≃
∫ 1/n

0


h(γn(t)) ⇐

∫
t

0
L(γn(s), γ̇n(s)) ds


ϖ≃1e≃ς

↔1
t dt+

1

n2
.

Moreover, as pointed out in Remark 5.3.2, we can assume that

t

0 L(γn(s), γ̇n(s)) ds <
→, for all t ≃ 1

n
.

Then, by the fact that γn(0) ↔ K0 and Lemma 5.4.4 applied with T = 1
n

, there exists a
compact K such that γn(t) ↔ K for all t ≃ 1

n
.

Rearranging (5.4.8), using the fundamental theorem of calculus, and Assumption (III),
we find

Rς,h

(
γn

(
1

n


⇐Rς,h(xn) ≃ f ϑ†

(
γn

(
1

n


⇐ f ϑ† (xn) +

1

n2
(5.4.12)

= (1⇐ ς)

(
f

(
γn

(
1

n


⇐ f(γn(xn))


+ ς

(
Υ
(
γn

(
1

n


⇐ Υ(γn(xn))


+

1

n2

≃ (1⇐ ς)
∫ 1/n

0
↖df (γn(s)) , γ̇n(s)↙ ds+ ς

∫ 1/n

0
L(γn(s), γ̇n(s)) ds+ ς

1

n
CΥ +

1

n2
.

Then, combining (5.4.11) and (5.4.12) leads to

⇐ (1⇐ ς)
∫ 1/n

0
↖df (γn(s)) , γ̇n(s)↙ ds⇐ ς

∫ 1/n

0
L(γn(s), γ̇n(s)) ds

⇐ ς
1

n
CΥ ⇐ 1

n2
+


1⇐ e≃ς

↔1 1
n


Rς,h

(
γn

(
1

n



≃ Rς,h(xn) ⇐ e≃ς
↔1 1

nRς,h

(
γn

(
1

n



≃
∫ 1/n

0


h(γn(t)) ⇐

∫
t

0
L(γn(s), γ̇n(s)) ds


ϖ≃1e≃ς

↔1
t dt+

1

n2
.
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Finally, rearranging terms on the first and third line and dividing by 1
n

yields,

0 ≃ n

e≃ς

↔11/n ⇐ 1

Rς,h

(
γn

(
1

n


+ n

∫ 1/n

0
ϖ≃1e≃ς

↔1
th (γn(t)) dt

⇐ n

∫ 1/n

0

(
ϖ≃1e≃ς

↔1
t

∫
t

0
L(γn(s), γ̇n(s)) ds


dt

+ n(1⇐ ς)
∫ 1/n

0
↖df(γn(s)), γ̇n(s)↙ ds

+ nς

∫ 1/n

0
L(γn(s), γ̇n(s)) ds+ ςCΥ + O

(
1

n


.

Using integration by parts in the integral involving L, we lead to

0 ≃ n

e≃ς

↔11/n ⇐ 1

Rς,h

(
γn

(
1

n


(5.4.13a)

+ n

∫ 1/n

0
ϖ≃1e≃ς

↔11/nh (γn(t)) dt (5.4.13b)

+ n(1⇐ ς)
∫ 1/n

0
↖df(γn(t)), γ̇n(t)↙ ⇐ L(γn(t), γ̇n(t)) dt+ ςCΥ (5.4.13c)

⇐ n

∫ 1/n

0


e≃ς

↔1
t ⇐ 1


L(γn(t), γ̇n(t)) dt+ O

(
1

n


. (5.4.13d)

We show now that taking the limit in (5.4.13) as n ↑ → leads to inequality (5.4.10). We
consider the limit in (5.4.13a), (5.4.13b), (5.4.13c), and (5.4.13d) separately.

Key to the analysis of the above limiting behavior is to first establish

sup
n

sup
t∈ 1

n

1

t

∫
t

0
L(γn(s), γ̇n(s)) ds < →, (5.4.14)

and

γn

(
1

n


↑ x0,

where the second is a direct consequence of the first due to Proposition 5.4.5. To do so,
we use Proposition 5.4.6 with Tn = 1

n
for which we prove condition (5.4.5).

Putting all terms in (5.4.13) involving L on the left-hand side, we obtain

n

∫ 1/n

0


e≃ς

↔1
t ⇐ ς


L(γn(t), γ̇n(t)) dt ≃ n(1⇐ ς)

∫ 1/n

0
↖df(γn(t)), γ̇n(t)↙ dt+ ςCΥ

+ n

e≃ς

↔1/n ⇐ 1

Rς,h

(
γn

(
1

n


+ n

∫ 1/n

0
ϖ≃1e≃ς

↔1
th (γn(t)) dt+ O

(
1

n


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Using that ⇔Rς,h⇔ ≃ ⇔h⇔ leads to

n

∫ 1/n

0
(e≃ς

↔1
s ⇐ ς)L(γn(s), γ̇n(s)) ds ≃ n

∫ 1/n

0
(1⇐ ς)↖df(γn(s)), γ̇n(s)↙ ds

+ ςCΥ + 2⇔h⇔ + O

(
1

n


,

that is,

n

∫ 1/n

0
L(γn(s), γ̇n(s)) ds ≃ n

∫ 1/n

0

(1⇐ ς)

(e≃ς↔11 ⇐ ς)
↖df(γn(s)), γ̇n(s)↙ ds

+
ς

(e≃ς↔11 ⇐ ς)
CΥ +

2

(e≃ς↔11 ⇐ ς)
⇔h⇔ + O

(
1

n


,

with 0 ↔ (0, 1/n) small enough. We can conclude that γn verifies condition (5.4.5) of
Proposition 5.4.6 implying the bound (5.4.14). Before exploring the limits in (5.4.13),
note that by (5.4.14) and Proposition 5.4.5, we obtain that γn

(
1
n

)
↑ x0 for n ↑ →.

Limsup of (5.4.13a): As the pre-factor in (5.4.13a) tends to ⇐ϖ, we cannot directly use
that γn(1/n) ↑ xn in combination with the upper semi-continuous regularization of
Rς,h. Instead, we will argue using (5.4.9). We set this up via (5.4.11). Note first that

lim sup
n

n

e≃ς

↔1/n ⇐ 1

Rς,h

(
γn

(
1

n


= ⇐ϖ≃1 lim inf

n
e≃ς

↔1/nRς,h

(
γn

(
1

n


.

(5.4.15)

By (5.4.11) and (5.4.9) we have

lim inf
n

e≃ς
↔1/nRς,h

(
γn

(
1

n



↗ lim inf
n

Rς,h(xn) ⇐
∫ 1/n

0


h(γn(t)) ⇐

∫
t

0
L(γn(s), γ̇n(s)) ds


ϖ≃1e≃ς

↔1
t dt⇐ 1

n2

= (Rς,h)
→(x0) ⇐ lim sup

n

∫ 1/n

0


h(γn(t)) ⇐

∫
t

0
L(γn(s), γ̇n(s)) ds


ϖ≃1e≃ς

↔1
t dt.

As the integral terms vanish because γn(t) ↔ K and L ↗ 0, we conclude that

lim sup
n

n

e≃ς

↔1/n ⇐ 1

Rς,h

(
γn

(
1

n


= ⇐ϖ≃1(Rς,h)

→(x0).

Limsup of (5.4.13b): By the convergence of γn(1/n) to x0, the continuity of h and the
dominated convergence theorem, we get that

lim sup
n

n

∫ 1/n

0
ϖ≃1e≃ς

↔1
th (γn(t)) dt = ϖ≃1h(x0). (5.4.16)
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Limsup of (5.4.13c): By using Fenchel–Young’s inequality (5.2.2) (page 113) for ↖df(γn(t)), γ̇n(t)↙
we get,

= lim sup
n

n

∫ 1/n

0
(1⇐ ς) (↖df(γn(t)), γ̇n(t)↙ ⇐ L(γn(t), γ̇n(t))) dt+ ςCΥ (5.4.17)

≃ lim sup
n

n

∫ 1/n

0
(1⇐ ς)H(γn(t), df(γn(t))) dt+ ςCΥ

= gϑ†(x0),

where in the last equality we used the dominated convergence theorem and the conver-
gence of γn(1/n) ↑ x0.

Limit of (5.4.13d): By (5.4.14),

lim
n

n

∫ 1/n

0
(e≃ς

↔1
t ⇐ 1)L(γn(t), γ̇n(t)) dt+ O

(
1

n


= 0. (5.4.18)

Then, combining all the limits (5.4.15), (5.4.16), (5.4.17) and (5.4.18) in (5.4.13), we can
conclude that

0 ≃ ⇐ϖ≃1(Rς,h)
→(x0) + gϑ†(x0) + ϖ≃1h(x0).

that concludes the first part of the proof.

The supersolution property. Let f ϑ‡ be as in Definition 5.3.1. By Proposition 5.4.2, with
ϑ = ⇐Rς,h and f = ⇐f ϑ‡ , there exists a sequence xn in a compact set K0 converging to a
point x0 and such that

Rς,h(xn) ⇐ f ϑ‡ (xn) ≃ inf
x
(Rς,h ⇐ f ϑ‡ ) +

1

n2
, (5.4.19)

(Rς,h)→(x
0) ⇐ f ϑ‡ (x

0) = inf
x
((Rς,h)→ ⇐ f ϑ‡ ),

and

lim
n

Rς,h(xn) = (Rς,h)→(x0). (5.4.20)

It thus suffices to establish that

(Rς,h)→(x
0) ⇐ ϖgϑ‡(x

0) ⇐ h(x0) ↗ 0. (5.4.21)

By Assumption (IV), there exists γn ↔ Adm with γn(0) = xn and such that
∫ 1/n

0
↖df(γn(t)), γ̇n(t)↙ dt =

∫ 1/n

0
H(γn(t), df(γn(t))) + L(γn(t), γ̇n(t)) dt. (5.4.22)

Moreover, by the fact that γn(0) ↔ K0 and Lemma 5.4.4 applied with T = 1
n

, there exists
a compact K such that γn(t) ↔ K for all t ≃ 1

n
.
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By (5.4.19) and Assumption (III),

Rς,h(xn) ⇐Rς,h

(
γn

(
1

n


≃ f ϑ‡ (xn) ⇐ f ϑ‡

(
γn

(
1

n


+

1

n2

= (1+ ς)

(
f(γn(xn)) ⇐ f

(
γn

(
1

n


⇐ ς

(
Υ(γn(xn)) ⇐ Υ

(
γn

(
1

n


+

1

n2

≃ ⇐(1+ ς)
∫ 1/n

0
↖df (γn(s)) , γ̇n(s)↙ ds+ ς

∫ 1/n

0
L(γn(s), γ̇n(s)) ds+ ς

1

n
CΥ +

1

n2
.

Moreover, by (DPP) at pag. 117

Rς,h(xn) ⇐ e≃ς
↔1 1

nRς,h

(
γn

(
1

n


(5.4.23)

↗
∫ 1/n

0


h(γn(t)) ⇐

∫
t

0
L(γn(s), γ̇n(s)) ds


ϖ≃1e≃ς

↔1
t dt.

Then,
∫ 1/n

0


h(γn(t)) ⇐

∫
t

0
L(γn(s), γ̇n(s)) ds


ϖ≃1e≃ς

↔1
t dt

≃ Rς,h(xn) ⇐Rς,h

(
γn

(
1

n


+ (1⇐ e≃ς

↔1 1
n )Rς,h

(
γn

(
1

n



≃ ⇐(1+ ς)
∫ 1/n

0
↖df (γn(s)) , γ̇n(s)↙ ds+ ς

∫ 1/n

0
L(γn(s), γ̇n(s)) ds

+ ς
1

n
CΥ + (1⇐ e≃ς

↔1 1
n )Rς,h

(
γn

(
1

n


+

1

n2
.

Dividing by 1
n

and using integration by parts in the integral involving L yields,

0 ≃ ⇐n

e≃ς

↔1 1
n ⇐ 1


Rς,h

(
γn

(
1

n


(5.4.24a)

⇐ n

∫ 1/n

0
ϖ≃1e≃ς

↔1 1
nh (γn(t)) dt (5.4.24b)

⇐ n(1+ ς)
∫ 1/n

0
↖df (γn(s)) , γ̇n(s)↙ ⇐ L(γn(t), γ̇n(t)) dt+ ςCΥ (5.4.24c)

+ n

∫ 1/n

0


e≃ς

↔1
t ⇐ 1


L(γn(t), γ̇n(t)) dt+ O

(
1

n


. (5.4.24d)

We show now that taking the limit in (5.4.24) as n ↑ → leads to inequality (5.4.21). We
analyze (5.4.13a),(5.4.24b),(5.4.24c), and (5.4.24d) separately.
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As in the subsolution case, a key step in the analysis is to establish first

sup
n

sup
t∈ 1

n

1

t

∫
t

0
L(γn(s), γ̇n(s)) ds < →, (5.4.25)

γn

(
1

n


↑ x0.

where the second follows from the first using Proposition 5.4.5. To do so, we again aim
to apply Proposition 5.4.6. We prove in the following condition (5.4.5). By (5.4.22),

∫ 1/n

0
L(γn(s), γ̇n(s)) ds =

∫ 1/n

0
↖df(γn(s)), γ̇n(s)↙ ⇐H(γn(s), df(γn(s))) ds

≃
∫ 1/n

0
↖df(γn(s)), γ̇n(s)↙ ds+ C2,

where in the last inequality we used Assumption (V) by taking into account that γn(t) ↔
K for all t ≃ 1/n. This concludes the proof of (5.4.5). Proceeding as in the subsolution
proof, we can conclude that γn( 1n) ↑ x0 as n ↑ →.

Limsup of (5.4.24a): Working towards the use of (5.4.20), note that

lim sup
n

⇐n

e≃ς

↔1/n ⇐ 1

Rς,h

(
γn

(
1

n


= ϖ≃1 lim sup

n

e≃ς
↔1/nRς,h

(
γn

(
1

n



and that by (5.4.23)

lim sup
n

e≃ς
↔1/nRς,h

(
γn

(
1

n



≃ lim sup
n


Rς,h(xn) ⇐

∫ 1/n

0


h(γn(t)) ⇐

∫
t

0
L(γn(s), γ̇n(s)) ds


ϖ≃1e≃ς

↔1
t dt


.

We thus find that

lim sup
n

⇐n

e≃ς

↔1/n ⇐ 1

Rς,h

(
γn

(
1

n


≃ ϖ≃1(Rς,h)→(x0) (5.4.26)

by (5.4.20), the fact that γn(t) ↔ K and (5.4.25).
Limit of (5.4.24b): By the convergence of γn(1/n) to x0, the continuity of h and the

dominated convergence theorem, the limit in (5.4.24b) is

lim
n↔↗

⇐n

∫ 1/n

0
ϖ≃1e≃ς

↔11/nh (γn(t)) dt = ⇐ϖ≃1h(x0). (5.4.27)

Limit of (5.4.24c): Recall that γn is constructed such that (5.4.22) holds. Then,

⇐ n

∫ 1/n

0
(1+ ς) (↖df(γn(t)), γ̇n(t)↙ ⇐ L(γn(t), γ̇n(t))) dt

= ⇐n

∫ 1/n

0
(1+ ς)H(γn(t), df(γn(t))) dt.
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This yields

lim sup
n

⇐n(1+ ς)
∫ 1/n

0
↖df (γn(s)) , γ̇n(s)↙ ⇐ L(γn(t), γ̇n(t)) dt+ ςCΥ (5.4.28)

≃ lim sup
n

⇐n

∫ 1/n

0
(1+ ς)H(γn(t), df(γn(t))) dt+ ςCΥ

= ⇐gϑ‡(x
0).

Limit of (5.4.24d): Note that by Assumption (I),

L(x, v) ↗ ⇐H(x, 0) = 0. (5.4.29)

Then, (5.4.24d) is bounded above by 0.
Taking the limit for n ↑ → in (5.4.24) and putting together (5.4.26), (5.4.27), (5.4.28)

and (5.4.29) we obtain that

0 ≃ ⇐ϖ≃1(Rς,h)→(x0) ⇐ gϑ†(x0) ⇐ ϖ≃1h(x0),

that concludes the proof.

Proof of Theorem 5.3.4. The proof follows the same line as in Theorem 5.3.3. For complete-
ness we give the main steps.
The subsolution property. Let f ϑ† as in Definition 5.3.1. Applying Proposition 5.4.3 with
ϑ = vς and f = f ϑ† and h ↔ C1([0,T ]), there exists a sequence (xn, tn) in a compact set
converging to a point (x0, t0) and such that

vς(xn, tn) ⇐ f ϑ† (xn) ⇐ h(tn) ↗ sup(vς ⇐ f ϑ† ⇐ h) ⇐ 1

n
,

(vς)
→(x0, t0) ⇐ f ϑ† (x0) ⇐ h(t0) = sup(vς ⇐ f ϑ† ⇐ h), (5.4.30)

and

lim
n

vς(xn, tn) = (vς)
→(x0, t0).

It thus suffices to establish that
{
ϱth(t0) + ϖ(vς)→(x0, t0) ⇐ gϑ†(x0) ≃ 0 if t0 > 0;
[ϱth(t0) ⇐ gϑ†(x0)] ▽ [(vς)→(t0, x0) ⇐ u0(x)] ≃ 0 if t0 = 0.

(5.4.31)

Let γn ↔ Adm be such that γn(0) = xn and almost optimizing (DPPt) at page 117, that is

vς(xn, tn) ≃
∫ 1/n

0
⇐e≃ςsL(γn(s), γ̇n(s)) ds+e≃

ϖ
nvς(γn(1/n), tn⇐1/n)+

1

n2
. (5.4.32)
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Rewriting (5.4.30), and afterwards using the fundamental theorem of calculus and As-
sumption (III), we find

vς(γn(1/n), tn ⇐ 1/n) ⇐ vς(xn, tn)

≃ f ϑ† (γn(1/n)) ⇐ f ϑ† (xn) + h(tn ⇐ 1/n) ⇐ h(tn) +
1

n2

= (1⇐ ς)

(
f

(
γn

(
1

n


⇐ f(γn(xn))


+ ς

(
Υ
(
γn

(
1

n


⇐ Υ(γn(xn))



+ h(tn ⇐ 1/n) ⇐ h(tn) +
1

n2

≃ (1⇐ ς)
∫ 1/n

0
↖df(γn(s)), γ̇n(s)↙ ds+ ς

∫ 1/n

0
L(γn(s), γ̇n(s)) ds+ ς

1

n
CΥ

+ h(tn ⇐ 1/n) ⇐ h(tn) +
1

n2
. (5.4.33)

Then, combining (5.4.32) and (5.4.33), we obtain

⇐ (1⇐ ς)
∫ 1/n

0
↖df (γn(s)) , γ̇n(s)↙ ds⇐ ς

∫ 1/n

0
L(γn(s), γ̇n(s)) ds⇐ ς

1

n
CΥ

+ h(tn) ⇐ h(tn ⇐ 1/n) ⇐ 1

n2
+ (1⇐ e≃ς1/n)vς(γn(1/n), tn ⇐ 1/n)

≃
∫ 1/n

0
⇐e≃ςsL(γn(s), γ̇n(s)) ds+

1

n2
.

Dividing by 1
n

and rearranging yields,

0 ≃ n(e≃ς
1
n ⇐ 1)vς(γn(1/n), tn ⇐ 1/n)

+ n(h(tn ⇐ 1/n) ⇐ h(tn)) (5.4.34a)

+ n(1⇐ ς)
∫ 1/n

0
↖df (γn(s)) , γ̇n(s)↙ ⇐ L(γn(s), γ̇n(s) ds+ ςCΥ

+ n

∫ 1/n

0
(1⇐ e≃ςs)L(γn(s), γ̇n(s)) ds+ O

(
1

n


.

We obtain (5.4.31) by taking the limsup in the separate terms of (5.4.34). From this
point onward, the proof follows that of the subsolution part of Theorem 5.3.3, with the
straightforward modification to the limit in (5.4.34a).

The supersolution property. Let f ϑ‡ be as in Definition 5.3.1. Applying Proposition 5.4.3
to ϑ = ⇐vς, there exists a sequence (xn, tn) converging to a point (x0, t0) and such that

vς(xn, tn) ⇐ f ϑ‡ (xn) ⇐ h(tn) ≃ inf(vς ⇐ f ϑ‡ ⇐ h) +
1

n2
, (5.4.35)

(vς)→(x
0, t0) ⇐ f ϑ‡ (x

0) ⇐ h(t0) = inf(vς ⇐ f ϑ‡ ⇐ h),



5.4 P R O O F S O F T H E M A I N T H E O R E M S 133

and

lim
n

vς(xn, tn) = (vς)→(x0, t0).

It thus suffices to establish that
{
ϱth(t0) + ϖ(vς)→(x0, t0) ⇐ gϑ‡(x

0) ↗ 0 if t0 > 0;
[ϱth(t0) ⇐ gϑ‡(x

0)] ̸ [(vς)→(t0, x0) ⇐ u0(x)] ↗ 0 if t0 = 0.
(5.4.36)

By Assumption (IV), there exists γn ↔ Adm with γn(0) = xn and such that
∫ 1/n

0
↖df(γn(t)), γ̇n(t)↙ dt =

∫ 1/n

0
H(γn(t), df(γn(t))) + L(γn(t), γ̇n(t)) dt.

As γn(0) ↔ K0, we obtain, by Lemma 5.4.4 and Remark 5.3.2, that there exists a compact
K such that

γn(t) ↔ K for all t ≃ 1

n
.

By (5.4.35), the fundamental theorem of calculus, and Assumption (III)

vς(xn, tn) ⇐ vς

(
γn

(
1

n


, tn ⇐ 1/n


(5.4.37)

≃ f ϑ‡ (xn) ⇐ f ϑ‡

(
γn

(
1

n


+ h(tn) ⇐ h(tn ⇐ 1/n) +

1

n2

= (1+ ς)

(
f(γn(xn)) ⇐ f

(
γn

(
1

n


⇐ ς

(
Υ(γn(xn)) ⇐ Υ

(
γn

(
1

n


+

1

n2

+ h(tn) ⇐ h(tn ⇐ 1/n) +
1

n2

≃ ⇐(1+ ς)
∫ 1/n

0
↖df (γn(s)) , γ̇n(s)↙ ds+ ς

∫ 1/n

0
L(γn(s), γ̇n(s)) ds+ ςCΥ

+ h(tn) ⇐ h(tn ⇐ 1/n) +
1

n2
.

Moreover, by (DPPt) at pag. 117

vς(xn, tn) ↗
∫ 1/n

0
⇐e≃ςsL(γn(s), γ̇n(s)) ds+ e≃ς

1
nvς(γn(1/n), tn ⇐ 1/n). (5.4.38)

Then, combining (5.4.38) and (5.4.37), we obtain
∫ 1/n

0
⇐e≃ςsL(γn(s), γ̇n(s)) ds

≃ vς(xn, tn) ⇐ vς(γn(1/n), tn ⇐ 1/n) + (1⇐ e≃ς1/n)vς(γn(1/n), tn ⇐ 1/n)

≃ ⇐(1+ ς)
∫ 1/n

0
↖df (γn(s)) , γ̇n(s)↙ ds+ ς

∫ 1/n

0
L(γn(s), γ̇n(s)) ds+ ς

1

n
CΥ

+ h(tn) ⇐ h(tn ⇐ 1/n) + (1⇐ e≃ς1/n)vς(γn(1/n), tn ⇐ 1/n) +
1

n2
.
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Dividing by 1
n

we get

0 ≃ ⇐n(e≃ς1/n ⇐ 1)vς(γn(1/n), tn ⇐ 1/n)
⇐ n(h(tn ⇐ 1/n) ⇐ h(tn))

⇐ n(1+ ς)
∫ 1/n

0
↖df (γn(s)) , γ̇n(s)↙ ⇐ L(γn(s), γ̇n(s) ds+ ςCΥ

⇐ n

∫ 1/n

0
(1⇐ e≃ςs)L(γn(s), γ̇n(s)) ds+ O

(
1

n


.

We establish (5.4.36) by taking the limsup for n ↑ → for the separate terms of (5.4.39).
From this point onward, the proof is analogous to that of the supersolution part of

Theorem 5.3.3.

5.5 C O N V E X H A M I LT O N I A N S

In this section, we consider Hamiltonians H : T →M ↑ R such that the map p ∝↑ H(x, p)
is convex for all x ↔ M. This is a typical assumption and includes cases such as the
Hamilton-Jacobi-Bellman equations.

We give in the following the correspondent assumptions to Assumption 5.3.5 in this
context.

First, note that when H is convex, the operator L : TM ↑ [0,→) is its Legendre
transform.

Assumption 5.5.1. Let H : T →M ↑ R and call Hf(x) := H(x, df(x)) and D(H) ⇓
C1
b
(M) its domain. The following properties hold.

(I) p ∝↑ H(x, p) is convex for all x ↔ M;
(II) H(x, 0) = 0 for all x ↔ M;

(III) The map (x, p) ∝↑ H(x, p) is continuous in x and p;
(IV) There exists a containment function in the sense of Definition 5.2.1 such that

(a) Υ ↔ C1(M);
(b) There exists a constant CΥ such that supxH(x, dΥ(x)) < CΥ.

(V) Let T > 0. For all f ↔ D(H) and x0 ↔ M, there exists γ ↔ Adm such that γ(0) = x0
and

∫
T

0
↖df(γ(t)), γ̇(t)↙ dt =

∫
T

0
L(γ(t), γ̇(t)) +H(γ(t), df(γ(t))) dt.

(VI) For every compact set K and positive constant c,

H̄(K, c) := sup
|p|∈c

sup
x↑K

H(x, p) < →.

(VII) The space D(H) is convergence determining.

We show in the following that Assumption 5.5.1 (IV) implies Assumption 5.3.5 (III).
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Lemma 5.5.2. Consider Υ : M ↑ [0,→) as in Assumption 5.5.1 (IV). Then, for all γ ↔ Adm
and T > 0 the following inequality holds

∫
T

0
L(γ(t), γ̇(t)) dt+ TCΥ ↗ Υ(γ(T )) ⇐ Υ(γ(0)),

that is, Assumption 5.3.5 (III) holds.

Proof. The inequality follows immediately by the Frenchel–Young’s inequality applied
to ↖dΥ(γ(t)), γ̇(t)↙ and that by assumption we have

H(γ(t), dΥ(γ(t))) < CΥ.

We also mention that, in this case, Assumption (V) is equivalent to solve the differen-
tial inclusion

γ̇(t) ↔ ϱpH(γ(t), df(γ(t))).

We refer to [Roc70] and [Dei92] for details.
When the Hamiltonian H is convex, the two operators H† and H‡ are actually an

upper and lower bound for the initial Hamiltonian. More precisely the three operators
are linked each other by the following proposition whose proof is standard and can be
found for example in [KS21]. We include it for completeness.

Proposition 5.5.3. Fix ϖ > 0 and h ↔ Cb(M).
(a) Every subsolution to f ⇐ ϖHf = h is also a subsolution to f ⇐ ϖH†f = h.
(b) Every supersolution to f ⇐ ϖHf = h is also a supersolution to f ⇐ ϖH‡f = h.
(c) Every subsolution to ϱtf + ϖf(x, t) ⇐Hf = 0 is also a subsolution to ϱtf + ϖf(x, t) ⇐

H†f = 0.
(d) Every supersolution to ϱtf+ϖf(x, t)⇐Hf = 0 is also a supersolution to ϱtf+ϖf(x, t)⇐

H‡f = 0.

Proof. We only prove (a) as the other claims can be carried out analogously. Fix ϖ > 0
and h ↔ Cb(M). Let u be a subsolution to f ⇐ϖHf = h. We prove it is also a subsolution
to f ⇐ ϖH†f = h.

Fix ς > 0 and f ↔ C↗
,
(M) and let (f ϑ† , g

ϑ

†) ↔ H† as in Definition 5.3.1. We will prove
that there are xn ↔ M such that

lim
n↔↗

(
u⇐ f ϑ†

)
(xn) = sup

x↑M

(
u(x) ⇐ f ϑ† (x)

)
, (5.5.1)

lim sup
n↔↗


u(xn) ⇐ ϖgϑ†(xn) ⇐ h(xn)


≃ 0. (5.5.2)

As the function [u⇐ (1⇐ ς)f ] is bounded from above and ςΥ has compact sublevel-
sets, the sequence xn along which the first limit is attained can be assumed to lie in the
compact set

K :=

x |Υ(x) ≃ ς≃1 sup

x

(u(x) ⇐ (1⇐ ς)f(x))


.
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Set M = ς≃1 supx (u(x) ⇐ (1⇐ ς)f(x)). Let γ : R ↑ R be a smooth increasing function
such that

γ(r) =

{
r if r ≃ M ,

M + 1 if r ↗ M + 2.

Denote by fϑ the function on M defined by

fϑ(x) := γ ((1⇐ ς)f(x) + ςΥ(x)) .

By construction fϑ is smooth and constant outside of a compact set and thus lies in
D(H) = C↗

cc (M). As u is a viscosity subsolution for f⇐ϖHf = h there exists a sequence
xn ↔ K ⇓ M (by our choice of K) with

lim
n

(u⇐ fϑ) (xn) = sup
x

(u(x) ⇐ fϑ(x)) , (5.5.3)

lim sup
n

[u(xn) ⇐ ϖHfϑ(xn) ⇐ h(xn)] ≃ 0. (5.5.4)

As fϑ equals f ϑ† on K, we have from (5.5.3) that also

lim
n

(
u⇐ f ϑ†

)
(xn) = sup

x↑M

(
u(x) ⇐ f ϑ† (x)

)
,

establishing (5.5.1). Convexity of p ∝↑ H(x, p) yields for arbitrary points x ↔ K the
estimate

Hfϑ(x) = H(x, dfϑ(x))

≃ (1⇐ ς)H(x, df(x)) + ςH(x, dΥ(x))
≃ (1⇐ ς)H(x, df(x)) + ςCΥ = gϑ†(x).

Combining this inequality with (5.5.4) yields

lim sup
n


u(xn) ⇐ ϖgϑ†(xn) ⇐ h(xn)


≃ lim sup

n

[u(xn) ⇐ ϖHfϑ(xn) ⇐ h(xn)] ≃ 0,

establishing (5.5.2). This concludes the proof.

Using the comparison principle proved in Chapter 4 to (Rς,h)→ and (Rς,h)→ for the
stationary case and to (vς)→ and (vς)→ for the evolutionary case, we obtain the following
corollary.

Corollary 5.5.4. Let Assumption 5.5.1 hold. Then, Rς,h and vς are the unique solutions of the
pairs (5.3.1) and (5.3.2). Moreover, let H : T →M ↑ R be as in Chapter 4. Then, if u⇐ϖHu = h
(resp. ϱtu+ϖu⇐Hu = 0) admits a solution, this solution is unique and it is equal to Rς,h (resp.
vς).

Proof. The uniqueness follows from Theorem 4.3.1 of Chapter 4.
If u ⇐ ϖHu = h admits a solution u, this is a subsolution and a supersolution of

respectively u⇐ ϖH†u = h and u⇐ ϖH‡u = h by Proposition 5.5.3. Then, by uniqueness,
it has to be u = Rς,h. The same holds for the evolutionary case.
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5.6 H A M I LT O N - J A C O B I - I S A A C S E Q U AT I O N S

In this section we consider the two operators

H1f(x) = H1(x, df(x)) = sup
ω1↑Θ1

inf
ω2↑Θ2

{Hω1ω2f ⇐ I(x, ω1, ω2)}

H2f(x) = H2(x, df(x)) = inf
ω2↑Θ2

sup
ω1↑Θ1

{Hω1ω2f ⇐ I(x, ω1, ω2)} ,

with Θ1,Θ2 two compact sets, Hω1ω2f = Hω1ω2(x, df(x)) a convex map and I : M ↓
Θ1 ↓ Θ2 ↑ [0,→].

In this case, the equation is called Hamilton-Jacobi-Isaacs equation and it is commonly
used in for example the context of robust control problems involving two players with
conflicting interests.

We will also assume the following condition, known as Isaacs condition, that corre-
sponds to say that the optimal strategies for both players can be determined by solving
a single Hamilton-Jacobi equation, rather than separate equations for each player.

Assumption 5.6.1 (Isaacs condition). The following equality holds

H1f = H2f

for any f ↔ D(H1) = D(H2).

We will then consider the Hamiltonian

Hf(x) := H1f(x) = H2f(x). (5.6.1)

In the following, we provide the counterpart to Assumption 5.3.5 within this context.

Assumption 5.6.2. Let H(x) = H(x, df(x)) as in (5.6.1). The following properties hold.
(I) Hω1,ω2(x, 0) = 0 for all x ↔ M and ω1, ω2;

(II) The map (x, p) ∝↑ H(x, p) is continuous;
(III) There exists a containment function in the sense of Definition 5.2.1 such that

(a) Υ ↔ C1(M);
(b) There exists a constant CΥ such that supxHω1ω2(x, dΥ(x)) < CΥ for all ω1, ω2.

(IV) Let T > 0. For all f ↔ D(H) and x0 ↔ M, there exists γ ↔ Adm such that γ(0) = x0
and

∫
T

0
↖df(γ(t)), γ̇(t)↙ dt =

∫
T

0
L(γ(t), γ̇(t)) +Hω1ω2(γ(t), df(γ(t))) dt

for all ω1 ↔ Θ1 and ω2 ↔ Θ2.
(V) For every compact K ⇓ M, all ω1, ω2 and positive constant c,

Hω1ω2(K, c) := sup
|p|∈c

sup
x↑K

Hω1ω2(x, p) < →.
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(VI) The space
⋂

ω1,ω2
D(Hω1ω2) is convergence determining.

We show in the following that Assumption 5.6.2 imply Assumption 5.3.5.

Lemma 5.6.3. Assume Assumption 5.6.1 and Assumption 5.6.2. Then, Assumption 5.3.5 holds.

Proof. The proofs of Assumption 5.3.5 (I), (II) and (V) are trivial.
Assumption 5.3.5 (III) follows as in the proof given in Lemma 5.5.2 by observing that

H(γ(t), dΥ(γ(t))) < sup
ω1

Hω1ω2(γ(t), dΥ(γ(t))) < CΥ,

where we used that I ↗ 0.
The same strategy can be applied to prove Assumption 5.3.5 (V).
Finally, we prove Assumption 5.3.5 (IV). First of all, recall that the first inequality is

simply the Fenchel-Young’s inequality (5.2.2) and it is implied by the definition of L. We
only need to prove the opposite inequality.

Let γ ↔ Adm be as in Assumption 5.6.2 (IV). Let ω→1 ↔ Θ1 be such that

sup
ω1

inf
ω2

Hω1ω2f ⇐ I(x, ω1, ω2) = inf
ω2

Hω
→
1ω2

f ⇐ I(x, ω→1, ω2).

Then, we have
∫

T

0
L(γ(t), γ̇(t)) +H(γ(t), df(γ(t))) dt

=
∫

T

0
L(γ(t), γ̇(t)) + inf

ω2

Hω
→
1ω2

f(γ(t)) ⇐ I(x, ω→1, ω2) dt

≃
∫

T

0
L(γ(t), γ̇(t)) +Hω

→
1ω2

f(γ(t))

≃ f(γ(T )) ⇐ f(γ(0)).

This concludes the proof.

Remark 5.6.4. We want to point out that, even if the methods to prove the existence of the
curve in Assumption 5.3.5 (IV) are typically challenging for non convex Hamiltonians,
in this scenario it is sufficient to solve the differential inclusion in terms of the internal
(and convex) Hamiltonian.

We conclude this section by showing the relation between the Hamiltonian (5.6.1) and
H† and H‡.

Proposition 5.6.5. Let H be as in (5.6.1). Fix ϖ > 0 and h ↔ Cb(M).
(a) Every subsolution to f ⇐ ϖHf = h is also a subsolution to f ⇐ ϖH†f = h.
(b) Every supersolution to f ⇐ ϖHf = h is also a supersolution to f ⇐ ϖH‡f = h.
(c) Every subsolution to ϱtf + ϖf(x, t) ⇐Hf = 0 is also a subsolution to ϱtf + ϖf(x, t) ⇐

H†f = 0.
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(d) Every supersolution to ϱtf+ϖf(x, t)⇐Hf = 0 is also a supersolution to ϱtf+ϖf(x, t)⇐
H‡f = 0.

Proof. The proof follows the same line of the proof of Proposition 5.5.3.
Let u be a subsolution to f⇐ϖHf = h. We prove it is also a subsolution to f⇐ϖH†f = h.

Fix ς > 0 and f ↔ C↗
,
(M) and let (f ϑ† , g

ϑ

†) ↔ H† as in Definition 5.3.1. We construct fϑ as
in the proof of Proposition 5.5.3.

As u is a viscosity subsolution for f ⇐ ϖHf = h there exists a sequence xn ↔ K ⇓ M
with

lim
n

(u⇐ fϑ) (xn) = sup
x

(u(x) ⇐ fϑ(x)) ,

lim sup
n

[u(xn) ⇐ ϖHfϑ(xn) ⇐ h(xn)] ≃ 0. (5.6.2)

It follows, as in the proof of Proposition 5.5.3 that

lim
n
(u⇐ f ϑ† )(xn) = sup

x↑M
(u(x) ⇐ f ϑ† (x)).

For any ω1 Let ω→2 = ω→2(ω1) be optimal for the infimum

inf
ω2

{
Hω1,ω2f(x) ⇐ I(x, ω1, ω2)

}
.

Using convexity of Hω1,ω→2
for any ω1 and taking into account that I ↗ (1 ⇐ ς)I, since

I ↗ 0, we have

Hfϑ ≃ sup
ω1

Hω1ω
→
2
fϑ ⇐ I(x, ω1, ω→2)

≃ sup
ω1

(1⇐ ς)Hω1ω
→
2
f + ςHω1ω

→
2
Υ ⇐ I(x, ω1, ω→2)

≃ (1⇐ ς) sup
ω1

Hω1ω
→
2
f + ςCΥ ⇐ I(x, ω1, ω2)

≃ (1⇐ ς) sup
ω1

{Hω1ω
→
2
f ⇐ I(x, ω1, ω2)}+ ςCΥ

= (1⇐ ς)Hf + ςCΥ = g†(x).

Combining this inequality with (5.6.2) yields

lim sup
n


u(xn) ⇐ ϖgϑ†(xn) ⇐ h(xn)


≃ lim sup

n

[u(xn) ⇐ ϖHfϑ(xn) ⇐ h(xn)] ≃ 0.

This concludes the proof.

5.7 C O N C L U S I O N S A N D F U T U R E P E R S P E C T I V E S

In this chapter, we have addressed the existence of viscosity solutions for first-order
Hamilton-Jacobi equations using Lyapunov control techniques. This work complements
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the analysis of the comparison principle developed in the previous chapter. With this
chapter, we conclude our discussion on first-order Hamilton-Jacobi equations. The re-
sults obtained set the stage for the second-order case, which we explore in the next
chapter.

We conclude with some interesting future directions:
• Our framework relies on the assumption that the Lagrangian L is positive, which

follows from the condition H(x, 0) = 0. This assumption can be modified to allow
for a controlled lower and upper bounds, for instance,

ℜC1 ↔ R : ∈γ ↔ Adm, ∈T > 0,

∫
T

0
L(γ(s), γ̇(s)) ds ↗ TC1,

ℜC2 ↔ R : ∈x ↔ M, ℜγ ↔ Adm, γ(0) = x, :
∫

T

0
L(γ(s), γ̇(s)) ds ≃ TC2.

Exploring how this relaxation affects the existence theory could broaden the appli-
cability of our results to more general control problems.

• The positivity assumption on L is crucial in our setting because we work with
bounded solutions. A more general approach would involve unbounded solu-
tions, where what is really required is that the solution grows at most as fast as
the Lyapunov function Υ. More precisely, ensuring that Rς,h/Υ remains bounded,
rather than Rς,h itself, would allow for greater flexibility. This condition could be
achieved through an assumption of the form:

ℜC1 ↔ R : ∈γ ↔ Adm, ∈T > 0,

[Υ(γ(T )) ⇐ Υ(γ(0))] ≃ TC1 +
∫

T

0
L(γ(s), γ̇(s)) ds,

ℜC2 ↔ R : ∈x ↔ M, ℜγ ↔ Adm, γ(0) = x, :

[Υ(γ(T )) ⇐ Υ(γ(0))] ≃ TC2 ⇐
∫

T

0
L(γ(s), γ̇(s)) ds.

• Another interesting direction is to directly analyze a system of Hamilton-Jacobi
equations, proving the existence of a subsolution for one equation and a super-
solution for the other. This approach would allow the assumptions to be split be-
tween the two Hamiltonians. For instance, instead of requiring the Hamiltonian H
to be continuous, one could impose upper semicontinuity for H1 and lower semi-
continuity for H2. This could lead to more refined results under weaker regularity
assumptions.



6
S E C O N D O R D E R H A M I LT O N - J A C O B I E Q U AT I O N S

In the previous chapters, we studied first-order Hamilton-Jacobi equations, focusing
on their well-posedness and applications in large deviations theory. However, many
real-world problems, particularly those involving stochastic dynamics, require us to
consider additional effects, such as diffusion terms. This naturally leads to the study
of second-order Hamilton-Jacobi equations, which will be the focus of this chapter.

In Chapter 1, we observed that the comparison principle for second-order Hamilton-
Jacobi equations is more challenging compared to the one for first-order equations and
requires additional techniques to deal with the second-order parts. In this chapter, we
consider Hamilton-Jacobi, Hamilton-Jacobi-Bellman, and Isaacs equations and present
a new proof of the comparison principle. We focus, in particular, on Hamiltonians with
a partial integro-differential form that arise in many contexts, such as stock price move-
ments and option pricing. Consider, for example, trading on the stock exchange, such
as buying and selling stocks. To find the optimal policy, one has to consider a stochas-
tic controlled problem where the control models the trading action. This leads to a
Hamilton-Jacobi-Bellman equation with a Hamiltonian that is typically in an integro-
differential form (see, e.g. [FS06], [CK15]).

The results presented in this chapter are based on:
S.Della Corte, F. Fuchs, R.C. Kraaij and M. Nendel, ”A comparison principle based on

couplings of partial integro-differential operators”, Preprint, 2024.

6.1 I N T R O D U C T I O N

In this chapter, we provide a new perspective on comparison principles for viscosity
solutions to the Hamilton–Jacobi equation

f ⇐ ϖHf = h, ϖ > 0, h ↔ Cb(R
q), (6.1.1)

for Hamiltonians H of the type

Hf(x) = ↖b(x),⇒f(x)↙+ 1

2
Tr


ΣΣT (x)D2f(x)



+
∫ 

f(x+ z) ⇐ f(x) ⇐ 5
B1(0)(z) ↖z,⇒f(x)↙


µx(dz) +H(⇒f(x)) (6.1.2)

141
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and, more generally, for those in Bellman and Isaacs form

Hf(x) = sup
ω↑Θ

{Hωf(x) ⇐ I(x, ω)} and

Hf(x) = sup
ω1↑Θ1

inf
ω2↑Θ2

{Hω1,ω2f(x) ⇐ I(x, ω1, ω2)},

with Hω and Hω1,ω2 as in (6.1.2) but with ω and (ω1, ω2) dependent coefficients, respec-
tively, and an appropriate cost functional I.

Motivated by convex Hamiltonians, for which no unique classical or weak solutions
exist in general, [CL83] introduced the notion of viscosity solutions. The seminal works
[Lio84; CEL84; Ish84; Ish86; CIL87b] explore this framework for first-order equations.

Most modern comparison proofs for operators containing second-order terms are
based on results of [JLS88; Jen88]. Using then recent advances for generalized differ-
entials, [CI90] provided what is nowadays known as the Crandall–Ishii Lemma. An
overview over uniqueness results for viscosity solutions to degenerate elliptic equations
is given in the User’s Guide [CIL92].

The treatment of non-local operators was initially motivated by problems in optimal
control theory; see [Son86; Awa91; AT96] for early examples with non-local operators.
The work [BI08] gives a non-local version of the Crandall–Ishii Lemma by adapting the
original procedure in [CIL92], and [Hol16] extends these results to unbounded solutions.
We also refer to [FGS17] for an overview of the Hilbertian setting, [Ble+23] for compar-
ison principles for convex monotone semigroups on spaces of continuous functions, to
[DKN21] for the classical well-posedness of convex Cauchy problems on Lp, to [HP21]
for a comparison principle in the framework of G-Lévy processes, and to [Ber24] for a
comparison principle for HJB equations on the set of probability measures.

Our approach and our main results, Theorem 6.3.1 and Corollary 6.3.2, innovate upon
classical comparison principles in the following three ways:

(1) We reinterpret the classical doubling-of-variables method in the context of second-
order equations by casting the Crandall–Ishii Lemma into a test function frame-
work. This adaptation allows us to effectively handle non-local integral operators,
such as generators of Lévy processes, in the same framework as second-order op-
erators, paving the way for stability results.

(2) We translate the key estimate on the difference of Hamiltonians in terms of an
adaptation of the probabilistic notion of couplings, providing a unified approach
that applies to both continuous and discrete operators. We point out that [CIL87b]
also discusses a coupling point of view, but only for first order operators.

(3) We strengthen the typical comparison principle using Lyapunov functionals from
a sup-norm contractivity result to what we call the strict comparison principle, cf.
Definition 6.2.2, which encodes continuity in the strict or sometimes also called
mixed topology, cf. [Buc58; Sen72].

The results are illustrated in various examples in Section 6.4. To introduce the first two
innovations, we heuristically trace back the classical doubling-of-variables procedure
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used to obtain comparison principles for first and second-order equations. For the sake
of exposition, we focus on the ω-independent case.

Given a subsolution u and supersolution v to an equation of type (6.1.1) and, for φ > 1,
optimizers (xϖ, yϖ) to

u(xϖ) ⇐ v(yϖ) ⇐
φ

2
d2(xϖ, yϖ) = sup

x,y↑Rq


u(x) ⇐ v(y) ⇐ φ

2
d2(x, y)


, (6.1.3)

one estimates

sup
x↑Rq

u(x)⇐v(x) ≃ h(xϖ)⇐h(yϖ)+ϖ

H

φ
2
d2(·, yϖ)


(xϖ) ⇐H


⇐φ

2
d2(xϖ, ·)


(yϖ)


.

Consequently, comparison then holds, if

lim inf
ϖ↔↗

H
φ
2
d2(·, yϖ)


(xϖ) ⇐H


⇐φ

2
d2(xϖ, ·)


(yϖ) ≃ 0. (6.1.4)

The estimate (6.1.4), then translates into explicit conditions on H .
When H is, for example, of the form

Hf(x) = ↖b(x),⇒f(x)↙+ 1

2
|⇒f(x)|2,

the estimate (6.1.4) translates into

H
φ
2
d2(·, yϖ)


(xϖ) ⇐H


⇐φ

2
d2(xϖ, ·)


(yϖ)

=


↖b(xϖ),φ(xϖ ⇐ yϖ)↙+

φ2

2
d2(xϖ, yϖ)


⇐


↖b(yϖ),φ(xϖ ⇐ yϖ)↙+

φ2

2
d2(xϖ, yϖ)



≃ ↖b(xϖ) ⇐ b(yϖ),φ(xϖ ⇐ yϖ)↙ ,

which goes to 0 for φ ↑ →, if b is one-sided Lipschitz.
For second order operators, however, the same strategy fails since, considering, for

example, the Laplacian Hf(x) = 1
2∆f(x) = 1

2 Tr
(
D2f(x)

)
, we get

H
φ
2
d2(·, yϖ)


(xϖ) ⇐H


⇐φ

2
d2(xϖ, ·)


(yϖ) = 2φ,

which diverges as φ ↑ →.
The works [JLS88; Jen88] use the key insight that, while the first order-viscosity solu-

tion method explores the sequences of optimizers of (6.1.3) separately (fix yϖ and vary x
for the subsolution part and vice versa), for second order equations, one needs to treat
the two sequences jointly. This insight was later formalized in [CI90] and as Theorem
3.2 in the User’s Guide [CIL92], now known as the Crandall–Ishii Lemma. The lemma
states for equations of type Hf(x) = 1

2 Tr
(
D2f(x)

)
that, given Xϖ = D2u(xϖ) and

Yϖ = D2v(yϖ) or their appropriate generalizations, we have the estimate
(
Xϖ 0
0 ⇐Yϖ


≃ 3φ

(
⇐

⇐


.
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Conjugating the matrices with

C :=
1′
2

( 
, (6.1.5)

i.e. essentially using C to couple the subsolution and supersolution problems, we arrive
at the desired estimate

1

2
Tr(Xϖ) ⇐

1

2
Tr(Yϖ) =

1

4
Tr

(
Xϖ ⇐ Yϖ Xϖ ⇐ Yϖ
Xϖ ⇐ Yϖ Xϖ ⇐ Yϖ


≃ 0. (6.1.6)

We now briefly describe the three innovations (1)–(3).
Innovation 1: A test function framework. Examining the proof of the Crandall–Ishii

Lemma, we can interpret the procedure as the construction of two test functions ϑϖ,↼ϖ ↔
C2(Rq) that are squeezed between u and v on one-hand and ϖ

2 d
2 on the other. To be more

precise, we find ϑϖ,↼ϖ ↔ C2(Rq) such that

u(xϖ)⇐ϑϖ(xϖ) = sup
x↑Rq

{u(x)⇐ϑϖ(x)} and v(yϖ)⇐↼ϖ(yϖ) = inf
y↑Rq

{v(y)⇐↼ϖ(y)},

and

ϑϖ(xϖ) ⇐ ↼ϖ(yϖ) ⇐
φ

2
d2(xϖ, yϖ) = sup

x,y↑Rq


u(x) ⇐ v(y) ⇐ φ

2
d2(x, y)


. (6.1.7)

As before, comparison now follows from the estimate

lim inf
ϖ↔↗

Hϑϖ(xϖ) ⇐H↼ϖ(yϖ) ≃ 0.

For the Laplacian Hf(x) = 1
2 Tr

(
D2f(x)

)
, this translates to

Hϑϖ(xϖ) ⇐H↼ϖ(yϖ) =
1

2
Tr(D2ϑϖ(xϖ)) ⇐

1

2
Tr(D2↼ϖ(yϖ)). (6.1.8)

At this point in proofs using the Crandall–Ishii Lemma, the estimate (6.1.6) is performed
by conjugation with the matrix C in (6.1.5). We formalize this step by adapting the prob-
abilistic notion of couplings, cf. [Lin92; Tho00; BK00], and identify the choice of the
matrix C in (6.1.5) with the synchronous coupling (also called co-monotone coupling).

Innovation 2: The coupling approach. Indeed, given two Brownian motions starting
in x and y, one can construct a coupling of the two by considering

(X(t), Y (t)) = (x+ B(t), y + B(t)), (6.1.9)

where B(t) is a standard Brownian motion. The generator of the coupled process (6.1.9)
is given by

Ĥg(x, y) :=
1

2
(ϱx + ϱy)

2 g(x, y) =
1

2
Tr

(( 
D2g(x, y)


=

1

2
Tr


CD2g(x, y)CT


,
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where we recover the matrix C of (6.1.5). Note that Ĥ is indeed a coupling: For f1, f2 ↔
Cb(Rq) and (f1 ℵ f2)(x, y) := f1(x) + f2(y), we have

Ĥ(f1 ℵ f2)(x, y) = Hf1(x) +Hf2(y).

Using the coupling Ĥ , we can now rewrite (6.1.8) as

Hϑϖ(xϖ) ⇐H↼ϖ(yϖ) = Ĥ (ϑϖ ℵ⇐↼ϖ) (xϖ, yϖ)

≃ Ĥ
φ
2
d2

(xϖ, yϖ) = 0,

(6.1.10)

where the first equality follows by the definition of a coupling, the inequality is based
on the positive maximum principle with the optimizers from equation (6.1.7), and the
final equality is due to the fact that the synchronous coupling controls distance growth.

A similar strategy can be used to treat a discretized version of the Brownian Motion
by considering the generator Hf(x) = 1

2 [f(x+ 1) ⇐ f(x)] + 1
2 [f(x⇐ 1) ⇐ f(x)] of a

random walk: We synchronously couple the random walk with itself using the operator

Ĥf(x, y) =
1

2
[f(x+ 1, y + 1) ⇐ f(x, y)] +

1

2
[f(x⇐ 1, y ⇐ 1) ⇐ f(x, y)] .

The argument in (6.1.10) then works for the random walk exactly as it did for the Brow-
nian motion.

This coupling approach is one of the main contributions of this paper, allowing for a
unifying framework to show comparison for Hamilton–Jacobi equations with Hamilto-
nians of type (6.1.2) and their Bellman and Isaacs versions, cf. Theorem 6.3.1 and Corol-
lary 6.3.2.

Innovation 3: The strict comparison principle. Our third innovation is on the final
estimate that is obtained as the comparison principle. For a subsolution u to

f ⇐ ϖHf = h1

and a supersolution v to

f ⇐ ϖHf = h2

the comparison principle amounts to establishing that

sup
x↑Rq

u(x) ⇐ v(x) ≃ sup
x↑Rq

h1(x) ⇐ h2(x).

The comparison principle, once established, thus implies sup-norm contractivity for
the solution map R(ϖ) : Cb(Rq) ↑ Cb(Rq), where R(ϖ)h is the unique viscosity solution
for the Hamilton–Jacobi equation (6.1.1).

It is well-known from examples, cf. [BC97; YZ99; CS04; FS06], that the map R(ϖ)h
takes the form of an exponentially discounted Markovian control problem. If the dynam-
ics admits a Lyapunov function V , having compact sublevel sets and satisfying HV ≃ c,
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then the controlled Markov processes satisfy tightness properties. More precisely, if the
controlled process starts in a compact set K, one can find, for any time horizon T > 0
and ς > 0, a compact set K̂ A K, given in terms of the sublevel sets of V such that, with
probability 1 ⇐ ς, the process remains in K̂ up to time T . Rewriting this in terms of an
estimate on the solution map R(ϖ), we then find

sup
x↑K

R(ϖ)h1(x) ⇐R(ϖ)h2(x) ≃ ς ||h1 ⇐ h2||+ sup
x↑K̂

h1(x) ⇐ h2(x). (6.1.11)

Estimates of this type are indeed characterized by the strict topology, as was first estab-
lished for linear functionals in [Sen72, Theorem 5.1] and for convex, monotone function-
als in [Nen24, Corollary 2.10]. Note that in this paper, we do not establish convexity of
h ∝↑ R(ϖ)h, but want to point out that given a convex H , convexity of R(ϖ)h is to be ex-
pected by performing a comparison principle in terms of three variables using variants
of the, e.g., three dimensional Theorem 3.2 of [CIL92], see also the domination principle
of Theorem 2.22 and Corollary 2.26 of [Hol16]. We leave this for future work.

Building upon the notion of Lyapunov functions, we will show that we can directly
establish a variant of (6.1.11) for a subsolution u and a supersolution v. Given its moti-
vation, we will call this estimate the strict comparison principle, see Definition 6.2.2 and
the main result, Theorem 6.3.1, below.

The rest of the chapter is organized as follows: Section 6.2 introduces the notation and
definitions. Section 6.3 introduces the framework by stating the necessary assumptions
and formalizing the main results. In Section 6.4, we show how to apply our framework
to operators of the form (6.1.2). Section 6.5 contains the construction of the required
optimizing points and test functions. Finally, Section 6.6 contains the proof of the main
theorems.

6.2 P R E L I M I N A R I E S A N D G E N E R A L S E T T I N G

6.2.1 Notation and Preliminaries

Throughout the chapter, let q ↔ N and E = R
q.

Moreover, we write

C+(E) := {f ↔ C(E) | f has compact sub-level sets},
C≃(E) := {f ↔ C(E) | f has compact super-level sets},
Cc(E) := {f ↔ C(E) | f is constant outside of a compact set}.

We furthermore define the following intersections: C2
c (E) = Cc(E) △ C2(E),

C2
+(E) := C+(E) △ C2(E), C2

≃(E) := C≃(E) △ C2(E).

For a, b ↔ R, we write a ̸ b := max{a, b} and a ▽ b := min{a, b}. We denote the
supremum norm by || · ||, that is

||f || = sup
x↑E

|f(x)|,



6.2 P R E L I M I N A R I E S A N D G E N E R A L S E T T I N G 147

for f ↔ Cb(E), while, for u ↔ C(E), we use the notation

BuC := sup
x↑E

u(x), DuE := inf
x↑E

u(x)

for a supremum or infimum over the entire space and

BuC
C

:= sup
x↑C

u(x), DuE
C

:= inf
x↑C

u(x)

for a supremum or infimum over a subset C ⇓ E.
We say that a function ε : [0,→) ↑ [0,→) is a modulus of continuity, if ε is upper semi-

continuous with ε(0) = 0. We say that a function f ↔ C(E) admits a modulus of continuity,
if, for every compact K ⇓ E, there exists a modulus of continuity εK : [0,→) ↑ [0,→)
such that, for all x, y ↔ K, we have

|f(x) ⇐ f(y)| ≃ εK(d(x, y)).

A function ϑ : E ↑ R is called semi-convex with constant 6 ↔ R if for any x0 ↔ E the
map

x ∝↑ ϑ(x) +
6

2
d2(x, x0)

is convex. Moreover, ϑ is called semi-concave with constant 6 ↔ R if ⇐ϑ is semi-convex
with constant ⇐6.

We say that a function f ↔ C(E,R
q) is one-sided Lipschitz if, for all x, y ↔ E and some

constant C ↔ R, we have

↖x⇐ y, f(x) ⇐ f(y)↙ ≃ Cd2(x, y).

For any z ↔ E, let sz : E ↑ R
q be the shift map

sz(x) = x⇐ z.

For any z1, z2 ↔ E, let

dz1,z2(x, y) := d (sz1(x), sz2(y)) .

Let f1, f2 ↔ C(E). Then, we define the direct sum f1 ℵ f2, f1 F f2 ↔ C(E ↓ E) as

(f1 ℵ f2)(x1, x2) := f1(x1) + f2(x2) and (f1 F f2)(x1, x2) := f1(x1) ⇐ f2(x2)

for all x1, x2 ↔ E. For two sets of functions F1,F2 ⇓ C(E), we define

F1ℵF2 := {f1 ℵ f2 | f1 ↔ F1, f2 ↔ F2} and F1FF2 := {f1 F f2 | f1 ↔ F1, f2 ↔ F2} .



148 S E C O N D O R D E R H A M I LT O N - J A C O B I E Q U AT I O N S

6.2.2 Operator notions

We consider operators H ⇓ C(E) ↓ C(E), where we identify H by its graph. As usual,
the domain of H is given by

D(H) := {f ↔ C(E) | ℜ g ↔ C(E) : (f , g) ↔ H} .

Let H1,H2 ⇓ C(E) ↓ C(E). We define

H1 +H2 := {(f , g1 + g2) | (f , g1) ↔ H1, (f , g2) ↔ H2} ,

which is an operator with domain

D(H1 +H2) := D(H1) △D(H2).

We say that H is linear on its domain if, for any f , g ↔ D(H) and a ↔ R such that af + g ↔
D(H), we have

H (af + g) = aHf +Hg.

We will prove the comparison principle for the equation in terms of H by relating it to
two equations in terms of two restrictions of H . To do so, we will need to be able to con-
struct test functions in the domain of H from functions in the domain of the restrictions.
In particular, we will need the following notion.

Definition 6.2.1 (Sequential Denseness). Let D ⇓ Cb(E), D+ ⇓ C+(E), and D≃ ⇓
C≃(E).

• We say that D is upward sequentially dense in D+ if, for any f† ↔ D+ and constant
a ↔ R, there exists a function f†,a ↔ D such that

{
f†,a(x) = f†(x) if f†(x) ≃ a,

a < f†,a(x) ≃ f†(x) if f†(x) > a.

• We say that D is downward sequentially dense in D≃ if, for any f‡ ↔ D≃ and constant
a ↔ R, there exists a function f‡,a ↔ D such that

{
f‡,a(x) = f†(x) if f‡(x) ↗ a,

a > f‡,a(x) ↗ f‡(x) if f‡(x) < a.

6.2.3 Viscosity solutions

For ϖ > 0, consider h1 ↔ Cl(E) and h2 ↔ Cu(E) and two operators H1 ⇓ Cl(E) ↓ C(E)
and H2 ⇓ Cu(E) ↓ C(E). We study the pair of equations

f ⇐ ϖH1f ≃ h1, (6.2.1)
f ⇐ ϖH2f ↗ h2. (6.2.2)
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We already introduced the notion of viscosity solutions in Section 1.1.2. We also saw
in the same section that associated with the definition of viscosity solutions, there is
the comparison principle, which, for h1 = h2, implies uniqueness in the viscosity sense
for solutions of the Hamilton–Jacobi equation f ⇐ ϖHf = h. We additionally introduce
a new, stronger notion: the strict comparison principle. This name is inspired by the
observation that the comparison principle implies contractivity in the sup-norm of the
solution map. The strict comparison principle implies continuity in terms of the weaker
strict topology, see e.g. [Sen72].

Definition 6.2.2. We say that the equations (6.2.1) and (6.2.2) satisfy
(a) the comparison principle if, for any subsolution u to (6.2.1) and any supersolution v

to (6.2.2), we have

sup
x↑E

u(x) ⇐ v(x) ≃ sup
x↑E

h1(x) ⇐ h2(x).

(b) the strict comparison principle if, for any subsolution u to (6.2.1), any supersolution
v to (6.2.2), any compact set K ⇓ E and ς > 0, there exist a compact set K̂ =
K̂(K, ς, ||u|| , ||v||) and a constant C = C(u, v,K,h1,h2,ϖ) such that we have

sup
x↑K

u(x) ⇐ v(x) ≃ ςC + sup
x↑K̂

h1(x) ⇐ h2(x).

Observe that the strict comparison principle implies the comparison principle. Indeed,
by the strict comparison principle, for all x0 ↔ E and ς > 0, there exists a constant C,
independent of ς, and a compact set K̂ ⇓ E such that

u(x0) ⇐ v(x0) ≃ ςC + sup
x↑K̂

h1(x) ⇐ h2(x) ≃ ςC + sup
x↑E

h1(x) ⇐ h2(x).

Letting ς ⊥ 0, we find that u(x0) ⇐ v(x0) ≃ supx↑E h1(x) ⇐ h2(x). Taking the supremum
over all x0 ↔ E, the comparison princple follows.

6.2.4 Notions for our framework

One of the main innovations of this chapter is the use of a new approach to prove the
comparison principle based on the notion of couplings of operators. In the following we
give the main definitions underlying our new framework.

Definition 6.2.3 (Coupling). Let H ⇓ C(E) ↓ C(E) and Ĥ ⇓ C(E2) ↓ C(E2) be linear
on their respective domains. We say Ĥ is a coupling of H if D(H) ℵ D(H) ⇓ D(Ĥ) and,
for any f1, f2 ↔ D(H), we have

Ĥ (f1 ℵ f2) = Hf1 +Hf2.

Definition 6.2.4 (Controlled growth). Let Ĥ ⇓ C(E2) ↓ C(E2). We say that Ĥ has con-
trolled growth if, for any φ > 1 and z, z↓ ↔ E, we have ϖ

2 d
2
z,z↗ ↔ D(Ĥ). In addition, for
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any compact set K ⇓ E, there exists a modulus of continuity εK : [0,→) ↑ [0,→) and
x, x↓, y, y↓ ↔ K such that

Ĥ
φ
2
d2
x≃y, x↗≃y↗


(x, x↓) ≃ ε

Ĥ,K


φ
(
d(x, y) + d(y, y↓) + d(y↓, x↓)

)2
+

(
d(x, y) + d(y, y↓) + d(y↓, x↓)

) 
.

Definition 6.2.5 (Controlled growth coupling). Let H ⇓ C(E)↓C(E) and Ĥ ⇓ C(E2)↓
C(E2) be linear on their respective domains. We say Ĥ is a controlled growth coupling of
H if the following properties are satisfied:

(a) Ĥ satisfies the maximum principle, cf. Definition 2.2.11.
(b) Ĥ is a coupling of H , cf. Definition 6.2.3.
(c) Ĥ has controlled growth, cf. Definition 6.2.4.

We will split our Hamiltonian into a stochastic part that we can couple in the sense
of the above definitions, and a deterministic part that we require to be a convex semi-
monotone operator. Here we give the precise definitions.

Definition 6.2.6 (Local first-order operator). We say that H ⇓ C(E) ↓ C(E) is a local
first-order operator if there exists a continuous map B : E ↓ R

q ↑ R such that, for any
f ↔ D, we have Hf(x) = B(x,⇒f(x)).

Definition 6.2.7 (Local semi-monotonicity). Let H ⇓ C(E) ↓ C(E) be local first-order
for some B, cf. Definition 6.2.6. We say that H is locally semi-monotone if, for any compact
sets K ⇓ E, there exists a modulus of continuity εB,K : [0,→) ↑ [0,→) such that, for
all x, y ↔ K and φ > 1,

B(x,φ(x⇐ x↓)) ⇐ B(y,φ(x⇐ x↓)) ≃ εB,K
(
φd2(x, x↓) + d(x, x↓)

)
.

Definition 6.2.8 (Convex semi-monotone operator). We say that H ⇑ C(E)↓C(E) is a
convex semi-monotone operator if the following properties are satisfied:

(a) H ⇓ C(E) ↓ C(E) is locally semi-monotone for some B, cf. Definition 6.2.7.
(b) For all x ↔ E, the map p ∝↑ B(x, p) is convex.

Finally, to work with Hamilton–Jacobi-Isaacs equations we need the following condi-
tion to be satisfied by our Hamiltonian.

Definition 6.2.9 (Isaacs’ condition). Let Θ1 and Θ2 be two compact, metric spaces. We
say that a collection {Hω1,ω2}ω1↑Θ1,ω2↑Θ2 ⇓ C(E) ↓ C(E) satisfies Isaacs’ condition if, for
all f ↔

⋂
ω1↑Θ1,ω2↑Θ2

D(Hω1,ω2),

sup
ω1↑Θ1

inf
ω2↑Θ2

{
Hω1,ω2f(x)

}
= inf

ω2↑Θ2

sup
ω1↑Θ1

{
Hω1,ω2f(x)

}
.

Following typical comparison principle proofs, we will be perturbing the optimiza-
tion problem

sup
x↑E

u(x) ⇐ v(x),
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using a variant of the doubling of variables procedure to ensure that we can use the
properties of sub- and supersolutions. Our perturbations consist of two components:

• We need a Lyapunov-type function, which ensures that we can work on compact
sets, see Definition 6.2.10.

• We perform a variant of the Jensen perturbation to construct optimizers in which
we can differentiate twice, see Definition 6.2.11.

Definition 6.2.10. We call V : E ↑ [0,→) a containment function if
(a) infy↑E V (y) = 0,
(b) V is semi-concave with semi-concavity constant 6V ,
(c) for every c ↗ 0 the set {y |V (y) ≃ c} is compact.

Typically, the containment function is

V (x) = log

(
1+

1

2
x2

.

The next definition aims to produce optimizers for which we have twice differentia-
bility via Jensen’s Lemma, cf. Lemma A.3 of [CIL92]. The variant used here creates a
unique, global optimizer from a local one using ▷ and then shifts it slightly with 7 .The
two sets of perturbations are based on the prototypical examples of lines, i.e.,

7z,p(x) = ↖p, x⇐ z↙ ,

and parabolas, i.e.,

▷z(x) =
1

2
d2(x, z),

both centered at some z ↔ E. We give them as pair to capture the idea that quadratic
growth dominates linear growth, cf. Definition 6.2.11 (d) below, which is used in our
variant of Jensen’s Lemma in the Appendix, cf. Proposition 6.7.1.

Definition 6.2.11. We call collections of maps {7z,p}z↑E,p↑Rq ⇑ C(E) and {▷z}z↑E ⇑
C1(E) 7z,p : E ↑ R and ▷z : E ↑ R sets of first and second order point penalizations,
respectively, if there exist constants R > 0 and 62 > 0 such that for all z ↔ E:

(a) 7z,p is linear in terms of p around z:

7z,p(y) = ↖p, y ⇐ z↙

if y ↔ BR(z).
(b) The map ▷z is semi-concave with constant 62.
(c) The map ▷z is a penalization away from z:

▷z(z) = 0, ▷z(y) > 0, if y ∀= z.
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(d) We have

inf
|p|∈1

inf
y/↑BR(z)

▷z(y) + 7z,p(y) > 0.

For any given z0, z1 ↔ E and p ↔ R
q, we consider the maps

Ξ0(y) = Ξ0
z0,p(y) := ▷z0(y) + 7z0,p(y),

Ξ(y) = Ξz0,p,z1(y) := ▷z0(y) + 7z0,p(y) + ▷z1(y).

6.3 A S S U M P T I O N S A N D M A I N R E S U LT

In this section, we present our main result, Theorem 6.3.1, and outline the fundamental
assumptions underlying our analysis.

Theorem 6.3.1 states the strict comparison principle for operators in Hamilton–Jacobi-
Isaacs (HJI) form, satisfying Isaacs’ condition. Comparison principles for Hamilton–
Jacobi (HJ) and Hamilton–Jacobi-Bellman (HJB) equations readily follow.

Heuristically, we assume that the base operator H can be split into a stochastic part
A, which we can couple, a semi-monotone deterministic term B, and a cost functional
I, and that the action of the operator on the containment function V is controlled.

Theorem 6.3.1 (Strict comparison principle). Let H ⇓ C(E) ↓ C(E) be given by

Hf(x) = sup
ω1↑Θ1

inf
ω2↑Θ2

{
Aω1,ω2f(x) + Bω1,ω2f(x) ⇐ I(x, ω1, ω2)

}

with Θ1 and Θ2 compact, metric spaces and I : E ↓ Θ1 ↓ Θ2 ↑ (⇐→,→] a cost functional.
Furthermore, consider a containment function V and penalization functions {7z,p}z↑E,p↑Rq ,
{7z}z↑E . Let H satisfy the technical Assumptions 6.3.4 and 6.3.5 below and assume that

(a) The collection of operators {Aω1,ω2 +Bω1,ω2 ⇐I}ω1↑Θ1,ω2↑Θ2 satisfies Isaacs’ condition, cf.
Definition 6.2.9.

(b) For all ω1 ↔ Θ1, ω2 ↔ Θ2, Aω1,ω2 is linear on its domain and admits a controlled growth
coupling Âω1,ω2 as in Definition 6.2.5 with a modulus uniform in ω1 and ω2.

(c) For all ω1 ↔ Θ1, ω2 ↔ Θ2, Bω1,ω2 is a convex semi-monotone operator as in Definition 6.2.8
with a modulus uniform in ω1 and ω2.

(d) The cost functional I is lower semi-continuous in (x, ω1, ω2), upper semi-continuous in ω2
for fixed (x, ω1), and admits a modulus of continuity in x uniformly in (ω1, ω2).

(e) V is a Lyapunov function for H: V ↔ D(H) and

cV := sup
x↑E

sup
ω1↑Θ1

sup
ω2↑Θ2

{
(Aω1,ω2 + Bω1,ω2)V (x) ⇐ I(x, ω1, ω2)

}
< →. (6.3.1)

Let H := {(f , g) ↔ H | f ↔ Cb(E)} be the restriction of H to Cb(E) and consider

f ⇐ ϖHf = h (6.3.2)
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for ϖ > 0 and h ↔ Cb(E). Let u and v be a sub- and supersolution to (6.3.2) with h1 and h2
instead of h, respectively. Then for any compact set K ⇓ E and ς ↔ (0, 1), we have

sup
x↑K

u(x) ⇐ v(x) ≃ ςCϑ + sup
x↑K̂ω

h1(x) ⇐ h2(x), (6.3.3)

where K̂ϑ := K̂ϑ(K, u, v) and Cϑ := Cϑ(K, u, v,h1,h2) are given by

K̂ϑ :=

z ↔ E

∣∣∣∣V (z) ≃ ||u||+ ||v||
ς

+ BV C
K


,

Cϑ :=
2

1⇐ ς2
(BV C

K
+ ϖcV ) +

1

1⇐ ς
||h1||+

1

1⇐ ς
||h2||⇐

⌊
1

1⇐ ς
u⇐ 1

1+ ς
v

⌋

K

.

In particular, the strict comparison principle holds for (6.3.2).

The proof of the above theorem is carried out in Sections 6.5 and 6.6. The next result
follows by restricting the choice on Θ1 and Θ2.

Corollary 6.3.2.
(a) The strict comparison principle for HJB equations follows from Theorem 6.3.1 by taking

Θ2 to be a singleton.
(b) The strict comparison principle for HJ equations follows from Theorem 6.3.1 by taking

both Θ1 and Θ2 to be singletons.

Remark 6.3.3. If H is the generator of a Markov process, the comparison principle implies
uniqueness of the martingale problem using Theorem 3.7 in [CK15]. We also refer to
[SV79; EK86] for details on the martingale problem.

6.3.1 Regularity and compatibility assumptions

In this section, we state the technical assumptions necessary for the proof the main the-
orem.

As we have a choice for the domain of our operator and only need functions with
compact sub- and superlevel sets, we need to ensure that the domains of the restrictions
are regular enough to perform our analysis. In particular, the action of the operator
on test functions and their combinations with perturbations needs to be well-defined.
Furthermore, we require that the domains are large enough to allow for approximations
in the sense of Definition 6.2.1.

Assumption 6.3.4 (Regularity of H). Let H ⇓ C(E) ↓ C(E) be an operator with the
following three restrictions

H := {(f , g) ↔ H | f ↔ Cb(E)} ,
H+ := {(f , g) ↔ H | f ↔ C+(E)} ,
H≃ := {(f , g) ↔ H | f ↔ C≃(E)} ,

satisfying
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(a) H satisfies the maximum principle,
(b) D(H) is linear and C↗

c (E) ⇓ D(H) ⇓ Cb(E),
(c) D(H) is upward sequentially dense in D(H+), as in Definition 6.2.1,
(d) D(H) is downward sequentially dense in D(H≃) as in Definition 6.2.1,
(e) D(H+) is convex,
(f) for any f ↔ D(H) and g ↔ D(H+) and 0 ↔ (0, 1) we have

(1⇐ 0)f + 0g ↔ D(H+), (1+ 0)f ⇐ 0g ↔ D(H≃).

In our main theorem, Theorem 6.3.1, we assume that the Hamiltonian H has an Isaacs-
type structure

Hf(x) = sup
ω1↑Θ1

inf
ω2↑Θ2

{
Aω1,ω2f(x) + Bω1,ω2f(x) ⇐ I(x, ω1, ω2)

}
.

To ensure it is well-behaved, we need that the collections of operators {Aω1,ω2}ω1↑Θ1,ω2↑Θ2

and {Bω1,ω2}ω1↑Θ1,ω2↑Θ2 themselves are well-behaved as a functions of (ω1, ω2). We addi-
tionally assume that these collections behave well on the families of penalization func-
tions introduced in Section 6.2.4.

Assumption 6.3.5 (Compatibility of Aω1,ω2 and Bω1,ω2). Let Θ1 and Θ2 be compact, met-
ric spaces. For ω1 ↔ Θ1 and ω2 ↔ Θ2, let Aω1,ω2 ,Bω1,ω2 ⇓ C(E) ↓ C(E). Consider a con-
tainment function V as in Definition 6.2.10 and penalization functions {7z,p}z↑E,p↑Rq

and {7z}z↑E as in Definition 6.2.11.
(a) Let the collection {Aω1,ω2}ω1↑Θ1,ω2↑Θ2 be compatible with V , {7z,p}z↑E,p↑Rq , and {7z}z↑E ,

i.e.,
(1) we have

V ∅ sz ↔ D(Aω1,ω2), Ξz0,p,z1 ∅ sz ↔ D(Aω1,ω2)

for any ω1 ↔ Θ1 and ω2 ↔ Θ2 and z ↔ B1(0),
(2) the maps

(ω1, ω2, x, z0, p, z1, z) ∝↑ Aω1,ω2 (Ξz0,p,z1 ∅ sz) (x),
(ω1, ω2, x, z) ∝↑ Aω1,ω2 (V ∅ sz) (x)

are continuous,
(3) the map

(ω1, ω2) ∝↑ Aω1,ω2f(x)

is continuous for any x ↔ E and f ↔
⋂

ω1↑Θ1,ω2↑Θ2
D(Aω1,ω2).

(b) Let the collection {Bω1,ω2}ω1↑Θ1,ω2↑Θ2 be compatible with V , {7z,p}z↑E,p↑Rq , and {7z}z↑E ,
i.e.,
(1) we have

V ∅ sz ↔ D(Bω1,ω2), Ξz0,p,z1 ∅ sz ↔ D(Bω1,ω2)

for any ω1 ↔ Θ1 and ω2 ↔ Θ2 and z ↔ B1(0),
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(2) the maps

(ω1, ω2, x, z0, p, z1) ∝↑ Bω1,ω2Ξz0,p,z1(x),

(ω1, ω2, x) ∝↑ Bω1,ω2V (x)

are continuous,
(3) the map

(ω1, ω2) ∝↑ Bω1,ω2f(x)

is continuous for any x ↔ E and f ↔
⋂

ω1↑Θ1,ω2↑Θ2
D(Bω1,ω2).

6.4 A P P L I C AT I O N T O PA R T I A L I N T E G R O - D I F F E R E N T I A L O P E R AT O R S

In this section, we discuss the application of our framework to partial integro-differential
operators of the type

Hf(x) = ↖b(x),⇒f(x)↙+ 1

2
Tr


ΣΣT (x)D2f(x)



+
∫ 

f(x+ z) ⇐ f(x) ⇐ 5
B1(0)(z) ↖z,⇒f(x)↙


µx(dz) +H(⇒f(x)), (6.4.1)

which, for simplicity, we consider without Bellman or Isaacs structure. More precisely,
we split H into A + B with

A =
1

2
Tr


ΣΣT (x)D2f(x)


+

∫ 
f(x+ z) ⇐ f(x) ⇐ 5

B1(0)(z) ↖z,⇒f(x)↙

µx(dz),

and

B = ↖b(x),⇒f(x)↙+H(⇒f(x))

and specify conditions under which
• we can find a Lyapunov function V and construct a coupling that has controlled

growth for A,
• we can find a Lyapunov function V and establish local semi-monotonicity for B,
• we can verify that A and B are compatible.

For the verification of compatibility, we need to choose V and families {7z,p}z↑E,p↑Rq

and {▷z}z↑E . We introduce two related families: The first family is suitable for local
operators; the second is constructed from the first by suitable cut-off procedures, thus
making them suitable for integral operators.

We point out that the second family is suitable for local operators as well. However,
this comes at the cost of minor complexity in their construction.

Definition 6.4.1 (Example containment function and penalizations). Consider the con-
tainment function

V (x) = log

(
1+

1

2
x2


and the following two collections of penalization functions:
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C O L L E C T I O N 1 The base penalizations are

7z,p(x) = ↖p, x⇐ z↙ ,

▷z(x) =
1

2
d2(x, z).

C O L L E C T I O N 2 Let R↓↓ > R↓ > R with R as in Definition 6.2.11. Let 8 : [0,→) ↑ [0,→)
be a smooth function satisfying l(r) = 1 for r < R↓ and l(r) = 0 for x > R↓↓. Let

▷z(x) = (1⇐ 8(d(x, z)))(R↓↓ + 1)2 + 8(d(x, z))
1

2
d2(x, z),

7p,z(x) = 8(d(x, z)) ↖p, x⇐ z↙ .

As all considered functions are smooth, part (1) of the compatibility assumptions for
A and B, cf. Assumptions 6.3.5 (a) and (b), hold for every part of H except the integral
term immediately.

To simplify the verification of our conditions, we have the following two observa-
tions.
Remark 6.4.2. Let A1,A2 ⇓ C(E) ↓ C(E) be linear on their respective domains and
compatible with V , {7z,p}z↑E,p↑Rq , and {7z}z↑E and with associated controlled growth
couplings Â1, Â2 ⇓ C(E2) ↓ C(E2). Then, the operator A := A1 + A2 is linear on
its domain and compatible with V , {7z,p}z↑E,p↑Rq , and {7z}z↑E and with associated con-
trolled growth coupling Â := Â1 + Â2.
Remark 6.4.3. Let B1,B2 ⇓ C(E) ↓ C(E) be compatible with V , {7z,p}z↑E,p↑Rq , and
{7z}z↑E and convex semi-monotone operators. Then B := B1 + B2 is compatible with
V , {7z,p}z↑E,p↑Rq , and {7z}z↑E and convex semi-monotone operator.

The rest of this section is organized as follows:
• In Section 6.4.1, we consider drift terms and convex first-order Hamiltonians;
• In Section 6.4.2, we consider diffusion operators;
• In Section 6.4.3, we consider integral operators.

6.4.1 Deterministic Example: Drift terms and convex first-order Hamiltonians

In this section, we consider the deterministic part of the operator (6.4.1).

Proposition 6.4.4. Suppose that B is given by

Bf(x) = ↖b(x),⇒f(x)↙+H(⇒f(x))

with the drift term x ∝↑ b(x) locally, one-sided Lipschitz with constant Lb,K and ||b(x)|| ≃
cb
2 (1+ ||x||) for some constant cb > 0, and p ∝↑ H(p) continuous and convex.

Then, B is compatible with both collections of Definition 6.4.1, cf. Assumption 6.3.5 (b), and
convex semi-monotone. Furthermore, V = log(1+ x

2

2 ) is a Lyapunov function:

sup
x↑E

BV (x) < →.
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Proof. Convex semi-monotonicity:
Clearly, B is locally first-order with Bf(x) = ↖b(x),⇒f(x)↙+H(⇒f(x)) = B(x,⇒f(x)).

Additionally, for any compact set K ⇓ E φ > 0, and x, x↓ ↔ K, we have

B(x,φ(x⇐ x↓)) ⇐ B(y,φ(x⇐ x↓)) =
〈
b(x),φ(x⇐ x↓)

〉
+H(φ(x⇐ x↓))

⇐
〈
b(x↓),φ(x⇐ x↓)

〉
⇐H(φ(x⇐ x↓))

=
〈
b(x) ⇐ b(x↓),φ(x⇐ x↓)

〉

+H(φ(x⇐ x↓)) ⇐H(φ(x⇐ x↓))

≃ φLb,Kd2(x, x↓),

establishing semi-monotonicity. As convexity of p ∝↑ B(x, p) is immediate, we conclude
that B is convex semi-monotone.

Lyapunov control: Using that V (x) = log

1+ x

2

2


, ⇒V (x) = 2x

2+|x|2 is bounded as a
function of x, b has linear growth, and that H is continuous, we find that

sup
x↑E

BV (x) = sup
x↑E

〈
b(x),

2x

2+ |x|2

〉
+H

(
2x

2+ |x|2


< →.

Compatibility: We show the compatibility of B, cf. Assumption 6.3.5 (b), by evalua-
tion of the perturbation and containment function in the operator.
Using ▷z(x) = 1

2d
2(x, z) and 7z,p(x) = ↖p, x⇐ z↙, we find for z0, z1, z ↔ E and p ↔ B1(0)

B(Ξz0,p,z1 ∅ sz)(x) = ↖b(x), (x⇐ z ⇐ z0) + p+ (x⇐ z ⇐ z1)↙
+ H ((x⇐ z ⇐ z0) + p+ (x⇐ z ⇐ z1)) ,

which is continuous in (x, z0, p, z1, z) as b and H are continuous.
For V (x) = log

(
1+ 1

2x
2
)

and z ↔ E, we find

B(V ∅ sz)(x) =
〈
b(x),

2(x⇐ z)
2+ |x⇐ z|2

〉
+H

(
2(x⇐ z)

2+ |x⇐ z|2


,

which is continuous in (x, z) as b and H are continuous. Thus, B is compatible.

6.4.2 Stochastic Example: Diffusion operators

In this section, we focus on diffusion operators of the form

Af(x) =
1

2
Tr


Σ(x)ΣT (x)D2f(x)


,

where Σ(x) is a positive semi-definite matrix for each fixed x ↔ E.
Our main goal is to construct a controlled growth coupling for the operator A. To

illustrate the idea behind our approach, consider the simpler case of the Laplacian oper-
ator

A0f(x) =
1

2
Tr(D2f(x)),
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which is the infinitesimal generator of Brownian motion. The well-known synchronous
coupling of two Brownian motions started from x and x↓, respectively, is given by

(X(t),X ↓(t)) = (x+ B(t), x↓ + B(t))

with B(t) a standard Brownian motion, having generator

Â0g(x, x
↓) =

1

2
(ϱx + ϱx↗)

2 g(x, x↓),

which satisfies Â0d2 = 0. Aiming to generalize this, we rewrite

Â0g(x, x
↓) = Tr


CCTD2g(x, x↓)


with C =

1′
2

( 
.

In general we obtain the following result.

Proposition 6.4.5. Suppose that A is given by

Af(x) =
1

2
Tr


Σ(x)ΣT (x)D2f(x)



with Σ(x) positive semi-definite for all x ↔ E, x ∝↑ Σ(x) locally Lipschitz with constant LΣ,K
and ||b(x)|| ≃ cΣ

2 (1+ ||x||) for some constant cΣ > 0. Consider

Âf(x, y) := Tr


Σ̂2(x, x↓)D2f(x, x↓)

,

where

Σ̂2(x, y) :=
(

Σ(x)ΣT (x) Σ(x↓)ΣT (x)
Σ(x)ΣT (x↓) Σ(x↓)ΣT (x↓)


.

Then, A is compatible, cf. Assumption 6.3.5 (a), linear on its domain, and admitting the con-
trolled growth coupling Â. Furthermore, V = log(1+ x

2

2 ) is a Lyapunov function:

sup
x

AV (x) < →.

For the proof we make use of the following auxiliary lemma.

Lemma 6.4.6. For each x ↔ E, let B(x) be a positive semi-definite matrix and consider

Af(x) =
1

2
Tr

(
B(x)D2f(x)

)
.

For any x, x↓ ↔ E, let B̂(x, x↓) be a positive semi-definite matrix having block-structure

B̂(x, x↓) =

(
B(x) B(x, x↓)

B(x, x↓)T B(x↓)


.

Define

Âf(x, x↓) :=
1

2
Tr


B̂(x, x↓)D2f(x, x↓)


.

Then, Â is a coupling of A.
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Proof.

Â(f1 ℵ f2)(x, y) =
1

2
Tr


B̂(x, y)D2(f1 ℵ f2)(x, y)



=
1

2
Tr

(
B(x)D2f(x)

)
+

1

2
Tr

(
B(y)D2f(y)

)

= Af1 + Af2

and it satisfies the maximum principle.

Proof of Proposition 6.4.5. Controlled growth coupling: By Lemma 6.4.6, Â is a coupling
for A. We thus verify that Â has controlled growth. Consider φ > 1, K ⇓ E a compact
set, and x, x↓, y, y↓ ↔ K. Then,

Â

φ
2
d2
x≃y,x↗≃y↗


(x, x↓) =

1

2
Tr


Σ̂2(x, x↓)D2

φ
2
d2
x≃y,x↗≃y↗


(x, x↓)



=
1

2
Tr

(
Σ̂2(x, x↓)

(
φ

(
⇐

⇐


(x, x↓)



=
φ

2
Tr((ΣT (x) ⇐ ΣT (y))(Σ(x) ⇐ Σ(y)))

≃ φL2
Σ,Kd2(x, x↓),

establishing controlled growth.
Lyapunov control: Using V (x) = log(1 + x

2

2 ) and the fact that Σ has linear growth,
we find that

sup
x↑E

AV (x) = sup
x↑E

1

2
Tr


Σ(x)ΣT (x)D2V (x)


< →. (6.4.2)

Compatibility: Using ▷z(x) = 1
2d

2(x, z), 7z,p(x) = ↖p, x⇐ z↙ and V (x) = log(1 + x
2

2 ),
we find for z0, z1, z ↔ E and p ↔ B1(0)

A(Ξ ∅ sz)(x) = 2Tr(Σ(x)ΣT (x)),

A(V ∅ sz)(x) =
1

2
Tr


Σ(x)ΣT (x)D2(V ∅ sz)(x)


,

which, by an analogous calculation as in equation (6.4.2), is continuous in (x, z0, p, z1, z)
and (x, z). Consequently, A is compatible.

6.4.3 Stochastic Example: Integral operators

In this section, we cover examples of spatially inhomogeneous Lévy processes that have
generators of the type

Af(x) =
∫ 

f(x+ z) ⇐ f(x) ⇐ 5
B1(0)(z) ↖z,⇒f(x)↙


µx(dz), (6.4.3)
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where 5
B1(0)(z) = l(|z|) for some smooth non-decreasing function l satisfying l = 1 on

a neighborhood of 0 and l(r) = 0 for r ↗ 1.
We next specify the space from which we can take our jump measures µx. For this,

we need to control the mass close to 0 as for large values of z. The following function
controls both:

W (z) := 5
B1(0)(z)|z|

2 + (1⇐ 5
B1(0)(z)) log

(
1+ |z|2

)
.

We take the family of jump measures {µx}x↑E from the set of equivalence classes

MW (Rq) := M(Rq)/ ∼

with

M(Rq) :=

µ ↔ M(Rq)

∣∣∣∣
∫

W (z) µ(dz) < →

,

where M(Rq) is the set of all Borel measures on R
q and where

µ ∼ 9 if and only if µ|Rq\{0} = 9|Rq\{0}.

We topologize the set MW (Rq) by the weak topology ↽W induced by the pairings

µ ∝↑
∫

g(z)µ(dz) ∈ g ↔ CW , (6.4.4)

where

CW :=

{
g ↔ C(Rq)

∣∣∣∣∣ g(0) = 0, and sup
z ⇔=0

|g(z)|
W (z)

< →.

}
.

Below, we construct controlled growth couplings for operators of the type (6.4.3). To
clarify the concepts, we consider the example of an uncompensated process, i.e., having
an operator of the type

Af(x) =
∫

f(x+ z) ⇐ f(x)µx(dz).

Couplings for this type of operator are of the form

Âf(x, x↓) =
∫ 

f(x+ z1, y + z2) ⇐ f(x, x↓)

⇁x,x↗(dz1, z2), (6.4.5)

where ⇁x,x↗ couples µx and µx↗ . In the following example, we illustrate the need of being
able to couple jumps synchronously.
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Example 6.4.7 (Random Walk). Consider the simple random walk on R making jumps of size
1, i.e µx = µ = 0≃1 + 01 leading to the operator

Af(x) = [f(x⇐ 1) + f(x+ 1) ⇐ 2f(x)] .

Well known couplings include walks with simultaneous jumps but independent directions,
fully independent jumps, and synchronous jumps. The corresponding generators are given as in
(6.4.5) with jump measures

⇁1 := µG µ,

⇁2 := 0(≃1,0) + 0(1,0) + 0(0,≃1) + 0(0,1),

⇁3 := 0(≃1,≃1) + 0(1,1),

respectively. This leads to the operators

Â
1f(x, x↓) = f(x⇐ 1, x↓ ⇐ 1) + f(x⇐ 1, x↓ + 1)

+ f(x+ 1, x↓ ⇐ 1) + f(x+ 1, x↓ + 1) ⇐ 4f(x, x↓),

Â
2f(x, x↓) = f(x⇐ 1, x↓) + f(x+ 1, x↓) ⇐ 2f(x, x↓)

+ f(x, x↓ ⇐ 1) + f(x, x↓ + 1) ⇐ 2f(x, x↓),

Â
3f(x, x↓) = f(x⇐ 1, x↓ ⇐ 1) + f(x+ 1, x↓ + 1) ⇐ 2f(x, x↓).

Only for the final example, we see that Â
3d2 ≃ 0, pointing at the necessity of the alignment of

jumps.

Note that the third coupling above has different total mass, and we thus work outside
the realm of the typical notion of couplings of probability measures. A second feature
of coupling jump measures, not present in the example above, is that we can make one
process jump, whereas the other does not.

We formalize this in the following definition.

Definition 6.4.8. Let µ, 9 ↔ MW (Rq). We say that ⇁ ↔ M(Rq↓R
q) is an extended coupling

of µ and 9, if

⇁ ((A \ {0}) ↓ R
q) = µ(A \ {0}) ∈A ↔ B(Rq),

⇁ (Rq ↓ (B \ {0})) = 9(B \ {0}) ∈B ↔ B(Rq).

Remark 6.4.9. A variant of this coupling was introduced in [FG10]. There mass can be
moved to the boundary of a domain. In our context, this boundary is the point 0.

Definition 6.4.10. Let x ∝↑ µx be a map from E into M(Rq). Let (x, x↓) ∝↑ ⇁x,x↗ be a map
from E2 into M(Rq ↓ R

q).
(a) We say that (x, x↓) ∝↑ ⇁x,x↗ is an extended coupling of x ∝↑ µx, if for all x, x↓ ↔ E,

we have that ⇁x,x↗ is an extended coupling of µx and µ↓x.
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(b) We say that (x, x↓) ∝↑ ⇁x,x↗ is locally Lipschitz, if, for any compact set K ⇓ E, there
exits a constant L3,K such that, for x, x↓ ↔ K, we have

∫
d2(z1, z2)⇁x,x↗(dz1, dz2) ≃ L3,Kd2(x, x↓).

Remark 6.4.11. Note that conditions (12), (34), and (35) in [BI08] for µ and j correspond
to our choice of MW (Rq) and locally Lipschitz extended coupling ⇁x,x↗ .
Remark 6.4.12. Let ⇀ : R ↑ R be any locally Lipschitz map with local Lipschitz constants
L⇀,K . Set µx := 0⇀(x) ⇀(x) ⇔=0(x) and ⇁x,x↗ = 0(⇀(x),⇀(x↗)). Then, (x, x↓) ∝↑ ⇁x,x↗ is a locally
Lipschitz coupling of x ∝↑ µx with L3,K = L⇀,K .

The main proposition of this subsection below aims to show that integral operators
of the form (6.4.3) can be treated analogous to the other examples above. We work with
the second collection of penalization functions, cf. Definition 6.4.1, to avoid integrability
issues.

Proposition 6.4.13. Consider

Af(x) =
∫ 

f(x+ z) ⇐ f(x) ⇐ 5
B1(0) ↖z,⇒f(x)↙


µx(dz).

Suppose there exists a ↽W -continuous map x ∝↑ µx in MW (Rq), cf. (6.4.4), and that there
exists a locally Lipschitz extended coupling (x, x↓) ∝↑ ⇁x,x↗ of x ∝↑ µx with Lipschitz constant
L3,K and, for 5̂(z1, z2) := 5

B1(0)(z1)
5
B1(0)(z2), set

Âg(x, x↓) :=
∫ 

g(x+ z1, x
↓ + z2) ⇐ g(x, x↓)

⇐ 5̂(z1, z2)
〈
(z1, z2)

T ,⇒g(x, x↓)
〉 

⇁x,x↗(dz1, dz2).

Assume furthermore that

sup
x↑E

∫
log


1+

1
2 |z|

2 + ↖x, z↙
1+ 1

2 |x|2


µx(dz) < →.

Then, A is compatible, cf. Definition 6.3.5 (a), and linear on its domain admitting the con-
trolled growth coupling Â. Furthermore, V = log(1+ x

2

2 ) is a Lyapunov function:

sup
x↑E

AV (x) < →.

Remark 6.4.14. Corresponding to Remark 6.3.3, we refer to [Bas88, Corollary 2.3] for a
uniqueness result for a Lévy process martingale problem.

The proof of Proposition 6.4.13 is based on the following two auxiliary lemmas. In the
first, we obtain bounds on the integrand of our operator acting on the Lyapunov func-
tion V . In the second, we compute the integrand of our Lévy type operator acting on the
shifted squared metric. We prove these two lemmas following the proof of Proposition
6.4.13.
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Lemma 6.4.15. Fix x, z ↔ E.
(a) For z ↔ R

q, we have

⇐ log

(
1+

1

2
|x⇐ z|2


≃ V ∅ sz(x+ z) ⇐ V ∅ sz(x)

≃ log


1+

1
2 |z|

2 + ↖x⇐ z, z↙
1+ 1

2(x⇐ z)2



≃ log
(
1+ |z|2

)
.

(b) For z ↔ B1(0), we have

|V ∅ sz(x+ z) ⇐ V ∅ sz(x) ⇐ ↖z,⇒(V ∅ sz)(x)↙| ≃
1

2
|z|2.

Lemma 6.4.16. We have

1

2
d2
x≃y,x↗≃y↗(x+ z1, x

↓ + z2) ⇐
1

2
d2
x≃y,x↗≃y↗(x, x

↓)

⇐ 5̂(z1, z2)

〈(
z1

z2


,⇒

(
1

2
d2
x≃y,x↗≃y↗


(x, x↓)

〉

≃
(
1⇐ 1

2
5̂(z1, z2)


d2(z1, z2) + (1⇐ 5̂(z1, z2))

1

2
d2(y, y↓).

Proof of Proposition 6.4.13. Controlled growth coupling: As (x, x↓) ∝↑ ⇁x,x↗ is a locally
Lipschitz extended coupling of x ∝↑ µx, cf. Definition 6.4.10, we have that Â is a cou-
pling. Thus, we need to verify the controlled growth property of Â.

Let x, x↓, y, y↓ ↔ K for K ⇓ E a compact set. Using Lemma 6.4.16, we then have

Â

φ
2
d2
x≃y,x↗≃y↗


(x, x↓) ≃ φ

2

∫ (
1⇐ 1

2
5̂(z1, z2)


d2(z1, z2)⇁x,x↗(dz1, dz2)

+
φ

2

∫
(1⇐ 5̂(z1, z2))

1

2
d2(y, y↓)⇁x,x↗(dz1, dz2)

≃ φ

2
L3,Kd2(x, x↓) +

φ

4
c↓3d

2(y, y↓),

where the second inequality is due to the local Lipschitz property of the map (x, x↓) ∝↑
⇁x,x↗ and c↓3 > 0 exists since, for every x, x↓ ↔ E, ⇁x,x↗ ↔ M(Rq ↓ R

q). As such, A admits
the controlled growth coupling Â.

Lyapunov control: Using Lemma 6.4.15, we find

sup
x↑E

AV (x) ≃ sup
x↑E

∫
(1⇐ 5

B1(0)) log(1+ |z|2) + 5
B1(0)|z|

2µx(dz) < →.

Compatibility:
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We start by establishing the continuity of (x, z) ∝↑ A(V ∅ sz)(x). Let (xn, zn) converge
to (x, z). We aim to apply Lemma 6.7.7 with X = R

q \ {0}, 9n = µxn , and

ϑn(z) := V ∅ szn(xn + z) ⇐ V ∅ szn(xn) ⇐ 5
B1(0) ↖z,⇒(V ∅ szn)(xn)↙ ,

ϑ↗(z) := V ∅ sz(x+ z) ⇐ V ∅ sz(x) ⇐ 5
B1(0) ↖z,⇒(V ∅ sz)(x)↙ .

As ϑn is continuous, it remains to show that supn↑N supz ⇔=0
|↽n(z)|
W (z) < →. By Lemma 6.4.15,

we can estimate

|ϑn(z)| ≃ 5
B1(0)

1

2
|z|2 + (1⇐ 5

B1(0))max


⇐ log

(
1+

1

2
|xn ⇐ zn|2


, log

(
1+ |z|2

)
.

Since (xn, zn) is convergent, hence bounded, we obtain the desired estimate. Continuity
of (x, z) ∝↑ A(V ∅ sz)(x) now follows by Lemma 6.7.7.

Using the particular form of Ξz0,p,z1 , cf. Definition 6.4.1, one readily verifies that the
map (x, z0, p, z1, z) ∝↑ A (Ξz0,p,z1 ∅ sz) (x) is continuous with an analogous argumenta-
tion.

Proof of Lemma 6.4.15. Let y = x⇐ z, then we can write

V ∅ sz(x+ z) ⇐ V ∅ sz(x)

= log

(
1+

1

2
(y + z)2


⇐ log

(
1+

1

2
|y|2


= log


1+

1
2 |z|

2 + ↖y, z↙
1+ 1

2 |y|2


.

Applying Young’s inequality to ↖y, z↙ leads to the upper bound

V ∅sz(x+z)⇐V ∅sz(x) ≃ log


1+

|z|2 + 1
2 |y|

2

1+ 1
2 |y|2


= log


2+

|z|2 ⇐ 1

1+ 1
2 |y|2


≃ log

(
1+ |z|2

)
.

Using that the first term is positive, we obtain the lower bound

V ∅ sz(x+ z) ⇐ V ∅ sz(x) ↗ log


1⇐

1
2 |y|

2

1+ 1
2 |y|2


= ⇐ log

(
1+

1

2
|y|2


.

This establishes (a). For the proof of (b), we apply Taylor’s Theorem to obtain

|V ∅ sz(x+ z) ⇐ V ∅ sz(x) ⇐ ↖⇒(V ∅ sz)(x), z↙| ≃
1

2
|z|2 sup

z↑B1(0)
sup
i,j

∣∣⇒2
i,jV (y + z)

∣∣

≃ 1

2
|z|2,

which follows by a direct inspection of

⇒2
i,jV (x) =

20i,j
(
1+ 1

2 |x|
2
)
⇐ 2xixj

(1+ 1
2 |x|2)2

.
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Proof of Lemma 6.4.16. Evaluating the shift maps, calculating the gradient of the squared
Euclidean distance, and expanding the squares leads to

1

2
d2
x≃y,x↗≃y↗(x+ z1, x

↓ + z2) ⇐
1

2
d2
x≃y,x↗≃y↗(x, x

↓)

⇐ 5̂(z1, z2)

〈(
z1

z2


,⇒

(
1

2
d2
x≃y,x↗≃y↗


(x, x↓)

〉

=
1

2
d2(y + z1, y

↓ + z2) ⇐
1

2
d2(y, y↓) ⇐ 5̂(z1, z2)

〈
y ⇐ y↓, z1 ⇐ z2

〉

=
1

2
d2(z1, z2) +

〈
y ⇐ y↓, z1 ⇐ z2

〉
⇐ 5̂(z1, z2)

〈
y ⇐ y↓, z1 ⇐ z2

〉

≃
(
1⇐ 1

2
5̂(z1, z2)


d2(z1, z2) + (1⇐ 5̂(z1, z2))

1

2
d2(y, y↓),

where in the second equality we use properties of the Euclidean distance d and the final
line is due to Young’s inequality.

6.5 C O N S T R U C T I O N O F T E S T F U N C T I O N S

In classical proofs of comparison principles, the approach to estimate sup u ⇐ v for a
subsolution u and supersolution v is variable doubling or quadruplication, cf. [BC97,
Theorem 3.1] or [CIL92, introduction of Section 3]: For φ > 1

sup
x↑E

u(x) ⇐ v(x) ≃ sup
x,x↗↑E

u(x) ⇐ v(x↓) ⇐ φ

2
d2(x, x↓). (6.5.1)

Letting φ ↑ →, forces optimizing points, if they exist, of the right-hand side together.
In addition, by varying either of the two components, one obtains basic test functions
in terms of ϖ

2 d
2 for the use in the definition of the sub- and supersolution properties of

u and v.
To ensure that optimizers in (6.5.1) exist, we will consider instead, for small ς > 0, the

following problem that includes the containment function V and upper bounds sup u⇐v
up to a term of order ς:

sup
x↑E

1

1⇐ ς
u(x) ⇐ 1

1+ ς
v(x)

≃ sup
x,x↗↑E

1

1⇐ ς
u(x) ⇐ 1

1+ ς
v(x↓) ⇐ φ

2
d2(x, x↓) ⇐ ς

1⇐ ς
V (x) ⇐ ς

1+ ς
V (x↓). (6.5.2)

The particular form of the factors 1⇐ ς and 1+ ς is motivated by convexity based argu-
ments, which will show up in the proofs of Proposition 6.6.3 and Theorem 6.3.1 below.

The procedure in (6.5.2) would be sufficient for a standard, first-order Hamilton–
Jacobi equation. The test functions produced by this procedure, however, will not be
sufficient to treat second-order or integral operators. This problem was considered in
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[CIL92] and [BI08]. We will follow their approach by considering a quadruplication of
variables, which we also phrase in terms of sup- and inf-convolutions. We then perform
a Jensen-type perturbation.

As we aim to unify proofs for both integral and differential operators, we revisit the
full proof and state our result in terms of test functions.

In Propositions 6.5.1 and 6.5.3 below, which can be considered to be an extended two-
variable variant of the Crandall–Ishii construction [CIL92, Theorem 3.2], we start out by
considering the optimization (6.5.2) in terms of the sup- and inf-convolution of u and v,
respectively, effectively leading to a quadruplication problem, see (6.5.3) below.

We then perform the Jensen perturbation, see (6.5.4). The rest of the proposition deals
with various properties of the optimizers in relation to u and v.

In Proposition 6.5.3, we carry out an additional layer of smoothing operations to ob-
tain C↗-test functions. Consequently, we can move away from the notion of solutions
in terms of sub- and superjets, which is of paramount importance to effectively treat
diffusive and jump-type processes in a common framework.

For readability, we express suprema and infima using B·C and D·E, respectively, as de-
fined in Section 6.2.1.

Proposition 6.5.1 (Construction of optimizers). Let u be bounded and upper semi-continuous,
v be bounded and lower semi-continuous, V be a containment function as in Definition 6.2.10,
and {7z,p}z↑E,p↑Rq ⇑ C(E) and {▷z}z↑E ⇑ C1(E) be collections of functions as in Definition
6.2.11. Fix ς ↔ (0, 1) and ϕ ↔ (0, 1].

Then, there exist compact sets Kϑ,0 ⇓ Kϑ ⇓ E and, for any φ > 1, three pairs of variables
(yϖ,0, y↓ϖ,0), (yϖ, y↓ϖ), (xϖ, x↓ϖ) in E2 and pϖ, p↓ϖ ↔ B1/ϖ(0) such that the following four sets of
properties hold.
P R O P E R T I E S O F yϖ,0 , y ↓ϖ,0

The variables yϖ,0, y↓ϖ,0 optimize BΛϖC, where

Λϖ(y, y
↓) :=

1

1⇐ ς
Pϖ[u](y) ⇐ 1

1+ ς
Pϖ[v](y

↓) ⇐ φ

2
d2(y, y↓)

⇐ ς

1⇐ ς
(1 ⇐ ϕ)V (y) ⇐ ς

1+ ς
(1 ⇐ ϕ)V (y↓) (6.5.3)

and satisfy the following property
(a) yϖ,0, y↓ϖ,0 ↔ Kϑ,0.

P R O P E R T I E S O F yϖ , y ↓ϖ A N D pϖ , p ↓ϖ
The pair yϖ, y↓ϖ optimizes

⌈
Λϖ ⇐ ς

1⇐ ς
ϕΞ0

1 ⇐
ς

1+ ς
ϕΞ0

2

⌉
(6.5.4)

and uniquely optimizes
⌈

Λϖ ⇐ ς

1⇐ ς
ϕΞ1 ⇐

ς

1+ ς
ϕΞ2

⌉
(6.5.5)
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where Λϖ is as in (6.5.3) and

Ξ0
1(y) := Ξ0

yϑ,0,pϑ(y), Ξ0
2(y

↓) := Ξ0
y
↗
ϑ,0,p

↗
ϑ
(y↓),

Ξ1(y) := Ξyϑ,0,pϑ,yϑ(y), Ξ2(y
↓) := Ξy

↗
ϑ,0,p

↗
ϑ,y↗ϑ(y

↓)

as in Definition 6.2.11. Moreover, the optimizers yϖ, y↓ϖ of (6.5.4) and (6.5.5) satisfy
(b) We have

d(yϖ, yϖ,0) ≃
1

φ
, d(y↓ϖ, y

↓
ϖ,0) ≃

1

φ
.

(c) Pϖ[u] and Pϖ[v] are twice differentiable in yϖ and y↓ϖ, respectively.
P R O P E R T I E S O F xϖ , x ↓

ϖ

The variables xϖ, x↓ϖ optimize

Pϖ[u](yϖ) = u(xϖ) ⇐
φ

2
d2(xϖ, yϖ),

Pϖ[v](y
↓
ϖ) = v(x↓ϖ) +

φ

2
d2(x↓ϖ, y

↓
ϖ),

and satisfy
(d) xϖ and x↓ϖ are the unique optimizers in the definition of Pϖ[u](yϖ) and Pϖ[v](y↓ϖ), respec-

tively.
(e) We have that

u(xϖ) ⇐ Pϖ[u] ∅ sxϑ≃yϑ(xϖ) = Bu⇐ Pϖ[u] ∅ sxϑ≃yϑC ,
v(x↓ϖ) ⇐ Pϖ[v] ∅ sx↗ϑ≃y

↗
ϑ
(x↓ϖ) =

⌊
v ⇐ Pϖ[v] ∅ sx↗ϑ≃y

↗
ϑ

⌋
.

B E H AV I O U R A S φ ↑ →
(f) We have limϖ↔↗ φd2(yϖ,0, y↓ϖ,0) = 0.
(g) We have

lim
ϖ↔↗

φ
(
d (xϖ, yϖ) + d

(
yϖ, y

↓
ϖ

)
+ d

(
y↓ϖ, x

↓
ϖ

))2
= 0.

(h) xϖ, yϖ, y↓ϖ, x
↓
ϖ ↔ Kϑ.

In addition, the following estimate on u⇐v holds: For any compact set K ⇓ E, there is a compact
set K̂ = K̂(K, ς, u, v) given by

K̂ :=

z ↔ E

∣∣∣∣V (z) ≃ ||u||+ ||v||
ς

+ BV C
K


,

such that
(i) For any compact set K ⇓ E,

Bu⇐ vC
K

≃ 1

1⇐ ς
u(xϖ) ⇐

1

1+ ς
v(xϖ) + ς (cϑ,φ + o(1)) ,
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where

cϑ,φ :=
2

1⇐ ς2
(1⇐ ϕ) BV C

K
⇐

⌊
1

1⇐ ς
u⇐ 1

1+ ς
v

⌋

K

,

and o(1) is in terms of φ ↑ → for fixed ς and ϕ.
(j) Any limit point of the sequence (xϖ, yϖ, yϖ,0, y↓ϖ,0, y

↓
ϖ, x

↓
ϖ) as φ ↑ → is of the form

(z, z, z, z, z, z) with z ↔ K̂.

Figure 9 visualizes the relation between the different optimizing points.

xω yω y
→
ω x

→
ω

yω,0 y
→
ω,0

5.2.(b) 5.1.(g) 5.2.(b)

5.1.(b)

5.1.(f)

5.1.(b)

Figure 9: Relation between the optimizing points with a note which parts of the propositions
give us distance control.

The proof of Proposition 6.5.1 uses various properties of sup- and inf-convolutions,
which we gather in the next lemma. Its proof is relegated to Appendix 6.7.4.

Lemma 6.5.2. Let u : E ↑ R be bounded and upper semi-continuous and v : E ↑ R be
bounded and lower semi-continuous. For φ > 1, set

Pϖ[u](y) := sup
x↑E


u(x) ⇐ φ

2
d2(x, y)


=

⌈
u⇐ φ

2
d2(·, y)

⌉
, (6.5.6)

Pϖ[v](y) := inf
x↑E


v(x) +

φ

2
d2(x, y)


=

⌊
u+

φ

2
d2(·, y)

⌋
. (6.5.7)

Then,
(a) we have ||Pϖ[u]|| ≃ ||u|| and ||Pϖ[v]|| ≃ ||v||.
(b) for any x, y ↔ E such that

Pϖ[u](y) = u(x) ⇐ φ

2
d2(x, y),

we have ϖ

2 d
2(x, y) ≃ u(x) ⇐ u(y). Similarly, for any x, y ↔ E with

Pϖ[v](y) = v(x) +
φ

2
d2(x, y),

we have ϖ

2 d
2(x, y) ≃ v(y) ⇐ v(x).

(c) Pϖ[u] and ⇐Pϖ[v] are decreasing in φ.
(d) Pϖ[u] and ⇐Pϖ[v] are semi-convex with semi-convexity constant φ. As a consequence,

both are locally Lipschitz continuous.
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(e) if Pϖ[u] is differentiable at y0, then there exists a unique optimizer x0 in (6.5.6) such that

Pϖ[u](y0) = u(x0) ⇐
φ

2
d2(x0, y0)

and DPϖ[u](y0) = φ(x0 ⇐ y0). Similarly, if Pϖ[v] is differentiable at y0, then there is a
unique optimizer x0 in (6.5.7) such that

Pϖ[v](y0) = v(x0) +
φ

2
d2(x0, y0)

and DPϖ[v](y0) = ⇐φ(x0 ⇐ y0).

Proof of Proposition 6.5.1. Proof of (a): As u and v are bounded, by Lemma 6.5.2 (a), the
same holds for ||Pϖ[u]|| and ||Pϖ[v]||. Using that V has compact sublevelsets, cf. Defini-
tion 6.2.10, the existence of optimizers (yϖ,0, y↓ϖ,0) for BΛϖC follows.

The definition of Λϖ and the convolutions Pϖ[u] and Pϖ[v] imply that

ς

1⇐ ς
(1⇐ϕ)V (yϖ,0) +

ς

1+ ς
(1⇐ϕ)V (y↓ϖ,0) ≃

1

1⇐ ς
BuC ⇐ 1

1+ ς
DvE ⇐ BΛϖC . (6.5.8)

Comparing the optimizers for Λϖ(y, y↓) to, e.g., the suboptimial choice (y, y↓) = (ŷ, ŷ)
satisfying V (ŷ) = 0, we find

ς

1⇐ ς
(1⇐ ϕ)V (yϖ,0) +

ς

1+ ς
(1⇐ ϕ)V (y↓ϖ,0) ≃

2

1⇐ ς
||u||+ 2

1+ ς
||v|| .

From this estimate, we deduce that (yϖ,0, y↓ϖ,0) ↔ Kϑ,0 ↓Kϑ,0 with

Kϑ,0 :=
{
y ↔ E

∣∣V (y) ≃ ς≃1Cϑ(||u||+ ||v||)
}

for some constant Cϑ > 0 satisfying limϑ′0Cϑ = 2
1≃φ

, establishing (a).
Proof of (b) and (c): For the proof of these two statements, we first move from BΛϖC to

its perturbed version (6.5.4). To do so, we use Proposition 6.7.1. Note, that the function
(y, y↓) ∝↑ Λϖ(y, y↓) of (6.5.3) over which we optimize in BΛϖC is semi-convex with semi-
convexity constant

6 =

(
2

1⇐ ς2
+

1

2


φ+

2ς

1⇐ ς2
(1⇐ ϕ)6V > 1

for φ > 1. In addition, it is bounded from above and has optimizers (yϖ,0, y↓ϖ,0). We can
thus apply Proposition 6.7.1 with

⇀ =
1

φ
, ς1 =

ς

1⇐ ς
ϕ, ς2 =

ς

1+ ς
ϕ. (6.5.9)

Consequently, it follows that there exist pϖ, p↓ϖ ↔ B1/ϖ(0) such that yϖ, y↓ϖ are optimiz-
ers of

⌈
Λ̂ϖ

⌉
= Λ̂ϖ(yϖ, y

↓
ϖ),
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where

Λ̂ϖ(y, y
↓) := Λϖ(y, y

↓) ⇐ ς

1⇐ ς
ϕΞ0

1(y) ⇐
ς

1+ ς
ϕΞ0

2(y
↓) (6.5.10)

with Ξ0
1 and Ξ0

2 as defined above. This establishes (6.5.4). An additional penalization
around (yϖ, y↓ϖ) gives (6.5.5). A secondary outcome of Proposition 6.7.1 is that Λ̂ϖ is
twice differentiable in the optimizing point (yϖ, y↓ϖ), establishing (c). Furthermore, the
optimizers satisfy

d(yϖ, yϖ,0) < ⇀, d(y↓ϖ, y
↓
ϖ,0) < ⇀,

which, together with (6.5.9), yields

max
{
d(yϖ, yϖ,0), d(y

↓
ϖ, yϖ,0)

↓} ≃ 1

φ
,

establishing (b).
Proof of (d): This follows immediately from Lemma 6.5.2 (e).
Proof of (e): We only establish

u(xϖ) ⇐ Pϖ[u] ∅ sxϑ≃yϑ(xϖ) = Bu⇐ Pϖ[u] ∅ sxϑ≃yϑC ,

as the second equation follows similarly. Note that by definition of Pϖ[u], we have

Pϖ[u] ∅ sxϑ≃yϑ(x) ↗ u(x) ⇐ φ

2
d2
(
x, sxϑ≃yϑ(x)

)
.

On the other hand, by (d), we have

Pϖ[u] ∅ sxϑ≃yϑ(xϖ) = Pϖ[u](yϖ) = u(xϖ) ⇐
φ

2
d2 (xϖ, yϖ) .

Combining the two statements yields, for any x ↔ E, that

u(xϖ) ⇐ Pϖ[u] ∅ sxϑ≃yϑ(xϖ)

=
φ

2
d2 (xϖ, yϖ) + Pϖ[u] ∅ sxϑ≃yϑ(x) ⇐ Pϖ[u] ∅ sxϑ≃yϑ(x)

↗ u(x) ⇐ Pϖ[u] ∅ sxϑ≃yϑ(x) +
φ

2

(
d2 (xϖ, yϖ) ⇐ d2 (x, sxϑ≃yϑ(x))

)

= u(x) ⇐ Pϖ[u] ∅ sxϑ≃yϑ(x)

as the shift map preserves distances. This establishes (e).
For the proof of the final five properties, we consider the limit φ ↑ →.
Proof of (f): Consider BΛϖC:

BΛϖC =
1

1⇐ ς
Pϖ[u](yϖ,0) ⇐

1

1+ ς
Pϖ[v](y

↓
ϖ,0) ⇐

φ

2
d2(yϖ,0, y

↓
ϖ,0)

⇐ ς

1⇐ ς
(1⇐ ϕ)V (yϖ,0) ⇐

ς

1+ ς
(1⇐ ϕ)V (y↓ϖ,0).
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Note, that BΛϖC is decreasing in φ, since ⇐ϖ

2 d
2(yϖ,0, y↓ϖ,0), Pϖ[u], and ⇐Pϖ[v] are decreas-

ing in φ by Lemma 6.5.2 (c). Note in addition that, by evaluating Λϖ in the particular
choice (y, y↓) = (ŷ, ŷ) as above, we have, by Lemma 6.5.2 (a), that

BΛϖC ↗
1

1⇐ ς
Pϖ[u](ŷ) ⇐ 1

1+ ς
Pϖ[v](ŷ) ↗

1

1⇐ ς
||u||⇐ 1

1+ ς
||v|| ,

which is lower bounded uniformly in φ. It follows that the limit limϖ↔↗ supΛϖ exists.
For any φ > 1, we find

BΛϖ/2C ↗
1

1⇐ ς
Pϖ/2[u](yϖ,0) ⇐

1

1+ ς
Pϖ/2[v](y

↓
ϖ,0) ⇐

φ

4
d2(yϖ,0, y

↓
ϖ,0)

⇐ ς

1⇐ ς
(1⇐ ϕ)V (yϖ,0) ⇐

ς

1+ ς
(1⇐ ϕ)V (y↓ϖ,0)

↗ 1

1⇐ ς
Pϖ[u](yϖ,0) ⇐

1

1+ ς
Pϖ[v](y

↓
ϖ,0) ⇐

φ

4
d2(yϖ,0, y

↓
ϖ,0)

⇐ ς

1⇐ ς
(1⇐ ϕ)V (yϖ,0) ⇐

ς

1+ ς
(1⇐ ϕ)V (y↓ϖ,0)

↗ BΛϖC+
φ

4
d2(yϖ,0, y

↓
ϖ,0), (6.5.11)

which implies that limϖ↔↗ φd2(yϖ,0, y↓ϖ,0) = 0, as BΛϖC and BΛϖ/2C converge to the same
limit, establishing (f).

Proof of (g): We follow the same approach as in (6.5.11) but now expanding Pϖ[u](yϖ)
and Pϖ[v](y↓ϖ) to obtain an optimization problem in terms of four variables.

BΛϖ/2C ↗
1

1⇐ ς
Pϖ/2[u](yϖ) ⇐

1

1+ ς
Pϖ/2[v](y

↓
ϖ) ⇐

φ

4
d2(yϖ, y

↓
ϖ)

↗ 1

1⇐ ς
u(xϖ) ⇐

1

1+ ς
v(x↓ϖ) ⇐

ς

1⇐ ς
(1⇐ ϕ)V (yϖ) ⇐

ς

1+ ς
(1⇐ ϕ)V (y↓ϖ)

⇐ φ

4

(
1

1⇐ ς
d2(xϖ, yϖ) + d2(yϖ, y

↓
ϖ) +

1

1+ ς
d2(y↓ϖ, x

↓
ϖ)



=
⌈

Λ̂ϖ

⌉
+

φ

4

(
1

1⇐ ς
d2(xϖ, yϖ) + d2(yϖ, y

↓
ϖ) +

1

1+ ς
d2(y↓ϖ, x

↓
ϖ)



+
ς

1⇐ ς
ϕΞ0

1(yϖ) +
ς

1+ ς
ϕΞ0

2(y
↓
ϖ)

by (6.5.10). It follows that

φ

4

(
1

1⇐ ς
d2(xϖ, yϖ) + d2(yϖ, y

↓
ϖ) +

1

1+ ς
d2(y↓ϖ, x

↓
ϖ)



≃ BΛϖ/2C ⇐
⌈

Λ̂ϖ

⌉
⇐ ς

1⇐ ς
ϕΞ0

1(yϖ) ⇐
ς

1+ ς
ϕΞ0

2(y
↓
ϖ).

By (f), we obtain

lim
ϖ↔↗

BΛϖC = lim
ϖ↔↗

⌈
Λ̂ϖ

⌉
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and

lim
ϖ↔↗

ς

1⇐ ς
ϕΞ0

1(yϖ) +
ς

1+ ς
ϕΞ0

2(y
↓
ϖ) = 0.

Consequently, we have that

lim
ϖ↔↗

φ
(
d2(xϖ, yϖ) + d2(yϖ, y

↓
ϖ) + d2(y↓ϖ, x

↓
ϖ)
)
= 0.

From this, (g) follows using Young’s inequality.
Proof of (h): (a), (b), (f), and (g) imply (h) by considering a bounded blow-up Kϑ of

Kϑ,0.
Proof of (i): First, note that Corollary 6.7.2 and the definition of ⇀ in (6.5.9) yield

0 ≃ ⇐ ς

1⇐ ς
ϕΞ0

1(yϖ) ⇐
ς

1+ ς
ϕΞ0

2(y
↓
ϖ) ≃ ϕ

2ς

1⇐ ς2
1

φ
(6.5.12)

and

BΛϖC ≃
⌈

Λ̂ϖ

⌉
= Λ̂ϖ(yϖ, y

↓
ϖ) ≃ BΛϖC+ ϕ

2ς

1⇐ ς2
1

φ
. (6.5.13)

Let K ⇓ E be compact. We then obtain

Bu⇐ vC
K
= sup

x↑K
u(x) ⇐ v(x)

≃ sup
x↑K


u(x) ⇐ v(x) ⇐ 2ς

1⇐ ς2
(1⇐ ϕ) (V (x) ⇐ BV C

K
)



≃ sup
x↑K


1

1⇐ ς
u(x) ⇐ 1

1+ ς
v(x) ⇐ 2ς

1⇐ ς2
(1⇐ ϕ)V (x)



+
2ς

1⇐ ς2
(1⇐ ϕ) BV C

K
⇐ ς

⌊
1

1⇐ ς
u⇐ 1

1+ ς
v

⌋

K

≃ sup
x↑E


1

1⇐ ς
u(x) ⇐ 1

1+ ς
v(x) ⇐ 2ς

1⇐ ς2
(1⇐ ϕ)V (x)



+
2ς

1⇐ ς2
(1⇐ ϕ) BV C

K
⇐ ς

⌊
1

1⇐ ς
u⇐ 1

1+ ς
v

⌋

K

≃ BΛϖC+
2ς

1⇐ ς2
(1⇐ ϕ) BV C

K
⇐ ς

⌊
1

1⇐ ς
u⇐ 1

1+ ς
v

⌋

K

. (6.5.14)

Combining this estimate with the first inequality of (6.5.13), dropping non-positive terms,
and then (6.5.12), leads to

Bu⇐ vC
K

≃ Λ̂ϖ(yϖ, y
↓
ϖ)

≃ 1

1⇐ ς
u(xϖ) ⇐

1

1+ ς
v(x↓ϖ)

+ ς

(
ϕ

2

1⇐ ς2
1

φ
+

2

1⇐ ς2
(1⇐ ϕ) BV C

K
⇐

⌊
1

1⇐ ς
u⇐ 1

1+ ς
v

⌋

K


,
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which proves (i).
Proof of (j): We start by proving that any limiting point of

(xϖ, yϖ, yϖ,0, y
↓
ϖ,0, y

↓
ϖ, x

↓
ϖ)

as φ ↑ → is of the form (z, z, z, z, z, z). We only prove limϖ↔↗ d(xϖ, yϖ) = 0, as the
other limit follow analogously.

By (h), we find that, along subsequences, (xϖ, yϖ) ↑ (x0, y0). Assume by contradic-
tion that x0 ∀= y0. Then, since φd2 is increasing, we get that for all φ0 > 1,

lim inf
ϖ↔↗

φd2(xϖ, yϖ) ↗ φ0d
2(x0, y0).

We can conclude that φd2(xϖ, yϖ) ↑ →, contradicting (g).
We proceed to prove that any limiting point z lies in K̂. Similar to (6.5.8), but now also

using (6.5.12) and the first inequality of (6.5.13), we find
ς

1⇐ ς
(1⇐ ϕ)V (yϖ) +

ς

1+ ς
(1⇐ ϕ)V (y↓ϖ)

≃ 1

1⇐ ς
BuC ⇐ 1

1+ ς
DvE ⇐ ς

1⇐ ς
ϕΞ0

1(yϖ) ⇐
ς

1+ ς
ϕΞ0

2(y
↓
ϖ) ⇐

⌈
Λ̂ϖ

⌉
,

≃ 1

1⇐ ς
BuC ⇐ 1

1+ ς
DvE+ ϕ

2ς

1⇐ ς2
1

φ
⇐ BΛϖC ,

Combining this with the upper bound on ⇐BΛϖC obtained from (6.5.14) leads to
ς

1⇐ ς
(1⇐ ϕ)V (yϖ) +

ς

1+ ς
(1⇐ ϕ)V (y↓ϖ)

≃ 1

1⇐ ς
BuC+ 1

1+ ς
DvE+ ϕ

2ς

1⇐ ς2
1

φ

⇐ Bu⇐ vC
K
+

2ς

1⇐ ς2
(1⇐ ϕ) BV C

K
⇐ ς

⌊
1

1⇐ ς
u⇐ 1

1+ ς
v

⌋

K

.

This, in turn, yields
ς

1⇐ ς
(1⇐ ϕ) (V (yϖ) ⇐ BV C

K
) +

ς

1+ ς
(1⇐ ϕ)

(
V (y↓ϖ) ⇐ BV C

K

)

≃ 1

1⇐ ς
BuC+ 1

1+ ς
DvE+ ϕ

2ς

1⇐ ς2
1

φ

⇐ Bu⇐ vC
K
+ ς

⌊
1

1⇐ ς
u⇐ 1

1+ ς
v

⌋

K

≃ 2 (||u||+ ||v||) + ϕ
ς

1⇐ ς2
1

φ
.

The sequences xϖ, yϖ, y↓ϖ, x
↓
ϖ have limit points z ↔ Kϑ as φ ↑ → by (g) and (h). In

combination with (b), we conclude that, for any such limiting point z,

2ς

1⇐ ς2
(1⇐ ϕ) (V (z) ⇐ BV C

K
) ≃ 2 (||u||+ ||v||) ,

establishing (j).
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The next proposition builds upon Proposition 6.5.1 to build a suitable collection of
test functions for the use in the proof of the comparison principle. The sup- and inf-
convolution Rϖ[u] and Rϖ[v] are not guaranteed to be smooth. However, they are twice
differentiable in the relevant optimizing points.

Using the difference between Ξ0
1 and Ξ0

2 on one hand and Ξ1 and Ξ2 on the other, we
are able to squeeze in a globally C↗ function on the basis of Lemma 6.7.6, that can be
used to replace Pϖ[u] and Pϖ[v]. As an effect, we will approximate

f̂† ∞ Pϖ[u], f† ∞ Pϖ[u] ∅ sxϑ≃yϑ ,

f̂‡ ∞ Pϖ[v], f‡ ∞ Pϖ[v] ∅ sx↗ϑ≃y
↗
ϑ
,

which will be made rigorously in next proposition for fixed ς and φ.

Proposition 6.5.3 (Test function construction). Consider the setting of Proposition 6.5.1. Fix
ς ↔ (0, 1), ϕ ↔ (0, 1], and φ > 1. Then, there are functions f1, f2, f̂1, f̂2 ↔ C↗

c (E) such that

f1 = f̂1 ∅ sxϑ≃yϑ , f2 = f̂2 ∅ sx↗ϑ≃y
↗
ϑ

and

f̂† := (1⇐ ς)f̂1 + ς(1⇐ ϕ)V + ςϕΞ1, f† = f̂† ∅ sxϑ≃yϑ ,

f̂‡ := (1+ ς)f̂2 ⇐ ς(1⇐ ϕ)V ⇐ ςϕΞ2, f‡ = f̂‡ ∅ sx↗ϑ≃y
↗
ϑ
,

satisfying the following properties:
For f̂1, f̂2 and f1, f2, we have
(a) The pair (yϖ, y↓ϖ) is the unique optimizing pair of

f̂1(yϖ) ⇐ f̂2(y
↓
ϖ) ⇐

φ

2
d2(yϖ, y

↓
ϖ) =

⌈
f̂1 ⇐ f̂2 ⇐

φ

2
d2
⌉
.

and the pair (xϖ, x↓ϖ) is the unique optimizing pair of

f1(xϖ) ⇐ f2(x
↓
ϖ) ⇐

φ

2
d2
xϑ≃yϑ, x↗ϑ≃y

↗
ϑ
(xϖ, x

↓
ϖ) =

⌈
f1 ⇐ f2 ⇐

φ

2
d2
xϑ≃yϑ, x↗ϑ≃y

↗
ϑ

⌉
.

For f̂†, f̂‡, and f†, f‡ we have
(b) We have

Pϖ[u](y) ≃ f̂†(y),

Pϖ[v](y
↓) ↗ f̂‡(y

↓)

with equality in yϖ and y↓ϖ, respectively.
(c) We have that xϖ, x↓ϖ are the unique points such that

u(xϖ) ⇐ f†(xϖ) =
⌈
u⇐ f†

⌉
,

v(x↓ϖ) ⇐ f‡(x
↓
ϖ) =

⌈
v ⇐ f‡

⌉
.
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(d) We have

Df̂†(yϖ) = Df†(xϖ) = φ(yϖ ⇐ xϖ),

D2f̂†(yϖ) = D2f†(xϖ),

Df̂‡(y
↓
ϖ) = Df‡(x

↓
ϖ) = φ(x↓ϖ ⇐ y↓ϖ),

D2f̂‡(y
↓
ϖ) = D2f‡(x

↓
ϖ).

As noted before the previous proposition, we aim to construct f̂† ∞ Pϖ[u], but start
out by first constructing f̂1 ↔ C↗

c (E), which, by re-arrangement, satisfies

f̂1 ∞
1

1⇐ ς
Pϖ[u](y) ⇐ ς

1⇐ ς
(1⇐ ϕ)V (y) ⇐ ς

1⇐ ς
ϕΞ1(y)

and is constant outside of a compact set. As V has compact sublevel sets and other terms
on the right-hand side are bounded from above, it suffices to first perform a smooth
approximation and cut off the result. For the cut-off procedure, we use functions Ω+

M

and Ω≃
M

.

Definition 6.5.4 (Cut-off functions). Let M > 0. We call a smooth increasing function
Ω+

M
: R ↑ R a upper cut-off function at M , if

Ω+
M
(r) =

{
r if r ≃ M ,

M + 1 if r ↗ M + 2.

We call Ω≃
M

a lower cut-off function at M if Ω≃
M
(r) = ⇐Ω+

≃M
(⇐r).

Proof of Proposition 6.5.3. In this proof, we work in the context of Proposition 6.5.1 and
will, correspondingly, follow its notation. We show the construction procedure for the
test function f1 used in the subsolution case only, as f2 is constructed analogously. De-
note

Π0
1(y) :=

1

1⇐ ς
Pϖ[u](y) ⇐ ς

1⇐ ς
(1⇐ ϕ)V (y) ⇐ ς

1⇐ ς
ϕΞ0

1(y),

Π1(y) :=
1

1⇐ ς
Pϖ[u](y) ⇐ ς

1⇐ ς
(1⇐ ϕ)V (y) ⇐ ς

1⇐ ς
ϕΞ1(y).

Note that we have Π1(yϖ) = Π0
1(yϖ) and Π1(y) < Π0

1(y) for all y ↔ E \ {yϖ}. By Lemma
6.7.6, we find a function f1 ↔ C↗(E) such that

Π1(y) < f1(y) < Π0
1(y), y ∀= yϖ.

The function f2 is constructed analogously. By construction of f1, f2 and (6.5.4), (yϖ, y↓ϖ)
is the unique optimizer of

⌈
f1 ⇐ f2 ⇐ ϖ

2 d
2
⌉
.

As our test functions need to be constant outside a compact set, we need to cut them
off in an appropriate manner. However, we need to preserve their properties in the opti-
mizer (yϖ, y↓ϖ). Taking these conditions into account, ensures that the cut-off procedure
does not create new optimizers.
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The above considerations lead to the cut-off procedure f̂1 := Ω≃
M1

∅ f1 and f̂2 :=
Ω+

M2
∅ f2, with Ω≃

M1
, Ω+

M2
as in Definition 6.5.4 and the following choice of M1 and M2:

Pick m1,m2 ↔ R such that the level sets

{y ↔ E | f1(y) ↗ m1} ,
{
y↓ ↔ E

∣∣ f2(y↓) ≃ m1
}

are compact. Set

M1 := min

m1, f1(yϖ) ⇐

(
f2(y

↓
ϖ) ⇐ Df2E

)
⇐ φ

2
d2(yϖ, y

↓
ϖ)

,

M2 := max

m2, f2(y

↓
ϖ) + (Bf1C ⇐ f1(yϖ)) +

φ

2
d2(yϖ, y

↓
ϖ)

.

Using M1 and M2 as defined above, we find that (yϖ, y↓ϖ) is the unique optimizer of⌈
f̂1 ⇐ f̂2 ⇐ ϖ

2 d
2
⌉

. To see this, denote

A1 := {y ↔ E | f1(y) ↗ M1} and A2 :=
{
y↓ ↔ E

∣∣ f2(y↓) ≃ M2
}
.

Thus, for i ↔ {1, 2}, we find f̂i = fi on Ai, whereas

f̂1(y) < f1(yϖ) ⇐
(
f2(y

↓
ϖ) ⇐ Df2E

)
⇐ φ

2
d2(yϖ, y

↓
ϖ),

f̂2(y
↓) > f2(y

↓
ϖ) + (Bf1C ⇐ f1(yϖ)) +

φ

2
d2(yϖ, y

↓
ϖ)

if y /↔ A1 or y↓ /↔ A2, respectively.
As f̂1 = f1 on A1 and f̂2 = f2 on A2, it suffices to show that

f̂1(y) ⇐ f̂2(y
↓) ⇐ φ

2
d2(y, y↓) < f1(yϖ) ⇐ f2(y

↓
ϖ) ⇐

φ

2
d2(yϖ, y

↓
ϖ)

if y ↔ Ac

1 or y ↔ Ac

2. For the proof of this bound, we consider the following three separate
cases.

Case y ↔ Ac

1 and y↓ ↔ A2: We have

f̂1(y) ⇐ f̂2(y
↓) ⇐ φ

2
d2(y, y↓) ≃ f̂1(y) ⇐ f̂2(y

↓)

< f1(yϖ) ⇐
(
f2(y

↓
ϖ) ⇐ Df2E

)
⇐ φ

2
d2(yϖ, y

↓
ϖ) ⇐ f2(y

↓)

= f1(yϖ) ⇐ f2(y
↓
ϖ) ⇐

φ

2
d2(yϖ, y

↓
ϖ) ⇐

(
f2(y

↓) ⇐ Df2E
)

≃ f1(yϖ) ⇐ f2(y
↓
ϖ) ⇐

φ

2
d2(yϖ, y

↓
ϖ).

Case y ↔ A1 and y↓ ↔ Ac

2: Follows analogously to the case y ↔ Ac

1 and y↓ ↔ A2.
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Case y ↔ Ac

1 and y↓ ↔ Ac

2: We have

f̂1(y) ⇐ f̂2(y
↓) ⇐ φ

2
d2(y, y↓)

≃ f̂1(y) ⇐ f̂2(y
↓)

< f1(yϖ) ⇐
(
f2(y

↓
ϖ) ⇐ Df2E

)
⇐ φ

2
d2(yϖ, y

↓
ϖ)

⇐

f2(y

↓
ϖ) + (Bf1C ⇐ f1(yϖ)) +

φ

2
d2(yϖ, y

↓
ϖ)


≃ f1(yϖ) ⇐ f2(y
↓
ϖ) ⇐ 2

φ

2
d2(yϖ, y

↓
ϖ) ⇐

(
f2(y

↓
ϖ) ⇐ Df2E

)
⇐ (Bf1C ⇐ f1(yϖ))

≃ f1(yϖ) ⇐ f2(y
↓
ϖ) ⇐

φ

2
d2(yϖ, y

↓
ϖ).

We conclude that the pair (yϖ, y↓ϖ) is also the unique optimizer of
⌈
f̂1 ⇐ f̂2 ⇐ ϖ

2 d
2
⌉

. Ap-
plying the shift maps sxϑ≃yϑ and sx↗ϑ≃y

↗
ϑ

, respectively, we find that (xϖ, x↓ϖ) uniquely op-

timize
⌈
f1 ∅ sxϑ≃yϑ ⇐ f2 ∅ sx↗ϑ≃y

↗
ϑ
⇐ ϖ

2 d
2
xϑ≃yϑ,x↗ϑ≃y

↗
ϑ

⌉
. Additionally, as M1 ↗ m1 and M2 ≃

m2, we have f̂1, f̂2 ↔ C↗
c (E), establishing (a).

We next prove (b). As r ≃ Ω≃
M1

(r),

1

1⇐ ς
Pϖ[u](y)⇐ ς

1⇐ ς
(1⇐ϕ)V (y)⇐ ς

1⇐ ς
ϕΞ1(y) = Π1(y) ≃ Ω≃

M1
∅ Π1(y) ≃ f̂1(y),

which, after rearrangement of terms, implies (b).
We proceed with the proof of (c). By (b) and Proposition 6.5.1 (e),

f†(x) ⇐ f†(xϖ) = f̂† ∅ sxϑ≃yϑ(x) ⇐ f̂† ∅ sxϑ≃yϑ(xϖ)

↗ (Pϖ[u] ∅ sxϑ≃yϑ) (x) ⇐ (Pϖ[u] ∅ sxϑ≃yϑ) (xϖ)

↗

u(x) ⇐ φ

2
d2(x, sxϑ≃yϑ(x)


⇐


u(xϖ) ⇐

φ

2
d2(xϖ, sxϑ≃yϑ(xϖ)



= u(x) ⇐ u(xϖ)

with equality uniquely realized at xϖ, establishing (c).
We conclude with the proof of (d). First of all, note that the equality of first and second

order derivatives for f† and f̂† as well as for f‡ and f̂‡ follows by the chain rule.
The expressions for Df̂†(yϖ) and Df̂‡(y↓ϖ) follow from (b) and Proposition 6.5.1 (c) and

(d).
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6.6 P R O O F O F T H E S T R I C T C O M PA R I S O N P R I N C I P L E

In this section, we prove Theorem 6.3.1. The proof is based on a variant of the variable
quadruplication procedure on the basis of

sup
x↑E

1

1⇐ ς
u(x) ⇐ 1

1+ ς
v(x)

≃ sup
x,,y,y↗x↗↑E

1

1⇐ ς
u(x) ⇐ 1

1+ ς
v(x↓) ⇐ φ

2(1⇐ ς)
d2(x, y) ⇐ φ

2
d2(y, y↓)

⇐ φ

2(1+ ς)
d2(y↓, x↓) ⇐ ς

1+ ς
V (x) ⇐ ς

1+ ς
V (x↓),

which we have formalized in terms of test functions f†, f‡ in Propositions 6.5.1 and 6.5.3.
In a first step, we relate sub- and supersolutions for the Hamilton–Jacobi equation for

H to those for H+ and H≃: This will be carried out in Lemma 6.6.1. A second step is to
show that f† ↔ D(H+) and f‡ ↔ D(H≃): This will be carried out in Lemma 6.6.2.

After establishing these technical points, we proceed to frame the comparison princi-
ple in terms of an estimate on

H+f†
1⇐ ς

⇐
H≃f‡
1+ ς

. (6.6.1)

This reduction will be carried out in Proposition 6.6.3, the statement of which is more
involved than typically in the literature, but leads to the improved strict comparison
principle. Its formulation and proof hinges on the use of V as a Lyapunov function.

The statements of Lemmas 6.6.1, 6.6.2, and Proposition 6.6.3 can be found in Section
6.6.1, their proofs in Section 6.6.2.

We finish in Section 6.6.3 by estimating (6.6.1) in two steps leading to our final result.
We first establish in Lemma 6.6.4 that the pre-factors (1⇐ ς)≃1 and (1+ ς)≃1 work well
with the combinations of functions that define f†, f‡ in Proposition 6.5.3. We conclude
this section with the proof of Theorem 6.3.1, where we use this split, the coupling as-
sumption on A, the semi-monotonicity of B, modulus of continuity control on I and,
again, that V is a Lyapunov function to arrive at our final result.

6.6.1 Comparison in terms of estimating the difference of Hamiltonians

We start with connecting the notion of sub- and supersolutions for H to those for H+

and H≃, respectively.

Lemma 6.6.1. Let H and H satisfy Assumption 6.3.4. Then, for any h ↔ Cb(E) and ϖ > 0, we
have the following:

(a) Any viscosity subsolution of f⇐ϖHf = h is also a viscosity subsolution of f⇐ϖH+f = h.
(b) Any viscosity supersolution of f ⇐ ϖHf = h is also a viscosity supersolution of f ⇐

ϖH≃f = h.
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The proof follows in Section 6.6.2 below. In the next lemma we show that the test
functions that we constructed in the previous section are in the domain of H+ and H≃.

Lemma 6.6.2. Let H be an operator satisfying Assumptions 6.3.4 and 6.3.5. Let f̂†, f† and f̂‡, f‡
be as in Proposition 6.5.3. Then, f̂†, f† ↔ D(H+) and f̂‡, f‡ ↔ D(H≃).

The proof of the lemma is outlined in Section 6.6.2 below. We next state our key propo-
sition, which relates the strict comparison principle to an estimate on the difference of
Hamiltonians.

Proposition 6.6.3. Let H ⇓ C(E) ↓ C(E) satisfy Assumptions 6.3.4 and 6.3.5. Let h1,h2 ↔
Cb(E), and ϖ > 0. Consider the equations

f ⇐ ϖH+f ≃ h1, (6.6.2)
f ⇐ ϖH≃f ↗ h2. (6.6.3)

Let u and v by viscosity sub- and supersolutions to (6.6.2) and (6.6.3), respectively. For each
ς ↔ (0, 1), ϕ ↔ (0, 1] and φ > 1, consider the construction of optimizers xϖ, x↓ϖ and test
functions f†, f‡ as in Propositions 6.5.1 and 6.5.3.

Suppose there exists a map ς ∝↑ C0
ϑ , and for any ς ↔ (0, 1) a non-negative map ϕ ∝↑ Cϑ,φ

satisfying lim supϑ′0C
0
ϑ < → and limφ′0Cϑ,φ = 0 such that

lim inf
ϖ↔↗

H+f†(xϖ)

1⇐ ς
⇐

H≃f‡(x↓ϖ)

1+ ς
≃ ς

(
C0
ϑ + Cϑ,φ

)
. (6.6.4)

Then, for any compact set K ⇓ E and ς ↔ (0, 1),

sup
x↑K

u(x) ⇐ v(x) ≃ ςCϑ + sup
x↑K̂

h1(x) ⇐ h2(x),

where K̂ϑ := K̂ϑ(K, u, v) and Cϑ := Cϑ(K, u, v,h1,h2) are given by

K̂ϑ :=

z ↔ E

∣∣∣∣V (z) ≃ ||u||+ ||v||
ς

+ BV C
K


,

Cϑ := ϖC0
ϑ +

2

1⇐ ς2
BV C

K
+

1

1⇐ ς
||h1||+

1

1⇐ ς
||h2||⇐

⌊
1

1⇐ ς
u⇐ 1

1+ ς
v

⌋

K

.

In particular, the strict comparison principle holds for (6.6.2) and (6.6.3).

6.6.2 Proof of Lemmas 6.6.1, 6.6.2, and Proposition 6.6.3

Proof of Lemma 6.6.1. We only prove the first statement, the second one follows analo-
gously. Let u be a subsolution to f ⇐ ϖHf = h and let (f , g) ↔ H+. Our claim thus
follows if there exists x0 satisfying

u(x0) ⇐ f(x0) = Bu⇐ fC , (6.6.5)
u(x0) ⇐ ϖg(x0) ≃ h(x0). (6.6.6)
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As u is upper semi-continous and bounded, and f has compact sublevel sets, the ex-
istence of x0 satisfying (6.6.5) is immediate. We thus proceed with (6.6.6) using the se-
quential upward denseness of D(H) in D(H+), cf. Assumption 6.3.4 (c). Set

a := f(x0) + BuC ⇐ u(x0), A := {x | f(x) ≃ a} .

We can thus find (fa, ga) ↔ H with fa satisfying
{
fa(x) = f(x) if x ↔ A,

a < fa(x) ≃ f(x) if x /↔ A.

We first establish that

u(x0) ⇐ fa(x0) = Bu⇐ faC . (6.6.7)

Using (6.6.5) and that f = fa on A, (6.6.7) follows by verifying that

u(x) ⇐ fa(x) < u(x0) ⇐ f(x0), x ↔ Ac,

which follows from the definition of a:

u(x) ⇐ f(x) < u(x) ⇐ a

= u(x) ⇐ (f(x0) + BuC ⇐ u(x0))

= u(x0) ⇐ f(x0) ⇐ (BuC ⇐ u(x))

≃ u(x0) ⇐ f(x0).

Thus, by (6.6.7), we can use the subsolution inequality for (fa, ga) in the point x0. We
obtain:

u(x0) ⇐ ϖga(x0) ≃ h(x0). (6.6.8)

Recalling that fa(x0) = f(x0) and fa ≃ f , we have

fa(x0) ⇐ f(x0) = Bfa ⇐ fC .

Using the positive maximum principle for H, cf. Assumption 6.3.4 (a), thus yields

ga(x0) ≃ g(x0). (6.6.9)

Combining (6.6.8) and (6.6.9), leads to

u(x0) ⇐ ϖg(x0) ≃ u(x0) ⇐ ϖga(x0) ≃ h(x0),

establishing (6.6.6) and consquently that u is a subsolution to f ⇐ ϖH+f = h.

Proof of Lemma 6.6.2. As f1, f2, f̂1, f̂2 ↔ C↗
c (E), it follows by Assumption 6.3.4 (b) that

f1, f2, f̂1, f̂2 ↔ D(H). By compatibility, cf. Assumption 6.3.5, we have V ∅ sz,Ξ ∅ sz ↔
D(H). By Assumption 6.3.4 (e) and the fact that V has compact sublevel sets, cf. Defini-
tion 6.2.10, we thus have (1⇐ϕ)V ∅sz +ϕΞ ∅sz ↔ D(H+). Consequently, f̂†, f† ↔ D(H+)

and f̂‡, f‡ ↔ D(H≃) by Assumption 6.3.4 (f).
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Proof of Proposition 6.6.3. Let u be a subsolution of f ⇐ϖH+f = h1 and v a supersolution
of f ⇐ ϖH≃f = h2. Consider the constructions in Propositions 6.5.1 and 6.5.3 for the
subsolution u, supersolution v and ς ↔ (0, 1) and ϕ ↔ (0, 1].

By Lemma 6.6.2, we have f† ↔ D(H+) and f‡ ↔ D(H≃) and, by Proposition 6.5.3 (c),
we find that (xϖ, x↓ϖ) are the unique optimizers in

u(xϖ) ⇐ f†(xϖ) =
⌈
u⇐ f†

⌉
,

v(x↓ϖ) ⇐ f‡(x
↓
ϖ) =

⌈
v ⇐ f‡

⌉
,

which, by the sub- and supersolution properties for H+ and H≃, respectively, and Lemma
1.2.6, implies that

u(xϖ) ⇐ ϖH+f†(xϖ) ≃ h1(xϖ),

v(x↓ϖ) ⇐ ϖH≃f‡(x
↓
ϖ) ↗ h2(x

↓
ϖ).

(6.6.10)

By Proposition 6.5.1 (i), we find

Bu⇐ vC
K

≃ 1

1⇐ ς
u(xϖ) ⇐

1

1+ ς
v(x↓ϖ) + ς (cϑ,φ + o(1)) ,

where

cϑ,φ :=
2

1⇐ ς2
(1⇐ ϕ) BV C

K
⇐

⌊
1

1⇐ ς
u⇐ 1

1+ ς
v

⌋

K

, (6.6.11)

and o(1) is in terms of φ ↑ →. Using (6.6.10), we estimate

Bu⇐ vC
K

≃ 1

1⇐ ς
u(xϖ) ⇐

1

1+ ς
v(x↓ϖ) + ς (cϑ,φ + o(1))

≃ 1

1⇐ ς
h1(xϖ) ⇐

1

1+ ς
h2(x

↓
ϖ) + ϖ


H+f†(xϖ)

1⇐ ς
⇐

H≃f‡(x↓ϖ)

1+ ς



+ ς (cϑ,φ + o(1))

≃ h1(xϖ) ⇐ h2(x
↓
ϖ) + ϖ


H+f†(xϖ)

1⇐ ς
⇐

H≃f‡(x↓ϖ)

1+ ς



+
ς

1⇐ ς
||h1||+

ς

1+ ς
||h2||+ ς (cϑ,φ + o(1)) .

We next expand cϑ,φ from (6.6.11). Furthermore, taking lim infϖ↔↗ on the right-hand
side, using Proposition 6.5.1 (j) to treat the difference h1 ⇐ h2, and (6.6.4) to treat the
difference of Hamiltonians, we find

Bu⇐ vC
K

≃ Bh1 ⇐ h2CK̂ + ϖ (ςC0 + Cϑ,φ) +
ς

1⇐ ς
||h1||+

ς

1+ ς
||h2||

+ ς

(
2

1⇐ ς2
(1⇐ ϕ) BV C

K
⇐

⌊
1

1⇐ ς
u⇐ 1

1+ ς
v

⌋

K


.
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As ϕ ↔ (0, 1] was arbitrary, we can take the limit for ϕ ⊥ 0, which leads to

Bu⇐ vC
K

≃ Bh1 ⇐ h2CK̂

+ ς

(
ϖC0

ϑ +
2

1⇐ ς2
BV C

K
+

1

1⇐ ς
||h1||+

1

1+ ς
||h2||⇐

⌊
1

1⇐ ς
u⇐ 1

1+ ς
v

⌋

K


,

establishing the claim.

6.6.3 Proof of Theorem 6.3.1

We start with an auxiliary lemma that provides a detailed decomposition of the opera-
tors A and B evaluated in the test functions.

Lemma 6.6.4. Let A and B both satisfy Assumption 6.3.4 and Assumption 6.3.5 (a) and (b),
respectively. Fix z0, z1 ↔ R

q and p ↔ R
q. Let Ξ = Ξz0,p,z1 as in Definition 6.2.11 and, for

f̂ ↔ C↗
c (E), ς ↔ (0, 1), and ϕ ↔ (0, 1], set

f̂† := (1⇐ ς)f̂ + ς(1⇐ ϕ)V + ςϕΞ,

f̂‡ := (1+ ς)f̂ ⇐ ς(1⇐ ϕ)V ⇐ ςϕΞ.

For z ↔ E, set f† = f̂† ∅ sz, and f‡ = f̂‡ ∅ sz. Then, the following statements hold:
(a) f† ↔ D(A+) and f‡ ↔ D(A≃). Suppose furthermore that A is linear on its domain, then

A+f†
1⇐ ς

= A(f̂ ∅ sz) +
ς

1⇐ ς
(1⇐ ϕ)A+ (V ∅ sz) +

ς

1⇐ ς
ϕA (Ξ ∅ sz) , (6.6.12)

A≃f‡
1+ ς

= A(f̂ ∅ sz) ⇐
ς

1+ ς
(1⇐ ϕ)A+ (V ∅ sz) ⇐

ς

1+ ς
ϕA (Ξ ∅ sz) ,

(b) f†, f̂† ↔ D(B+) and f‡, f̂‡ ↔ D(B≃). Suppose furthermore that B is convex, then for any
x, y such that z = x⇐ y, we have

B+f†
1⇐ ς

(x) ≃ 1

1⇐ ς


B+f†(x) ⇐ B+f̂†(y)


+ Bf̂(y) (6.6.13)

+
ς

1⇐ ς
(1⇐ ϕ)B+V (y) +

ς

1⇐ ς
ϕB+Ξ(y),

B≃f‡
1+ ς

(x) ↗ 1

1+ ς


B≃f‡(x) ⇐ B≃f̂‡(y)


+ Bf̂(y)

⇐ ς

1+ ς
(1⇐ ϕ)B≃V (y) ⇐ ς

1+ ς
ϕB≃Ξ(y).

Proof. The domain statements f† ↔ D(A+), f‡ ↔ D(A≃), f†, f̂† ↔ D(B+) and f‡, f̂‡ ↔
D(B≃) follow by Lemma 6.6.2. The four statements in (6.6.12) and (6.6.13) follow from
linearity of A+ and convexity of B+.
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Proof of Theorem 6.3.1. To prove inequality (6.3.3), and consequently the strong compari-
son principle for the Hamilton–Jacobi equation in terms of H , it suffices by Lemma 6.6.1
and Proposition 6.6.3 to establish (6.6.4), which we repeat for readability:

lim inf
ϖ↔↗

H+f†(xϖ)

1⇐ ς
⇐

H≃f‡(x↓ϖ)

1+ ς
≃ ς

(
C0
ϑ + Cϑ,φ

)
. (6.6.14)

Let ω→1,ϖ ↔ Θ1 be such that

H+f†(xϖ) = sup
ω1↑Θ1

inf
ω2↑Θ2

{
Aω1,ω2f†(xϖ) + Bω1,ω2f†(xϖ) ⇐ I(xϖ, ω1, ω2)

}

= inf
ω2↑Θ2


Aω

→
1,ϑ,ω2

f†(xϖ) + Bω
→
1,ϑ,ω2

f†(xϖ) ⇐ I(xϖ, ω→1,ϖ, ω2)

.

Such optimizer exists by the compactness of Θ1 and the lower semi-continuity of I in ω1
assumed in (d). By Isaacs’ condition (a), we can write

H≃f‡(x
↓
ϖ) = inf

ω2↑Θ2

sup
ω1↑Θ1

{
Aω1,ω2f‡(x

↓
ϖ) + Bω1,ω2f‡(xϖ) ⇐ I(x↓ϖ, ω1, ω2)

}
.

Then, by compactness of Θ2 and the upper semi-continuity of I in ω2 assumed in (d),
we can find ω→2,ϖ ↔ Θ2 such that

H≃f‡(x
↓
ϖ) = sup

ω1↑Θ1


Aω1,ω→2,ϑ

f‡(x
↓
ϖ) + Bω1,ω→2,ϑ

f‡(x
↓
ϖ) ⇐ I(x↓ϖ, ω1, ω→2,ϖ)


.

Consequently, we can estimate

1

1⇐ ς
H+f†(xϖ) ⇐

1

1+ ς
H≃f‡(x

↓
ϖ)

≃


1

1⇐ ς
Aω

→
1,ϑ,ω

→
2,ϑ

f†(xϖ) ⇐
1

1+ ς
Aω

→
1,ϑ,ω

→
2,ϑ

f‡(x
↓
ϖ)



︸ ︷︷ ︸
(1)

+


1

1⇐ ς
Bω

→
1,ϑ,ω

→
2,ϑ

f†(xϖ) ⇐
1

1+ ς
Bω

→
1,ϑ,ω

→
2,ϑ

f‡(x
↓
ϖ)



︸ ︷︷ ︸
(2)

+


1

1+ ς
I(x↓ϖ, ω→1,ϖ, ω→2,ϖ) ⇐

1

1⇐ ς
I(xϖ, ω→1,ϖ, ω→2,ϖ)



︸ ︷︷ ︸
(3)

.

We treat (1), (2), and (3) separately. Note, that due the compactness of Θ1 and Θ2, the
sequences of optimizers ω→1,ϖ and ω→2,ϖ converge to some ω→1 and ω→2, respectively.
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Estimate (1): Using the expansions of A+f† and A≃f‡ obtained in Lemma 6.6.4 we
find

Aω
→
1,ϑ,ω

→
2,ϑ

f†(xϖ)

1⇐ ς
⇐

Aω
→
1,ϑ,ω

→
2,ϑ

f‡(x↓ϖ)

1+ ς
(6.6.15)

=
Aω

→
1,ϑ,ω

→
2,ϑ,+

f†(xϖ)

1⇐ ς
⇐

Aω
→
1,ϑ,ω

→
2,ϑ,≃f‡(x

↓
ϖ)

1+ ς
≃ Aω

→
1,ϑ,ω

→
2,ϑ

f1(xϖ) ⇐ Aω
→
1,ϑ,ω

→
2,ϑ

f2(x
↓
ϖ)

+
ς

1⇐ ς
(1⇐ ϕ)Aω

→
1,ϑ,ω

→
2,ϑ,+

(V ∅ sxϑ≃yϑ) (xϖ)

+
ς

1+ ς
(1⇐ ϕ)Aω

→
1,ϑ,ω

→
2,ϑ,+

(
V ∅ sx↗ϑ≃y

↗
ϑ

)
(x↓ϖ)

+
ς

1⇐ ς
ϕAω

→
1,ϑ,ω

→
2,ϑ

(Ξ1 ∅ sxϑ≃yϑ) (xϖ)

+
ς

1+ ς
ϕAω

→
1,ϑ,ω

→
2,ϑ

(
Ξ2 ∅ sx↗ϑ≃y

↗
ϑ

)
(x↓ϖ).

We first consider the terms involving V and Ξ. By Proposition 6.5.1 (j), we have that,
along subsequences, the optimizers (xϖ, yϖ, yϖ,0, y↓ϖ,0, y

↓
ϖ, x

↓
ϖ) converge to (z, z, z, z, z, z)

with z ↔ K̂ and pϖ, p↓ϖ ↔ B1/ϖ(0). Then, using the compatibility of Aω1,ω2 , cf. Assumption
6.3.5, we find

lim inf
ϖ↔↗

ς

1⇐ ς
(1⇐ ϕ)Aω

→
1,ϑ,ω

→
2,ϑ,+

(V ∅ sxϑ≃yϑ) (xϖ)

+
ς

1+ ς
(1⇐ ϕ)Aω

→
1,ϑ,ω

→
2,ϑ,+

(
V ∅ sx↗ϑ≃y

↗
ϑ

)
(x↓ϖ)

+
ς

1⇐ ς
ϕAω

→
1,ϑ,ω

→
2,ϑ

(Ξ1 ∅ sxϑ≃yϑ) (xϖ)

+
ς

1+ ς
ϕAω

→
1,ϑ,ω

→
2,ϑ

(
Ξ2 ∅ sx↗ϑ≃y

↗
ϑ

)
(x↓ϖ)

≃ 2ς

1⇐ ς2


(1⇐ ϕ)Aω

→
1 ,ω

→
2 ,+

(V )(z) + ϕAω
→
1 ,ω

→
2
(Ξz,0,z)(z)


. (6.6.16)

Next, we consider the second line in (6.6.15). Using that, for all ω1, ω2, Aω1,ω2 has a con-
trolled growth coupling Âω1,ω2 with a modulus uniform in ω1 and ω2 satisfying the max-
imum principle and Proposition 6.5.3 (a), we find

Aω
→
1,ϑ,ω

→
2,ϑ

f1(xϖ) ⇐ Aω
→
1,ϑ,ω

→
2,ϑ

f2(x
↓
ϖ) = Âω

→
1,ϑ,ω

→
2,ϑ

(f1 F f2) (xϖ, x
↓
ϖ)

≃ Âω
→
1,ϑ,ω

→
2,ϑ

φ
2
d2
xϑ≃yϑ,x↗ϑ≃y

↗
ϑ


(xϖ, x

↓
ϖ)

≃ ε
Â,K̂


φ
(
d(xϖ, yϖ) + d(yϖ, y

↓
ϖ) + d(y↓ϖ, x

↓
ϖ)
)2

+
(
d(xϖ, yϖ) + d(yϖ, y

↓
ϖ) + d(y↓ϖ, x

↓
ϖ)
) 

,(6.6.17)

which converges to 0 as φ ↑ → by Proposition 6.5.1 (g).
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Estimate (2): By using the expansions of B+f† and B≃f‡ obtained in Lemma 6.6.4, we
find

Bω
→
1,ϑ,ω

→
2,ϑ

f†(xϖ)

1⇐ ς
⇐

Bω
→
1,ϑ,ω

→
2,ϑ

f‡(x↓ϖ)

1+ ς
=

Bω
→
1,ϑ,ω

→
2,ϑ,+

f†(xϖ)

1⇐ ς
⇐

Bω
→
1,ϑ,ω

→
2,ϑ,≃f‡(x

↓
ϖ)

1+ ς

≃ Bω
→
1,ϑ,ω

→
2,ϑ

f̂1(yϖ) ⇐ Bω
→
1,ϑ,ω

→
2,ϑ

f̂2(y
↓
ϖ)

+
1

1⇐ ς


Bω

→
1,ϑ,ω

→
2,ϑ,+

f†(xϖ) ⇐ Bω
→
1,ϑ,ω

→
2,ϑ,+

f̂†(yϖ)


+
1

1+ ς


Bω

→
1,ϑ,ω

→
2,ϑ,≃f̂‡(y

↓
ϖ) ⇐ Bω

→
1,ϑ,ω

→
2,ϑ,≃f‡(x

↓
ϖ)


+
ς

1⇐ ς
(1⇐ ϕ)Bω

→
1,ϑ,ω

→
2,ϑ,+

V (yϖ) +
ς

1+ ς
(1⇐ ϕ)Bω

→
1,ϑ,ω

→
2,ϑ,+

V (y↓ϖ)

+
ς

1⇐ ς
ϕBω

→
1,ϑ,ω

→
2,ϑ

Ξ1(yϖ) +
ς

1+ ς
ϕBω

→
1,ϑ,ω

→
2,ϑ

Ξ2(y
↓
ϖ).

Again, by sending φ ↑ →, using Proposition 6.5.1 (j), and the compatibility of Bω1,ω2 , cf.
Assumption 6.3.5, we obtain that

lim inf
ϖ↔↗

ς

1⇐ ς
(1⇐ ϕ)Bω

→
1,ϑ,ω

→
2,ϑ,+

V (yϖ) +
ς

1+ ς
(1⇐ ϕ)Bω

→
1,ϑ,ω

→
2,ϑ,+

V (y↓ϖ) (6.6.18)

+
ς

1⇐ ς
ϕBω

→
1,ϑ,ω

→
2,ϑ

Ξ1(yϖ) +
ς

1+ ς
ϕBω

→
1,ϑ,ω

→
2,ϑ

Ξ2(y
↓
ϖ)

≃ 2ς

1⇐ ς2


(1⇐ ϕ)Bω

→
1 ,ω

→
2 ,+

(V )(z) + ϕBω
→
1 ,ω

→
2
(Ξz,0,z)(z)


.

Using that, for all ω1, ω2, Bω1,ω2 is semi-monotone with Bω1,ω2 and the expressions for
the gradients obtained in Proposition 6.5.3, we find that

1

1⇐ ς


Bω

→
1,ϑ,ω

→
2,ϑ,+

f†(xϖ) ⇐ Bω
→
1,ϑ,ω

→
2,ϑ,+

f̂†(yϖ)


+ Bω
→
1,ϑ,ω

→
2,ϑ

f̂1(yϖ) ⇐ Bω
→
1,ϑ,ω

→
2,ϑ

f̂2(y
↓
ϖ)

+
1

1+ ς


Bω

→
1,ϑ,ω

→
2,ϑ,≃f̂‡(y

↓
ϖ) ⇐ Bω

→
1,ϑ,ω

→
2,ϑ,≃f‡(x

↓
ϖ)


=
1

1⇐ ς


Bω

→
1,ϑ,ω

→
2,ϑ

(xϖ,φ(xϖ ⇐ yϖ)) ⇐ Bω
→
1,ϑ,ω

→
2,ϑ

(yϖ,φ(xϖ ⇐ yϖ))


+ Bω
→
1,ϑ,ω

→
2,ϑ

(yϖ,φ(yϖ ⇐ y↓ϖ)) ⇐ Bω
→
1,ϑ,ω

→
2,ϑ

(y↓ϖ,φ(yϖ ⇐ y↓ϖ))

+
1

1+ ς


Bω

→
1,ϑ,ω

→
2,ϑ

(yϖ,φ(y
↓
ϖ ⇐ x↓ϖ)) ⇐ Bω

→
1,ϑ,ω

→
2,ϑ

(x↓ϖ,φ(y
↓
ϖ ⇐ y↓ϖ))


. (6.6.19)

By the semi-monotonicity property of Bω1,ω2 , (6.6.19) is bounded by

1

1⇐ ς
εB,K̂(d(xϖ, yϖ) + φd2(xϖ, yϖ)) + εB,K̂(d(yϖ, y

↓
ϖ) + φd2(yϖ, y

↓
ϖ))

+
1

1+ ς
εB,K̂(d(y↓ϖ, x

↓
ϖ) + φd2(y↓ϖ, x

↓
ϖ)). (6.6.20)

Thus, taking the lim infϖ↔↗ gives 0 by Proposition 6.5.1 (g).
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Estimate (3): We have

1

1+ ς
I(x↓ϖ, ω→1,ϖ, ω→2,ϖ) ⇐

1

1⇐ ς
I(xϖ, ω→1,ϖ, ω→2,ϖ)

=

I(x↓ϖ, ω→1,ϖ, ω→2,ϖ) ⇐ I(xϖ, ω→1,ϖ, ω→2,ϖ)



⇐ ς

1⇐ ς
I(xϖ, ω→1,ϖ, ω→2,ϖ) ⇐

ς

1+ ς
I(x↓ϖ, ω→1,ϖ, ω→2,ϖ).

By assumption, I admits a modulus of continuity εI,K , uniform in ω1, ω2, implying

1

1+ ς
I(x↓ϖ, ω→1,ϖ, ω→2,ϖ) ⇐

1

1⇐ ς
I(xϖ, ω→1,ϖ, ω→2,ϖ)

≃ εI,K̂(d(xϖ, x
↓
ϖ))⇐

ς

1⇐ ς
(1⇐ϕ)I(xϖ, ω→1,ϖ, ω→2,ϖ)⇐

ς

1+ ς
(1⇐ϕ)I(x↓ϖ, ω→1,ϖ, ω→2,ϖ).

Sending φ ↑ →, using the lower semi-continuity of I, and using Proposition 6.5.1 (j),
we find

lim inf
ϖ↔↗

1

1+ ς
I(x↓ϖ, ω→1,ϖ, ω→2,ϖ) ⇐

1

1⇐ ς
I(xϖ, ω→1,ϖ, ω→2,ϖ)

≃ lim inf
ϖ↔↗

εI,K̂(d(xϖ, x
↓
ϖ))

+ lim sup
ϖ↔↗


⇐ ς

1⇐ ς
(1⇐ ϕ)I(xϖ, ω→1,ϖ, ω→2,ϖ) ⇐

ς

1+ ς
(1⇐ ϕ)I(x↓ϖ, ω→1,ϖ, ω→2,ϖ)



≃ ⇐ 2ς

1⇐ ς2
(1⇐ ϕ)I(z, ω→1, ω→2).

(6.6.21)

Conclusion: Putting together (6.6.16), (6.6.17), (6.6.18), (6.6.20), and (6.6.21), we can
conclude that

lim inf
ϖ↔↗

H+f†(xϖ)

1⇐ ς
⇐

H≃f‡(x↓ϖ)

1+ ς

≃ 2ς

1⇐ ς2


(1⇐ ϕ)Aω

→
1 ,ω

→
2 ,+

V (z) + ϕAω
→
1 ,ω

→
2
(Ξz,0,z)(z)



+
2ς

1⇐ ς2


(1⇐ ϕ)Bω

→
1 ,ω

→
2 ,+

V (z) + ϕBω
→
1 ,ω

→
2
(Ξz,0,z)(z)



⇐ 2ς

1⇐ ς2
(1⇐ ϕ)I(z, ω→1, ω→2)

≃ 2ς

1⇐ ς2
(1⇐ ϕ)

⌈
(Aω

→
1 ,ω

→
2 ,+

+ Bω
→
1 ,ω

→
2 ,+

)(V ) ⇐ I(·, ω→1, ω→2)
⌉

+
2ς

1⇐ ς2
ϕ
⌈
(Aω

→
1 ,ω

→
2
+ Bω

→
1 ,ω

→
2
)(Ξ·,0,·)

⌉

K̂ω

≃ ς

(
2

1⇐ ς2
cV +

2

1⇐ ς2
ϕ
⌈
(Aω

→
1 ,ω

→
2
+ Bω

→
1 ,ω

→
2
)(Ξ·,0,·)

⌉

K̂ω



≃ ς
(
C0
ϑ + Cϑ,φ

)
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with cV given by (6.3.1), and C0
ϑ and Cϑ,φ defined via the last two lines. The estimate on

the difference of Hamiltonians (6.6.14) and thus (6.6.4) of Proposition 6.6.3 are satisfied.
As a consequence our final estimate (6.3.3) and, consequently, the strong comparison
principle follow.

6.7 A P P E N D I C E S

6.7.1 The Jensen perturbation

The main result of this section is Proposition 6.7.1 that allows us to perturb a semi-
convex function with a unique extreme point such that we get a new extreme point
close by, in which the function is twice differentiable. The result is a variant of the well-
known perturbation result by Jensen, see e.g. [CIL92, Lemma A.3].

Proposition 6.7.1. Fix ⇀ > 0. Let ϑ : E ↓ E ↑ R be bounded above and semi-convex with
convexity constant 6 ↗ 1. Suppose that (x0, y0) is an optimizer of

ϑ(x0, y0) = BϑC .

Let R > 0, {7z,p}z↑E,p↑Rq ⇑ C(E) and {▷z}z↑E ⇑ C1(E) and semi-concavity constant 62 be
as in Definition 6.2.11.

Fix ς1, ς2 > 0 such that 1⇐ (ς1+ ς2)62 > 0. Furthermore, define for p = (p1, p2) ↔ R
q↓R

q

the perturbed functions

ϑp(x, y) := ϑ(x, y) ⇐ ς1 (▷x0(x) + 7x0,p1(x)) ⇐ ς2 (▷y0(y) + 7y0,p2(y)) . (6.7.1)

Then there exist p1, p2 ↔ B⇀(0), and a pair (x1, y1) ↔ B⇀(x0) ↓ B⇀(y0) globally maximizing
ϑp at which ϑp is twice differentiable.

Corollary 6.7.2. For ⇀ > 0, p and (x1, y1) as in Proposition 6.7.1, we have

0 ≃ ⇐ς1 (▷x0(x1) + 7x0,p1(x1)) ⇐ ς2 (▷y0(y1) + 7y0,p2(y1)) ≃ ς1⇀ + ς⇀2, (6.7.2)

and

BϑC ≃ ϑp,ϑ(x1, y1) ≃ BϑC+ ς1⇀ + ς⇀2. (6.7.3)

The proof of the perturbation proposition is based partly on results from set-valued
analysis. To facilitate the proof, we first introduce the necessary auxiliary definitions
and results.

Definition 6.7.3. A set-valued function Γ : A ↭ B is called upper hemi-continuous at
a ↔ A, if, for all open neighbourhoods V ⇓ B of Γ(a) (meaning that Γ(a) ⇓ V ), there
exists a neighbourhood U of a such that, for all x ↔ U , we have Γ(x) ⇓ V .

If A,B are metric, this can equivalently formulated in terms of sequences: A set-
valued map Γ : A ↭ B, which takes closed values, is upper hemi-continuous at a,
if, for any sequence an ↑ a and bn ↔ Γ(an) satisfying bn ↑ b, we have b ↔ Γ(a).

We say that Γ is upper hemi-continuous, if it is upper hemi-continuous at all points.
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Lemma 6.7.4. Let K be a compact metric space and let Ξ be a metric space.
For any ▷ ↔ Ξ, let ϑ2 ↔ C(K) and suppose that the map ▷ ∝↑ ϑ2 is continuous from Ξ to

C(K), endowed with the supremum norm on K. Then the set-valued map Opt : Ξ ↭ K defined
by

Opt(▷) :=
{
x ↔ K

∣∣ϑ2 has a maximum at x
}

is upper hemi-continuous.

Proof. The result follows immediately from Berge’s Maximum Theorem [AB06, Theo-
rem 17.31] with ▷ ∝↑ image

↽ϱ
(K) being the relevant set-valued map.

Remark 6.7.5. In the proof below, we will make use of the notion of a lim sup of sets. For
a sequence of sets (An)n↑N denote

lim sup
n↔↗

An =
⋂

n↑N



m⇒n

Am

to be interpreted as x ↔ lim supn↔↗An if and only if there are infinitely many n ↔ N

such that x ↔ An.

The following proof is a variant of the proof of [CIL92, Lemma A.3] and [CS04, Theo-
rem 2.3.3].

Proof of Proposition 6.7.1. For notational convenience, we will write w = (x, y) and w0 =
(x0, y0). Let R > 0 and {7z,p}z↑E,p↑Rq ⇑ C(E) and {▷z}z↑E ⇑ C(E) be two collections of
functions as in Definition 6.2.11. Without loss of generality, we can assume that R ↗ ⇀.

We start out by making z0 the unique optimizer by replacing ϑ by

ϑ̂(w) = ϑ(w) ⇐ ς1▷x0(x) ⇐ ς2▷y0(y).

Note that as 1⇐ (ς1+ς2)62 > 0 the map ϑ̂ is semi-convex and bounded from above with
a unique optimizer w0.

Our next step is to locally, linearly perturb ϑ̂ to obtain ϑp as in equation (6.7.1). This
procedure produces a new optimizer close to w0 in which the perturbed function ϑp is
twice differentiable.

To further facilitate the analysis of optimizers, we smoothen out ϑ. To that end, let
C1 : Cb(E) ↑ C2

b
(E) be a mollifier with sup1>0 ||C1f || < → and C1f ↑ f uniformly on

compacts as 0 ⊥ 0. Define

ϑp,1(w) := (C1ϑ)(w) ⇐ ς1 (▷x0(x) + 7x0,p1(x)) ⇐ ς2 (▷y0(y) + 7y0,p2(y)) ,

where we will read C0 = such that ϑp,0 = ϑp and ϑ0,0 = ϑ̂.
We next study the optimizers for the map (p, 0) ∝↑ ϑp,1 on Ξ = (B1(0) ↓ B1(0))↓ [0, 1]

using Berge’s Maximum Theorem with K = BR(w0). Set

Opt(p, 0) :=

w ↔ BR(w0)

∣∣∣ϑp,1 has a local maximum at w ↔ BR(w0)

.
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First note that the local nature of the problem can be removed due to the fact that the
perturbations all vanish in w0, whereas they add up to something negative outside the
ball BR(w0) by Definition 6.2.11 (d), implying that

Opt(p, 0) =

w ↔ BR(w0)

∣∣∣ϑp,1 has a global maximum at w

. (6.7.4)

Applying Lemma 6.7.4 to (p, 0) ∝↑ ϑp,1 on Ξ = (B⇀(0) ↓ B⇀(0)) ↓ [0, 1] with K =

BR(w0), we find that the set-valued map Opt : Ξ ↭ K ⇓ R
q ↓ R

q, as defined above, is
upper hemi-continuous in the variables (p, 0). We can thus find a closed set U with 0 in
its interior satisfying

U ⇓ B⇀(0) ↓ B⇀(0) (6.7.5)

and 00 > 0 such that, if p = (p1, p2) ↔ U and 0 < 00, then

Opt(p, 0) ⇓ Opt(0, 0) ℵ B⇀(0) = B⇀(w0), (6.7.6)

as the unique optimizer of ϑ̂ is w0.
We next aim to show that the set of such optimizers has positive Lebesgue measure

m. Recall that 6 := 1⇐ (ς1 + ς2)62 > 0 is the semi-convexity constant of ϑ̂. In particular,
we will proceed to show the following steps.

Step 1: For any 0 ↔ (0, 00) we have m(Opt(U , 0)) ↗ |6|≃2dm(U) > 0.
Step 2: We take the limit 0 ⊥ 0 to obtain m(Opt(U , 0)) ↗ |6|≃2dm(U) > 0.

Step 1. By definition, all perturbations are at least once continuously differentiable on
BR(w0). It follows that for p ↔ U , 0 ↔ (0, 00) and w ↔ Opt(p, 0) we have that D(C1ϑ)(z) =
p. This, in turn, implies that, for fixed 0 ↔ (0, 00),

U ⇓ (Opt(·, 0))≃1 (Opt(U , 0)) ⇓ D(C1ϑ)(Opt(U , 0)). (6.7.7)

We next argue towards a lower bound on the measure of Opt(U , 0) for 0 ↔ (0, 00).
We exclude 0 = 0 here, due to the possible non-smoothness of ϑ. As the convolution
operator is taking averages, the semi-convexity of ϑ carries over to C1ϑ, which yields

⇐6I2d ≃ D2(C1ϑ)(w) (6.7.8)

for all w ↔ E2. On the other hand, if w ↔ Opt(U , 0), we know that there is some p ↔ U
such that w maximizes ϑp,1, implying that D2(C1ϑ)(w) ≃ 0. Applying (6.7.7), the chain
rule, and (6.7.8), we thus obtain that, for any 0 ↔ (0, 00),

m(U) ≃ m(D(C1ϑ)(Opt(U , 0)))

=
∫

Opt(U ,1)

∣∣detD2(C1ϑ)(w)
∣∣ dw ≃ m(Opt(U , 0))|6|2q

leading to the lower bound

0 < |6|≃2qm(U) ≃ m(Opt(U , 0)), (6.7.9)



190 S E C O N D O R D E R H A M I LT O N - J A C O B I E Q U AT I O N S

as U has non-empty interior, establishing the claim of Step 1.
Step 2. Next, we transfer our bound to m(Opt(U , 0)). We first establish that

lim sup
1′0

Opt(U , 0) ⇓ Opt(U , 0), (6.7.10)

see Remark 6.7.5 for the definition of the lim sup of sets. To that end, we pick an ele-
ment w ↔ lim sup1′0 Opt(U , 0). By definition we can find a sequence 0n ⊥ 0 such that
w ↔ Opt(U , 0n) for all n ↔ N. Then, there are pn ↔ U such that w is an optimizer
for (ϑpn,1n)n↑N

. By the closedness of U and (6.7.5), U is compact, and we can therefore
extract a subsequence from (pn)n↑N that converges to some p0 ↔ U . By upper semi-
continuity of the map (p, 0) ∝↑ ϑp,1, see Lemma 6.7.4, we find that w maximizes ϑp0 , or
in other words, w ↔ Opt(U , 0).

Thus, by (6.7.10), it suffices to lower bound the volume of lim sup1′0 Opt(U , 0). As a
first step, note that (6.7.9) leads to

m






1↗∈1

Opt(U , 0↓)



 ↗ |6|≃2qm(U)

for any 0 ↔ (0, 00). Consequently, as

lim sup
1′0

Opt(U , 0) =
⋂

1↑(0,10)



1↗∈1

Opt(U , 0↓),

by continuity from above of the Lebesgue measure m, we find that

m


lim sup

1′0
Opt(U , 0)


= lim

1′0
m






1↗∈1

Opt(U , 0↓)



 ↗ |6|≃2qm(U).

By (6.7.10), we conclude that

m(Opt(U , 0)) ↗ |6|≃2qm(U) > 0,

establishing the claim of Step 2.
We proceed by verifying that we can now find p ↔ U with an optimizer z1 in B⇀(z0)

in which ϑp is twice differentiable.
First of all, recall that, by (6.7.6), we have

Opt(U , 0) ⇓ B⇀(z0).

Furthermore, by Alexandrov’s theorem [CS04, Theorem 2.3.1], the set of points in B⇀(z0)
where ϑp is twice differentiable has full measure. As the measure of Opt(U , 0) is positive,
it follows that there exist z1 ↔ B⇀(z0) and p ↔ U such that ϑp is twice differentiable in
z1 and has a local maximum at z1 in BR(z0). Finally, recall from (6.7.4) that the local
optimizer is in fact a global optimizer. This establishes the claim.
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Proof of Corollary 6.7.2. We stay in the context of Proposition 6.7.1 and proceed with the
proof of (6.7.3). By construction, we have

BϑC = ϑ(x0, y0) = ϑp,ϑ(x0, y0) ≃ Bϑp,ϑC = ϑp,ϑ(x1, y1). (6.7.11)

This implies the lower bound of (6.7.2). Note that by the properties of ▷x0 , ▷y0 , 7x0,p1 and
7y0,p2 we have

⇐ ς1 (▷x0(x1) + 7x0,p1(x1)) ⇐ ς2 (▷y0(y1) + 7y0,p2(y1))

≃ ς1|p1|d(x0, x1) + ς2|p2|d(y0, y1)
≃ ς1⇀ + ς2⇀,

leading to the upper bound of (6.7.2). Consequently,

ϑp,ϑ(x1, y1) ≃ ϑ(x1, y1) + ς1⇀ + ς2⇀

≃ BϑC+ ς1⇀ + ς2⇀.
(6.7.12)

Combining (6.7.11) and (6.7.12), finally yields (6.7.3).

6.7.2 Smooth test function construction

The main result of this section is Lemma 6.7.6, in which we construct a smooth test func-
tion that lies between a function that is twice differentiable in one point and a perturbed
version of that function.

Lemma 6.7.6. Let Π1, Π0
1, Π2, and Π0

2 be as in the proof of Proposition 6.5.3.
Then, there exist f1, f2 ↔ C↗(E) such that, for all y ↔ E,

Π1(y) ≃f1(y) ≃ Π0
1(y),

Π2(y) ↗f2(y) ↗ Π0
2(y)

with equality only in yϖ and y↓ϖ, respectively.

Proof. As in the proof of Proposition 6.5.3, we only consider the case

Π1(y) ≃ f1(y) ≃ Π0
1(y),

for y ↔ E with equality only in yϖ, since the other statement follows analogously.
Our goal is to find f1, by first constructing a function that is squeezed between Π1 and

Π0
1, using the Whitney Extension Theorem [H0̈3, Theorem 2.3.6], and then modifying it

to obtain f1.
Recall that, by construction, we have that

Π1(y) < Π0
1(y) for y ↔ E \ {yϖ}
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and

Π1(yϖ) = Π0
1(yϖ), DΠ1(yϖ) = DΠ0

1(yϖ), D2Π1(yϖ) < D2Π0
1(yϖ).

We apply the Whitney Extension Theorem to 1
2(Π1 + Π0

1) on the closed set A = {yϖ},
yielding a function ↼1 ↔ C2(E) such that Π1 ≃ ↼1 ≃ Π0

1 on B21(yϖ) for some 0 > 0 with
equality only in yϖ. Inspecting the construction of ↼1 in the proof of [Whi34, Theorem
II], we find that ↼1 ↔ C↗(E).

Next, we modify ↼1 such that the resulting function stays between Π1 and Π0
1 on all

of E. As smooth functions are dense in the set of continuous functions, we can find a
function ↼2 ↔ C↗(E) such that Π1 < ↼1 < Π0

1 on E \B1(yϖ).
Then, defining

f1(y) = 8(y)↼1(y) + (1⇐ 8(y))↼2(y),

where 8 is a smooth function that is 1 on B1(yϖ) and 0 outside of B21(yϖ), for example 8
as defined as point (3) on [Spi70, p. 33]. This concludes the proof.

6.7.3 Convergence of integrals

Lemma 6.7.7. Let X be a Polish space, W : X ↑ (0,→) be a continuous function, and 9n, 9↗
be non-negative Borel measures with


X W d9n < → for all n ↔ N and

lim
n↔↗

∫
ϑ d9n =

∫
ϑ d9↗ ↔ R (6.7.13)

for every function ϑ ↔ C(X ) with |ϑ(x)| ≃ W (x) for all x ↔ X . Moreover, let ϑn,ϑ↗ ↔ C(X )

with ϑn ↑ ϑ↗ uniformly on compacts and supn↑N supx↑X
|↽n(x)|
W (x) < →. Then,

lim
n↔↗

∫
ϑn d9n =

∫
ϑ↗ d9↗.

Proof. By assumption, the family µn := Wd9n satisfies Cµ := supn↑N µn(X ) < → and

C↽ := sup
n↑N

sup
x↑X

|ϑn(x) ⇐ ϑ↗(x)|
W (x)

< →.

Using the fact that a function ϑ ↔ C(X ) satisfies |ϑ(x)| ≃ W (x) for all x ↔ X if and only
if ϑ = W↼ for some ↼ ↔ Cb(X ), it follows that µn ↑ µ↗ := Wd9↗ weakly. In particular,
the family (µn)n↑N is tight. Hence, for all ς > 0, there exists a compact set Kϑ ⇓ X such
that

C↽µn
(
X \Kϑ

)
<

4

3
for all n ↔ N.

Now, let ς > 0. By (6.7.13) and since ϑn ↑ ϑ↗ uniformly on compacts and W is contin-
uous, there exists some n0 ↔ N such that

Cµ sup
x↑Kω

|ϑn(x) ⇐ ϑ↗(x)|
W (x)

<
ς

3
and

∣∣∣∣
∫

ϑ↗ d9n ⇐
∫

ϑ↗ d9↗

∣∣∣∣ <
ς

3
.
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We thus obtain that
∣∣∣∣
∫

ϑn d9n ⇐
∫

ϑ↗ d9↗

∣∣∣∣ ≃
∫ ∣∣ϑn ⇐ ϑ↗

∣∣ d9n +
∣∣∣∣
∫

ϑ↗ d9n ⇐
∫

ϑ↗ d9↗

∣∣∣∣

≃
∫

Kω

∣∣ϑn ⇐ ϑ↗
∣∣ d9n +

∫

X\Kω

∣∣ϑn ⇐ ϑ↗
∣∣ d9n +

ς

3

≃ Cµ

|ϑn(x) ⇐ ϑ↗(x)|
W (x)

+ C↽µn
(
X \K▷

)
+

ς

3
< ς

for all n ↔ N with n ↗ n0. The proof is complete.

6.7.4 Proof of Lemma 6.5.2

Proof. For the proof of (a), note that, for any x, y ↔ E, we have

u(x) ⇐ φ

2
d2(x, y) ≃ u(x).

This implies that

BPϖ[u]C =
⌈
u⇐ φ

2
d2
⌉
≃ BuC . (6.7.14)

On the other hand, we have

u(y) ≃
⌈
u⇐ φ

2
d2(·, y)

⌉
= Pϖ[u](y).

It follows that

DuE ≃ DPϖ[u]E . (6.7.15)

Now, (a) follows by (6.7.14) and (6.7.15). Part (b) is equivalent to

Pϖ[u] ≃ u ≃ Pϖ[u] on E,

which is immediately clear from the definitions of sup- and inf-convolutions. Part (c)
follows similarly from the definitions. For the proof of (d), let y0 ↔ E. Then, since d is
the Euclidean metric, we find

Pϖ[u](y) +
φ

2
d2(y, y0) =

⌈
u+ φ ↖y ⇐ y0, ·⇐ y0↙ ⇐

φ

2
d2(·, y0)

⌉
,

where the right-hand side is convex as it is a supremum over affine functions. By Propo-
sition 2.1.5 and Theorem 2.1.7 of [CS04] the claim follows. Lastly, (e) follows from The-
orem 3.4.4 of [CS04] by noting that the sets over which can be optimized are compact
due to the boundedness of u and v.
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6.8 C O N C L U S I O N S E F U T U R E P E R S P E C T I V E S

In this chapter, we established a comparison principle for viscosity solutions to second-
order Hamilton-Jacobi equations, including Hamilton-Jacobi-Bellman and Isaacs equa-
tions, in the presence of general partial integro-differential operators. Our approach pro-
vided a novel perspective on the classical doubling-of-variables method by formulating
the Ishii-Crandall Lemma within a test function framework. This allowed us to system-
atically handle non-local integral operators, including those associated with Lévy pro-
cesses. Additionally, we introduced an adaptation of probabilistic coupling techniques
to translate key estimates on the difference of Hamiltonians, thereby unifying the treat-
ment of differential, difference, and integral operators.

We conclude with some interesting future directions:
• Our results have relied on bounded semi-continuous viscosity solutions. A natu-

ral extension would be to explore unbounded solutions using Lyapunov control
methods. This would allow our framework to accommodate a wider range of prob-
lems in stochastic control and large deviations.

• We have focused exclusively on the elliptic case. However, it is likely that our re-
sults can be extended to the parabolic setting by adapting the test function frame-
work developed for first-order equations (see Chapter 4) to the second-order case.
In particular, a time-dependent version of our arguments needs to be developed.

• Our study has considered Hamilton-Jacobi-Bellman and Isaacs equations with
compact control sets and cost functions independent of momenta. Extending these
results to cases with non-compact control sets and strong coupling regimes, where
the cost function explicitly depends on momenta, presents an interesting chal-
lenge. However, given the success of similar techniques in the first-order case, we
do not anticipate major difficulties in adapting our approach to this more general
setting.
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S U M M A RY

This thesis focuses on two main topics: large deviations for Markov processes and the
well-posedness of Hamilton–Jacobi equations.

The first two chapters provide an introduction to both areas. Chapter 1 explores
the mathematical foundations of Hamilton–Jacobi equations, highlighting their appli-
cations in control theory and emphasizing the role of viscosity solutions in handling
situations where classical solutions fail. Chapter 2 introduces large deviations theory,
starting from basic examples and leading to rigorous definitions. A key theme is the con-
nection between large deviations and Hamilton–Jacobi equations, introduced through
the Feng–Kurtz method.

The subsequent chapters present the main research contributions of this thesis. Chap-
ter 3 studies two examples of two-scale Markov processes and applies the Feng–Kurtz
method to establish a large deviations principle.

The first example originates from molecular biology and models the movement of a
motor protein along filaments. We consider a two-component stochastic process (Xt, It),
where Xt represents the protein’s spatial position and It encodes its molecular configu-
ration. The dynamics follow a stochastic differential equation:

dXt = ⇐⇒↼(Xt, It)dt+ dBt,

P


I(t+ ∆t) = j | I(t) = i,X(t) = x


= rij (x)∆t+O(∆t2) as ∆t ↑ 0.

After rescaling the process in space and time by a small parameter ς > 0, we analyze its
behavior as ς ↑ 0. Using the Feng–Kurtz method, we prove a large deviations principle,
which requires establishing a comparison principle for viscosity solutions of a spatially
inhomogeneous Hamilton–Jacobi equation.

The second example, inspired by biochemical reaction networks, involves a two-com-
ponent process Z = (X,Y ), where X and Y represent two molecular species. Assuming
that the number of X-molecules is significantly larger than that of Y -molecules, we
introduce a rescaled process ZN = (XN ,YN ) with a time-scale separation of order N .
Again, applying the Feng–Kurtz method, we derive a large deviations principle for XN

and prove a comparison principle for the associated Hamilton–Jacobi equation.
Chapter 4 transitions to the second theme of this thesis: the well-posedness of Hamil-

ton–Jacobi equations. Motivated by the previous examples, we analyze a general class
of Hamilton–Jacobi equations of the form

H(x, p) = sup
ω↑Θ

Λ(x, p, ω) ⇐ I(x, p, ω).

This Hamiltonian structure encompasses those arising in the large deviations problems
studied earlier. We establish a comparison principle for viscosity solutions, demonstrat-
ing its applicability in a broad setting.
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Chapter 5 extends these results by proving the existence of viscosity solutions for
a general class of Hamilton–Jacobi equations using Lyapunov control techniques. Un-
like traditional approaches, our method relaxes common assumptions such as convex-
ity and coercivity. This allows us to address Hamilton–Jacobi–Isaacs equations, where
the Hamiltonian takes a “sup-inf” or “inf-sup” form.

In the final chapter, Chapter 6, we investigate second-order Hamilton–Jacobi equa-
tions, presenting a novel proof of the comparison principle for viscosity solutions. We
also examine specific cases, including Hamiltonians with a partial integro-differential
structure:

Hf(x) = ↖b(x),⇒f(x)↙+ 1

2
Tr


ΣΣT (x)D2f(x)



+
∫ 

f(x+ z) ⇐ f(x) ⇐ 5
B1(0)(z) ↖z,⇒f(x)↙


µx(dz) +H(⇒f(x)).

This type of operators appear in applications such as financial mathematics (e.g., option
pricing and stock price modeling). Additionally, we discuss Hamilton–Jacobi–Bellman
and Isaacs equations in this context.

Each chapter concludes with remarks and future research directions.



S A M E N VAT T I N G ( D U T C H S U M M A RY )

Dit proefschrift richt zich op twee hoofdonderwerpen: grote afwijkingen voor Markov-
processen en de goed-gesteldheid van Hamilton–Jacobi-vergelijkingen.

De eerste twee hoofdstukken geven een inleiding tot beide onderwerpen. Hoofdstuk
1 behandelt de wiskundige basis van Hamilton–Jacobi-vergelijkingen, met de nadruk op
hun toepassingen in de regeltheorie en de rol van viscositeitsoplossingen bij problemen
waar klassieke oplossingen tekortschieten. Hoofdstuk 2 introduceert de theorie van
grote afwijkingen, beginnend met eenvoudige voorbeelden en geleidelijk overgaand
naar rigoureuze definities. Een centrale rol is weggelegd voor de verbinding tussen
grote afwijkingen en Hamilton–Jacobi-vergelijkingen, geïntroduceerd via de methode
van Feng en Kurtz.

De daaropvolgende hoofdstukken presenteren de belangrijkste onderzoeksbijdragen
van dit proefschrift. Hoofdstuk 3 onderzoekt twee voorbeelden van Markov-processen
met twee tijdschalen en past de methode van Feng en Kurtz toe om een principe van
grote afwijkingen af te leiden.

Het eerste voorbeeld komt voort uit de moleculaire biologie en modelleert de bewe-
ging van een motorproteïne langs filamenten. We beschouwen een stochastisch proces
met twee componenten (Xt, It), waarbij Xt de ruimtelijke positie van het eiwit vertegen-
woordigt en It de moleculaire configuratie aangeeft. De dynamica worden beschreven
door de volgende stochastische differentiaalvergelijking:

dXt = ⇐⇒↼(Xt, It)dt+ dBt, (.0.1)

P


I(t+ ∆t) = j | I(t) = i,X(t) = x


= rij (x)∆t+O(∆t2) als ∆t ↑ 0.

Door het proces te herschalen in ruimte en tijd met een kleine parameter ς > 0, bestu-
deren we het limietgedrag als ς ↑ 0. Met behulp van de methode van Feng en Kurtz
bewijzen we een principe van grote afwijkingen, wat vereist dat we een vergelijkings-
principe voor viscositeitsoplossingen van een ruimtelijk inhomogene Hamilton–Jacobi-
vergelijking vaststellen.

Het tweede voorbeeld, geïnspireerd door biochemische reactienetwerken, beschouwt
een tweedelig proces Z = (X,Y ), waarbij X en Y twee moleculaire soorten vertegen-
woordigen. Aangezien het aantal X-moleculen veel groter is dan dat van Y -moleculen,
introduceren we een herschaald proces ZN = (XN ,YN ), waarbij de tijdschaalscheiding
van orde N is. Opnieuw passen we de methode van Feng en Kurtz toe en leiden we een
principe van grote afwijkingen af voor XN , waarbij we opnieuw een vergelijkingsprin-
cipe voor de bijbehorende Hamilton–Jacobi-vergelijking bewijzen.
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Hoofdstuk 4 richt zich op het tweede hoofdthema van dit proefschrift: de goed-gestel-
dheid van Hamilton–Jacobi-vergelijkingen. Gemotiveerd door de eerdere voorbeelden
analyseren we een algemene klasse Hamilton–Jacobi-vergelijkingen van de vorm

H(x, p) = sup
ω↑Θ

Λ(x, p, ω) ⇐ I(x, p, ω).

Deze Hamiltoniaan omvat ook de structuren die in de eerder bestudeerde problemen
van grote afwijkingen voorkomen. We bewijzen een vergelijkingsprincipe voor viscosi-
teitsoplossingen en tonen de toepasbaarheid ervan in een brede context aan.

Hoofdstuk 5 breidt deze resultaten uit door het bestaan van viscositeitsoplossingen
voor een algemene klasse van Hamilton–Jacobi-vergelijkingen te bewijzen met behulp
van Lyapunov-controletechnieken. In tegenstelling tot traditionele benaderingen ver-
soepelt onze methode veelgebruikte aannames zoals convexiteit en coerciviteit. Dit stelt
ons in staat om ook Hamilton–Jacobi–Isaacs-vergelijkingen te behandelen, waarbij de
Hamiltoniaan een “sup-inf” of “inf-sup” vorm heeft.

In het laatste hoofdstuk, Hoofdstuk 6, onderzoeken we tweede-orde Hamilton–Jacobi-
vergelijkingen en presenteren we een nieuwe bewijsstrategie voor het vergelijkingsprin-
cipe voor viscositeitsoplossingen. We analyseren ook specifieke gevallen, waaronder
Hamiltonianen met een partieel integro-differentiële structuur:

Hf(x) = ↖b(x),⇒f(x)↙+ 1

2
Tr


ΣΣT (x)D2f(x)



+
∫ 

f(x+ z) ⇐ f(x) ⇐ 5
B1(0)(z) ↖z,⇒f(x)↙


µx(dz) +H(⇒f(x)).

Dit type operatoren komt voor in toepassingen zoals financiële wiskunde (bijvoorbeeld
optieprijsbepaling en aandelenkoersmodellen). Daarnaast bespreken we in deze context
ook Hamilton–Jacobi–Bellman- en Isaacs-vergelijkingen.

Elk hoofdstuk sluit af met opmerkingen en toekomstige onderzoeksperspectieven.
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