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Abstract. Evolutionary algorithms (EAs) are well-known to be well
suited for multi-objective (MO) optimization. However, especially in
the case of real-valued variables, classic domination-based approaches
are known to lose selection pressure when approaching the Pareto set.
Indicator-based approaches, such as optimizing the uncrowded hypervol-
ume (UHV), can overcome this issue and ensure that individual solutions
converge to the Pareto set. Recently, a gradient-based UHV algorithm,
known as UHV-ADAM, was shown to be more efficient than (UHV-
based) EAs if few local optima are present. Combining the two tech-
niques could exploit synergies, i.e., the EA could be leveraged to avoid
local optima while the efficiency of gradient algorithms could speed up
convergence to the Pareto set. It is a priori however not clear what would
be the best way to make such a combination. In this work, therefore, we
study the use of a dynamic resource allocation scheme to create hybrid
UHV-based algorithms. On several bi-objective benchmarks, we find that
the hybrid algorithms produce similar or better results than the EA or
gradient-based algorithm alone, even when finite differences are used to
approximate gradients. The implementation of the hybrid algorithm is
available at https://github.com/damyha/uncrowded-hypervolume.

Keywords: Real-valued optimization · Multi-objective · Hybrid
algorithm

1 Introduction

In real-valued multi-objective (MO) optimization, multiple conflicting objectives
need to be optimized. The goal of MO optimization often is to find a diverse set
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of (near-)Pareto optimal solutions, and usually to do so as efficiently as possible.
Evolutionary algorithms (EAs) (e.g. [6,9]) are known to be well suited for MO
optimization [8]. However, in real-valued MO optimization, classic domination-
based approaches lose selection pressure when approaching the Pareto set [2].
Indicator-based approaches, such as optimizing the hypervolume (HV) [21] or the
uncrowded hypervolume (UHV) [12,17,19] can overcome this issue and ensure
that individual solutions converge to the Pareto set. Recently, a gradient-based
UHV algorithm known as UHV-ADAM [10] was shown to be more efficient than
(UHV-based) EAs if few local optima are present. EAs generally remain more
efficient if many local optima are present. Combining the two techniques could
exploit synergies, especially in problems with many local optima, i.e., the EA
could be leveraged to avoid local optima while the gradient algorithms could
be leveraged to efficiently converge to the Pareto set. It is however unknown a
priori, how the techniques should be combined to get the best results.

Attempts in the literature have been successful at creating efficient MO hybrid
algorithms (also known as memetic algorithms). In [18] a hybrid algorithm was
proposed that probabilistically executes different variation operators of EAs.
Gradient algorithms however have not been integrated into their work. In [3] a
domination-based EA was combined with gradient-based algorithms that exploit
either the gradient of a single-objective or a combination thereof that corresponds
to maximum improvement in a multi-objective sense. In [3], resources are further-
more dynamically assigned to the gradient algorithms via a resource allocation
scheme (RAS). A HV-based hybrid algorithm was introduced in [13], which com-
bines both an EA and gradient algorithm that aim to maximize the HV. In contrast
to [3] however, [13] executes the gradient algorithm after the EA is finished. Sup-
plementing the EA during evolution however might be of key value.

In this work, we study the potential of unifying the convergence properties
of UHV-based MO algorithms with a hybrid interleaving optimization scheme.
Specifically, we formulate a new UHV-based hybrid algorithm and show that the
hybrid algorithm is capable of performing better than the worst of the original
algorithms or in some cases better than both algorithms. For this, we combine a
UHV-based EA called UHV-GOMEA [17] with UHV-ADAM [10] by extending
the RAS of [3]. The resulting hybrid algorithm is consequently UHV-based. The
UHV distinguishes itself in that a set of solutions is optimized instead of indi-
vidual solutions. Concretely, this means that the UHV-based hybrid (and EA)
employ a population of solution sets, not a population of individual solutions.
Each solution set is optimized towards the Pareto set. In this work, we empirically
determine the hybrid’s architecture using a similar set of benchmarks as in [17]
and [10]. We then compare the final algorithm with its component algorithms,
UHV-GOMEA and UHV-ADAM, and another UHV-based gradient algorithm
on the Walking Fish Group (WFG) benchmark set [15]. The remainder of this
document is organized as follows: In Sects. 2 and 3 we introduce the UHV indi-
cator and existing UHV algorithms. In Sect. 4 we introduce the hybrid algorithm
with its RAS. The experiments follow in Sect. 5, with a discussion and conclusion
in Sects. 6 and 7 respectively.
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2 Uncrowded Hypervolume Optimization

We consider an MO optimization problem to be a problem where m objective
functions need to be minimized. Let f : X → R

m, with f = [f0, ..., fm−1], be an
m-dimensional vector of objective functions, where X ⊆ R

n is an n-dimensional
search space. In this work we focus on bi-objective problems (m = 2). A solution
x ∈ X , where x = [x0, ..., xn−1], will be called an MO-solution. The goal of MO
optimization is to find a set S of diverse and (near-)Pareto-optimal MO-solutions.
To achieve this, we assess the quality of S via the UHV indicator function in
Eq. 1. The UHV measures the hypervolume (HV), i.e. the area in objective space
enclosed by the non-dominated solutions of S and reference point r = (r0, r1),
and penalizes the dominated solutions of S via the uncrowded distance (ud). We
refer the reader to [17] for the reasons behind scaling and exponentiation opera-
tions on the ud. To calculate the HV, let A be the approximation set that con-
tains all non-dominated solutions of S. A then forms an approximation boundary
∂f(S) in objective space. The reader is referred to [21] on how ∂f(S) is calculated.
The HV is the region encapsulated between approximation boundary ∂f(S) and
reference point r, as shown in Fig. 1. The aforementioned uncrowded distance
ud(x,S) is the closest Euclidean distance between MO-solution x’s objective
values f(x) and the approximation boundary ∂f(S). By definition, ud(x,S) is
zero for a non-dominated solution. Using the UHV indicator, an MO problem is
effectively reformulated as a single-objective problem. The goal of UHV-based
algorithms is to maximize the UHV, as maximization leads directly to the min-
imization of the original objective functions as well improving the diversity [1].

UHV(S) = HV(S) − 1
|S|

∑

x∈S

ud(x,S)m (1)

f0

f1

Uncrowded distance ud(x, )

Reference point r
Approximation set ( )
Dominated solution of 
Hypervolume HV( )
Approximation boundary ∂f( )

Objective space

Fig. 1. Illustration of the UHV of S for an arbitrary bi-objective problem.

3 UHV-Based Algorithms

3.1 UHV-ADAM

UHV-ADAM [10] is based on the single objective stochastic gradient algorithm
ADAM [16]. UHV-ADAM parameterizes a single solution set S of p number of
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MO-solutions as φ0, such that φ0 = [x0, ...,xp−1] ∈ R
p·n. Let F(φ0) be the

operator that assesses the objective functions for every MO-solution in φ0, as
displayed in Eq. 2. UHV-ADAM starts by randomly initializing the MO-solutions
of φ0 and evaluates the objective values (f0(xi), f1(xi)) and objective gradients
(∇f0(xi), ∇f1(xi)) for every MO-solution xi of solution set φ0. Using the objec-
tive values and objective function gradients, the gradient of the UHV indicator
∇UHV(φ0) is calculated. ∇UHV(φ0) indicates how MO-solutions in the search
space must move to (locally) obtain the most UHV gain. The reader is referred to
[10,11] on how ∇UHV(φ0) is exactly calculated. UHV-ADAM then determines
the direction in which solutions are moved in the next iteration via a variance-
corrected weighted average of ∇UHV(φ0). How far the solutions are moved is
determined by step size factor γ and the variance correction. γ is determined by
a shrinking scheme which reduces γ by 1% if no UHV improvement is found.
The initial γ is computed by taking 1% of the average initialization range. This
initialization method will be used later to reinitialize UHV-ADAM within the
hybrid algorithm. UHV-ADAM repeats the process of calculating the UHV gra-
dient and moving the solutions until all computation resources, e.g., a time or
function evaluation budget, have been spent or a desired UHV value has been
reached.

φ0 =

⎡

⎣
x0

...
xp−1

⎤

⎦ → F(φ0) =

⎡

⎣
f(x0)

...
f(xp−1)

⎤

⎦ =

⎡

⎢⎣
f0(x0) ... fm−1(x0)

...
. . .

...
f0(xp−1) ... fm−1(xp−1)

⎤

⎥⎦ (2)

3.2 UHV-GOMEA

The Uncrowded Hypervolume Gene-pool Optimal Mixing Evolutionary Algo-
rithm (UHV-GOMEA) [17] is a recently introduced UHV-based EA that lever-
ages strengths of the single-objective model-based EA known as RV-GOMEA [6].
UHV-GOMEA starts off by randomly initializing and evaluating a population of
N solution sets: φ =

[
φ0, · · · , φN−1

]
, where each individual φi (i = 0, · · · , N −1)

has p MO-solutions. Gradient information is not used nor calculated. UHV-
GOMEA then selects the best 35% of the solution sets with the highest UHV
value as parents. A variation operator is applied on the parents to create new off-
spring solution sets. This process is repeated until termination. UHV-GOMEA’s
variation operator makes use of linkage models. In this work, only the marginal
product linkage model (Lm) is used. Lm greedily rearranges the MO-solutions
of each solution set such that all i’th MO-solution xi (i = 0, . . . , p − 1) of each
solution set is in the same region of the approximation front. It then groups all
variables pertaining to xi into sets. These sets together compromise a FOS (Fam-
ily Of Subsets) denoted as F . For each F , a Gaussian distribution is estimated.
These Gaussians are used to create offspring by sampling MO-solutions from
this marginal product distribution and to inject the new MO-solutions into each
individual of the population. If the UHV improves, changes are kept. Otherwise,
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they are rejected. For more details, including how the Gaussians are estimated
and adapted during evolution, the reader is referred to [6,17].

4 Hybridization

4.1 Changes Made to UHV-ADAM

In this work UHV-ADAM has been extended such that the single-solution set
solving algorithm is compatible with population-based UHV-GOMEA. To this
end, UHV-ADAM steps are applied to population members after a run of UHV-
GOMEA. UHV-ADAM instances are assigned to each solution set of the pop-
ulation, allowing the weighted moving average and γ to be tuned accurately
and differently to the environment of each solution set in the population. UHV-
ADAM instances are reset every time the variation operator of UHV-GOMEA
is applied to prevent γ and the moving averages of UHV-ADAM instances to
become inaccurate if UHV-GOMEA makes big leaps in the search space. Reset-
ting the UHV-ADAM instances comes at the cost of warming up the moving
averages again as well as redetermining γ. γ is re-estimated by creating the
tightest box that contains all MO-solutions of the population and to take 1% of
the average box width. Finally, a RAS will be used to adaptively determine which
algorithm (ADAM or GOMEA) should be used more during a run. After deter-
mining the resource distribution, the resources assigned to UHV-ADAM must
be distributed over the population members. Early experiments have shown that
distributing among the 3 solutions with the highest UHV works the best, but
this will be further investigated in Sect. 5.3.

4.2 Resource Allocation Scheme

The hybrid created in this work is based on [3], where a resource allocation
scheme (RAS) is used. In this work, only UHV-GOMEA and the modified
UHV-ADAM are hybridized. The hybrid algorithm executes UHV-GOMEA and
UHV-ADAM sequentially. UHV-GOMEA is always executed once per genera-
tion, while the RAS determines the number of UHV-ADAM steps. The RAS
of [3] is extended to accommodate the modified UHV-ADAM and works as fol-
lows: let the actual number of evaluations and improvements found in gener-
ation t by optimizer o ∈ {GOMEA,ADAM} be Eo(t) and Io(t) respectively.
An evaluation occurs when one MO-solution xi is evaluated. What entails an
improvement will be discussed later in Experiment 1. Let the number of evalu-
ations and improvements to be considered for redistribution be Eo(t) and Io(t)
respectively. For UHV-ADAM, only the values of the current generation are of
interest, that is: EADAM(t) = EADAM(t) and IADAM(t) = IADAM(t). The number
of evaluations and improvements to be considered for UHV-GOMEA is a sum of
values of previous generations, that is: EGOMEA(t) =

∑t
t′=tmin

EGOMEA(t) and
IGOMEA(t) =

∑t
t′=tmin

IGOMEA(t), where tmin ≥ 0 and tmin is chosen as large
as possible such that EGOMEA(t) ≥ EADAM(t) still holds. UHV-GOMEA includes
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past values for two reasons: it makes the comparison between the gradient algo-
rithm and EA fairer and also allows the number of gradient algorithm calls to
grow [4]. Following [4], the EA’s variation operator is executed once per genera-
tion while the number of executions of the gradient algorithms are related to the
respective reward they receive. The reward, displayed in Eq. 3, is the efficiency
of finding improvements. The reward is 0 if Eo(t) = 0.

Ro(t) =
Io(t)
Eo(t)

(3)

Let the evaluations to be redistributed to UHV-ADAM be ERed
ADAM(t).

ERed
ADAM(t) is the ratio of UHV-ADAM’s contribution to the total reward times

the total sum of evaluations to be considered in generation t as shown in Eq. 4.

ERed
ADAM(t) =

RADAM(t)∑
o′ Ro′(t)

∑

o′
Eo′(t) (4)

To calculate the number of iterations UHV-ADAM can execute with budget
ERed
ADAM(t), let the number of calls be CRed

ADAM(t), where CRed
ADAM(t) can be calcu-

lated by dividing the resources assigned to UHV-ADAM by the average number
of evaluations required per call. The average evaluations per call are estimated
using the resources and calls of generation t, resulting in Eq. 5.

CRed
ADAM(t) =

ERed
ADAM(t)
EADAM(t)
CADAM(t)

=
CADAM(t)
EADAM(t)

ERed
ADAM(t) (5)

To ensure a smooth decrease in the number of gradient calls, memory decay
is implemented in Eq. 6. If the number of calls after redistribution is smaller
than the number of calls executed in the current generation, a running average
is used to decrease the number of calls. If the number of calls increases, memory
decay is not applied in order to stimulate the use of gradient Algorithms [4]. The
(memory) decay factor η is kept at the original value of 0.75 [4].

CRun
ADAM(t + 1) =

{
CRed
ADAM(t), if CRed

ADAM(t) ≥ CRun
ADAM(t)

ηCRun
ADAM(t) + (1 − η)CRed

ADAM(t), otherwise
(6)

The number of UHV-ADAM calls to execute next generation could be set
to CADAM(t + 1) =

⌊CRun
ADAM(t + 1)

⌋
, However, if at some point CADAM(t) =

0 holds, UHV-ADAM cannot be activated any more. As UHV-ADAM could
become useful again in the future, a waiting scheme is used that makes UHV-
ADAM wait WADAM(t) generations. In [4], gradient algorithms are only allowed
to be executed at most once per individual per generation. Furthermore, at most
(population size) N number of total calls can be executed per generation. Early
experiments have shown that executing one UHV-ADAM call per individual does
not substantially affect convergence. For this reason, multiple gradient calls can
be applied to the same individual. Furthermore, a lower bound is introduced
such that if UHV-ADAM is to be executed, it executes at least Cmin

ADAM calls.
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This ensures that the performance of UHV-ADAM is assessed after it warms up
its internal parameters. Cmin

ADAM is set to 10 and has not been further optimized.
The cap on total gradient calls is kept and set to N . The modified waiting
scheme is shown in Eq. 7. UHV-ADAM is forced to wait for some generations
when CRun

ADAM(t + 1) ≤ Cmin
ADAM. Because the extended UHV-ADAM executes a

minimum number of calls, Cmin
ADAM has been added to prevent the waiting scheme

from triggering too early. The actual number of calls to be executed is shown in
Eq. 8, where Cmin

ADAM has also been added to the original Equation.

WADAM(t + 1) =

{⌊ Cmin
ADAM

CRun
ADAM(t+1)

⌋
, if WADAM(t) = 0

WADAM(t) − 1, otherwise
(7)

CADAM(t) =

{
Cmin
ADAM, if WADAM(t − 1) = 1

min(
⌊CRun

ADAM(t)
⌋
, N), otherwise

(8)

5 Experiments

5.1 Experimental Setup

The problems used in the experiments are given in Table 1, where n is the prob-
lem dimensionality. Problem 0 is uni-modal, objective-wise decomposable [17]
and can be quickly solved with gradient Algorithms [10]. Problem 1 is a low
multi-modal problem based on the Rosenbrock function which has pair-wise
dependencies [5]. It is known for pulling algorithms towards the optimum of the
more easily solvable Sphere function while potentially getting solutions stuck in
a local optimum of the Rosenbrock function. Problem 2 contains the multi-modal
Rastrigin [14] problem, where many local optima are evenly scattered around the
solution space. Problem 3 is multi-modal in both objectives where the Pareto
set is enveloped by basins. The Pareto sets of all problems lie on a line between
the respective optima.

Table 1. The bi-objective benchmark problems selected for the experiments.

# Problem name Objectives Properties

0 Convex
bi-sphere

f0 = fsphere(x), with fsphere(x) =
∑n−1

i=0 (xi)
2 Uni-modal,

decomposablef1 = fsphere(x− c0)

c0 = [1, 0, · · · , 0]

1 Convex sphere
Rosenbrock

f0 = 1
n
fsphere(x) Multi-modal,

attraction to f0f1 = 1
n−1

fros(x), with fros(x) =
∑n−1

i=0 (100(xi − x2
i−1)

2 + (1 − xi−1)
2)

2 Convex sphere
Rastrigin

f0 = fsphere(x) Multi-modal

f1 = frast(x− c2), with frast(x) = An +
∑n−1

i=0 x2
i − Acos(2πxi)

A = 10, c2 = [0.5, 0, · · · , 0]

3 Bi-cosine
sphere

f0 = fcos(x), with fcos(x) = fsphere(x)(1 − βcos(2πf |x|)) Multi-modal in
f0 and f1f1 = fcos(x− c0)

β = 0.6, f = 0.1
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5.2 Experiment 1: The Effect of the Improvement Metric

In experiment 1, the problems from Table 1 are used to assess the effects of
different improvement metrics Io(t). Problem 0 is excluded from this experi-
ment as tuning the hybrid algorithm on this easily solvable problem is undesir-
able. Metrics ΔBestUHV and ΔAverageUHV are the difference between the best
found UHV and average population UHV respectively in subsequent generations.
CountUHVImproved and CountBestUHVImproved count the number of times
the UHV of a solution and that of the best solution have improved respectively.
In [3], the number of MO-solutions added to an elitist archive is counted. We
will identify that metric with Bosman2012. Here, we use an infinitely large elitist
archive to encourage counting MO-solutions that improve the UHV, which oth-
erwise are potentially rejected by a (nearly) full, finite sized elitist archive. For
clarity, the elitist archive is not used for anything but the improvement metric.

Gradient calls are applied to the best 3 solutions of the population that have
the highest UHV. The solution set size is set to p = 9. As we do not know the HV of
Pareto set A� analytically, HV(A�) is set to the maximum HV obtained from run-
ning all algorithms 30 times, while initializing the algorithms near the Pareto set.
In experiment 1 we run each improvement metric on problems P = [1, 2, 3] for the
following problem dimensionalities D = [2, 5, 10, 20, 40, 80]. For each dimension,
we determine the best population N by running the following population sizes
N = [40, 80, 160, 320, 640, 1280] 30 times and select the most efficient population
size that reaches a target HV accuracy of ΔHVp < 10−6 with a success rate of at
least 29 out of 30 runs. We consider runs that need more than 107 MO-evaluations
to have failed in finding the target HV. We then compute a performance score,
which sums the relative performance of improvement metric imp with respect to
the best performing improvement metric amongst all improvement metrics I, over
all problems P and problem dimensionalities D in Eq. 9.

score(imp) =
∑

pr∈P

∑

d∈D

median(MO-Evaluations(pr,d, imp))
minimp′∈I(median(MO-Evaluations(pr,d, imp′)))

(9)

Table 2 shows the results. Using ΔBestUHV obtains the best score in all
problems except Problem 1. ΔAverageUHV is consistently performing the worst.
ΔAverageUHV is generally biased towards rewarding UHV-GOMEA as UHV-
ADAM is not designed to efficiently optimize an entire population. Experiment 1
shows that it is not trivial to select an improvement metric that is superior for all
problems. Instead, improvement metrics appear to be problem specific. However,
as ΔBestUHV has the best average score, it will be used in further experiments.

5.3 Experiment 2: The Effect of the Choice of Method to Distribute
Gradient Resources

The effect of the choice of method to distribute the resources assigned to the
modified UHV-ADAM, on the required number of MO-evaluations to reach a
target HV accuracy of ΔHVp < 10−6 and the corresponding success rate (SR)
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Table 2. The scores assigned to each improvement metric. The lower the score, the
better. The numbers in bold are the lowest scores of a category.

Problem ΔBestUHV ΔAverage
UHV

Count
UHVImproved

CountBestUHV
improved

Bosman
2012

Convex sphere &
Rosenbrock (1)

9.0 9.0 8.3 9.2 9.0

Convex sphere &
Rastrigin (2)

6.1 9.8 7.9 6.4 7.1

Bi-cosine sphere (3) 6.1 8.6 7.1 6.4 6.4

Average 7.1 9.1 7.8 7.3 7.5

is shown in Fig. 2. UHV-GOMEA and UHV-ADAM have also been added as a
reference. Table 3 shows the scores obtained by the distribution methods using
Eq. 9. Following experiment 1, Problem 0 is excluded from Table 3. Distribution
methods that are unable to find a population size that meets the SR thresh-
old of 29 out of 30 runs are disqualified and denoted as “DQ”. The evaluation
budget, population optimization method and solution set size are the same as
in experiment 1. The hybrid uses the ΔBestUHV improvement metric. Among
the distribution methods, Best-m-Solutions and Best-m%Population apply gra-
dient calls on the best solutions of the population. The former applies calls to
a fixed number of solutions sets and the latter to a percentage of the popu-
lation. ALL applies calls on all solution sets, starting from φ0, φ1, · · · until all
calls have been distributed. RANDOM applies calls randomly with replacement.
In Fig. 2, UHV-GOMEA is generally amongst the worst performing implementa-
tions along with UHV-ADAM, which fails to reach the target SR threshold in all
problems except Problem 0. In Problem 1 of Fig. 2, the statistics of the successful
runs of UHV-ADAM have been displayed despite not meeting the SR threshold.
Interestingly, in [10], UHV-ADAM is able to solve Problem 1 when initialized
near the global optima ([0, 2]n). In this experiment however, UHV-ADAM gets
stuck on local optima due to a larger initialization range. Among the distribution
methods, Best3Solutions and BestSolution are on average among the best per-
forming distribution methods according to Table 3. Distribution methods: ALL,
RANDOM, Best5%Population and Best10%Population are disqualified for not
reaching the target SR. Interestingly, analysis shows that for Problem 3 the
improvement metric chosen generally remains in the waiting state until most
local optima are no longer within the scope of the population, after which it
maximizes the number of UHV-ADAM calls, resulting in similar performance
amongst the Best-m-Solutions and Best-m%Population distribution methods.
Table 3 clearly shows that concentrating gradient calls on the best solutions is
more efficient than diluting gradient calls over the population.

5.4 Experiment 3: The WFG Benchmark

We use the WFG suite [15] as an independent method to benchmark the results of
the hybrid algorithm. For detailed characteristics of these 9 benchmark functions,
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Fig. 2. The effect of different distribution methods on the required number of MO-
evaluations to reach a target accuracy of ΔHVp < 10−6 for various problems. The
success rate (SR) measures the fraction of runs that reach the target accuracy out of
30 runs, where the target threshold (TH) is 29/30 runs.

Table 3. The scores assigned to each distribution method. The lower the score, the
better. Numbers in bold are the lowest scores of a category. “DQ” denotes distribution
methods that fail one or more success rate thresholds.

Problem All Random Best

solution

Best3

solutions

Best5

solutions

Best2.5%

population

Best5%

population

Best10%

population

Convex sphere &

Rosenbrock(1)

DQ DQ 6.6 18.3 17.4 19.7 DQ DQ

Convex sphere &

Rastrigin(2)

DQ 13.4 7.1 6.7 7.7 8.1 8.2 9.4

Bi-Cosine sphere(3) 11.6 11.9 17.8 6.3 7.1 6.7 7.1 7.2

Average DQ DQ 10.5 10.4 10.7 11.5 DQ DQ

the reader is referred to [15]. WFG1 is a separable problem, with a flat region
which can stagnate the search. WFG2 has a uni-modal disconnected convex
front. WFG3 is multi-modal and has a linear front. WFG4-9 all have concave
fronts, where WFG4 and WFG9 are multi-modal. Following [17], the benchmark
is used in a bi-objective setting with kWFG = 4 position variables and lWFG = 20
distance variables, resulting in n = 24 decision variables. The HV reference point
r is set to r = (11, 11). The computation budget is set to 107 MO-evaluations
for each algorithm. For the solution set size, we use p = 9.

The algorithms we consider in this experiment include the base algo-
rithms: UHV-GOMEA(Lm), UHV-ADAM, the constructed hybrid algorithms:
ΔBestUHV with distribution methods BestSolution and Best3Solutions, as well



Hybridizing HV Based EAs and Gradient Descent by Dynamic RA 189

as another UHV-based gradient algorithm called UHV-GA-MO [10]. UHV-GA-
MO is based on the GA-MO scheme [20]. We refer the reader to [10] for the exact
details of UHV-GA-MO. Each algorithm is executed 30 times. Algorithms that
use populations have their population sizes set to 200 following [10,17]. Gradient-
based algorithms use finite difference gradient approximations (indicated by the
suffix “-FD” in Table 4). Finite difference approximations come at the cost of
(1 + n) · p MO-evaluations [10]. Per problem, outcomes are compared to the
result with the highest mean value and tested for statistical significance up to 4
decimals by a Wilcoxon two-sided rank-sum test where the initial α′ = 0.05. α′

is Bonferroni corrected by a factor of 36, making the final α to be α = 0.05/36.
Table 4 shows that, on average, the best results were obtained with

Hybrid-Best3Solutions-FD, followed by Hybrid-BestSolution-FD. Interestingly,
the hybrids never obtain a rank worse than 2, indicating that in this experiment,
the hybrids on average perform better than the original component algorithms.
Furthermore, for problems: WFG1, WFG2, WFG4, WFG6 and WFG8, at least
one of the hybrids obtains statistically better HVs than the original component
algorithms. Interestingly, in WFG 4, Hybrid-Best3Solutions-FD preforms better
than the UHV-GOMEA (Lm) despite WFG 4 being a multi-modal problem.

Table 4. The WFG benchmark for 107 MO-evaluations. Hypervolume values are shown
(mean, ± standard deviation(rank)). Finite differences (FD) are used for the gradient-
based algorithms. Scores in bold are the best or not statistically different from the
other bold scores, indicated per problem.

Problem UHV-

GOMEA(Lm)

UHV-

ADAM-FD

UHV-

GA-MO-FD

Hybrid-

BestSolution-FD

Hybrid-

Best3Solutions-FD

WFG1 94.63±1.73(5) 97.32±0.60(3) 96.74±0.60(4) 98.90±0.29(2) 101.57±0.49(1)

WFG2 110.13±0.03(3) 106.26±5.09(5) 109.60±6.68(4) 110.36±1.20(2) 110.84±2.04(1)

WFG3 116.50±0.00(4) 116.50±0.00 (1) 114.78±0.33(5) 116.50±0.00(1) 116.50±0.00(1)

WFG4 112.75±0.58(3) 103.34±3.61(5) 107.21±0.97(4) 113.46±0.35(2) 114.02±0.13(1)

WFG5 112.19±0.10(4) 112.21±0.03(3) 111.32±0.68(5) 112.22±0.00(1) 112.22±0.00(2)

WFG6 114.38±0.03(3) 113.79±0.10(4) 110.52±2.00(5) 114.40±0.00(1) 114.40±0.00(2)

WFG7 114.40±0.01(3) 114.37±0.03(4) 113.88±0.16(5) 114.40±0.00(2) 114.40±0.00(1)

WFG8 111.43±0.28(3) 110.57±0.81(4) 109.48±1.06(5) 111.70±0.23(2) 111.82±0.01(1)

WFG9 111.46±0.16(3) 107.54±1.10(4) 103.18±5.31(5) 111.49±0.03(2) 111.51±0.02(1)

Rank 3.44(3) 3.67(4) 4.67(5) 1.67(2) 1.22(1)

6 Discussion

A real-valued multi-objective (MO) hybrid algorithm was created by combining
two uncrowded hypervolume (UHV) indicator-based algorithms via a dynamic
resource allocation scheme. In Experiment 1 it was shown that for UHV opti-
mization, picking an improvement metric is not trivial, as problem dependency
has been observed. The results of experiment 1 however, also showed that if the
hybrid is tasked to do UHV optimization, on average it benefits most from using
the ΔBestUHV improvement metric, followed by CountBestUHVImproved. Both



190 D. M. F. Ha et al.

metrics quantify the improvement of the best UHV, while the remaining metrics
(Bosman2012, CountUHVImproved, ΔAverageUHV) measure the improvement
over all solution sets. This opens the question why resource allocation towards
the algorithms which improve fewer solution sets with higher UHV is preferable
over the full runtime of the hybrid.

Experiment 2 has shown that concentrating gradient calls on a select number
of solutions is preferred over diluting calls over the entire population. Distribut-
ing resources to the solutions with the top 3 highest UHV performed the best
on average. Analysis on this distribution method however, has shown that dur-
ing convergence, the hybrid frequently stalls due to an inaccurately estimated
γ. Substantial improvement in convergence could be obtained by improving γ
estimates at reinitialization of UHV-ADAM after executing UHV-GOMEA.

Experiment 2 also provided additional insight in the properties of UHV-
ADAM. Figure 2 confirms that problems with few local optima (e.g. Convex
sphere & Rosenbrock) can be solved by UHV-ADAM, while problems with many
local optima (e.g. Convex sphere & Rastrigin) are not solvable.

One of the limitations of this work is that the problems that were used to
tune the hybrid, all share the commonality of having a connected Pareto set. A
connected Pareto set simplifies finding all other Pareto optimal solutions as soon
as one solution has been determined. If one of the objectives then happens to
be easily solvable (e.g. Sphere), it potentially creates situations where even algo-
rithms that are not suited to solve multi-modal problems can still find the Pareto
set by first solving the easy objective before moving over to the other objective,
bypassing any local optimum. Future work should thus consider disconnected
Pareto sets. Another limitation of this work, is that only a single EA, i.e. UHV-
GOMEA, has been selected for hybridization. In [17], it was already observed
that domination-based EA MO-RV-GOMEA [7] initially performs better than
UHV-GOMEA. An even more efficient hybrid algorithm could potentially be
created with MO-RV-GOMEA. However, as MO-RV-GOMEA is a domination-
based EA, compatibility issues are likely to occur with UHV-based algorithms.
Introducing a different EA could furthermore test the robustness of the RAS.

7 Conclusion

In this work, for the first time, a multi-objective optimization algorithm was
introduced that hybridizes an uncrowded hypervolume-based (UHV) evolution-
ary algorithm with a UHV-based gradient algorithm via a dynamic resource allo-
cation scheme (RAS). Experiments used to study the RAS showed that selecting
a reward metric for the RAS is not trivial as it was observed that the best met-
ric is problem-dependent. Experiments also showed that concentrating gradient
steps on a select number of solutions of the population, outweighs dispersing gra-
dient steps over the entire population. Implementations of the hybrid algorithm
have also been compared to other UHV-based algorithms. It was shown that
even if finite difference approximations are used to calculate gradients, it is still
able to obtain competitive or better results than the original component algo-
rithms as well as other UHV-based algorithms. We conclude that the resulting
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hybrid is therefore a promising addition to the existing spectrum of evolutionary
algorithms for multi-objective optimization.
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