
Free-riding Resilient

Video Streaming

in Peer-to-Peer Networks

Jacob Jan David Mol

F
re

e
-rid

in
g
 R

e
s
ilie

n
t V

id
e
o
 S

tre
a
m

in
g
 in

 P
e
e
r-to

-P
e
e
r N

e
tw

o
rk

s
Ja

c
o
b
 Ja

n
 D

a
v
id

 M
o
l

Free-riding Resilient Video Streaming

in Peer-to-Peer Networks

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof.ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op dinsdag 26 januari 2010 om 12:30 uur

door Jacob Jan David MOL

informatica ingenieur
geboren te Delft

Dit proefschrift is goedgekeurd door de promotor:
Prof.dr.ir. H.J. Sips

Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof.dr.ir. H.J. Sips Technische Universiteit Delft, promotor
Dr.ir. D.H.J. Epema Technische Universiteit Delft, copromotor
Prof.dr.ir. R.L. Lagendijk Technische Universiteit Delft
Prof.dr.ir. M.R. van Steen Vrije Universiteit Amsterdam
Prof.dr.ir. P.H.N. de With Technische Universiteit Eindhoven
Prof.dr. S. Haridi Royal Institute of Technology, Zweden
Prof. D.S. Reeves, PhD North Carolina State University, VS
Prof.dr.ir. K.G. Langendoen Technische Universiteit Delft (reservelid)

Published and distributed by: Jan David Mol
E-mail: jjdmol@gmail.com

Cover photo by Lesley Middlemass.
Printed in The Netherlands by Wöhrmann Print Service.

This work was performed in the context
of the Freeband I-Share project. Freeband
Communication is supported by the Dutch
Ministry of Economic Affairs through the
BSIK program (BSIK 03025).

This work was carried out at the ASCI gradu-
ate school. ASCI dissertation series number
190.

Preface

The thesis that you see in front of you would not be here if not for the many people
who helped and supported me during my PhD track. After all, it is through interaction
with others that we can shape our thoughts and derive solutions to the problems that
we face. But also support outside of work is vital in order to sustain a project which
takes several years to complete. Over the years, the list of people who deserve a big
“thank you” has grown, as such things inevitably do.

I start with my supervisor Dick Epema and my promotor Henk Sips. Not only did
they teach me how scientific papers are written, their guidance and critical thinking
were essential in shaping this work. They, and my other co-authors, Johan Pouwelse,
Arno Bakker, Michel Meulpolder, and Yue Lu, aided me in the research and writing.
But support and critical thinking was also provided by many other colleagues, such
as Paweł Garbacki, Alexandru and Ana Iosup, and Gertjan Halkes. I would like to
thank the Parallel and Distributed Systems Group at Delft University of Technology
for providing me with an environment for obtaining a PhD. I thank Freeband Com-
munication for the funding of my research, as well as for providing a research context
in the form of the I-Share research project, which focuses on sharing technologies in
virtual communities.

For their strong support from home, I like to thank my wife Christie and my
daughter Selene. Both of them provide the love that I need to function, to allow me to
focus on the complex research questions, and to help deal with the inevitable stress.
Similarly, my parents Marga and Nanne, as well as my sister Karin, have supported
me throughout my PhD track.

As you all know, it is impossible to provide a complete list. I thank you for your
support, or at the very least, for reading this preface.

Jan David Mol

i

Contents

1 Introduction 1
1.1 Research Context . 3
1.2 Video Streaming . 4

1.2.1 Streaming Modes . 5
1.2.2 Video Processing . 7

1.3 P2P Video Streaming Networks . 8
1.4 Video Streaming Approaches . 10
1.5 Problem Statement . 12
1.6 Research Contributions and Thesis Outline 13

2 Tree-based Live Streaming 15
2.1 Problem Description . 16

2.1.1 Stream Pre-processing . 16
2.1.2 The Underlying Peer-to-Peer Network 17
2.1.3 Problem Statement . 18

2.2 The Orchard Algorithm . 18
2.2.1 Constructing the Forest . 18
2.2.2 Primitives to Build the Trees 19
2.2.3 The Resulting Trees . 22
2.2.4 Repairing Trees . 24

2.3 Attacking Orchard . 26
2.3.1 Free-riding . 26
2.3.2 Other Types of Attacks . 27

2.4 Expected Performance . 28
2.4.1 Parameters of the Model . 28

ii Contents

2.4.2 Peer Arrivals and Exchange Deals 29
2.4.3 Peer Departures and Exchange Deals 30
2.4.4 Redirection . 32
2.4.5 Redirection through Coloured Peers 33

2.5 Experiments . 35
2.5.1 Experimental Setup . 35
2.5.2 Arrivals Only . 37
2.5.3 Flash Crowds . 38
2.5.4 Churn . 41
2.5.5 Real Streaming . 42
2.5.6 Delft-37 . 43
2.5.7 Scalability of Orchard . 43

2.6 Related Work . 44
2.7 Discussion . 45
2.8 Conclusions . 46

3 Swarm-based Video-on-Demand 49
3.1 Problem Description . 50
3.2 Give-to-Get . 52

3.2.1 Neighbour Management . 52
3.2.2 Chunk Distribution . 52
3.2.3 Chunk Picking . 55
3.2.4 Differences between Give-to-Get, BitTorrent and BiToS . . . 57
3.2.5 Performance Metrics . 58

3.3 Experiments . 59
3.3.1 Experimental Setup . 59
3.3.2 Default Behaviour . 60
3.3.3 Free-riders . 62

3.4 Analysis . 67
3.4.1 Model Description . 67
3.4.2 Model and Simulation Setup 69
3.4.3 Results for a Non-linear System 70
3.4.4 Results for a Linearised System 72

3.5 Related Work . 74
3.6 Conclusions . 76

Contents iii

4 Swarm-based Live Streaming 79
4.1 Background . 80

4.1.1 BitTorrent . 81
4.1.2 Related Work . 81

4.2 Extensions for Live Streaming . 82
4.2.1 Unlimited Video Length . 82
4.2.2 Data Validation . 83
4.2.3 Live Playback . 84
4.2.4 Seeders . 85

4.3 Simulations . 86
4.3.1 Simulation Setup . 87
4.3.2 Uplink Bandwidth . 87
4.3.3 Hook-in Point . 89
4.3.4 Piece Size . 89
4.3.5 Number of Seeders . 91

4.4 Public Trial . 91
4.4.1 Trial Setup . 92
4.4.2 Performance over Time . 93
4.4.3 Prebuffering Time . 97
4.4.4 Sharing Ratios . 97

4.5 Conclusions . 101

5 Bounds on Bandwidth Contributions 103
5.1 Firewalls and Puncturing . 105

5.1.1 Firewalls and NATs . 105
5.1.2 Firewall Puncturing . 106

5.2 Model and Notation . 107
5.3 No Firewall Puncturing . 108

5.3.1 Sharing Ratio Analysis . 108
5.3.2 Practical Implications . 111

5.4 Firewall Puncturing . 112
5.5 Simulated Behaviour . 115
5.6 Behaviour of Real Systems . 117

5.6.1 BitTorrent Communities . 117
5.6.2 Data Collection . 118

iv Contents

5.6.3 Behaviour of Firewalled Peers 118
5.6.4 Fraction of Seeders . 122

5.7 Related Work . 123
5.8 Conclusions . 124

6 Conclusion 127
6.1 Summary and Conclusions . 128
6.2 Future Work . 129

Bibliography 131

Summary 143

Samenvatting 147

Curriculum Vitae 151

1

Chapter 1

Introduction

A MOVIE is actually an illusion created by showing a series of pictures in rapid
succession. The trick was already known in second-century China [71], but re-

mained a curiosity up to the end of the 19th century. Around 1888, both the motion
picture camera and projector were invented and used to create the first film [82]. For
the first time, it was possible to record scenes in an automated fashion and to show
them to an audience. Wherever the projectors and films went, groups of people could
watch the movie simultaneously on a large screen. The audience was substantially in-
creased in size with the rise of television broadcasting after its invention in 1928 [18].
Television allowed viewers to watch from different locations, such as the comfort of
their own homes. Both live events and recorded films could be sent to eventually
millions of television sets simultaneously. A third boost in the popularity of moving
pictures came at the end of the 20th century with the invention of the Internet [86]
and of the World Wide Web [14]. The moving pictures migrated to this platform, and
with the rise of broadband Internet connections [74], end users became able to receive
video of acceptable quality on their home computers.

A common setup for Internet video streaming is the client-server (CS) architec-
ture [36, 43], in which the end users (clients) obtain the video stream from a relatively
small number of servers [62]. Even though such techniques place a large burden on
the servers in terms of bandwidth costs, such a setup is still popular due to its sim-
plicity and predictable performance. Large companies, such as Google, can afford to
deploy server parks in order to serve millions of users every day. Nevertheless, the
cost of the bandwidth required to serve for example a television channel to millions

2 Chapter 1. Introduction

of viewers simultaneously is prohibitive for even the largest of companies.
An alternative setup for Internet video streaming is offered by the peer-to-peer

(P2P) architecture, in which the end users (peers) act as servers as well as clients. A
possibly low-capacity server (injector) is used to inject the stream into a P2P network
by sending it to several peers. The peers subsequently forward the stream among each
other. Since most peers are actually served by other peers, the load on the injector
remains low. Every peer that joins the network both adds capacity and uses it. The
P2P architecture is thus a scalable way of serving a video stream, as long as enough
capacity is provided and can be put to effective use. However, in practice, the capacity
that can be delivered through a P2P network is limited, and the quality of the video that
can be streamed over a P2P network is similar to the quality of regular TV [7, 52, 100].
High-definition television (HDTV) is far beyond the reach of current P2P networks.
The capacity of a P2P network is limited for three reasons.

First, the capacity that can be provided by a P2P network is limited by the total
upload bandwidth of the peers. Since every peer desires to obtain the video stream,
the number of uploaders and downloaders is the same. The video bit rate that can be
streamed over a P2P network to all peers is thus limited by the average upload band-
width of the peers. However, the peers in a typical P2P network do not have sufficient
upload capacity to provide each other with an HDTV stream. The Internet connections
of end users are typically asymmetric. Both ADSL and cable broadband connections
provide several times more download capacity than upload capacity. Even though the
download capacity of many broadband connections is enough to receive an HDTV
stream, the upload capacity is only a fraction of what is needed to provide enough
capacity to serve such a stream over a P2P network. The speeds of the Internet con-
nections will likely continue to improve, but cannot be influenced by the P2P video
distribution algorithm.

Secondly, the upload capacity that exists at the peers is not necessarily made avail-
able. The peers have no inherent incentive to provide their upload capacities to the
P2P network in order to serve other peers. Peers that do not provide their upload
capacity are called free-riders [6, 49, 88, 101], because they try to obtain the video
stream for free. The upload capacity of free-riders thus remains unused, which shifts
the cost of serving the video stream to the other (altruistic) peers. The altruistic peers,
faced with an increased cost, thus will have an incentive to become free-riders as well.
The altruistic peers that remain do not necessarily have enough capacity to provide all
of the peers in the network with the video stream.

1.1. Research Context 3

Thirdly, the upload capacity that is available in a P2P network can not always be
put to effective use. A P2P network is not fully connected. Instead, every peer in a
P2P network maintains a small set of connections to other peers. A peer with upload
capacity to spare is thus not necessarily connected to another peer that needs to be
served. Although the P2P network can be augmented with additional connections,
the P2P network is limited by the connections that can be formed as well. A large
fraction of the Internet connections are behind a filtering device, such as a firewall
or a Network Address Translator (NAT) [7, 100], either as a security measure or as
part of the connection setup. The filtering devices block incoming connections to the
peers behind them. As a result, two peers behind a filtering device cannot connect to
each other, which limits the connectivity within the P2P network. If the achievable
connectivity is too low, supply and demand cannot be matched in the P2P network.
The upload capacity of some peers will thus remain unused, effectively forcing them
to free-ride, while others are unable to obtain the video stream.

It is the subject of this thesis to investigate and counter the effects of free-riding
within P2P video streaming networks. We will present, simulate, and deploy several
P2P video streaming algorithms which incorporate incentives for peers to provide
their upload bandwidth to the P2P network. Separate algorithms will be presented
for streaming live video and prerecorded video, and the performance of most of these
algorithms will be assessed by means of mathematical analysis. Furthermore, we
study the effects of limited connectivity on the performance that can be obtained in
P2P networks by providing analytical bounds supported by simulations, as well as by
measuring deployed P2P networks.

In the remainder of this chapter, we will first provide the context of our research.
Then, we will provide a more detailed introduction to the transportation of video
streams over networks, and to the nature of P2P video streaming networks. Then, we
will discuss the key challenges faced in this thesis, followed by an outline covering
the remainder of this work.

1.1 Research Context

The research of which the results are presented in this thesis was performed in the
context of the I-Share project [3], which is funded by the Dutch government through
the Freeband Communications programme [2]. The I-Share project investigates the
sharing of resources in virtual communities, which are (dynamic) groups of nodes

4 Chapter 1. Introduction

that are willing to collaborate for the better of the whole. Such communities can be
formed over any network, ranging from an ad-hoc network of hand-held devices to
global Internet communities. Such communities typically consist of end users with
limited resources, which have a joint interest in sharing a certain type of resource. For
example, a group of end users may form a virtual community based on friendship or
a common interest.

Within a community, content and bandwidth are shared among the users. Pro-
tocols are needed to maintain the virtual communities, and to locate the content the
user wants to obtain. If the amount of content shared within the virtual community is
large enough, the community becomes a social network in which users can be linked
by their taste. A P2P client called Tribler [80] has been developed within the I-Share
project to exploit these links by building a social P2P network based on taste. Users
within the Tribler network converge based on the content they like, which allows them
to locate similar content and to exchange resources with people with similar interests.
One of the aims of Tribler is to enable non-professional content producers, such as
ordinary individuals, a local football club, a church, or even a small television sta-
tion, to stream a live or a prerecorded video stream to a set of viewers. Such small
organisations typically have very limited resources, which are insufficient to deliver
a video stream to more than a few peers directly. By incorporating P2P streaming
algorithms into Tribler, the distribution costs for the video stream are lowered sub-
stantially. Professional content producers can benefit from such a cost reduction as
well.

In this thesis, we focus on a single end user who is interested in sharing a specific
video stream with a group of peers that are interested in viewing the same stream. We
aim to distribute the burden of providing the video across the end users by using P2P
algorithms to distribute the video data. The algorithms we present in this thesis are
designed to be included into Tribler. For that reason, our algorithms are designed to
be deployed in the Internet, by taking the characteristics of peers in the Internet into
account.

1.2 Video Streaming

Video streaming is the transportation of a video from its source to the end user. The
raw video has to be compressed and packetised before it is transported over the net-
work. The packets are collected and decompressed by the receivers, in order to re-

1.2. Video Streaming 5

construct the video stream. The constraints on this process depend on the network
properties such as available bandwidth, but also on the type of streaming that is used.
For instance, streaming a live video event introduces stricter real-time constraints than
streaming a prerecorded video. In this section, we will discuss the modes of streaming
we distinguish, followed by the key aspects of video processing that are relevant for
this thesis.

1.2.1 Streaming Modes

We distinguish three modes of video streaming based on the moments at which the
video is generated, downloaded, and viewed.

Live Video Streaming, in which the video stream is being generated at the same time
as it is being downloaded and viewed by the users. All of the users will aim to
watch the latest generated content. The end-user experience is thus comparable
to a live TV broadcast or a webcam feed. The user needs a download speed at
least equal to the playback speed if data loss is to be avoided.

Video-on-Demand, in which the video stream is generated beforehand but the users
will view the stream while they are downloading it. An on-line video store,
for example, would be using this model to provide movies on-demand to its
customers. The users typically start watching the video stream from the begin-
ning. At any moment, all of the users will be watching different parts of the
video. Video clips available on websites such as YouTube [5] are examples of
video-on-demand streaming. Similar to live video streaming, the user needs a
download speed at least equal to the playback speed to avoid data loss.

Off-line Downloading, in which the generation, downloading, and viewing of the
video stream are completely decoupled. As with video-on-demand, the user
can download the video stream only after it has been generated. However, with
off-line downloading, the user has to wait for the video to be completely down-
loaded before he can view it. The experience is thus similar to that of a VCR.
The advantage of off-line downloading is the lack of real-time constraints. The
speed at which the video is downloaded has no impact on the viewing experi-
ence, which allows the user to download a video of any quality regardless of
the bandwidth he has available.

6 Chapter 1. Introduction

(a) live video streaming

(c) off-line downloading

piece of video data required by peer

piece of video data obtained by peer

piece of video data yet to be generated

playback position

possible piece transfer

(b) video-on-demand

peer 1

peer 2

peer 3

Figure 1.1: The three modes of video streaming.

Even though the differences in end-user experience are minor between these
modes, the implementation differences are significant. In live video streaming, only
the latest generated data is available, and wanted by all peers. In contrast, both video-
on-demand and off-line downloading allow any peer to offer as well as request any
piece of data. Figure 1.1 illustrates the differences between the three modes. In each
subfigure, three peers exchange data for a specific mode. The blocks represent pieces
of video data such as a series of bytes or a group of frames. Dark gray blocks have
been obtained by the corresponding peer, light gray blocks have not. Figure 1.1(a)
represents the case of live video streaming, with all the peers having the same play-
back position (represented by a black line). All of the peers require the pieces from
the playback position up to the latest piece generated by the live video feed. Their
interests are thus symmetrical. Most of the remainder of the live feed has yet to
be generated, which is represented by white blocks. Figure 1.1(b) depicts video-on-
demand, in which the playback position differs between peers, making the interests

1.2. Video Streaming 7

Format Resolution Frame rate Raw data rate
Webcam 640x480 15 Hz 0.1 Gbps
SDTV (NTSC) 720x480 30 Hz 0.2 Gbps
SDTV (PAL) 720x576 25 Hz 0.2 Gbps
HDTV 720p25 1280x720 25 Hz 0.5 Gbps
HDTV 1080p25 1920x1080 25 Hz 1.2 Gbps
HDTV 1080p50 1920x1080 50 Hz 2.3 Gbps

Table 1.1: Common TV video formats and their properties.

of the peers asymmetric. For example, a peer far ahead in the video (peer 2) has no
need for the data that has been obtained by a peer that has just started playback (peer
1). On the other hand, all of the video is available from the start until the end. A
peer can thus download pieces that lay substantially ahead of its playback position.
Finally, Figure 1.1(c) shows off-line downloading. The peers have no playback po-
sition while downloading, as playback commences only after the download has been
completed. As a result, the peers can obtain the pieces in any order, and are interested
in receiving all of them. The interests of the peers are once again symmetrical. In
both video-on-demand and off-line downloading, a peer does not immediately depart
when it has completed the download. Instead, it becomes a seeder and offers all of
the pieces to the rest of the peers. The upload capacity offered by the seeders thus
remains available, but the seeders do not require any download capacity. The aver-
age upload capacity available to the peers that are still downloading the video stream
(the leechers) thus increases whenever a peer becomes a seeder. In live video stream-
ing, seeding is not possible as new pieces are continuously generated, and the peers
are only interested in the latest pieces. Off-line downloading is, from an algorithmic
point of view, actually a file-sharing problem rather than a streaming problem. The
end user merely happens to play the video after it is done downloading it. As such,
we will not consider off-line downloading in this thesis.

1.2.2 Video Processing

A video stream is transported from a camera to the screen (and the accompanying au-
dio signal to the speakers) of an end user. First, the video is digitised and recorded by
the video camera, by taking pictures (called frames) at a constant rate, and recording
the audio in parallel. Each frame consists of millions of pixels, resulting in a raw data

8 Chapter 1. Introduction

stream with a bitrate which is typically too large to propagate to an end user. Table
1.1 lists common TV formats as well as their raw data rates. Even traditional TV
quality (SDTV) requires a data rate several times the available bandwidth of a typical
end user. For that reason, the video stream is compressed using a video compression
algorithm (called codec). Depending on the quality that has to be delivered to the end
user, the resolution and frame rate can be reduced as well. These forms of compres-
sion reduce the quality of the video stream. A trade-off between quality and bitrate is
thus required, and depends, among other things, on the properties of the network used
to deliver the video to the end user.

The compressed stream is divided into packets, which are transported over the
network to the client, which is hosted on the machine of the end user. The client
orders the packets if needed, and decompresses the video stream. When data is lost
for any reason, the decompression typically continues at the next available packet.
Data loss results in temporary distortions when decompressing the video.

1.3 P2P Video Streaming Networks

In the client-server (CS) architecture, a set of clients connect to a server to obtain
a certain service. A computer in such a network is thus either a consumer (client)
or a producer (server). In contrast, a peer-to-peer (P2P) network is a set of peers
(computers) that use their collective upload capacity to provide the service to each
other. Each peer obtains the service by forming ad-hoc connections to other peers (its
neighbours), and is a potential consumer as well as a potential producer. In our case,
the service consists of a video stream, which is propagated over the P2P network. The
video stream is injected into the network by a specific peer called the injector.

A P2P architecture is more complex than the CS architecture, but offers a scal-
able network at a substanially reduced cost. The available upload capacity in a P2P
network is proportional to the number of clients. If the clients provide enough band-
width, the cost for the injector for providing a video stream becomes constant with
respect to the number of clients. In a CS architecture, the available upload capacity is
fixed, as all of it has to be provided by the server. The CS architecture can thus only
serve a fixed number of clients, and the cost of providing a video stream increases
linearly with the number of clients.

Even though the decrease in cost when switching from a CS to a P2P architecture
can be significant, there are disadvantages to the P2P architecture as well. The peers

1.3. P2P Video Streaming Networks 9

receive the video stream from other peers, which implies that the quality of service
depends on the behaviour of the peers. The peers behave less predictably than a
server in a CS architecture, leading to several obstacles that need to be taken into
consideration:

Free-riding The amount of bandwidth made available by the peers to serve others
directly affects the quality of the service that is provided. Peers that cannot or
do not provide sufficient upload bandwidth will hurt the P2P network if they
consume more resources than they provide. In such cases, it becomes harder
for other peers to obtain the video stream at full speed, resulting in loss of
quality. If a peer is unwilling to provide upload bandwidth, it is called a free-
rider [6, 49, 88, 101]. The peers in the Internet are not inherently cooperative,
so it is of paramount importance that the peers are given an incentive to provide
their upload capacity to others. Low-capacity peers, which have a slow Internet
connection, are unable to provide much upload bandwidth regardless of their
willingness to share, and can therefore not always be distinguished from free-
riders.

Limited Connectivity, caused by software or hardware that blocks incoming con-
nections to certain peers. A firewall running on the machine of the end user or
at the gateway of the corporate network can prevent incoming connections from
reaching the peers for security reasons. A Network Address Translator (NAT)
is also a de-facto firewall, since it can prevent peers on one side of the NAT
from being reachable. A NAT is often deployed as part of an ADSL setup and
is used by most peers in the Internet [7, 100]. The presence of firewalls limits
the connectivity within a P2P network, and therefore limits the flow of video
data.

Churn is the rapid arrival and departure of peers [88, 93]. Under churn, the structure
of the P2P network is in constant flux as the arriving peers have to be incorpo-
rated into the network and the departing peers have to be removed. The con-
nections between the peers appear and disappear as a result. At every change
in connections, a peer has to reevaluate from whom it will receive the video
stream and to whom it has to send it.

Malicious Behaviour takes place when a peer seeks to actively disrupt the service.
Active service disruptions become possible if one peer can easily disrupt the

10 Chapter 1. Introduction

service provided to others, for instance by injecting false content or by confus-
ing the peers by abusing the protocol used by the P2P network [61, 64, 91].
Other notable attacks include the Sybil attack [34], in which a peer forges many
identities (fake peers) to falsely represent a large group of peers to support him,
and the Eclipse attack [19, 92], in which one or more peers conspire to dom-
inate the set of neighbours of an honest peer, effectively eclipsing the honest
peers from each other’s view.

These obstacles are a result of the non-cooperative nature of the environments in
which P2P networks are deployed, such as the Internet. A P2P network will thus have
to be designed with these obstacles in mind, if it is to be deployed in environments
such as the Internet. Not all of the obstacles are necessarily present if the environment
can be controlled, and the peers can be forced to behave in a cooperative manner.
Examples of such environments include corporate networks and networks of set-top
boxes interacting within a controlled distribution network.

1.4 Video Streaming Approaches

The Internet uses the IP protocol to establish connections between pairs of hosts. An
extension called IP Multicast has been proposed [29], which supports streaming at the
network layer, but this extension has not been widely deployed [32]. The reasons for
this include its inherent complexity, its lack of application-level control, and its lack
of security [24]. Live video streaming therefore has to take place at the application
level, using regular connections between hosts. Performing multicast using regular
connections is called application-level multicasting (ALM). The first ALM algorithms
focused on video-on-demand [41, 53, 90], for which IP Multicast is not sufficient
regardless of its deployment [10, 90]. These algorithms arrange the peers in either
a chain [90] or a tree [41, 53], with each non-leaf peer forwarding the stream. The
tree structure was also used by the first P2P live video streaming algorithms [13, 16,
21, 24, 30, 95], which started to appear when the deployment issues of IP Multicast
became apparent [24].

Tree-based P2P streaming algorithms construct a tree over the peers, with the
inner nodes forwarding the stream to one or more peers. The leaves of the tree do
not have to forward any data. When a peer arrives, it is incorporated into the tree.
When a peer departs, the tree has to be repaired. The peers in the subtrees below a

1.4. Video Streaming Approaches 11

departed peer will have their reception interrupted until the tree is repaired. The tree
structure has two weaknesses, which make its deployment in the Internet difficult.
First, the inner nodes in the tree have to forward the stream to several other peers.
However, end user Internet connections are often asymmetric, with 4–8 times less
upload bandwidth than download bandwidth. A P2P network in the Internet will
likely not contain enough peers capable of uploading a video stream several times in
parallel. Furthermore, the load on the peers is highly skewed as the leaves cannot
put their upload capacity to use. Secondly, churn in P2P networks often causes the
multicast tree to be permanently broken. As the tree grows in size, the probability of
a service interruption increases for each peer. The tree structure thus does not scale
well considering the volatility of the peers in P2P networks. Two separate approaches
can be distinguished for trying to alleviate these weaknesses:

Multiple Trees Using a video technique called Multiple Description Coding
(MDC) [44], the video stream can be split into several substreams called de-
scriptions. A peer will be able to view the video stream with a quality propor-
tional to the number of substreams it receives. MDC makes it possible to create
a forest structure, in which multiple trees, one for each description, are con-
structed originating at the injector and spanning the peers. By making the trees
interior-node disjoint, the video streaming algorithm is made less vulnerable to
individual peer departures, as only one tree is interrupted at a time. Further-
more, the load on the peers can be balanced as a peer that acts as a leaf in one
tree can be used as an interior node in another tree [20, 75].

Swarm Another method of distribution is to split the video stream into pieces of a
fixed size. A peer requests each piece from its neighbours. Once it obtains a
piece completely, it announces this to its neighbours. A set of peers exchanging
pieces of the same video is called a swarm, a concept that became popular after
the introduction of the BitTorrent file-sharing protocol [26]. The BitTorrent
protocol turned out to be easy to implement and provides good performance for
offline downloading. The concept of swarms has been extended to live video
streaming [12, 48, 58, 76, 103] as well as to video-on-demand [28, 33, 98].

There are several key differences between these two approaches. The swarm-
based approach does not require an expensive tree-repairing algorithm, making it eas-
ier to implement. On the other hand, the tree-based approach offers a lower and more

12 Chapter 1. Introduction

controlled latency from the injector to the peers, as data can be forwarded directly by
the peers. In the swarm-based approach, each piece first has to be downloaded com-
pletely by a peer and subsequently has to be requested by a neighbour, before it can
be forwarded.

1.5 Problem Statement

In Section 1.3, we discussed the obstacles that have to be overcome in order to enable
video streaming over a P2P network. We believe free-riding to be the most important
obstacle when designing a P2P streaming algorithm, because peers that cannot or
will not contribute their uplink bandwidth have a direct impact on the quality of the
video that can be streamed. The problem of free-riding leads to the following research
questions, which we will address in this thesis:

Can free-riding be eliminated in tree-based live video streaming?
In live video streaming, the needs of all peers are symmetrical as they all aim
to obtain the most current video data. Every peer thus needs an amount of
bandwidth equal to the video bitrate. Free-riding can be eliminated if every
peer can somehow be forced to contribute a similar amount of bandwidth to
the network in return, which raises the question how an appropriate distribution
structure can be constructed and maintained.

Can free-riding be discouraged in swarm-based video-on-demand?
In video-on-demand, the needs of the peers are asymmetric. One peer may
have finished downloading the video while the other has just started. As a result,
peers cannot always contribute to each other, which makes a forced contribution
impossible in many cases. If free-riding cannot be avoided in video-on-demand,
the question we raise is whether it is possible to at least discourage it. By
encouraging peers not to free-ride, more resources become available in the P2P
network, which improves the average quality of service of the peers. Another
advantage of not outright banning free-riding is the fact that the bar of entry
is lowered. Some peers may be willing but not able to provide much upload
bandwidth due to their asymmetric Internet connections. However, care must
be taken that such peers cannot hurt the quality of service for the rest of the
peers if the resources that are available in the P2P network are a bottleneck.

1.6. Research Contributions and Thesis Outline 13

Can free-riding be discouraged in swarm-based live video streaming?
The presence of asymmetric Internet connections has to be taken into account
when deploying a swarm-based live video streaming solution as well. We raise
the question whether free-riding can be allowed but discouraged in swarm-
based live video streaming in a similar way as for video-on-demand. If so, a uni-
fied solution could be possible for both video-on-demand and live video stream-
ing to discourage free-riding using a swarm-based approach, which will ease the
implementation and deployment of algorithms for both streaming modes.

How does the lack of connectivity among peers influence their contribution?
Each peer that is willing to provide upload capacity to the P2P network has
to find peers to serve. A lack of connectivity in the P2P network thus directly
influences how well the available upload capacity in the P2P network can be put
to use. The massive deployment of NATs and firewalls limits the connectivity
in P2P networks significantly, which raises the question of their effect on the
amount of bandwidth each peer will be able to contribute to others.

In all cases, any answer to these questions must take the nature of P2P networks
into account as described in Section 1.3. In particular, the proposed P2P streaming
algorithms have to be resilient to churn, as well as to malicious peers that try to trick
or sabotage the system. To keep the scope of this thesis tractable, we assume that the
P2P network provides an identity system to keep track of the individual identities of
the peers, which prevents peers from colluding or forging fake identities to subvert the
free-riding-resilient video-distribution mechanisms we put in place. Such a reduction
in scope is reasonable, because the design of an identity system is orthogonal to the
answers that we will derive to our research questions.

1.6 Research Contributions and Thesis Outline

The research we present in this thesis focuses on balancing the bandwidth contri-
butions of peers in P2P streaming networks, both for live video streaming and for
video-on-demand. We will consider algorithm design, modelling, analysis, simula-
tion, emulation, as well as the measurement of deployed P2P networks. The body of
the thesis covers the following subjects:

14 Chapter 1. Introduction

Tree-based live video streaming (Chapter 2). We will present an algorithm for live
video streaming that forces each peer to contribute as much bandwidth as it
consumes. The multiple-tree approach is used, where the video stream is split
into several substreams using MDC. A forest is constructed over the peers with a
tree for each substream. The performance of the algorithm will be assessed with
mathematical analysis, simulations, and emulations. The work in this chapter
is published in [67, 68].

Swarm-based video-on-demand (Chapter 3). The tree and multiple-tree ap-
proaches are an awkward fit for video-on-demand. Unlike with live video
streaming, a tree spanning the nodes cannot be easily arranged since the peers
require different parts of the video. In a tree, each peer has to be ahead in
the video of its children to be able to provide them with the video data they
require. In this chapter, we present a swarm-based algorithm for video-on-
demand based on the popular BitTorrent file-sharing algorithm. The algorithm
includes an incentive for peers to provide their upload capacity designed for a
video-on-demand setting. The work in this chapter is published in [63, 70].

Swarm-based live video streaming (Chapter 4). The swarm-based approach is
also feasible for live video streaming. In this chapter, we provide a live video
streaming extension to BitTorrent, which together with the algorithm from
Chapter 3 allows a single base protocol (BitTorrent) to be used for all three
modes of streaming. We study the performance of a globally deployed P2P
network using this extension. The work in this chapter has been accepted for
publication [66].

Bounds on bandwidth contributions (Chapter 5). We analyse how connectivity
problems due to NATs and firewalls place fundamental bounds on the amount
of upload capacity that can be put to use by the peers. We compare our bounds
to those obtained with simulations, and assess the extent of the connectivity
problems in existing P2P networks. The work in this chapter is published in
[69].

In Chapter 6, we will conclude this thesis with presenting the insights we have
obtained in the problems stated in Section 1.5.

15

Chapter 2

Tree-based Live Streaming

ALTHOUGH the main purpose of many current peer-to-peer (P2P) networks is off-
line file sharing, such networks may also provide suitable environments for

multicasting high-quality video streams over the Internet. A multicast solution which
aims for deployment on the Internet should take into account the behaviour of peers
as observed in existing P2P networks, for example, free-riding [88] (peers unwilling
to donate resources) and churn [88, 93] (peers arriving and departing at a high rate).
While multicasting solutions exist which address these problems [22, 50, 72, 75],
they either require a central authority or a distributed trust system to deal with free-
riders. In this chapter, we propose the Orchard algorithm for building and maintaining
multicast trees for video streams in P2P networks, which deals with both free-riding
and churn without the need for a central authority or a distributed trust system.

Orchard assumes a video stream to be split up into several substreams, and builds
a separate spanning tree for each of these in such a way that in the resulting forest,
no peer is forced to upload more data than it receives. In general, in an environment
which is prone to errors (e.g., due to congestion in the Internet), it is advantageous to
split up video streams into multiple substreams and forward these independently. In
this chapter we assume the use of Multiple Description Coding (MDC) [44] for this
purpose. With MDC, a peer can continue viewing a video as long as it receives at least
one substream, with the viewing quality increasing for every additional substream
received.

For multicasting the substreams we use Application Level Multicasting (ALM),
because multicasting at the network layer has been found to be problematic [24].

16 Chapter 2. Tree-based Live Streaming

However, existing P2P networks suffer from free-riding and churn, which create prob-
lems for ALM. In conventional ALM, a single spanning tree is constructed over the
nodes (peers) interested in a video stream, and the burden of forwarding the stream is
on the interior nodes of the tree. A peer can avoid this burden and free-ride simply by
refusing to forward any data. In addition, when a peer fails, the peers in the subtree
below it stop receiving the video stream, making the single-tree approach vulnerable
to churn. To solve the problem of free-riding, peers have to be given incentives to
share their resources. This was recognised in BitTorrent [11], a download protocol in
which peers exchange pieces of a file on a tit-for-tat basis. In Orchard, we combine
MDC with the bartering spirit of BitTorrent. Orchard’s primitives for building the
spanning trees enforce that each peer has to forward a substream for every substream
it wants to receive (with some minor exceptions). In the resulting forest, no peer has
to forward more data than it receives, which protects the system against free-riders,
and, by using multiple trees, against churn.

This chapter is organised as follows. In Section 2.1, we further specify the prob-
lem we address. We present the Orchard algorithm in Section 2.2. In Section 2.3,
we discuss how Orchard prevents free-riding and how it behaves under several other
well-known types of attack. An analysis of the expected performance is presented in
Section 2.4. Our experimental results are presented in Section 2.5. We discuss some
related work in Section 2.6. Finally, we discuss our approach, and draw conclusions
in Sections 2.7 and 2.8, respectively.

2.1 Problem Description

We will now specify the problem of ALM of video streams split up into multiple
substreams in P2P networks. First, we will describe the required pre-processing of
video streams. Next, we will present the assumptions we make about the underlying
P2P network, and finally, we will give our problem statement.

2.1.1 Stream Pre-processing

Before a video stream is distributed, it is split up into some number of substreams
called descriptions with the technique of Multiple Description Coding (MDC) [44].
We will assume that these descriptions require equal bandwidths (with C descriptions,
a fraction of about 1/C of the bandwidth of the original stream), and that they are of

2.1. Problem Description 17

equal value regarding their contribution to the viewing quality. With MDC, a peer
will be able to play a video as long as it receives at least any one of the descriptions.
For ease of discussion, each description will be represented by a colour (not to be
confused with a colour in images of the video stream). Splitting the video stream adds
overhead to the data stream as well as complexity to the encoder and decoder. This
overhead highly depends on the video content, the video encoding, and the number of
descriptions used [38]. In our experiments, the original video stream is split up into
four MDC descriptions, which is a reasonable compromise. If too few descriptions are
used, the loss of one description causes a big drop in quality. If too many descriptions
are used, the overhead is too large.

2.1.2 The Underlying Peer-to-Peer Network

We assume the existence of a P2P network in which every peer can connect to every
other peer. Every peer has sufficient incoming as well as outgoing bandwidth to re-
ceive and send all descriptions simultaneously. This implies that peers which cannot
contribute as much as they consume are barred from receiving the video stream. The
bandwidth bottlenecks are assumed to be at the end-user, not in the core network.

When a peer becomes interested in a video stream, it will try to contact other peers
who are already receiving one or more descriptions. For this purpose, we assume that
interested peers maintain a neighbour set of other interested peers, which are selected
at random. The neighbour relation is symmetric: if a is a neighbour of b, b is also
a neighbour of a. A peer is assumed to be able to keep his neighbour set populated
with at least m peers. When a neighbour departs and a peer has m− 1 neighbours
left, a new neighbour is added to bring the number of neighbours back to m. In our
experiments, we use m = 20.

Mechanisms for discovering other interested peers are outside the scope of this
chapter. A possible way to do this is by using epidemic information dissemina-
tion [8, 35]. Another way is presented in [37], in which information is pushed to
a random subset of peers in the underlying P2P network, and peers looking for that
information query a random subset of peers. This method provides a high probability
of interested peers discovering peers which receive the stream. In our experiments,
for convenience, we use a central server for peer discovery (see Section 2.5.1).

18 Chapter 2. Tree-based Live Streaming

2.1.3 Problem Statement

We suppose that there is a special peer s (the source) that has a video stream available
for multicasting. We want to design an algorithm that creates a set of multicast trees
rooted at s, one for every MDC description, with the peers interested in the video
stream as the nodes in all these trees.

We focus on data dissemination and stay codec and content agnostic. What con-
stitutes acceptable frame loss and stream latency highly depends on the codec as well
as the content, so we will refrain ourselves from using them. Instead, the main perfor-
mance metric we will use to assess our algorithm is the (average) number of descrip-
tions received by the peers.

We want our algorithm to satisfy the following conditions:

1. Fairness: No peer forwards more descriptions than it receives.

2. Decentralisation: A peer does not need to have s as one of its neighbours.

3. Resilience: Peer arrivals and departures do not severely impact the number of
descriptions received by other peers.

2.2 The Orchard Algorithm

In this section, we will give a detailed description of the Orchard algorithm for con-
structing a forest of multicast trees for distributing video streams from a single source.
First, we will present the forest-building primitives of Orchard. Then we show how
the forest can be repaired when peers depart. Finally, we will present some observa-
tions on the structure of the trees in Orchard.

2.2.1 Constructing the Forest

An Orchard forest for a source s is represented by a directed graph with a set of nodes
(peers) P and a set of links L. Each node a ∈ P represents a peer, and each link
e = (a,b) ∈ L represents the forwarding of a description from peer a to peer b, with
a,b ∈ P. Every link and every peer is assigned a single colour. Each link in L is given
the colour of the description sent over it. The subset of links of a certain colour and
the peers they connect form the multicast tree for a single description. All the trees
are rooted at the source s. Each peer gets the colour of the first description it receives.

2.2. The Orchard Algorithm 19

As long as a peer is not part of any tree, it will be considered to have the special colour
blank. The source always has the special colour white. Each peer will be allowed to
forward any colour it receives, and we assume that each peer will strive to receive all
colours.

When a peer p wants to join the Orchard forest, it will try to become a member
of all multicast trees. In order to do so, p will query every peer q in its neighbour set
to see whether q is willing to strike a deal with it until it has joined every tree or until
its neighbour set is exhausted. The multicast forest is constructed using three types of
deals:

1. Join at the source is a deal a peer can strike with the source. The source for-
wards one description to each of the first few peers that arrive in the system.

2. Exchange descriptions is a deal in which peers exchange descriptions in a pair-
wise fashion in order to obtain more descriptions.

3. Redirection is a deal in which a neighbour of a peer p redirects one of its outgo-
ing links through p in order to have p obtain more descriptions. We will define
two variations of this type of deal depending on whether p was still blank before
the deal or not.

As we will see in the next section, the mechanism of deals ensures that peers con-
tribute as much outgoing bandwidth as they consume incoming bandwidth, with the
exception of the join-at-the-source deals: The source is willing to forward descrip-
tions without expecting anything in return, and a few peers will be so lucky as to get
a description for free from the source. The source makes sure it forwards every de-
scription at least once. A deal will exist as long as both parties keep their part of the
deal, and each peer keeps track of the deals it has with other peers.

To strike these deals, peers exchange control information and send deal requests.
Every peer exchanges updates with its neighbours about its colour and the colours it
receives. If a peer receives a deal request, it will answer whether it will accept the
deal. If a deal is accepted, information required by the requesting peer, such as what
colour needs to be forwarded to whom, is sent along with the accept message.

2.2.2 Primitives to Build the Trees

In this section we will describe each of the three types of deals in more detail. To
obtain its first colour, a peer has to strike either a join-at-the-source deal or a redi-

20 Chapter 2. Tree-based Live Streaming

redp,
blank

s,
white

q,
blue

blue

p,
red

s,
white

q,
blue

blue

Figure 2.1: Joining at the source: before and after peer p joins at the source s.

q,
blue

p,
red

q,
blue

p,
red

red

blue

red blue bluered

Figure 2.2: Exchanging descriptions: before and after two peers strike an exchange
deal.

rection deal. For every additional colour, a peer has to strike an exchange deal or a
redirection deal. To distinguish whether a peer strikes a redirection deal for its first
or for additional colours, we will refer to the latter as redirection through coloured
peers. Every time a peer looks to strike a deal, it orders its neighbours on increasing
hop-count, preferring to strike a deal with a neighbour close to the source.

Join at the Source

If a peer p has the source in its neighbour set, and the source has spare outbound
capacity, the source will forward one of the descriptions to p and the peer joins the
corresponding tree at the source. The source will favour sending a description to p
that it is not yet forwarding to any other peer. Peer p will then get the colour of that
description. An example of this is shown in Figure 2.1; here the source s decides to
forward the red description to p. The source will refuse to forward more than one
description to the same peer.

2.2. The Orchard Algorithm 21

e, red

blue

redblue

r,
blue

q,
red

p,
blank

f, red

blue

g, red redblue

r,
blue

q,
red

p,
red

Figure 2.3: Redirection: before and after peer p joins the multicast tree below q.

Exchange Descriptions

To obtain a description it is not yet receiving, a peer p checks its neighbour set for a
peer q such that p does not receive q’s colour and q does not receive p’s colour. When
p has found such a peer q, they strike an exchange deal: peer p forwards its colour to
q and vice versa, as shown in Figure 2.2.

Redirection

If a peer p cannot join any tree at the source and is still blank, it cannot exchange
descriptions because it does not receive any. It will then ask each of the non-blank
peers in its neighbour set whether it can redirect through p one of the streams it is
forwarding, as is shown in Figure 2.3. Here, peer q strikes a redirection deal with
peer p, which replaces the link e with two links f = (q, p) and g = (p,r) of the same
colour as e. This way, q does not require additional bandwidth, and p is asked to
receive the colour and also to forward it.

Repeatedly redirecting a link e = (q,r) would create a chain of peers, which is
undesirable — a chain of peers between q and r would result in an increased latency
as well as an increased chance of failure along the chain. To avoid this, only links
which were created by an exchange deal can be redirected. So in Figure 2.3, peer q
cannot redirect link f , because it does not have an exchange deal with p. The same
holds for p and link g.

Once a peer p has struck a redirection deal, it receives and forwards a description,
and it gets the colour of that description. Even though p has selected the peer closest
to the source that was willing to strike a redirection deal, it is possible that p will
later encounter another peer t of the same colour that is even closer to the source. In

22 Chapter 2. Tree-based Live Streaming

that case, p switches parents by breaking the redirection deal with q and striking a
redirection deal with t.

Redirection through Coloured Peers

The algorithm so far makes peers depend on exchange deals to obtain additional
colours. However, not all peers will be able to obtain every additional colour this
way. Because a peer may not find appropriate neighbours to strike exchange deals
with.

This problem could be solved by letting every peer connect to a large set (for
example, 100) of neighbours, but this is undesirable from a practical point of view: if
a peer has to connect to and query many neighbours in order to obtain colours, it takes
longer to obtain them, especially if connecting involves DNS lookups and getting
past firewalls. Also note that a large neighbour set requires more maintenance, as the
chance increases that some neighbours will depart. For these reasons, Orchard has
another way for peers to obtain additional colours: we also allow redirections through
coloured peers. This results in the transition shown in Figure 2.4, which is similar
to the one shown in Figure 2.3, except that p already has a colour before striking the
deal with q, which is different from q’s colour and which it retains after the deal.

This relaxation is provided as a backup system to allow peers to obtain all colours
fast without having to query many neighbours, but makes the coloured peers compete
with the blank peers for redirection deals. To prevent this, peers will break a redirec-
tion deal through a coloured peer if it can be replaced with a redirection through a
blank peer. Because coloured peers know this can happen, they will give priority to
striking exchange deals.

2.2.3 The Resulting Trees

We will now argue that in each tree, a peer forwards its own colour to at most C− 1
other peers, where C is the number of colours in the system. By construction of
Orchard, the out-degree of every peer is at most C. There are two ways in which a
peer p can obtain its first colour. Either p joins at the source, or it strikes a redirection
deal for its first colour. In the first case, p receives its colour for free. In the second
case, p joins through a redirection deal, and as part of this deal has to forward its own
colour to a peer of another colour (see Figure 2.3). In both cases, p receives at least
one colour without forwarding anything to a peer of the same colour in return, which

2.2. The Orchard Algorithm 23

e, red

blue

redblue

r,
blue

q,
red

p,
cyan

f, red

blue

g, red redblue

r,
blue

q,
red

p,
cyan

Figure 2.4: Redirection through coloured peers: before and after peer p joins the
multicast tree below q.

proves our assertion. Because a peer has at most C−1 children of the same colour, the
system needs to contain at least three colours, for otherwise all trees are linear chains.

Let us take the colour red as an example to further analyse the structure of the trees
in Orchard. Every red peer gets its own colour either from the source (see Figure 2.1),
or from another red peer (see Figure 2.3). The non-red peers that receive the colour
red are either leaves (see Figure 2.2), or peers that forward red to precisely one leaf
(see Figure 2.4). In other words, the ‘core’ of the red tree consists of red peers and
the source, while the leaves, and in some cases peers one level above the leaves, are
peers of other colours. As a consequence, if a single red peer p fails, most peers in the
subtrees below p stop receiving at most one colour (red) until the forest is repaired.

Because peers prefer to join close to the source, the trees created are shallow,
which is desirable because of reduced latency and packet loss, but also because on
average, nodes in a shallower tree have smaller subtrees below them. To see this, take
a full w-ary tree of n nodes. The height of the tree can be expressed as

h(n) = logw(1+(w−1)n),

and every node at distance d from the root is a descendent of d nodes. Let c(n) be the
average number of children of all nodes. Then,

c(n) =
1
n

h(n)−1

∑
d=1

dwd .

24 Chapter 2. Tree-based Live Streaming

Multiplying both sides with (w−1)n leads to

(w−1)nc(n) =
h(n)−1

∑
d=1

dwd+1−
h(n)−1

∑
d=1

dwd

= (h(n)−1)wh(n)−
h(n)−1

∑
d=1

wd

= (h(n)−1)wh(n)−

(
wh(n)−1

w−1
−1

)

= (h(n)−1)(1+(w−1)n)− 1+(w−1)n−1
w−1

+1

= h(n)+(h(n)−1)(w−1)n−n,

which results in

c(n) = h(n)+
h(n)/n−w

w−1
, (2.1)

which is of order logw n. So, c(n) decreases when w increases.

2.2.4 Repairing Trees

When a peer p departs or fails, other peers will stop receiving the descriptions they
get from p. Any peer that has a deal with p will cancel that deal. For example, in
Figure 2.3 on the right, if peer p fails, the redirection deal with q is cancelled. This
causes q to restore the exchange deal with r as it was before it got redirected through
p.

If the deal to be cancelled is an exchange deal, the redirection deals dependent on
it (there can be at most two) have to be cancelled. An example of this is shown in
Figure 2.5. Here, if peer r departs, q will break its exchange deal with r, which forces
q to also break its redirection deal with p. This causes p to stop receiving its colour,
and makes p unable to maintain any exchange deals with other peers. Even if p is still
receiving other colours, we then force p to break all its deals and become blank.

These breaks of deals propagate down the subtrees below each peer that stops
receiving its own colour. As is shown in Equation 2.1, a peer has on averageO(logn)
children below it in the tree of its colour. If a peer departs and no measures are
taken, the peers of the same colour below it will stop receiving their colour, which

2.2. The Orchard Algorithm 25

red

r
q,

red

p,
blank

f, red

blue

g, red redblue

r,
blue

q,
red

p,
red

Figure 2.5: Peer departure: before and after peer r departs.

forces them to break most of their deals (their exchange and their redirect deals). The
other peers with which these deals were struck will stop receiving only one of their
colours. In order to prevent the propagation of deal breaking, we will now discuss
three methods of maintaining the trees.

Backup Parents

In order for a peer to be able to quickly repair the loss of its parent of the same colour,
each peer keeps track of the backup parents in its neighbour set. A peer q is a backup
parent of p, if it is of the same colour and the path from the source to q in that colour
does not contain p’s parent.

When the parent of p fails, p asks each of its backup parents, in order of increasing
hop count from the source, whether it can strike a redirection deal. If p happens to
have the source as a backup parent, it will first try to join at the source. Peer p will
join the tree at the first backup parent that allows it. If no backup parent allows p to
join, p will break all its deals, become blank, and try to rejoin the system.

Because no descendant of the departed parent is allowed to be a backup parent, no
cycles are created in the multicast tree. To satisfy this condition, every peer keeps its
neighbours informed about its paths to the source. Since each peer only has to be able
to compare paths, it is enough to send only the hashes of the identities of the peers
along the paths. The use of hashes preserves their anonimity, which prevents peers
from directly contacting the source or the peers close to it.

26 Chapter 2. Tree-based Live Streaming

Peers Changing their Colour

Unfortunately, the backup parent strategy is not enough. If a peer of colour c near the
root of a tree fails and many peers below it cannot find a backup parent, those peers
are all forced to rejoin the system and obtain a different colour. The colour c then
becomes more rare, and it is possible that at some point not all peers will be able to
receive it. In the worst case, the description could entirely disappear from the system.

To counter this, every peer keeps track of the set of all the colours its neighbours
are receiving. Once this set stabilises, a peer checks whether switching to a rarer
colour is beneficial. This is the case if it will be able to receive the rare colour, and
will be able to strike more exchange deals than it could before switching. Once a peer
switches colours, it breaks the deals with those peers that are not willing to accept the
colour change, and strikes new deals with peers that are willing to. In our experiments,
the neighbour set is considered stable if they colours they receive does not change for
three seconds.

Neighbour Set Maintenance

When too many peers become blank, there may be peers which have too many blank
neighbours to obtain all colours. To counter this system degeneration, a peer removes
a neighbour from its neighbour set if that neighbour stays blank for a certain length of
time, which, in our experiments, is three seconds. Note that since we assume that each
peer can keep its neighbour set populated, the neighbour set will not become depleted
if peers are removed.

2.3 Attacking Orchard

In this section, we state explicitly in what way Orchard prevents free-riding. In addi-
tion, we discuss to what extend Orchard is resilient to several other types of attack.

2.3.1 Free-riding

In this chapter, we consider a peer to be a free-rider if it provides fewer resources for
forwarding the video stream than it consumes. Because the source forwards data for
free, there must be peers which receive data for free, and these peers can thus be said

2.3. Attacking Orchard 27

to free-ride to some degree. In Orchard, the peers which have struck a join-at-the-
source deal are those which receive data for free. However, the effect of this is limited
as the source forwards every colour to a limited set of peers, and forwards at most one
colour to any peer.

To obtain a colour from a peer other than the source, a peer always has to forward
a colour in return, either to the same peer (exchange deal) or to a different peer (redi-
rection deal). This forces peers to contribute if they want to obtain any colour from
another peer, making it impossible for them to free-ride.

2.3.2 Other Types of Attacks

A well-known method of attacking P2P networks is by taking control of multiple
identities, either by a single peer emulating them (Sybil attack [34]) or by cooperation
amongst peers (collusion attack). In Orchard, the exchange and redirection deals
function regardless of whether the peers cooperate. Due to the nature of these deals,
all peers, except those joining at the source, will forward as much data as they receive.
This upload-download balance is always maintained for any peer and thus for any
subset of peers as well. Both types of attack thus have no impact on either type of
deal. The join-at-the-source deal is different, because the source grants only one such
deal to any peer. A peer which can fake multiple identities can thus fool the source
and potentially obtain multiple colours for free. In systems where this is a problem,
the source can require the peers with which it strikes a join-at-the-source deal to send
a stream with random data of the same size back to it. Although this wastes resources,
it removes any bandwidth advantage to join at the source.

The source is, by definition, a single point of failure in any multicast algorithm,
but fortunately, in Orchard peers do not need to know the source to obtain the video
stream. The probability that a new peer meets the source thus decreases when the
number of receivers increases.

Many more types of attacks exist in P2P networks. Peers could enter the system
purely for malicious purposes, with no interest in the video stream itself. A malicious
peer could for example offer fake deals or forward fake data. For an attack to be most
effective, its effects have to propagate down the trees below its victim. To do this, it
has to convince a victim peer to switch parents. However, when a victim peer detects
it is receiving no data or fake data, it will disconnect from the malicious peer. If the
victim peer cannot repair in time, its children will also detect the absence of data, and

28 Chapter 2. Tree-based Live Streaming

will look for a different parent themselves. Since peers will typically already have a
backup parent to switch to, the attack can be quarantined quickly. Additionally, peers
could employ a policy of making the swap of parents definitive only when verified
data starts flowing.

Of course, a sufficiently powerful malicious peer can attack enough peers in the
system as to render it unusable. In such cases, the help of the underlying P2P network
is needed to be able to shut out such peers.

2.4 Expected Performance

In this section, we will analyse the expected performance of the Orchard algorithm.
As a performance metric, we will use the average number of colours received by a
peer. First, we will describe the parameters used and make some general observa-
tions. Then, we will analyse the expected number of exchange deals in the system as
peers arrive and depart, as well as the expected number of redirection deals, for both
variants.

2.4.1 Parameters of the Model

We define two types of events: peer arrivals and peer departures. Furthermore, we
will assume an event is completely processed before the next event occurs. We will
use the following parameters in our model:

• N is the number of peers in the system,

• C is the number of descriptions (colours),

• m is the size of the neighbour set a peer obtains upon arrival,

• ni is the fraction of the peers that are of colour i,

• ei j is the fraction of the peers that are of colour j and have an exchange deal for
colour i (eii = 0 and ei j = e ji),

• αi = ∑
C
j=1 ei j is the fraction of the peers that have an exchange deal for colour

i,

• ri is the fraction of the peers that are not of colour i but have colour i redirected
through them,

2.4. Expected Performance 29

• ρi = ni +αi + ri is the fraction of the peers that receive colour i.

These parameters represent the situation before an event occurs, and primed versions
of the parameters (n′1, etc.) will describe the situation in the system after an event
has been processed. For instance, when a peer arrives, N′ = N + 1, and when a peer
leaves, N′ = N−1.

As a metric, we will use R = ∑
C
i=1 ρi, which is the number of colours the peers

receive on average. We will assume that the system is stable. We define a system to
be stable when (for large N) the expected values of the parameters ni, ei j, αi and ri

(and so, also ρi and R) do not change under peer arrivals and departures. System sta-
bility with respect to the fractions of peers of the same colour (E[n′i] = ni) is found to
occur in our experiments, which even seem to indicate that the distribution of colours
over the peers is almost uniform (see Figure 2.10). For settings in which the dis-
tribution of colours nevertheless becomes non-uniform, peers could keep each other
informed about the colour distribution using gossip-based protocols [55]. An arriving
peer can then decide its colour based on more than its local observations, rebalancing
the system.

The performance in a stable system depends on the arrival and departure patterns
of the peers. We shall analyse two extremes: a system in which peers only arrive, and
a system in which peers only depart. For both scenarios, we will analyse for which
values of ei j and ri the system is stable.

2.4.2 Peer Arrivals and Exchange Deals

A peer p that arrives and becomes of colour i (by joining at the source or by a redi-
rection deal) will try to obtain additional colours by striking exchange deals with its
neighbours. The probability of p becoming of colour i is equal to ni, because we anal-
yse a stable system with respect to the colour distribution. Let us consider colour j 6= i.
If p has a neighbour which is both of colour j and does not have an exchange deal for
colour i yet, an exchange deal will be struck. Since a random neighbour has probabil-
ity n j−ei j of falling into that category, p will have a probability of 1− (1−n j +ei j)m

of striking an exchange deal for colour j. Note that this probability depends only on
n j and ei j, not on the distributions of the other colours and exchange deals.

Now, consider e′i j. The number of exchange deals between colours i and j can
increase if a peer arrives and becomes of colour i or j. The probability that an arriving
peer becomes of colour i and is able to strike an exchange deal for colour j is equal to

30 Chapter 2. Tree-based Live Streaming

ni(1−(1−n j +ei j)m). Let fi j(ei j) be the expected increase if there are ei jN exchange
deals between peers of colours i and j already. Then, the following holds:

fi j(ei j) = ni(1− (1−n j + ei j)m)+n j(1− (1−ni + ei j)m).

Because E[e′i jN
′] = ei jN + fi j(ei j) with N′ = N +1, we have

E[e′i j] = ei j +
fi j(ei j)− ei j

N +1
.

Note that ei j is bounded by 0 ≤ ei j ≤ min{ni,n j}, because there cannot be more ex-
change deals than peers of colour i or j. Let ei j = min{ni,n j}.

In a stable system, E[e′i j] = ei j, which holds if fi j(ei j) = ei j. The value of ei j

for which this equation holds is unique, because fi j decreases from fi j(0) ≥ 0 to
fi j(ei j)≤ ei j.

This allows us to calculate αi = ∑
C
j=1 ei j, which is the fraction of all peers obtain-

ing colour i through an exchange deal. Furthermore, we can calculate ∑
C
i=1 αi, which

is the average number of exchange deals struck by a peer. In Figure 2.6, we plot this
average using dashed lines, for various values of n1 and m. In all cases, C = 4 colours
are assumed, with n2 = n3 = n4 and ∑

C
i=1 ni = 1 (that is, there are no blank peers).

Note that a peer can strike at most C−1 exchange deals, as the first colour is obtained
by either a redirection or a join-at-the-source deal.

We draw three conclusions from Figure 2.6. First, the optimum is clearly attained
when all colours are uniformly distributed (n1 = 0.25). Second, having more neigh-
bours per peer indeed increases performance, but with diminishing returns. Third, the
exchange deals enable peers to receive a rather high number of colours, but there is
still some room for improvement, as we will see in Section 2.4.5.

2.4.3 Peer Departures and Exchange Deals

In this section we consider the effect of peer departures on the fractions of peers with
exchange deals in the system. In this section, we will assume peers are only departing,
not arriving.

Every peer p maintains a neighbour set and makes sure it contains at least m peers
(see Section 2.1.2). If a neighbour departs and p has only m− 1 neighbours left, it
is replaced by a new one selected at random from the peers still in the system. We
will assume that eventually, with only peer departures and no arrivals, every peer has

2.4. Expected Performance 31

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.1 0.2 0.3 0.4 0.5

a
v
e

ra
g

e
 n

u
m

b
e

r
o

f
e

x
c
h

a
n

g
e

 d
e

a
ls

 s
tr

u
c
k

fraction of peers of colour 1

exchange deals, arrivals only
exchange deals, departures only

Figure 2.6: The expected number of exchange deals struck in a system with 4 colours
for various numbers of neighbours m (n2 = n3 = n4). The three graphs in either data
set represent, from bottom to top, 10, 20, and 30 neighbours.

exactly m neighbours.
When a peer p departs, its children of the same colour will try to repair the tree by

contacting backup parents. Those who do not succeed in obtaining a new parent this
way will drop their colour and rejoin the system; this can be considered (for analysis
purposes) as a peer departure followed by a peer arrival.

We will again consider the fraction ei j when a random peer p departs. There are
two possibilities:

1. p is of colour j and has an exchange deal for colour i, or vice-versa. This is the
case with probability ei j + e ji = 2ei j.

2. Otherwise.

In case 1, which has probability 2ei j, an exchange deal between colours i and j is
lost. Let q be the neighbour with which p had this deal. Then, q will obtain a new
neighbour to replace p, and will attempt to strike an exchange deal with any of its
neighbours, which succeeds with probability fi j(ei j).

In addition to q, there are m−1 other peers which had p as a neighbour, and which
will replace p with a new neighbour. If such a peer is of colour i or j and does not
have an exchange deal yet for the other colour, it will try to strike one with its newly

32 Chapter 2. Tree-based Live Streaming

acquired neighbour. For each of the m−1 peers, this happens with a probability of

vi j = (ni− e ji)(n j− ei j)+(n j− ei j)(n j− e ji)

= 2(ni− ei j)(n j− ei j).

This is an approximation, because the neighbour sets may intersect, but for large N,
the error will be small.

In case 2, which has probability 1− 2ei j, there is no exchange deal between
colours i and j lost when p departs, and there are m peers which had p as a neighbour.
For each of these peers, there is again a probability of vi j that they have no exchange
deal between colour i and j but will strike one with their new neighbour. To sum up,
the expectation of the new number of exchange deals is approximately

E[e′i jN
′] ≈ ei jN−2ei j(1− fi j(ei j))+2ei j(m−1)vi j

+(1−2ei j)mvi j

= ei jN−2ei j(1− fi j(ei j))+(m−2ei j)vi j,

with N′ = N−1.
The system is stable if E[e′i j] = ei j, and it can again be shown that ei j is uniquely

determined. This implies that ∑
C
i=1 αi, which is the average number of exchange deals

struck by a peer, is also uniquely determined. In Figure 2.6, we plot this average using
solid lines for various values of n1 and m. Again, C = 4 colours are assumed, with
n2 = n3 = n4 and ∑

C
i=1 ni = 1. The performance is slightly lower than in the previous

section, where peers were only arriving.

2.4.4 Redirection

We will now analyse the probability that an arriving peer will obtain its first colour.
The probability of a peer joining at the source is small if N is large, so we will focus
on a peer joining the forest by striking a redirection deal.

Redirection deals take precedence over redirection deals through coloured peers,
so we can safely ignore the latter in this section. For an arriving peer p to strike a
redirection deal, it needs a neighbour which has an exchange deal which is not yet
redirected (free). There are 1

2 ∑
C
i=1 αiN exchange deals, which provide ∑

C
i=1 αiN po-

tential redirections. Of these, ∑
C
i=1 niN are redirected to give peers their first colour.

This leaves ∑
C
i=1(αi−ni)N potential redirections available when p arrives. The distri-

2.4. Expected Performance 33

bution of these is skewed – peers prefer to join a tree as close to the source as possible,
so peers close to the source are less likely to have any free exchange deals left. Since
a peer can have at most C− 1 exchange deals, the Pigeonhole Principle ensures us
that at least ∑

C
i=1(αi−ni)N/(C−1) peers have at least one free exchange deal regard-

less of the distribution of these deals over the peers. The probability of p having a
neighbour which has a free exchange deal is at least

1−
(

1− ∑
C
i=1 αi−ni

C−1

)m

.

As an example, when using m = 20 and the same conditions as before (C = 4, n2 =
n3 = n4, and ∑

C
i=1 ni = 1), the probability of p striking a redirection deal upon arrival

is higher than 0.99 for 0≤ n1 ≤ 0.55.

2.4.5 Redirection through Coloured Peers

If a peer p cannot obtain a certain colour by striking an exchange deal, it will try
to strike a redirection deal for that colour instead. However, unlike exchange deals,
such redirection deals can be broken in the future even if peers do not depart. For
instance, p drops an exchange deal in favour of an exchange deal it can strike when it
is contacted by arriving peers. For this reason, we will look at the system at a single
point in time and analyse the expected number of redirection deals for a certain colour.
The following analysis will provide a lower bound on this expectation.

Let us consider colour i. Of the N peers in the system, niN are of colour i, and
αiN receive colour i through an exchange deal. Let Di be the rest of the peers, with
|Di|= (1−ni−αi)N. These peers try to strike a redirection deal with their neighbours.
We will approximate the fraction of peers in Di that is expected to succeed. To do this,
we start with a system without redirection deals through coloured peers for colour i.
Then, we consider the peers in Di in a random order and let them try to strike a
redirection deal with their neighbours.

For a peer in Di to strike a redirection deal for colour i, it needs a neighbour
of colour i with a free exchange deal. By using the same argument as in the previous
section, but focusing on colour i, it can be shown that there are at least (αi−ni)N/(C−
1) such peers if there would be no redirection deals through coloured peers for colour
i.

Now we consider each peer in Di in turn, in a random order, and analyse the

34 Chapter 2. Tree-based Live Streaming

probability it will strike a redirection deal. Let yk be the fraction of the k peers that
have struck a redirection deal for colour i when k peers have been considered. Then,
at least Fi(yk) = ((αi−ni)N−ykk)/(C−1) peers have at least one free exchange deal.
We will focus on this worst case and use the results as a lower bound on the expected
performance in general. We have

E[yk+1(k +1)] = ykk +1−
(

1− Fi(yk)
N

)m

,

and by defining Gi(yk) = 1−
(

1− Fi(yk)
N

)m
, we have

E[yk+1] = yk +
Gi(yk)− yk

k +1
.

Now, let γi be the solution to Gi(x) = x with 0≤ γi ≤ 1. Because Gi(x) decreases over
that interval, γi is uniquely defined.

We can now bound E[y|Di|] as follows. Every time a redirection deal is struck, the
probability for subsequent peers to strike one decreases. This leads to E[yk+1]≤E[yk].
In order for that to hold, Gi(yk) ≤ yk and so yk ≥ γi. The same holds for y|Di|, so we
expect to have y|Di| · |Di| ≥ γi · |Di| redirection deals through coloured peers for colour
i. This translates to

ri = y|Di| · |Di|/N

≥ γi · |Di|/N

= (1−αi−ni)γi

as a lower bound on ri.
In Figure 2.7 we show the performance of a system with and without redirection

deals through coloured peers, in a stable system with only peer arrivals or only peer
departures. As in the previous figure, C = 4 colours are used, n2 = n3 = n4, and there
are no blank peers, so ∑

C
i=1 ni = 1. Every peer thus receives at least one colour by

definition. Figure 2.7 only plots the number of additional colours obtained.
The upper two lines indicate the total expected number of deals struck by a peer to

obtain additional colours (equal to ∑
C
i=1(αi + ri) = R−1), when peers are only arriv-

ing, and when peers are only departing. The lower two lines indicate the performance
when redirection deals are not considered. In both cases, the advantage over having
only exchange deals is clear. In the following section, we will compare these bounds

2.5. Experiments 35

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.1 0.2 0.3 0.4 0.5

a
v
e

ra
g

e
 n

u
m

b
e

r
o

f
d

e
a

ls
 s

tu
c
k

fo
r

a
d

d
it
io

n
a

l
c
o

lo
u

rs

fraction of peers of colour 1

exchange & redirection deals, arrivals only
exchange & redirection deals, departures only
exchange deals, arrivals only
exchange deals, departures only

Figure 2.7: The expected number of deals struck to obtain additional colours in a sys-
tem with only peer arrivals or only peer departures. Every peer maintains 20 neigh-
bours (C = 4, n2 = n3 = n4).

to measured results.

2.5 Experiments

In this section we present our experimental setup and the results of five experiments
for assessing the multicast forest constructed by Orchard. We conclude this section
with a discussion about possible issues when the systems contains a larger number of
peers than we employed in our experiments.

2.5.1 Experimental Setup

We have tested the Orchard algorithm in two emulation environments. The first en-
vironment is the DAS2 cluster computer [1], using 20 processing nodes. The second
environment is a wide-area network which we refer to as Delft-37, which consists of
hosting accounts at various ISPs around the globe. These accounts range from web
accounts to virtual private servers. All Delft-37 accounts have limited resources as
they have to share the same machines with other accounts. The reason for creating
Delft-37 rather than using PlanetLab [25] is a closer resemblance to real peers on the
Internet. The nodes in PlanetLab generally have better hardware and Internet con-
nections than the average end system on the Internet. In our experiments, we use 7

36 Chapter 2. Tree-based Live Streaming

Delft-37 node # of peers
AZ: USA (Arizona) 9
NY: USA (New York) 14
WA: USA (Washington) 11
GE: USA (Georgia) 5
UK: United Kingdom 8
D: Germany 15
SG: Singapore 4

Table 2.1: The number of peers emulated in Delft-37.

nodes of Delft-37 located in the USA, the UK, Germany and Singapore (see Table
2.1). The bandwidth between these nodes was 20–600 kbit/s, and the latency between
these nodes varied between 30–400 ms.

We have implemented the Orchard algorithm in Python. The emulator is started
on every host computer, and emulates multiple peers on every one of them. Every peer
sets up TCP connections with each neighbour to exchange control information. We
used this emulator to do five experiments, which evaluate the number of descriptions
received under varying conditions. In the first experiment, peers only arrive and do
not depart. The second and third experiment assess the performance of Orchard under
flash crowds and churn. The fourth experiment measures the performance when mul-
ticasting a 4 Mbit/s data stream using UDP. The last experiment tests the performance
of Orchard on Delft-37, a wide-area network which we will describe in the following
section. All experiments except the fourth will only check the membership of peers
of the multicast trees by having the emulator send one packet per second for each
description instead of using a real data stream.

In our experiments, we assume four MDC descriptions. The source forwards each
description at most three times. We have a central rendezvous server which keeps
track of all peers interested in the video and which sends the sets of random, uniformly
selected peers upon request. By keeping in touch with the rendezvous server, a peer
can replace departed neighbours to make sure it always maintains a neighbour set of
at least 20 peers (m = 20).

Peer arrivals are modelled as a Poisson process with an average of two per sec-
ond. In a recent measurement of a large-scale Video-on-Demand system [102], it was
shown that about half the peers disconnect within 10 minutes. Our measurements
take a more pessimistic scenario into account, in order to be able to cope with zapping

2.5. Experiments 37

number of fraction of time
descriptions Arrivals only Flash crowd Churn

(Figure 2.8) (Figure 2.11)
at least 1 0.987 0.989 0.986
at least 2 0.987 0.985 0.983
at least 3 0.986 0.975 0.971

4 0.974 0.874 0.853

Table 2.2: The cumulative distribution of the average number of descriptions received.

Type Scenario Colour distribution Avr. nr.
{n1,n2,n3,n4} of desc.

Measured Arrivals only {0.251,0.251,0.249,0.248} 3.984
Analysis Arrivals only n1 = 0.25, n2 = n3 = n4 3.968

Measured Flash crowd {0.254,0.244,0.252,0.249} 3.867
(Figure 2.8)

Measured Churn (Figure 2.11) {0.252,0.252,0.249,0.248} 3.846
Analysis Departures only n1 = 0.20, n2 = n3 = n4 3.851
Analysis Departures only n1 = 0.25, n2 = n3 = n4 3.905
Analysis Departures only n1 = 0.30, n2 = n3 = n4 3.866

Table 2.3: The average number of descriptions received and the colour distribution
for the coloured peers. The colour distribution is fixed for the analyses and measured
for the experiments.

behaviour which we expect to rise if P2P video multicasting becomes more popular.
In those tests where peers depart, we let peers stay in the system for 120 seconds on
average, using an exponential distribution.

2.5.2 Arrivals Only

In the first test we let 500 peers arrive but not depart. The performance results are
shown in Table 2.2, which contains the fractions of peers which receive at least a
certain number of descriptions. More than 97% of the peers was able to obtain all
four descriptions. In Table 2.3, we compare the measured result (first row) against the
expected performance as derived in Section 2.4 (second row). The table shows the
average number of descriptions received by a peer at any moment in time, as well as
the average colour distribution. On the second row, the table shows the lower bound

38 Chapter 2. Tree-based Live Streaming

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600

n
u

m
b

e
r

o
f

p
e

e
rs

time (seconds)

all peers
at least 1 desc
at least 2 desc
at least 3 desc

4 desc

 100

 150

 200

 220 240 260

Figure 2.8: The number of descriptions received under flash crowds.

on the expected performance as derived in Section 2.4.5. Both rows are restricted to
those peers that receive at least one description to make the numbers comparable to
Figure 2.7. The measured results are consistent with the derived lower bound.

2.5.3 Flash Crowds

In the second test we let 500 peers arrive and depart. As the mean inter-arrival time is
very short, initially there is indeed a fast build up of the number of peers. In Figure
2.8, we show the number of peers which receive a certain number of descriptions over
time for a typical run. To keep the main graph readable, only the number of peers
receiving all four descriptions and the total number of peers are represented. The
inset shows a detailed sample which includes all curves.

All peers receive at least three out of four descriptions most of the time, but spikes
can be observed in the number of peers which receive all descriptions. Peer depar-
tures, especially high up in trees, can cause many other peers to temporarily stop
receiving one of their descriptions. However, the system recovers fast. In Table 2.2,
we show the percentage of time a peer receives a certain number of descriptions, av-
eraged from the moment the peer joins until it departs.

The number of hops from the source to every peer indicates the shallowness of the

2.5. Experiments 39

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600

n
u

m
b

e
r

o
f

p
e

e
rs

time (seconds)

at most 5
at most 4
at most 3
at most 2

1

(a) The distribution of the path lengths.

 1

 1.5

 2

 2.5

 3

 3.5

 0 100 200 300 400 500 600

n
u

m
b

e
r

o
f

h
o

p
s
 f

ro
m

 s
o

u
rc

e

time (seconds)

measured
optimal

(b) The measured and the optimal average path lengths.

Figure 2.9: The distance from the source to the peers in the trees of their own colours.

40 Chapter 2. Tree-based Live Streaming

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600
 0

 50

 100

 150

 200

 250
fr

a
c
ti
o

n
 o

f
p

e
e

rs

n
u

m
b

e
r

o
f

p
e

e
rs

time (seconds)

number of peers
colour 1
colour 2
colour 3
colour 4

Figure 2.10: The distribution of the colours of the peers. The number of peers is
plotted as well (scale on the right-hand side of the figure).

trees. The source forwards each colour to at most three peers, and every peer forwards
its own colour to at most three peers as well (since there are four colours). The tree of
every colour is thus ternary, and the minimal average distance from the source to each
peer can be calculated accordingly (see Section 2.2.3).

The height of the trees over time in the same experiment is shown in Figure 2.9(a).
Each line shows the number of peers at most a certain number of hops from the source,
in the tree of their own colour. Even though peers are constantly arriving to and
departing from the system, the trees do not degenerate. This is due to the fact that
peers switch to parents of the same colour but closer to the source, whenever possible.
We compare the average measured distance from a peer to the source against the
optimal value in Figure 2.9(b). As can be seen in the figure, every peer is on average
at most one hop further away from the source than in the optimal case.

In Figure 2.10, the distribution of the colours of the peers is shown. The number
of peers in the system is plotted as well. The colours stay approximately evenly
distributed. Of course, fluctuations are larger than when the number of peers is low.

In Table 2.3, we compare the measured results (third row) against the lower
bounds on the expected performance as derived in Section 2.4.5 (rows 5–7). The
table shows the average number of descriptions received by a peer at any moment in
time, again restricted to those peers that receive at least one description. The colour
distribution in this experiment fluctuates slightly around a uniform distribution. Be-

2.5. Experiments 41

0

50

100

150

200

250

0 100 200 300 400 500 600

all peers
4 desc

time (seconds)

n
u

m
b

e
r

o
f
p

e
e

rs

Figure 2.11: The number of descriptions received under churn. The initial 200 sec-
onds are disregarded.

cause of this, we compare the measurements to Figure 2.7 using slight fluctuations
as well, while n1 = 0.20,0.25,0.30, n2 = n3 = n4. The measured results are close
to the derived lower bound on the expected performance in a stable situation. Also,
it must be noted that in the analysis, every event is dealt with instantaneously, while
in practice, events take time to process. This can cause peers to be in the process of
repairing the tree for a certain amount of time. This performance loss is not taken into
account in the analysis.

2.5.4 Churn

In the third experiment, we let 1200 peers arrive and depart. Initially, the departure
rate is low, causing a flash crowd. Once the departure rate is (about) equal to the
arrival rate of 2/s, there is churn, which is the rapid arrival and departure of many
peers in the network. The result of this experiment is shown in Figure 2.11, in which
we only consider the data after 200 seconds, when the number of peers is (reasonably)
stabilised. On average, the peers are still able to receive at least one description 98.6%
of the time (see also Table 2.2). The continuous peer departures cause frequent big
drops in the number of peers which are receiving all four colours, but the system also
recovers quickly. This shows that the Orchard algorithm can handle sustained peer
arrivals and departures and still deliver part of the video stream to most of the users,

42 Chapter 2. Tree-based Live Streaming

0

10

20

30

40

50

0 20 40 60 80 100

all peers
at least 1 desc
at least 2 desc
at least 3 desc

4 desc

time (seconds)

n
u

m
b

e
r

o
f
p

e
e

rs

Figure 2.12: The number of descriptions received when streaming 4 Mbit/s video.

most of the time.
The measured results are again compared to the lower bound on the expected per-

formance in Table 2.3 on row 4 and rows 5–7, respectively. Although the performance
for this experiment is a bit less than in a flash crowd, it still comes close to the values
derived in Section 2.4.5.

2.5.5 Real Streaming

In this experiment, we let 50 peers arrive. A 4 Mbit/s data stream (1 Mbit/s per
description) was distributed using UDP. The result of this experiment is shown in
Figure 2.12. The spikes are due to packet loss. When streaming these amounts of
data, the peers require a bit more time to obtain their first description. The huge
amount of UDP traffic at each peer slows down the ability of the emulator to initiate
TCP connections. Thus, it takes a peer somewhat longer to establish connections
with its neighbours, which causes additional delay between arriving in the system and
obtaining the first description.

We do not do any retransmits of dropped UDP packets, nor do we define how
much packet loss a peer tolerates from its parent. These parameters depend on the
network (such as router configuration, network congestion, and the latencies between
the peers) and local parameters (such as the codec used and the buffer size). Consid-
ering these parameters is outside the scope of this chapter.

2.5. Experiments 43

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

all peers
at least 1 desc
at least 2 desc
at least 3 desc

4 desc

time (seconds)

n
u

m
b

e
r

o
f
p

e
e

rs

Figure 2.13: The number of descriptions received in Delft-37.

2.5.6 Delft-37

In the last experiment, we distribute the peers over the Delft-37 network. The Delft-
37 nodes we used cannot all host the same number of peers due to different amounts
of resources being available on the nodes. In this test, we started 65 peers, with a
distribution as shown in Table 2.1. The results of this experiment are shown in Figure
2.13.

Every Delft-37 node forms the end point of a large number of TCP connections,
since every peer maintains a TCP connection to all of its neighbours. Five of the peers
(two in Washington, one in Georgia, two in Germany) were able to start, but were
not able to set up any TCP connections. This caused four of these peers to depart,
explaining the three small dips in the ‘all peers’ curve. We suppose this happened due
to the high number of TCP connections already started on these nodes. The 60 peers
that did not depart were all able to obtain all colours.

2.5.7 Scalability of Orchard

In the experiments we have presented above, there are at most a few hundred peers in
the system at a single point in time. If the number of peers is significantly larger, the
behaviour of Orchard could change. The analysis in Section 2.4 is independent on the
number of peers and thus scales, but it does not cover all aspects of Orchard. More
specifically, the trees created by Orchard become deeper if the number of peers in

44 Chapter 2. Tree-based Live Streaming

the system increases, and so the average distance from a peer to the source increases.
As a result, the differences in latencies with which a peer receives the colours may
increase. The amount of buffering done at a peer has to be sufficient to cope with
these differences. Also, the probability that a peer departs along the path from a
peer to the source increases, which is likely to result in more packet loss, or even the
complete loss of a colour. However, these problems are not specific to Orchard, but
they will occur in any ALM streaming algorithm that employs trees.

2.6 Related Work

The idea of using MDC [44] in ALM has been proposed before [20, 81, 94]. Pouwelse
et al. [81] propose the use of a bartering mechanism, but do not provide an algorithm.
SplitStream [20] uses MDC to create a forest interior-node-disjoint trees and can be
modified in such a way that every node forwards as much as it receives, if such a
forest can be constructed. However, SplitStream was designed for cooperative envi-
ronments, and lacks the mechanisms to enforce a fair bandwidth contribution. Peers
respect the forwarding capacity claimed by their neighbours, and a peer can thus eas-
ily free-ride by lying about its forwarding capacity. In contrast, Orchard forces the
peers to contribute, and avoids relying on the peers’ own claims.

It is not necessary to use MDC to create resilience against peer failure. In Chain-
saw [76], the video stream is cut into pieces, with peers forwarding to each other the
most recent pieces as long as bandwidth allows. Each peer requests the pieces it is still
missing from its neighbours. This makes it very resilient against peer failure, because
a failing neighbour causes a peer to (re-)request the pieces from someone else.

The traditional single tree approach is the basis of many algorithms. In NICE [13]
and ZigZag [95], a hierarchy of groups ensures members of a group can replace each
other in case of peer failures.

None of the algorithms mentioned above provides a mechanism to enforce a fair
resource contribution. All of the algorithms allow a peer to define its own maximum
out-degree, and count on peers to be honest about their latency to others. This makes
cheating easy [64]. Peers can simply pretend to be unable to forward data, and will
still be served. Unlike those algorithms, Orchard enforces fair resource contribution
and is still resilient against high-rate peer arrivals and departures.

BAR gossip [58] is a multicast solution based on an epidemic approach, in which
fairness is encouraged by letting peers exchange pieces of the video stream and pro-

2.7. Discussion 45

viding countermeasures against malicious peers. However, this algorithm relies on a
central, trusted auditor to evict malicious peers from the system. The same holds for
the system proposed by Haridasan et al. [51], which uses a similar approach but is
able to achieve better performance.

Several algorithms have been proposed to combat free-riding in multicast systems.
Some [22, 75] assign the role of central authority to the source, letting it manage the
tree or enforce other rules on the other peers. However, this puts an additional load
on the source, which it may not be able to handle.

Habib et al. [50] let peers keep each other informed about the behaviour of others,
and punish free-riders. This creates an incentive for peers to contribute resources,
but requires a central authority or the deployment of a distributed trust system to
avoid peers spreading false information about others. A distributed trust system adds
complexity, it needs to exist beforehand, and it needs to cover all the receiving peers.
This is not always feasible or practical.

Ngan et al. [72] propose a system in which the multicast tree is periodically reshuf-
fled. If a free-rider refuses to forward to another peer, that other peer could become
the free-rider’s parent after a reshuffle, and subsequently deny serving the free-rider.
Such a system is very vulnerable to Sybil attacks, in which a free-rider assumes a new
identity. To combat this, the authors propose the use of certified nodeIds. However,
this requires a central authority or a distributed trust mechanism as well.

2.7 Discussion

The Orchard algorithm forces peers to spend as much upload bandwidth as they use
download bandwidth. As a result, peers with asymmetric links (such as ADSL) are
at a disadvantage. Even if such peers have enough download bandwidth to receive
the video stream, they may not have enough upload bandwidth to satisfy the deals
required to obtain it. For networks in which peers do not necessarily have enough
upload bandwidth, the video distribution mechanism can to be extended to allow peers
to repay their used bandwidth in subsequent sessions [42]. We consider the aspects of
fairness across sessions to be outside the scope of this thesis however, and consider a
different approach in Chapters 3 and 4, in which we will allow peers to provide upload
bandwidth to those with asymmetric links, without requiring the same amount of data
in return. The peers with asymmetric links will thus be able to receive a higher quality
of service than would be possible when using Orchard.

46 Chapter 2. Tree-based Live Streaming

Furthermore, in order to use the Orchard algorithm, the application developer has
to support Multiple Description Coding, which is not (yet) a common video encoding
technique. Also, no free implementation exists that we are aware of. Layered Video
Coding [57], which is a similar but more common technique, introduces dependencies
between the layers, which are otherwise similar to descriptions in MDC. These depen-
dencies cause the first (base) layer to be essential in the decoding of any other layer.
Would such layers be used as colours in the Orchard algorithm, the robustness of the
video distribution would critically depend on the distribution of a single colour. Any
peer of that colour that departs from the network would force others to interrupt their
video playback because they lost the critical base layer, instead of allowing a graceful
degradation in video quality as is the case in MDC when only a single description is
lost.

Although our analysis and experiments assume that peers get a neighbourhood
set consisting of peers selected uniformly at random, the Orchard algorithm does not
require this restriction. A possible way to improve the performance of Orchard is to
make the neighbourhood selection algorithm in the underlying P2P network locality
aware [78, 104]: if peers strike deals with neighbours close to them in the underlying
network, less network traffic is generated and thus less network congestion will occur.

2.8 Conclusions

When multicasting video streams using Application Level Multicasting, each byte
received by a peer has to be uploaded by another peer. Through the Orchard algorithm,
we have shown that it is possible to construct an ALM system in P2P networks which
is fair, decentralised and resilient.

The Orchard algorithm is fair, because peers are forced to share the burden of
uploading equally: no peer has to upload more data than it downloads. We achieved
this by using Multiple Description Coding, and by letting the peers strike deals to
exchange and redirect descriptions. Every deal ensures that a peer will not have to
forward more than it receives. The Orchard algorithm is decentralised as it does not
need any central component. Although the source is a special component, no peer
is required to know it. The Orchard algorithm is resilient against peer arrivals and
departures due to the use of multiple descriptions. This was confirmed by analysing
the expected performance of Orchard as well as through emulation.

2.8. Conclusions 47

We have thus shown that it is possible to be resilient against free-riding in a peer-
to-peer network for live video streaming. Our approach is resilient to a reasonable
amount of churn as well as against several types of malicious behaviour. However,
our approach does require a video codec with support for Multiple Description Cod-
ing. Our novel forest-construction primitives, based on equal data exchange and on
the creation of forwarding triangles between peers, can aid in the design of other al-
gorithms in which an equal exchange of resources is desired.

49

Chapter 3

Swarm-based Video-on-Demand

THE ORCHARD ALGORITHM presented in Chapter 2 is designed to support live
video streaming, but cannot be easily extended to support video-on-demand.

The peers in Orchard are able to exchange video data, because they all require the
same data. When streaming a video in a video-on-demand fashion, the playback
positions of the peers are independent of each other. A peer further ahead in the
video has no need for the data obtained by a peer that has just started playback at the
beginning of the video. Neither the single tree nor the multiple tree approach is really
suitable for video-on-demand for exactly this reason. Both approaches assume that
the same data can be sent to all of the peers at the same time, allowing the trees to
be reconfigured by swapping any two nodes. However, in video-on-demand, using
a tree structure implies that each node is further ahead in the video than its children
to be able to supply them with video data. Such a restriction severely limits any tree
reconfigurations should inner nodes depart before their children do.

A different approach is thus needed to provide the peers with an incentive for up-
loading when streaming video-on-demand. Instead of using tree structures, we turn
to the swarm-based approach. The swarm-based data distribution model cuts the data
into pieces of fixed size. The peers announce to each other which pieces they have ob-
tained, and allow these pieces to be requested by others. The order in which the pieces
are propagated through the network can be customised, as each peer can request any
piece available at its neighbours. In contrast, the tree-based approaches typically for-
ward the data in-order. Since pieces in the swarm-based distribution can be requested
by each peer in any order, each peer can obtain the video stream from multiple neigh-

50 Chapter 3. Swarm-based Video-on-Demand

bours by distributing the requests among them. A peer can thus dynamically create
multiple substreams from its neighbours, without the need for specialised techniques
like Multiple Description Coding, as is used in Orchard. However, video-on-demand
does not allow the exchange of pieces between peers to happen on a one-to-one basis,
as peers at the same moment in time may require different parts of the data. A peer
that has just joined the network is interested in downloading the full video, while other
peers may be interested in only the last few pieces as they have downloaded most of
the video already.

In this chapter, we present Give-to-Get, a P2P video-on-demand algorithm in
which peers are given an incentive to upload data. The incentive is created by re-
warding peers that prove to be good uploaders. A peer thus has to ”give” in order to
”get”, a concept which bears close resemblance to the indirect reciprocity found in hu-
man societies in general [73]. We present Give-to-Get as an extension to the popular
BitTorrent protocol [26] which is originally designed for non-streaming file sharing.
By extending BitTorrent, we allow many existing BitTorrent implementations to be
adapted to support video-on-demand, which we believe makes Give-to-Get easier to
deploy. For the same reason, we have designed Give-to-Get to be video-codec ag-
nostic: we assume that the video stream is a stream of bits to be played at a constant
speed. Give-to-Get thus does not require advanced video-encoding techniques such
as Multiple Description Coding (as is required for Orchard in Chapter 2) or advanced
video-playback techniques like Adaptive Playback [56, 84], which allows the video
speed to be varied to match the available bandwidth to the player.

This chapter is organized as follows. We further specify the problem we address
in Section 3.1, followed by a description of the Give-to-Get algorithm in Section 3.2.
Next, we present our experiments and their results in Section 3.3. We compare the per-
formance of Give-to-Get to that of an analytical model in Section 3.4. In Section 3.5,
we discuss related work. Finally, we draw conclusions in Section 3.6.

3.1 Problem Description

The problem we address in this chapter is the design of a P2P VoD algorithm which
discourages free-riding. A free-rider is a peer which consumes more resources than
it contributes to the P2P system. We will assume that a peer will not try to cheat the
system in a different way, such as being a single peer emulating several peers (also
called a Sybil attack [34]), or several peers colluding. In this section, we will describe

3.1. Problem Description 51

how a P2P VoD system operates in our setting in general. We assume the algorithm
to be designed for P2P VoD to be video-codec agnostic, and we will consider the
video to be a constant bit-rate stream with unknown boundary positions between the
consecutive frames. Similarly to BitTorrent [26], we assume that the video file to
be streamed is split up into chunks of equal size, and that every peer interested in
watching the stream tries to obtain all chunks. Due to the similarities with BitTorrent,
we will use its terminology to describe both our problem and our proposed solution.

A P2P VoD system consists of peers which are downloading the video (leechers)
and of peers which have finished downloading and upload for free (seeders). The
system starts with at least one seeder. We assume that a peer is able to obtain the
addresses of a number of random other peers, and that connections are possible be-
tween any pair of peers. To provide all leechers with the video data in a P2P fashion,
a multicast tree has to be used for every chunk of the video. Such a multicast tree
can be built explicitly or emerge implicitly as the union of paths over which a certain
chunk travelled to each peer. While in traditional application-level multicasting, the
same multicast tree is created for all chunks and is changed only when peers arrive or
depart, we allow the multicast trees of different chunks to be different based on the
dynamic behavior of the peers. These multicast trees are not created ahead of time,
but rather come into being while chunks are being propagated in the system.

A peer typically behaves in the following manner: It joins the system as a leecher
and contacts other peers in order to download chunks of a video.After a prebuffer-
ing period, the peer starts playback. When the video has finished playing, the peer
will depart. If the peer is done downloading the video before playback is finished,
it will stay as a seeder until it departs. We assume that peers can arrive at any time,
but that they will start playing the video from the beginning and at a constant speed.
Similar to other P2P VoD algorithms like BiToS, we do not consider seeking or fast-
forwarding. Give-to-Get can be extended to support these operations, but such exten-
sions are outside the scope of this thesis. We chose to focus on the core algorithm for
basic asynchronous playback. Fast-forwarding introduces its own class of problems.
For example, a peer that wants to fast-forward most likely has to play the video at
a faster rate than it can be downloaded, or has to receive the video from others at a
lower bitrate. Support for seeking could be provided at a level above Give-to-Get, by
cutting the video stream into pieces of say one minute in size each, and creating a
separate Give-to-Get swarm for each piece [12]. In such a system, peers can seek by
switching to the swarm containing the target timestamp. Note that rewinding can be

52 Chapter 3. Swarm-based Video-on-Demand

easily supported in the player itself without help of Give-to-Get.

3.2 Give-to-Get

In this section, we will explain Give-to-Get (G2G). First, we will describe how a peer
maintains information about other peers in the system in its neighbour set. Then, the
way the video pieces are forwarded from peer to peer is discussed. Next, we show in
which order video pieces are transferred between peers. Fourth, we will discuss the
differences with the related BitTorrent [26] and BiToS [98] protocols. Finally, we will
discuss our performance metrics.

3.2.1 Neighbour Management

The system we consider consists of peers which are interested in receiving the video
stream (leechers) and peers which have obtained the complete video stream and are
willing to share it for free (seeders). We assume a peer is able to obtain addresses
of other peers uniformly at random. Mechanisms to implement this could be cen-
tralised, with a server keeping track of who is in the network, or decentralised, for
example, by using epidemic protocols or DHT rings. We view this peer discovery
problem as orthogonal to our work, and so beyond the scope of this chapter. From
the moment a peer joins the system, it will obtain and maintain a set of 10 neigh-
bours in its neighbour set. When a peer is unable to contact 10 neighbours, it will
periodically try to discover new neighbours. Although maintaining more neighbours
typically boosts the performance in most P2P networks (including Give-to-Get), we
keep the number of neighbours small to prevent the P2P network in our simulation
from becoming (nearly) fully connected. The performance measured in simulations
of a fully connected network cannot be extrapolated towards bigger networks.

Once a peer becomes a seeder, it will disconnect from other seeders to avoid
maintaining useless connections.

3.2.2 Chunk Distribution

The video data is split up into chunks of equal size. As G2G is codec agnostic, the
chunk boundaries do not necessarily coincide with frame boundaries. Peers obtain
the chunks by requesting them from their neighbours. A peer keeps its neighbours

3.2. Give-to-Get 53

Algorithm 1 Unchoking algorithm.
choke(all neighbours)
N⇐ all interested neighbours
sort N on forwarding rank
for i = 1 to min(|N|,3+n) do

unchoke(N[i])
b⇐ ∑

i
k=1(our upload speed to N[k])

if i≥ 3 and b > UPLINK∗0.9 then
break

informed about the chunks it has, and decides which of its neighbours is allowed to
make requests. A neighbour which is allowed to make requests is unchoked. When
a chunk is requested by a neighbour, the peer appends it to the send queue for the
corresponding connection. Chunks are uploaded using subchunks of 1 Kbyte to avoid
delays in the delivery of control messages, which are sent with a higher priority. We
find a subchunk size of 1 Kbyte to be a practical trade-off between having small
delays in the interaction between peers (when using small subchunks), and having a
low overhead (when using big and thus fewer subchunks).

Every δ seconds, a peer decides which neighbours are unchoked based on infor-
mation gathered over the last δ seconds. The neighbours which have shown the best
performance will be unchoked, as well as a randomly chosen neighbour (optimistic
unchoking). G2G employs a novel unchoking algorithm, described in pseudocode in
Algorithm 1. A peer p ranks its neighbours according to decreasing forwarding ranks,
which is a value representing how well a neighbour is forwarding chunks. The calcu-
lation of the forwarding rank is explained below. Peer p unchokes the three highest-
ranked neighbours. Since peers are judged by the amount of data they forward, it is
beneficial to make efficient use of the available upload bandwidth. To help saturate
the uplink, subsequently more neighbours are unchoked until the uplink bandwidth
necessary to serve the unchoked peers reaches 90% of p’s uplink. At most n neigh-
bours are unchoked this way to avoid serving too many neighbours at once, which
would decrease the performance of the individual connections. The optimal value for
n likely depends on the available bandwidth and latency of p’s network connections.
Note that a value of n = 1 discourages a fast dissemination of information by allow-
ing peers to forward to only one other peer, essentially turning the data distribution
topology into a chain. In our experiments, we use n = 2; larger values of n did not

54 Chapter 3. Swarm-based Video-on-Demand

yield a noteworthy performance improvement in our simulations.
To search for better children, p round-robins over the rest of the neighbours and

optimistically unchokes a different one of them every 2δ seconds. If the optimistically
unchoked neighbour proves to be a good forwarder and ends up at the top, it will be
automatically kept unchoked. New connections are inserted uniformly at random
in the set of neighbours. The duration of 2δ seconds turns out to be enough for
a neighbour to prove its good behaviour. By having a peer upload chunks to only
the best forwarders, its neighbours are encouraged to forward the data as much as
possible. Peers are not obliged to forward data, but may not be able to receive video
data once other peers start to compete for it. This results in a system where free-riders
are tolerated only if there is sufficient bandwidth left to serve them.

A peer p ranks its neighbours based on the number of chunks they have forwarded
during the last δ seconds. Our ranking procedure consists of two steps. First, the
neighbours are sorted according to the decreasing numbers of chunks they have for-
warded to other peers, counting only the chunks they originally received from p. If
two neighbours have an equal score in the first step, they are sorted in the second
step according to the decreasing total number of chunks they have forwarded to other
peers. Either step alone does not suffice as a ranking mechanism. If neighbours are
ranked solely based on the total number of chunks they upload, good uploaders will be
unchoked by all their neighbours, which causes only the best uploaders to receive data
and the other peers to starve. On the other hand, if neighbours are ranked solely based
on the number of chunks they receive from p and forward to others, peers which are
optimistically unchoked by p have a hard time becoming one of the top ranked for-
warders. An optimistically unchoked peer q would have to receive chunks from p and
hope for q’s neighbours to request exactly those chunks often enough. The probability
that q replaces the other top forwarders ranked by p is too low.

Peer p has to know which chunks were forwarded by its children to others. To
obtain this information, it cannot ask its children directly, as they could make false
claims. Instead, p asks its grandchildren for the behaviour of its children. The children
of p keep p updated about the peers they are forwarding to. Peer p contacts these
grandchildren, and asks them which chunks they received from p’s children. This
allows p to determine both the forwarding rates of its children as well as the numbers
of chunks they forwarded which were originally provided by p. Because peer p ranks
its children based on the (amount of) data they forward, the children of p have an
incentive to forward as much as possible to obtain a high rank. Figure 3.1 shows an

3.2. Give-to-Get 55

p

c

g

video data

feedback information

Figure 3.1: The feedback connections for an individual peer.

example of the flow of feedback information. Peer p has unchoked two other peers,
amongst which peer c. Peer c has peer g unchoked. Information about the amount of
video data uploaded by c to g is communicated over the dashed arrow back to p. Peer
p can subsequently rank child c based on this information. Note that a node c has no
incentive to lie about the identities of its children, because only its actual children will
provide feedback about c’s behaviour.

For the above approach to work, it is critical that p and c do not collude. Although
we consider protection against collusion attacks to be outside the scope of this thesis,
we do note that it is possible to protect the network against collusion. For example,
peers could be forbidden to connect to peers outside of the set they are given by the
peer discovery algorithm. By assigning peers random sets of neighbours, the chance
of two colluding peers being allowed to report about each other’s behaviour is greatly
reduced.

3.2.3 Chunk Picking

A peer obtains chunks by issuing a request for each chunk to other peers. A peer thus
has to decide in which order it will request the chunks it wants to download; this is
called chunk picking. When a peer p is allowed by one of its neighbours to make
requests to it, it will always do so if the neighbour has a chunk p wants. We associate
with every chunk and every peer a deadline, which is the latest point in time the chunk
has to be present at the peer for playback. As long as p has not yet started playback,

56 Chapter 3. Swarm-based Video-on-Demand

m (playback
position)

round-trip
time to q

HIGH
PRIO

LOW PRIO

Video
start

Video
end

h

MID
PRIO

h

Figure 3.2: The high-, mid- and low-priority sets in relation to the playback position.
The chunks in the grey areas, if requested, will not arrive before their deadline.

the deadline of every chunk at p is infinite. Peer p wants chunk i from a neighbour
q if the following conditions are met: a) q has chunk i, b) p does not have chunk i
and has not previously requested it, and c) it is likely that chunk i arrives at p before
its deadline. Peer p will never request pieces it does not want. Because peers keep
their neighbours informed about the chunks they have, the first two rules are easy to
check. To estimate whether a chunk will arrive on time, p keeps track of the response
time of requests. This response time is influenced by the link delay between p and q
as well as the amount of traffic from p and q to other peers. Peers can submit multiple
requests in parallel in order to fully utilise the links with their neighbours.

When deciding the order in which chunks are picked, two things have to be kept
in mind. First, it is necessary to provide the chunks in-order to the video player.
Secondly, to achieve a good upload rate, it is necessary to obtain enough chunks which
are wanted by other peers. The former favours downloading chunks in-order, the latter
favours downloading rare chunks first. To balance between these two requirements,
G2G employs a hybrid solution by prioritizing the chunks that have yet to be played
back. Let m be the playback position of peer p, or 0 if p has not yet started playback.
Peer p will request chunk i on the first match in the following list of sets of chunks
(see Figure 3.2):

• High priority: m≤ i < m+h. If p has already started playback, it will pick the
lowest such i, otherwise, it will pick i rarest first.

• Mid priority: m+h≤ i < m+(µ +1)h. Peer p will choose such an i rarest first.

3.2. Give-to-Get 57

• Low priority: m+(µ +1)h≤ i. Peer p will choose such an i rarest first.

In these definitions, h and µ are parameters which dictate the amount of clustering of
chunk requests in the part of the video yet to be played back. A peer picks rarest-first
based on the availability of chunks at its neighbours. Among chunks of equal rarity,
i is chosen uniformly at random.During playback, the chunks with a tight deadline
are downloaded first and in-order (the high priority set). The mid-priority set makes
it easier for the peer to complete the high-priority set in the future, as the (beginning
of the) current mid-priority set will be the high-priority set later on. This lowers the
probability of having to do in-order downloading later on. The low-priority set will
download the rest of the chunks using rarest-first both to collect chunks which will be
forwarded often because they are wanted by many and to increase the availability of
the rarest chunks. Also, the low priority set allows a peer to collect as much of the
video as fast as possible.

3.2.4 Differences between Give-to-Get, BitTorrent and BiToS

In our experiments, we will compare the performance of G2G to that of BiToS [98].
BiToS is a P2P VoD algorithm which, like G2G, is inspired by BitTorrent. For
BiToS, we will use the optimal settings as derived in the chapter where BiToS is
introduced [98]. The major differences between G2G, BiToS and BitTorrent lie in
the chunk-picking policy, the choking policy and the prebuffering policy. In BiToS,
two priority sets are used: the high-priority set and the remaining-pieces set. The
high-priority set is defined to be 8% of the video length. Peers request pieces from
the high-priority set 80% of the time, and from the remaining-pieces set 20% of the
time. The rarest-first policy is used in both cases, with a bias towards earlier chunks if
they are equally rare. In contrast, G2G uses three priority sets. In-order downloading
is used in the high-priority set once playback has started, and in the mid- and low-
priority sets, the rarest-first policy chooses at random between pieces of equal rarity.
BitTorrent is not designed for VoD and thus does not define priority sets based on the
playback position.

The choking policy determines which neighbours are allowed to request pieces,
which defines the flow of chunks through the P2P network. BiToS, like BitTorrent,
is based on tit-for-tat, while G2G is not. In tit-for-tat, a peer a will allow a peer
b to make requests for chunks if b proved to be one of the top uploaders to a. In
contrast, a peer a in G2G will allow b to make requests if b proves to be one of the

58 Chapter 3. Swarm-based Video-on-Demand

top forwarders to others (this set of others can include a). Tit-for-tat works well in
an off-line download setting (such as BitTorrent) where peers have enough chunks
they can exchange. However, it is less suitable for VoD because peers in VoD bias
their interests on downloading the chunks close after their playback position, and
are not interested in chunks before their playback position. Two peers subsequently
either have overlapping interests if their playback positions are close, or the peer with
the earliest playback position is interested in the other’s chunks but not vice-versa.
One-sided interests are the bane of tit-for-tat systems. In BiToS, peers download
pieces outside their high-priority set 20% of the time, relaxing the one-sided interests
problem somewhat, as all peers have a mutual interest in obtaining the end of the
video this way. The choking policy in G2G consists of unchoking neighbours which
have proven to be good forwarders. Subsequently, the requirement to exchange data
between peers, and thus to have interests in each other’s chunks, is not present in G2G.

3.2.5 Performance Metrics

For a peer to view a video clip in a VoD fashion, two conditions must be met to pro-
vide a good quality of service. First, the start-up delay must be small, and secondly,
the chunk loss must be low to provide good playback quality. If either of these condi-
tions is not met, it is likely the user was better off downloading the whole clip before
viewing it. In G2G, we say a chunk is lost if a peer cannot request it in time from one
of its neighbours, or if the chunk was requested but did not arrive in time. The con-
cept of buffering the beginning of the video clip before starting playback is common
to most streaming video players. We will assume that once prebuffering is finished
and playback is started, the video will not be paused or slowed down. In general,
the amount of prebuffering is a trade-off between having a short waiting period and
having low chunk loss during playback.

We define the prebuffering time as follows. First, a peer waits until it has the
first h chunks (the initial high-priority set) available to prevent immediate chunk loss.
Then, it waits until the expected remaining download time is less than the duration of
the video. The expected remaining download time is extrapolated from the download
speed so far, with a 20% safety margin. This margin allows for short or small drops in
download rate later on, and will also create an increasing buffer when the download
rate does not drop. Drops in download rate can occur when a parent of a peer p adopts
more children or replaces p with a different child due to p’s rank or to optimistic

3.3. Experiments 59

unchoking. In the former case, the uplink of p’s parent has to be shared by more peers,
and in the latter case, p stops receiving anything from that particular parent. When
and how often this will occur depends on the behaviour of p and its neighbours, and
is hard to predict. The safety margin in the prebuffering was added to protect against
such behaviour. It should be noted that other VoD algorithms which use BitTorrent-
like unchoking mechanisms (such as BiToS [98]) are likely to suffer from the same
problem. In order to keep the prebuffering time reasonable, the average upload speed
of a peer in the system should thus be at least the video bitrate plus a 20% margin.
If there is less upload capacity in the system, peers both get a hard time obtaining
all chunks and are forced to prebuffer longer to ensure the download will be finished
before the playback is.

Once a peer has started playback, it requires chunks at a constant rate. The chunk
loss is the fraction of chunks that have not arrived before their deadlines, averaged
over all the playing peers. When reporting the chunk loss, a 5-second sliding win-
dow average will be used to improve the readibility of the figures. Neither BiToS nor
BitTorrent define a prebuffering policy, so to be able to make a fair comparison be-
tween BiToS and G2G in our experiments, we will use the same prebuffering policy
for BiToS as for G2G. BiToS uses a larger high-priority set (8% of the video length,
or 24 seconds for the 5-minute video we will use in our experiments), making it un-
fair to let peers wait until their full high-priority set is downloaded before playback is
started. Instead, like in G2G, we wait until the first h = 10 seconds are downloaded.

3.3 Experiments

In this section we will present our experimental setup as well as the results of two
experiments. In the first experiment, we measure the default behaviour with well-
behaving peers and in the second experiment we let part of the system consist of
free-riders. In both cases, we will compare the performance of G2G and BiToS.

3.3.1 Experimental Setup

Our experiments were performed using a discrete-event simulator, emulating a net-
work of 500 peers which are all interested in receiving the video stream. The network
is assumed to have no bottlenecks except at the peers. Packets are sent using TCP
with a 1500 byte MTU and their delivery is delayed in case of congestion in the up-

60 Chapter 3. Swarm-based Video-on-Demand

link of the sender or the downlink of the receiver. Each simulation starts with one
initial seeder, and the rest of the peers arrive according to a Poisson process. Unless
stated otherwise, peers arrive at a rate of 1.0/s, and depart when playback is finished.
When a peer is done downloading the video stream, it will therefore become a seeder
until the playback is finished and the peer departs.

We will simulate a group of peers with asymmetric bandwidth capacities, which
is typical for end-users on the Internet. Every peer has an uplink capacity chosen
uniformly at random between 0.5 and 1.0 Mbit/s. The downlink capacity of a peer
is always four times its uplink capacity. The round-trip times between peers vary
between 100 ms and 300 ms1. A peer reconsiders the behaviour of its neighbours
every δ = 10 seconds, which is a balance between keeping the overhead low and
allowing neighbour behaviour changes (including free-riders) to be detected. The
high-priority set size h is defined to be the equivalent of 10 seconds of video. The
mid-priority set size is µ = 4 times the high-priority set size.

A 5-minute video of 0.5 Mbit/s is cut up into 16 Kbyte chunks (i.e., 4 chunks per
second on average) and is being distributed from the initial seeder with a 2 Mbit/s
uplink. We will use the prebuffering time and the chunk loss as the metrics to assess
the performance of G2G. The actual frame loss depends on the video codec and the
dependency between encoded frames. Because G2G is codec-agnostic, it does not
know the frame boundaries in the video stream and thus, we cannot use frame loss as
a metric. In all experiments, we will compare the performance of G2G and a BiToS
system. We will present the results of a representative sample run to show typical
behaviour. We will use the same arrival patterns, neighbour sets and peer capabilities
when comparing the performance of G2G and BiToS.

3.3.2 Default Behaviour

In the first experiment, peers depart only when their playback is finished, and there
are no free-riders. We do three runs, letting peers arrive at an average rate of 0.2/s,
1.0/s, and 10.0/s, respectively.to that of BiToS when using the same arrival pattern
and network configuration. In Figure 3.3, the number of playing peers in the system
is shown as well as the average percentage of chunk loss. In the top and middle graphs,
peers start departing before all of them have arrived, resulting in a more or less stable

1These figures are realistic for broadband usage within the Netherlands. The results are nevertheless
representative, because the overhead of G2G is low compared to the video bandwidth.

3.3. Experiments 61

 0

 5

 10

 15

 20

 0 150 300 450 600 750
 0

 10

 20

 30

 40

 50

 60

 70

 80
c
h
u
n
k
 l
o
s
s
 (

%
)

n
u
m

b
e
r

o
f
p
e
e
rs

time (s)

chunk loss (g2g)
number of peers (g2g)

chunk loss (bitos)
number of peers (bitos)

 0

 5

 10

 15

 20

 0 150 300 450 600 750
 0

 50

 100

 150

 200

 250

 300

 350

c
h
u
n
k
 l
o
s
s
 (

%
)

n
u
m

b
e
r

o
f
p
e
e
rs

time (s)

chunk loss (g2g)
number of peers (g2g)

chunk loss (bitos)
number of peers (bitos)

 0

 5

 10

 15

 20

 0 150 300 450 600 750
 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

c
h
u
n
k
 l
o
s
s
 (

%
)

n
u
m

b
e
r

o
f
p
e
e
rs

time (s)

chunk loss (g2g)
number of peers (g2g)

chunk loss (bitos)
number of peers (bitos)

Figure 3.3: The average chunk loss and the number of playing peers for peers arriving
at 0.2/s (top), 1.0/s (middle), and 10.0/s (bottom).

62 Chapter 3. Swarm-based Video-on-Demand

number of peers for a certain period that ends when all peers have arrived. In the
bottom graph, all peers have arrived within approximately 50 seconds, after which the
number of peers is stable until all of them are done playing. As long as the initial
seeder is the only seeder in the system, peers experience some chunk loss. Because
all peers are downloading the video, there is much competition for bandwidth. Once
some peers are done downloading the video, they can seeder it to others and after a
short period of time, no peer experiences any chunk loss at all. In effect, the seeders
form a content distribution network aided by the peers which continue to forward
chunks to each other. The performance of Give-to-Get exceeds that of BiToS for both
low and high arrival rates (the top and the bottom graphs), as the average chunk loss
is significantly lower for Give-to-Get. For an arrival rate of 1.0/s (the middle graph),
the amount of chunk loss in Give-to-Get is similar to that in BiToS. The performance
of Give-to-Get thus equals or exceeds that of BiToS in these simulations.

Figure 3.4 shows the distribution of the chunk loss for each arrival rate across the
peers, sorted decreasingly. At all three rates, the chunk loss is concentrated on a small
number of peers, but much more so for G2G than for BiToS. The graphs for G2G are
mostly below those of BiToS, implying that when considering chunk loss, most peers
are better off using G2G. A more sophisticated playback policy, such as allowing the
video stream to pause for rebuffering, could potentially alleviate the heavy losses that
occur for some peers using either algorithm.

Figure 3.5 shows the cumulative distribution of the required prebuffering time,
which increases with the arrival rate. At higher arrival rates, it takes an increasing
amount of time before the initial pieces are spread across the P2P network. A peer
has to wait longer before its neighbours have obtained any pieces, and thus the aver-
age prebuffering time increases. The required prebuffering time is longer in BiToS,
which can be explained by the fact that the high-priority set is large (24 seconds) and
is downloaded with the rarest-first policy, so it takes longer to obtain the initial 10
seconds of the video.

3.3.3 Free-riders

In the second experiment, we add free-riders to the system by having 20% of the peers
not upload anything to others. Figure 3.6 shows the average chunk loss separately for
the well-behaving peers and the free-riders. The well-behaving peers are affected
by the presence of the free-riders, and experience a higher chunk loss than in the

3.3. Experiments 63

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 20 40 60 80 100 120 140 160

c
h
u
n
k
 l
o
s
s
 (

%
)

peer number (sorted on chunk loss)

g2g
bitos

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 50 100 150 200 250 300

c
h
u
n
k
 l
o
s
s
 (

%
)

peer number (sorted on chunk loss)

g2g
bitos

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 100 200 300 400 500

c
h
u
n
k
 l
o
s
s
 (

%
)

peer number (sorted on chunk loss)

g2g
bitos

Figure 3.4: The distribution of the chunk loss over the peers for peers arriving at 0.2/s
(top), 1.0/s (middle), and 10.0/s (bottom).

64 Chapter 3. Swarm-based Video-on-Demand

 0

 100

 200

 300

 400

 500

 0 10 20 30 40 50 60 70

n
u
m

b
e
r

o
f
p
e
e
rs

(c
u
m

u
la

ti
v
e
)

time (s)

g2g
bitos

 0

 100

 200

 300

 400

 500

 0 10 20 30 40 50 60 70

n
u
m

b
e
r

o
f
p
e
e
rs

(c
u
m

u
la

ti
v
e
)

time (s)

g2g
bitos

 0

 100

 200

 300

 400

 500

 0 10 20 30 40 50 60 70

n
u
m

b
e
r

o
f
p
e
e
rs

(c
u
m

u
la

ti
v
e
)

time (s)

g2g
bitos

Figure 3.5: The cumulative distribution of the prebuffering time for peers arriving at
0.2/s (top), 1.0/s (middle), and 10.0/s (bottom).

3.3. Experiments 65

 0

 10

 20

 30

 40

 50

 0 150 300 450 600 750
 0

 50

 100

 150

 200

 250

 300

c
h
u
n
k
 l
o
s
s
 (

%
)

n
u
m

b
e
r

o
f
p
e
e
rs

time (s)

chunk loss (g2g)
number of peers (g2g)

chunk loss (bitos)
number of peers (bitos)

 0

 10

 20

 30

 40

 50

 0 150 300 450 600 750
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

c
h
u
n
k
 l
o
s
s
 (

%
)

n
u
m

b
e
r

o
f
p
e
e
rs

time (s)

chunk loss (g2g)
number of peers (g2g)

chunk loss (bitos)
number of peers (bitos)

Figure 3.6: The average chunk loss and the number of playing peers for well-behaving
peers (top) and free-riders (bottom).

66 Chapter 3. Swarm-based Video-on-Demand

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40 50 60 70

n
u
m

b
e
r

o
f
p
e
e
rs

(c
u
m

u
la

ti
v
e
)

time (s)

g2g
bitos

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70

n
u
m

b
e
r

o
f
p
e
e
rs

(c
u
m

u
la

ti
v
e
)

time (s)

g2g
bitos

Figure 3.7: The prebuffering time for well-behaving peers (top) and free-riders (bot-
tom).

previous experiment. A slight performance degradation is to be expected, as well-
behaving peers occasionally upload to free-riders as part of the optimistic unchoking
process. Without any means to detect free-riders before serving them data, losing a bit
of performance due to the presence of free-riders is unavoidable. When using G2G,
the well-behaving peers lose significantly fewer chunks when compared to BiToS, and
free-riders suffer higher amounts of chunk loss.

The required prebuffering times for both groups are shown in Figure 3.7. Both
groups require more prebuffering time than in the previous experiment: the well-
behaving peers require 33 seconds when using G2G, compared to 14 seconds when
free-riders are not present. Because the free-riders have to wait for bandwidth to
become available, they either start early and suffer a high chunk loss, or they have
a long prebuffering time. In the shown run, the free-riders required 89 seconds of
prebuffering on average when using G2G.

3.4. Analysis 67

3.4 Analysis

The performance of Give-to-Get can be analysed in a generic way by using a fluid
model to describe its behaviour. In order to keep the model tractable, the Give-to-
Get algorithm needs to be simplified. In this section, we will present a fluid model
of a simplified version of the Give-to-Get algorithm, and compare its predictions to
simulation results of the complete Give-to-Get algorithm.

The fluid model was designed by Yue Lu and others of the Network Architecture
and Services group at Delft University of Technology, in conjunction with the author,
who provided simulation results of a simplified version of Give-to-Get to validate the
model [63]. Simplified policies make it easier to compare the simulation results to the
model, but they make it harder to judge whether the model is a good predictor for the
performance of Give-to-Get. We will extend the analysis in [63] by comparing the
predictions of the fluid model to simulations of the complete Give-to-Get algorithm.
We will first summarise the model, of which a full description can be found in [63].
Then, we will present the set up of both our model parameters and our simulations,
and finally, we will present a comparison of the analytical and simulation results under
two sets of conditions.

3.4.1 Model Description

The model designed by Lu et al. [63] is similar to the fluid model for file sharing by
Qiu et al. [83]. We assume a system in which there exists one initial seeder, and in
which peers arrive according to a Poisson process with rate λ . The initial seeder is
always online. The other peers do not depart before they have become a seeder. The
seeders will depart with a rate of γ , which is determined by the seeding policy. We
will consider two seeding policies, which define the amount of time a seeder will seed
(which we will call the seeding time). Either seeders will remain seeding for a fixed
amount of time, or until playback is finished.

We let x(t) and y(t) be the number of leechers and seeders at time t, respectively.
The rate at which leechers turn into seeders is determined by the total download speed
of the peers. The download speed is either bounded by the available upload bandwidth
or the available download bandwidth in the system, whichever is less. If D and U are
the download and upload bandwidth of a peer, and S is the upload bandwidth of the
initial seeder, then the maximal achievable total download bandwidth in the system is

68 Chapter 3. Swarm-based Video-on-Demand

s(t) := min{x(t)D,(x(t)+y(t))U +S}. With the video length, in seconds, denoted by
L, and the video bit rate by v, the behaviour of the P2P system can then be modelled
as

dx(t)
dt

= λ (t)− s(t)
Lv

, (3.1)

dy(t)
dt

=
s(t)
Lv
− γ(t)y(t). (3.2)

The model allows the ratio between leechers and seeders to be derived both in
the start-up phase and in the steady state, which is characterised by dx(t)/dt = 0 and
dy(t)/dt = 0. The two seeding policies influence the model as follows. If the seeders
depart after finishing playback, every peer remains in the system for B + L seconds,
which is the duration of the video plus the required prebuffering time B. The sooner
a peer obtains the full video, the longer that peer will be a seeder. Let d(t) be the
average download speed for the peers at time t, which is equal to

d(t) =
s(t)
x(t)

.

Denoting by T (t) the time it takes for a peer to download the video, we have

T (t)d(t) ≈ Lv,

and so the download time can be approximated by

T (t) ≈ Lv
d(t)

=
x(t)Lv

s(t)
.

A peer will thus seed for B+L−T (t) seconds, which leads to a departure rate of

γ(t) ≈ 1
B+L−T (t)

.

The departure rate γ of the seeders thus depends on x(t) and y(t). As a result, Equation
3.2 is non-linear, which complicates the analysis.

If peers remain seeding for a fixed amount of time, we approximate γ(t) with the
reciprocal of the seeding time. An actual client can show such behaviour by leaving
the network after having seeded for a fixed amount of time, even though playback may

3.4. Analysis 69

Parameter Symbol Value
video bitrate v 0.5 Mbit/s (roughly TV quality)
video length L 5 minutes (e.g., a short video clip)
upload bandwidth U 0.9 Mbit/s
upload bandwidth of initial seeder S 4 Mbit/s
download bandwidth D 10 Mbit/s
arrival rate λ 1
prebuffer time B 10 seconds

Table 3.1: The values of the parameters used for the model validation.

still continue. When γ(t) is constant, Equations 3.1 and 3.2 are linear and therefore
easy to analyse. If the value of γ is lowered, the seeding time increases, resulting in
a higher download speed for the peers. However, the download speed of a peer is
limited by its download bandwidth D. It can be shown [63] that the downlinks of the
peers will become saturated if

γ ≤ λU
λLv−S

. (3.3)

Note that the download bandwidth D does not appear in Equation 3.3. Rather, the
value of D influences the speed at which a leecher becomes a seeder, and thus the ratio
of seeders to leechers. Systems in which the peers have a high download bandwidth
D will get a high seeder-to-leecher ratio, which in turn allows the downlinks of the
leechers to be saturated. The performance of the system thus depends on the download
bandwidth of the peers when Equation 3.3 holds. In systems in which Equation 3.3
does not hold, the performance primarily depends on the upload bandwidth of the
peers and the departure rate of the seeders.

For both seeding policies, Lu et al. [63] provide the analysis required to calculate
or approximate x(t), y(t), and the download bandwidth of the leechers, averaged for
any t, both before and in the steady state.

3.4.2 Model and Simulation Setup

We validate the model for Give-to-Get by using simulations. We limit our comparison
by fixing several parameters, as shown in Table 3.1.

Each simulation starts with one initial seeder, and the peers arrive according to

70 Chapter 3. Swarm-based Video-on-Demand

a Poisson process. The simulation results are averaged over 20 runs. We found the
average bandwidth utilization of a peer (upload rate/upload capacity) to be equal to
80% of the upload capacity U on average, while the bandwidth utilization rate of the
original source is nearly 100%. Hence, in order to be consistent with the settings in our
fluid model, we set the original source’s upload capacity to S = 4 Mbit/s, and a normal
peer’s upload capacity to U/0.8 = 1.1 Mbit/s. We measured the average download
speed over all the peers, using a 10 second sliding window. The average download
speed will often be lower than expected due to the continuous arrival of peers. A
newly arrived peer has a download speed of 0 and requires some time before it has
reached its maximum download speed. Since such peers are included in the average,
the average download speed over all peers is lowered. Also, the model requires a fixed
prebuffering time B which we set to 10 seconds, while Give-to-Get uses its dynamic
prebuffering policy. The other parameters are equal to those in the fluid model.

3.4.3 Results for a Non-linear System

In the first seeding policy, peers depart only when the playback is finished. The time
each peer seeds, γ(t), is not constant, and in fact depends on the number of leechers
x(t) and seeders y(t) in the system.

Figure 3.8 illustrates the resulting performance. In the top figure, the number of
leechers and seeders are shown over time. The number of leechers initially increases
as the peers arrive in the system, but subsequently decreases once leechers become
seeders. The total number of peers (leechers and seeders) increases until the departure
rate is equal to the arrival rate, which is the case in the eventual steady state. The
analytical results and simulation results match well, although the very first seeders
appear a bit earlier in the simulations (t ≈ 100s) when compared to the fluid model
(t ≈ 175s). The reason for this is that the fluid model ignores the upload bandwidth
of the initial seeder S in the earliest stages. The peers in the simulations however
will have the bandwidth of the initial seeder available to them, and will thus be able
to obtain the video slightly faster. Once the steady state is reached, the number of
leechers and seeders in the simulations closely match the analytical results.

The bottom figure shows the average download speed over time. Initially, the
average download speed is low as peers contend for bandwidth. Once seeders start
to appear, the average download speed for the leechers increases significantly. The
difference in download speed between the analytical results and the simulation re-

3.4. Analysis 71

 0

 50

 100

 150

 200

 250

 300

 350

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

n
u

m
b

e
r

o
f

p
e

e
rs

time (s)

downloaders (analysis)
downloaders (simulation)

seeds (analysis)
seeds (simulation)

 0

 2

 4

 6

 8

 10

 12

 14

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

s
p

e
e

d
 (

M
b

it
/s

)

time (s)

download rate (analysis)
download rate (simulation)

Figure 3.8: The number of leechers and seeders (top) and the average download speed
per peer (bottom) as a function of time in a non-linear video system.

72 Chapter 3. Swarm-based Video-on-Demand

sults in the steady state is small, considering that the average download speed in the
simulations is lowered by the arrival of new peers.

Other differences between the analytical and simulation results can be caused by
the fact that in our fluid model, leechers can always exchange data. In our simulations,
leechers can only exchange data if they have obtained different pieces. As a result,
the pieces propagate slightly more slowly in the simulations, causing slower as well as
more fluent transitions between the states. We conclude that with our settings above,
this non-linear system seems to perform very well, and the fluid model is able to
predict the behaviour of Give-to-Get with a decent accuracy.

3.4.4 Results for a Linearised System

The fluid model becomes linear when each peer seeds for a fixed amount of time.
We use the same values for our parameters, except for the value of γ . Depending on
the value of γ , the performance is either limited by the upload or the download band-
width of the peers, as can be seen from Equation 3.3. If the value of γ is low enough,
the seeds remain in the system long enough to saturate the download bandwidth of
the peers. Lowering γ beyond that point cannot increase the download speed of the
peers. Equation 3.3 provides us with the threshold value, which is γ ≈ 0.00616 for
our parameter values. For higher values of γ , the seeders depart earlier, and there-
fore provide less upload capacity to the system, making the system upload-bandwidth
constrained. We compare our model to simulations for both γ = 0.006 (a balanced
system) and γ = 0.008 (an upload-bandwidth constrained system) in order to show
the performance of the system on the treshhold, and when peers seed for a shorter
amount of time. We will show that the peers will be able to obtain a decent average
download speed in the balanced system, making it unnecessary to let them seed for a
longer period of time (γ < 0.006).

In a balanced system, each user shares the video for 1/γ = 1/0.006 ≈ 167 sec-
onds after the download is finished, regardless of the download speed. Figure 3.9
shows the resulting performance. We observe that this linear case has a similar sys-
tem performance as the non-linear system, because the average download speed at a
peer is similar, even though the number of seeders in this case is smaller than in the
steady-state. The difference between the analytical results and the simulation results
are similar to those in the non-linear system. So, if the peers seed for 167 seconds or
more, the average download speed will always be maximised. Therefore, the model

3.4. Analysis 73

 0

 50

 100

 150

 200

 250

 300

 350

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

n
u

m
b

e
r

o
f

p
e

e
rs

time (s)

downloaders (analysis)
downloaders (simulation)

seeds (analysis)
seeds (simulation)

 0

 2

 4

 6

 8

 10

 12

 14

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

s
p

e
e

d
 (

M
b

it
/s

)

time (s)

download rate (analysis)
download rate (simulation)

Figure 3.9: The number of downloaders and seeders (top) and the average download
speed per peer (bottom) as a function of time in a balanced, linearised system (γ =
0.006).

74 Chapter 3. Swarm-based Video-on-Demand

allows a Give-to-Get developer to determine when maximum system performance is
reached.

In an upload-constrained system with γ = 0.008, each user shares the video for
1/0.008 = 125 seconds after he finishes the download. The situation of the linear
system in this case is shown in Figure 3.10. Since the system is above the γ = 0.006
threshold, it is the upload capacity of the peers that limits the system performance.
The seeders cannot provide enough capacity to maximise the download speed of the
leechers, which leads to worse system performance. Figure 3.10 (bottom) shows the
average download speeds, which originally behave in the same way as for γ = 0.006,
because both configurations are the same as long as no seeder has departed yet. Once
the seeders start to depart, fewer of them will be in the system when compared to
γ = 0.006, as can be seen in the top figure. The download speed of the leechers
rebounds slightly as the leechers necessarily stay longer in the system due to a lack of
seeders, and thus provide each other with more upload capacity.

In all of the cases we tested, the trends of the simulation results and the analytical
results are similar. We have thus validated the fluid model proposed in [63], and have
shown that the model can be used to predict the performance of Give-to-Get. The
model allows developers to calculate, for example, the length and the bit rate of the
video that the system will be able to stream at acceptable quality.

3.5 Related Work

Video-on-demand is a popular service on the Internet, which is usually provided by
Content Delivery Networks (CDNs) [77, 96]. A CDN is a client-server architecture, in
which the server that provides the video stream is replicated at multiple sites. Websites
that host video clips or live video streams, such as YouTube [5], make use of a CDN
in order to be able to deliver the bandwidth needed to serve all of their users.

An early algorithm for distributed VoD is Chaining [90], in which the video data
is distributed over a chain of peers. Such a solution works well for a controlled en-
vironment, but is less suitable for P2P networks. In P2Cast [47], P2VoD [33] and
OBN [60], peers are grouped according to similar arrival times. The groups forward
the stream within the group or between groups, and turn to the source if no eligible
supplier can be found. In all three algorithms, a peer can decide how many children it
will adopt, making the algorithms vulnerable to free-riding.

3.5. Related Work 75

 0

 50

 100

 150

 200

 250

 300

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

n
u

m
b

e
r

o
f

p
e

e
rs

time (s)

downloaders (analysis)
downloaders (simulation)

seeds (analysis)
seeds (simulation)

 0

 2

 4

 6

 8

 10

 12

 14

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

s
p

e
e

d
 (

M
b

it
/s

)

time (s)

download rate (analysis)
download rate (simulation)

Figure 3.10: The number of downloaders and seeders (top) and the average download
speed per peer (bottom) as a function of time in an upload-constrained linearised
system (γ = 0.008).

76 Chapter 3. Swarm-based Video-on-Demand

Our G2G algorithm borrows the idea of bartering for chunks of a file from Bit-
Torrent [26], which is a very popular P2P protocol for off-line downloading. In Bit-
Torrent, the content is divided into equally sized chunks which are exchanged by
peers on a tit-for-tat basis. In deployed BitTorrent networks, the observed amount of
free-riding is low [11] (however, Locher et al. [61] have shown that with a specially
designed client, free-riding in BitTorrent is possible without a significant performance
impact for the free-riding peer). Of course, the performance of the network as a whole
suffers if too many peers free-ride. The BitTorrent protocol has been adapted for VoD
by both BASS [28] and BiToS [98]. In BASS [28], all peers connect to a stream-
ing server, and use the P2P network to help each other in order to shift the burden
off the source. BASS is thus a hybrid between a centralised and a distributed VoD
solution. The differences between G2G and BiToS are described in Section 3.2.4.
Annapureddy et al. [12] propose a comprehensive VoD protocol in which the video
stream is divided into segments, which are further divided into blocks (chunks). Peers
download segments sequentially from each other and spend a small amount of addi-
tional bandwidth prefetching the next segment. Topology management is introduced
to connect peers that are downloading the same segment, and network coding is used
within each segment to improve resilience. However, their algorithm assumes peers
are honest and thus free-riding is not considered. Using indirect information as in
G2G to judge other peers is not new. EigenTrust [40] defines a central authority to
keep track of all trust relationships in the network. Lian et al. [59] generalise the use
of indirect information to combat collusion in tit-for-tat systems.

As is common in streaming video players, G2G buffers the beginning of the video
clip (the prefix) before playback is started. Sen et al. [89] propose a scheme to let
proxy servers do this prefix caching for a centralised VoD service, thus smoothing the
path from server to client.

3.6 Conclusions

We have presented Give-to-Get (G2G), a P2P VoD algorithm that discourages free-
riding by rewarding peers which forward data to others. Peers are encouraged to
compete to forward as much data as possible, since the peers which forward the most
data will be provided with a better quality of service by their neighbours. Also, we
have introduced a novel chunk-picking policy, in which the set of chunks required
for playback is divided into three subsets: a high-, a mid-, and a low-priority set.

3.6. Conclusions 77

Such a division allows an easy-to-implement yet graceful transition between down-
loading pieces required on the short term (the high-priority set) and those required on
the long term (the low-priority set), with a distinct chunk picking policy within each
priority set. Although we have extended the BitTorrent protocol to incorporate these
ideas, both our forwarding incentives and our chunk picking policies can be of use to
improve the performance and free-riding resilience of other P2P VoD algorithms as
well.

We evaluated the performance of Give-to-Get by conducting tests under various
conditions as well as comparing its performance to that of BiToS [98]. If free-riders
are present, they suffer heavy performance penalties if upload bandwidth in the system
is scarce. Once enough peers have downloaded the full video, there is enough upload
bandwidth to sustain free-riders without compromising the well-behaving peers.

We also compared simulations of Give-to-Get to a fluid model for P2P VoD [63].
The fluid model was shown to provide a good estimation of the performance of Give-
to-Get under the conditions we considered. The model can thus be used to predict the
performance of a deployed Give-to-Get system.

With the Give-to-Get algorithm, we have shown that the effects of free-riding can
be significantly reduced in a peer-to-peer video-on-demand distribution system. Our
approach relies on an identity system to prevent peers from colluding, but does allow
peers with currently common asymmetric Internet connections to obtain video of a
higer quality by encouraging all peers to upload as much data as possible. Further-
more, because we extended the existing BitTorrent protocol for which many clients
already exist, Give-to-Get is easy to implement and to deploy.

79

Chapter 4

Swarm-based Live Streaming

THE SWARM-BASED APPROACH for video distribution is a practical one, as sev-
eral swarm-based algorithms have been succesfully deployed on the Internet,

with BitTorrent being the most prominent. Even though most of these algorithms fo-
cus on file sharing, they can be extended to support video streaming, as we did with
BitTorrent in Chapter 3 for video-on-demand (VoD). In this chapter, we will propose
extensions for BitTorrent to support live video streaming. The advantages of extend-
ing BitTorrent are three-fold. First, BitTorrent has several optimised and well-tested
implementations. Extending such implementations reduces the number of bugs and
increases the performance of the features offered. Second, any enhancements to the
original BitTorrent protocol (for example, firewall puncturing and DHT peer discov-
ery) carry over to the extensions with little or no extra effort. Finally, along with the
Give-to-Get extensions for video-on-demand of Chapter 3, the BitTorrent protocol
will support all three modes of video distribution — live video streaming, video-on-
demand, and off-line downloading — within the same environment.

Although the difference between video-on-demand and live video streaming may
seem minor from a user’s perspective, the technological differences are actually fun-
damental when considering a BitTorrent-like system. First, both the original BitTor-
rent protocol and its VoD extensions assume all data to be available beforehand. The
total length of the data as well as hashes of it are generated before the file is offered for
download. Such information is not available in a live streaming session. The hashes
of the data can only be calculated when the data have been generated, and the length
of the stream is unknown in many scenarios (for example, when broadcasting TV

80 Chapter 4. Swarm-based Live Streaming

channels). Secondly, in contrast to VoD, peers in live streaming are always playing
approximately the same part of the stream. All peers thus require roughly the same
data, and cannot download faster than the stream is generated. Finally, when in VoD
peers finish downloading the complete stream, they can share it with others (called
seeding), which massively increases the download performance of the other peers.
We have previously observed systems in which 90% of the peers are seeding. In live
streaming, no peer is ever done downloading, so no seeds exist. We will provide a
solution to these issues, and we will present an algorithm that allows a BitTorrent
system to stream live video.

We will evaluate the feasibility of our approach by using simulations as well as a
deployed system. Because it is difficult to capture the full dynamics of a deployed P2P
system through simulations, we mainly use simulations to estimate optimal values for
the parameters that are used in our extensions (e.g., the prebuffering time, which is
the time used for the initial downloading of video data before the playback starts). We
also focus on varying the percentage of peers in the system that are behind firewalls or
NATs. In Chapter 5, we will show this percentage to be a key factor in the performance
of P2P content distribution systems. The deployment of our extensions consisted of
a public trial using our Tribler BitTorrent client [80]. We deployed an outdoor DV
camera, and invited users to tune in using Tribler. Over the course of 9 days, 4555
unique users participated in our trial.

This chapter is organised as follows. First, we will briefly describe BitTorrent and
discuss related work in Section 4.1. We will present our extensions to BitTorrent in
Section 4.2. Section 4.3 contains the set up and results of our simulations. Section
4.4 will describe the set up and results of our public trial. Finally, we will draw
conclusions in Section 4.5.

4.1 Background

In this section, we will present the background of our live video streaming extensions
of BitTorrent. First, we will briefly describe the BitTorrent protocol as it forms the
basis of our work; a more extensive description can be found in [27]. Then, we will
discuss the differences between our approach and those of other live video streaming
systems.

4.1. Background 81

4.1.1 BitTorrent

The BitTorrent protocol [27] operates as follows. The injector creates a torrent meta-
data file, which is shared with the peers through, for example, an HTTP server. The
file to be shared is cut into fixed-size pieces, the hashes of which are included in the
torrent file. A central server called a tracker keeps track of the peers in the network.
The peers exchange data on a tit-for-tat basis in the swarm of peers interested in the
same file: the neighbours of a peer that provide the most data are allowed to request
pieces in return (they are unchoked). The tit-for-tat construct thus creates an incentive
for peers to upload their data to others. Once a peer has completed the download of
a file, it can continue to seed it by using its upload capacity to serve the file to others
for free.

Mature BitTorrent clients extend the basic BitTorrent protocol, for instance by
including support for a global DHT ring, which allows peers to locate each other
without requiring to contact the tracker. This DHT ring in particular could be used as
a basis for an application-level multicast tree. However, such a multicast tree would
not benefit from any tit-for-tat mechanism, and would thus be vulnerable for abuse.

4.1.2 Related Work

Many of the P2P live streaming algorithms proposed in the literature are designed
to operate in a cooperative environment. Abusing such algorithms on the Internet is
easy [64]. The BAR Gossip [58] and Orchard [68] algorithms do not assume full
cooperation from the peers, but the P2P framework in which they operate is out of the
scope of either algorithm, nor do they include measurements of a deployed system.

Deployed live streaming P2P solutions have been measured before [7, 9, 100]
and reveal a decent performance. Ali et al. [9] and Agarwal et al. [7] measure the
performance of commercial P2P live streaming systems, but they do not describe the
P2P distribution algorithm that was used. Xie et al. [100] measure a deployed and
open protocol called Coolstreaming [103]. Our approach is different in that we extend
BitTorrent, which can be deployed in environments in which peers do not necessarily
behave well. We will compare our results with those found by Agarwal et al. [7] and
Xie et al. [100] to provide insight into our results.

82 Chapter 4. Swarm-based Live Streaming

4.2 Extensions for Live Streaming

Our live streaming extensions to BitTorrent use the following generic setup. The in-
jector obtains the video from a live source, such as a DV camera, and generates a
tstream file, which is similar to a torrent file but cannot be used by BitTorrent clients
lacking our live streaming extensions. An end user (peer) which is interested in watch-
ing the video stream obtains the tstream file and joins the swarm (the set of peers) as
per the BitTorrent protocol. We regard the video stream to be of infinite length, which
is useful when streaming a TV channel or a webcam feed.

We identify four problems for BitTorrent when streaming live video, which are
unknown video length, unknown future video content, a suitable piece-selection pol-
icy, and the lack of seeders, which we will discuss in turn.

4.2.1 Unlimited Video Length

The BitTorrent protocol assumes that the number of pieces of a video is known in
advance. This number is used throughout a typical implementation to allocate arrays
with an element for every piece, and therefore, it is not practical to simply increase
the number of pieces to a very large value that will not be reached (for instance, 232).
Instead, each peer maintains its own sliding window that rotates over a fixed number
of pieces at the speed of the video stream. Each peer deletes pieces that fall outside
of its sliding window, and will consider them to be deleted at its neighbours as well,
thereby avoiding the need for additional messages. Within its sliding window, each
peer barters for pieces according to the BitTorrent protocol.

The injector defines its sliding window as the A most recently generated pieces.
The value of A is included in the tstream file and is thus known to all peers. Any
other peer is not necessarily connected to the injector, and synchronises its sliding
window with the pieces available at its neighbours. For any peer, let piece p be the
youngest piece available at more than half of its neighbours. Then, its sliding window
is (p−A, p + A]. Figure 4.1 illustrates the relationship between the sliding windows
of the peers. We allow the playback position, which we will define in Section 4.2.3,
of any peer is to be no more than A pieces behind the latest generated piece. A peer
can verify this by comparing its clock to the timestamps which we will include in the
pieces. The playback position of any peer thus falls within the sliding window of the
injector, which allows the injector to serve any peer if all others depart. Furthermore,

4.2. Extensions for Live Streaming 83

Figure 4.1: The sliding windows of valid pieces for the injector, two random peers,
and the peers furthest from the injector in terms of delay. The vertical markers on
each bar indicate the peer’s playback position.

the sliding window of one peer cannot overlap with overlap with the sliding window
of another peer due to a wrap around over the total set of pieces.

A peer thus has to be able to determine which piece is the youngest available. In
order to make that possible, we let the total number of pieces be 4A. Each neighbour
has a sliding window of size at most 2A, and will subsequently report at least 2A
consecutive missing pieces. The last piece reported before a missing range of at least
2A pieces is thus the youngest piece owned by that neighbour. Neighbours that report
to have no pieces at all, are ignored. We use majority voting to be able to ignore
malfunctioning and malicious clients, which may report pieces that are outdated, or
that they do not own.

4.2.2 Data Validation

Once a peer completes the download of any piece, it proceeds to validate the data. The
ordinary BitTorrent download protocol computes a hash for each piece and includes
these hashes in the torrent file. In the case of live streaming, these hashes have to be
filled with dummy values or cannot be included at all, because the data are not known
in advance and the hashes can therefore not be computed when the torrent file is
created. The system would thus be left prone to injection attacks and data corruption.

We prevent data corruption by using asymmetric cryptography to sign the data,
which has been found by Dhungel et al. [31] to be superior to several other methods

84 Chapter 4. Swarm-based Live Streaming

for data validation in live P2P video streams. The injector publishes its public key by
putting it in the torrent file. Each piece includes an absolute sequence number, starting
from zero, and a time stamp at which the piece was generated. The SHA1 hash of each
piece is signed by the injector, and the signature is appended to the piece. Any peer
can thus check whether a piece was generated by the injector. The sequence number
allows a peer to confirm that the piece is recent, since the actual piece numbers are
reused by the rotating sliding window. The time stamp allows a peer to determine
the propagation delay from the injector. We use 64-bit integers to represent both the
sequence numbers and the timestamps, so a wrap around will not occur within a single
session.

In our case, the signature adds 64 bytes of overhead to each piece, and the se-
quence number and timestamp add 16 bytes in total. If a peer downloads a piece and
detects an invalid signature or finds it outdated, it will delete the piece and disconnect
from the neighbour that provided it. A piece is outdated if was generated A pieces or
longer ago.

The validity of a piece can only be verified once it has been downloaded com-
pletely, and only verified pieces are offered to others and to the video player. As a
result, small pieces reduce the delay of each hop traversed by the piece. On the other
hand, if pieces are too small, the overhead of dealing with an increased number of
pieces increases as well.

4.2.3 Live Playback

Before a peer starts downloading any video data, it has to decide at which piece num-
ber it will start watching the stream, which we call the hook-in point. We assume
each peer desires to play pieces as close as possible to the latest piece it is able to ob-
tain. However, if the latest pieces are available at only a small number of neighbours,
downloading the stream at the video bitrate may not be sustainable. We therefore let
a peer start downloading at B pieces before the latest piece that is available at at least
half of its neighbours. The prebuffering phase starts when the peer joins the network
and ends when it has downloaded 90% of these B pieces. We do not require a peer
to obtain 100% of these pieces, to avoid waiting for pieces that are not available at its
neighbours or that take too long to download. The prebuffering time is defined as the
length of the prebuffering phase.

The pieces requested from a neighbour are picked on a rarest-first basis, as in Bit-

4.2. Extensions for Live Streaming 85

injector

leecher

seeder

Figure 4.2: The injector, seeders and leechers in a live streaming setting. The bold
nodes are seeders. The bold edges are connections which are guaranteed to be un-
choked.

Torrent. This policy encourages peers to download different pieces and subsequently
exchange them. If peers would request their pieces in-order, as is common in video
streaming algorithms, peers would rarely be in the position to exchange data, which
would conflict with the tit-for-tat incentives in BitTorrent.

A buffer underrun occurs when a piece i is to be played but has not been down-
loaded. Since pieces are downloaded out of order, the peer can nevertheless have
pieces after i available for playback. If a peer has more than B/2 pieces available
after i, the peer will drop missing piece i. Otherwise, it will stall playback in order to
allow data to be accumulated in the buffer. Once more than B/2 pieces are available,
playback is resumed, which could result in dropping piece i after all if it still has not
been downloaded. We will use a value of B equivalent to 10 seconds of video in our
trial, a value which we derive through simulation in Section 4.3.3.

We employ this trade off since neither dropping nor stalling is a strategy that
can be used in all situations. For instance, if a certain piece is lost because it was
never available for download, it should be dropped, and playback can just ignore the
missing piece. On the other hand, a peer’s playback position can suddenly become
unsustainable due to network dynamics. A different set of neighbours may only be
able to provide the peer with older data than it needs. In that case, a peer should stall
playback in order to synchronise its playback position with its new neighbours.

4.2.4 Seeders

In BitTorrent swarms, the presence of seeders significantly improves the download
performance of the other peers (the leechers). However, such peers do not exist in a

86 Chapter 4. Swarm-based Live Streaming

live streaming environment as no peer ever finishes downloading the video stream.

We redefine a seeder in a live streaming environment to be a peer which is always
unchoked by the injector and is guaranteed enough bandwidth in order to obtain the
full video stream.The injector has a list of peer identifiers (for example, IP addresses
and port numbers) representing trusted peers which are allowed to act as seeders if
they connect to the injector. The relationship between the injector, seeders and leech-
ers is shown in Figure 4.2. The seeders and leechers use the exact same protocol, but
the seeders (bold nodes) are guaranteed to be unchoked by the injector (bold edges).
The identity of the seeders is not known to the other peers to prevent malicious be-
haviour targeted at the seeders.

The injector and seeders behave like a small Content Delivery Network (CDN).
Even though the seeders diminish the distributed nature of the BitTorrent algorithm,
they can be required if the peers cannot provide each other with enough bandwidth to
receive the video stream in real-time. The seeders boost the download performance of
other peers as in regular BitTorrent swarms. Also, the seeders increase the availability
of the individual pieces, which reduces the probability of an individual piece not being
pushed into the rest of the swarm. We will measure the effect of increasing the number
of seeders through simulation in Section 4.3.5.

The maximum video rate that can be streamed succesfully by the peers is limited
by the bandwidth they have available as well as by the connectivity between them.
The number of peers that can be trusted to be used as seeders depends on factors that
lie outside of the scope of this chapter, such as the presence of a trust or reputation
system that keeps track of the behaviour of the peers accross sessions. However, if the
injector has seeders at its disposal, either by deploying them himself or by promoting
altruistic peers, the quality of the video for the peers is improved and streaming higher
video bitrates becomes possible.

4.3 Simulations

We have written a BitTorrent simulator and extended it with our algorithm to evaluate
the performance of our extensions. In this section, we will explain the setup of our
simulations, followed by the evaluation of the impact of four parameters: the capacity
of the uplink of the peers, the hook-in point, the piece size, and the number of seeders.

4.3. Simulations 87

4.3.1 Simulation Setup

We do not aim to reproduce the exact same conditions in the simulations that will
occur in our trial. Instead, we use the simulator to implement a reasonable scenario in
order to test the impact of several parameters defined throughout this paper. In each
simulation run, we simulate 10 minutes of time, and let peers arrive with an average
rate of one per second (using a Poisson distribution) to share a video stream of 512
Kbit/s using BitTorrent pieces of 32 Kbyte, which amounts to two pieces per second.
Each peer has a residence time of 0 – 10 minutes. For each set of parameters (data
point) we evaluate, we performed ten simulation runs. The peers have an asymmetric
connection with an uplink of 1–1.5 Mbit/s and a downlink of four times the uplink.
The latency between each pair of peers is 100 – 300 ms. We will show in Chapter
5 that the percentage of peers that cannot accept incoming connections (due to the
presence of a firewall or NAT) can have a significant impact on the performance, es-
pecially if this percentage is higher than 50%. The BitTorrent protocol does not define
any firewall puncturing or NAT traversal techniques, and due to their complexity we
consider both techniques to be outside the scope of our extension. Therefore, we re-
peat our simulations, with every peer having a probability of 0%, 50%, 60%, 70%,
80%, or 90% of not accepting incoming connections. All peers can, however, initiate
outgoing connections and transfer data in both directions if the connection is accepted.
To keep our model simple and for ease of discussion, we will consider any peer which
cannot accept incoming connections to be firewalled, and vice versa. Peers not behind
a firewall will be called connectable.

4.3.2 Uplink Bandwidth

The amount of available upload capacity of the peers is one of the critical factors for
the performance of a P2P live video streaming algorithm. Regardless of the streaming
algorithm, the peers (including the injector and the seeders) need at least an average
upload bandwidth equal to the video bitrate in order to serve the video stream to each
other without loss. In practice, more upload bandwidth is needed as not all of the
available upload bandwidth in the system can be put to use. Even though one peer
may have the data and the capacity to serve another peer that needs those data, the
peers may not know about each other, or may be barred from connecting to each other
due to the presence of firewalls.

Using our simulator, we tested the impact of the average available uplink band-

88 Chapter 4. Swarm-based Live Streaming

width. For each simulation, we define an average uplink bandwidth u for the peers.
Each peer is given an uplink between 0.75u and 1.25u. As our performance metric,
we use the total amount of data played by all peers, instead of the more common met-
rics such as piece loss and prebuffering time. We do this for two reasons. First, we
need a single metric to compare the performance between simulations. The piece loss
in a system can be lowered by increasing the prebuffering time, and vice-versa, so
performance cannot be accurately described by either metric alone. The total amount
of played data is a single metric which avoids such a trade-off, since both an increased
piece loss and an increased prebuffering time lower the amount of data played. Sec-
ondly, describing the piece loss figures for a set of peers in a single number is prob-
lematic, as the fraction of loss is easily skewed by peers which remain in the system
for only a brief period of time. When considering the total amount of data played by
all peers, peers which remain in the system only briefly have a lower impact.

Our metric has two downsides as well. First of all, for piece loss and prebuffering
time figures, their optimal values are clear. However, for the total amount of data
played, the optimal value depends on the arrival and departure rates of the peers. We
therefore use the same arrival and departure patterns when testing different parame-
ters. The best average performance over the ten patterns we see across our tests is
used as our base line, and assign it a value of 1. In that case, we found 4.3 seconds of
prebuffering time and << 0.01% pieces loss. The results of all other tests are given
relative to this base line. Secondly, since our metric captures both piece loss and
prebuffering time, the difference between them cannot be distinguished. If the total
amount of data played is low, one cannot tell whether there was a lot of piece loss, or
whether peers took a long time before they started playing. Also, for long simulations,
an acceptable piece loss can accumulate to high values which would not be acceptable
if the same amount of loss was caused by an exceedingly long prebuffering time.

Figure 4.3 plots the total amount of data played as it depends on the available up-
link bandwidth normalised with regard to the video bitrate (512 Kbit/s). As expected,
the performance is poor when the peers have an average uplink smaller than the video
bitrate. If there are no firewalled peers, the peers need roughly 1.5 times the video bi-
trate as their uplink in order to obtain the highest performance. However, once more
than half of the peers are firewalled, the performance drops significantly and more
bandwidth is needed. This result is consistent with our earlier findings on P2P data
exchange in general [69].

In the remaining simulations, we give peers an uplink of 1 – 1.5 Mbit/s, which is

4.3. Simulations 89

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 1 1.5 2 2.5 3 3.5 4 4.5

to
ta

l
a

m
o

u
n

t
p

la
y
e

d
(1

 =
 b

a
s
e

lin
e

)

average uplink bandwidth (x video bitrate)

0%
50%
60%
70%
80%
90%

Figure 4.3: The total amount of data played versus the average uplink bandwidth, for
several percentages of firewalled peers.

equal to 2.5 times the video bitrate, on average. We thus expect to provide acceptable
performance if at most 60% of the peers is behind a firewall.

4.3.3 Hook-in Point

We measure the effect of changing the hook-in point by varying the size B of the buffer
of the prebuffering phase introduced in Section 4.2.3 in a system with no firewalled
peers. Figure 4.4 plots the measured performance. The average required prebuffering
time is plotted against the buffer size B, as well as the average percentage of time a
peer spent either losing pieces or stalling. As the size of the buffer B increases, the
prebuffering time increases as more pieces have to be downloaded before playback
can start. The amount of time spent by a peer losing pieces or stalling decreases when
B increases, which is explained by the fact that a larger buffer provides each peer with
more time to obtain missing pieces. A value for B of 10 seconds (= 20 pieces) is a
good trade off, and this is the value we will use in our trial (see Section 4.4).

4.3.4 Piece Size

Figure 4.5 plots the performance obtained in our simulations when the size of the
BitTorrent pieces varies. Each line represents a different percentage of peers behind
a firewall. Again, the performance of the system degrades as the percentage of fire-

90 Chapter 4. Swarm-based Live Streaming

 0

 2

 4

 6

 8

 10

ti
m

e
 (

s
)

average prebuffering time

0

2

4

6

0 5 10 15 20

%
 o

f
ti
m

e

buffer size (s)

average piece loss and stall

Figure 4.4: The average prebuffering time (top) and the average percentage of time
spent losing pieces or stalling (bottom) versus the size of the buffer of the prebuffering
phase.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256 1024

to
ta

l
a

m
o

u
n

t
p

la
y
e

d
(1

 =
 b

a
s
e

lin
e

)

piece size (Kbyte)

0%
50%
60%
70%
80%
90%

Figure 4.5: The total amount of played data versus the piece size, for several percent-
ages of firewalled peers.

4.4. Public Trial 91

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

to
ta

l
a

m
o

u
n

t
p

la
y
e

d
(1

 =
 b

a
s
e

lin
e

)

number of seeders

0%
50%
60%
70%
80%
90%

Figure 4.6: The total amount of played data versus the number of seeders, for several
percentages of firewalled peers.

walled peers increases. Furthermore, both small and large piece sizes provide poor
performance. Very small pieces introduce too much overhead, and large pieces re-
quire too long to download, or may never even be downloaded completely before
their playback deadline. According to our simulations, the best performance is ob-
tained using pieces of 16 Kbyte or 32 Kbyte in size. In our trial, we will use pieces of
32 Kbyte, since the 16 Kbyte simulations were not available at the start of the trial.

4.3.5 Number of Seeders

Finally, we test the impact of the number of seeders. The results of these tests are
shown in Figure 4.6. We performed simulations with 1 to 20 seeders per swarm
(against approximately 600 peers in total as one peer arrives every second for a period
of 10 minutes), and with varying percentages of peers behind firewalls. Figure 4.6
indicates that increasing the number of seeders significantly increases performance,
in case tha performance is poor due to a high percentage of peers behind firewalls.

4.4 Public Trial

In this section, we will first describe how our trial was set up. Then, we will discuss the
main performance characteristics: the size of the swarm, the amount of piece loss and

92 Chapter 4. Swarm-based Live Streaming

stalling experienced by the peers, the prebuffering time they needed, and their sharing
ratios. The sharing ratio of a set of peers is the ratio of the number of uploaded bytes
and the number of downloaded bytes, which is a metric for their resource contribution
and for the scalability of our solution.

4.4.1 Trial Setup

We have developed a P2P video player called the SwarmPlayer, which is based on the
Tribler [80] core and the VideoLan Client (VLC) [4] video player. It runs a mature
BitTorrent implementation plus our proposed extensions. In a public trial on 17th
– 26th July 2008, we invited users to watch a specific live video stream using the
SwarmPlayer. Over the course of 9 days, we saw 4555 users from around the globe
tune in.

We were not able to obtain the rights to stream popular copyrighted content to
a world-wide audience, which would attract a lot of viewers. Instead, we used an
outdoor DV camera, aimed at the Leidseplein, which is a busy square in the center
of Amsterdam. We transcoded the live camera feed to a 512 Kbit/s MPEG-4 video
stream. The video stream was wrapped inside an MPEG Transport Stream (TS) con-
tainer to make it easier for clients to start playing at any offset within the byte stream,
and cut into 32 KByte BitTorrent pieces. Our extensions for live streaming were con-
figured with a value of A (the window size of the injector) of 7.5 minutes, and with
a value of B, the size of the buffer in the prebuffering phase, of 10 seconds. We de-
ployed an injector as well as five seeders. The performance results in the following
sections will exclude these peers.

To participate in our trial, a user had to download the SwarmPlayer and the tstream
file representing our DV camera. Once the SwarmPlayer was started, it sent status
updates to our logging server at 30 second intervals. The logging server checked for
each peer whether it is firewalled by trying to connect to it. UPnP remote firewall
control is supported.

We will compare the results of our trial with two other measurements of deployed
live P2P streaming systems. The first, by Xie et al. [100], measures a deployment
of the open protocol Coolstreaming [103] on up to 40,000 concurrent peers spread
over an unknown number of swarms, delivering a 768 Kbit/s stream. The second,
by Agarwal et al. [7], measures the deployment of a closed protocol on up to 60,000
concurrent peers within a single swarm, delivering a 759 Kbit/s stream. These mea-

4.4. Public Trial 93

Figure 4.7: The locations of all users.

surements assume a different set up and measure a different set of users. Nevertheless,
they will provide a source of comparison that allows us to interpret our results.

4.4.2 Performance over Time

During the trial, users from 4555 different IP addresses joined our swarm 6935 times
in total. Figure 4.7 shows the locations of all the users that participated. These lo-
cations were derived from the IP addresses using publicly available databases. Our
injector and seeders are located in the Netherlands.

Figure 4.8 plots the size of the swarm over time (subfigure (a)) as well as the
average performance of the peers (subfigures (b)–(d)). Each data point is the average
for an hour to improve readability. All time stamps are GMT.

The public trial ran from Thursday July 17th 2008 until Saturday July 26th 2008.
Several events occurred during the course of the trial which have been marked in
Figure 4.8. The trial was announced through several media (Ars Technica, BBC News,
and others) before and after the first weekend. As the time line shows, the trial was not
without problems. On Saturday 19th, a new SwarmPlayer had to be released which
fixed a few bugs that we will mention later. On Tuesday 22nd, our DV camera went
briefly off line, causing all peers to freeze playback. Once the camera was plugged
back in, the system resumed without requiring any intervention. The injector itself
ran uninterrupted during the whole trial.

94 Chapter 4. Swarm-based Live Streaming

The size of the swarm (Figure 4.8(a)) varies between 0 and 86 peers, although
only up to 76 peers stayed long enough to be readable in the figure. Although we
would have liked to see more concurrent users, repeating the trial was not feasible for
us. Most of the peers arrived after the press release on Friday 18th, and a boost in the
arrival rate can be clearly seen on Monday 21st, when the second press release was
made. On most of the days, the swarm is at its smallest at night time. The contrast
between the high number of arrivals (6935) and the rather small swarm indicates that
most visits are brief. Indeed, Figure 4.9 plots the duration of all sessions from long to
short. The median session duration is 100 seconds, with 560 sessions lasting longer
than an hour. The minimum session duration we could measure is 30 seconds, because
that is the interval with which peers send status reports to our logging server.

Figure 4.8(b) shows the average bitrate of pieces that were received on time and
transferred to the video player. Two aspects are of interest. First, the low bit rates
at night and the spikes at dawn are artefacts of our video encoder. Second, there is a
drop in playback rate on Saturday 19th, which was caused by client malfunction. We
released a new version of the SwarmPlayer the same day, and the system resumed its
operation.

Figure 4.8(c) shows the percentage of pieces lost. Most of the piece loss occurred
on Saturday 19th as is to be expected. Overall, the rest of the piece loss is low, and
is mostly concentrated on a few peers, as is shown in Figure 4.10, which shows the
percentage of pieces lost within the individual sessions. A small subset of the peers
experience a high percentage of piece loss, but most peers experience almost no loss.
There are at least two reasons why a peer may loose many pieces. First and foremost,
since peers barter for pieces using the BitTorrent protocol, our extensions inherit any
inefficiencies present in BitTorrent. Second, some peers may not have the necessary
bandwidth to watch the video stream in the first place, due to having a narrow up- or
downlink or due to side traffic. Xie et al. [100] measure an average piece loss of 1%,
which is less than our average of 6.6%. On the other hand, Agarwal et al. [7] measure
a median piece loss of 5%, which is more than our median of 0.4%.

Figure 4.8(d) shows the average percentage of time the peers were stalled. The
peak on Tuesday 22nd is caused by our DV camera being disconnected. Note that the
peak of 50% on Friday 18th is actually measured over only two peers, one of them
stalling. Overall, the stall time typically fluctuates between 0% and 10%. We found
most of this stall time to be present just after a peer started playback, which is an arti-
fact of the SwarmPlayer not being able to predict how much data the video playback

4.4. Public Trial 95

 0

 10

 20

 30

 40

 50

 60

 70

 80

Thu
17 Jul

Fri
18 Jul

Sat
19 Jul

Sun
20 Jul

Mon
21 Jul

Tue
22 Jul

Wed
23 Jul

Thu
24 Jul

Fri
25 Jul

Sat
26 Jul

n
u
m

b
e
r

o
f

p
e
e
rs

(a)

swarm size

 0

 200

 400

 600

 800

 1000

 1200

 1400

k
b
it
/s

(b)

average played data

0 %

20 %

40 %

60 %

80 %

100 %

(c)

average loss percentage

0 %

20 %

40 %

60 %

80 %

100 %

Thu
17 Jul

Fri
18 Jul

Sat
19 Jul

Sun
20 Jul

Mon
21 Jul

Tue
22 Jul

Wed
23 Jul

Thu
24 Jul

Fri
25 Jul

Sat
26 Jul

press release 1

new client release

press release 2

live feed interrupted

(d)

average stall percentage

Figure 4.8: The performance during the trial.

96 Chapter 4. Swarm-based Live Streaming

 10

 100

 1000

 10000

 100000

 1e+06

 0 1000 2000 3000 4000 5000 6000 7000

s
e
s
s
io

n
 d

u
ra

ti
o
n
 (

s
)

rank

Figure 4.9: The duration of the user sessions, ranked according to length.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

p
e
rc

e
n
ta

g
e
 o

f
s
e
s
s
io

n
s

loss percentage

Figure 4.10: The cumulative distribution of the percentage of pieces lost per user
session.

4.4. Public Trial 97

module (VLC) will discard before playback is started. If VLC discards too much data,
the peer will have to stall in order to stay synchronised with its neighbours. Neither
Xie et al. [100] nor Agarwal et al. [7] mention their peers stalling video playback. We
assume their algorithms use a large enough buffer to accommodate for most scenarios,
a fact that will be reflected in the differences in prebuffering times.

4.4.3 Prebuffering Time

The prebuffering time determines how long it takes for a peer to start playback. Even
though a long prebuffering time allows the player to accumulate a large buffer and
therefore minimise piece loss and stalling, we regard a short prebuffering time to be
more desirable since it reduces the amount of time the user will have to wait before
viewing the first frame. The distribution of prebuffering times required in our trials
is shown in Figure 4.11. The median prebuffering time was 3.6 seconds, with 67%
of the peers requiring less than 10 seconds. A few peers require substantially more
prebuffering time. A possible explanation is that such peers do not provide enough
upload bandwidth for BitTorrent to perform the tit-for-tat bartering. The relation be-
tween the prebuffering time and the average upload speed in each session is shown in
Figure 4.12. A negative correlation is clearly visible, in which peers with low aver-
age upload speeds tend to require longer prebuffering times. Average upload speeds
higher than the video bitrate are possible when the session is short, since all pieces
can be downloaded simultaneously in the prebuffering phase.

Xie et al. [100] measure a median prebuffering time between 10 and 20 seconds,
and Agarwal et al. [7] find a median prebuffering time of 27 seconds. Both of these
figures are significantly larger than our 3.6 second median.

4.4.4 Sharing Ratios

The data that are not uploaded by our injector and our seeders is uploaded by the peers.
We aim to distribute the burden of uploading fairly among the peers, to avoid having
to rely on a subset of altruistic peers. As a measure of fairness, we use the sharing
ratio of a peer (or a group of peers), which is defined as the number of uploaded bytes
divided by the number of downloaded bytes. Peers with a sharing ratio smaller than 1
are net consumers, those with a sharing ratio larger than 1 are net producers.

In our trial, we found 61% of the IP addresses to be firewalled, and firewalled
peers accounted for 52% of the on-line time of all peers. Figure 4.13 plots the cu-

98 Chapter 4. Swarm-based Live Streaming

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.1 1 10 100 1000 10000

p
e
rc

e
n
ta

g
e
 o

f
s
e
s
s
io

n
s

prebuffering time (s)

Figure 4.11: The cumulative distribution of the prebuffering time per user session.

 0.01

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

p
re

b
u
ff
e
ri
n
g
 t
im

e
 (

s
)

average upload speed (Kbyte/s)

Figure 4.12: The prebuffering time against the average upload speed for all user ses-
sions.

4.4. Public Trial 99

 0

 20

 40

 60

 80

 100

 0.001 0.01 0.1 1 10

p
e
rc

e
n
ta

g
e
 o

f
p
e
e
rs

sharing ratio

connectable peers
firewalled peers

Figure 4.13: The cumulative distribution of the sharing ratios of the connectable and
firewalled peers.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0.0001 0.001 0.01 0.1 1 10

s
w

a
rm

 s
iz

e

average sharing ratio

Figure 4.14: The swarm size against the average sharing ratio for every five-minute
interval.

100 Chapter 4. Swarm-based Live Streaming

mulative distribution of the sharing ratios for both the firewalled and the connectable
(non-firewalled) peers. The difference in sharing ratios is clearly visible. The con-
nectable peers are able to upload much more data than the firewalled peers. In total,
the connectable peers upload 0.41 as much as they download, while the firewalled
peers upload only 0.18 times as much.

Our injector and seeders provided the rest of the data, which amounts to 74% of
the pieces. Even though we employed five seeders, they were hardly used. The injec-
tor supplies 72% of the pieces, and the seeders only 1.6%. One reason for this bias is
the fact that the injector obtains and announces each piece slightly before any seeders
do. Any peer connected to both the injector and a seeder will thus see each piece
appear at the injector first, and will request it immediately if possible. Apparently,
the injector provided enough bandwidth so that the peers did not have to fall back on
and request pieces from the seeders. The seeders were thus not needed to serve our
limited number of users, but also did not have to provide more than a token amount
of resources.

Figure 4.14 shows the sharing ratios of all peers for each five-minute interval. For
small swarms, most peers receive their data from the injector and the seeders as they
are the first to obtain each piece, and they have enough upload bandwidth to serve all
peers. When the swarm grows, the peers start to forward the stream to each other.
The average sharing ratio clearly improves for larger swarms, which is an indication
for the scalibility of our approach. Note that sharing ratios higher than 1 are due to
artefacts of measurement, in which data is uploaded in a different five-minute interval
than it is downloaded, or one of the peers disconnects before reporting the number of
downloaded bytes.

In Xie et al. [100], 70% of the peers were firewalled, and the other 30% of the
peers provided 80% of the bandwidth exchanged by the peers, but they do not men-
tion how much data are actually coming from their central servers. Their figures do
however, like ours, indicate a significant skew in the resource contribution towards
the connectable peers. The peers measured by Agarwal et al. [7] have roughly 10% of
the data coming from their central servers. They report 84% of their peers to be fire-
walled; since these firewalled peers have to obtain the data from the 16% connectable
peers, the latter will have to provide an amount of upload bandwidth equal to several
times the video bitrate, which correlates with the sharing ratio distribution given in
[7].

The performance of all measured systems, including ours, depends on the upload

4.5. Conclusions 101

bandwidth the injector and the connectable peers are able and willing to provide.
Since a high percentage of firewalled peers in a deployed system seems unavoidable,
the injector and the connectable peers may not be able to provide all of them with
the video stream. Firewall traversal techniques will have to be deployed in order to
increase the contribution of the firewalled peers.

4.5 Conclusions

In this chapter, we have presented extensions to the BitTorrent protocol which add
live streaming functionality. Among other things, we added a rotating sliding window
over a fixed set of pieces in order to project an infinite video stream onto a fixed
number of pieces. The BitTorrent protocol provides our extensions with a resilience
to free-riding through its use of tit-for-tat data exchange. When our extensions as well
as Video-on-Demand extensions [70, 98] are added to a BitTorrent client, a single
solution is created for streaming live and pregenerated video, as well as for off-line
viewing of high-definition content. The overlap between these components reduces
the time to implement them, and allows them all to benefit from future improvements
to BitTorrent. The mechanisms we have presented to map a live data stream onto a
fixed-sized file can be used in other peer-to-peer systems as well, if they need to be
able to handle data streams of both a finite and an infinite size in a transparent manner.

We implemented our extensions into our BitTorrent client called Tribler, and
launched a public trial inviting users to tune into our DV camera feed, in which we
used values for several parameters that were found to be optimal in the simulations
presented in the first part of this chapter. A total of 4555 users from around the globe
joined our swarm. Even though we experienced minor startup problems, and at most
only 86 concurrent users were present, we were able to provide most peers with a
good quality of service. Especially the prebuffering time required by the peers was
significantly lower (3.6 seconds median) than was measured in other deployed peer-
to-peer systems. The percentage of chunk loss that we measured is comparable to the
percentages that have been measured in other systems.

With our trial we have shown that an existing BitTorrent client can be extended
to support live video streaming, which allows our streaming algorithm to be imple-
mented on top of a wide variety of existing mature BitTorrent clients. Our trial sug-
gests that our extensions are indeed capable of live video streaming with a perfor-
mance equal to or exceeding that of other deployed peer-to-peer live video streaming

102 Chapter 4. Swarm-based Live Streaming

systems.
In our trial, we found 61% of the peers to be behind a firewall or NAT. According

to our simulations, such a percentage has a negative significant negative impact on the
performance. Deployed peer-to-peer systems measured by others seem to have a high
percentage of peers behind a firewall or NAT as well. In fact, in the next chapter, we
will consider the impact of firewalls and NATs in a more general setting, by showing
that a lack of connectivity causes performance problems regardless of the distribution
algorithm used.

103

Chapter 5

Bounds on Bandwidth
Contributions

IN THE PREVIOUS CHAPTERS, we assumed a simple model for the peers in a P2P
network when we analysed and simulated the performance of the P2P algorithms.

A model necessarily does not take all aspects of peers into consideration, in order to
keep it tractable. Among other things, we assumed full connectivity: any two peers
that are on-line at the same time can connect to each other. However, full connectivity
is generally not the case on the Internet. Studies [7, 17, 23, 79, 99, 100, 101] have
found 25%–93% of the peers to be behind a firewall or a Network Address Translator
(NAT), which often block incoming connection requests. Since two peers who do not
accept incoming connection requests can never connect to each other, the connectivity
on the Internet is thus partial, and in some cases, extremely limited.

In this chapter, we study the effect of such limited connectivity on the load balanc-
ing within P2P networks in general. Most peers in a P2P file-sharing network will not
contribute by uploading files if no countermeasures are taken [6]. Peers that down-
load files without contributing anything in return are called free-riders, and one of the
ways to avoid it is to give peers an incentive to upload as much data as they down-
load. A common metric of fairness in P2P networks is the sharing ratio of a peer,
which is defined as the total number of uploaded bytes divided by the total number of
downloaded bytes.

We will prove that it is impossible for all peers to achieve a fair sharing ratio,
that is, a sharing ratio equal to 1, if more than half of the peers are firewalled. As

104 Chapter 5. Bounds on Bandwidth Contributions

the percentage of firewalled peers increases, the average sharing ratios of the fire-
walled peers rapidly drop, regardless of the amount of seeding they do or the amount
of content they inject. This implies that free-riding cannot be avoided in such situa-
tions, which has a fundamental impact on algorithms that expect peers to be able to
contribute as much as they consume.

One way to counter the connectivity problems caused by firewwalls and NATs is
to employ techniques like firewall puncturing or NAT traversal [15, 39, 46], which en-
able two firewalled peers to establish a connection. No perfect puncturing technique is
known, because firewall and NAT behaviour is not standardised.We will give a lower
bound on the required effectiveness of such techniques for systems which require all
of its peers to obtain a fair sharing ratio.

We validate our model of connectivity in P2P systems using simulations as well
as real-world measurements. We simulate individual BitTorrent sessions, and analyse
the actual average sharing ratios of the firewalled and the connectable peers. For
real-world measurements, we have collected and analysed data on the behaviour of
several BitTorrent communities, both open and closed. In an open community, anyone
can join any swarm (the set of peers downloading the same file), without sharing
ratio enforcement. In a closed community, only members can download files, and
they are banned if their sharing ratio drops below a certain treshhold. On average,
the BitTorrent protocol rewards good uploaders with a better download performance.
Firewalled peers are limited in the amount of data they can contribute to the system
as our theorems will show. We therefore expect the connectivity problems of the
firewalled peers to be reflected in their download performance. Furthermore, we will
show that in a closed community, in which fair sharing ratios are enforced for all
peers, a majority of firewalled peers cannot be allowed. We will present data on the
behaviour of real systems consistent with these observations.

This chapter is organised as follows. In Section 5.1, we will explain the basics
behind firewalls and NATs. Then, in Section 5.2 we will introduce the network model
we consider. In Section 5.3, we will derive bounds on the sharing ratio of both fire-
walled and connectable peers if no firewall puncturing or NAT traversal techniques
are employed. In Section 5.4, we derive a lower bound on the effectiveness of the
puncturing techniques to make a fair sharing ratio possible. In Section 5.5, we eval-
uate the sharing ratios of peers in BitTorrent sessions through simulation. In Section
5.6, we will present our data on the behaviour of real BitTorrent communities. Finally,
in Section 5.7 we discuss related work and in Section 5.8, we draw our conclusions.

5.1. Firewalls and Puncturing 105

5.1 Firewalls and Puncturing

Although P2P algorithms are often designed assuming that every peer can accept in-
coming connections from other peers, in practice this is not always the case. In this
section, we discuss the two main causes of this, which are firewalls and NATs, along
with firewall puncturing techniques, which allow some firewalls and NATs to never-
theless accept incoming connections anyway.

5.1.1 Firewalls and NATs

A firewall is a piece of software or hardware which can be configured to block certain
incoming connections. Firewalls are used for security purposes — services which are
unintentionally exposed to the outside world can be a target for hackers. By using
a firewall, the system administrator can decide which protocols, ports, or programs
are allowed to accept inbound connections. As a result, some peers in a P2P network
which operate behind such a firewall are unable to accept incoming connections.

A Network Address Translation gateway (NAT) is a router which translates net-
work addresses between two address spaces. Such a setup is common if a consumer or
corporation is given a single (public) IP address but has several computers he wishes
to connect to the Internet. In that case, one computer (the NAT) is assigned the public
IP address. All computers, including the gateway, are assigned a private IP address.
The Internet traffic is routed through the NAT. For every outbound connection, the
NAT keeps track of its origin within the private address space and routes all packets
in either direction accordingly. For every inbound connection, the NAT cannot know
to which computer the corresponding traffic must be routed.

A NAT is a popular default setup for broadband users, who are often unaware of
this connectability problem or do not have the technical knowledge to configure their
NAT. Because broadband users form a significant fraction of the users on the Internet,
we conjecture that they form the bulk of the firewalls and NATs as well. Some NATs
can be configured to route certain traffic to certain computers automatically by the use
of UPnP [65], which is a 1999 standard to let desktop computers configure the NAT.
However, the adoption of UPnP has been very slow. A 2007 measurement by Xie et
al. [100] found only 19% of the peers to have UPnP enabled, even though 89% of the
peers were firewalled or behind a NAT.

There are three reasons to assume that not all pairs of hosts will be connected.

106 Chapter 5. Bounds on Bandwidth Contributions

First, UPnP may never be deployed on all NATs, and will be shipped disabled by de-
fault on others. Second, corporations will likely view UPnP to be a security hole, as it
allows users to open a port within the private network to the rest of the Internet. Third,
NATs have a side-effect of increasing security, because the rest of the Internet cannot
access the computers behind the NAT directly. Once NATs can be configured to make
such computers connectable, new security threats will arise and firewall usage will
increase in response. A common firewall policy is to allow any outbound connections
and block all incoming connections except to the services which are explicitly al-
lowed. The firewalls are unlikely to be configured to allow any application to receive
incoming connections from anywhere on the Internet, which will invariably lead to
a certain fraction of peers with limited connectivity. The fraction of firewalled peers
within a P2P system will thus continue to depend on the nature of the community.

We will, for ease of discussion, use the term ’firewalled peers’ for both peers
behind a firewall and those behind a NAT whose firewall or NAT is not configured to
accept incoming connections. Such peers can initiate outbound connections, as well
as upload and download to others. They cannot, however, connect to other firewalled
peers, unless special techniques are used.

5.1.2 Firewall Puncturing

Techniques called firewall puncturing and NAT traversal can be used to establish a
connection between two firewalled peers, which typically works as follows. Under the
supervision of a (connectable) coordinating peer, both firewalled peers initiate a con-
nection at the same time. When an outgoing connection is initiated, the NAT gateway
knows where incoming packets should go if it judges them to be part of the same con-
nection. When using UDP, which is a stateless protocol, a reasonable percentage of
the firewalls can be punctured (for example, using STUN [87] or NUTSS [45]). Being
able to puncture with stateful protocols like TCP is substantially harder [15, 39, 46],
since both of the firewalls need to agree on the state to be established. This involves
guessing, as either peer has to predict what state on the other end will be expected.
Ford et al. measured an overall success rate of 82% for UDP puncturing and 64% for
TCP puncturing [39], although their results varied wildly between different NAT hard-
ware vendors. Note that the success rate will be lower if bidirectional communication
is required between firewalled peers, as both peers need to support the implemented
puncturing technique.

5.2. Model and Notation 107

Although puncturing using UDP has a reasonable success rate, its use complicates
P2P system design as it will have to implement its own stateful protocols on top of
UDP. Some firewalls or NATs cannot be punctured because they do not allow punc-
turing for security reasons. Finally, NAT behaviour is not standardised, making the
implemented techniques difficult to maintain and their future effectiveness uncertain.

5.2 Model and Notation

We consider a P2P network consisting of a set N of peers which will upload and/or
download a file (or video stream) of L bytes. As only the amount of data exchanged
will be relevant, it will not matter when these peers arrive or depart. The set N is
split up into two disjoint sets, the set F of firewalled peers, which cannot accept
incoming connections, and the set C of connectable peers, which can accept incoming
connections. We assume a peer p ∈ F and q ∈ C can always connect by having the
connection originate from p. Without puncturing techniques, no connections between
peers in F are possible. Furthermore, we define N ≡ |N |, F ≡ |F| and C ≡ |C|, and
we define f ≡ F/N as the fraction of firewalled peers.

We will use two metrics for fairness. First, we define SP to be the average sharing
ratio of a peer in set P . Second, we define the debt ∆(p) of a peer p is the number of
bytes downloaded minus the number of bytes uploaded by p, and ∆(P)≡ ∑p∈P ∆(p)
is the debt of a group of peers P . We will only consider the sharing ratios and the
debts of the peers once all peers have completed the download.

The amounts of data contributed by the individual peers is typically skewed: some
peers upload more than they download, and other peers download more than they
upload. To obtain a fair resource contribution for all peers, sharing ratio enforcement
can be introduced. The sharing ratio of a peer is the total number of bytes it has
uploaded divided by the total number of bytes it has downloaded. A P2P system
can be designed to expect users to aim for a sharing ratio of 1, representing a fair
situation in which a peer on average has contributed as much as it has consumed. To
obtain a fair sharing ratio, a peer can either inject new content or upload the file to
others (including seeding, that is, continuing to upload the file after the download is
completed).

108 Chapter 5. Bounds on Bandwidth Contributions

5.3 No Firewall Puncturing

This section will provide bounds on the sharing ratio of both the firewalled and con-
nectable peers if the P2P system does not employ firewall puncturing or NAT traversal
techniques. The reasoning will be roughly as follows. Firewalled peers can only re-
ceive data from connectable peers. If there are more firewalled peers than connectable
peers, the majority of firewalled peers can only upload to the minority of connectable
peers, and a fair sharing ratio for the firewalled peers will be impossible to obtain.
First, we will derive bounds on the sharing ratios of both firewalled and connectable
peers. Then, we will discuss some practical implications of the derived results.

5.3.1 Sharing Ratio Analysis

It is useful to first derive the debt of each peer after all peers have finished download-
ing the file.

Lemma 1. For the debt of the firewalled peers ∆(F), we have ∆(F)≥ ((2 f −1)N−
1)L.

Proof. We consider two cases: the file has been injected by a firewalled peer, or by a
connectable peer. In the first case, since the firewalled peers cannot form connections
among each other, they have to obtain the file from the connectable peers. This creates
a data flow from C to F of size (F − 1)L (the injector already has the file). The
connectable peers can obtain the file from both sets of peers, creating a data flow from
F to C of at most C · L. Figure 5.1 illustrates these flows. The difference between
these flows is thus bounded by

∆(F) ≥ (F−1)L−C ·L
= ((2 f −1)N−1)L.

In case the file was injected by a connectable peer, similar to the first case, we find

∆(F) ≥ F ·L− (C−1)L

= (f ·N− (1− f)N +1)L

> ((2 f −1)N−1)L.

5.3. No Firewall Puncturing 109

C F

(F-1)L bytes

≤ C⋅L bytes

≥ 0 bytes

Figure 5.1: Data flows between connectable and firewalled peers, if the file was in-
jected by a firewalled peer.

Note that the bound in Lemma 1 holds regardless of whether the injector is
connectable or firewalled. The firewalled peers will end up with a positive debt
(∆(F) > 0) if f > 0.5 + 0.5/N. In that case, it is impossible for the average fire-
walled peer to obtain a fair sharing ratio, as the firewalled peers as a group have to
download more than they can upload. The distribution of the upload burden over the
firewalled and connectable peers determines the exact sharing ratio for each firewalled
peer individually.

The bound on the amount of data the firewalled peers are able to upload results
in bounds on the average sharing ratio for both firewalled and connectable peers. We
shall not regard the injector’s sharing ratio, for the following reasons. The injector
only uploads data, giving it a sharing ratio of infinity. Also, some peers will not
be able to upload any data (for example, consider a system with one injector and
one downloader). These imbalances are expected to average out once the peers have
downloaded multiple files. To keep the sharing ratio of the injector finite when con-
sidering a single file, we will assume that the injector downloads the file as well. This
introduces a relative error in the order of 1/N in all the derived bounds, since the file
will be downloaded by the injector superfluously. The following lemma gives bounds
on the sharing ratios of the firewalled and the connectable peers.

Lemma 2. For the average sharing ratios of firewalled and connectable peers, we
have SF ≤ (1/ f)−1, and 1/(1− f)−1≤ SC ≤ 1/(1− f), respectively.

Proof. Using Lemma 1, the average debt for the firewalled peers is ∆(F)/F ≥ (2−
1/ f − 1/(f ·N))L, which converges to (2− 1/ f)L for large N. Since every peer
downloads exactly L bytes, the average sharing ratio of the firewalled peers is thus
SF = (L−∆(F)/F)/L≤ 1/ f −1.

110 Chapter 5. Bounds on Bandwidth Contributions

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

e
x
p

e
c
te

d
 s

h
a

ri
n

g
 r

a
ti
o

fraction of peers behind a firewall

upper bound

Figure 5.2: Bounds on the average sharing ratio of the firewalled peers against the
fraction of firewalled peers. The horizontal dotted lines represent a fair sharing ratio
of 1.

The connectable peers can be shown to have a sharing ratio if at least 1/(1− f)−1
on average using the same method. The average sharing ratio of the connectable
peers is also bounded from above. Together, the N peers download N ·L bytes. If all
these bytes are uploaded by connectable peers, then the average sharing ratio for the
connectable peers is SC = N ·L/(C ·L) = 1/(1− f), otherwise it is smaller.

The lower bound for the firewalled peers and the upper bound for the connectable
peers are related. Every peer downloads the file once and has to upload it once, on
average. As a result, the average sharing ratio of all peers is 1. However, for a subset
of the peers this average does not necessarily hold.

Figures 5.2 and 5.3 plot the bounds of Lemma 2 against the fraction of firewalled
peers f , for the firewalled peers and the connectable peers, respectively. These bounds
are only met if all connectable peers obtain their data from the firewalled peers. In
the case of f < 0.5, the bounds of Lemma 2 still hold, but the average sharing ratio
of either group of peers will be closer to 1 if the data distribution algorithm does not
force all data for connectable peers to originate from firewalled peers.

5.3. No Firewall Puncturing 111

 0

 2

 4

 6

 8

 10

 0 0.2 0.4 0.6 0.8 1

e
x
p

e
c
te

d
 s

h
a

ri
n

g
 r

a
ti
o

fraction of peers behind a firewall

upper bound
lower bound

Figure 5.3: Bounds on the average sharing ratio of the connectable peers against the
fraction of firewalled peers. The horizontal dotted lines represent a fair sharing ratio
of 1.

5.3.2 Practical Implications

The bounds derived so far depend only on the connectivity of the peers in each swarm.
The bounds even hold if a peer seeds (uploads the file to others after completing the
download) in an attempt to restore its sharing ratio. The upload speeds of the peers
are irrelevant as well, as only the amount of data is considered. Furthermore, the
results hold for file downloading as well as video-on-demand, and can be trivially
extended to live video streaming. For the latter, the duration a peer decides to watch
the video stream has to be taken into account, but that duration can be assumed to be
independent of the connectivity of the peer. Finally, our results hold regardless of the
data distribution method used, and therefore cover swarm-based distribution methods
(which we consider in this chapter) as well as tree-based distribution methods, as long
as data is exchanged using unicast connections.

If f > 0.5+0.5/N, the connectable peers have to upload more than the firewalled
peers. The injector could find this undesirable, and aim at an equal sharing ratio
for all peers instead. Such a situation can be obtained if the injector increases its
upload capacity to serve the firewalled peers in order to lower the sharing ratios of the
connectable peers to the level of the firewalled peers. Although the average sharing
ratio for both sets of peers will be below 1, fairness is nevertheless achieved as both
sets have an equal uploading burden. Using Lemma 2, a lower bound on the upload

112 Chapter 5. Bounds on Bandwidth Contributions

capacity for the injector can be derived as follows.

Theorem 1. It is impossible for all peers to obtain an equal sharing ratio if the injec-
tor uploads less than (2−1/ f)N ·L bytes to the firewalled peers.

Proof. To create an equal sharing ratio for all peers, the connectable peers have to up-
load at least SC ·L−SF ·L bytes less on average. Using Lemma 2, for all connectable
peers combined, this amounts to at least

C · (SC ·L−SF ·L) ≥ C ·
(

1
1− f

−1−
(

1
f
−1
))

L

=
(

2− 1
f

)
N ·L

bytes. These bytes have to be uploaded by the injector instead.

If the fraction of firewalled peers f can be measured or estimated, the injector can
thus predict a lower bound on the capacity needed to provide all downloaders with
an equal sharing ratio. The actual required capacity is likely to be higher. If not all
peers are on-line at the same time, some peers will be unable to upload data to each
other. The injector will have to compensate for this if all peers are promised an equal
sharing ratio.

5.4 Firewall Puncturing

In Section 5.1, we have discussed the general principles behind firewall puncturing.
Whether a connection between two firewalled peers can be made depends on the types
of firewall of both peers. There can be many different types of firewall for which a P2P
distribution algorithm has implemented puncturing techniques. We will first analyse
a system in which firewalls can be either punctured by everyone or not at all. We will
then propose a more generic model.

Consider a system in which a firewall can be either punctured by all other peers,
or by no one. Let Fa ⊆ F be the set of peers with puncturable firewalls, and let
Fb ≡F \Fa be the set of peers with non-puncturable firewalls. Also, define Fa ≡ |Fa|
and Fb ≡ |Fb|. Figure 5.4 shows the corresponding graph, where α to ε denote the
total numbers of bytes transferred between the different groups of peers.

Theorem 2. A fair sharing ratio for all peers is only possible if Fa/F ≥ 2−1/ f .

5.4. Firewall Puncturing 113

C

F
b

F
a

α
β

γ

δ

ε

ζ

Figure 5.4: Possible data flows between the connectable peers C and firewalled peers
Fa and Fb (puncturable and non-puncturable, respectively).

Proof. We will assume L = 1 without loss of generality. To obtain a fair sharing ratio,
peers in Fa and Fb have to upload Fa +Fb = F bytes, so

β +δ +ζ = F (5.1)

has to hold. Peers in C download exactly C bytes, so

β +δ + ε = C

⇒ β +δ ≤ C. (5.2)

For the same reason,

ζ + γ = Fa

⇒ ζ ≤ Fa. (5.3)

Combining equations 5.1, 5.2, and 5.3 yields

F = β +δ +ζ

≤ C +Fa

⇒ f ·N ≤ (1− f)N +Fa

⇒ Fa/N ≥ 2 f −1

⇒ Fa/F ≥ 2− 1
f
.

114 Chapter 5. Bounds on Bandwidth Contributions

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

fr
a

c
ti
o

n
 o

f
fi
re

w
a

lls
to

 p
u

n
c
tu

re

fraction of peers behind a firewall

Figure 5.5: Lower bound on the fraction of firewalls that need to be punctured for a
fair sharing ratio to be possible.

Figure 5.5 plots the lower bound of 2−1/ f of the firewalls that need to be punc-
tured against the fraction of firewalled peers f . For f < 0.5, a fair sharing ratio is
(theoretically) possible without any firewall puncturing. The rapid rise in required
firewall puncturing effectiveness is clearly visible once the fraction of firewalled peers
is above 0.5.

The bounds in Lemmas 1–2 and Theorems 1–2 can be derived in a more general
way by modelling a P2P system as follows. Let there be P types of firewall, of which
one type represents having no firewall at all, and let Pi be the number of peers of
firewall type i, i = 1, . . . ,P. Let xi j ≥ 0 be the number of bytes sent from peers of
firewall type i to peers of firewall type j. Every peer has to download exactly L bytes,
so

P

∑
j=1

xi j = Pi ·L, i = 1, . . . ,P.

If a fair sharing ratio is desired, then all peers have to upload as many bytes as they
download, resulting in

P

∑
j=1

x ji =
P

∑
j=1

xi j, i = 1, . . . ,P.

By solving these equations for the xi j, bounds can be derived for the average sharing

5.5. Simulated Behaviour 115

ratio of the peers in each group. As argued in Section 5.3.1, we have left out the
injector, introducing small errors in the xi j. To derive exact bounds, the injector can
be added as a separate set of one peer. For P = 2, the model is consistent with the
results derived in Section 5.3.

Whether a fair resource allocation can be obtained in a real setting depends on the
P2P distribution algorithm as well as the arrival and departure pattern of the peers.
After all, peers which are not on-line at the same time cannot connect to each other,
regardless of firewalls or firewall puncturing techniques. The set of equations derived
in this chapter can be used to derive bounds on the supported fraction of firewalled
peers in each group, or to check feasibility of an implementation.

5.5 Simulated Behaviour

We use a discrete-event BitTorrent simulator to evaluate how close the actual average
sharing ratios for the firewalled and connectable peers are to the bounds derived in
Section 5.3. We let 500 peers arrive (1 per second, on average) to download a 10
MByte file. A randomly chosen subset of the peers are firewalled. The injector is
always on-line and is not firewalled. Each peer can upload with 0.5 Mbit/s to 0.75
Mbit/s, and has a download speed four times as high. The latency between each pair
of peers is 100 to 300 ms.

We evaluate two departing policies. In the first policy, we let each peer depart
if it completed the download and has obtained a fair sharing ratio as well. In the
second policy, we run the same simulations, but let each peer depart directly when
it has completed the download, regardless of its sharing ratio. We performed 180
simulations with each policy.

For each session, we record the number of firewalled and connectable peers, and
sum the total amounts of data sent and received by both groups. The average sharing
ratio of either group is then derived and shown as a dot in the subfigures of Figure 5.6.
The theoretical bounds as derived in Section 5.3 are shown as well. Each measurement
falls within the derived bounds. The figures for the two departure policies are similar.
At low fractions of firewalled peers, the average sharing ratios of both groups tend
towards 1, which is consistent with BitTorrent rewarding good uploaders with a good
download performance. At high fractions of firewalled peers, the firewalled peers
upload an amount close to their theoretical maximum. Almost all of them obtain the

116 Chapter 5. Bounds on Bandwidth Contributions

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

 1
.2

 1
.4

 0
 0

.2
 0

.4
 0

.6
 0

.8
 1

average sharing ratio
of all firewalled peers

fra
c
tio

n
 o

f p
e
e
rs

 b
e
h
in

d
 a

 fire
w

a
ll

u
p
p
e
r b

o
u
n
d

m
e
a
s
u
re

d

 0 1 2 3 4 5 6 7 8

 0
 0

.2
 0

.4
 0

.6
 0

.8
 1

average sharing ratio
of all connectable peers

fra
c
tio

n
 o

f p
e
e
rs

 b
e
h
in

d
 a

 fire
w

a
ll

u
p
p
e
r b

o
u
n
d

m
e
a
s
u
re

d
lo

w
e
r b

o
u
n
d

(a)
Peers

departata
fairsharing

ratio.

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

 1
.2

 1
.4

 0
 0

.2
 0

.4
 0

.6
 0

.8
 1

average sharing ratio
of all firewalled peers

fra
c
tio

n
 o

f p
e
e
rs

 b
e
h
in

d
 a

 fire
w

a
ll

u
p
p
e
r b

o
u
n
d

m
e
a
s
u
re

d

 0 1 2 3 4 5 6 7 8

 0
 0

.2
 0

.4
 0

.6
 0

.8
 1

average sharing ratio
of all connectable peers

fra
c
tio

n
 o

f p
e
e
rs

 b
e
h
in

d
 a

 fire
w

a
ll

u
p
p
e
r b

o
u
n
d

m
e
a
s
u
re

d
lo

w
e
r b

o
u
n
d

(b)
Peers

departaftercom
pleting

the
dow

nload.

Figure
5.6:T

he
average

sharing
ratios

forthe
firew

alled
peers

and
the

connectable
peers

each
session

fortw
o

departure
policies.T

he
horizontaldotted

lines
representa

fairsharing
ratio

of1.

5.6. Behaviour of Real Systems 117

file from the injector, since other connectable peers are rare and quickly meet the
departure requirements.

For fractions of firewalled peers smaller than 0.5, the average sharing ratios for
the firewalled peers in Figures 5.6(a) and 5.6(b) differ slightly. If peers depart right
after they complete their download, the connectable peers will have less opportunity
to upload to each other, thus allowing the firewalled peers to upload to them more.
This policy is interesting in systems which keep track of the sharing ratios of each
peer across several sessions. In such systems, the firewalled peers could for example
join sessions with a low fraction of firewalled peers, in order to increase a low sharing
ratio. Both figures for the connectable peers show that high sharing ratios for them
are realistic when the fraction of firewalled peers is high.

5.6 Behaviour of Real Systems

In order to assess the validity of the model we have presented in Sections 5.2, 5.3, and
5.4 in real systems, we have collected data on the behaviour of peers, and in partic-
ular, of firewalled peers and seeders, in several BitTorrent communities. Below, we
first explain the difference between open and closed BitTorrent communities, then we
discuss our two ways of collecting data on the behaviour of BitTorrent communities,
and finally we present the results on the behaviour of these communities with respect
to firewalled peers and seeders.

5.6.1 BitTorrent Communities

Every BitTorrent community uses one or more centralised servers (trackers) that keep
track of the peers in each swarm; peers report to the (a) tracker when they join a
swarm, and they report again when they leave. BitTorrent communities can be open
or closed. Open communities use public trackers which anyone can join, and they
have no explicit mechanisms for sharing-ratio enforcement. Closed communities use
private trackers to prevent outsiders from joining their swarms. In closed communi-
ties, every user has an account on a centralised server and sharing ratios are enforced
by banning peers whose sharing ratios drop below a (secret) treshhold. Peers are
expected to seed content in order to maintain or restore their sharing ratios. Unfortu-
nately, we know of no BitTorrent community that publishes the sharing ratios of the
individual peers, making it impossible to verify the bounds derived in this chapter di-

118 Chapter 5. Bounds on Bandwidth Contributions

rectly. We can therefore offer only correlations between our theory and the measured
results.

5.6.2 Data Collection

We have employed two methods for collecting data on the behaviour of BitTorrent
communities, one in which we monitor a community for a period of time, and one in
which we take snapshots of communities. As to the first method, we use a data set
that we have collected in May 2005 [54], which consists of monitoring information
of the operation of 1,995 BitTorrent swarms during one week in the (open) The Pirate
Bay community.

We extend the analysis presented in [54] by extracting the behaviour of the fire-
walled peers from this data set. During the data collection, every two minutes, all
peers that were reported to exist in each of the existing swarms were contacted. We
consider a peer to be firewalled if it is repeatedly reported to exist but could never be
contacted.

As to the second method of collecting data, we have taken snapshots of several
BitTorrent communities in January 2008, which are listed in Table 5.1. These com-
munities publish on their web sites the number of downloaders and seeders in each
swarm, and we have collected these statistics at a single instant in time for one type
of content (TV shows), because it was present in all communities. Nevertheless, we
do consider the measurements to be representative as they contain swarms of varying
ages. Of the communities in Table 5.1, TVTorrents also publishes which peers are
actually present in which swarm, and whether they are firewalled or not. We collected
these data for 557 swarms.

5.6.3 Behaviour of Firewalled Peers

In this section we present the behaviour of the The Pirate Bay (using data collected
with our first method) and of TVTorrents (using the second method) with respect to
firewalled peers. The TVTorrents data is used in Figure 5.7 (top) only. As can be
seen in Figure 5.7 (top), which plots the cumulative distribution function (CDF) of
the percentage of (unique) firewalled peers within each swarm, a substantial fraction
of the peers in each swarm is firewalled. For the The Pirate Bay, the average swarm
has 66% of its peers firewalled, and more than 96% of the swarms have more than half
of the peers behind a firewall. In contrast, the average swarm in the closed TVTorrents

5.6. Behaviour of Real Systems 119

Nr Community Type Swarms Source
1 TheBox closed 2,430 thebox.bz

2 TVTorrents closed 2,363 tvtorrents.com

3 BTJunkie closed 3,267 btjunkie.org

4 The Pirate Bay open 7,368 thepiratebay.org

5 BTJunkie open 16,400 btjunkie.org

Table 5.1: The communities for which we have used the second method of data col-
lection. BTJunkie actually collects statistics on both open and closed communities.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

p
e

rc
e

n
ta

g
e

 o
f

s
w

a
rm

s

percentage of peers behind a firewall

TVTorrents
The Pirate Bay

10
0

10
1

10
2

10
3

10
4

10
5

10
6

 0 0.2 0.4 0.6 0.8 1

d
u

ra
ti
o

n
 o

f
p

re
s
e

n
c
e

 (
s
)

fraction of peers

connectable peers
firewalled peers

Figure 5.7: The CDF of the percentage of firewalled peers per swarm (top) and of the
durations of the presence of the peers (bottom).

120 Chapter 5. Bounds on Bandwidth Contributions

community only has 45% of its peers behind a firewall, and 24% of the swarms have
more than half of the peers behind a firewall. The reason for the difference between
these communities is beyond our abilities to measure, but the difference does correlate
with our theory. Even though the measurements of both communities were taken 20
months apart from each other, measurements by others do not suggest a decrease in
the fraction of firewalled peers over time [7, 17, 23, 79, 99, 100, 101]. We believe this
difference to be due to the policy of banning peers with low sharing ratios in closed
communities such as TVTorrents. First, our analysis in Section 5.3 shows that fire-
walled peers have more difficulty obtaining a fair sharing ratio, and so they have a
higher probability of getting banned. Secondly, to reduce the risk of getting banned,
a firewalled peer has an incentive to configure its firewall to accept incoming connec-
tions. A closed community thus favours users which have the technical knowledge to
do so.

The BitTorrent protocol has been designed to approximate a fair sharing ratio by
giving the best performance to peers that upload fastest. A low upload speed results,
on average, in a low download speed. As a consequence, the firewalled peers will
have a harder time finding connectable peers to upload to, often resulting in poor
performance. Also, the firewalled peers do not necessarily have the same upload
capacity as the connectable peers.

Figure 5.7 (bottom) plots how long the firewalled and connectable peers stayed in
the system, measured as the difference between the first and the last time they were
contacted. The firewalled peers are biased towards both a short and a long presence. A
short presence can be explained by firewalled peers not being able to contact enough
connectable peers at start-up, resulting in poor performance, after which the download
is aborted by the user. When performance is acceptable, the firewalled peers stay
in the system longer than the connectable peers. A possible explanation is that the
firewalled peers have to complete their download with a lower download speed, again
due to connectivity problems. On average, the presence of a firewalled peer was 12.8
hours, while the presence of a connectable peer was only 10.6 hours. For the peers
that stayed for at least an hour, these averages rise to 38.5 and 17.1 hours, respectively.
We found that at any moment, 72% of the on-line peers were firewalled on average,
due to their longer presence in the system.

The distribution of the fraction of firewalled peers f as shown in Figure 5.7 (top)
does not suffice to assess the actual impact of firewalled peers, since it does not pro-
vide insight into the absolute number of peers and the size of the file that is shared

5.6. Behaviour of Real Systems 121

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90 100

n
u

m
b

e
r

o
f

p
e

e
rs

 p
e

r
s
w

a
rm

percentage of peers behind a firewall

10
7

10
8

10
9

10
10

10
11

 0 10 20 30 40 50 60 70 80 90 100

fi
le

 s
iz

e
 (

b
y
te

s
)

percentage of peers behind a firewall

1 DVD
2 CDs
1 CD

Figure 5.8: A scatter plot of the number of peers per swarm (top) and of the size of
the file being downloaded (bottom) versus the percentage of firewalled peers.

122 Chapter 5. Bounds on Bandwidth Contributions

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

fr
a

c
ti
o

n
 o

f
s
e

e
d

e
rs

fraction of swarms

1

2

3

4

5

1. TheBox (closed)
2. TVTorrents (closed)

3. BTJunkie (closed)
4. The Pirate Bay (open)

5. BTJunkie (open)

Figure 5.9: The fraction of peers which are seeding for open and closed communities.

in the swarms with f > 0.5. Therefore, we have evaluated the correlations between
the fraction of firewalled peers and the swarm size, as well as the size of the shared
file. Figure 5.8 (top) is a scatter plot of the number of unique peers in a swarm versus
the percentage of firewalled peers in the swarm. There is no strong correlation (the
correlation coefficient is 0.22), indicating that popular files (swarms with many peers)
do not seem to have a significant bias in the percentage of firewalled peers. Figure 5.8
(bottom) shows the size of the file exchanged within a swarm against the percentage
of firewalled peers in the swarm (the correlation coefficient is −0.26). There is a bias
in file size as many swarms exchange files with a size corresponding to 1 or 2 CDs
(703 Mbyte per CD) or to 1 DVD (4.37 GByte). This bias is not surprising as many of
the files were actually movies, transcoded to fit on either media. The swarms exchang-
ing DVDs contain a slightly smaller percentage of firewalled peers compared to the
swarms exchanging CDs. We conjecture that one of the reasons for this phenomenon
is that many users have ADSL connections. On the one hand, such connections are
(relatively) slow, leading to a preference for CD versions of movies, and on the other
hand, such connections typically employ a NAT-router.

5.6.4 Fraction of Seeders

In this section we present the behaviour of the BitTorrent communities listed in Ta-
ble 5.1 (using data collected with our second method) with respect to seeders. Figure
5.9 shows the CDF of the fraction of seeders in the swarms at the time of snapshot.

5.7. Related Work 123

The numbers for BTJunkie are split for their statistics on open and closed communi-
ties.

Open communities do not keep track of their users across swarms, so there is no
reason for a peer to stay on-line to seed in a swarm after the download has finished.
Some users will nevertheless seed, out of altruism, or because their client is configured
to do so. A common default configuration for BitTorrent clients is to seed until the
user aborts the program, or until a fair sharing ratio is reached for that swarm.

In the closed communities, swarms have higher fractions of seeders, and there is
a higher fraction of swarms which contained only seeders at the moment of measure-
ment. Once a peer joins such a swarm, it will experience a high download speed due to
the many seeders present, but it will also have to compete with these seeders to restore
its sharing ratio. The peers are forced by the sharing ratio enforcement to nevertheless
try to restore their ratio by seeding as much content as possible. The firewalled peers
will have to seed longer on average, as they can only connect to connectable arriving
peers. The latter is a possible explanation for the many swarms in which seeds are
idle, waiting for a peer to arrive and to start downloading from them.

Section 5.6.3 has shown that the average swarm has almost half its peers behind
a firewall, implying that the distribution of the file data needs to be near-perfect if a
fair sharing ratio is to be possible for the average firewalled peer. In theory, closed
communities can optimise the communication between peers using sharing ratio in-
formation, but in practice, they do not. We expect the data distribution to be closer to
our simulations than to a near-perfect distribution. A fraction of the firewalled peers
will not be able to obtain a fair sharing ratio, and thus effectively will have to seed.

5.7 Related Work

To the best of our knowledge, we are the first to derive theoretical bounds on the
sharing ratio that can be achieved in P2P networks. Algorithms designed for P2P data
distribution generally do not take firewalls into account, even those that are designed
with fairness in mind [51, 58, 59, 68, 70, 97]. Ripeanu et al. [85] confirm some of
our findings and recognise that the limited connectivity of firewalled peers makes it
harder for them to contribute. Also, the high fraction of seeders in closed communities
has been recognised by them and others [11, 85]. However, neither study looked
at the fundamental limits imposed by firewalls and the resulting necessity in closed
communities of having many seeders in many swarms.

124 Chapter 5. Bounds on Bandwidth Contributions

The percentages of firewalled peers we measured are consistent with previous
measurements [7, 17, 23, 79, 99, 100, 101], but these vary widely in their results
(between 25% and 93%). Firewall puncturing and NAT traversal techniques have been
researched [15, 39, 45, 46, 87], and proven to be quite effective for the considered
sets of firewalls and NATs. However, in practice, these techniques are non-trivial to
implement and maintain, and often need a third (connectable) party to coordinate the
puncturing between two firewalled peers. Also, for best results, one is forced to use
UDP [87] instead of TCP, as the latter requires more complex puncturing techniques
which depend on the types of firewall present in the network [15, 39, 46].

5.8 Conclusions

We have shown that in P2P file-sharing networks, there is a trade-off between security
and fairness: peers behind firewalls do not accept incoming connections, and as a con-
sequence, if there are too many of them, there is no way freeriding can be prevented.
We have provided bounds on the sharing ratios that can be obtained by firewalled
and connectable peers, which hold regardless of how long firewalled peer remain in
the system to seed to other peers, and regardless of their connection speeds. Firewall
puncturing and NAT traversal techniques may alleviate the freeriding problem, and
we provided a lower bound on the fraction of firewalls that have to be punctured to be
able to obtain a fair sharing ratio. Because firewall and NAT techniques evolve, a stan-
dard for both firewall puncturing and NAT traversal is required to guarantee fairness
in P2P networks.

We have both run simulations and real-world measurements to validate our the-
ory. In our simulations, we have shown the actual behaviour of the average sharing
ratios of firewalled and connectable peers. When almost all peers are connectable,
the BitTorrent protocol is sufficient to keep the system fair, as both groups have an
average sharing ratio close to 1. The average sharing ratio of the firewalled peers
decreases and converges to the theoretical upper bound as the fraction of firewalled
peers increases. We have also collected and analyzed data on the behaviour of both
open and closed P2P communities which reveal the real-world behaviour of firewalled
peers. It turns out that the fraction of firewalled peers is significant: In closed com-
munities, 45% of the peers are firewalled, versus 66% in open communities. A peer
can increase its sharing ratio by seeding, and indeed we found a significantly higher
fraction of seeders in the closed communities, indicating that a fair sharing ratio is not

5.8. Conclusions 125

easy to obtain. The observed behaviour is consistent with our analysis, and can aid in
the design of new P2P data-distribution algorithms.

127

Chapter 6

Conclusion

WITH THE BANDWIDTHS currently available on the Internet, peer-to-peer (P2P)
video streaming is a promising alternative to the classical client-server ap-

proach. The amount of bandwidth needed to serve a video stream is linear in the
number of users, and in a client-server model, all of this bandwidth has to be provided
by the servers. The bandwidth costs for the source thus scale linearly as well. A P2P
video streaming solution reduces the load on the servers by inviting the users to pro-
vide their uplink bandwidth to help spread the content. The bandwidth costs for the
servers can potentially be reduced to a constant.

However, the users in a P2P network have no inherent incentive to provide their
upload bandwidth to help spread the video content. The quality of service for a user
depends on what he downloads, not on what he forwards to others. Peers that for-
ward little or no data to others are called free-riders. The subject of this thesis was
to investigate and counter the effects of free-riding in P2P video streaming networks.
We presented algorithms that do provide such an incentive by increasing the down-
load performance of those users that provide a good upload performance to others.
Furthermore, we analysed the bounds within which our algorithms, as well as P2P
distribution algorithms in general, perform. In this chapter, we will present the con-
clusions of our research, alongside a brief summary of our work. Then, we will state
our recommendations for future work.

128 Chapter 6. Conclusion

6.1 Summary and Conclusions

We have described several algorithms which prevent or discourage free-riding for
both live video streaming and for video-on-demand. These algorithms were analysed,
simulated, emulated, and, in one case, deployed in the Internet. Furthermore, we
provided theoretical bounds on the performance of these algorithms as well as on P2P
streaming algorithms in general. We have come to the following conclusions:

1. It is possible to force peers to contribute as much as they consume in a live video
streaming system. We have proven this by presenting our Orchard algorithm in
Chapter 2. The Orchard algorithm is a video distribution scheme that requires
(almost) every peer to upload as much data as it downloads. Orchard requires
a video technique called Multiple Description Coding (MDC) to split the video
stream into several substreams. A peer can decode any combination of these
substreams to display the video stream in a quality proportional to the number
of substreams it receives.

2. Free-riding can be tolerated but at the same time discouraged in a video-on-
demand system. In Chapter 3, we presented the Give-to-Get algorithm, which
provides video-on-demand as an extension to the popular BitTorrent protocol.
In Give-to-Get, the peers that forward the most data are given preference by
others to upload data to. The peers that upload the least amount of data will
receive the worst quality of service. If there is contention for the available
bandwidth, free-riding peers will thus receive little or no data, but if there is
bandwidth in abundance, the video stream can be served to all peers.

3. Free-riding can be tolerated and discouraged in a live-video-streaming system
as well. We presented another set of extensions to BitTorrent in Chapter 4,
which provide live video streaming support. The extensions leave the BitTor-
rent incentives to upload video data unchanged. The resilience to free-riding
therefore remains similar to the resilience inherent in BitTorrent.

4. P2P systems will suffer in performance if the connectivity between the peers is
limited. In Chapter 5, we have proven hard bounds on the performance of any
P2P distribution system, which depend solely on the connectivity between the
peers. Measurements of deployed P2P systems indicate that the connectivity
between the peers is often significantly reduced by the ubiquitous presence of

6.2. Future Work 129

firewalls and NATs. When more than half of the peers is behind firewalls or
NATs, as is often the case in deployed systems, the burden of forwarding the
video stream is shifted towards the peers that are not behind firewalls or NATs.
We have thus discovered that the presence of firewalls and NATs in the Internet
has a significant impact on the performance of any P2P distribution system,
including those that stream video.

6.2 Future Work

The design of a P2P video streaming algorithm is deceptively complex. Even though
the basic requirements are simple (every peer needs to obtain the video stream in real
time), the environment in which the algorithm has to operate is not. The set of peers
in a deployed P2P system in the Internet turns out to be highly heterogeneous: the
available bandwidth at a peer, its latency towards others, its connectivity, as well as
the durations of its session, vary wildly between peers, and possibly even over time
for the same peer. Models often omit many of these parameters to keep the design
tractable. Deploying a P2P video algorithm to evaluate its performance is not easy
due to the high number of test users required. As a result, the performance difference
between simulations and deployed systems can be quite large while it nevertheless
remains unnoticed by the authors. Therefore, we propose the following continuations
based upon the findings in this thesis:

1. Flexible fairness measures need to be derived for video streaming in order to
deal with asymmetric Internet connections. The fairness measures that we pro-
posed in this thesis are based only on the most recent data exchanges between
the peers. Peers with an asymmetric connection are not able to fully utilise their
download capacity if they are expected to upload at a similar speed to others.
Flexible fairness measures could allow the peers with an asymmetric connec-
tion to participate more efficiently. Even though such fairness measures exist,
which amortise the bandwidth contribution and consumption over time, it is
unknown how well they perform in a video streaming setting.

2. This thesis focuses on the prevention of free-riding in P2P video distribution
systems, but other forms of attack on a P2P network are possible as well. For
example, Give-to-Get is vulnerable to collusion attacks in which peers make

130 Chapter 6. Conclusion

false claims about each other’s contributions. Our work can be extended by in-
corporating protections against collusion attacks, but also against other attacks
such as Sybil attacks [34]. Such protections can be added either by enhancing
our algorithms or by solving the problems at a higher layer, for example, by
introducing an identity system that can expose the misbehaviour of peers both
within single and across multiple video streaming sessions.

3. The development of video codecs can aid P2P video streaming significantly. We
used Multiple Description Coding (MDC) as a central technique in our Orchard
algorithm. MDC provides scalability in the width of the video stream as well
as enhanced resilience against data loss. However, the lack of implementations
that support MDC makes it difficult to deploy P2P video streaming systems
that require it. We find it likely that video codecs can be improved in several
other ways as well, if the aspects of P2P video streaming systems are taken into
consideration.

4. A unified model and commonly accepted test sets are needed in order to prop-
erly evaluate the performance of P2P video streaming systems, as well as to be
able to compare them. Even though statistics of many behavioural and technical
aspects have been collected, they are not combined into a single model describ-
ing the characteristics of peers in a P2P network. Such a model is needed, as
P2P video streaming algorithms are very sensitive to many characteristics of
the peers. The bandwidth available at the peers, the presence of firewalls, and
the arrival and departure patterns of peers are examples of such characteristics
which can have a significant impact on the performance of P2P video streaming.

5. A layered approach and framework is needed for P2P development. In this
thesis, we base some of our algorithms on the BitTorrent protocol, which allows
existing BitTorrent implementations to be adjusted to support video streaming.
However, this approach is rare as most algorithms proposed in literature are
designed and implemented from scratch. A complete implementation of a P2P
video streaming algorithm requires a solution for several orthogonal problems
such as peer discovery and meta data exchange. A common framework for P2P
development would allow such problems to be solved separately, and provides
a common base for the development of P2P video streaming solutions.

131

Bibliography

[1] DAS: Distributed ASCI Supercomputer. http://www.cs.vu.nl/das2.

[2] Freeband. http://freeband.nl.

[3] I-Share. http://ishare.ewi.tudelft.nl.

[4] VideoLan Client (VLC). http://videolan.org/.

[5] YouTube. http://youtube.com.

[6] E. Adar and B. Huberman. Freeriding on Gnutella. First Monday, 5(10), 2000.

[7] S. Agarwal, J. P. Singh, A. Mavlankar, P. Baccichet, and B. Girod. Perfor-
mance and Quality-of-Service Analysis of a Live P2P Video Multicast Session
on the Internet. In Proc. of the 16th IEEE Intl. Workshop on Quality of Service
(IwQoS), 2008.

[8] A. Alagoz, O. Ozkasap, and M. Caglar. SeCond: A System for Epidemic
Peer-to-Peer Content Distribution. In Proc. of the 7th Intl. Symp. on Computer
Networks (ISCN), pages 248–253, 2006.

[9] Shahzad Ali, Anket Mathur, and Hui Zhang. Measurement of Commercial
Peer-To-Peer Live Video Streaming. In Workshop in Recent Advances in Peer-
to-Peer Streaming, 2006.

[10] Kevin C. Almeroth and Mostafa H. Ammar. On the Use of Multicast Delivery
to Provide a Scalable and Interactive Video-on-Demand Service. IEEE Journal
on Selected Areas in Communications, 14(6):1110–1122, 1996.

http://www.cs.vu.nl/das2
http://freeband.nl
http://ishare.ewi.tudelft.nl
http://videolan.org/
http://youtube.com

132 Bibliography

[11] N. Andrade, M. Mowbray, A. Lima, G. Wagner, and M. Ripeanu. Influences on
Cooperation in BitTorrent Communities. In Proc. of ACM SIGCOMM, pages
111–115, 2005.

[12] Siddhartha Annapureddy, Saikat Guha, and Christos Gkantsidis. Is High-
Quality VoD Feasible using P2P Swarming? In Proc. of the 16th Intl. World
Wide Web Conference, pages 903–911, 2007.

[13] S. Banerjee, S. Lee, B. Bhattacharjee, and A. Srinivasan. Resilient Multicast
using Overlays. In Proc. of ACM SIGMETRICS, pages 102–113, 2003.

[14] Tim Berners-Lee, Robert Cailliau, Jean-François Groff, and Bernd Pollermann.
World-Wide Web: The Information Universe. Internet Research, 2(1):52–58,
1992.

[15] A. Biggadike, D. Ferullo, G. Wilson, and A. Perrig. NATBLASTER: Estab-
lishing TCP Connections Between Hosts Behind NATs. In Proc. of ACM SIG-
COMM Asia Workshop, 2005.

[16] S. Birrer and F.E. Bustamante. Nemo - Resilient Peer-to-Peer Multicast without
the Cost. In Proc. of SPIE, Multimedia Computing and Networking Conference
(MMCN), volume 5680, pages 113–120, 2005.

[17] H. Burch and D. Song. A Security Study of the Internet: An Analysis of
Firewall Behavior and Anonymous DNS. Technical Report CMU-CS-04-141,
Carnegie Mellon University, 2004.

[18] R.W. Burns. Television: An International History of the Formative Years. In-
stitution of Electrical Engineers, 1998.

[19] Miguel Castro, Peter Druschel, Ayalvadi J. Ganesh, Antony I. T. Rowstron,
and Dan S. Wallach. Secure Routing for Structured Peer-to-Peer Overlay Net-
works. In Proc. of the 5th USENIX Symp. on Operating Systems Design and
Implementation (OSDI), 2002.

[20] Miguel Castro, Peter Druschel, A-M. Kermarrec, A. Nandi, Antony I. T. Row-
stron, and A. Singh. SplitStream: High-bandwidth multicast in a cooperative
environment. In Proc. of the 19th ACM Symposium on Operating Systems Prin-
ciples (SOSP), pages 298–313, 2003.

Bibliography 133

[21] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and Antony I. T. Row-
stron. Scribe: a large-scale and decentralized application-level multicast in-
frastructure. IEEE Journal on Selected Areas in Communications, 20(8):1489–
1499, 2002.

[22] Y. Chu, J. Chuang, and H. Zhang. A Case for Taxation in Peer-to-Peer Stream-
ing Broadcast. In Proc. of the ACM SIGCOMM workshop on Practice and
Theory of Incentives in Networked Systems, pages 205–212, 2004.

[23] Y. Chu, A. Ganjam, and T.S.E. Ng. Early Experience with an Internet Broadcast
System Based on Overlay Multicast. In Proc. of USENIX, 2004.

[24] Y. Chu, S.G. Rao, and H. Zhang. A Case for End System Multicast. In Proc.
of ACM SIGMETRICS, pages 1–12, 2000.

[25] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and
M. Bowman. PlanetLab: An Overlay Testbed for Broad-Coverage Services.
ACM Computer Communication Review, 33(3):3–12, 2003.

[26] Bram Cohen. BitTorrent. http://www.bittorrent.com/.

[27] Bram Cohen. Incentives Build Robustness in BitTorrent. In Proc. of the
1st Workshop on Economics of Peer-to-Peer Systems, 2003.

[28] C. Dana, D. Li, D. Harrison, and C.-N. Chuah. BASS: BitTorrent Assisted
Streaming System for Video-on-Demand. In Proc. of the 7th Intl. Workshop on
Multimedia Signal Processing, pages 1–4, 2005.

[29] S. E. Deering and D.R. Cheriton. Host Groups: A Multicast Extension to the
Internet Protocol. RFC 966, 1985.

[30] H. Deshpande, M. Bawa, and H. Garcia-Molina. Streaming Live Media over a
Peer-to-Peer Network. Technical Report 2002-21, Stanford University, 2002.

[31] P. Dhungel, X. Hei, K. Ross, and N. Saxena. The Pollution Attack in P2P
Live Video Streaming: Measurement Results and Defenses. In Proc. of the
Workshop on Peer-to-Peer Streaming and IP-TV, pages 323–328, 2007.

134 Bibliography

[32] C. Diot, B. Levine, B. Lyles, H. Kassem, and D. Balensiefen. Deployment
Issues for the IP Multicast Service and Architecture. IEEE Network, 14(1):78–
88, 2000.

[33] T. Do, K. Hua, and M. Tantaoui. P2VoD: Providing Fault Tolerant Video-on-
Demand Streaming in Peer-to-Peer Environment. In Proc. of the IEEE Intl.
Conf. on Communications, volume 3, pages 1467–1472, 2004.

[34] J.R. Douceur. The Sybil Attack. In Proc. of the 1st Intl. Workshop on Peer-to-
Peer Systems (IPTPS), 2002.

[35] P.T. Eugster, R. Guerraoui, A-M. Kermarrec, and L. Massoulie. Epidemic In-
formation Dissemination in Distributed Systems. In Computer, volume 37,
pages 60–67, 2004.

[36] Clive Evans, David Lacey, and David Harvey. Client/Server: A Handbook of
Modern Computer System Design. Prentice Hall, 1995.

[37] R.A. Ferreira, M.K. Ramanathan, A. Awan, A. Grama, and S. Jagannathan.
Search with Probabilistic Guarantees in Unstructured Peer-to-Peer Networks.
In Proc. of the 5th Intl. Conf. on Peer-to-Peer Computing, pages 165–172, 2005.

[38] F.H.P. Fitzek, B. Can, R. Prasad, and M. Katz. Overhead and Quality Mea-
surements for Multiple Description Coding for Video Services. In Wireless
Personal Multimedia Communications, pages 524–528, 2004.

[39] B. Ford, P. Srisuresh, and D. Kegel. Peer-to-peer communication across net-
work address translators. In Proc. of USENIX, page 13, 2005.

[40] P. Ganesan and M. Seshadri. The EigenTrust Algorithm for Reputation Man-
agement in P2P Networks. In Proc. of the 12th Intl. World Wide Web Confer-
ence, 2003.

[41] L. Gao and D. Towsley. Supplying Instantaneous Video-on-Demand Services
using Controlled Multicast. In Proc. of the IEEE Intl. Conf. on Multimedia
Computing and Systems, volume 2, pages 117–121, 1999.

[42] Paweł J. Garbacki, Dick. H.J. Epema, and Maarten van Steen. An amortized tit-
for-tat protocol for exchanging bandwidth instead of content in p2p networks.

Bibliography 135

In Proc. of the 1st Intl. Conference on Self-Adaptive and Self-Organizing Sys-
tems (SASO), pages 119–128, 2007.

[43] Mark Goodyear, Hugh W. Ryan, Scott R. Sargent, and Timothy M. Boudreau.
Netcentric and Client/server Computing: A Practical Guide. CRC Press, 1998.

[44] V.K. Goyal. Multiple Description Coding: Compression Meets the Network.
IEEE Signal Processing Magazine, 18(5):74–93, 2001.

[45] S. Guha, Y. Takeda, and P. Francis. NUTSS: A SIP-based Approach to UDP
and TCP Network Connectivity. In Proc. of ACM SIGCOMM workshop on
Future directions in network architecture, pages 43–48, 2004.

[46] Saikat Guha and Paul Francis. Characterization and Measurement of TCP
Traversal Through NATs and Firewalls. In Proc. of the Internet Measurement
Conference (IMC), pages 199–211, 2005.

[47] Y. Guo, K. Suh, J. Kurose, and D. Towsley. P2Cast: P2P Patching Scheme
for VoD Services. In Proc. of the 12th World Wide Web Conference, pages
301–309, 2003.

[48] I. Gupta, A-M. Kermarrec, and A.J. Ganesh. Efficient and Adaptive Epidemic-
style Protocols for Reliable and Scalable Multicast. In IEEE Transactions on
Parallel and Distributed Systems, volume 17, pages 593–605, 2006.

[49] Fred Gurley. Unalienable Rights versus Union Shop. Proc. of the Academy of
Political Science, 26(1):58–70, 1954.

[50] A. Habib and J. Chuang. Incentive Mechanism for Peer-to-Peer Media Stream-
ing. In Proc. of the 12th Intl. Workshop on Quality of Service (IWQOS), pages
171–180, 2004.

[51] M. Haridasan, I. Jansch-Porto, and R. van Renesse. Enforcing Fairness in a
Live-Streaming System. In Proc. of SPIE, Multimedia Computing and Net-
working Conference (MMCN), volume 6818, Article 68180E, 2008.

[52] X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross. Insights into PPLive:
A Measurement Study of a Large-scale P2P IPTV System. In Workshop on
Internet Protocol TV (IPTV) Services over World Wide Web, 2006.

136 Bibliography

[53] K.A. Hua, Y. Cai, and S. Sheu. Patching: a multicast technique for true video-
on-demand services. In Proc. of the 6th ACM Intl. Conf. on Multimedia, pages
191–200, 1998.

[54] Alexandru Iosup, Paweł J. Garbacki, Johan A. Pouwelse, and Dick H.J. Epema.
Correlating Topology and Path Characteristics of Overlay Networks and the
Internet. In Proc. of the 6th Intl. Workshop on Global and Peer-to-Peer Com-
puting, 2006.

[55] M. Jelasity and A-M. Kermarrec. Ordered Slicing of Very Large-Scale Overlay
Networks. In Proc. of the 6th Intl. Conf. on Peer-to-Peer Computing, pages
117–124, 2006.

[56] Hemant Kanakia, Partho P. Mishra, and Amy R. Reibman. An adaptive con-
gestion control scheme for real time packet video transport. IEEE/ACM Trans-
actions on Networking, 3(6):671–682, 1995.

[57] Ming-Chieh Lee, Wei-Ge Chen, C.B. Lin, Chuang Gu, T. Markoc, S.I. Zabin-
sky, and R. Szeliski. A Layered Video Object Coding System using Sprite and
Affine Motionmodel. IEEE Transactions on Circuits and Systems for Video
Technology, 7(1):130–145, 1997.

[58] H. Li, A. Clement, E. Wong, J. Napper, I. Roy, L. Alvisi, and M. Dahlin. BAR
Gossip. In Proc. of the 7th USENIX Operating Systems Design and Implemen-
tation (OSDI), pages 191–206, 2006.

[59] Qiao Lian, Yu Peng, Mao Yang, Zheng Zhang, Yafei Dai, and Xiaoming Li.
Robust Incentives via Multi-level Tit-for-tat. In The 5th Intl. Workshop on
Peer-to-Peer Systems (IPTPS), 2006.

[60] C.S. Liao, W.H. Sun, C.T. King, and H.C Hsiao. OBN: Peering Finding Sup-
pliers in P2P On-demand Streaming Systems. In Proc. of the 12th Intl. Conf.
on Parallel and Distributed Systems, volume 1, pages 8–15, 2006.

[61] Thomas Locher, Patrick Moor, Stefan Schmid, and Roger Wattenhofer. Free
Riding in BitTorrent is Cheap. In Proc. of the 5th Workshop on Hot Topics in
Networks, 2006.

Bibliography 137

[62] Dmitri Loguinov and Hayder Radha. Measurement Study of Low-bitrate Inter-
net Video Streaming. In Proc. of the 1st ACM SIGCOMM Workshop on Internet
Measurement, pages 281–293, 2001.

[63] Yue Lu, J. Jan David Mol, Ferdinand Kuipers, and Piet van Mieghem. Analyti-
cal Model for Mesh-based P2PVoD. In Proc. of the 10th IEEE Intl. Symposium
on Multimedia (ISM), pages 364–371, 2008.

[64] L. Mathy, N. Blundell, V. Roca, and A. El-Sayed. Impact of Simple Cheating
in Application-Level Multicast. In Proc. of the 23rd IEEE Intl. Conference on
Computer Communications (INFOCOM), volume 2, pages 1318–1328, 2004.

[65] Microsoft Corporation. Universal Plug and Play Internet Gateway Device
v1.01. 2001.

[66] J. Jan David Mol, Arno Bakker, Johan A. Pouwelse, Dick H.J. Epema, and
Henk J. Sips. The Design and Deployment of a BitTorrent Live Video Stream-
ing Solution. In Proc. of the 11th IEEE Intl. Symposium on Multimedia (ISM),
pages 342–349, 2009.

[67] J. Jan David Mol, Dick H.J. Epema, and Henk J. Sips. The Orchard Algorithm:
P2P Multicasting without Free Riding. In Proc. of the 6th Intl. Conf. on Peer-
to-Peer Computing, pages 275–282, 2006.

[68] J. Jan David Mol, Dick H.J. Epema, and Henk J. Sips. The Orchard Algo-
rithm: Building Multicast Trees for P2P Video Multicasting Without Free-
riding. IEEE Transactions on Multimedia, 9(8):1593–1604, 2007.

[69] J. Jan David Mol, Johan A. Pouwelse, Dick H.J. Epema, and Henk J. Sips. Free-
riding, Fairness, and Firewalls in P2P File-Sharing. In Proc. of the 8th IEEE
Intl. Conf. on Peer-to-Peer Computing, pages 301–310, 2008.

[70] J. Jan David Mol, Johan .A. Pouwelse, Michiel Meulpolder, Dick H.J. Epema,
and Henk J. Sips. Give-to-Get: Free-riding-resilient Video-on-Demand in P2P
Systems. In Proc. of SPIE, Multimedia Computing and Networking Conference
(MMCN), volume 6818, Article 681804, 2008.

[71] Joseph Needham. Science and Civilisation in China, volume 4. Cambridge
University Press, 1965.

138 Bibliography

[72] Tsuen-Wan Johnny Ngan, Dan S. Wallach, and Peter Druschel. Incentives-
Compatible Peer-to-Peer Multicast. In The 2nd Workshop on the Economics of
Peer-to-Peer Systems (P2PEcon), 2004.

[73] Martin A. Nowak and Karl Sigmund. Evolution of Indirect Reciprocity. Na-
ture, 437:1291–1298, 2005.

[74] Organisation for Economic Co-operation and Development. OECD Communi-
cations Outlook 2005. OECD Publishing, 2005.

[75] V.N. Padmanabhan, H.J. Wang, and P.A. Chou. Resilient Peer-to-Peer Stream-
ing. In Proc. of the 11th IEEE Intl. Conf. on Network Protocols (ICNP), pages
16–27, 2003.

[76] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A.E. Mohr. Chainsaw:
Eliminating Trees from Overlay Multicast. In Proc. of the 4th Intl. Workshop
on Peer-To-Peer Systems (IPTPS), pages 127–140, 2005.

[77] George Pallis and Athena Vakali. Insight and perspectives for content delivery
networks. Communications of the ACM, 49(1):101–106, 2006.

[78] Fabio Pianese and Diego Perino. Resource and locality awareness in an
incentive-based p2p live streaming system. In Proc. of the 2007 Workshop
on Peer-to-Peer Streaming and IP-TV (P2P-TV), pages 317–322, 2007.

[79] Johan A. Pouwelse, Paweł J. Garbacki, Dick H.J. Epema, and Henk J. Sips. The
BitTorrent P2P File-Sharing System: Measurements and Analysis. In Proc. of
the 4th Intl. Workshop on Peer-to-Peer Systems (IPTPS), pages 205–216, 2005.

[80] Johan A. Pouwelse, Paweł J. Garbacki, Jun Wang, Arno Bakker, Jie Yang,
Alexandru Iosup, Dick H.J. Epema, Marcel Reinders, Maarten van Steen, and
Henk J. Sips. Tribler: A Social-Based Peer-to-Peer System. In Concurrency
and Computation: Practice and Experience, volume 20, pages 127–138, 2008.

[81] Johan A. Pouwelse, Jacco R. Taal, Reginald L. Lagendijk, Dick H.J. Epema,
and Henk J. Sips. Real-Time Video Delivery using Peer-to-Peer Bartering Net-
works and Multiple Description Coding. In Proc. of the IEEE Conf. on Systems,
Man and Cybernetics, pages 4599–4605, 2004.

Bibliography 139

[82] Louis Aimé Augustin Le Prince. Roundhay Garden Scene. film, 1888.

[83] Dongyu Qiu and R. Srikant. Modeling and Performance Analysis of
BitTorrent-like Peer-to-Peer Networks. In Proc. of ACM SIGCOMM, pages
444–454, 2004.

[84] R. Rejaie, M. Handley, and D. Estrin. Architectural considerations for play-
back of quality adaptive video over the internet. In Proc. of the 8th IEEE Intl.
Conference on Networks (ICON), pages 204–209, 2000.

[85] Matei Ripeanu, Miranda Mowbray, Nazareno Andrade, and Aliandro Lima.
Gifting technologies: A BitTorrent case study. First Monday, 11(11), 2006.

[86] Larry Roberts. The Arpanet and computer networks. A history of personal
workstations, pages 141–172, 1988.

[87] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy. STUN-Simple Traver-
sal of User Datagram Protocol (UDP) Through Network Address Translators
(NATs). RFC 3489, 2003.

[88] S. Saroiu, P.K. Gummadi, and S.D. Gribble. Measurement Study of P2P File
Sharing Systems. In Proc. of SPIE, Multimedia Computing and Networking
Conference (MMCN), volume 4673, pages 156–170, 2002.

[89] S. Sen, J. Rexford, and D. Towsley. Proxy Prefix Caching for Multimedia
Streams. In Proc. of the 18th IEEE Intl. Conference on Computer Communica-
tions (INFOCOM), volume 3, pages 1310–1319, 1999.

[90] S. Sheu, K. Hua, and W. Tavanapong. Chaining: A Generalizing Batching
Technique for Video-On-Demand Systems. In Proc. of the Intl. Conf. on Mul-
timedia Computing and Systems, pages 110–117, 1997.

[91] S. Shin, J. Jung, and H. Balakrishnan. Malware Prevalence in the KaZaA File-
Sharing Network. In Proc. of the Internet Measurement Conference (IMC),
pages 34–39, 2006.

[92] Atul Singh, Tsuen-Wan Ngan, Peter Druschel, and Dan S. Wallach. Eclipse At-
tacks on Overlay Networks: Threats and Defenses. In Proc. of the 25th IEEE
Intl. Conference on Computer Communications (INFOCOM), pages 1–12,
2006.

140 Bibliography

[93] D. Stutzbach and R. Rejaie. Characterizing Churn in Peer-to-Peer Networks.
Technical Report CIS-TR-2005-03, University of Oregon, 2005.

[94] Jacco R. Taal and Reginald L. Lagendijk. Fair Rate Allocation of Scalable Mul-
tiple Description Video for Many Clients. In Proc. of Visual Communications
and Image Processing, pages 2172–2183, 2005.

[95] D.A. Tran, K.A. Hua, and T. Do. ZIGZAG: An Efficient Peer-to-Peer Scheme
for Media Streaming. In Proc. of the 22nd IEEE Intl. Conference on Computer
Communications (INFOCOM), pages 1283–1292, 2003.

[96] Athena Vakali and George Pallis. Content delivery networks: status and trends.
IEEE Internet Computing, 7(6):68–74, 2003.

[97] V. Venkataraman, P. Francis, and J. Calandrino. Chunkyspread: Multi-tree
Unstructured Peer-to-Peer Multicast. In Proc. of the 5th Intl. Workshop on
Peer-to-Peer Systems (IPTPS), 2006.

[98] A. Vlavianos, M. Iliofotou, and M. Faloutsos. BiToS: Enhancing BitTorrent
for Supporting Streaming Applications. In IEEE Global Internet Symposium,
2006.

[99] W. Wang, H. Chang, A. Zeitoun, and S. Jamin. Characterizing Guarded Hosts
in Peer-to-Peer File Sharing Systems. In Proc. of IEEE GLOBECOM, vol-
ume 3, pages 1539–1543, 2004.

[100] Susu Xie, Gabriel Y. Keung, and Bo Li. A Measurement of a Large-Scale
Peer-to-Peer Live Video Streaming System. In Proc. of the IEEE Intl. Conf. on
Parallel Processing Workshops, page 57, 2007.

[101] Mao Yang, Zheng Zhang, Xiaoming Li, and Yafei Dai. An Empirical Study of
Free-Riding Behavior in the Maze P2P File-Sharing System. In Proc. of the
4th Intl. Workshop on Peer-to-Peer Systems (IPTPS), pages 182–192, 2005.

[102] H. Yu, D. Zhang, B.Y. Zhao, and W. Zheng. Understanding User Behavior
in Large Scale Video-on-Demand Systems. In Proc. of the 1st ACM EuroSys,
pages 333–344, 2006.

Bibliography 141

[103] X. Zhang, J. Lieu, B. Li, and T.-S. P. Yum. DONet/Coolstreaming: A Data-
driven Overlay Network for Live Media Streaming. In Proc. of the 24th IEEE
Intl. Conference on Computer Communications (INFOCOM), volume 3, pages
2102–2111, 2005.

[104] Ben Y. Zhao, Anthony D. Joseph, and John Kubiatowicz. Locality Aware
Mechanisms for Large-scale Networks. In Proc. of the Intl. Workshop on Fu-
ture Directions in Distributed Computing (FuDiCo), pages 229–238, 2002.

143

Summary

TELEVISION AND FILM have become media that are able to reach billions of peo-
ple. The Internet is increasingly being used to distribute video as well, as the

potential audience is huge. However, in order to reach a large number of people over
the Internet, a high amount of bandwidth is required to distribute the video, since every
user needs to be sent a separate data stream. If the video streams are delivered from
a central source, such as a website, the bandwidth costs are high or even prohibitive
for large audiences. This problem exists for both live video streaming (like television)
and for video-on-demand (like film), because both variants of video streaming require
the same amount of bandwidth.

Peer-to-peer technology offers a solution to this problem. In peer-to-peer systems,
the users (peers) forward the video stream among each other, such that as few of them
as possible have to depend on the central source. Most of the peers will thus receive
the video stream from other peers, and are expected to forward the video stream as
well. Ideally, every peer forwards the same amount of data as it receives, because then
the resource balance in the system is neutral with respect to both peers arriving and
peers departing. Such a system can theoretically scale to millions of users without
significantly increasing the burden on the central source.

However, by shifting the burden of distributing the video stream from the central
source to the peers, the control over the quality of the delivered video streams is shifted
to the peers as well. The peers may not be able to forward enough of the video stream
for others to be able to receive the video stream at full quality. A typical set of peers
on the Internet barely have enough uplink bandwidth to provide each other with a low-
quality video stream. Furthermore, the quality of the video stream received by a peer
does not necessarily depend on the amount of uplink bandwidth that peer provides to
others. Since uplink bandwidth is a scarce resource, there exists an incentive for the
peers not to share it. Peers that do not share their uplink bandwidth, or very little of

144 Summary

it, are called free-riders. In peer-to-peer systems that assume that all peers are benign,
a large fraction of free-riders destroys the quality of service to other peers.

The objective of this thesis is to design and evaluate algorithms and systems in
which free-riders are punished by receiving a low quality of service, or even by re-
ceiving no service at all. We present algorithms for live video streaming as well as
video-on-demand, and evaluate their performance through analysis, simulation, emu-
lation, and in one case by measuring a deployed system.

We start with a description of the background on which this thesis is based. Chap-
ter 1 contains an introduction to video distribution over networks, as well as to peer-
to-peer networks. From this introduction, research questions are derived, and linked
to the chapters that follow.

In Chapter 2 we present the Orchard algorithm, which is a tree-based algorithm
for live video streaming. Tree-based algorithms span a distribution tree over the peers
over which the video stream is forwarded. The Orchard algorithm uses a video tech-
nique called Multiple Description Coding (MDC), that is used to split the video stream
into several substreams. The peers forward these substreams, creating a different dis-
tribution tree for each substream. The peers forward and exchange substreams such
that peers are forced to forward as much data as they receive. Free-riding is thus
avoided. We provide an extensive performance analysis of Orchard, as well as emu-
lation results, indicating that Orchard is capable of delivering decent performance.

Tree-based algorithms require that all peers need the same data at the same time,
which is the case for live video streaming, but not for video-on-demand. For that
reason, we turn to swarm-based algorithms in Chapters 3 and 4. In a swarm-based
algorithm, the video stream is divided into pieces that are exchanged by the peers.
Every peer strives to obtain all pieces, and holds on to them to serve others.

In Chapter 3, we present the Give-to-Get algorithm for the distribution of video-
on-demand. Give-to-Get encourages peers to forward the video data to others by
letting each peer serve the best forwarders first. Free-riders are thus served last, and
will only receive video data if there is enough capacity in the network to serve them.
An advantage of this approach is that peers that are willing but unable to upload much
data (such as those with asymmetric links such as ADSL), can still be served if the
amount of available bandwidth in the network allows it. The Give-to-Get algorithm
is an extension of the popular BitTorrent file-sharing protocol, making it easy to im-
plement it by extending an existing BitTorrent implementation. Again, we provide an
extensive performance analysis as well as emulation results.

Summary 145

In Chapter 4, we present another extension to BitTorrent, but in this case for live
video streaming. We map the live stream of potentially infinite length onto a finite set
of pieces that are distributed using BitTorrent. Further modifications are needed for
the peers to verify the origin of the pieces that the source continuously injects into the
network, often replacing outdated pieces in the finite set. We provide performance
analysis through simulation, and note that the fraction of peers behind a firewall or
NAT is a significant inhibitor of the achieved performance. To properly asses the
actual performance of our extension, we implemented it and deployed it in a trial, with
participants from around the globe. We show that the performance of our extension is
on par with previous trials of other live streaming algorithms. In our trial, like in the
previous trials we compare our results with, a large percentage of peers was indeed
behind a firewall or NAT.

The impact of firewalls and NATs on performance is the subject of Chapter 5, in
which we derive bounds on the performance of peer-to-peer distribution algorithms
imposed by a limited connectivity in the network. Such limited connectivity is most
commonly caused by firewalls and NATs, that make the peers behind them hard to
reach unless complex countermeasures are taken. Such peers can only maintain con-
nections initiated by themselves. We prove that if more than half of the peers are
behind a firewall or NAT, some peers will be forced to free-ride since there there
are no peers they can connect to that still need data. We analyse data from our own
trial and previous trials, that are consistent with previous studies, and show that in fact
most peers often are behind a firewall or NAT. Our theoretical results on the bounds on
the achievable performance in the presence of firewalls and NATs hold for any peer-
to-peer distribution algorithm, making them useful tools for designing and deploying
peer-to-peer algorithms.

In Chapter 6, we formulate our conclusions and summarize the answers to our
research questions. Furthermore, we provide directions for future research building
upon our work. The algorithms presented in this thesis can be implemented to serve
as a basis for video streaming on the Internet, and be extended to provide good per-
formance in a wider variety of cases than we were able to test. Furthermore, our
derived performance impact of limited connectivity can be used to aid the design and
deployment of video-streaming as well as file-sharing algorithms.

147

Samenvatting

TELEVISIE EN FILM zijn uitgegroeid tot media die dagelijks miljarden mensen
bereiken. In toenemende mate wordt ook het Internet gebruikt om beeldma-

teriaal te verspreiden, om nog gemakkelijker een groot publiek te kunnen bereiken.
Maar om videobeelden aan een groot publiek te kunnen leveren via het Internet is veel
bandbreedte nodig, omdat de videostroom naar elke gebruiker apart verzonden moet
worden. De videostroom vanaf een centraal punt aan alle gebruikers leveren is daarom
erg kostbaar en vaak zelfs onmogelijk. Dit geldt zowel voor het verspreiden van live
videobeelden (televisie) als voor het verspreiden van vooraf opgenomen videobeelden
(film), omdat met beide varianten uiteindelijk evenveel bandbreedte gemoeid is.

Peer-to-peer technologie brengt een oplossing voor dit probleem. In peer-to-
peer systemen geven de gebruikers (peers) de videobeelden aan elkaar door, zodat
zo weinig mogelijk gebruikers afhankelijk zijn van een centraal punt. De meeste ge-
bruikers ontvangen dus de videobeelden van andere gebruikers, en worden geacht om
ze verder door te geven. In het ideale geval geeft elke gebruiker evenveel data door
als hij ontvangt, omdat dan het systeem in balans blijft als er gebruikers arriveren of
vertrekken. Een systeem waarin dat het geval is kan miljoenen gebruikers bedienen
zonder dat het centrale punt substantiëel belast wordt.

Echter, als de gebruikers belast worden met het verspreiden van de videobeelden,
wordt de kwaliteit van de videostroom die de gebruikers ontvangen afhankelijk van
andere gebruikers. Die andere gebruikers hebben niet altijd genoeg bandbreedte om
de videostroom foutloos te leveren. Een gemiddelde groep gebruikers op het Internet
heeft nauwelijks genoeg bandbreedte om elkaar van lage kwaliteit videobeelden te
voorzien. Daarnaast is de kwaliteit van de videostroom die een gebruiker ontvangt
niet afhankelijk van de hoeveelheid bandbreedte die hij beschikbaar stelt. Uitgaande
bandbreedte is schaars, en daarom zal een gebruiker geneigd zijn om zo min mogelijk
bandbreedte te hoeven leveren. Gebruikers die hun uitgaande bandbreedte niet delen,

148 Samenvatting

of zo min mogelijk, worden profiteurs (free-riders) genoemd. In peer-to-peer syste-
men die ervan uitgaan dat alle gebruikers goedaardig zijn is een grote groep profiteurs
fataal voor de kwaliteit van de videostroom die de goedaardige gebruikers ontvangen.

Het doel van dit proefschrift is het ontwerpen en evalueren van algoritmes en sys-
temen waarin profiteurs slecht beeld krijgen of zelfs helemaal niets kunnen ontvangen.
We presenteren algoritmes voor het verspreiden van zowel live als vooraf opgenomen
videobeelden, en evalueren hun prestaties met behulp van analyse, simulatie, emu-
latie, en in één geval door het gedrag van een werkend systeem te meten.

We beginnen met een beschrijving van de context waarin dit proefschrift zich
bevindt. Hoofdstuk 1 bevat een inleiding in de distributie van videostromen over
netwerken in het algemeen en peer-to-peer netwerken in het bijzonder. Vanuit de
introductie worden de onderzoeksvragen geformuleerd, en verbonden met de hoofd-
stukken die volgen.

In Hoofdstuk 2 presenteren we het Orchard (Boomgaard) algoritme, wat een
boom-algoritme is voor het verspreiden van live videobeelden. Een boom-algoritme
spant een distributieboom over de gebruikers die de videostroom willen ontvangen.
Het Orchard algoritme gebruikt een videotechniek genaamd Multiple Description
Coding (MDC), waarmee de videostroom opgesplitst kan worden in meerdere sub-
stromen. De gebruikers geven vervolgens deze substromen door, zodat er een dis-
tributieboom ontstaat voor elke substroom. De substromen worden zodanig uitgewis-
seld dat gebruikers gedwongen worden evenveel data door te geven als zij ontvan-
gen. Peers die hun bandbreedte niet ter beschikking stellen ontvangen daardoor geen
videobeelden. We verschaffen zowel een uitgebreide prestatieanalyse van Orchard als
emulatieresultaten, die aangeven dat Orchard goed presteert.

In boom-algoritmes moeten alle gebruikers dezelfde data op hetzelfde moment
nodig hebben, wat het geval is voor live videobeelden, maar niet voor vooraf
opgenomen videobeelden. Daarom stappen we in Hoofdstuk 3 en 4 over op zwerm-
algorithmes. In een zwerm-algoritme wordt de video stroom verdeeld in stukjes die
uitgewisseld worden door de gebruikers. Elke gebruiker probeert alle stukjes te be-
machtigen, en bewaart ze om ze later aan andere gebruikers te kunnen leveren.

In Hoofdstuk 3 presenteren we het Give-to-Get (Geef-om-te-Ontvangen) algo-
ritme voor het verspreiden van vooraf opgenomen videobeelden. Give-to-Get moedigt
het doorgeven van de videobeelden aan door eerst de gebruikers te bedienen die de
meeste data doorgeven. Profiteurs worden dus als laatste bediend, en ontvangen daar-
door alleen videobeelden als er genoeg capaciteit is in het netwerk om ze te kunnen

Samenvatting 149

bedienen. Het voordeel van deze aanpak is dat als er genoeg capaciteit is, ook de
gebruikers bediend kunnen worden die wel videobeelden zouden willen doorgeven,
maar zo weinig uitgaande bandbreedte hebben of kunnen leveren dat ze niet te onder-
scheiden zijn van profiteurs. Denk hierbij bijvoorbeeld aan gebruikers met een asym-
metrische Internetverbinding, zoals ADSL. Het Give-to-Get algoritme is een uitbreid-
ing op het populaire BitTorrent protocol voor het delen van bestanden. Give-to-Get is
daardoor eenvoudig te implementeren door een bestaand BitTorrent programma uit te
breiden. Wederom maken we een uitgebreide prestatieanalyse en doen we emulaties.

In Hoofdstuk 4 presenteren we nog een uitbreiding op BitTorrent, maar dan voor
het verspreiden van live videobeelden. We projecteren de live videostroom, die
oneindig lang kan zijn, op een eindige verzameling stukjes die vervolgens met behulp
van BitTorrent uitgewisseld wordt. Ook zijn er veranderingen nodig om de gebruikers
in staat te stellen de oorsprong van de stukjes te controleren, die continu oude stuk-
jes vervangen in de eindige verzameling. Uit onze simulaties blijkt dat de prestaties
van onze extensie lijden als er veel gebruikers achter een firewall of NAT zitten. Om
de prestaties van onze uitbreiding goed te kunnen bepalen hebben we haar geı̈mple-
menteerd in een werkend systeem en gebruikt in een experiment op het Internet, waar
mensen van over de hele wereld aan deelnamen. We laten zien dat de prestaties van
onze extensie vergelijkbaar zijn met die van experimenten die door anderen gedaan
zijn. In ons experiment, net als in de andere experimenten, zat er inderdaad een groot
gedeelte van de gebruikers achter een firewall of NAT.

De invloed van firewalls en NATs op de prestaties is het onderwerp van Hoofdstuk
5, waarin we grenzen afleiden aan de prestaties van peer-to-peer distributiealgoritmes
die veroorzaakt worden door een beperkte connectiviteit in het netwerk. Een beperkte
connectiviteit wordt vooral veroorzaakt door firewalls en NATs, omdat die de ge-
bruikers die zich daarachter bevinden moeilijk bereikbaar maken, tenzij er complexe
technieken worden toegepast. Zulke gebruikers kunnen namelijk alleen verbindingen
onderhouden die zij zelf hebben opgezet. We bewijzen dat als meer dan de helft van
de gebruikers achter firewalls en NATs zitten, sommige gebruikers gedwongen wor-
den om zich als profiteur te gedragen, omdat zij geen verbinding kunnen leggen met
gebruikers die data nodig hebben. We analyseren de uitkomst van zowel ons exper-
iment uit Hoofdstuk 4 als van studies van anderen, en laten zien dat inderdaad de
meeste gebruikers zich achter firewalls of NATs bevinden. Onze theoretische resul-
taten aangaande de grenzen aan de haalbare prestaties gelden voor alle peer-to-peer
distributiealgoritmes, waardoor zij van pas komen bij het ontwerpen en verspreiden

150 Samenvatting

van peer-to-peer distributiealgoritmes.
In Hoofdstuk 6 geven we onze conclusies, en vatten we de antwoorden op onze

onderzoeksvragen samen. Tevens stellen we richtingen voor toekomstig onderzoek
voor die voortbouwen op ons werk. De algoritmes die in dit proefschrift gepresenteerd
zijn kunnen worden geı̈mplementeerd om als basis te dienen voor videodistributie
over het Internet, en kunnen worden uitgebreid om in meer situaties dan wij konden
testen goede prestaties te leveren. Tenslotte kunnen onze grenzen aan de prestaties
door een beperkte connectiviteit gebruikt worden als hulpmiddel bij het ontwerpen
en verspreiden van zowel videodistributiealgoritmes als algoritmes om bestanden te
delen.

151

Curriculum Vitae

JACOB JAN DAVID MOL was born on 19th September 1978 in Delft, the Nether-
lands. He grew up in Nootdorp, and finished his secondary education (Gym-

nasium) at College het Loo in Voorburg in 1996. He went on to study Technical
Computer Science at Delft University of Technology, where he received his MSc in
2004 in the Parallel and Distributed Systems group. His master’s thesis was on the
subject of “Resource Allocation for Streaming Applications in Multiprocessors” and
was based on work he performed at Philips Research in Eindhoven.

After obtaining his MSc, Jan David started a PhD track in the same Parallel and
Distributed Systems group, which resulted in this thesis. Currently, he has moved
to Diever, and is researching and developing the LOFAR software radio telescope at
Stichting Astron in Dwingeloo, which in several ways will be the largest radio tele-
scope of the world. His publications to date are the following, in reverse chronological
order:

• John W. Romein, P. Chris Broekema, J. Jan David Mol, Rob V. van Nieuwpoort,
The LOFAR Correlator: Implementation and Performance Analysis. In Proc.
of the 15th ACM Symposium on Principles and Practice of Parallel Program-
ming (PPoPP), 2010 (to appear).

• J. Jan David Mol, Arno Bakker, Johan A. Pouwelse, Dick H.J. Epema, Henk
J. Sips, The Design and Deployment of a BitTorrent Live Video Streaming So-
lution. In Proc. of the 11th IEEE Intl. Symposium on Multimedia (ISM), pp.
342–349, 2009.

• J. Jan David Mol, Johan A. Pouwelse, Dick H.J. Epema, Henk J. Sips, Free-
riding, Fairness, and Firewalls in P2P File-sharing. In Proc. of the 8th IEEE
Intl. Conf. on Peer-to-Peer Computing, pp. 301–320, 2008.

152 Curriculum Vitae

• Yue Lu, J. Jan David Mol, Fernando Kuipers, and Piet van Mieghem, Analytical
model for Mesh-based P2PVoD. In Proc. of the 10th IEEE Intl. Symposium on
Multimedia (ISM), pp. 364–371, 2008.

• J. Jan David Mol, Johan A. Pouwelse, Michiel Meulpolder, Dick H.J. Epema,
and Henk J. Sips, Give-to-Get: Free-riding-resilient Video-on-Demand in P2P
Systems. In Proc. of SPIE, Multimedia Computing and Networking Conference
(MMCN), vol. 6818, article 681804, 2008.

• J. Jan David Mol, Dick H.J. Epema, Henk J. Sips, The Orchard Algorithm:
Building Multicast Trees for P2P Video Multicasting Without Free-riding. In
IEEE Transactions on Multimedia, 9(8):1593–1604, 2007.

• Orlando Moreira, J. Jan David Mol, and Marco Bekooij, Online Resource
Management in a Multiprocessor with a Network-on-Chip. In Proc. of the
22nd ACM Symposium on Applied Computing (SAC), pp. 1557–1564, 2007.

• J. Jan David Mol, Dick H.J. Epema, Henk J. Sips, The Orchard Algorithm: P2P
Multicasting Without Free-riding. In Proc. of the 6th IEEE Intl. Conf. on
Peer-to-Peer Computing, pp. 275–282, 2006.

• Orlando Moreira, J. Jan David Mol, Marco Bekooij, and Jef van Meerbergen,
Multiprocessor Resource Allocation for Hard-real-time Streaming with a Dy-
namic Jobmix. In Proc. of the 11th IEEE Real Time and Embedded Technology
and Applications Symposium (RTAS), pp. 332–341, 2005.

	Introduction
	Research Context
	Video Streaming
	Streaming Modes
	Video Processing

	P2P Video Streaming Networks
	Video Streaming Approaches
	Problem Statement
	Research Contributions and Thesis Outline

	Tree-based Live Streaming
	Problem Description
	Stream Pre-processing
	The Underlying Peer-to-Peer Network
	Problem Statement

	The Orchard Algorithm
	Constructing the Forest
	Primitives to Build the Trees
	The Resulting Trees
	Repairing Trees

	Attacking Orchard
	Free-riding
	Other Types of Attacks

	Expected Performance
	Parameters of the Model
	Peer Arrivals and Exchange Deals
	Peer Departures and Exchange Deals
	Redirection
	Redirection through Coloured Peers

	Experiments
	Experimental Setup
	Arrivals Only
	Flash Crowds
	Churn
	Real Streaming
	Delft-37
	Scalability of Orchard

	Related Work
	Discussion
	Conclusions

	Swarm-based Video-on-Demand
	Problem Description
	Give-to-Get
	Neighbour Management
	Chunk Distribution
	Chunk Picking
	Differences between Give-to-Get, BitTorrent and BiToS
	Performance Metrics

	Experiments
	Experimental Setup
	Default Behaviour
	Free-riders

	Analysis
	Model Description
	Model and Simulation Setup
	Results for a Non-linear System
	Results for a Linearised System

	Related Work
	Conclusions

	Swarm-based Live Streaming
	Background
	BitTorrent
	Related Work

	Extensions for Live Streaming
	Unlimited Video Length
	Data Validation
	Live Playback
	Seeders

	Simulations
	Simulation Setup
	Uplink Bandwidth
	Hook-in Point
	Piece Size
	Number of Seeders

	Public Trial
	Trial Setup
	Performance over Time
	Prebuffering Time
	Sharing Ratios

	Conclusions

	Bounds on Bandwidth Contributions
	Firewalls and Puncturing
	Firewalls and NATs
	Firewall Puncturing

	Model and Notation
	No Firewall Puncturing
	Sharing Ratio Analysis
	Practical Implications

	Firewall Puncturing
	Simulated Behaviour
	Behaviour of Real Systems
	BitTorrent Communities
	Data Collection
	Behaviour of Firewalled Peers
	Fraction of Seeders

	Related Work
	Conclusions

	Conclusion
	Summary and Conclusions
	Future Work

	Bibliography
	Summary
	Samenvatting
	Curriculum Vitae

