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A B S T R A C T

AlGaN/GaN high electron mobility transistor (HEMT)-based sensors with catalytic platinum gate were
micro-fabricated on commercially available epitaxial wafers and extensively characterized for ppm level
hydrogen sulfide (H2S) detection for industrial safety applications. High operating temperature above 150 °C
enabled large signal variation (ΔIDS) of 2.17 and sensing response of 112% for 90 ppm H2S in dry air as well
as high stability across a wide range of biasing conditions. Transient response measurements demonstrated
stable operation, superb response and recovery, with good repeatability. The measured sensing signal rise
(fall) times reduced from 476 (1316) s to 219 (507) s when the temperature was increased from 200 °C to
250 °C. The response to 90 ppm H2S was 4.5x larger than to H2 and the device showed stable operation over
an extended time period.

1. Introduction

With the continuous and rapid industrial growth, environmental
pollution monitoring and assurance of worker safety raise increasing
concerns. H2S is a toxic, flammable, colorless gas with characteristic
pungent odor [1]. It is naturally produced from sewage, liquid manure,
sulfur hot springs and biogas [2]. H2S is also a by-product of coal
mining, petroleum and natural gas refinement industries [3]. Extended
exposure to 10–500 ppm H2S concentrations can cause symptoms
varying from rhinitis to loss of consciousness and even respiratory
failure. Furthermore, continuous inhalation of concentration above
100 ppm will cause inhibition of sensing the characteristic odor, due to
olfactory fatigue [2,4], which can result in false assumption of the gas
being dissipated. Hence, portable, wearable and reliable detectors,
capable of sensing low ppm levels of H2S are of crucial importance to
ensure worker safety for the fossil fuel and other energy production
industries.

The first solid state gas sensor based on silicon metal oxide semi-
conductor (MOS) field effect transistor (FET), using palladium (Pd) as
hydrogen (H2) sensitive layer, was reported in 1975 [5]. Numerous
modifications of the original transducer were further developed to en-
hance performance in terms of sensor sensitivity and expand the range

of detectable gases. These devices include the suspended gate FET (SG-
FET) [6], hybrid SG-FET [7], capacitively controlled FET (CCFET) [8],
floating gate FET (FG-FET) [9] and most recently the horizontal FG-FET
[10]. However, because of the narrow energy bandgap of Si (1.12 eV),
these GasFETs are not able of operating at temperatures above 200 °C.
In fact, initial reports on silicon Pd-MOS H2S sensors have demonstrated
operation at temperature up to 150 °C [11,12]. To overcome the lim-
itations related to the use of Si, wider bandgap 2nd generation com-
pound III-V semiconductors, including InP [13], GaAs [14,15], InGaP
[16], InAlAs [17], have been previously investigated for gas sensing
applications. While these devices achieved improved sensing perfor-
mance, the requirement of costly and fragile GaAs or InP substrates for
layer epitaxy limits their large-scale adoption. 3rd generation wide
bandgap (> 3 eV) silicon carbide (SiC) and gallium nitride (GaN) ma-
terials are favorable for development of high performance gas sensors.
The price of SiC substrates is currently very high, while GaN can be
grown on cost effective sapphire or Si wafers. Hence gallium nitride,
with a bandgap of 3.4 eV, is particularly advantageous for harsh en-
vironment, high temperature electronics and sensor applications [18].
AlGaN/GaN heterostructure Schottky diode and high electron mobility
transistor (HEMT) based H2 sensors have been demonstrated operating
at 800 °C under N2 ambient [19,20]. While most studies refer to H2
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sensors [21–23], AlGaN/GaN sensors were also demonstrated for CO,
CO2, NO, NO2, NH3, Cl, CH4, C2H2 [24–30]. Very few results of H2S
detection with wide bandgap semiconductor devices have been re-
ported so far. A GaN Schottky diode with Pt gas sensing layer has been
demonstrated for 0.1∼10 ppm H2S detection under N2 ambient [31]. A
Silicon carbide FET with Pt and Ir gates was also shown to sense H2S,
however signal saturation was observed at low concentration of
6∼8 ppm under 5% oxygen atmosphere [32]. Recently we presented
successful sensing of H2S with Pt-AlGaN/GaN HEMT based sensor [33].
In this work, we further expand on our preliminary results by com-
prehensively studying DC and transient characteristics at different
temperatures and H2S concentrations in dry air atmosphere. Moreover,
the measured signal variations and sensing responses at different bias
points are evaluated and sensor stability, selectivity and repeatability
are demonstrated.

2. Experimental

2.1. Fabrication of sensors

The epitaxial structure used for device fabrication was purchased
from a commercial vendor, Suzhou Nanowin Co. The material was
grown by MOCVD on 2 inch C-plane sapphire wafers. Starting from the
substrate, the stack consisted of a proprietary nucleation layer, for
lattice mismatch compensation, a 1.8 μm GaN buffer, 1 nm AlN inter-
layer, followed by an undoped 21 nm Al0.26Ga0.74N barrier and 1 nm
GaN capping layer. The basis for HEMT operation is the formation of a
high electron density channel, two-dimensional electron gas (2DEG), at
the AlGaN/GaN heterojunction interface, due to polarization effects
[34].

The sensor fabrication started with wet chemical cleaning of the
substrate using acetone, isopropanol and DI water rinsing.
Afterwards 100 nm deep mesa etching was performed by ICP BCl3/
Cl2 plasma to isolate individual devices. Then ohmic contacts con-
sisting of a Ti/Al/Ti/Au stack with thickness of 20/110/40/50 nm,
were e-beam evaporated and patterned by lift-off. A 60 s dip in
HCl:H2O solution was done right before loading the wafers into the

deposition chamber to remove any surface oxide [35]. After pat-
tering, the contacts were annealed for 47 s at 870 °C in N2 ambient.
The gas sensing gate electrode was then formed by e-beam eva-
poration and lift-off of a 10 nm Pt layer. Then a bi-layer of 30/
300 nm Ti/Au interconnect metal was evaporated and patterned by
lift-off to guarantee reliable wire bonding. Finally, the devices were
passivated by a 500 nm PECVD SiNx layer followed by combined RIE
and wet BOE etching to open the sensing area and the bonding pads.
The schematic cross-section and top view optical micrograph of the
fabricated device are shown in Fig. 1. The gate dimensions exposed
to gas were 40 μm× 400 μm and the gate-source and gate-drain
spacing was 6 μm, based on our earlier report [36]. After fabrication,
the wafers were diced and individual devices were wire bonded to
ceramic substrates for high temperature measurements.

2.2. Testing of sensors

Gas testing was performed using a commercial gas mixing system
from Beijing Elite Tech Co., which consists of mass flow controllers
(MFC) to dilute the calibration gas, a 1.8 L volume chamber with
temperature controlled hotplate, temperature and humidity sensors
and electrical feedthroughs. The sensors were tested at different
temperatures using H2S reference gas diluted with dry synthetic air
(O2/N2= 21%/79%) to ensure 0% relative humidity. The combined
total gas flow was kept at 310 sccm. Electrical sensor measurements
were conducted using a pair of Keithley 2450 source meters. Prior to
gas sensing experiments the sensors underwent a burn-in procedure
in dry air ambient for 24 h at 150 °C with gate and drain bias voltages
of 0 V and 5 V respectively in order to minimize baseline drift.
Afterwards sensor activation was carried out with H2 pulses of in-
creasing concentration from 100 to 900 ppm with air purges in-be-
tween at 250 °C. We observed that such treatment allowed to extend
the upper limit of H2S detection before signal saturation occurred.
Exposure to H2 can reform the surface morphology of Pt [37] and
increase the number of surface sites for gas adsorption. Further in-
vestigations into the mechanism of H2 based activation are currently
ongoing.

Fig. 1. (a) Schematic cross-section of the studied Pt-AlGaN/GaN HEMT H2S sensor. (b) Top view optical micrograph of the fabricated sensor.
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3. Results and discussion

The steady state sensing characteristics of the Pt-HEMT sensor were
studied by measuring the drain current versus drain-source voltage (IDS-
VDS) and the drain current versus gate-source voltage (IDS-VGS). Output
(IDS-VDS) characteristics upon exposure to H2S/Air concentrations of
15–90 ppm at temperatures of 150 °C, 200 °C and 250 °C are shown in
Fig. 2(a–c). The gate-source voltage (VGS) was stepped from−3 V to 1 V
with 1 V increments. Proper transistor operation is clearly observed
with distinct linear and saturation regions and the ability to module
output current via the gate terminal is maintained at all tested tem-
peratures. A profound rise in drain current was observed at 200 °C and
250 °C with increasing H2S concentrations. At 250 °C the sensing signal
started to saturate at concentrations above 60 ppm/air. The magnitude
of current variation at 150 °C was much lower, with noticeable in-
stability below 75 ppm/air. The corresponding transfer (IDS-VGS) and
transconductance (gm) characteristics at VDS= 7 V are shown in
Fig. 3(a–c). Upon exposure to H2S the curves shift towards more ne-
gative voltages for the same IDS levels. The maximum transconductance
(gm,max) values increased from 6.82, 5.35, 4.54mS in air ambient to
6.83, 5.63, 4.89mS when exposed to 90 ppm/air at temperatures of
150 °C, 200 °C and 250 °C respectively. Higher transconductance in H2S
containing ambient is attributed to increased number of electrons in the
2DEG channel due to gas interaction with the Pt gate which is also
evident from Fig. 2. Threshold voltage (VTH) values at tested con-
centrations were extracted from Fig. 3(a–c) using the linear extra-
polation method by fitting a tangent line at the point of gm,max to the VGS

axis intercept [38]. The threshold voltage shift, defined as
ΔVTH=VTH,air-VTH,H2S, for the tested H2S concentration range is shown
in Fig. 3(d). Clearly the magnitude of ΔVTH increases with increasing
test gas concentration at 200 °C and 250 °C. At 150 °C ΔVTH mostly
unchanged, due to low catalytic dissociation efficiency of H2S on Pt at
this temperature. Output and transfer characteristics before and after
exposure to 90 ppm H2S/Air are shown in Fig. 4(a) and (b) respectively.
After the initial baseline measurements in dry air at 250 °C, H2S was
injected into the test chamber for 20min followed by an air purge for
60min. From Fig. 4(a) an increase of 0.26mA was observed for the
baseline current (at VGS= 0 V, VDS= 5 V) and a corresponding -0.06 V
shift (Fig. 4(b)) of the transfer curve (at IDS= 5mA). It was observed
that after the sensor was exposed to ambient conditions for several
hours the baseline values were restored. To understand the current and
threshold voltage variations and analyze the gas sensing mechanism we
first look at the saturation drain current of an AlGaN/GaN HEMT ex-
pressed as:

= −I
μC W

L
V V

2
( )DS sat

b g

g
GS TH,

2

(1)

where μ is the 2DEG mobility,Wg/Lg the gate width/length, Cb is gate to
channel capacitance, which is the sum of capacitance contributions
from each layer between the gate metal and 2DEG (1/Cb=1/Ccap+1/
CAlGaN+1/CAlN+1/C2DEG). The μ and Cb are determined by the quality
and structure of the epitaxy, while Wg/Lg are defined by sensor design.
The shift in threshold voltage towards more negative value would result
in the observed IDS increase in H2S containing atmosphere. The ex-
pression of VTH for an AlGaN/GaN HEMT is:

= − −V Φ ΔE
q

qn
CTH b

C s

b (2)

where Φb is the Schottky barrier height, ΔEC is the conduction band
discontinuity, q is the elementary charge and ns is the sheet charge
carrier density. The Schottky barrier height is in turn dependent on the

Fig. 2. Output (IDS-VDS) characteristics of Pt-HEMT sensors exposed to different
H2S concentrations at (a) 150 °C, with the inset showing a magnified view of the
box area, (b) 200 °C and (c) 250 °C.
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work function (Φm) of the gate metal and the semiconductor electron
affinity (χs), Φb = Φm-χs. Previous research has found that hydrogen
containing gas molecules upon adsorption on the surface of catalytic
metals (e.g. Pt, Pd or Ir) dissociate and release hydrogen atoms
[21,27,29]. In the case of H2S adsorption in air ambient the probable
reaction mechanism is as follows [39]:

→ +H S SH Had ad ad2 ( ) ( ) ( ) (3)

→ +SH S Had ad ad( ) ( ) ( ) (4)

+ →S O SOad ad gas( ) 2( ) 2( ) (5)

The SeH bonds are broken sequentially as described by (3) and (4)
and the remaining sulfur reacts with O2 present at the Pt surface and
forms SO2 which can then desorb form the surface. The hydrogen ions
rapidly diffuse through the Pt to the M–S interface. It is assumed that
there is an interfacial oxide layer present on the GaN surface, since it
was exposed to ambient conditions during sensor fabrication for several
hours and no chemical or plasma treatments were performed prior to Pt
deposition. The oxide layer supplies bonding sites for the diffused H
resulting in a dipole layer at the interface [40]. This causes the re-
duction of metal work function (Φm) and the lowering of the Φb, which
results in the observed ΔVTH and IDS increase in H2S containing

atmosphere. To evaluate the hydrogen sulfide detection performance of
our Pt-HEMT sensor, we calculated the sensing response defined as:

= ×S ΔI
I

(%) 100%DS

DS air, (6)

where ΔIDS=IDS,H2S-IDS,air is the drain current variation between H2S
and air ambient. Fig. 5(a) shows the ΔIDS as a function of drain-
source voltage (VDS) for VGS = 0 V at temperature of 200 °C. Mea-
surements indicated that the ΔIDS increases linearly with VDS in the
transistor linear region until it reaches the maximum value at the
transition point to the saturation region at approximately 4 V, and
then reduces by only 4% at VDS= 10 V. This demonstrates that our
sensor exhibits high stability and allows for a wide selection of
biasing conditions without diminishing sensing performance. The
drain current variation at different H2S concentrations and gate bias
voltages is shown in Fig. 5(b). The magnitude of sensing signal
variation is greatly impacted by the gate bias. For 90 ppm H2S con-
centration the measured ΔIDS increased tenfold, from 0.21 mA at
VGS=−3 V to 2.17 mA at VGS = 1 V. The ΔIDS increase is due to
larger baseline current (IDS,air) with increasing gate bias. Fig. 6(a)
shows the hydrogen sulfide sensing response at different gate bias
voltages, while Fig. 6(b) shows response at different temperatures.
Looking at Eq. (6) the reduction of S is due to larger increase of IDS,air

Fig. 3. Transfer (IDS-VGS) and transconductance characteristics of Pt-HEMT sensors exposed to different H2S concentrations at (a) 150 °C, with the inset showing a
magnified view of the box area, (b) 200 °C and (c) 250 °C. (d) Threshold voltage shift versus H2S concentration.
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with higher VGS than the increase in ΔIDS. Based on Fig. 5(b) we
conclude that HEMT type sensor can be operated at high signal
amplitude (ΔIDS) conditions (VGS > 0 V) to achieve the lowest gas
detection limits. Alternatively, as shown in Fig. 6(a), operating in
high response mode is possible when gate bias is approaching pinch-
off state thereby minimizing sensor power consumption. GaN
Schottky diode type H2 sensor had been previously demonstrated
with very high response of ∼3500% at 150 °C, however the signal
amplitude was on the order of nA [41]. From Fig. 6(b) it is evident
that response towards H2S increased with higher temperature,
however saturation started to occur earlier, namely above 60 ppm
concentration.

Fig. 7 shows transient characteristics of the Pt-HEMT sensors at
the tested temperatures and increasing analyte gas concentrations.
The bias conditions used were VDS = 5 V, VGS= 0 V to obtain high
ΔIDS and operate the sensor as 2-terminal device with gate and source
terminals shorted. The drain current increased immediately upon
injecting H2S, with the operating temperature having a significant
impact on the observed response. At 150 °C there is substantial

baseline value drift at 15 ppm and 30 ppm, followed by minimal
signal variation with increasing concentration. It is believed to be
caused by sulfur poisoning of the Pt surface due to incomplete oxi-
dation to SO2 and desorption at this temperature [12]. Raising the
temperature to 200 °C resulted in an increased signal and improved
recovery of the sensor, while at 250 °C the sensor rapidly reached
steady state after gas introduction and returned to the baseline level
during air purge steps. Moreover signal saturation was less profound
compared with DC measurements. The increased magnitude of re-
sponse current at 200 °C and 250 °C is due to enhanced reaction rate
of H–S bond cleavage and H atom diffusion through the Pt gate. The
baseline current value in air ambient reduces with rising temperature
due to reduction of electron mobility in 2DEG channel.

Response and recovery rates were estimated using rise (tR) and fall
(tF) times, defined as the time required for the signal to rise/fall from
10% to 90% of the steady state values. This method was used to reduce
the influence of the delay necessary to equilibrate gas concentration
inside the testing chamber. Fig. 8(a) and (b) shows the tR and tF as
function of H2S concentration at tested temperatures. The transient

Fig. 4. (a) Output (IDS-VDS) and (b) transfer (IDS-VGS) characteristics of the Pt-
HEMT sensor before and after exposure to 90 ppm of H2S at 250 °C.

Fig. 5. (a) Drain current variation (ΔIDS) as a function of drain-source (VDS)
voltage for different H2S concentrations at 200 °C, VGS=0 V. (b) Drain current
variation (ΔIDS) versus H2S concentration at 200 °C, VDS= 5 V.
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times decreased with increasing gas concentration for 200 °C and
250 °C. The results at 150 °C were irregular due to low signal variation
and baseline current value drift at 15 ppm and 30 ppm gas concentra-
tions which resulted in quicker tR and tF. Starting with 45 ppm the
baseline stabilized and the response (recovery) times became more
consistent. At 90 ppm H2S concentration tR (tF) reduced from 476
(1316) s at 200 °C to 219 (507) s at 250 °C. The shorter rise/fall times
are attributed to faster gas adsorption and desorption kinetics at the Pt
surface and M–S interface with increasing temperature. Further de-
crease of tR and tF is expected with downsizing the volume of the testing
chamber. Fig. 9 shows 5 consecutive exposure and purge cycles of
90 ppm H2S. Obviously the sensor demonstrates repeatable and re-
versable current variation characteristics under continuous operation at
250 °C.

Pd and Pt gate field effect devices are known to detect H2 gas, there-
fore a comparison of response between H2S and H2 was carried out.
Fig. 9(a) shows the transient drain current curves of the tested sensor
exposed to 60 ppm and 90 ppm of H2S, H2 and NO2 at 250 °C. The sensing
response to 90 ppm for each gas is summarized in Fig. 9(b). It is evident
that the response to H2S was 4.5x higher than to H2, while the response to
NO2 was negligible and IDS decreased upon gas exposure (Fig. 10).

Long-term operation stability of the Pt-HEMT sensor was tested by
performing the H2S tests over a period of 15 days. Fig. 11 shows the
daily drain current variation (ΔIDS) for 60 ppm and 90 ppm H2S at

250 °C. There was no significant deterioration of the sensing signal
during the testing period. We did observe however that the Au-plated
pads of our ceramic testing substrates and bond-pads of the HEMT chip
were corroded after extended exposure to H2S, therefore packaging
reliability needs to be further investigated to ensure stable sensor op-
eration.

4. Conclusions

Sensors based on AlGaN/GaN HEMTs with Pt catalytic gate were
fabricated and characterized for detecting ppm levels of hydrogen
sulfide at high temperature. The developed devices exhibited a sig-
nificant drain current increase and threshold voltage shift upon ex-
posure to the test gas. At 200 °C maximum ΔIDS of 2.17 mA
(VGS = 1 V) as well as high sensing response of 112% (VGS=−3 V)
for 90 ppm H2S was obtained. High stability was observed with only
4% reduction of ΔIDS across the tested drain saturation voltage range,
which enables a wide selection of biasing conditions. At 150 °C very
low response and baseline drift were likely caused by sulfur poising
effect of the Pt gate. Transient measurements confirmed stable op-
eration with excellent response, recovery and repeatability proper-
ties. The rise (fall) times reduced from 476 (1316) s to 219 (507) s
when the temperature was elevated from 200 °C to 250 °C. Sensing
response of H2S was 4.5x greater than H2 for 90 ppm concentration.
The operating stability was validated over 15 days with no sig-
nificant reduction of sensing signal. Our findings firmly suggest that
AlGaN/GaN HEMT sensors are a promising technology for industrial
wearable worker safety detectors.

Fig. 6. Hydrogen sulfide sensor sensitivity at (a) various gate bias voltages and
(b) at different temperatures.

Fig. 7. Transient response characteristics upon injection and purge of H2S in
dry air ambient at 150 °C, 200 °C and 250 °C (from top to bottom). During all
measurements VDS= 5V, VGS=0 V.
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Fig. 8. (a) Rise time (tR) and (b) fall time (tF) versus H2S concentration at
150 °C, 200 °C and 250 °C. The inset schematically shows the definition of tR and
tF.

Fig. 9. Five repetitive cycles of sensor exposure to 90 ppm of H2S at 250 °C.

Fig. 10. (a) Transient response characteristics upon exposure to 60 ppm and
90 ppm of H2S, H2 and NO2 at 250 °C in dry air ambient. (b) Sensing response
towards 90 ppm of H2S, H2 and NO2.

Fig. 11. Sensor drain current variation (ΔIDS) characteristics towards 60 and
90 ppm of H2S over 15 day testing period at 250 °C.
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