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Abstract Using an advanced history dependent
contact model for DEM simulations, including elasto-
plasticity, viscosity, adhesion, and friction, pressure-
sintered tablets are formed from primary particles.
These tablets are subjected to unconfined uni-axial
compression until and beyond failure. For fast and slow
deformation we observe ductile-like and brittle soften-
ing, respectively. We propose a model for local self-
healing that allows damage to heal during loading such
that the material strength of the sample increases and
failure/softening is delayed to larger strains. Local heal-
ing is achieved by increasing the (attractive) contact
adhesion forces for those particles involved in a poten-
tially breaking contact. We examine the dependence of
the strength of the material on (a) the damage detec-
tion sensitivity, (b) the damage detection rate, and (c)
the (increased) adhesion between healed contacts. The
material strength is enhanced, i.e., the material fails at
larger strains and reaches larger maximal stress val-
ues, when any of the parameters (a)–(c) is increased.
For very large adhesion between the healed contacts an
interesting instability with strong (brittle) fluctuations
of the healed material’s strength is observed.
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1 Introduction

Self-healing materials encompass a wide range of mate-
rials capable of restoring their functionality. They are
inspired by healing mechanisms in biological systems
(Trask et al. 2007a). For example, the first healing of
skin (or other tissues) results from coagulating blood.
Ideally, self-healing takes place locally at the damaged
site and does not require an (additional) external trig-
ger. Applications of self-healing materials include the
extension of service life of infrastructure or machin-
ery (Dry 1996a). In the future, advanced self-healing
capabilities may be crucial for the design and safety
of new light-weight airplanes and space applications
(Williams et al. 2007; Kessler 2007).

Efforts to design such novel engineering materials
able to heal cracks autonomously have picked up con-
siderably in recent years (Li et al. 1998; White et al.
2001; Cordier et al. 2008). Intrinsic, self-activated heal-
ing has been described in cement as early as 1918
(Abrams 1918) and a number of cementitious heal-
ing mechanisms, both temporary and long lasting, have
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since been described, see, e.g., Refs. Hearn (1998);
Dry (1994). In recent years self healing properties have
been incorporated into other materials as well (van der
Zwaag 2007), often involving polymers. Functional-
ity restoration has been incorporated for crack heal-
ing inside the matrix of composite materials (White
et al. 2001; Dry 1996a; Dry; White et al.; Brown et al.
2003a, b, 2005; Trask et al. 2007b; Kersey et al. 2007;
Williams et al. 2007) but also for, e.g., nano-coatings
(Feng et al. 2007; Shchukin and Möhwald 2007). Adv-
ances have been achieved with respect to designing a
number of self-healing metal alloys, where diffusion
is responsible for self-healing, as well as for semicon-
ductors (van der Zwaag 2007).

In polymers self healing is usually achieved by the
inclusion of a healing agent in either microcapsules
(see, e.g., Ref. White et al. (2001), using a monomer),
or hollow glass fibres (Trask et al. 2007b; Williams et al.
2007) filled with epoxy resin, and a catalyst, either
spread out throughout the material or in hollow glass
fibres. When the material rips, microcapsules or rods
can break and release the healing agent. When the
healing agent comes into contact with the catalyst, it
solidifies (in many cases through polymerization) res-
toring (part of) the strength of the material. Polymers
can achieve up to 100% of fracture strength after
healing, depending on the type of polymer, and the
choice of self-healing agents (Brown et al. 2003b).
Unfortunately, the introduction of a healing agent and
catalyst into the material may compromise the initial
strength of the material. Other healing mechanisms
include the usage of non-covalent hydrogen bonds to
control the polymer network (Sijbesma et al. 1997).
While some of the healing mechanisms require (exo-
geneous) heating (Trask et al. 2007b), others are capa-
ble of healing at ambient temperatures (White et al.
2001; Brown et al. 2003a, b, 2005; Kessler et al. 2003;
Mauldin et al. 2007).

Efforts in designing self-healing cements have sta-
rted much earlier (Soroker and Denson 1926; Brandeis
1937; Turner; Wagner 1974). In addition to methods
similar to the ones used in polymers, i.e., using hollow
fibres containing superglue (Li et al. 1998), many heal-
ing mechanisms are water-based (Hearn 1998). These
can be categorized into two groups: autogeneous heal-
ing and hydration. The first group describes healing
mechanisms where the restored functionality persists in
dry condition while the second group describes
systems that must remain saturated with water.

Computer based modeling of self-healing materi-
als is not yet established. For solid materials, most
approaches can be categorized as either continuum
approaches, e.g., continuum damage models (CDM), or
discrete element methods (DEM). The atomistic molec-
ular dynamics methods that have been used for, e.g.,
modeling crack growth (White et al. 2004) shall only
be mentioned here and not discussed further, since they
typically describe much smaller length-scales than both
DEM or continuum methods.

While continuum approaches are extremely success-
ful within their limits they require empirical constitu-
tive relations for the material. They act on a coarse
grained level and the material must be (or is assumed to
be) sufficiently homogeneous (or “slowly changing”)
on that coarse grained level. Continuum approaches
therefore can miss important details on smaller scales.
For self healing materials almost all theoretical work
is based on continuum approaches for different types
of materials, see, e.g., Refs. Barbero et al. (2005);
Peizhen et al. (2000); Balazs (2007). More specific
examples for continuum models include the description
of a material with nanoporous glass fibres containing
glue (Priman et al. 2007), a memory alloy composite
(Burton et al. 2006) or nanoscale copper and biomate-
rial clusters (Guo and Guo 2006). Furthermore, a con-
tinuum model approach for a self healing material with
enclosed capsules with glue as presented in 2001 by
White and collaborators (White et al. 2001) has been
published (Maiti et al. 2006).

One way to simulate a material by means of particle
simulations is to sinter a sample, e.g., a tablet, from pri-
mary particles to create a dense granular packing. Gran-
ular materials are a very active field of research (Jaeger
et al. 1989, 1990; Jaeger and Nagel 1992; Behringer
1993; Goldhirsch and Zanetti 1993; Behringer and
Baxter 1994; Luding et al. 1994a; Sela and Goldhirsch
1998; Herbst et al. 2000, 2005; Santos 2008) and a nat-
ural toy model for material science in general and self-
healing materials in particular. Cohesive, frictional, fine
powders show a peculiar flow behavior (Tomas 2004;
Castellanos 2005; Luding 2005a, b). Adhesionless
powder flows freely, but when adhesion due to van der
Waals forces is strong enough, agglomerates or clumps
can form and break into pieces again (Thornton and
Yin 1991; Thornton et al. 1996; Kafui and Thornton
2000; Thornton and Antony 2000). This is enhanced by
pressure- or temperature-sintering (Luding et al. 2005)
and, under extremely strong pressure, tablets or
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granulates can be formed (Luding 2008; Luding and
Suiker 2008) from the primary particles.

Many-particle simulations like the discrete element
model (DEM) ( Cundall and Strack 1979; Bashir and
Goddard 1991; Herrmann et al. 1998; Thornton 2000;
Thornton and Zhang 2001; Vermeer et al. 2001) com-
plement experiments on the scale of small “represen-
tative volume elements” (RVEs). They allow deep and
detailed insight into the kinematics and dynamics of
the samples since all information about all particles
and contacts is available at all times. DEM requires
only the contact forces and torques as the basic input to
solve the equations of motion for all particles in such
systems. Furthermore, the macroscopic material prop-
erties, such as, among others, elastic moduli, cohesion,
friction, yield strength, dilatancy, or anisotropy can be
measured from such RVE tests.

Research challenges involve not only realistic DEM
simulations of many-particle systems and their experi-
mental validation, but also the transition from the
microscopic contact properties to the macroscopic
behavior (Luding 2005a, b; Vermeer et al. 2001, 2004;
Agnolin et al. 2006). This so-called micro–macro tran-
sition (Luding 2005a, b) should allow to better under-
stand the collective flow behavior of many particles as
a function of their contact properties.

In a self healing model presented recently (Luding
and Suiker 2008) the adhesion between all particles
is increased instantaneously at a given time (or strain)
to simulate the healing (“global healing”). While this
may be a reasonable model for, e.g., healing through
temperature induced sintering it is not a very realis-
tic model for those kinds of self healing materials,
where, e.g., the breakage of microcapsules causes
cracks to heal locally. For this reason we present a sim-
ple model where healing is activated locally where and
when (potential) damage is detected. We examine the
effect of the model parameters (a) damage-detection
sensitivity, (b) damage-detection rate, and (c) healing
adhesion.

The paper is organized as follows. After introduc-
ing the simulation method in Sect. 2, the preparation
of our samples is discussed in Sect. 3. In Sect. 4 we
introduce our self-healing model. In Sect. 5 we discuss
a self-healing material under compression. Summary
and conclusions are given in Sect. 6 together with a dis-
cussion of the relevance of our model for “real” exper-
iments and materials.

2 Discrete particle model

To simulate packing, failure under compression, and
self-healing in a granular material we use a Discrete
Element Model (DEM) (Luding 2008; Cundall and
Strack 1979; Bashir and Goddard 1991; Herrmann
et al. 1998; Thornton 2000; Thornton and Zhang 2001;
Lätzel et al. 2003). In the following we briefly introduce
the method that allows us to simulate self-healing solid
materials as granular packings. The numerics and algo-
rithms are described in text books (Allen and Tildesley
1987; Rapaport 1995; Pöschel and Schwager 2005),
so we only discuss the basic input into DEM, i.e., the
contact force models and parameters, see Ref. Luding
(2008) and references therein. We will, however, dis-
cuss in more detail the new self-healing model based
on the existing model.

Inter-particle forces typically are assumed to depend
pairwise on the overlap and the relative motion of two
particles. This might not be sufficient to account for the
inhomogeneous stress distribution inside the particles
and possible multi-contact effects. However, this sim-
plifying assumption makes it possible to study larger
samples of particles with a minimal complexity of the
contact properties while taking into account important
phenomena like non-linear contact elasticity, plastic
deformation, and adhesion as well as friction.

2.1 Contact force laws

Realistic modeling of the deformations of only two par-
ticles in contact with each other is quite challenging by
itself. The description of many-body systems where
each particle can have multiple contacts is extremely
complex. We therefore, assume our particles to be non-
deformable perfect spheres which interact only when in
contact. We call two particles in contact when the dis-
tance of their centers of mass is less than the sum of their
radii. For two spherical particles i and j in contact, with
radii ai and a j , respectively, we define their overlap

δ = (ai + a j ) − (r i − r j ) · n > 0 (1)

with the unit vector n := ni j := (r i − r j )/|r i − r j |
pointing from j to i . r i and r j denote the position of
particle i and j , respectively.

The force f on particle i , labeled f i , is modeled to
depend pairwise on all particles with which particle i
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is in contact, f i = ∑
j f c

i | j , where the sum runs over
all particles in contact with particle i and f c

i | j is the
force on particle i exerted by particle j at contact c.
The force f c

i | j can be decomposed into a normal and a
tangential part, f c

i | j = f n
i | jn + f t

i | j t , where n · t = 0.
We will leave out the index i | j from now on. In the
following, we will first discuss the normal part of the
force and then the tangential part.

2.2 Normal contact forces

To model the normal component f n = f n
el + f n

v of
the force we use an adhesive, elasto-plastic contact law
that depends on three variables only and is described
in more detail in Ref. Luding (2008): In this model
the force between two spheres depends only on their
overlap δ, the relative velocity of their surfaces (includ-
ing the relative normal and tangential velocity, i.e., it
depends on the translational and rotational velocities of
the two particles), and the maximum overlap δmax this
contact has suffered in the past.

More specifically, we apply (a modification of) one
of the simplest elasto-plastic models: a modified spring-
dashpot model. The dashpot is, as usual, a viscous
damping force that depends linearly on the normal com-
ponent of the relative velocity (i.e., f n

v = γn δ̇). The
force associated with the spring depends linearly on
the overlap δ (i.e., f n

el = k∗δ) where, however, the
stiffness “constant” k∗, itself depends on the history of
the contact, see Fig. 1. The repulsive force during ini-
tial loading is governed by the initial loading stiffness
constant k1. The force f n∗ = k∗(δ − δ∗) during un- and
re-loading is proportional to an interpolated stiffness
k∗, with 0 < k1 < k∗ ≤ k2, and can be either repulsive
or attractive. The history parameter δmax keeps in mem-
ory the maximal overlap previously reached. The maxi-
mal elastic stiffness constant, k2, is used if the maximal
overlap is greater than δmaterial. During unloading on the
adhesive force branch, f n = −kcδ, the history param-
eter δmax is continuously reduced. If a contact breaks
δmax is set to zero.

The maximum allowed plastic overlap, δmaterial =
k2δf/(k2 − k1), depends on the dimensionless model
constant φ f (typically φ f ≈ 0.05 is used) which deter-
mines the “fluid-overlap” δf = 2φ f ai a j/(ai + a j ),
for details see Ref. Luding et al. (2005). For overlaps
larger than δmaterial, the force becomes linear with max-
imal stiffness k2 (for convenience, for stability, and also

c

*

δ

maxδ δ δδ* material

c,max

−kf

0
f

k1δ

δ

f 2k fδ−δ(       )

k δ−δ*
(       )

Fig. 1 Elasto-plastic part of the normal component of the con-
tact force f n , i.e., the part that is a (piece-wise linear) function
of the overlap δ. (To calculate the total normal force additionally
the dashpot part has to be taken into account.) k1, k2, and kc are
material stiffness constants and the δ with different sub-scripts
denote special overlaps. For an explanation of the subscripts see
the main text.

since such large deformations are not well represented
by a pair-contact model).

Given all model parameter constants, k1, k2, kc, and
φ f , the maximum attractive force is

fc,max(kc) = −δf
kck2

kc + k2
, (2)

which leads to the maximally possible attractive force
fc,max(kc � k2)→ −k2δf . Therefore, the contact adhe-
sion saturates for large kc � k2. For very large kc we
get an unstable (almost vertical) adhesive branch in the
force model: any contact reaching this unstable branch
immediately fails.

The motivation behind this model is to use the sim-
plest model possible that is (at least piecewise) lin-
ear (in order to allow some theoretical analysis) while
keeping the necessary phenomena such as plastic defor-
mation, adhesion, and history dependence. For exam-
ple, when two particles have been plastically deformed
during loading their repulsive forces during unloading
will be smaller than they were during loading and the
contact will be completely unloaded before it reaches
zero overlap (measured in terms of their original shape).
When a real material is deformed it will memorize
every deformation and the corresponding path. This is
an extremely complex process. We simplify this
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complex process by keeping in memory only the max-
imum overlap a contact has suffered in the past. This
allows us to model elasticity, plastic deformation, and
adhesion to some extent. It does not represent all other
possible complex mechanisms at contacts of particles.
In that respect our model is a compromise between “as
simple as possible” and “realistic enough” for our pur-
poses.

2.3 Tangential contact forces

In the tangential direction, the forces and torques
depend on the tangential displacement and the relative
rotations of the particle surfaces. Dynamic (sliding) and
static friction depend on the tangential component of
the relative velocity of the contact points,

vt = vi j − n(n · vi j ), (3)

where vi j = vi − v j + a′
in × ωi + a′

jn × ω j (4)

is the relative velocity of the particle surfaces at con-
tact. Here, a′

α = aα −δ/2, for α = i, j , is the corrected
radius relative to the contact point. vi , v j , ωi , and ω j

are the linear and rotational velocities of particles i and
j , respectively.

Tangential forces f t acting on the contacts are mod-
eled to be proportional to the accumulated sliding
distance of the contact points along each other with a
(tangential) stiffness constant kt , i.e., f t = kt

∫
vt dt .

Including also a viscous dependent damping constant,
γt , the tangential force is limited by the product of the
normal force and the contact friction coefficient µ, acco-
rding to Coulombs law, f t ≤ µ f n , for more details see
Ref. Luding (2008). Note, however, that this commonly
used tangential force model is rather simple—leaving
most of the complexity in the normal force model.

2.4 Background viscous damping

Viscous dissipation as mentioned above takes place
localized in a two-particle contact only. In the bulk
material, where many particles are in contact with each
other, this dissipation mode is very inefficient for
long-wavelength cooperative modes of motion, espe-
cially when linear force laws are involved Luding et al.
(1994b). Therefore, an additional (artificial) damping
with the background is introduced, such that the total
force f i and torque q i | j := a′

jn × f i | j on particle i
are given by

f i =
∑

j

f nn + f t t − γbvi and

qi =
∑

j

q i | j − γbr a2
i ωi ,

where the sums take into account all contact partners j
of particle i , and γb and γbr are the (artificial) back-
ground damping viscosities assigned to the transla-
tional and rotational degrees of freedom, respectively.
The viscosities can be seen as originating from a vis-
cous inter-particle medium and enhance the damping
in the spirit of a rapid relaxation and equilibration. Note
that the effect of γb and γbr should be checked for each
set of parameters: it should be small in order to rule out
artificial over-damping.

2.5 Contact model parameters and units

In the following we measure length in units of 1 mm,
mass in 1 mg and time in 1µs. Note that only a few
parameters have to be specified with dimensions, while
the others are expressed as dimensionless ratios in
Table 1.

A maximal stiffness constant of k2 = 5, as used
in our simulations, corresponds to a typical contact
duration (half-period) tc ≈ 6.5 × 10−4 for a typi-
cal collision of a large and a small particle with γ = 0.
Accordingly, an integration time-step tMD = 5 × 10−6

is used in order to allow for a “safe” integration of the
equations of motion. Note that not only the normal
“eigenfrequency”, but also the eigen frequencies for
the rotational degrees of freedom have to be consid-
ered as well as the viscous response times tγ ≈ m/γ .
All of the physical time scales (inverse eigen frequen-
cies) should be considerably larger than tMD, while the
viscous response times should be even larger, such that
tγ > tc > tMD. A more detailed discussion of all the
effects due to the interplay between the model param-
eters and the related times is, however, far from the
scope of this paper and can be found in Ref. Luding
(2008).

3 Tablet preparation and material failure test

3.1 Tablet preparation

Having introduced the model and its parameters in the
last section we describe now the experimental setup
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Table 1 Values of the microscopic material parameters used (third column), if not explicitly specified

Property Symbol Value Dimensional units SI-units

Time unit tu 1 1 µs 10−6 s

Length unit xu 1 1 mm 10−3 m

Mass unit mu 1 1 mg 10−6 kg

Average particle radius a0 0.005 5 µm 5 · 10−6 m

Material density ρ 2 2 mg/mm3 2000 kg/m3

Max. loading/unloading stiffness k2 5 5 mg/µs2 5 · 106 kg/s2

Initial loading stiffness k1/k2 0.5

Adhesion parameter kc/k2 0.2

Tangential stiffness kt/k2 0.2

Coulomb friction coefficient µ 1

Normal viscosity γ = γn 5 · 10−5 5 · 10−5mg/µs 5 · 101 kg/s

Tangential viscosity γt/γ 0.2

Background viscosity γb/γ 4.0

Background viscous torque γbr /γ 1.0

Fluid overlap φ f 0.05

The fourth column contains these values in the appropriate units, i.e., when the time-, length-, and mass-units are µs, mm, and mg,
respectively. Column five contains the parameters in SI-units. Energy, force, acceleration, and stress have to be scaled with factors of
1, 103, 109, and 109, respectively, for a transition from dimensionless to SI-units

and the basic steps of our simulations. First, a “tablet”
(granule) is prepared from primary particles which
behave according to the contact force laws described
above. A four-step process is applied:

(1) creation of a loose initial sample
(2) pressure sintering by isotropic compression
(3) removal of the pressure
(4) relaxation

On the resulting “tablet”, or material sample, or
RVE, tests can be performed, e.g., controlled compres-
sion or tensile tests, both on the “plain” tablet as well
as under self-healing conditions. Care has to be taken
to perform first the preparation and later the tests in a
symmetric way (see below) to avoid artifacts.

3.1.1 Initial sample

Before sintering the tablet the first step is to create
a loose configuration of N = 1,728 spherical parti-
cles with a Gaussian distribution of radii with average
a0 = 0.005. The tails of the distribution are cut-off at
0.003 and 0.0075 to ensure that all particles are com-
parable in size (David et al. 2005), i.e., neither too large
nor too small particles are desired. For the samples pre-
sented in this paper, the half-width of the distribution

is wa = √〈a2〉 − 〈a〉2 = 0.00072. In addition, the ini-
tial velocities are drawn from a Gaussian distribution
in each direction.

In the initial preparation stage the particles are
arranged on a regular cubic lattice with wide spacing
so that particles are not in contact—neither with each
other nor with a wall. Then, with µ = 0 and kc = 0
(i.e., zero friction and zero adhesion), the system is
compressed with a pressure of p1 = 0.5 to create a
loose initial isotropic packing with (after relaxation) a
coordination number C = 5.89 and volume fraction,
ν = ∑

i V (ai )/V = 0.607, where V (ai ) = (4/3)πa3
i

is the volume of one particle i .

3.1.2 Pressure sintering

The second step is pressure sintering: the system is
compressed by keeping one wall in each spatial direc-
tion fixed while applying a constant pressure of ps =
10 to the other (three) walls. During this compression,
the particles are frictional with a friction coefficient
µ = 1, and have zero adhesion among each other,
i.e., kc = 0. Four of the six walls are frictionless,
µwall = 0, and cohesionless, kwall

c = 0. The remaining
two (opposing) walls are already prepared for the tests
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to come: these two walls define the uni-axial direction
and are strongly adhesive, with kwall

c /k2 = 20, such that
the sample sticks to them, while all other walls can
be easily removed in the third step described below.
The wall adhesion has no visible effect here, since the
sample is strongly confined. In contrast, friction has
an effect, i.e., friction with the walls would hinder the
pressure to be transferred completely to the opposite
wall. Frictional walls carry part of the load—an effect
that has been known since the early work of Janssen
(1895); Sperl (2006).

In Fig. 2 the kinetic energy and the mean coordi-
nation number are shown as functions of time during
compression (step 2): the kinetic energy first increases
with the smoothly and slowly increasing wall-velocity
(see below). Then it decreases due to the energy dis-
sipation in the system. After the desired pressure is
reached, it is kept constant until the kinetic energy has
very well reached a tiny value, within fluctuations only
due the numerical accuracy limit.

A rather high volume fraction, ν = 0.6754, is
reached during the pressure sintering. The correspond-

ing coordination number is C ≈ 7.17 in this state. After
stress-relaxation down to a negligible residual stress
(see below), these values will decrease considerably to
ν ≈ 0.627 and C ≈ 6.097, but remain larger than after
the initial preparation.

3.1.3 Pressure release

Using the pressure sintered sample, the third step is to
remove the pressure from the walls. Before, we do so
kc is set to its desired initial value, i.e., kc/k2 = 0.2.

The control pressure is smoothly released from the
walls in a co-sinusoidal way. Starting from its sintering
value, ps = 10, down to a residual value, p0, that is
five orders of magnitude lower, i.e., p0/ps = 10−5.
The half period of the co-sinusoidal pressure release is
t0 = 12.5, see first marker (open circle) in Fig. 3, but
relaxation is continued further until the kinetic energy is
dissipated and reaches tiny values at much larger times.
The small residual pressure keeps single particles from
accidentally leaving the sample and also keeps the walls
close to the sample. (This is important in order to not

Fig. 2 Kinetic energy Ekin
(left) and coordination
number C (right) as
functions of time t during
isotropic pressure sintering
with final pressure ps = 10.
Here the particle contacts
are adhesionless, kc = 0,
while the other parameters
are given in Table 1
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Fig. 3 Kinetic energy Ekin
(left) and coordination
number C (right) as
functions of time t during
smooth stress-removal from
the walls and subsequent
relaxation. The three
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spoil the efficiency of our linked cell algorithm, where
the cell size is a fraction of the system size between the
walls.) However, this confining stress p0/ps is not big
enough to affect the dynamics of the tests performed,
i.e., tests with p0/ps = 10−3 lead to practically iden-
tical results, concerning final density and coordination
number.

3.1.4 Final relaxation

The fourth preparation step is the final relaxation of the
system. This is done in three substeps. First, immedi-
ately after the control pressure on the wall has reached
its low residual value, the system is relaxed further until
time tr1 = 200 (with three fixed walls and three walls
with the residual pressure reached at the end of the
wall removal procedure in order to remove any resid-
ual center-of-mass velocity). Second, after the kinetic
energy has reached and maintained the small value,
within fluctuations, for a long time, the system is fur-
ther relaxed and symmetrized with the same pressure of
p0 = 10−4 applied from all sides for another time inter-
val of tr2 = 50. In the final relaxation step, again a time
interval of tr3 = 50, the two walls in the x-direction are
fixed and the other four walls are kept at the residual
pressure. We now have a representative volume ele-
ment (RVE) sample with fixed walls in the x-direction
and mobile walls with negligible stresses (i.e. virtually
unconfined walls) in the y and z directions.

The prepared sample can now be used for all sorts of
tests. It is almost cubical with side length L0 = 0.1133.
The tests to be described in this study are uni-axially
deforming the walls in the x direction while keeping
the other walls at pressure p0 = 10−4. In the next sub-
section we will show a simple compression test of our
particulate material without self-healing, before, in the
rest of the paper, especially in Sect. 5, we will deal with
compression tests of self-healing materials.

3.2 Compression test

In this section we describe an uni-axial compression
test, starting from the final configuration as described
in the previous subsection. This test resembles a direct
measurement of the unconfined yield-strength, as
applied in mechanical engineering and particle tech-
nology (Schwedes 2003).

We perform a strain controlled symmetric compres-
sion test by moving inwards two opposing walls. We
directly move the walls in a cosinusoidal way for up
to half a period, i.e., the relative wall position δw(t) =
w(t) − w(0) = (Acos/2)(1 − cos (2π t/τcos)), with
compression positive, where Acos is the amplitude, or
maximal compression distance, and τcos is the com-
pression “period”. (Note that the maximal compression
distance is reached after half a period.)

For a representative volume element (RVE) like our
sample, we quantify the deformation in terms of the
strain imposed from two sides ε(t) = 2δw(t)/L0,
with the maximum strain εcos = 2Acos/L0. The time-
derivative of the strain leads to the (time-dependent)
compression rateR(t) := ∂ε/∂t = Rcos sin (2π t/τcos)

with the maximum compression rateRcos = 2πεcosτ
−1
cos

reached at a quarter-period.
Depending on the rate of compression different

stress–strain behavior is observed, see related literature
(Luding and Herrmann 2001). In Fig. 4 the stress-strain
response for two different compression periods, τcos =
8 (fast) and τcos = 320 (quasi-static), is presented for
an amplitude of Acos = 0.04, i.e., εcos ≈ 0.706. The
maximal compression rates Rcos are reached at strain
εcos/2 (data not shown). In this paper most compression
tests are presented up to a maximal strain of ε = 0.05,
which is already in the critical flow regime. The peak-
stress, i.e., the maximal stress, is reached at smaller
strains, εmax ≈ 0.01, so that the relevant strain-rate
is much smaller, but still proportional to the inverse
period 1/τcos, which will be given in the following.

In the compression tests with small and moderate
rates, the initial stress–strain relation is very close to
linear, with slope C = ∂σ/∂ε = 225.6, i.e., the rate
dependence is not visible in the elastic regime. Thus,
up to a strain of about one percent the system behaves
almost like an elastic solid, and only close to maximum
stress and during softening, the rate effects become
important.

Figure 5 shows the maximum stress as a function
of the compression rate. Only the lowest data points
(1/τcos ≤ 0.01) are in the (truly) quasi-static regime:
even slower compression rates lead to the same qual-
itative stress-strain diagrams—up to fluctuations. For
larger rates the stress–strain behavior changes from
quasi-brittle to ductile-like, i.e., from sharp drops to
smoother behavior due to viscous damping. Therefore,
we denote deformation rates 1/τcos ≤ 0.01 as quasi-
static, those with 0.01 < 1/τcos ≤ 0.2 as (moderately)
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Fig. 4 Normalized axial
stress plotted against axial
strain for fast (τcos = 8 and
1/τcos = 0.125) and slow
(τcos = 320 and
1/τcos = 0.003125)
compression, with
σ0 = k2/a0 = 103
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Fig. 5 Maximum (normalized) stress as a function of the max-
imum compression rate 1/τcos. Note the finite non-zero value
as the compression rate becomes quasi-static. Note also that for
fast compressions the increase in stress is significant, in the data
presented in this graph up to three times the quasi-static value

fast, and those with 1/τcos > 0.2 as very fast. The quasi-
static compression is consistent with brittle material
behavior, see, e.g., Fig. 3 in Ref. Brown and Sottos
(2000).

4 Self-healing model

To model a self-healing material we need to locally
detect damage and initiate local healing when damage
is detected. Again we attempt to use a simple model to
capture the essence of this complex process. Therefore,
we introduce the following self-healing scheme that is
compatible with (but not limited to) the contact model
described in Sect. 2:

(1) detect damage (see below, Sect. 4.1),

(2) heal detected damage (see below, Sect. 4.2),
(3) run simulation for a time τD,
(4) go to 1.

This procedure allows us to set the damage detection
rate 1/τD at which damage is detected (and subsequent
self-healing is activated), and to specify the healing
sensitivity and the healing strength separately.

4.1 Damage detection

To detect damage we check each contact for two con-
ditions:
(1) First, we probe the condition

f n ≤ −α kcδ . (5)

Here, f n is the normal component of the force between
the two particles involved in the contact as introduced
in Sect. 2.1 and α is a tuning constant to adjust the sen-
sitivity of damage detection. A negative value of the
force corresponds to an attractive force, see Figs. 1
and 6. (More details about the contact model can be
found in Ref. Luding (2008).)
(2) Secondly, we require the particles to be moving
apart from each other, ensuring that only those contacts
are considered damaged which are still “endangered”
of breaking immediately.

For moderate α < 1, the healing condition in Eq. 5
is fulfilled whenever a contact is close to breaking, see
Fig. 6. In the extreme case of α ≥ 1, it is very unlikely
that a contact fulfills this condition whereas, in the case
of α ≈ 0 or α < 0 all contacts under weak tension or
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Fig. 6 Schematic plot of (some of) the normal forces typically
present at a certain time in the system. Each elasto-plastic-adhe-
sive contact is represented by a point inside the triangle. (Due to
viscous forces some contacts may be situated outside of the tri-
angle if the total normal force is considered.) Healing is applied
if the force is smaller than −αkcδ (circles) and if the contact
partners are separating

even under compression fulfill the condition of Eq. 5—
corresponding to over-sensitive healing.

This model is inspired by experiments, more pre-
cisely by experiments using a healing-agent confined
to capsules which are spread out throughout the matrix
material (White et al. 2001): When a certain force is
excerted on a capsule it will rupture. Once a capsule
is broken, the healing agent will flow out and solidify.
At the same position, there cannot any further heal-
ing because there is no more healing agent available.
Different types of capsules and capsule-matrix inter-
face can be modeled by different healing sensitivities
α. The present model does not allow for massive vol-
ume changes (as due to foaming or bubbling healing
agents).

Figure 7 shows the maximum stress reached dur-
ing compression as a function of the sensitivity tuning
parameter α (performing the healing described in Sect.
4.2 below). As expected, the maximum stress for a sam-
ple with self-healing and α ≥ 1 does not differ from the
one reached without self-healing. For α < 0 the mate-
rial sample becomes very strong since most contacts
will be labeled “damaged” (and subsequently healed)
at the very first detection step. For the rest of our study
we will use α = 0.9. This value is in a regime where
small changes in α will lead to a linear response in the
maximum stress observed.

We have also tested applying only the force condi-
tion, i.e., initiating healing for all those contacts ful-
filling the first condition, i.e., Eq. 5, regardless of their
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Fig. 7 Dependence of the maximum (normalized) stress reached
by healing with different sensitivities α, for the self-healing adhe-
sion parameter kSH = 5 and damage detection rate 1/τD =
0.002, while otherwise the same parameters as for Fig. 4 (mod-
erately fast) were used. The horizontal line shows the maximum
strength for a sample without self healing

relative velocities. This leads to similar results with
more contacts healed initially but otherwise similar
behavior. Naturally, it leads to a small increase in the
maximum stress (less than 10% for the cases studied).
In the following only results will be presented where
both healing criteria (force and separation) are active.

4.2 Healing

Where damage is detected, i.e., where the two damage
conditions mentioned in Sect. 4.1 are met, we initi-
ate self-healing which we model by (instantaneously)
increasing kc to a higher value kSH for both particles of
that particular contact. This immediately increases their
maximum possible attractive forces and thus delays or
avoids the failure of their contact. Since the value of kSH

sets the final bonding strength of the healing agent, dif-
ferent healing agents can be modeled by using different
values of kSH.

Note that all contacts parameters, e.g., kc, are
assigned to particles, not to contacts. This may (and
usually will somewhere in the sample) lead to contacts
whose two partners have different values of kc. In that
case we use an intermediate value k′

c= 2kc,1kc,2/(kc,1+
kc,2) (where kc,1 and kc,2 are the kc values for the two
particles) for that contact. The reasoning behind this
model is twofold: First it is much easier to keep track
of the kc’s if they are connected to particles instead of
contacts because this way one neither needs to keep
track of past contacts after they have opened nor has
to define new contact properties for a new contact.
Secondly, it makes the healing a little more non-local
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(and less abrupt) like in the experimental situation
where the self-healing agent spreads out a little from
the point where the capsule broke.

5 Compression tests of a self-healing sample

In this section, compression tests of a self-healing mate-
rial are presented. Using a fixed healing sensitivity (α =
0.9), the effects of the remaining two model parame-
ters, i.e., the self-healing adhesion parameter, kSH, and
the damage detection rate, 1/τD, will be studied in more
detail.

5.1 The extreme cases

In Fig. 8, the stress-strain response of a reference sam-
ple without self-healing capability, kc = kSH = 1, is
compared to different cases of self-healing. For all these
cases, the compression is quasi-static, with compres-
sion period τcos = 320. In order to considerably
increase the adhesive force, a self-healing adhesion
parameter kSH > kc is chosen. This corresponds to
an increase of the maximum (possible) adhesive force
by a factor of

ISH := f SH
c,max(kc)

fc,max(kc)
= kSH(kc/k2 + 1)

kc(kSH/k2 + 1)
, (6)

which we denote as the self-healing intensity in the fol-
lowing. In the case discussed here (kc = 1, kSH = 5,
k2 = 5), ISH = 3.

The two extreme cases are the reference sample with
no healing at all (kc = kSH = 1) and the case where

kc = kSH = 5 from the very beginning for all contacts.
In both cases no damage detection is necessary. In the
first case all contacts remain unhealed forever while in
the latter case all contacts are already “healed” from
the very beginning. This case corresponds to the “full”
or “pre-emptive” or “global” healing mentioned in Ref.
Luding and Suiker (2008). Not surprisingly, it leads to
the strongest increase in material strength.

Additionally, two cases of local self-healing are
shown. The only difference between them is their dam-
age detection rate, all other parameters are the same as
for the two extreme cases. The damage detection time
intervals τD = 2 and τD = 0.004 are used, which cor-
respond to slow (1/τD = 1/2) and fast (1/τD = 250)
damage detection, respectively.

Even the slow damage detection increases the mate-
rial strength (maximum stress sustained) by about 25%.
Fast damage detection leads to a considerably higher
increase in strength (about 100% compared to the sam-
ple without self-healing), but does not reach the extreme
case of “full” or “pre-emptive” healing, which leads to
an increase of about 150%.

In the following, first, the influence of the damage
detection rate is examined in more detail in Subsect.
5.2, and second, the effect the healing intensity is stud-
ied in Subsect. 5.3.

5.2 Variation of the damage detection rate

In Fig. 9, the stress–strain response is studied for sys-
tems with different damage detection rates 1/τD from
0.5 to 250 while all other parameters are kept constant.

Fig. 8 Stress-strain
response of samples with
(from top to bottom) “full
pre-emptive” healing
(kc = 5), fast damage
detection rate (1/τD = 250),
slow damage detection rate
(1/τD = 0.5), and without
self-healing (kc = 1)
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Fig. 9 Stress-strain
response of samples with
increasing (from bottom to
top) damage detection rates
1/τD, as given in the inset.
The curve with the highest
peak stress had
approximately 2,500
healing events during the
compression up to strain
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Fig. 10 Dimensionless maximal stress as function of the dam-
age detection rate 1/τD

For increasing damage detection rate, both the max-
imum stress, see Fig. 10, and the strain where the
maximum stress is reached increase (strain data not
shown—they fluctuate much stronger than the peak-
stress). During the compression interval shown in Fig. 9
the curve with the highest peak stress (which is the
one with the highest damage detection rate) was sub-
jected to approximately 2,500 damage detection events,
whereas the curve with the lowest peak stress is without
self-healing.

Note that while there are small stress-drops before
the peak-stress, the post-peak behavior shows much
stronger rapid (brittle) stress drops and fluctuations as
visible from the large separation of points in the rapid
stress-drop branches. While some samples reach a clear
maximum stress, in some cases (e.g., 1/τD = 2) the
sample can sustain a high stress over a large strain range
of about 0.01. The long “failure periods” (before the big
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Fig. 11 Fraction ξmax of healed contacts as function of the dam-
age detection rate 1/τD

stress drops) sometimes resemble a plateau, sometimes
they show some linear increase of stress for some short
period.

An increased material strength is observed for dam-
age detection rates greater than 1/τD ≈ 0.1. For higher
damage detection rates healing becomes more and more
effective, see Fig. 10.

Comparing the peak strength to the fraction of healed
contacts at peak-strength ξmax, see Fig. 11, reveals a
similar behavior. For larger rates the strength as well
as the fraction of healed contacts increase less strongly
than for intermediate rates.

Overall, the strength achieved with this method—in
the range of parameters examined—stays below
the strength found for the “full” or “pre-emptive” or
“global” healing. This leads to the conclusion that even
though very large rates lead to the strongest material, a
considerable effect can be achieved with a rather small
damage detection rate already. This is good news for
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Fig. 12 Stress-strain
response of samples with
different self-healing
parameters kSH/kc, as given
in the inset. Note that the
curve with highest stress
represents a sample with a
self-healing adhesion
parameter of (only)
kSH/kc = 50
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experiments as it means that the capsules containing
the healing agent need not brake immediately when
subjected to stress.

5.3 Variation of adhesive force (healing intensity)

In Fig. 12 we compare the stress–strain response for dif-
ferent self-healing adhesion parameters kSH/kc from 1
to 103 but fixed the damage detection rate 1/τD = 1/2.
Note again the strong variation in the shape of the crit-
ical flow regime. With increasing kSH/kc the strength
of the material, i.e., the maximum stress, increases—
within the rather strong variations from one sample to
the other. Interestingly, in this data-set, the largest stress
is reached for kSH/kc = 50, and not for kSH/kc = 103.

After carrying out many more simulations with dif-
ferent healing parameters kSH, this interesting behavior
can be understood, see Fig. 13. The material strength
gained by self-healing saturates as the healing intensity
ISH saturates for large kSH/kc (ISH → 6 for kSH/kc →
∞). It is therefore instructive toplot themaximumstress
sustained not only as a function of kSH/kc (top graph of
Fig. 13), but also as a function of the healing intensity
(bottom graph of Fig. 13): for healing intensities ISH up
to approximately 5 (equivalent to kSH/kc ≈ 25 in our
case) the material strength increases approximately lin-
early with the healing intensity. However, for larger val-
ues of ISH > 5 (kSH/kc > 25) we see strong fluctuations.

We relate these strong fluctuations for kSH/kc > 25
(ISH > 5) to the fact that the adhesive branch in the
force-displacement law, see Fig. 1, becomes extremely
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Fig. 13 (Top) Maximal stress from simulations as a function
of the self-healing adhesion parameter kSH/kc. (Bottom) Same
stress as a function of the healing intensity, see Eq. 5.3

steep: very large kSH (or kc) values lead to a steep,
almost infinite slope, while virtually not changing the
maximum adhesive force. The steep slope of the model
means that a contact that hits the tensile instable branch
will “immediately” break (brittle) since a small ten-
sile strain leads to an enormous drop in tensile force.
This leads to strong fluctuations because the model does
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Fig. 14 Fraction of healed contacts as a function of the healing
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not allow contacts to recover after they have opened
(δ < 0). Strong loading would be necessary to close
the open contacts so that they can be healed. For smaller
kc, a small tensile strain only leads to a small drop of
the tensile force and thus is less critical.

A comparison with the fraction of healed contacts
as a function of the healing intensity ISH, see Fig. 14,
reveals a rather weak, discontinuous dependence of the
fraction of healed contacts on the intensity of healing.
There is a clearly visible trend but within large fluctu-
ations.

6 Summary and conclusions

We have presented a model for self-healing in particu-
late materials based on a recently proposed piecewise
linear contact model for elasto-plastic, adhesive, vis-
cous, frictional particle-particle interactions. The con-
tact model includes a memory variable, i.e., the contact
laws are history dependent. The proposed self-healing
model admits to set the damage detection sensitivity
and rate as well as the strength of the healed contacts.
It could therefore be a reasonable model for a mate-
rial including a healing agent in, e.g., capsules. The
model does not allow for volume change, or to close
opened micro-cracks, as foaming or bubbling self-heal-
ing mechanisms could.

Uni-axial unconfined compression has been applied
to isotropically pressure sintered samples and the stress
response has been studied in the elastic regime, at the
onset of, and during failure, as well as in the softening
regime. For fast deformation the material behavior is
ductile-like due to viscous, velocity dependent forces,
whereas for quasi-static deformation it resembles a

brittle material behavior with sharp, rapid drops in stress
during failure and softening.

We found that the elastic regime can be extended
using self-healing techniques. For a fixed damage sen-
sitivity and a fixed damage detection rate, damage is
detected and healed by increasing the adhesive force
instantaneously if and when the healing criteria (spec-
ified in the main text) are fulfilled. The compression
tests of self-healing material samples are compared to
two extreme reference cases: one without healing and
one with “full” or “pre-emptive” global healing, where
healing has been applied to all contacts prior to the
compression test. The model parameters were stud-
ied systematically, most prominently by examining the
stress–strain response of the samples and additionally
by monitoring the fraction of healed contacts.

The material strength (after healing) increases with
(1) the damage detection sensitivity, (2) the damage
detection rate, and (3) the healing intensity (which itself
is a monotonically increasing function of the adhesive
strength of the healed contacts).

(1) A low damage detection sensitivity leads to unsat-
isfactory self-healing since too few contacts will
be healed. On the other hand, a very high dam-
age detection sensitivity results in healing of con-
tacts that are not critical. Healed contacts, within
the framework of our model, once healed cannot
be healed again when they become critical again
in the future. This mimics, e.g., a one-time heal-
ing agent which is common in experiments where,
e.g., capsules are used.

(2) The damage detection rate allows to set a delay or
relaxation time between damage detection events.
Too small a damage detection rate does not allow
for (enough) healing to take place as many critical
contacts are missed whereas for very large dam-
age detection rates the material strength should
saturate once the detection rate has reached the
smallest physical time scale. The damage detection
rate, together with the damage detection sensitiv-
ity, allows to simulate various types of responses to
damage, e.g., more brittle or softer capsules con-
taining the healing agent and/or different response
time scales of the healing agent.

(3) The healing intensity is a non-linear function of the
adhesion parameter kSH. It saturates for large kSH

and sets the strength of the healed contacts. With
increasing healing intensity the material can sus-
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tain larger stresses and fails at higher strains. As a
function of kSH the material strength shows strong
fluctuations for large kSH, i.e., in the regime where
the healing intensity is almost constant. These fluc-
tuations are due to local contact instabilities. For
very large healing intensities, i.e., for very large
adhesive strength of the healed contacts, a con-
tact rapidly fails when the tensile limit is reached,
resembling a local, brittle failure at the contact
level. Thus, moderate values for the adhesive con-
stant after healing, kSH, lead to the “best” healing
results. The fraction of healed contacts increases a
little with the healing intensity, which corresponds
to the final strength of the (solidified) healing agent,
i.e., the strength of the final bonding.

To sum up, our model is consistent with, e.g., materials
containing healing-agents in capsules. Once a capsule
is broken and local healing has taken place, there can-
not be any further healing at the same position. Dif-
ferent types of capsules and capsule-matrix interface
can be modeled by different damage detection sensi-
tivities and damage detection rates. Different bonding
strengths of the healing agent can be modeled by adjust-
ing the self-healing adhesive strength kSH.

The quantitative tuning of the DEM model to real
experimental data remains a challenge for future
research. The results presented here have units that are
not (yet) supposed to mimic a real material. Some tun-
ing can be done by rescaling, but a real fine-adjustment
will require a comparison with appropriate experimen-
tal data.

The model can also be extended to include an addi-
tional time scale on which—after damage is detected
and healing is initiated—the strength slowly increases
to mimic the “bonding” or “hardening” of the heal-
ing agent. Work along this line is in progress. Another
way to extend this work could be to allow for repeated
healing through a cascade of healing with ever increas-
ing adhesive contact force (at the same position). The
final challenge remains to observe a healing result that
is superior to the (much simpler) global, pre-emptive
healing of all contacts.
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