
 
  

Influence of 
Geometrical 
irregularities on the 
in-plane behaviour 
of a masonry wall 
façade in macro-
element based and 
analytical 
mechanism based 
analyses 
A. el Kouri 

      



 
i 

 

Influence of Geometrical irregularities on the in-plane 

behaviour of a masonry wall façade in macro-element based 

and analytical mechanism based analyses  

by 

Anass el Kouri 

to obtain the degree of Master of Science 

at the Delft University of Technology 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thesis committee: Prof.dr.ir. J.G. Rots 

Dr. F. Messali 

Ir. S. Pasterkamp 

Martijn Bettonvil 

Gerard van Engelen 

 

An electronic version of this thesis is available at http://repository.tudelft.nl. 

 

 

Copyright © by A. el Kouri, Technische Universiteit Delft, section Structural Mechanics 

 

http://repository.tudelft.nl/


 
ii 

 

 

 

  



 
iii 

 

Summary 
Since 1963, the extraction of gas is going on in Groningen. This has caused (human) induced 

earthquakes in recent decades. The first induced earthquake took place in 1991 and in recent years 

induced seismicity has considerably increased in this region. These incidents are a significant danger 

for the built environment, because the building stock is mainly composed of unreinforced masonry 

structures, vulnerable for seismic activity due to the use of slender walls, weak wall-floor connections 

and cavity walls. 

The seismic assessment of unreinforced masonry structures in Groningen is still ongoing. The 

assessment is vital to determine whether a building must be strengthened or not. Different 

assessment approaches have been followed in recent years. First, the Non Linear Time-History 

analyses (NLTHA) were initially the only approach used for the seismic assessment. They are still 

overall the most accurate type of assessment, but they are also the most time-consuming one. 

Nowadays, NLPO analyses are more frequently used. This assessment procedure presents some 

limitations of application and may be less accurate for complex structures but it requires less 

computational time. The NLPO analyses can be performed by means of different tools, such as 

analyses based on the finite element method (FEM), equivalent frame (EF) or macro-element based 

analyses and, eventually, also analytical mechanism based analyses. The SLaMA method belongs to 

this last category: this method is an analytical approach already tested and validated in New Zealand 

for RC structures.  

This research aims to answer the following research question: 

• How is the in-plane behaviour of single-storey URM wall facades affected in simplified 

calculation methods compared to FEM when geometrical irregularities are present?  

The walls have been modelled in 2D with three different methods: FEM, EF and SLaMA. Material 

properties and modelling assumptions were maintained as consistent as possible within the three 

different methods. For researching the influence of the geometrical irregularities on the accuracy of 

EF and SLaMA when compared to FEM, the variation of geometrical irregularities, each quantified by 

an index value, have been studied. The influence of these indices on the accuracy of the calculation 

methods has been researched with a sensitivity analysis. 

The objective has been pursued by looking into single-floor URM façades, and the conclusions of this 

research can be applied to this typology of walls in Groningen made of solid clay brick masonry (pre 

1945). The study focuses specifically on the base shear capacity of the walls. 

The differences observed when comparing the in-plane behaviour of a wall analysed with 3MURI and 

DIANA are not significantly affected by the presence of geometrical irregularities. The ratio between 

the base shear capacity computed with the two approaches and the predicted failure mechanisms 

remains consistent for all geometrical irregularities defined in this report.  
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Similarly, the differences observed when comparing the in-plane behaviour of a wall analysed with 

SLaMA and DIANA are not largely affected by the presence of geometrical irregularities, since the 

base shear computed according to SLaMA is consistently lower than that obtained with DIANA. 

However, the base shear capacity obtained with SLaMA showed large variations between 0.34 and 

0.75 with respect to DIANA when implementing geometrical irregularities. The largest variation is 

obtained when more than a single pier is considered, due to the inability of SLaMA to define the re-

distribution of the vertical axial forces in the piers, nor correct boundary conditions at the top of the 

piers since the constraining action of the spandrel appear underestimate. This affected also the 

prediction of the failure modes, which differed for the two methods. However, in most of cases flexural 

failure mode was obtained, and the study should be extended to consider also geometries and 

loading conditions that cause also the shear failure of the walls. 
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1 Introduction 
1.1 Context 
Since 1963, the extraction of gas is going on in Groningen. This has caused (human) induced 

earthquakes in recent decades. The first induced earthquake took place in 1991 and in recent years 

induced seismicity has considerably increased in this region. These incidents are a significant danger 

for the built environment, because the buildings are mainly unreinforced masonry structures. These 

structures are vulnerable for seismic activity because of their slender walls, weak wall-floor 

connections and use of cavity walls. 

The seismic assessment of unreinforced masonry structures in Groningen is still ongoing. The 

assessment is vital in determining the seismic strengthening for a building. Different assessment 

approaches have been done in recent years. First, the NLTHA was the main approach for the seismic 

assessment. This is still the most accurate assessment, but also the most time-consuming one. 

Nowadays, the NLPO analysis is more frequently used. This assessment may be less accurate for 

complex structures but has less computational time. Recently, a new seismic assessment method has 

been developed, namely the SLaMA method. This method is an analytical approach for the seismic 

assessment of a full structure. It has already been tested in New Zealand and validated for RC 

structures with NLPO.  

In this research, the main subject is the in-plane behaviour of unreinforced masonry when geometrical 

irregularities are present. For example: asymmetry, opening percentages, pier geometry and spandrel 

geometry. Different calculation methods exist for the in-plane behaviour of an URM wall. However, it 

is still unclear how these methods perform when the irregularities increase.  

1.2 Aim of research 
The aim of the research is to analyse whether the calculation methods for the in-plane behaviour now 

are error-proof when geometrical irregularities in the façade of an URM wall are present.  

1.3 Research questions 
The research question sounds: 

• How do geometrical irregularities affect the assessment of the in-plane behaviour of single-

storey URM wall facades performed with a mechanism based and a frame based analysis 

when compared to FEM?  

The sub questions hereby are: 

▪ What are the results of an analysis in SLaMA of a 2D URM wall façade, in terms of force and 

displacement? 

▪ What are the results of an analysis in FEM of a 2D URM wall façade, in terms of force and 

displacement? 

▪ What are the results of an analysis in EFM of a 2D URM wall façade, in terms of force and 

displacement? 

▪ Are the results of analyses performed to different calculation methods (FEM, EFM, SLaMA) 

consistent with each other when increasing geometrical irregularities? 

▪ What is the difference in results between the different methods? 

▪ How conservative are the simplified methods? 

1.4 Research method 
First the calculation methods should be understood, so as a first step the seismic capacity of a 

masonry wall free of openings or geometrical irregularities will be calculated for all three methods. 

This will be compared with each other and should have in first instance the same result for all three 

methods. After this first comparison has been done, irregularities in the geometry of the models will be 

applied and the same procedure follows as the first example. After each comparison, the model will 
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be modified and become more complex. The more comparisons that are done in which different 

aspect will be varied, the better the conclusion will be. 

  



 
7 

 

2 Literature study 
In this section the important literature concerning this research has been described. Analytical 

methods have been considered and further explained. First the SLaMA method has been 

summarised. Then the equivalent frame method is described. In the end, the problem of geometrical 

irregularities is clarified. It should be noted that (parts of) this literature study has been done in 

cooperation with Nidal Ennali with the consent of our committee members.  

2.1 SLaMA Method 
SLaMA method is an analytical approach to make a seismic assessment of buildings. This method is 

firstly initiated in New Zealand, where they applied this method for several building. The SLaMA 

method is normally applied to give a first estimation of the global capacity of a building subjected to a 

seismic load. Mostly this first estimation determines what kind of assessment is necessary to follow 

the SLaMA assessment. The assessment method that follows from this first estimation could be the 

NLPO or NLTHA. Both these methods are considered as reliable and validated methods for 

unreinforced masonry buildings (URM buildings). 

Total overview SLaMA method 

This part consists of a short summary of the SLaMA as described in NZSEE C8 (NZSEE, 2017) and 

the NPR9998 (NEN, 2018) specified to unreinforced masonry.  

Step 1:  Assess the structural configuration and load paths to identify key structural elements, 

potential structural weaknesses (SWs) and severe structural weaknesses (SSWs). (NZSEE, 

2017) 

Unreinforced masonry buildings consist of boundary walls, walls and diaphragm. Diaphragm can be a 

ceiling, floor or foundation.  Depending on the material this diaphragm could differ in stiffness.  

The wall elements within an URM building could be divided in wall element with penetration and wall 

element without penetrations. For the assessment also the orientation of the wall is important. Walls 

can be oriented parallel to the plane of loading or perpendicular.  

These elements within an URM building need to be analysed by consulting the plans/blueprint and 

details. When analysing special notice must be given in the structural configuration, load paths, 

potential structural weaknesses and severe structural weakness. Analysing these structural elements 

is part of the first step of the SLaMA method.  

Step 2: Assess the capacity of the diaphragm/ wall connection to determine if the diaphragm If 

capable to transfer lateral load to the walls. (NZSEE, 2017) 

In the second step is it necessary to analyse the detail drawings of the connections between the 

diaphragm and walls. The capacity of the connection between the diaphragm and the wall is 

dependent on the decisive failure mode.  

Step 3: Determine the out-of-plane response and the out-of-plane capacity using the NLKA-

method. 

The next phase of the SLaMA method is the determination of the out of plane response of a wall 

element loaded with a face load. Both the NZSEE (NZSEE, 2017) and the NPR9998 (NEN, 2018) use 

the same method for determining these out of plane responses. This method is based on a NLKA-

approach, a nonlinear kinematic analysis. This method will lead to a conservative value for the 

resistance of this wall. The method is in general applicable to masonry walls oriented in a normal 

manner. Walls that are oriented in a complex geometry needs to be analysed with a different method.  
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Step 4: Determine the in-plane response and the in-plane resistance to the possible failure 

modes. 

Before analysing behaviour of the wall loaded in plane, two different wall types need to be described. 

First-of-all, there are walls with penetrations. These walls consist of the pier elements and spandrel 

elements. The pier elements are the wall parts between the penetrations. And the spandrels are the 

wall part above this penetration. The other wall type is the wall without any penetration.  

The in-plane capacity of the URM walls or piers could be determined based on the governing failure 

mechanism.  

The following failure mechanisms are considered when analysing the in-plane capacity of the URM 

walls or pier elements. The derivation of the formulas will be given in the next section of this chapter.  

• Diagonal tensile  

• In-plane rocking / Toe crushing  

• Bed-joint sliding 

• Slip plane sliding 

• URM spandrel failure 

Step 5: Determine probable inelastic behaviour of elements by comparing probable member 

capacities and evaluating the hierarchy of strength. 

In this step of the SLaMA method it is necessary to compare the strengths of the different 

components in a URM -wall. The inelastic behaviour of every component needs to be analysed. And 

finally, the hierarchy of strength could be determined. The following components must be considered 

in this step: 

• Wall loaded out of plane 

• Wall without penetrations loaded in-plane 

• Spandrels 

• Piers 

• Foundation 

• Diaphragm  

Step 6: Assess the sub-system inelastic mechanisms by extending local to global behaviour. 

(NZSEE, 2017) 

The global capacity is the strength and deformation capacity of a total building. In the assessment of 

the global capacity only the primary structure is considered. The primary structure consists of the 

diaphragm and the walls loaded in-plane. In case of the cantilever wall system, the walls loaded out of 

plane should also be considered in this assessment.  

The diaphragms distribute the lateral force to the wall loaded in plane. This diaphragm could be 

flexible or rigid. The flexible diaphragm can be modelled in a 3D analysis or 2D analysis. The rigid 

diaphragm could result in an eccentricity due to the different rigidities of the walls. This results in 

torsion, and thereby an extra lateral force due to shear stresses.  

Step 7: Form a view of potential governing mechanism and calculate probable base shear and 

global displacement capacity. (NZSEE, 2017) 

The global displacement capacity and the probable base shear could be calculated based on the 

stiffness of the diaphragm and the shear/deformation capacity of the governing structural element 
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(spandrel, piers, foundation, etc.). The governing structural element is the element which has the 

lowest capacity due to the occurrence of a plausible failure mechanism.  

Step 8: Determine equivalent SDOF system, seismic demand and %NBS. (NZSEE, 2017) 

In this step the structure needs to be schematised as a SDOF system. The steps to determine the 

effective mass and the effective height are described in more detail in the next section. Based on the 

SDOF model, the %NBS could be determined. Also, the procedure to determine the seismic demand 

is described in the NZSEE C8 ((NZSEE, 2017).  

In plane behaviour masonry  

This study focuses mainly on the in-plane behaviour of masonry. Therefore, it is interesting to study 

the derivation of the shear capacities for each failure mechanism.  

Rocking failure 

Rocking failure is a mechanism that occurs due to tilting of the pier. The failure mechanism is a stable 

mechanism which means that it doesn’t result in an immediate collapse of the piers. Rocking of the 

pier will take place until the toe crushes due to compression stresses. The shear capacity is derived 

based on the assumption that the compressive stress at the base of a pier, that undergoes rocking, 

has a parabolic distribution. Subsequently this parabolic distribution is assumed to be rectangular with 

a correction factor of 0.85. There will be a difference in the assumed compression energy and actual 

compressive energy. Another assumption in this derivation is that the bed joint tensile strength is 

neglected. The figure below shows the assumed mechanical model which has been used by Calvi 

and Magenes (GUIDO MAGENES, 1997) to derive this shear capacity. This formula is adopted by 

both the NPR9998 and the NZSEE-C8.  

 

Figure 1: Assumed mechanical model rocking failure (GUIDO MAGENES, 1997) 

𝑃 =  𝑁𝑜𝑟𝑚𝑎𝑙 𝑓𝑜𝑟𝑐𝑒 𝑖𝑛 𝑁 

𝑓𝑢 = 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑖𝑛 𝑁/𝑚
2 

𝑡 =  𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑖𝑒𝑟 𝑖𝑛 𝑚 

𝐿 =  𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑖𝑒𝑟 𝑖𝑛 𝑚 

𝜎𝑦 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑠𝑡𝑟𝑒𝑠𝑠 𝑎𝑡 𝑡ℎ𝑒 𝑡𝑜𝑝 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑖𝑒𝑟 

𝑓𝑚𝑎;𝑚 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑎𝑠𝑜𝑛𝑟𝑦 

ℎ0 = 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 ℎ𝑒𝑖𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑖𝑒𝑟 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑖𝑒𝑟𝑠. 

𝑒𝑠𝑙𝑎𝑚𝑎 =
𝐿

2
− 𝑎 =

𝐿

2
−

𝑃

0.85 ∙ 𝑓𝑢 ∙ 𝑡
 

𝑉𝑟 = 𝑃 ∙
𝐿

2 ∙ ℎ0
∙ (1 − 1.15 ∙

𝜎𝑦

𝑓𝑚𝑎;𝑚
) 
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Shear failure 

Beside the rocking failure mechanism there is also shear failure. There are two different form of shear 

failure, namely diagonal cracking and sliding. The shear failure considering diagonal cracking is a 

complex failure mechanism to describe in one formula. Calvi and Magenes (GUIDO MAGENES, 

1997) derived in his paper an expression for this type of failure mechanism, which has been adopted 

by the NPR9998 and the NZSEE C8.  

There starting point for this derivation is the following Mohr-Coulomb criterion: 

𝜏𝑢 = 𝑐 + 𝜇 ∙ 𝜎𝑣 

𝜏𝑢 = 𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒 𝑠ℎ𝑒𝑎𝑟 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 

𝑐 = 𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛  

𝜇 = 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡  

𝜎𝑣 = 𝑡ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑥𝑖𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠 𝑑𝑢𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑎𝑥𝑖𝑎𝑙 𝑓𝑜𝑟𝑐𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑝𝑖𝑒𝑟 

𝑃 = 𝑎𝑥𝑖𝑎𝑙 𝑓𝑜𝑟𝑐𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑡𝑜𝑝 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑖𝑒𝑟 

In this case diagonal cracking is associated failure of mortar bed and head joint. Diagonal cracking 

could also be caused by cracking trough the bricks if the mortar is stronger than the bricks.  

The shear capacity of a pier failing due to diagonal cracking is determined based on the assumption 

that the shear stress distribution in uniform which results in the following formula.  

𝑉𝑑 = 𝜏𝑢 ∙ 𝐷 ∙ 𝑡 = (𝑐 + 𝜇 ∙ 𝜎𝑣) ∙ 𝐷 ∙ 𝑡 = 𝐷 ∙ 𝑡 ∙ (𝑐 + 𝜇 ∙
𝑃

𝐷 ∙ 𝑡
) 

The expression above describes the shear capacity under the assumptions that there is no cracking 

developing due to flexure. This assumption could result in the overestimation of the shear capacity. 

The effect is included by calculating the uncracked length at both ends of the pier. The tensile bed 

joint strength is neglected in derivation for the uncracked length. Furthermore, the compressive stress 

distribution is assumed to be linear or constant. With these main assumptions the following the 

formulae has been derived. This formula is in the same manner adopted by the NPR 9998 and the 

NZSEE C8. 

𝐷′ = 3 ∙ (
1

2
−
𝑉

𝑃
∙
𝐻0
𝐷
) ∙ 𝐷 

𝑉𝑑 = 𝐷 ∙ 𝑡 ∙
1.5 ∙ 𝑐 + 𝜇 ∙ 𝑝

1 + 3 ∙
𝑐 ∙ 𝛼𝑣
𝑝

 

𝐷′ = 𝑢𝑛𝑐𝑟𝑎𝑐𝑘𝑒𝑑 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑙𝑒𝑛𝑔𝑡ℎ 

𝑝 = 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑠𝑡𝑟𝑒𝑠𝑠 𝑎𝑡 𝑡ℎ𝑒 𝑡𝑜𝑝 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑖𝑒𝑟 

𝛼𝑣 = 𝑠ℎ𝑒𝑎𝑟 𝑟𝑎𝑡𝑖𝑜 =
𝐻0
𝐷

 

The other approach to determine the diagonal cracking due to the exceeding of the conventional 

tensile strength of the masonry by the principal stresses in the pier. This failure mechanism is one of 

the most undesirable failure mechanisms, because it results in a rapid strength degradation (brittle 

failure mode). Calvi and Magenes (GUIDO MAGENES, 1997) formulated a formula describing the 

shear capacity in the case that this failure mode is decisive. The formula is based on tests whereby a 

horizontal load is applied on an unreinforced masonry pier under double clamped condition (MIHA 

TOMAZEVIC, 1997). 
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𝑉𝑑 =
𝑓𝑡𝑢 ∙ 𝐷 ∙ 𝑡

𝑏
∙ √1 +

𝑝

𝑓𝑡𝑢
 

𝑓𝑡𝑢 = 𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 𝑡𝑒𝑛𝑠𝑖𝑙𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 

𝐷 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑖𝑒𝑟 

𝑝 = 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑠𝑡𝑟𝑒𝑠𝑠 𝑑𝑢𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑎𝑥𝑖𝑎𝑙 𝑓𝑜𝑟𝑐𝑒 

𝑏 = 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒 𝑎𝑠𝑝𝑒𝑐𝑡 𝑟𝑎𝑡𝑖𝑜 

It must be noted that the NPR9998 states that for most regular Dutch masonry this failure mode could 

be neglected. In the 2D and 3D assessment phase, this failure mode will be considered and from 

there it could be determined if this statement is valid.   

The NPR9998 (NEN, 2018) considers shear capacity in the case of the sliding failure mode with the 

first formula. Another failure mode that must be considered is the case that the combination of 

compression stresses and shear stresses result in splitting of the bricks while the friction is large 

enough to avoid sliding. The NPR9998 formulates this limit state in the following manner.  

𝑉𝑟 ≤ 0.1 ∙ 𝑓𝑏 ∙ 𝐷
′ ∙ 𝑡𝑝 

𝑓𝑏 = 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑟𝑖𝑐𝑘 

𝐷′ = 𝑢𝑛𝑐𝑟𝑎𝑐𝑘𝑒𝑑 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑙𝑒𝑛𝑔𝑡ℎ , 𝑙𝑒𝑛𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑧𝑜𝑛𝑒 

𝑡𝑝 = 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑖𝑒𝑟 
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Displacement capacity  

The drift capacity of the rocking failure mode could be determined by the following empirical formula 

which formulated in the paper of Messali (F. Messali, 2017). This formula is derived based on the data 

obtained from laboratory tests of clay and calcium silicate urm walls. The test have been made by the 

TUDelft and the EUROCENTRE commissioned by the NAM( Nederlandse aardolie maatschappij). 

This research on the drift limit shows that the displacement capacity of URM pier is mainly depended 

on the axial load ratio and the aspect ratio. Other properties of the urm pier like, boundary condition, 

wall height, thickness and Head-and bed-joint typologies have not a sifnificant influence on the 

displacement capacity (F. Messali, 2017). 

𝜃𝑅,𝑁𝐶,𝑓 = 0.0135 ∙ (1 − 2.6 ∙
𝜎𝑦

𝑓𝑚𝑎;𝑚
) ∙ (

ℎ𝑟𝑒𝑓

ℎ𝑝
) ∙ √

ℎ𝑝

𝑙𝑝
 

ℎ𝑝 = ℎ𝑒𝑖𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑖𝑒𝑟 

𝑙𝑝 = 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑖𝑒𝑟 

𝜎𝑦 = 𝑎𝑥𝑖𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠 𝑎𝑡 𝑡ℎ𝑒 𝑡𝑜𝑝 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑖𝑒𝑟 

𝑓𝑚𝑎;𝑚 = 𝑚𝑒𝑎𝑛 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 

Bed joint sliding or diagonal stair stepped sliding are stable failure modes. Which means that when 

the initial cracking starts the pier would not result in an immediate collapse. Because of this ductile 

failure mode, the pier will have a considerable displacement capacity even when initial cracks start to 

develop. Based on several researches’ om the displacement capacity of a pier undergoing sliding, the 

following force-drift diagram has been recommended to use for piers undergoing sliding failure. The 

force-drift diaphragm is adopted by both the NPR9998 (NEN, 2018) and the NZSEE C8 (NZSEE, 

2017).  

 

Figure 2: Force-drift diagram according to the NPR9998 

The maximum shear capacity could be calculated with the sliding formula of Calvi and Magenes 

(GUIDO MAGENES, 1997). To determine the residual shear capacity, the cohesion of the masonry 

could be neglected.  

𝑉𝑅 = 𝐷 ∙ 𝑡 ∙
1.5 ∙ 𝑐 + 𝜇 ∙ 𝑝

1 + 3 ∙
𝑐 ∙ 𝛼𝑣
𝑝

 

𝑉𝑅,𝑟 = 𝐷 ∙ 𝑡 ∙ 𝜇 ∙ 𝑝 

The following drift limits are suggested by the NZSEE C8 and the NPR9998. 

𝜃𝑅;𝑆𝐷;𝑣 = 0.003 

𝜃𝑅;𝑁𝐷;𝑣 = 0.0075 
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Spandrel shear capacity   

For the spandrel two different failure types could be distinguished, namely shear failure and flexural 

failure. This part will describe only the capacity formulas of rectangular spandrels without the effect of 

the lintels. That are the only formulas applicable to the case studies that will be analyzed in the next 

chapter.  

Shear failure  

Shear capacity of the rectangular spandrels is formulated based on the assumption that the spandrel 

consists of elastic homogeneous material with a parabolic shear stress distribution along the height of 

the spandrel. The shear capacity could be found by the integrating the shear stress distribution along 

the height of the spandrel. This results in the following formulation for head-and bed joint sliding 

occurring in a spandrel (Beyer, 2011): 

𝑉𝑐𝑟,𝑠 =
2

3
∙ 𝜏𝑚𝑎𝑥 ∙ ℎ𝑠𝑝 ∙ 𝑡𝑠𝑝 

𝜏𝑚𝑎𝑥 = 𝑐 + 𝜇 ∙ 𝑝𝑠𝑝 

𝑉𝑐𝑟,𝑠 =
2

3
∙ (𝑐 + 𝜇 ∙ 𝑝𝑠𝑝) ∙ ℎ𝑠𝑝 ∙ 𝑡𝑠𝑝 

𝜏𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 𝑎𝑙𝑜𝑛𝑔 𝑡ℎ𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑝𝑎𝑛𝑑𝑟𝑒𝑙 𝑖𝑛 𝑁/𝑚𝑚
2  

𝜇 = 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑎𝑠𝑜𝑛𝑟𝑦 

𝑝𝑠𝑝 = 𝑎𝑥𝑖𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠 𝑎𝑡 𝑡ℎ𝑒 𝑠𝑝𝑎𝑛𝑑𝑟𝑒𝑙𝑠 

𝑐 = 𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑎𝑠𝑜𝑛𝑟𝑦 𝑖𝑛 𝑁/𝑚𝑚2 

Shear failure of the spandrels can occur in two manners. One way is that the shear cracks develop 

through bed and head joint. The other shear failure type is that the cracks develop through the bricks 

instead of the bed and head joints. The last failure type occurs for masonry that consists of strong 

mortar and the weak bricks. The shear capacity corresponding to the last failure type could be 

determined based on the following formula NZSEE C8 and NPR9998: 

𝑉𝑠 = 𝑓𝑑𝑡 ∙ 𝛽𝑠𝑝 ∙ √1 +
𝑝𝑠𝑝

𝑓𝑑𝑡
∙ ℎ𝑠𝑝 ∙ 𝑡𝑠𝑝 

𝑓𝑑𝑡 = 0.5 ∙ 𝑐 + 𝑓𝑎 ∙ 𝜇 

{
 
 

 
 
𝑙𝑠𝑝

ℎ𝑠𝑝
> 1.5,     𝛽𝑠𝑝 = 0.67

𝑙𝑠𝑝

ℎ𝑠𝑝
< 1.0,      𝛽𝑠𝑝 = 1.0

 

𝑙𝑠𝑝 = 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑝𝑎𝑛𝑑𝑟𝑒𝑙  

ℎ𝑠𝑝 = ℎ𝑒𝑖𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑝𝑎𝑛𝑑𝑟𝑒𝑙 

𝑓𝑑𝑡 = 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑡𝑒𝑛𝑠𝑖𝑙𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑚𝑎𝑠𝑜𝑛𝑟𝑦 𝑖𝑛 𝑁/𝑚𝑚
2 

The residual shear capacity when shear failure occurs can be neglected if the lintels are not 

considered. The NPR9998 and the NZSEE, show the effect of the lintels of the residual shear 

capacity.  
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Flexural failure  

The shear capacity in the case that flexure failure behavior is governing, is depended on the tensile 

strength of the head joints, and interlocking of the bed joints. The tensile strength of the head joint 

could be approximated by the following expression (Beyer, 2011):  

𝑓ℎ𝑗 =
𝑐

2 ∙ 𝜇
 

𝑐 = 𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛 𝑖𝑛 𝑁/𝑚𝑚2 

𝜇 = 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  

The equivalent tensile strength resulting from the interlocking of the bed joints has been formulated 

under the assumption that the shear stress along the bed joint is uniform distributed. The stress 

perpendicular at the bed joints and the cohesion of the bed joint contribute to the equivalent tensile 

strength of the spandrel. The equivalent tensile strength is the sum of the tensile strength of head joint 

and the interlocking of the bed joint.  

𝑓𝑡 = 𝑓ℎ𝑗 + 𝑓𝑏𝑗  

𝑓𝑡 = 1.3 ∙ (𝑐 + 0.5 ∙ 𝜇 ∙ 𝜎𝑣) +
𝑐

2 ∙ 𝜇
 

Based on the assumption that the stress is linear distributed along the height of the spandrel, the 

bending moment and the shear capacity could be calculated with the following simple formulas.  

𝑀𝑓𝑙 = (𝑓𝑡 + 𝑝𝑠𝑝) ∙
ℎ𝑠𝑝
2 ∙ 𝑏𝑠𝑝

6
 

𝑉𝑓𝑙 = (𝑓𝑡 + 𝑝𝑠𝑝) ∙
ℎ𝑠𝑝
2 ∙ 𝑏𝑠𝑝

3 ∙ 𝑙𝑠𝑝
 

The residual flexure shear capacity is determined based on the developed diagonal compressive 

strut. Therefore, the compressive strength in horizontal direction would be the normative in the 

determination of the residual shear capacity. The tensile strength of the head joint and the cohesion of 

the bed joint will tend to go to zero after the peak capacity is reached. Therefore, these properties 

could be neglected in the derivation of the residual shear capacity.  After cracking the compression 

zone height will decrease until ℎ𝑐.The compressive strength in the horizontal direction 𝑓ℎ𝑚 is 50% of 

the compressive strength of masonry (Beyer, 2011). 

ℎ𝑐 =
𝑃𝑠𝑝

0.85 ∙ 𝑓ℎ𝑚 ∙ 𝑏𝑠𝑝
 

Based on this compression zone, the residual shear capacity could be determined with the following 

expression NPR9998.  

𝑉𝑓𝑙,𝑟 =
𝑝𝑠𝑝 ∙ ℎ𝑠𝑝

2 ∙ 𝑏𝑠𝑝

𝑙𝑠𝑝
∙ (1 −

𝑝𝑠𝑝

0.85 ∙ 𝑓ℎ𝑚
) 

𝑓ℎ𝑚 = 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑖𝑛 𝑡ℎ𝑒 ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

𝑝𝑠𝑝 = 𝐴𝑥𝑖𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑠 𝑑𝑢𝑒 𝑡𝑜 𝑟𝑒𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑒𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑝𝑟𝑎𝑛𝑑𝑟𝑒𝑙 𝑜𝑟 𝑑𝑢𝑒 𝑡𝑜 𝑝𝑟𝑒𝑠𝑡𝑟𝑒𝑠𝑠𝑖𝑛𝑔   

𝑙𝑠𝑝 = 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑝𝑎𝑛𝑑𝑟𝑒𝑙  

ℎ𝑠𝑝 = ℎ𝑒𝑖𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑝𝑎𝑛𝑑𝑟𝑒𝑙 

𝑏𝑠𝑝 = 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑝𝑎𝑛𝑑𝑟𝑒𝑙 

Axial stresses on the spandrel would be generated due to the restraint of the elongation when the 

spandrel is deformed. The stresses need to be considered when calculating the residual shear 
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capacity due to flexural failure. These stresses could be calculated with the following formula which is 

stated in the NPR9998. 

𝑝𝑠𝑝 = (1 + 𝛽𝑠𝑝) ∙ 𝑓𝑑𝑡 ∙
𝑙𝑠𝑝

√𝑙𝑠𝑝
2 + ℎ𝑠𝑝

2
 

𝑓𝑑𝑡 = 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑎𝑠𝑜𝑛𝑟𝑦  

Important point to note is that all the formulas concerning the spandrel shear capacity are excluding 

the effect of the lintels. Because the effect of the lintels will be out of the scope of this study.  

The following force drift diagram for the spandrel is recommended by both the NSCEE C8 and 

NPR9998. This diagram is based on a lot of research concerning the displacement capacity of 

spandrels.  

 

Figure 3: NZSEE C8 
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2.2 Equivalent frame method 
The equivalent frame method (EFM) is a method which can model an URM structure with an 

equivalent framework. By doing so, the number of degrees of freedom can be narrowed in 

comparison to FEM. This reduces the computational time significantly. The EFM divides a wall as an 

idealised frame where deformable elements are connected with rigid nodes. Deformable elements are 

elements in which the nonlinear response of the wall is concentrated and rigid nodes are elements of 

the wall not subjected to damage. The deformable elements can be divided in piers and spandrels. 

Piers are the primary vertical resistant elements, which carry the vertical and lateral loads. Spandrels 

are secondary elements which couple the response of adjacent piers concerning lateral loads. The 

spandrels also have a significant influence on the boundary conditions of the piers which has a large 

influence on the wall lateral capacity. Figure 1 shows an example of the idealisation of the method. 

 

Figure 4: Equivalent Frame idealisation (Lagomarsino, Penna, Galasco, & Cattari, 2013) 

Defining the geometry of the main structural elements is the first step of the equivalent frame 

idealisation. Spandrel geometry is defined based on the vertical alignment and the superimposition of 

the openings. In case of full alignment, the length and height are equal to the vertical distance 

between openings and the width of the openings. Pier geometry is defined by the height of the 

adjacent openings. If these are perfectly aligned, the height of the pier is equal to the adjacent 

openings. If not, the height of the pier is equal to the average of the inter-storey height and the height 

of the adjacent opening. Step 3 is the identification of the rigid nodes. This can easily be defined from 

the defined geometries of the piers and spandrels. 

Once the masonry wall is idealised by an equivalent frame model, the prediction of its behaviour 

depends on the response of the individual structural elements. The response of the individual 

elements depend on their properties. The properties of these elements are based on the governing 

failure mechanisms (Knox, 2012).  

Different assessment tools make use of the EFM. One frequently used software is the program 

3MURI. However, the EFM gives larger errors for larger irregularities in the façade's geometry (Siano, 

et al., 2017). 
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2.2.1 Material model: 3MURI Macro-element Model 
The structural elements of a masonry wall are divided in piers and spandrels according to the 

equivalent frame method described in chapter 2.2. These elements are represented in 3MURI 12.2.1 

by use of macro-elements as presented in the figure below. This means that the masonry is 

represented as a composite material with anisotropic properties spread over the element. 

(𝑢𝑖, 𝑤𝑖, 𝜑𝑖)          (𝑢𝑗 , 𝑤𝑗 , 𝜑𝑗) 

 
Figure 5: Macro-element in 3MURI (3MURI, 2019) 

Loads are only applied on the nodes as can be seen in the figure above. The element force-

displacement curve exhibits bilinear behaviour. The element deforms initially with the initial stiffness of 

the material until the shear capacity is reached. Then the stiffness is reduced to zero and the shear 

force stays constant until the drift limit is reached. The drift limit is predefined in 3MURI. The degrees 

of freedom can be determined with the stiffness matrix below as described by (Lagomarsino, Penna, 

Galasco, & Cattari, 2013):  

 
Figure 6: Stiffness Matrix macro-element 

Where: 

𝜓 = 1.2
𝐸𝑏2

𝐺ℎ2
 

The failure of the macro-elements in 3MURI can be described by three failure mechanisms: rocking, 
diagonal shear and shear sliding failure. The applied equations in 3MURI for assessment of the shear 
capacity are similar to the applied equation used in the SLaMA method in chapter… What should be 
noted is, that in 3MURI there is an option where the user has to choose which of the shear failure 
mechanism is prone to occur, diagonal shear failure based on the equation of Turnsek & Cacovic or 
sliding shear failure based on the Mohr-Coulomb criterion. 
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2.3 Finite element method 

2.3.1 Engineering Masonry Model 
The Engineering Masonry Model is a recently developed material model for masonry in DIANA. This 

model has been developed by DIANA FEA and the Technical University of Delft. The figures and 

equations in this chapter are taken from (Schreppers, Garofano, Messali, & Rots, 2017). The model is 

mainly used for modelling failure of masonry walls (2D plane stress elements) or masonry structures 

(3D curved shell elements).  Important characteristics of the Engineering Masonry Model are: 

• The material model is a total-strain based continuum model 

• Tensile, shear and compression failure modes 

• Four in-plane crack directions possible: x, y and two diagonal directions with predefined 

angle. 

• Orthotropic 

• X-direction aligned with the bed-joints and y-direction aligned with the head-joints 

• If the diagonal cracks are not occurring the model act as an orthotropic material with a 

Poisson’s ratio of zero. (No coupling between the stiffness of the normal components and the 

in-plane shear component) 

Furthermore, the Engineering Masonry model regards the following failure mechanisms: 

• Tensile cracking of the bed- and head-joint 

o Secant nonlinear unloading and reloading 

• Compressive crushing normal to the bed- and head-joint 

o Nonlinear non-secant unloading and reloading 

• Cracking normal to the diagonal cracks 

o When the crack is opening, the tensile and shear stress is reduced. When the crack 

is closing, the model takes a linear stiffness equal to the initial stiffness. 

o The behaviour of the diagonal crack can be unrealistic for slender walls. Then the 

diagonal cracking can be deactivated. 

• Frictional shear sliding 

o Shear stresses calculated with Coulomb friction. 

• Out-of-plane shear-failure 

o Out-of-plane shear stiffness components are considered being linear elastic unless 

the option of out-of-plane shear failure is selected. In that case Coulomb friction is 

used. 
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Cracking behaviour 

The stresses in an element are defined by the strains in x- and y-direction and the maximum strain 

value 𝛼𝑡𝑒𝑛𝑠𝑖𝑙𝑒 reached during the loading history. The corresponding stress at 𝛼𝑡𝑒𝑛𝑠𝑖𝑙𝑒  is expressed as 

𝜎𝑟𝑓,𝑡𝑒𝑛𝑠𝑖𝑙𝑒. By means of the maximum value of the strain the secant unloading behaviour is 

determined. The tensile stress-strain curve is described by determining the ultimate strain with the 

tensile strength 𝑓𝑡 , the crack energy 𝐺𝑓𝑡 and the crack bandwidth of the element ℎ. The ultimate 

tensile strain occurs when the crack is fully open and the no stress-transfer is possible. This is 

determined with following formula: 

𝜀𝑢𝑙𝑡 =
2𝐺𝑓𝑡

ℎ𝑓𝑡
 

 

The following figure describes the tensile behaviour of the Engineering Masonry Model: 

 

Figure 7: Cracking behaviour Engineering Masonry Model (Schreppers, Garofano, Messali, & Rots, 2017) 

  



 
21 

 

Crushing behaviour 

The compressive stresses of an element in the x- and y-direction are defined by the strain and the 

minimum strain value 𝛼𝑐𝑜𝑚𝑝reached during the loading history. The corresponding stress is expressed 

as 𝜎𝑟𝑓,𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒. The compressive stress-strain curve is described by determining the ultimate strain 

with the compressive strength 𝑓𝑐 , the crack energy 𝐺𝑐 and factor 𝑛. The factor 𝑛 is used to determine 

the strain 𝜀𝑝𝑒𝑎𝑘 at compressive strength with the following formula: 

𝑛 =
𝐸𝜀𝑝𝑒𝑎𝑘

𝑓𝑐
 

The stress-strain curve is made up of a parabolic curve until the compressive strength and a linear 

softening curve until 10% of the compressive strength is reached. The ultimate strain 𝜀𝑢𝑙𝑡 is equal to 

the strain corresponding to a zero stress level. This is determined with the following formula: 

𝜀𝑢𝑙𝑡 = 𝜀𝑝𝑒𝑎𝑘 +max [0,
2𝐺𝑐
ℎ𝑓𝑐

−
𝑓𝑐
𝐴2𝐸

−
𝐴 + 1

𝐴
(𝜀𝑝𝑒𝑎𝑘 −

𝑓𝑐
𝐸
) ] 

Where h is the crack bandwidth and A is defined as: 

𝐴 = (
𝐸𝜀𝑝𝑒𝑎𝑘

𝑓𝑐
)

1
3
 

The figure below shows the crushing behaviour of the Engineering Masonry Model 

 

Figure 8: Compressive behaviour of Engineering Masonry Model (Schreppers, Garofano, Messali, & Rots, 2017) 

𝜆 in the figure represents the unloading factor. The factor can obtain values between 1 and 0. Where 

𝜆 = 1 corresponds to secant unloading to the origin with stiffness 
𝜎𝑟𝑓,𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒

𝛼𝑐𝑜𝑚𝑝
 and 𝜆 = 0 corresponds 

to unloading to zero stress with the initial stiffness and secant stiffness. For 𝜆 = 0 unloading with the 

initial stiffness is applied until the compressive stress is equal to 𝜆𝜎𝑟𝑓,𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒. Then the secant 

stiffness is applied until the origin. For reloading the curve goes with a straight line to the last loading 

extreme point. The secant stiffness is defined as: 

𝐸𝑠𝑒𝑐 =
𝜆𝜎𝑟𝑓,𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒

𝛼𝑐𝑜𝑚𝑝 −
𝜆𝜎𝑟𝑓,𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒

𝐸
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Shear behaviour 

The in-plane shear stress 𝜏 is defined by the shear strain 𝛾 and the stress 𝜎𝑦𝑦 normal to the bed-joint. 

The shear stress |𝜏| can not exceed the maximum stress 𝜏𝑚𝑎𝑥 which is formulated according to the 

Coulomb friction criterion as: 

𝜏𝑚𝑎𝑥 = max [0, 𝑐 −  𝜎𝑦𝑦tan (𝜑) ] 

Where 𝑐 is the cohesion of friction and 𝜑 the friction angle of the masonry. The shear stress-strain 

curve is shown in the figure below: 

 

Figure 9: Shear behaviour of Engineering Masonry Model (Schreppers, Garofano, Messali, & Rots, 2017) 

The figure shows a linear relation between the shear strain and stress until 𝜏max is reached. Then the 

cohesion decreases until the cohesion reaches zero at a total shear strain of 𝛾𝑢𝑙𝑡, which is defined as: 

𝛾𝑢𝑙𝑡 =
2𝐺𝑓𝑠

ℎ ∗ 𝑐
−
𝑐

𝐺
 

Where  h is the crack bandwidth, 𝐺𝑓𝑠 is the shear energy and 𝐺 is the shear modulus. Lastly, when an 

integration point is cracked (𝛼𝑡𝑒𝑛𝑠𝑖𝑜𝑛 >
𝑓𝑡

𝐸
), the cohesion is reduced to zero. 

Head-joint failure options  

The Engineering masonry model has 4 options for how the failure of the head-joint is considered in 

the DIANA model. The user needs to choose one of these 4 head-joint failure options. The 4 failure 

options are: 

1. Head-joint failure not considered: In this option the model does not consider diagonal cracks. 

Only cracking and crushing normal to the bed-joint and Mohr-Coulomb criterion are 

evaluated. 

2. Direct input head-joint tensile strength: In this failure option the cracking and crushing normal 

to the head-joint is also considered. The tensile strength in both directions and the 

compressive strength in one direction which is used in both directions has to be explicitly 

defined by the user. Once again, diagonal cracks are not considered. 

3. Diagonal stair-case cracks: The failure of the head-joint is assumed to happen as part of a 

diagonal stair-case crack. In this failure option, besides cracking and crushing normal to the 

bed-joint and shear failure, the cracking and shear-release of the diagonal stair-case cracks is 

also considered. The user has to define the angle with the bed-joint of the staircase crack, the 

bed-joint tensile strength and the frictional shear-stress in the bed-joint. 

4. Tensile strength head-joint defined by friction: Similar to point 2, but now the tensile strength 

is calculated from the friction shear-stress in the bed-joint. A minimum tensile strength of the 

head-joint can also be explicitly defined. The effect of a high overburden load can be taken 

into account in this option. 
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2.3.2 Total Strain Crack Model 
The total strain crack model is a constitutive model based on total strain and is developed according 

to the Modified Compression Field Theory (Vecchio & Collins, 1986). The Total Strain Crack Model 

offers three different constitutive models based on the crack orientation; fixed, rotating and combined. 

The difference lies in the different evaluations of the stress-strain relationships of the three variants. 

For the fixed crack orientation, the stress-strain relation is evaluated in a fixed coordinate system. For 

the rotating crack orientation, it is evaluated in the principal directions of the strain vector.  For the 

combined crack orientation, a limit value for the total strain directs whether the crack orientation 

changes from rotating to fixed. For this research the focus is only on the Rotating Strain Crack Model. 

The Total Strain Crack Model requires several material input parameters. These are the linear elastic 

material properties, the parameters for the tensile behaviour and the parameters for the compressive 

behaviour. The tensile behaviour can be modelled using different approaches. The following functions 

are based on fracture energy: 

• Linear softening curve 

• Exponential softening curve 

• Nonlinear softening curve by Hordijk 

• Nonlinear tension softening according to CEB-FIP Model Code 1990 

• Nonlinear softening according to fib Model Code for Concrete structures 2010 

• Nonlinear softening according to JSCE 

Other tensile curves are: 

• Constant tensile behaviour 

• Linear behaviour based on ultimate strain 

• Multilinear behaviour 

• Brittle behaviour 

• Tensile failure model for fiber reinforced concrete (CEB-FIP) 

• User-supplied 

The compressive behaviour can be modelled with a number of predefined curves. The predefined 

curves are: 

• Constant curve 

• Brittle curve 

• Thorenfeld curve 

• Linear hardening curve 

• Multilinear curve 

• Saturation hardening curve 

• Parabolic curve 

• Eurocode 2 1992-1-2 and Eurocode 4 1994-1-2 

• Maekawa cracked concrete curves 

• CEB-FIP Model Code 1990  

• Fib Model Code for concrete structures 2010  

• Hognestad parabola 

• Eurocode 2 EN1992-1-1 

All the above curves have secant unloading behaviour, except the Maekawa cracked concrete curves. 

These contain nonlinear unloading behaviour. 

 

 

 



 
24 

 

For this research the following tensile and compression curves have been chosen: 

 

Figure 10: Linear tensile softening curve (left) and parabolic compression curve (right) (DIANA FEA) 
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3 Case study 
In this chapter a description is given of the wall façades that have been used in this research. The 

walls have been modelled in 2D with three different methods. Namely, the Finite-element method, the 

SLaMA method and the EF method. For this study it was important that the material properties and 

modelling assumptions had to be as consistent as possible within the three different methods. 

Furthermore, for researching the influence of the geometrical irregularities on the accuracy of EF and 

SLaMA, several geometrical irregularities have been grouped. These geometrical irregularities were 

then quantified by indices. The influence of these indices on the accuracy of the calculation methods 

will be researched in the next chapter with a sensitivity analysis. 

3.1 Case study description 

3.1.1 Material Properties 
For all models, one specific material has been implemented, namely Clay-Brick masonry from prior to 

1945. The material properties of this specific masonry type has been given below and are based on 

the NPR-9998:2018: 

Table 1: Material properties masonry 

Material 
properties 

  Unit 

Ex 2500  * 106 N/m2 
Ey  5000  * 106 N/m2 
Gxy  2000  * 106 N/m2 
ρ   1900  kg/m3 
fma;b;per 0.067 * 106 N/m2 
fma;t;par 0.2 * 106 N/m2 
Gft;per 7  N/m 
fma;m 5.67 * 106 N/m2 
Gf;c 6667  N/m 
µ 0.75  - 
c 0.2 * 106 N/m2 
Gf;v;par 67  N/m 

 

3.1.2 Irregularity indices 
The following geometrical irregularities were identified: 

1. Opening percentage irregularity: irregularity based on the size of the openings. 

2. Slender pier irregularity: irregularity based on the slenderness of the piers. 

3. Centre of mass irregularity: irregularity based on the location of the openings. 

Note that in (Parisi & Augenti, 2012) four basic irregularities were defined. These irregularities are not 

present in any of the models made. This to avoid disturbances in the sensitivity analysis. 

For the assessment of the influence of irregularities on the accuracy of the simplified calculation 

methods for the in-plane behaviour of the wall, for each geometrical irregularity a global irregularity 

index has been defined. This index specifies whether a wall is regular (i = 0) for its specific 

geometrical irregularity or irregular (0 < i ≤ 1). 

Starting with the opening irregularity, the global irregularity index is defined by: 

𝑖𝑜 =
𝐿𝑜
𝐿
=  ∑

𝐿𝑘
𝐿

𝑛

𝑘=1

 

Where 𝐿𝑜 is the total opening length in a wall or in other words, the summation of all opening 

lengths(𝐿𝑘) in a wall façade. 
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Secondly, the slender pier irregularity is defined as follows: 

𝑖𝑠 =
𝑛𝑠
𝑛𝑝

 

Where 𝑛𝑠 is the number of slender piers in a wall and 𝑛𝑝 is the total number of piers in a wall. Before 

one can assess the number of slender piers, a definition of a slender pier is needed. From (NPR 

9998-2018) a slender pier is defined as a pier with a slenderness ratio (height/length ratio) higher than 

2. This definition is also used for the determination of 𝑛𝑠. 

For the centre of mass irregularity the following definition applies: 

𝑖𝑐 =
𝑥𝑐
0.25𝐿

 

Where 𝑥𝑐 is the x-coordinate of the centroidal axis in the wall. With this definition one can easily obtain 

a quantification for the location of the openings. 

The figure below illustrates the irregularity index of the centre of mass: 

 

L

L/2

Centroidy

x

 

Figure 11: Irregular wall with centre of mass irregularity 
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3.1.3 Geometry & Loads 
In this chapter the wall geometries are illustrated. The walls are sorted in four groups: 

1. Regular wall 

2. Opening percentage irregularity 

3. Slender pier irregularity 

4. Centre of mass irregularity 

Furthermore, the applied axial force and the weak transversal load direction is illustrated in each 

figure. For all wall façades a thickness of 208 mm is applied. 

3.1.3.1 Regular wall 
 q = 10 kN/m

2.72 m

5.66 m  

Figure 12: Wall 1: Regular wall with no irregularities 

3.1.3.2 Opening percentage irregularity 
 q = 10 kN/m

2.72 m

5.66 m

1.85 m 0.29 m 1.85 m0.29 m1.38 m

0.54 m

1.63 m

0.55 m

 q = 10 kN/m

2.72 m

0.54 m

1.63 m

0.55 m

5.66 m

1.65 m 0.57 m 1.65 m0.57 m1.22 m

 

Figure 13: Wall 2: Irregular wall with 𝑖𝑜 = 0.1   Figure 14: Wall 3: Irregular wall with 𝑖𝑜 = 0.2 

  

 q = 10 kN/m

5.66 m

1.34 m 0.99 m 1.34 m0.99 m1 m

2.72 m

0.54 m

1.63 m

0.55 m

 q = 10 kN/m

5.66 m

1.75 m 0.43 m 1.75 m0.43 m1.3 m

2.72 m

0.54 m

1.63 m

0.55 m

      

Figure 15: Wall 4: Irregular wall with 𝑖𝑜 = 0.35   Figure 16: Wall 5: Irregular wall with 𝑖𝑜 = 0.15 
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3.1.3.3 Slender pier irregularity 

For these geometries 𝑖𝑜 = 0.35 and is kept constant while 𝑖𝑠 will vary: 

 q = 10 kN/m

5.66 m

1.34 m 0.99 m 1.34 m0.99 m1 m

2.72 m

0.54 m

1.63 m

0.55 m

 q = 10 kN/m

5.66 m

1.44 m 0.99 m 1.44 m0.99 m0.8 m

2.72 m

0.54 m

1.63 m

0.55 m

 

Figure 17: Wall 4: Irregular wall with 𝑖𝑠 = 0   Figure 18: Wall 7: Irregular wall with 𝑖𝑠 = 0.333 

 q = 10 kN/m

5.66 m

0.695 m 0.99 m 0.695 m0.99 m2.29 m

2.72 m

0.54 m

1.63 m

0.55 m

 q = 10 kN/m

5.66 m

1.05 m 0.66 m 1.05 m0.66 m0.79 m

2.72 m

0.54 m

1.63 m

0.55 m

0.66 m 0.79 m

 

Figure 19: Wall 8: Irregular wall with 𝑖𝑠 = 0.667  Figure 20: Wall 6: Irregular wall with 𝑖𝑠 = 1 
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3.1.3.4 Centre of mass irregularity 

For the following walls these indices are applied, 𝑖𝑠 = 0.333 and 𝑖𝑜 = 0.35: 

 q = 10 kN/m

2.72 m

0.54 m

1.63 m

0.55 m

5.66 m

1.27 m 0.99 m 1.8 m0.99 m0.61 m

 q = 10 kN/m

2.72 m

0.54 m

1.63 m

0.55 m

5.66 m

1.27 m 0.99 m 1.8 m0.99 m0.61 m

 

Figure 21: Wall 9: Irregular wall with 𝑖𝑐 = 0.1  Figure 22: Wall 10: Irregular wall with 𝑖𝑐 = 0.2 

 q = 10 kN/m

2.72 m

0.54 m

1.63 m

0.55 m

5.66 m

0.58 m 0.99 m 2.15 m0.99 m0.95 m

 q = 10 kN/m

2.72 m

0.54 m

1.63 m

0.55 m

5.66 m

0.31 m 0.99 m 2.42 m0.99 m0.95 m

 

Figure 23: Wall 11: Irregular wall with 𝑖𝑐 = 0.3  Figure 24: Wall 12: Irregular wall with 𝑖𝑐 = 0.4 
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3.2 2D FEA 
For the Finite element analysis DIANA 5.3 is used to perform the NLPO analysis. All material 

properties used in the DIANA models are based on the NPR 9998-2018 as noted in the previous 

chapter. Furthermore, some assumptions had to be made in the FEM analysis to produce an 

equivalent model as in the other methods. These assumptions and also the material model will be 

presented in this chapter. 

3.2.1 Material model 
The material model that has been applied in DIANA is the engineering masonry model. Within this 

material model, the user has the choice to select the specific failure type occurring. For this research 

it has been chosen to only produce results for the ‘Tensile strength head-joint defined by bed-joint 

frictional shear stress’ failure type. This is one of the failure types that was recommended in 

(Schreppers, Garofano, Messali, & Rots, 2017). The total-strain crack material model could also be 

used for this research due to unidirectional loading in all walls, but this material model and the 

application of the other three failure types is out of the scope of this research.  

3.2.2 Model assumptions 
For the DIANA model several assumptions have been made, and these were: 

- Quadratic mesh order is applied for the elements. 

- A mesh size of 0.1 m is used. 

- Q8MEM plane stress elements used for the masonry wall. 

- L7BEN beam elements used for the floors. 

- Only flexible floors have been taken into consideration. 

- A prescribed deformation load is applied at the top corner of the wall façade. 

3.2.3 Analysis parameters 
For the models a structural nonlinear analysis is done in DIANA. Below an overview of the analysis 

parameters is given: 

Analysis settings Applied in model 

Nonlinear effects Physical, Geometrical 
Arc-length control Not applicable 
Load step size 0.05-0.08 mm 
Max. number of iterations 100 
Numerical method Secant (Quasi-Newton) 
Convergence norm Energy 

 

3.2.4 Modelling with lintels 
Lintels can have an influence on the in-plane behaviour of a masonry wall. To research this, two 

models were made of wall 2 and 8 where lintels were included above the opening. The lintels were 20 

mm high and were extended from both sides of the opening with 10 mm. Furthermore, the lintels had 

an Young’s modulus of 20000 MPa and a tensile strength of 10 MPa. In chapter 4 the results are 

given of these models and in chapter 5 the results are further discussed.  
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3.3 2D SLaMA 
In this chapter the general assumptions made in the SLaMA assessment will be explained. The 

SLaMA method has been explained in chapter 2.1.  

3.3.1 Effective height method 
For unreinforced masonry walls with different openings and weak pier-strong spandrel mechanisms it 

is advised in (Moon F. L., 2004) that the effective height of a rocking pier is equal to the height over 

which a diagonal strut is expected to develop. 

3.3.2 Axial force 
The axial force on the piers is calculated analytically, by adding up the self-weight of the pier with the 

axial forces working on top of the pier. There is no load redistribution during the rocking or failure of 

the pier. This is a large difference with DIANA, which constantly makes sure during the analysis there 

is an equilibrium of forces. 
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3.3.3 Boundary conditions 
In the SLaMA method two different boundary conditions are possible at the ends of a pier, namely 

double clamped boundary conditions or cantilevered boundary conditions (free at the top of the pier). 

The user needs to assume one of the two options.  In this research, this assumption is based on the 

following approach below: 

 

Figure 25: Boundary conditions assessment (Nidal Ennali) 
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3.3.4 Formulation of the boundary conditions in SLaMA 
The results of the SLaMA are based on the assessment approach of the boundary condition 

described in the previous chapter. This approach was still not accurate enough, because the 

boundary conditions could be either cantilever or double clamped. In reality, conditions in between are 

more accurate, because the connections between piers and spandrels are neither infinitely rigid nor 

hinged. For this reason two new formulations have been developed.  

The first formulation is rather straightforward and is an addition to the assessment approach of 

chapter 3.3.3. The last step of this approach is altered and instead a different step is done. It still 

holds that if the shear capacity is higher than the required shear capacity, then the pier will behave 

double clamped. For cantilever boundary condition, the required shear capacity needs to be equal to 

zero due to hinged connection between pier and spandrel. If the required shear capacity is between 

the shear capacity and zero, linear interpolation is done to calculate the intermediate results. 

The second formulation is more complicated and requires linear elastic frame analysis. For this 

research, Matrixframe is used to do these analyses. The goal is to verify how much the more 

simplified first formulation differs from this advanced approach, because this formulation is more time 

consuming. The first step is to model the piers and spandrels as frames in Matrixframe. Then the 

linear analysis is run and the internal forces are computed. Based on the internal forces of the 

framework, a ratio of capacity over the demand is calculated for each pier and spandrel at their 

connections. Then the ratio of capacity over demand of the piers are respectively compared with their 

connected spandrels. If the capacity over demand of the spandrel is higher than the capacity over 

demand of the pier, this would mean that the pier will crack before the spandrel during lateral loading 

which is a sign of weak pier-strong spandrel behaviour. Here double clamped conditions are 

assumed. If the capacity over demand of the spandrel is lower than the capacity over demand of the 

pier, linear interpolation is performed to assess the boundary conditions between cantilever and 

double clamped. This is done by stating that a capacity over demand of the spandrel equal to zero is 

in correspondence with cantilever boundary conditions and for the ratios between cantilever and 

double clamped conditions, the boundary conditions are calculated by use of linear interpolation. 

3.3.5 Shear capacity 
The calculation of the shear capacities of the piers are based on the formulas of NPR9998-2018. The 

critical shear capacity of a pier corresponds to the failure mechanism with the lowest value for the 

shear capacity. Subsequently, the critical shear capacities of all the piers in a wall are summated and 

form the global shear capacity of a wall. 

3.3.6 Displacement capacity 
The displacement capacity of a wall is based on the individual drift capacities of the piers. These drift 

capacities are put together in such a way, that if the first pier fails the global shear capacity will have a 

drop equal to the critical shear capacity of the failed pier. It should be taken into consideration that the 

drop in shear capacity has to be lower than 50%, otherwise global failure of the wall is assumed. 

3.4 2D EFM 
For the equivalent-frame method, the program 3MURI 12.2.1 is used to model the 2D walls. This 

program is still being used for the seismic assessment of the URM building at Arcadis. 

For the shear failure criterion, Mohr-Coulomb has been chosen. This is the only assumption that has 

been made in the model. For the rest, the walls have been modelled as the other two methods and no 

additional assumptions have been made in the modelling of the façades. 
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3.4.1 Turnsek & Cakovic 
3MURI gives the user an option where the user has to choose which of the shear failure mechanism 

is prone to occur, diagonal shear failure based on the equation of Turnsek & Cakovic or sliding shear 

failure based on the Mohr-Coulomb criterion. In this research the Mohr-Coulomb criterion is used, 

because this is also according to the NPR9998 the most occurring failure mechanism for this type of 

masonry (Clay-Brick pre-1945). However, in the next chapter Walls 2 and 8 have been modelled with 

shear described by Turnsek & Cakovic and have been compared with the Mohr-Coulomb criterion. 

The results are further discussed in the discussion. 
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4 Results 
In this chapter the results of the three calculation methods for all models are presented. 

4.1 FEA results 
This chapter shows the DIANA results for all the models. For each model the principal strain contour 

plot is shown. From these results the observed failure mechanism is deducted. Lastly, the pushover 

curve is presented. 

4.1.1 Wall 1: Regular wall 
In the figure below the principal strain plot of wall 1 is shown: 

 

Figure 26: Principal strain contour plot Wall 1 

The observed failure mechanism is shear failure of the wall. This can be deducted from the diagonal 

cracks developing when looking at the principal strain plot. 

The pushover curve corresponding to Wall 1 is presented below: 

 

Figure 27: Pushover curve DIANA Wall 1 
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4.1.2  Wall 2-5: Opening irregularity 
In the figure below the principal strain plots of walls 2-5 is shown: 

 

 

Figure 28: Principal strain plot Wall 2 (upper-left), Wall 3 (upper-right), Wall 4 (lower-left) and Wall 5 (lower-right) 

The observed failure mechanism for the first two piers for all four walls is rocking. This can be 

deducted from the cracks developing in the upper right and lower left corner of each pier when looking 

at the principal strain plot. For the last pier, it is slightly more difficult to ascertain a particular failure 

mechanism. Only for wall 3 and 4 one can see rocking patterns with slight shear failure patterns, but 

for wall 2 and 5 a combination of shear and rocking failure is present. 

The pushover curve corresponding to Wall 2 until 5 is presented below: 

  

  

Figure 29: Pushover curve Wall 2 (upper-left), Wall 3 (upper-right), Wall 4 (lower-left) and Wall 5 (lower-right) 
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4.1.3 Wall 6-8: Slender pier irregularity 
In the figure below the principal strain plot of wall 6 until 8 is shown: 

 

 

Figure 30: Principal strain plot Wall 6 (upper-left), Wall 7 (upper-right) and Wall 8 (lower-left). 

The observed failure mechanism is shear failure of the wall. This can be deducted from the diagonal 

cracks developing when looking at the principal strain plot. 

The pushover curve corresponding to Wall 6 until 8 is presented below: 

  

 

Figure 31: Pushover curve Wall 6 (upper-left), Wall 7 (upper-right) and Wall 8 (lower-left). 
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4.1.4 Wall 9-12: Centre of mass irregularity 
In the figure below the principal strain plot of wall 1 is shown: 

 

 

Figure 32: Principal strain plot Wall 9 (upper-left), Wall 10 (upper-right), Wall 11 (lower-left) and Wall 12 (lower-
right) 

The observed failure mechanism is shear failure of the wall. This can be deducted from the diagonal 

cracks developing when looking at the principal strain plot. 

The pushover curve corresponding to Wall 9 until 12 is presented below: 

 

 

Figure 33: Pushover curve Wall 9 (upper-left), Wall 10 (upper-right), Wall 11 (lower-left) and Wall 12 (lower-right) 
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4.1.5 Rotating Strain Crack Model 
Below the results are given for Rotating Strain Crack Model and Engineering Masonry for wall 2 and 

8. 

 

 

Figure 34: Results Wall 2 Total Strain Crack Model (left) & Engineering Masonry Model (right) 

 

 

Figure 35: Results Wall 8 Total Strain Crack Model (left) & Engineering Masonry Model (right) 
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4.1.6 Models with lintels 
To understand the influence of lintels on the in-plane behaviour of the wall façade, wall 2 and wall 8 

have been modelled with lintels. The lintels stretch from both sides of the opening out with 10 cm and 

have a height of 20 cm. Below the results are presented of these models: 

 

 

Figure 36: Results Wall 2 with lintels (left) & without lintels(right) 

 

 

 

Figure 37: Results Wall 8 with lintels(left) & without lintels(right) 
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Summary 

In this section the results were given of the models in DIANA. In the below figures the results are once 

again given, but categorized for each variation. 

 

 

Figure 38: Pushovercurves DIANA for each variation. 
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4.2 2D EFM results 
In this chapter the results from 3MURI are presented. For each model the failure mechanisms and the 

pushover curves are illustrated. First the legend is shown below for the different failure mechanisms 

possible: 

 

Figure 39: Legend Failure mechanisms 

4.2.1 Wall 1: Regular wall 
Below the failure mechanism and pushover curve is presented for Wall 1: 

 

Figure 40: Failure mechanism & Pushover curve Wall 1 
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4.2.2 Wall 2-5: Opening irregularity 
Below the failure mechanisms are presented for Walls 2-5: 

 

  

Figure 41: Failure patterns 3MURI Wall 2 (upper-left), Wall 3 (upper-right), Wall 4 (lower-left) and Wall 5 (lower-

right) 

And below the pushover curves corresponding to Walls 2-5 are given: 

 

  

Figure 42: Pushover curve 3MURI Wall 2 (upper-left), Wall 3 (upper-right), Wall 4 (lower-left) and Wall 5 (lower-
right) 
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4.2.3 Wall 6-8: Slender pier irregularity 
Below the failure mechanisms are presented for Walls 6-8: 

  

 

Figure 43: Failure patterns 3MURI Wall 6 (upper-left), Wall 7 (upper-right), Wall 8 (lower-left) 

And below the pushover curves corresponding to Walls 6-8 are given: 

 

 

Figure 44: Pushover curve 3MURI Wall 6 (upper-left), Wall 7 (upper-right), Wall 8 (lower-left) 
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4.2.4 Wall 9-12: Centre of mass irregularity 
Below the failure mechanisms are presented for Walls 9-12: 

  

  

Figure 45: Failure patterns 3MURI Wall 9 (upper-left), Wall 10 (upper-right), Wall 11 (lower-left) and Wall 12 
(lower-right) 

And below the pushover curves corresponding to Walls 9-12 are given: 

 

Figure 46: Pushover curve 3MURI Wall 9 (upper-left), Wall 10 (upper-right), Wall 11 (lower-left) and Wall 12 
(lower-right) 
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Summary 

In this section the results were given of the models in 3MURI. In the below figures the results are 

once again given, but categorized for each variation. 

  

 

Figure 47: Pushovercurves 3MURI for each variation 
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4.2.5 Turnsek & Cakovic 
Below the results are given for the Turnsek & Cakovic formula implemented in 3MURI for the left 

figures and the right figures show results of the Mohr-Coulob criterion: 

 

 

Figure 48: Results 3MURI Wall 2 (above) & Wall 8 (below). 

4.2.6 NPR9998:2018 model parameters 
Below the results are presented for two wall configurations in 3MURI with NPR9998:2018 model 

parameters implemented: 

  

  

Figure 49: Results 3MURI Wall 2 (above) and Wall 12 (below). 
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4.3 SLaMA results 
In this chapter the results of the SLaMA are presented. The results consist of the pushover curves 

and the observed failure mechanisms of each model. 

4.3.1 Standard boundary condition formulation 
In this chapter the results are based on the boundary conditions assessment of chapter 3.3.3.  

4.3.1.1 Wall 1: Regular wall 

In the table below the results are given of the individual pier: 

 Shear capacity Drift capacity Failure mechanism 

Pier 1 
(Residual capacity) 

112.4 kN 
87.2 kN 

20.4 mm Shear 

Table 2: Results Wall 1 

Below the pushover curve corresponding to wall 1 is presented: 

 

Figure 50: Pushover Curve SLaMA Wall 1 

4.3.1.2 Wall 2-5: Opening irregularity 

In the table below the results are given of the individual piers: 

 Pier no. Boundary 
conditions 

Shear capacity 
(kN) 

Drift capacity 
(mm) 

Failure 
mechanism 

Wall 2 Pier 1 Cantilever 14.2 32.7 Rocking 
 Pier 2 Cantilever 9.4 24.5 Rocking 
 Pier 3 Cantilever 14.2 32.6 Rocking  
Wall 3 Pier 1 Cantilever 11.3 32.7 Rocking 
 Pier 2 Cantilever 7.3 24.5 Rocking 
 Pier 3 Cantilever 11.3 32.6 Rocking 
Wall 4 Pier 1 Cantilever 7.5 32.7 Rocking 
 Pier 2 Cantilever 4.9 24.5 Rocking 
 Pier 3 Cantilever 7.5 32.6 Rocking 
Wall 5 Pier 1 Cantilever 12.7 32.7 Rocking 

 Pier 2 Cantilever 8.3 24.5 Rocking 
 Pier 3 Cantilever 12.8 32.6 Rocking 

Table 3: Results Walls 2-5 

  



 
50 

 

Below the pushover curve corresponding to wall 2 until 5 is presented: 

  

  

Figure 51: Pushover curve SLaMA Wall 2 (upper-left), Wall 3 (upper-right), Wall 4 (lower-left) and Wall 5 (lower-
right) 
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4.3.1.3 Wall 6-8: Slender pier irregularity 

In the table below the results are given of the individual piers: 

 Pier no. Boundary 
conditions 

Shear capacity 
(kN) 

Drift capacity 
(mm) 

Failure 
mechanism 

Wall 6 Pier 1 Cantilever 4.6 32.7 Rocking 
 Pier 2 Cantilever 3.1 24.5 Rocking 
 Pier 3 Cantilever 3.1 24.5 Rocking  

 Pier 4 Cantilever 4.6 32.6 Rocking 
Wall 7 Pier 1 Cantilever 8.6 32.7 Rocking 
 Pier 2 Cantilever 3.2 24.5 Rocking 
 Pier 3 Cantilever 8.6 32.6 Rocking 
Wall 8 Pier 1 Double-

clamped 
4 32.7 Rocking 

 Pier 2 Cantilever 25.8 26.4 Shear 
 Pier 3 Double-

clamped 
4 32.6 Rocking 

Table 4: Results Walls 6-8 

Below the pushover curve corresponding to wall 6 until 8 is presented: 

  

 

Figure 52: Pushover curve SLaMA Wall 6 (upper-left), Wall 7 (upper-right) and Wall 8 (lower-left). 
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4.3.1.4 Wall 9-12: Centre of mass irregularity 

In the table below the results are given of the individual piers: 

 Pier no. Boundary 
conditions 

Shear capacity 
(kN) 

Drift capacity 
(mm) 

Failure 
mechanism 

Wall 9 Pier 1 Cantilever 6.7 32.7 Rocking 
 Pier 2 Double-

clamped 
3.7 24.5 Rocking 

 Pier 3 Cantilever 13.5 32.6 Rocking  
Wall 10 Pier 1 Cantilever 2.7 40.8 Rocking 
 Pier 2 Cantilever 5 39.7 Rocking 
 Pier 3 Cantilever 14.4 33.6 Rocking 
Wall 11 Pier 1 Double-

clamped 
2.8 32.7 Rocking 

 Pier 2 Cantilever 4.4 24.5 Rocking 
 Pier 3 Cantilever 19.3 31.2 Rocking 
Wall 12 Pier 1 Double-

clamped 
0.8 32.7 Rocking 

 Pier 2 Cantilever 4.4 24.5 Rocking 
 Pier 3 Cantilever 24.4 29.4 Rocking 

Table 5: Results Walls 9-12 

Below the pushover curve corresponding to wall 9 until 12 is presented: 

  

  

Figure 53: Pushover curve SLaMA Wall 9 (upper-left), Wall 10 (upper-right), Wall 11 (lower-left) and Wall 12 
(lower-right) 
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Summary 

In this section the results were given of the SLaMA based on the standard boundary condition 

formulation. In the below figures the results are once again given, but categorized for each variation. 

  

 

Figure 54: Pushovercurves SLaMA standard boundary conditions formulation for each variation. 
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4.3.2 Linear interpolation of the boundary conditions 
In this chapter 

4.3.2.1 Wall 1: Regular wall 

 Shear capacity Drift capacity Failure mechanism 

Pier 1 
(Residual capacity) 

112.4 kN 
87.2 kN 

20.4 mm Shear 

Table 6: Results Wall 1 

 

Figure 55: Pushover Curve SLaMA Wall 1 

4.3.2.2 Wall 2-5: Opening irregularity 

 Pier no. Boundary 
conditions 

Shear capacity 
(kN) 

Drift capacity 
(mm) 

Failure 
mechanism 

Wall 2 Pier 1 0.96 14.7 32.7 Rocking 
 Pier 2 0.93 10.1 24.5 Rocking 
 Pier 3 0.96 14.8 32.6 Rocking  
Wall 3 Pier 1 0.91 12.4 32.7 Rocking 
 Pier 2 0.82 9.0 24.5 Rocking 
 Pier 3 0.91 12.4 32.6 Rocking 
Wall 4 Pier 1 0.86 8.7 32.7 Rocking 
 Pier 2 0.72 6.9 24.5 Rocking 
 Pier 3 0.86 8.7 32.6 Rocking 
Wall 5 Pier 1 0.94 13.5 32.7 Rocking 

 Pier 2 0.88 9.5 24.5 Rocking 
 Pier 3 0.94 13.6 32.6 Rocking 

Table 7: Results Walls 2-5 
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Figure 56: Pushover curve SLaMA Wall 2 (upper-left), Wall 3 (upper-right), Wall 4 (lower-left) and Wall 5 (lower-

right) 
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4.3.2.3 Wall 6-8: Slender pier irregularity 

 Pier no. Boundary 
conditions 

Shear capacity 
(kN) 

Drift capacity 
(mm) 

Failure 
mechanism 

Wall 6 Pier 1 0.77 5.9 32.7 Rocking 
 Pier 2 0.55 5.6 24.5 Rocking 
 Pier 3 0.55 5.6 24.5 Rocking  

 Pier 4 0.77 6.0 32.6 Rocking 
Wall 7 Pier 1 0.88 9.8 32.7 Rocking 
 Pier 2 0.56 5.7 24.5 Rocking 
 Pier 3 0.88 9.8 32.6 Rocking 
Wall 8 Pier 1 Double-

clamped 
4 32.7 Rocking 

 Pier 2 0.94 27.4 24.5 Shear 
 Pier 3 Double-

clamped 
4 32.6 Rocking 

Table 8: Results Walls 6-8 

 

 

Figure 57: Pushover curve SLaMA Wall 6 (upper-left), Wall 7 (upper-right) and Wall 8 (lower-left). 
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4.3.2.4 Wall 9-12: Centre of mass irregularity 

 Pier no. Boundary 
conditions 

Shear capacity 
(kN) 

Drift capacity 
(mm) 

Failure 
mechanism 

Wall 9 Pier 1 0.84 7.9 32.7 Rocking 
 Pier 2 Double-

clamped 
3.7 24.5 Rocking 

 Pier 3 0.92 14.6 32.6 Rocking  
Wall 10 Pier 1 0.62 4.4 32.7 Rocking 
 Pier 2 0.72 7.0 24.5 Rocking 
 Pier 3 0.93 15.6 32.6 Rocking 
Wall 11 Pier 1 Double-

clamped 
2.8 32.7 Rocking 

 Pier 2 0.69 6.5 24.5 Rocking 
 Pier 3 0.94 20.4 31.2 Rocking 
Wall 12 Pier 1 Double-

clamped 
0.8 32.7 Rocking 

 Pier 2 0.69 6.5 24.5 Rocking 
 Pier 3 0.95 25.6 29.4 Rocking 

Table 9: Results Walls 9-12 

 

 

Figure 58: Pushover curve SLaMA Wall 9 (upper-left), Wall 10 (upper-right), Wall 11 (lower-left) and Wall 12 
(lower-right) 
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Summary 

In this section the results were given of the SLaMA based on linear interpolation of the boundary 

conditions. In the below figures the results are once again given, but categorized for each variation. 

 

  

 

Figure 59: Pushovercurves SLaMA linear interpolation for each variation. 

   



 
59 

 

4.3.3 Boundary conditions based on MatrixFrame 

4.3.3.1 Wall 1: Regular wall 

 Shear capacity Drift capacity Failure mechanism 

Pier 1 
(Residual capacity) 

112.4 kN 
87.2 kN 

20.4 mm Shear 

Table 10: Results Wall 1 

 

Figure 60: Pushover Curve SLaMA Wall 1 

4.3.3.2 Wall 2-5: Opening irregularity 

 Pier no. Boundary 
conditions 

Shear capacity 
(kN) 

Drift capacity 
(mm) 

Failure 
mechanism 

Wall 2 Pier 1 0.98 14.5 32.7 Rocking 
 Pier 2 0.98 9.6 24.5 Rocking 
 Pier 3 0.99 14.4 32.6 Rocking  
Wall 3 Pier 1 0.98 11.6 32.7 Rocking 
 Pier 2 Cantilever 7.3 24.5 Rocking 
 Pier 3 0.98 11.6 32.6 Rocking 
Wall 4 Pier 1 0.97 7.7 32.7 Rocking 
 Pier 2 Cantilever 4.9 24.5 Rocking 
 Pier 3 0.97 7.7 32.6 Rocking 
Wall 5 Pier 1 0.98 12.9 32.7 Rocking 

 Pier 2 Cantilever 8.3 24.5 Rocking 
 Pier 3 0.98 13.0 32.6 Rocking 

Table 11: Results Walls 2-5 
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Figure 61: Pushover curve SLaMA Wall 2 (upper-left), Wall 3 (upper-right), Wall 4 (lower-left) and Wall 5 (lower-
right) 
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4.3.3.3 Wall 6-8: Slender pier irregularity 

 Pier no. Boundary 
conditions 

Shear capacity 
(kN) 

Drift capacity 
(mm) 

Failure 
mechanism 

Wall 6 Pier 1 0.93 4.9 32.7 Rocking 
 Pier 2 0.95 3.3 24.5 Rocking 
 Pier 3 0.95 3.3 24.5 Rocking  

 Pier 4 0.93 4.9 32.6 Rocking 
Wall 7 Pier 1 0.97 8.9 32.7 Rocking 
 Pier 2 Cantilever 3.2 24.5 Rocking 
 Pier 3 0.97 8.9 32.6 Rocking 
Wall 8 Pier 1 0.93 2.2 32.7 Rocking 
 Pier 2 Cantilever 25.8 26.4 Shear 
 Pier 3 0.93 2.2 32.6 Rocking 

Table 12: Results Walls 6-8 

 

 

Figure 62: Pushover curve SLaMA Wall 6 (upper-left), Wall 7 (upper-right) and Wall 8 (lower-left). 
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4.3.3.4 Wall 9-12: Centre of mass irregularity 

 Pier no. Boundary 
conditions 

Shear capacity 
(kN) 

Drift capacity 
(mm) 

Failure 
mechanism 

Wall 9 Pier 1 0.96 7.0 32.7 Rocking 
 Pier 2 0.98 1.9 24.5 Rocking 
 Pier 3 0.83 16.3 32.6 Rocking  
Wall 10 Pier 1 0.92 3.0 32.7 Rocking 
 Pier 2 0.99 5.1 24.5 Rocking 
 Pier 3 0.99 14.6 32.6 Rocking 
Wall 11 Pier 1 0.88 1.6 32.7 Rocking 
 Pier 2 0.98 4.6 24.5 Rocking 
 Pier 3 Cantilever 19.3 31.2 Rocking 
Wall 12 Pier 1 0.90 0.4 32.7 Rocking 

 Pier 2 0.96 4.6 24.5 Rocking 
 Pier 3 0.99 24.5 29.4 Rocking 

Table 13: Results Walls 9-12 

 

 

Figure 63: Pushover curve SLaMA Wall 9 (upper-left), Wall 10 (upper-right), Wall 11 (lower-left) and Wall 12 
(lower-right) 
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Summary 

In this section the results were given of the SLaMA based on MatrixFrame. In the below figures the 

results are once again given, but categorized for each variation. 

  

 

Figure 64: Pushovercurves SLaMA based on MatrixFrame for each variation. 
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5 Discussion 
This chapter covers the comparison of the results acquired in the previous chapter. The comparison is 

split into several parts. First the formulation of the boundary conditions in SLaMA will be discussed. 

Then the results will be compared with each other by presenting the difference between the simplified 

calculation methods (SLaMA and 3MURI EFM) and DIANA FEA. Then the differences will be 

discussed and elaborated. 

5.1 Comparison of the results in terms of base shear 
In the below tables the results of the different methods are given for each irregularity index. The 

SLaMA results with the new formulations of the boundary conditions is also given below. 

Model 𝑖𝑜 DIANA SLaMA 3MURI Ratio 
SLaMA 

Ratio SLaMA 
Linear 

Ratio SLaMA 
Frame 

Ratio 
3MURI 

Wall 1 0 116 87.2 80 0.75 0.75 0.75 0.69 

Wall 2 0.1 79.7 37.9 31.5 0.48 0.5 0.48 0.4 

Wall 5 0.15 75.7 33.8 30.4 0.45 0.48 0.45 0.4 

Wall 3 0.2 73 30 28.4 0.41 0.46 0.42 0.39 

Wall 4 0.35 59.9 19.9 22.5 0.33 0.4 0.34 0.38 

Table 14: Comparison of the base shear values obtained at varying the opening irregularity 

Model 𝑖𝑜 𝑖𝑠 DIANA SLaMA 3MURI Ratio 
SLaMA 

Ratio 
SLaMA 
Linear 

Ratio SLaMA 
Frame 

Ratio 
3MURI 

Wall 4 0.35 0 59.9 19.9 22.5 0.33 0.4 0.34 0.38 

Wall 7 0.35 0.333 59.3 20.4 23 0.34 0.43 0.35 0.39 

Wall 8 0.35 0.667 70 33.8 31.3 0.48 0.51 0.43 0.45 

Wall 6 0.35 1 44.5 15.3 17 0.34 0.52 0.37 0.38 

Table 15: Comparison results slender pier irregularity 

Model 𝑖𝑜 𝑖𝑠 𝑖𝑐 DIANA SLaMA 3MURI Ratio 
SLaMA 

Ratio 
SLaMA 
Linear 

Ratio 
SLaMA 
Frame 

Ratio 
3MURI 

Wall 
7 

0.35 0.333 0 59.3 20.4 23 0.34 0.43 0.35 0.39 

Wall 
9 

0.35 0.333 0.1 57.5 23.9 22.3 0.41 0.46 0.44 0.39 

Wall 
10 

0.35 0.333 0.2 54.5 22.2 21.1 0.41 0.49 0.42 0.39 

Wall 
11 

0.35 0.333 0.3 56.9 26.5 22.6 0.47 0.52 0.45 0.4 

Wall 
12 

0.35 0.333 0.4 58 29.6 24.6 0.51 0.57 0.51 0.42 

Table 16: Comparison results centre of mass irregularity 
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5.1.1 Opening irregularity 
For the first irregularity, the models differed in the sizes of the openings. For all methods it can be 

noticed in the figure below that the shear capacity undergoes a large drop for even the slightest 

opening. In FEM the opening causes a disturbance in the stress field, which causes the stresses in 

plane to increase and in return will cause the wall to fail at an earlier stage. For the simplified 

methods, the opening influences the definition of the pier and spandrel geometry and in return causes 

in a simplified way a decrease in the shear capacity. Beyond the first opening irregularity, the lateral 

capacity decreases further with the increase of the opening irregularity index. However, the shear 

capacity decreases for each method differently. 

For the EFM in 3MURI, the difference with respect to the results obtained with DIANA FEA remains 

constant for the different values of the index i0. This can be observed in the figure below. The first 

drop is due to the disturbance caused by adding an opening in a wall façade. This first decrease is for 

all simplified methods large and can be related to the transition of the wall configurations from a single 

pier to three piers. When multiple piers are present in a wall façade, the influence of the force 

redistribution on the seismic capacity plays a more significant role. EFM makes use of the frame 

approach to redistribute forces while SLaMA does not take into account the force redistribution of the 

piers during loading. This can lead to more conservative results than DIANA. The parallel course of 

the lateral capacities in EFM and FEM is due to the similar assumptions been made. 3MURI takes 

into account the change of the axial load during lateral loading just like DIANA. However, this 

research focuses on single floor wall configurations only. If a wall has multiple floors, other 

irregularities could play a larger role in the difference, like the definition of a pier and a spandrel. As 

far as the underestimation of 3MURI compared to SLaMA concerned, the model parameters used in 

3MURI are based on the Eurocode NL, while the SLaMA calculation is in correspondence with 

NPR9998:2018. 3MURI has also the option to adjust model parameters in correspondence with the 

NPR9998. This has been done for two wall configurations in chapter 4.3.6. The results of these 

models are similar to the SLaMA as to the force and displacement capacity concerned. 

For SLaMA, the first result does not differ much from the FEM results. At the first irregularity index of 

0.1, the drop is very large and after that the difference only becomes larger between SLaMA and 

DIANA. The SLaMA results are initially closer to DIANA than 3MURI, but eventually, as the opening 

size increases, the SLaMA method underestimates the ultimate loading capacity compared to DIANA. 

This underestimation can be caused by several factors. One of these factors could be the formulation 

of the boundary conditions in the SLaMA. The SLaMA method takes a psi equal to 0.5 for double-

clamped condition and a psi equal to 1 for cantilever boundary conditions. In reality, these boundary 

conditions do not occur that often, because a pier is always connected to a spandrel and the 

connection between pier and spandrel is often neither infinitely rigid nor hinged. For the cases studied 

in the figure below, the SLaMA method gave for all five walls piers with cantilever boundary 

conditions. This, while the opening irregularity index was increasing. For a larger opening irregularity, 

the piers increase in slenderness. This means in reality that the connection becomes more rigid 

between piers and spandrels. So the underestimation is caused because SLaMA assumes cantilever 

boundary conditions for all the 5 walls, while in reality the piers should behave more rigidly. 
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As a solution for this underestimation, a new formulation for the boundary conditions is made. These 

two formulations have been explained in chapter 5.1. In the figure below one can see that the shear 

capacity differs less from DIANA with implementing the linear interpolation formulation in SLaMA. The 

method is now also less dependent of the opening irregularity index. The second formulation gives 

results similar to the initial boundary condition formulation. This means that most piers in the wall 

configurations act close to cantilever and so the difference with the assessment approach in 3.3.3 is 

small. This approach can also be verified in 3MURI. In 3MURI it can be observed that the spandrels 

crack first in a wall, which causes the close to cantilever condition. Overall, the variations of the 

SLaMA and especially EFM results compared to DIANA are limited with respect to the opening 

irregularity. 

 

Figure 65: Comparison results opening irregularity 

5.1.2 Slender pier irregularity 
The second irregularity index is based on the slenderness of the piers. For each wall the number of 

slender piers has been increased. For the EFM results there is no significant change in the ratio for all 

the walls except wall 8. This can be caused because of shear failure of the middle pier in the wall 

façade. The shear failure is based on the Mohr-Coulomb criterion while in case of rocking failure other 

formulas are used. 

The SLaMA results also do not show significant changes except for wall 8. Also, for SLaMA the same 

applies. Failure due to shear is also based on the Mohr-Coulomb criterion and gives different results 

than for rocking failure. What also can be noticed is the underestimation of the SLaMA results. It 

should be noted that opening irregularity index for all the four walls is equal to 0.35. Which is 

significant for the underestimation of the results as seen in the previous figure. Again implementing 

the linear interpolation formulation of the boundary conditions gives lower differences with DIANA. For 

the frame formulation, one can observe that the variation of the results compared to DIANA is smaller. 

This is due to the boundary conditions in wall 8. With the assessment approach of 3.3.3 the boundary 

conditions for the two outer piers are double clamped. This causes the large difference in the figure 

below. The SLaMA Frame formulation shows a smaller variation that corresponds more with EFM. 

Again it can be observed that the variations of the simplified methods are limited. 
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Figure 66: Comparison results slender pier irregularity 

The formulation of the slender pier irregularity could be altered. Because a slenderness ratio of 2 is 

not always the definition of a slender pier in reality when observing the behaviour of a pier. The walls 

that have been assessed with the slender pier irregularity, may have had a slenderness ratio lower 

than two but still had rocking behaviour. This behaviour is typical for a slender pier and not for a thick 

pier. After taking a closer look at which slenderness ratio rocking behaviour will initiate, it can be 

concluded that it is not possible to determine such a slenderness ratio easily. This is because slender 

behaviour of a pier also depends on the boundary conditions, axial force and material properties. For 

Clay-brick pre 1945 an approximation is made of when a pier is slender: 

ℎ𝑝

𝑙𝑝
≥
0.81

𝜓
  

This statement is inaccurate for very large axial loads. Applying this condition on the piers in this 

report gives a definition in correspondence with the behaviour of the pier in SLaMA. Piers with a 

slenderness lower than the above condition fail due to shear and piers higher than the condition fail 

due to rocking.  
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5.1.3 Centre of mass irregularity 
The last irregularity index is based on the position of the piers relative to the centre of mass of the 

wall. This is a straightforward way to define the geometrical irregularity as far as asymmetry is 

concerned. Again for the EFM results there are no substantial differences relatively.  

The SLaMA method shows changes compared to the FEM results from 0.34 to 0.51. By implementing 

the linear interpolation formulation of the boundary conditions, it can be observed that the results of 

SLaMA change substantially less than before. It can also be said that the results of SLaMA with the 

linear interpolation boundary condition formulation come for all indices closer to the FEM results than 

3MURI. This is not necessarily because the formulation is better, because the SLaMA Linear 

formulation still varies depending on the irregularities in the wall. The SLaMA Frame formulation 

shows for all wall configuration results similar to the initial assessment approach. However, 

implementing the formulation gives results less dependent on the irregularities in a wall. 

 

Figure 67: Comparison results centre of mass irregularity 

The EFM in 3MURI shows results similar to the SLaMA method, however less dependent on 

geometrical irregularities for single floor 2D wall configurations. This could be due to the assessment 

of the boundary conditions, as can be seen in the SLaMA Frame formulation. However, one factor 

that plays a major role for the independence on geometrical irregularities in 3MURI is taking into 

account the change of axial load during lateral loading. The SLaMA does not take this change into 

account and assumes the initial axial load to be the final axial load. Further research about the effect 

of the varying axial load on the in-plane behaviour can be found in the research of Nidal Ennali. The 

variations for this irregularity are also very limited for SLaMA and especially EFM. 

5.1.4 Influence of the new boundary conditions formulation 
Based on the comparison of the results in section 5.1, one can see whether the two proposed 

assessment methods of the boundary conditions improve the accuracy of SLaMA. The linear 

interpolation formulation gives results closer to DIANA. An improvement between 0.02 and 0.18 can 

be seen for all wall configurations. The Matrix Frame approach does not show significant 

improvement of the results and even presents for some wall configurations results further away from 

DIANA than the initial method. 
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5.2 Failure mechanisms 
For the different calculation methods the following failure mechanisms were observed: 

Table 17: Failure mechanisms wall configurations 

The failure mechanisms described by SLaMA show good correspondence with DIANA. However, 

SLaMA and EFM cannot define a combined failure mechanism as DIANA does. This makes it more 

difficult to visualise which failure mechanism is the governing one in DIANA. Another remark, that 

needs to be made is the use of the failure type ‘Tensile strength head-joint defined by bed-joint 

frictional shear stress’. This failure gives a less accurate representation of the diagonal cracks 

occurring in a wall. This makes it even more difficult to get an accurate governing failure mechanism. 

Even though 3MURI shows a less correspondence with DIANA, based on the above argument this 

does not mean 3MURI is less accurate. 

  

Model 𝑫𝑰𝑨𝑵𝑨 SLaMA 3MURI Comparison 

SLaMA-DIANA 

Comparison 

3MURI-DIANA 

Wall 1 Shear failure Bed joint 

sliding shear 

Shear failure Good 

agreement 

Good 

agreement 

Wall 2 Shear/rocking failure pier 3 Rocking of all 

the piers 

Shear failure 

all piers 

Reasonable 

agreement 

Poor agreement 

Wall 3 Shear/rocking failure pier 3 Rocking of all 

the piers 

Shear failure 

pier 3 

Reasonable 

agreement 

Reasonable 

agreement 

Wall 4 Shear/rocking failure pier 3 Rocking of all 

the piers 

Shear failure 

pier 3 

Reasonable 

agreement 

Reasonable 

agreement 

Wall 5 Shear/rocking failure pier 3 Rocking of all 

the piers 

Shear failure 

pier 1 and 3 

Reasonable 

agreement 

Reasonable 

agreement 

Wall 6 Rocking of all the piers Rocking of all 

the piers 

Shear failure 

pier 4 

Good 

agreement 

Reasonable 

agreement 

Wall 7 Rocking/shear failure pier 3 Rocking of all 

the piers 

Shear failure 

pier 3 

Reasonable 

agreement 

Reasonable 

agreement 

Wall 8 Shear failure pier 2 Shear failure 

pier 2 

Shear failure 

pier 2 

Good 

agreement 

Good 

agreement 

Wall 9 Rocking/shear failure pier 1 Rocking of all 

the piers 

Shear failure 

pier 1 

Reasonable 

agreement 

Reasonable 

agreement 

Wall 10 Rocking of all the piers Rocking of all 

the piers 

Rocking of all 

the piers 

Good 

agreement 

Good 

agreement 

Wall 11 Rocking of all the piers Rocking of all 

the piers 

Shear failure 

pier 3 

Good 

agreement 

Reasonable 

agreement 

Wall 12 Rocking of all the piers Rocking of all 

the piers 

Shear failure 

pier 3 

Good 

agreement 

Reasonable 

agreement 
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The SLaMA method shows mainly flexural failure mechanisms. This can be caused by not taking into 

account the varying axial load during loading. Based on the loading direction, the axial load will 

decrease during loading for the first pier and increase for the last pier. An increase in axial load could 

cause shear failure as a governing failure mechanism. The below figure shows an example of how the 

axial load can vary during loading. 

 

Figure 68: Varying axial load (3MURI, 2019) 

5.3  Ultimate displacement capacity 
The drift limit results were different for all methods. SLaMA gave drift limits between 24-32 mm, while 

3MURI presented drift limits between 12-18 mm. DIANA presented displacement capacities larger 

than 40 mm. The differences are caused by the different relationships used for the drift limits. The 

displacement capacity of DIANA is based on the material model, while SLaMA and 3MURI base their 

results on empirical relationships of respectively the NPR and Eurocode NL. The large difference 

between SLaMA and 3MURI is mainly caused by the prediction of different failure mechanisms. Shear 

failure mechanisms cause in general lower displacement capacities than flexural failure mechanisms. 

In the table below the drift limits are shown: 

Model 3MURI drift 
limit(mm) 

SLaMA drift 
limit(mm) 

Wall 1 14.4 20.4 
Wall 2 12.9 32.6 
Wall 3 13.9 32.6 
Wall 4 14.3 32.6 
Wall 5 13 32.6 
Wall 6 39.8 32.6 
Wall 7 14.4 32.6 
Wall 8 11.9 24.5 
Wall 9 13.6 32.6 

Wall 10 39.9 32.6 
Wall 11 12.8 31.2 
Wall 12 12.7 29.4 

Table 18: Drift limits 3MURI and SLaMA 
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5.4 Influence of the different constitutive models in 3MURI and DIANA 
This research focuses on the influence of the geometrical irregularities on the simplified calculation 

methods as regards the in-plane behaviour of masonry wall façades compared to FEM. For the FEM 

analysis, DIANA FEA was used. The comparisons have been done with one specific constitutive 

model in DIANA and 3MURI. For the modelling in DIANA, the Engineering Masonry Model was used. 

Using other constitutive models in DIANA could of course give different results for the in-plane 

behaviour and there is not one specific, accurate constitutive model for all cases. It depends on the 

loading conditions, material behaviour etc. in each specific situation which constitutive model should 

be chosen. For this reason an additional comparison has been made for a different constitutive model 

as seen in chapter 4.4. The constitutive model that has been picked, is the Rotating Strain Crack 

Model. This constitutive model has been used for two wall configurations with squat piers. Below, the 

results are given for these two constitutive models: 

Model Shear capacity 
TSC (kN) 

Shear capacity 
EMM (kN) 

Failure 
mechanism TSC 

Failure 
mechanism 
EMM 

Wall 2 81.2 79.7 Rocking/Shear Rocking 
Wall 8 71 70 Rocking Rocking 

Table 19: Results constitutive models DIANA 

The results of the two different constitutive models were similar as far as shear and displacement 

capacity concerned. As to the principal strains, the Rotating Strain Crack model showed better 

representation of the strains in the piers. This is due to the failure type ‘Tensile strength head-joint 

defined by bed-joint frictional shear stress’ as described in the DIANA Verification document. 

As far as 3MURI concerned, the shear behaviour in the models were all based on the Mohr-Coulomb 

criterion which describes bed joint sliding shear. A different approach is describing the shear 

behaviour with the diagonal cracking formula of Turnsek & Cakovic. This has also been done for Wall 

2 and 8 just like DIANA. In the below table a comparison of the results is shown:  

Model Shear capacity 
T&C (kN) 

Shear capacity 
MC (kN) 

Displacement 
capacity T&C 
(mm) 

Displacement 
capacity MC 
(mm) 

Wall 2 31.4 31.5 24.2 12.9 
Wall 8 30.8 31.3 20.8 11.9 

Table 20: Results different shear behaviour 3MURI 

The outcome was different from the Mohr-Coulomb criterion. Although the results showed similar 

shear capacities this was not the case for the displacement capacities in the wall configurations. The 

models based on Turnsek & Cakovic show twice as large displacement capacities as in the models 

based on Mohr-Coulomb. This is due to the fact that in the models based on Turnsek & Cakovic no 

shear failure of a pier is occurring, but only flexural failure. Failure mechanisms like rocking have large 

displacement capacities compared to shear failure mechanisms. In general it is unnecessary to check 

the diagonal cracking failure for specific types of masonry as specified in 3.1.1 of the NEN EN 1996-1-

1. For this reason the Mohr-Coulomb criterion is the most accurate to describe the shear behaviour of 

a pier. 
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5.5 Influence of lintels on the in-plane behaviour in DIANA 
A small study has been conducted on the influence of lintels on the in-plane behaviour. In two wall 

configurations lintels have been modelled in DIANA. The influence of the lintels on the strain plots as 

seen in section 4.1.6 is minimal. A negligible difference can be seen in the base shear force between 

the two models in section 4.1.6.  
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6 Conclusions and recommendations 
6.1 Conclusions 
The main goal of this research was answering the following research question: 

• How do geometrical irregularities affect the assessment of the in-plane behaviour of single-

storey URM wall facades performed with a mechanism based and a frame based analysis 

when compared to FEM?  

The objective has been studied by looking into single-floor wall façades. The conclusions made in this 

research can generally be applied to single-floor URM wall façades in Groningen of the masonry 

material Clay-Brick pre 1945. For other masonry types, differences can be seen for example in the 

definition of a slender pier. Also, significant changes in geometry outside the scope of this research 

can also have an influence on the results. For example, wall configurations with different heights of 

the spandrels can have an influence on the boundary conditions and their different formulations. 

6.1.1 Effects of geometrical irregularities on the equivalent frame method 
The following conclusions are drawn based on the comparison of the results of the DIANA and 3MURI 

models: 

Based on the findings in this research, it can be concluded that the in-plane behaviour of a URM wall 

façade with EFM in 3MURI is not affected by the geometrical irregularities defined in this research in 

comparison with DIANA. This can be observed in the base shear capacities, displacement capacities 

and failure mechanisms of each model. 

3MURI gave in general more conservative results than DIANA for all wall configurations. The models 

showed conservative results even with the presence of geometrical irregularities. 

The base shear capacity in 3MURI is affected by geometrical irregularities in the same way as in 

DIANA. This is due to implementing the effective height method, the boundary conditions and the 

varying axial load. These applications assist in the consistency of the base shear capacity compared 

to DIANA when geometrical irregularities are present. 

The ultimate displacement capacity or drift limit is in general lower in 3MURI compared to DIANA. 

This can be related to the force redistribution in DIANA, which allows gradual softening in contrast to 

3MURI. The displacement capacity cannot be compared with DIANA as the material model computed 

high displacement capacities which did not show failure in the program. It can however be concluded 

that the displacement capacities were conservative compared to DIANA for all wall configurations. 

The SLaMA method did show differences with 3MURI. These differences were however caused by 

the different predictions of the failure mechanisms, which is again related to the varying axial load. 

The failure mechanisms described by 3MURI are mostly corresponding to DIANA. However, DIANA 

shows often a combination of two failure mechanisms, whereas 3MURI only presents one failure 

mechanism as governing. It also needs to be noted that the failure type chosen in DIANA is more 

difficult for deducting the governing failure mechanism, because the diagonal cracks are hard to 

visualise in the strain plots. The geometrical irregularities did not have a large influence on the 

prediction of the failure mechanism by 3MURI compared to DIANA. By determining the effective 

height and taking into account the varying axial load, 3MURI could predict the failure mechanisms in 

correspondence to DIANA. 
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6.1.2 Effects of geometrical irregularities on the SLaMA method 
The following conclusions are drawn based on the comparison of the results of the DIANA models 

and SLaMA calculations: 

SLaMA gave in general more conservative results regarding force and displacement capacity than 

DIANA for all wall configurations. The models showed conservative results even with the presence of 

geometrical irregularities.  

The SLaMA method showed large influences by the geometrical irregularities with respect to DIANA, 

but these influences were reduced slightly with a new formulation of the boundary conditions in the 

SLaMA. This can be observed in the base shear capacities, displacement capacities and failure 

mechanisms of each model. 

The SLaMA method computed base shear capacities dependent on the geometrical irregularities 

compared to DIANA. The new formulation of the boundary conditions gave a base shear capacity 

slightly less dependent on the geometrical irregularities. The results show that the irregularities can 

vary the ratio of the shear capacity with DIANA between 0.34 and 0.75. This is still a large variation of 

results. The variation could be smaller by taking into account a varying axial load like 3MURI. This 

effect has been shown in the research of Nidal Ennali. 

The ultimate displacement capacity or drift limit is in general lower in SLaMA compared to DIANA. 

This is due to the fact that the drift limit in SLaMA is determined for single piers. And based on the 

drift limits of the single piers a global displacement capacity is determined. The effect of the 

geometrical irregularities on the displacement capacities is only found compared to 3MURI.  

SLaMA shows mainly flexural failure, which is caused by neglecting the axial load redistribution 

between the piers. This effect can be seen in the displacement capacities of SLaMA compared to 

3MURI. SLaMA overestimates the drift limit in comparison with 3MURI. The influence of the varying 

axial load on the prediction of the failure mechanisms depends on the geometrical irregularities in a 

wall.  
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6.2 Recommendations 
This part describes some recommendations which follows from this study and from the study Nidal 

Ennali. Both studies have been carried out in parallel and in cooperation with each other. Therefore, 

the recommendations resulting from these studies are combined in this chapter.  

• Further research is required in determining how to include (in a simple way)  the effect of the 

varying axial load at the top of the piers within the SLaMA method. This is relevant for predicting 

the failure mechanisms, especially when geometrical irregularities are present. Combining a 

simplified equivalent frame method with the SLaMA method could be a possible solution.  

• A new procedure is needed to determine the boundary conditions of the piers in the in-plane 

loaded walls. Including the boundary conditions that lies between the double clamped boundary 

condition and the cantilevered boundary condition would result in a less conservative prediction 

and in a less dependent prediction on the geometrical irregularities in comparison with FEM 

with the SLaMA method.  

• More research is needed to determine at which difference in shear capacities the combined 

failure type occurs. One specific failure type will happen when the difference in shear capacity 

is significant. How small needs this difference to be in order to adopt the combined failure 

mechanism within the SLaMA method? 

• Further research is needed for the simplified methods regarding the effect of geometrical 

irregularities for cases with a higher complexity of geometry like multi-storey URM walls or 3D 

URM buildings. 

• The irregularity indices could be altered or different irregularity indices could be defined. For 

example the slenderness ratio in the slender pier irregularity index can be replaced by the new 

slenderness ratio that has been defined in chapter 5.3.2. 

• When deducting the failure mechanisms from the DIANA strain plots, it was difficult to observe 

shear failure mechanisms in the piers. It is possible to consider a different failure type from the 

Engineering Masonry Model which gives a more accurate representation of the strain plot, like 

the failure type ‘Diagonal Staircase-cracks’. 

• The different constitutive models in DIANA did not show large differences in results, however 

the walls that were modelled were sensitive to rocking. More research is needed on whether 

walls with shear failure could give different results for the two constitutive models. 

• Different model parameters could be used in 3MURI and researched. For example, the model 

parameters based on the NPR9998:2018 could be implemented instead of the Eurocode NL 

parameters. 
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A. Appendix A: SLaMA calculation 
Below the full SLaMA calculation is described. This procedure was used for all wall configuration in 

this report. 

1. Define geometry of the wall configurations: 

 

2. Calculation of the shear capacities of the spandrels: 
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3. Calculation of the shear capacities of the piers and assigning respectively the failure 

mechanisms to each pier: 

 

 

4. Calculation of the drift capacities of the piers: 
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B.  Appendix B: DIANA Results 
In the following figures the DIANA strain plots are given for each wall configuration at five different 

stages. 

Wall 1 
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Figure 69: Principal strain plot Wall 1 for steps 100, 200, 300, 400 and 501 
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Wall 2
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Figure 70: Principal strain plot Wall 2 for steps 100, 200, 300, 400 and 501 
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Wall 3 

 

 

 



 
84 

 

 

 

Figure 71: Principal strain plot Wall 3 for steps 100, 200, 300, 400 and 501 
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Wall 4
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Figure 72: Principal strain plot Wall 4 for steps 100, 200, 300, 400 and 501 
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Wall 5 
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Figure 73: Principal strain plot Wall 5 for steps 100, 200, 300, 400 and 501 
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Wall 6
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Figure 74: Principal strain plot Wall 6 for steps 100, 200, 300, 400 and 501 
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Wall 7 
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Figure 75: Principal strain plot Wall 7 for steps 100, 200, 300, 400 and 501 
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Wall 8
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Figure 76: Principal strain plot Wall 8 for steps 100, 200, 300, 400 and 501 
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Wall 9 
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Figure 77: Principal strain plot Wall 9 for steps 100, 200, 300, 400 and 501 

  



 
97 

 

Wall 10
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Figure 78: Principal strain plot Wall 10 for steps 100, 200, 300, 400 and 501 
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Wall 11 
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Figure 79: Principal strain plot Wall 11 for steps 100, 200, 300, 400 and 501 
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Wall 12
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Figure 80: Principal strain plot Wall 12 for steps 100, 200, 300, 400 and 501 
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C. Appendix C: Total Strain Crack model 

results 
In the figures below the principal strain plots are shown at 4 different stages during loading for the 

Total Strain Crack model results of wall 2 and 8. 

Wall 2 
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Figure 81: Principal strain plot Wall 2 for steps 100, 201, 350 and 624 

Wall 8 
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Figure 82: Principal strain plot Wall 8 for steps 100, 201, 350 and 624 
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D. Appendix D: Results walls with lintels 
In the figures below, the strain plots are shown for the wall configurations modelled with lintels for wall 

2 and 8 at five different stages. 

Wall 2 
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Figure 83: Principal strain plot Wall 2 for steps 101, 201, 401, 699 and 1001 
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Wall 8
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Figure 84: Principal strain plot Wall 8 for steps 101, 201, 401, 699 and 1001 


