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Summary

Since 1963, the extraction of gas is going on in Groningen. This has caused (human) induced
earthquakes in recent decades. The first induced earthquake took place in 1991 and in recent years
induced seismicity has considerably increased in this region. These incidents are a significant danger
for the built environment, because the building stock is mainly composed of unreinforced masonry
structures, vulnerable for seismic activity due to the use of slender walls, weak wall-floor connections

and cavity walls.

The seismic assessment of unreinforced masonry structures in Groningen is still ongoing. The
assessment is vital to determine whether a building must be strengthened or not. Different
assessment approaches have been followed in recent years. First, the Non Linear Time-History
analyses (NLTHA) were initially the only approach used for the seismic assessment. They are still
overall the most accurate type of assessment, but they are also the most time-consuming one.
Nowadays, NLPO analyses are more frequently used. This assessment procedure presents some
limitations of application and may be less accurate for complex structures but it requires less
computational time. The NLPO analyses can be performed by means of different tools, such as
analyses based on the finite element method (FEM), equivalent frame (EF) or macro-element based
analyses and, eventually, also analytical mechanism based analyses. The SLaMA method belongs to
this last category: this method is an analytical approach already tested and validated in New Zealand
for RC structures.

This research aims to answer the following research question:

. How is the in-plane behaviour of single-storey URM wall facades affected in simplified

calculation methods compared to FEM when geometrical irregularities are present?

The walls have been modelled in 2D with three different methods: FEM, EF and SLaMA. Material
properties and modelling assumptions were maintained as consistent as possible within the three
different methods. For researching the influence of the geometrical irregularities on the accuracy of
EF and SLaMA when compared to FEM, the variation of geometrical irregularities, each quantified by
an index value, have been studied. The influence of these indices on the accuracy of the calculation
methods has been researched with a sensitivity analysis.

The objective has been pursued by looking into single-floor URM fagades, and the conclusions of this
research can be applied to this typology of walls in Groningen made of solid clay brick masonry (pre

1945). The study focuses specifically on the base shear capacity of the walls.

The differences observed when comparing the in-plane behaviour of a wall analysed with 3SMURI and
DIANA are not significantly affected by the presence of geometrical irregularities. The ratio between
the base shear capacity computed with the two approaches and the predicted failure mechanisms

remains consistent for all geometrical irregularities defined in this report.




Similarly, the differences observed when comparing the in-plane behaviour of a wall analysed with
SLaMA and DIANA are not largely affected by the presence of geometrical irregularities, since the
base shear computed according to SLaMA is consistently lower than that obtained with DIANA.
However, the base shear capacity obtained with SLaMA showed large variations between 0.34 and
0.75 with respect to DIANA when implementing geometrical irregularities. The largest variation is
obtained when more than a single pier is considered, due to the inability of SLaMA to define the re-
distribution of the vertical axial forces in the piers, nor correct boundary conditions at the top of the
piers since the constraining action of the spandrel appear underestimate. This affected also the
prediction of the failure modes, which differed for the two methods. However, in most of cases flexural
failure mode was obtained, and the study should be extended to consider also geometries and
loading conditions that cause also the shear failure of the walls.
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1 Introduction

1.1 Context

Since 1963, the extraction of gas is going on in Groningen. This has caused (human) induced
earthquakes in recent decades. The first induced earthquake took place in 1991 and in recent years
induced seismicity has considerably increased in this region. These incidents are a significant danger
for the built environment, because the buildings are mainly unreinforced masonry structures. These
structures are vulnerable for seismic activity because of their slender walls, weak wall-floor
connections and use of cavity walls.

The seismic assessment of unreinforced masonry structures in Groningen is still ongoing. The
assessment is vital in determining the seismic strengthening for a building. Different assessment
approaches have been done in recent years. First, the NLTHA was the main approach for the seismic
assessment. This is still the most accurate assessment, but also the most time-consuming one.
Nowadays, the NLPO analysis is more frequently used. This assessment may be less accurate for
complex structures but has less computational time. Recently, a new seismic assessment method has
been developed, namely the SLaMA method. This method is an analytical approach for the seismic
assessment of a full structure. It has already been tested in New Zealand and validated for RC
structures with NLPO.

In this research, the main subject is the in-plane behaviour of unreinforced masonry when geometrical
irregularities are present. For example: asymmetry, opening percentages, pier geometry and spandrel
geometry. Different calculation methods exist for the in-plane behaviour of an URM wall. However, it
is still unclear how these methods perform when the irregularities increase.

1.2 Aim of research

The aim of the research is to analyse whether the calculation methods for the in-plane behaviour now
are error-proof when geometrical irregularities in the facade of an URM wall are present.

1.3 Research questions
The research question sounds:

¢ How do geometrical irregularities affect the assessment of the in-plane behaviour of single-
storey URM wall facades performed with a mechanism based and a frame based analysis
when compared to FEM?

The sub questions hereby are:

= What are the results of an analysis in SLaMA of a 2D URM wall facade, in terms of force and
displacement?

= What are the results of an analysis in FEM of a 2D URM wall fagade, in terms of force and
displacement?

= What are the results of an analysis in EFM of a 2D URM wall fagade, in terms of force and
displacement?

= Are the results of analyses performed to different calculation methods (FEM, EFM, SLaMA)
consistent with each other when increasing geometrical irregularities?

= What is the difference in results between the different methods?

= How conservative are the simplified methods?

1.4 Research method

First the calculation methods should be understood, so as a first step the seismic capacity of a
masonry wall free of openings or geometrical irregularities will be calculated for all three methods.
This will be compared with each other and should have in first instance the same result for all three
methods. After this first comparison has been done, irregularities in the geometry of the models will be
applied and the same procedure follows as the first example. After each comparison, the model will




be modified and become more complex. The more comparisons that are done in which different
aspect will be varied, the better the conclusion will be.




2 Literature study

In this section the important literature concerning this research has been described. Analytical
methods have been considered and further explained. First the SLaMA method has been
summarised. Then the equivalent frame method is described. In the end, the problem of geometrical
irregularities is clarified. It should be noted that (parts of) this literature study has been done in
cooperation with Nidal Ennali with the consent of our committee members.

2.1 SLaMA Method

SLaMA method is an analytical approach to make a seismic assessment of buildings. This method is
firstly initiated in New Zealand, where they applied this method for several building. The SLaMA
method is normally applied to give a first estimation of the global capacity of a building subjected to a
seismic load. Mostly this first estimation determines what kind of assessment is necessary to follow
the SLaMA assessment. The assessment method that follows from this first estimation could be the
NLPO or NLTHA. Both these methods are considered as reliable and validated methods for
unreinforced masonry buildings (URM buildings).

Total overview SLaMA method

This part consists of a short summary of the SLaMA as described in NZSEE C8 (NZSEE, 2017) and
the NPR9998 (NEN, 2018) specified to unreinforced masonry.

Step 1: Assess the structural configuration and load paths to identify key structural elements,
potential structural weaknesses (SWs) and severe structural weaknesses (SSWs). (NZSEE,
2017)

Unreinforced masonry buildings consist of boundary walls, walls and diaphragm. Diaphragm can be a
ceiling, floor or foundation. Depending on the material this diaphragm could differ in stiffness.

The wall elements within an URM building could be divided in wall element with penetration and wall
element without penetrations. For the assessment also the orientation of the wall is important. Walls
can be oriented parallel to the plane of loading or perpendicular.

These elements within an URM building need to be analysed by consulting the plans/blueprint and
details. When analysing special notice must be given in the structural configuration, load paths,
potential structural weaknesses and severe structural weakness. Analysing these structural elements
is part of the first step of the SLaMA method.

Step 2: Assess the capacity of the diaphragm/ wall connection to determine if the diaphragm If
capable to transfer lateral load to the walls. (NZSEE, 2017)

In the second step is it necessary to analyse the detail drawings of the connections between the
diaphragm and walls. The capacity of the connection between the diaphragm and the wall is
dependent on the decisive failure mode.

Step 3: Determine the out-of-plane response and the out-of-plane capacity using the NLKA-
method.

The next phase of the SLaMA method is the determination of the out of plane response of a wall
element loaded with a face load. Both the NZSEE (NZSEE, 2017) and the NPR9998 (NEN, 2018) use
the same method for determining these out of plane responses. This method is based on a NLKA-
approach, a nonlinear kinematic analysis. This method will lead to a conservative value for the
resistance of this wall. The method is in general applicable to masonry walls oriented in a normal
manner. Walls that are oriented in a complex geometry needs to be analysed with a different method.




Step 4: Determine the in-plane response and the in-plane resistance to the possible failure
modes.

Before analysing behaviour of the wall loaded in plane, two different wall types need to be described.
First-of-all, there are walls with penetrations. These walls consist of the pier elements and spandrel
elements. The pier elements are the wall parts between the penetrations. And the spandrels are the
wall part above this penetration. The other wall type is the wall without any penetration.

The in-plane capacity of the URM walls or piers could be determined based on the governing failure
mechanism.

The following failure mechanisms are considered when analysing the in-plane capacity of the URM
walls or pier elements. The derivation of the formulas will be given in the next section of this chapter.

e Diagonal tensile

e In-plane rocking / Toe crushing
¢ Bed-joint sliding

¢ Slip plane sliding

¢ URM spandrel failure

Step 5: Determine probable inelastic behaviour of elements by comparing probable member
capacities and evaluating the hierarchy of strength.

In this step of the SLaMA method it is hecessary to compare the strengths of the different
components in a URM -wall. The inelastic behaviour of every component needs to be analysed. And
finally, the hierarchy of strength could be determined. The following components must be considered
in this step:

¢ Wall loaded out of plane

¢ Wall without penetrations loaded in-plane
e Spandrels

e Piers

e Foundation

e Diaphragm

Step 6: Assess the sub-system inelastic mechanisms by extending local to global behaviour.
(NZSEE, 2017)

The global capacity is the strength and deformation capacity of a total building. In the assessment of
the global capacity only the primary structure is considered. The primary structure consists of the
diaphragm and the walls loaded in-plane. In case of the cantilever wall system, the walls loaded out of
plane should also be considered in this assessment.

The diaphragms distribute the lateral force to the wall loaded in plane. This diaphragm could be
flexible or rigid. The flexible diaphragm can be modelled in a 3D analysis or 2D analysis. The rigid
diaphragm could result in an eccentricity due to the different rigidities of the walls. This results in
torsion, and thereby an extra lateral force due to shear stresses.

Step 7: Form a view of potential governing mechanism and calculate probable base shear and
global displacement capacity. (NZSEE, 2017)

The global displacement capacity and the probable base shear could be calculated based on the
stiffness of the diaphragm and the shear/deformation capacity of the governing structural element




(spandrel, piers, foundation, etc.). The governing structural element is the element which has the
lowest capacity due to the occurrence of a plausible failure mechanism.

Step 8: Determine equivalent SDOF system, seismic demand and %NBS. (NZSEE, 2017)

In this step the structure needs to be schematised as a SDOF system. The steps to determine the
effective mass and the effective height are described in more detail in the next section. Based on the
SDOF model, the %NBS could be determined. Also, the procedure to determine the seismic demand
is described in the NZSEE C8 ((NZSEE, 2017).

In plane behaviour masonry

This study focuses mainly on the in-plane behaviour of masonry. Therefore, it is interesting to study
the derivation of the shear capacities for each failure mechanism.

Rocking failure

Rocking failure is a mechanism that occurs due to tilting of the pier. The failure mechanism is a stable
mechanism which means that it doesn’t result in an immediate collapse of the piers. Rocking of the
pier will take place until the toe crushes due to compression stresses. The shear capacity is derived
based on the assumption that the compressive stress at the base of a pier, that undergoes rocking,
has a parabolic distribution. Subsequently this parabolic distribution is assumed to be rectangular with
a correction factor of 0.85. There will be a difference in the assumed compression energy and actual
compressive energy. Another assumption in this derivation is that the bed joint tensile strength is
neglected. The figure below shows the assumed mechanical model which has been used by Calvi
and Magenes (GUIDO MAGENES, 1997) to derive this shear capacity. This formula is adopted by
both the NPR9998 and the NZSEE-CS8.

D2 D2
e—a—

Figure 1: Assumed mechanical model rocking failure (GUIDO MAGENES, 1997)
P = Normal forcein N

f., = Compressive strength in N /m?

t = thickness of the pier inm

L = Length of the pier inm

g, = average compressive stress at the top of the pier

fma:m = average compressive strength of the masonry

ho = Ef fective heigth of the pier depended on the boundary conditions of the piers.
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Shear failure

Beside the rocking failure mechanism there is also shear failure. There are two different form of shear
failure, namely diagonal cracking and sliding. The shear failure considering diagonal cracking is a
complex failure mechanism to describe in one formula. Calvi and Magenes (GUIDO MAGENES,
1997) derived in his paper an expression for this type of failure mechanism, which has been adopted
by the NPR9998 and the NZSEE C8.

There starting point for this derivation is the following Mohr-Coulomb criterion:
Ty,=Cct+u-o,

T, = ultimate shear failure

¢ = cohesion

u = friction coeficient

0, = the average axial stress due to the axial force on the pier

P = axial force at the top of the pier

In this case diagonal cracking is associated failure of mortar bed and head joint. Diagonal cracking
could also be caused by cracking trough the bricks if the mortar is stronger than the bricks.

The shear capacity of a pier failing due to diagonal cracking is determined based on the assumption
that the shear stress distribution in uniform which results in the following formula.

Vi=rt,"D-t =(C+u-a,,)-D-t=D-t-<c+u-DL_t)

The expression above describes the shear capacity under the assumptions that there is no cracking
developing due to flexure. This assumption could result in the overestimation of the shear capacity.
The effect is included by calculating the uncracked length at both ends of the pier. The tensile bed
joint strength is neglected in derivation for the uncracked length. Furthermore, the compressive stress
distribution is assumed to be linear or constant. With these main assumptions the following the
formulae has been derived. This formula is in the same manner adopted by the NPR 9998 and the
NZSEE C8.

D=3 1 V H, D
=3G7p D)
1.5 c+u'p
TP Al
p
D' = uncracked section length

p = compressive stress at the top of the pier

. Hy
a, = shear ratio = 5}

The other approach to determine the diagonal cracking due to the exceeding of the conventional
tensile strength of the masonry by the principal stresses in the pier. This failure mechanism is one of
the most undesirable failure mechanisms, because it results in a rapid strength degradation (brittle
failure mode). Calvi and Magenes (GUIDO MAGENES, 1997) formulated a formula describing the
shear capacity in the case that this failure mode is decisive. The formula is based on tests whereby a
horizontal load is applied on an unreinforced masonry pier under double clamped condition (MIHA
TOMAZEVIC, 1997).
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ftu'D't 14
Vv, =% — . |1+=
¢ b +ftu

ftu = conventional tensile strength

D = length of the pier

p = compressive stress due to the axial force
b = parameter depended on the aspect ratio

It must be noted that the NPR9998 states that for most regular Dutch masonry this failure mode could
be neglected. In the 2D and 3D assessment phase, this failure mode will be considered and from
there it could be determined if this statement is valid.

The NPR9998 (NEN, 2018) considers shear capacity in the case of the sliding failure mode with the
first formula. Another failure mode that must be considered is the case that the combination of
compression stresses and shear stresses result in splitting of the bricks while the friction is large
enough to avoid sliding. The NPR9998 formulates this limit state in the following manner.

V. <01-f,-D"-t,
fp = compressive strength of the brick
D' = uncracked section length ,lenght of the compression zone

tp, = thickness of the pier
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Displacement capacity

The drift capacity of the rocking failure mode could be determined by the following empirical formula
which formulated in the paper of Messali (F. Messali, 2017). This formula is derived based on the data
obtained from laboratory tests of clay and calcium silicate urm walls. The test have been made by the
TUDelft and the EUROCENTRE commissioned by the NAM( Nederlandse aardolie maatschappij).
This research on the drift limit shows that the displacement capacity of URM pier is mainly depended
on the axial load ratio and the aspect ratio. Other properties of the urm pier like, boundary condition,
wall height, thickness and Head-and bed-joint typologies have not a sifnificant influence on the
displacement capacity (F. Messali, 2017).

ay hyer hy

Opnes = 0.0135 (1 — 2.6 i ) |7
14

)~ (

fma;m
h, = heigth of the pier
l, = Length of the pier

0.

y = axial stress at the top of the pier

fma:m = mean compressive strength

Bed joint sliding or diagonal stair stepped sliding are stable failure modes. Which means that when
the initial cracking starts the pier would not result in an immediate collapse. Because of this ductile
failure mode, the pier will have a considerable displacement capacity even when initial cracks start to
develop. Based on several researches’ om the displacement capacity of a pier undergoing sliding, the
following force-drift diagram has been recommended to use for piers undergoing sliding failure. The
force-drift diaphragm is adopted by both the NPR9998 (NEN, 2018) and the NZSEE C8 (NZSEE,
2017).
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Figure 2: Force-drift diagram according to the NPR9998

The maximum shear capacity could be calculated with the sliding formula of Calvi and Magenes
(GUIDO MAGENES, 1997). To determine the residual shear capacity, the cohesion of the masonry
could be neglected.

15-c+u-p

Ve=D-t-——— —
113.0%

Vegr=D-t-pu-p
The following drift limits are suggested by the NZSEE C8 and the NPR9998.
HR;SD;U = 0.003

GR;ND;U = 0.0075
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Spandrel shear capacity

For the spandrel two different failure types could be distinguished, namely shear failure and flexural
failure. This part will describe only the capacity formulas of rectangular spandrels without the effect of
the lintels. That are the only formulas applicable to the case studies that will be analyzed in the next
chapter.

Shear failure

Shear capacity of the rectangular spandrels is formulated based on the assumption that the spandrel
consists of elastic homogeneous material with a parabolic shear stress distribution along the height of
the spandrel. The shear capacity could be found by the integrating the shear stress distribution along
the height of the spandrel. This results in the following formulation for head-and bed joint sliding
occurring in a spandrel (Beyer, 2011):

2
Vcr,s = 5 "Tmax * hsp “Lsp

Tmax=c+.u'psp

2
Vcr,szg'(c-l'.u'psp)'hsp'tsp

Tmax = Maximum shear stress along the height of the spandrel in N /mm?
u = friction of the masonry
psp = axial stress at the spandrels

¢ = cohesion of the masonry in N/mm?

Shear failure of the spandrels can occur in two manners. One way is that the shear cracks develop
through bed and head joint. The other shear failure type is that the cracks develop through the bricks
instead of the bed and head joints. The last failure type occurs for masonry that consists of strong
mortar and the weak bricks. The shear capacity corresponding to the last failure type could be
determined based on the following formula NZSEE C8 and NPR9998:

’ b
Vs=fdt'ﬁsp' 1+ﬁ'hsp'tsp
t

fae =05-¢c+ fo-u

l
=t >15, By =067
hep

!
Li <10, Bg =10
hep

ls, = Length of the spandrel
hsp = heigth of the spandrel
far = Diagonal tensile strength of masonry in N /mm?

The residual shear capacity when shear failure occurs can be neglected if the lintels are not
considered. The NPR9998 and the NZSEE, show the effect of the lintels of the residual shear
capacity.
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Flexural failure

The shear capacity in the case that flexure failure behavior is governing, is depended on the tensile
strength of the head joints, and interlocking of the bed joints. The tensile strength of the head joint
could be approximated by the following expression (Beyer, 2011):

_ c
fnj =3 P
¢ = cohesion in N/mm?
u = friction coef ficient

The equivalent tensile strength resulting from the interlocking of the bed joints has been formulated
under the assumption that the shear stress along the bed joint is uniform distributed. The stress
perpendicular at the bed joints and the cohesion of the bed joint contribute to the equivalent tensile
strength of the spandrel. The equivalent tensile strength is the sum of the tensile strength of head joint
and the interlocking of the bed joint.

fe = fnj+ fo
Cc
ft=1.3'(C+0.5"L{'O'V)+ﬂ

Based on the assumption that the stress is linear distributed along the height of the spandrel, the
bending moment and the shear capacity could be calculated with the following simple formulas.

h2, -b
Mfl = (ft+psp)'%

h2, - by,
31,

Vfl = + psp) :

The residual flexure shear capacity is determined based on the developed diagonal compressive
strut. Therefore, the compressive strength in horizontal direction would be the normative in the
determination of the residual shear capacity. The tensile strength of the head joint and the cohesion of
the bed joint will tend to go to zero after the peak capacity is reached. Therefore, these properties
could be neglected in the derivation of the residual shear capacity. After cracking the compression
zone height will decrease until h,.The compressive strength in the horizontal direction f;,,, is 50% of
the compressive strength of masonry (Beyer, 2011).

Fop

hy=— P
€~ 085 fum  bsp

Based on this compression zone, the residual shear capacity could be determined with the following
expression NPR9998.

Dsp - hgp ' bsp Psp
Ve = (1 —
fir lep (=085 fhm)

fum = Compressive strength in the horizontal direction

psp = Axial stresses due to restraint elongation of the sprandrel or due to prestressing
ls, = Length of the spandrel

hg, = heigth of the spandrel

Sp

b, = thickness of the spandrel

Axial stresses on the spandrel would be generated due to the restraint of the elongation when the
spandrel is deformed. The stresses need to be considered when calculating the residual shear
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capacity due to flexural failure. These stresses could be calculated with the following formula which is
stated in the NPR9998.

l
DPsp = 1+ ﬂsp) 'fdt : -2

V14 +h3
fat = Diagonal tension strength of the masonry

Important point to note is that all the formulas concerning the spandrel shear capacity are excluding
the effect of the lintels. Because the effect of the lintels will be out of the scope of this study.

The following force drift diagram for the spandrel is recommended by both the NSCEE C8 and

NPR9998. This diagram is based on a lot of research concerning the displacement capacity of
spandrels.

Strength

min(Vy, Vo) |...

- )
Vﬂ‘r if V" < VS
Vi if Vi< Vg

Hy 3 Gy .03 for rectangular Deformation
.015 for arched

Figure 3: NZSEE C8
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2.2 Equivalent frame method

The equivalent frame method (EFM) is a method which can model an URM structure with an
equivalent framework. By doing so, the number of degrees of freedom can be narrowed in
comparison to FEM. This reduces the computational time significantly. The EFM divides a wall as an
idealised frame where deformable elements are connected with rigid nodes. Deformable elements are
elements in which the nonlinear response of the wall is concentrated and rigid nodes are elements of
the wall not subjected to damage. The deformable elements can be divided in piers and spandrels.
Piers are the primary vertical resistant elements, which carry the vertical and lateral loads. Spandrels
are secondary elements which couple the response of adjacent piers concerning lateral loads. The
spandrels also have a significant influence on the boundary conditions of the piers which has a large
influence on the wall lateral capacity. Figure 1 shows an example of the idealisation of the method.

Step 1- Identification of spandrels Step 2- Identification of piers Step 3- Identification of nodes Equivalent frame

y

< : <3

{

2

-"F’—“r__ | —_[:——_:—~ = -

Figure 4: Equivalent Frame idealisation (Lagomarsino, Penna, Galasco, & Cattari, 2013)

(H_+H
o

Defining the geometry of the main structural elements is the first step of the equivalent frame
idealisation. Spandrel geometry is defined based on the vertical alignment and the superimposition of
the openings. In case of full alignment, the length and height are equal to the vertical distance
between openings and the width of the openings. Pier geometry is defined by the height of the
adjacent openings. If these are perfectly aligned, the height of the pier is equal to the adjacent
openings. If not, the height of the pier is equal to the average of the inter-storey height and the height
of the adjacent opening. Step 3 is the identification of the rigid nodes. This can easily be defined from
the defined geometries of the piers and spandrels.

Once the masonry wall is idealised by an equivalent frame model, the prediction of its behaviour
depends on the response of the individual structural elements. The response of the individual
elements depend on their properties. The properties of these elements are based on the governing
failure mechanisms (Knox, 2012).

Different assessment tools make use of the EFM. One frequently used software is the program
3MURI. However, the EFM gives larger errors for larger irregularities in the fagade's geometry (Siano,
et al., 2017).
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2.2.1 Material model: 3MURI Macro-element Model

The structural elements of a masonry wall are divided in piers and spandrels according to the
equivalent frame method described in chapter 2.2. These elements are represented in SMURI 12.2.1
by use of macro-elements as presented in the figure below. This means that the masonry is
represented as a composite material with anisotropic properties spread over the element.

(uy, wi, @) (uj' wj, <Pj)

Figure 5: Macro-element in 3SMURI (SMURI, 2019)

Loads are only applied on the nodes as can be seen in the figure above. The element force-
displacement curve exhibits bilinear behaviour. The element deforms initially with the initial stiffness of
the material until the shear capacity is reached. Then the stiffness is reduced to zero and the shear
force stays constant until the drift limit is reached. The drift limit is predefined in 3MURI. The degrees
of freedom can be determined with the stiffness matrix below as described by (Lagomarsino, Penna,
Galasco, & Cattari, 2013):

- 12E]y 0 ____6En __12E]y 0 ___6EIn 7
) h (14y) hz(l-y'u h3(1-w hztlw;'/! y \
i 0 B 0 0 -8 0 N
Ni w I Wi
___6EJn E[n(4+y) 6E/n Ejn(2—y)
< Mi > thu;/J 0 h(1+y) hz(lwm 0 h(1+y) ) d)i }
Vi [ | __128En 6EIn 12En 6EIn U
Nj h3(1u,‘/) 0 hz(lu,-’/l h3(1u,-’;) 0 h2<l-y‘/) J
J 6 -2 g = @ J
| M; : b
J __6EJy 0 EIn2—y) 6EIn 0 EIn(4+y) I
L RP(1+y) h(1+y) h2(1+y) h(1+y)
Figure 6: Stiffness Matrix macro-element
Where:
— 12 Eb?
V=120

The failure of the macro-elements in 3MURI can be described by three failure mechanisms: rocking,
diagonal shear and shear sliding failure. The applied equations in 3MURI for assessment of the shear
capacity are similar to the applied equation used in the SLaMA method in chapter... What should be
noted is, that in 3MURI there is an option where the user has to choose which of the shear failure
mechanism is prone to occur, diagonal shear failure based on the equation of Turnsek & Cacovic or
sliding shear failure based on the Mohr-Coulomb criterion.
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2.3 Finite element method

2.3.1 Engineering Masonry Model

The Engineering Masonry Model is a recently developed material model for masonry in DIANA. This
model has been developed by DIANA FEA and the Technical University of Delft. The figures and
equations in this chapter are taken from (Schreppers, Garofano, Messali, & Rots, 2017). The model is
mainly used for modelling failure of masonry walls (2D plane stress elements) or masonry structures
(3D curved shell elements). Important characteristics of the Engineering Masonry Model are:

e The material model is a total-strain based continuum model

e Tensile, shear and compression failure modes

e Four in-plane crack directions possible: x, y and two diagonal directions with predefined
angle.

e Orthotropic

e X-direction aligned with the bed-joints and y-direction aligned with the head-joints

o If the diagonal cracks are not occurring the model act as an orthotropic material with a
Poisson’s ratio of zero. (No coupling between the stiffness of the normal components and the
in-plane shear component)

Furthermore, the Engineering Masonry model regards the following failure mechanisms:

e Tensile cracking of the bed- and head-joint
o Secant nonlinear unloading and reloading
e Compressive crushing normal to the bed- and head-joint
o Nonlinear non-secant unloading and reloading
e Cracking normal to the diagonal cracks
o When the crack is opening, the tensile and shear stress is reduced. When the crack
is closing, the model takes a linear stiffness equal to the initial stiffness.
o The behaviour of the diagonal crack can be unrealistic for slender walls. Then the
diagonal cracking can be deactivated.
e Frictional shear sliding
o Shear stresses calculated with Coulomb friction.
e Out-of-plane shear-failure
o Out-of-plane shear stiffness components are considered being linear elastic unless
the option of out-of-plane shear failure is selected. In that case Coulomb friction is
used.
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Cracking behaviour

The stresses in an element are defined by the strains in x- and y-direction and the maximum strain
value a,.,sie reached during the loading history. The corresponding stress at ;i IS €xpressed as
Orf tensite- BY Mmeans of the maximum value of the strain the secant unloading behaviour is
determined. The tensile stress-strain curve is described by determining the ultimate strain with the
tensile strength f; , the crack energy G, and the crack bandwidth of the element h. The ultimate
tensile strain occurs when the crack is fully open and the no stress-transfer is possible. This is
determined with following formula:

26,
Syt = hf
t

The following figure describes the tensile behaviour of the Engineering Masonry Model:

Stress o normal to crack plane

£ Moo

&

Strain £ normal
to crack plane

Orensile Eult

Figure 7: Cracking behaviour Engineering Masonry Model (Schreppers, Garofano, Messali, & Rots, 2017)
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Crushing behaviour

The compressive stresses of an element in the x- and y-direction are defined by the strain and the
minimum strain value a.,,,reached during the loading history. The corresponding stress is expressed
as Oy f compressive- 1 NE COMpressive stress-strain curve is described by determining the ultimate strain
with the compressive strength f, , the crack energy G. and factor n. The factor n is used to determine
the strain e, at compressive strength with the following formula:

_ E‘gpeak

fe

The stress-strain curve is made up of a parabolic curve until the compressive strength and a linear
softening curve until 10% of the compressive strength is reached. The ultimate strain ¢, is equal to
the strain corresponding to a zero stress level. This is determined with the following formula:

2G, fe A+1 fe
Eult = Epeakr T Max [0: h_fc - ﬁ - T (Epeak - E

n

)

Where h is the crack bandwidth and A is defined as:

1= (E

The figure below shows the crushing behaviour of the Engineering Masonry Model
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Figure 8: Compressive behaviour of Engineering Masonry Model (Schreppers, Garofano, Messali, & Rots, 2017)

A in the figure represents the unloading factor. The factor can obtain values between 1 and 0. Where
A = 1 corresponds to secant unloading to the origin with stiffness ZLemeressive 4 3 = 0 corresponds

Xcomp
to unloading to zero stress with the initial stiffness and secant stiffness. For 4 = 0 unloading with the
initial stiffness is applied until the compressive stress is equal to A0, compressive- 1N€N the secant
stiffness is applied until the origin. For reloading the curve goes with a straight line to the last loading
extreme point. The secant stiffness is defined as:

Aarf,compressive

Esee =

Aarf,compressive
acomp - E
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Shear behaviour

The in-plane shear stress t is defined by the shear strain y and the stress g,,, normal to the bed-joint.

The shear stress |7| can not exceed the maximum stress 1,,,, Which is formulated according to the
Coulomb friction criterion as:

Tmax = max[O, ¢ — ayytan(e) ]

Where c is the cohesion of friction and ¢ the friction angle of the masonry. The shear stress-strain
curve is shown in the figure below:
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I'____ ___________ _——— -

»

c_tan ¢
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- ~
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Figure 9: Shear behaviour of Engineering Masonry Model (Schreppers, Garofano, Messali, & Rots, 2017)

The figure shows a linear relation between the shear strain and stress until 7., is reached. Then the
cohesion decreases until the cohesion reaches zero at a total shear strain of y,,;;, which is defined as:

ZGfS c

Yuir = h+c G

Where his the crack bandwidth, G, is the shear energy and G is the shear modulus. Lastly, when an
integration point is cracked (¢;ension > %), the cohesion is reduced to zero.

Head-joint failure options

The Engineering masonry model has 4 options for how the failure of the head-joint is considered in
the DIANA model. The user needs to choose one of these 4 head-joint failure options. The 4 failure
options are:

1. Head-joint failure not considered: In this option the model does not consider diagonal cracks.
Only cracking and crushing normal to the bed-joint and Mohr-Coulomb criterion are
evaluated.

2. Direct input head-joint tensile strength: In this failure option the cracking and crushing normal
to the head-joint is also considered. The tensile strength in both directions and the
compressive strength in one direction which is used in both directions has to be explicitly
defined by the user. Once again, diagonal cracks are not considered.

3. Diagonal stair-case cracks: The failure of the head-joint is assumed to happen as part of a
diagonal stair-case crack. In this failure option, besides cracking and crushing normal to the
bed-joint and shear failure, the cracking and shear-release of the diagonal stair-case cracks is
also considered. The user has to define the angle with the bed-joint of the staircase crack, the
bed-joint tensile strength and the frictional shear-stress in the bed-joint.

4. Tensile strength head-joint defined by friction: Similar to point 2, but now the tensile strength
is calculated from the friction shear-stress in the bed-joint. A minimum tensile strength of the
head-joint can also be explicitly defined. The effect of a high overburden load can be taken
into account in this option.
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2.3.2 Total Strain Crack Model

The total strain crack model is a constitutive model based on total strain and is developed according
to the Modified Compression Field Theory (Vecchio & Collins, 1986). The Total Strain Crack Model
offers three different constitutive models based on the crack orientation; fixed, rotating and combined.
The difference lies in the different evaluations of the stress-strain relationships of the three variants.
For the fixed crack orientation, the stress-strain relation is evaluated in a fixed coordinate system. For
the rotating crack orientation, it is evaluated in the principal directions of the strain vector. For the
combined crack orientation, a limit value for the total strain directs whether the crack orientation
changes from rotating to fixed. For this research the focus is only on the Rotating Strain Crack Model.

The Total Strain Crack Model requires several material input parameters. These are the linear elastic

material properties, the parameters for the tensile behaviour and the parameters for the compressive

behaviour. The tensile behaviour can be modelled using different approaches. The following functions
are based on fracture energy:

e Linear softening curve

¢ Exponential softening curve

¢ Nonlinear softening curve by Hordijk

¢ Nonlinear tension softening according to CEB-FIP Model Code 1990

¢ Nonlinear softening according to fib Model Code for Concrete structures 2010
¢ Nonlinear softening according to JSCE

Other tensile curves are:

e Constant tensile behaviour

e Linear behaviour based on ultimate strain

e Multilinear behaviour

e Brittle behaviour

e Tensile failure model for fiber reinforced concrete (CEB-FIP)
e User-supplied

The compressive behaviour can be modelled with a number of predefined curves. The predefined
curves are:

e Constant curve

e Brittle curve

e Thorenfeld curve

e Linear hardening curve

e  Multilinear curve

e Saturation hardening curve

e Parabolic curve

e Eurocode 2 1992-1-2 and Eurocode 4 1994-1-2
e Maekawa cracked concrete curves

e CEB-FIP Model Code 1990

e Fib Model Code for concrete structures 2010
e Hognestad parabola

e Eurocode 2 EN1992-1-1

All the above curves have secant unloading behaviour, except the Maekawa cracked concrete curves.
These contain nonlinear unloading behaviour.
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For this research the following tensile and compression curves have been chosen:

g g
' A

Go/n [ if

E -

Figure 10: Linear tensile softening curve (left) and parabolic compression curve (right) (DIANA FEA)
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3 Case study

In this chapter a description is given of the wall facades that have been used in this research. The
walls have been modelled in 2D with three different methods. Namely, the Finite-element method, the
SLaMA method and the EF method. For this study it was important that the material properties and
modelling assumptions had to be as consistent as possible within the three different methods.
Furthermore, for researching the influence of the geometrical irregularities on the accuracy of EF and
SLaMA, several geometrical irregularities have been grouped. These geometrical irregularities were
then quantified by indices. The influence of these indices on the accuracy of the calculation methods
will be researched in the next chapter with a sensitivity analysis.

3.1 Case study description

3.1.1 Material Properties

For all models, one specific material has been implemented, namely Clay-Brick masonry from prior to
1945. The material properties of this specific masonry type has been given below and are based on
the NPR-9998:2018:

Table 1: Material properties masonry

Material Unit
properties

Ex 2500 * 108 N/m2
E, 5000 * 106 N/m2
Gy 2000 * 106 N/m2
P 1900 kg/m3
fma;b;per 0.067 * 106 N/m2
1:ma;t;par 0.2 * 106 N/m2
Gft;per 7 N/m
fmaym 5.67 * 106 N/m2
Gre 6667 N/m
m 0.75 -

c 0.2 * 106 N/m2
Gf;v;par 67 N/m

3.1.2 lrregularity indices
The following geometrical irregularities were identified:

1. Opening percentage irregularity: irregularity based on the size of the openings.
2. Slender pier irregularity: irregularity based on the slenderness of the piers.
3. Centre of mass irregularity: irregularity based on the location of the openings.

Note that in (Parisi & Augenti, 2012) four basic irregularities were defined. These irregularities are not
present in any of the models made. This to avoid disturbances in the sensitivity analysis.

For the assessment of the influence of irregularities on the accuracy of the simplified calculation
methods for the in-plane behaviour of the wall, for each geometrical irregularity a global irregularity
index has been defined. This index specifies whether a wall is regular (i = 0) for its specific
geometrical irregularity or irregular (0 <i < 1).

Starting with the opening irregularity, the global irregularity index is defined by:

n

. _Lo_ Lk

PETT AT
k=1

Where L, is the total opening length in a wall or in other words, the summation of all opening
lengths(L,) in a wall fagcade.
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Secondly, the slender pier irregularity is defined as follows:

. nS

g =—

S np
Where n, is the number of slender piers in a wall and n,, is the total number of piers in a wall. Before
one can assess the number of slender piers, a definition of a slender pier is needed. From (NPR
9998-2018) a slender pier is defined as a pier with a slenderness ratio (height/length ratio) higher than
2. This definition is also used for the determination of n.

For the centre of mass irregularity the following definition applies:

J— xC
"~ 0.25L

I

Where x. is the x-coordinate of the centroidal axis in the wall. With this definition one can easily obtain
a quantification for the location of the openings.

The figure below illustrates the irregularity index of the centre of mass:

y Centroid
o

I
I
\
[

Figure 11: Irregular wall with centre of mass irregularity
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3.1.3 Geometry & Loads

In this chapter the wall geometries are illustrated. The walls are sorted in four groups:

1. Regular wall

2. Opening percentage irregularity
3. Slender pier irregularity

4. Centre of mass irregularity

Furthermore, the applied axial force and the weak transversal load direction is illustrated in each
figure. For all wall fagades a thickness of 208 mm is applied.

3.1.3.1 Regular wall

q =10 kN/m

[

|
I 66

Figure 12: Wall 1: Regular wall with no irregularities

3.1.3.2 Opening percentage irregularity

q =10 kN/m g =10 kN/m
0.55m 0.55m
163m 272m1.63m
0.54 m 0.54m
1 1
i i i i i i } 65 } 57 } 22 } .57 } 65 }
| - | | o |
Figure 13: Wall 2: Irregular wall with i, = 0.1 Figure 14: Wall 3: Irregular wall with i, = 0.2
q =10 kN/m g =10 kN/m
0.55m 0.55m
163m 272m1.63m
0.54m 0.54m
1
5 Ty — PN s Fossm] s Fosm] 75

Figure 15: Wall 4: Irregular wall with i, = 0.35

Figure 16: Wall 5: Irregular wall with i, = 0.15
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3.1.3.3  Slender pier irregularity

For these geometries i, = 0.35 and is kept constant while i, will vary:

g =10 kN/m g =10 kN/m
055m 055m
163m 272m163m
054m 054m

| | | | | | |
| I a4 i 99 i 8 T .99 i 44 |
| | |
1 I 1

Figure 17: Wall 4: Irregular wall with iy, = 0

Figure 18: Wall 7: Irregular wall with i; = 0.333

q =10 kN/m q =10 kN/m
055m 055m
272m163m 163m
UEALm 054m
“—0 695 J‘ 99 ‘L 29 J‘ .99 695 mA" }-—1 05 m—~}o 66 mg‘*UJS m—{—0.66 m—‘¥o 79 m—-{*O.SB m——}-—l 05 m———|

|
I 66

Figure 19: Wall 8: Irregular wall with i, = 0.667

| | |
1 f &6 |

Figure 20: Wall 6: Irregular wall with iy = 1
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3.1.3.4  Centre of mass irregularity
For the following walls these indices are applied, i; = 0.333 and i, = 0.35:

q =10 kN/m q=10 kN/m
__ [ \ _ l
272m163m 272m163m
0.54m 0.54m
11 11
[—127 } 99 } 61 } 99 } 8 [—127 } 99 } 61 } 99 } 8
} 66 } } 66 }
Figure 21: Wall 9: Irregular wall with i, = 0.1 Figure 22: Wall 10: Irregular wall with i, = 0.2
10 KNI \ \ q= 10}kN/m \ l
q= m
TI TL
272m163m 272m163m
- Fossm{ o —ossm——ossm—] o osimp—o9 o5 m—] 9 | a2 |
} 66 | | 66 |
Figure 23: Wall 11: Irregular wall with i, = 0.3 Figure 24: Wall 12: Irregular wall with i, = 0.4
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3.2 2DFEA

For the Finite element analysis DIANA 5.3 is used to perform the NLPO analysis. All material
properties used in the DIANA models are based on the NPR 9998-2018 as noted in the previous
chapter. Furthermore, some assumptions had to be made in the FEM analysis to produce an
equivalent model as in the other methods. These assumptions and also the material model will be
presented in this chapter.

3.2.1 Material model

The material model that has been applied in DIANA is the engineering masonry model. Within this
material model, the user has the choice to select the specific failure type occurring. For this research
it has been chosen to only produce results for the ‘Tensile strength head-joint defined by bed-joint
frictional shear stress’ failure type. This is one of the failure types that was recommended in
(Schreppers, Garofano, Messali, & Rots, 2017). The total-strain crack material model could also be
used for this research due to unidirectional loading in all walls, but this material model and the
application of the other three failure types is out of the scope of this research.

3.2.2 Model assumptions
For the DIANA model several assumptions have been made, and these were:

- Quadratic mesh order is applied for the elements.

- A mesh size of 0.1 m is used.

Q8MEM plane stress elements used for the masonry wall.

L7BEN beam elements used for the floors.

Only flexible floors have been taken into consideration.

A prescribed deformation load is applied at the top corner of the wall facade.

3.2.3 Analysis parameters
For the models a structural nonlinear analysis is done in DIANA. Below an overview of the analysis
parameters is given:

Analysis settings Applied in model

Nonlinear effects ' Physical, Geometrical
Arc-length control ' Not applicable

Load step size } 0.05-0.08 mm
|
|

Max. number of iterations 100
Numerical method Secant (Quasi-Newton)
Convergence norm Energy

3.2.4 Modelling with lintels

Lintels can have an influence on the in-plane behaviour of a masonry wall. To research this, two
models were made of wall 2 and 8 where lintels were included above the opening. The lintels were 20
mm high and were extended from both sides of the opening with 10 mm. Furthermore, the lintels had
an Young’s modulus of 20000 MPa and a tensile strength of 10 MPa. In chapter 4 the results are
given of these models and in chapter 5 the results are further discussed.
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3.3 2D SLaMA

In this chapter the general assumptions made in the SLaMA assessment will be explained. The
SLaMA method has been explained in chapter 2.1.

3.3.1 Effective height method

For unreinforced masonry walls with different openings and weak pier-strong spandrel mechanisms it
is advised in (Moon F. L., 2004) that the effective height of a rocking pier is equal to the height over
which a diagonal strut is expected to develop.

3.3.2 Axial force

The axial force on the piers is calculated analytically, by adding up the self-weight of the pier with the
axial forces working on top of the pier. There is no load redistribution during the rocking or failure of
the pier. This is a large difference with DIANA, which constantly makes sure during the analysis there
is an equilibrium of forces.
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3.3.3 Boundary conditions

In the SLaMA method two different boundary conditions are possible at the ends of a pier, namely
double clamped boundary conditions or cantilevered boundary conditions (free at the top of the pier).
The user needs to assume one of the two options. In this research, this assumption is based on the

following approach below:

Assume the piers to behave under double clamped
condition.

k
Determine the shear capacities of the piers based on
this assumption.

v

Assume these piers to behaves similar to a slender
column. And calculate the moments at the position of

the spandrel.

i
Calculate based on these moments the required shear
capacity of the spandrels to make equilibrium with the
moments.

Calculate the shear capacity based on the formulas
described in the NPR9998:2018 Appendix G.

1

l

If the shear capacity is higher than the required shear
capacity than the pier behaves under double clamped
conditions.

If the shear capacity is lower than the required shear
force than the pier behaves cantilevered,

Figure 25: Boundary conditions assessment (Nidal Ennali)
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3.3.4 Formulation of the boundary conditions in SLaMA

The results of the SLaMA are based on the assessment approach of the boundary condition
described in the previous chapter. This approach was still not accurate enough, because the
boundary conditions could be either cantilever or double clamped. In reality, conditions in between are
more accurate, because the connections between piers and spandrels are neither infinitely rigid nor
hinged. For this reason two new formulations have been developed.

The first formulation is rather straightforward and is an addition to the assessment approach of
chapter 3.3.3. The last step of this approach is altered and instead a different step is done. It still
holds that if the shear capacity is higher than the required shear capacity, then the pier will behave
double clamped. For cantilever boundary condition, the required shear capacity needs to be equal to
zero due to hinged connection between pier and spandrel. If the required shear capacity is between
the shear capacity and zero, linear interpolation is done to calculate the intermediate results.

The second formulation is more complicated and requires linear elastic frame analysis. For this
research, Matrixframe is used to do these analyses. The goal is to verify how much the more
simplified first formulation differs from this advanced approach, because this formulation is more time
consuming. The first step is to model the piers and spandrels as frames in Matrixframe. Then the
linear analysis is run and the internal forces are computed. Based on the internal forces of the
framework, a ratio of capacity over the demand is calculated for each pier and spandrel at their
connections. Then the ratio of capacity over demand of the piers are respectively compared with their
connected spandrels. If the capacity over demand of the spandrel is higher than the capacity over
demand of the pier, this would mean that the pier will crack before the spandrel during lateral loading
which is a sign of weak pier-strong spandrel behaviour. Here double clamped conditions are
assumed. If the capacity over demand of the spandrel is lower than the capacity over demand of the
pier, linear interpolation is performed to assess the boundary conditions between cantilever and
double clamped. This is done by stating that a capacity over demand of the spandrel equal to zero is
in correspondence with cantilever boundary conditions and for the ratios between cantilever and
double clamped conditions, the boundary conditions are calculated by use of linear interpolation.

3.3.5 Shear capacity

The calculation of the shear capacities of the piers are based on the formulas of NPR9998-2018. The
critical shear capacity of a pier corresponds to the failure mechanism with the lowest value for the
shear capacity. Subsequently, the critical shear capacities of all the piers in a wall are summated and
form the global shear capacity of a wall.

3.3.6 Displacement capacity

The displacement capacity of a wall is based on the individual drift capacities of the piers. These drift
capacities are put together in such a way, that if the first pier fails the global shear capacity will have a
drop equal to the critical shear capacity of the failed pier. It should be taken into consideration that the
drop in shear capacity has to be lower than 50%, otherwise global failure of the wall is assumed.

3.4 2DEFM

For the equivalent-frame method, the program 3MURI 12.2.1 is used to model the 2D walls. This
program is still being used for the seismic assessment of the URM building at Arcadis.

For the shear failure criterion, Mohr-Coulomb has been chosen. This is the only assumption that has
been made in the model. For the rest, the walls have been modelled as the other two methods and no
additional assumptions have been made in the modelling of the facades.
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3.4.1 Turnsek & Cakovic

3MURI gives the user an option where the user has to choose which of the shear failure mechanism
is prone to occur, diagonal shear failure based on the equation of Turnsek & Cakovic or sliding shear
failure based on the Mohr-Coulomb criterion. In this research the Mohr-Coulomb criterion is used,
because this is also according to the NPR9998 the most occurring failure mechanism for this type of
masonry (Clay-Brick pre-1945). However, in the next chapter Walls 2 and 8 have been modelled with
shear described by Turnsek & Cakovic and have been compared with the Mohr-Coulomb criterion.
The results are further discussed in the discussion.
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4 Results

In this chapter the results of the three calculation methods for all models are presented.

4.1 FEA results

This chapter shows the DIANA results for all the models. For each model the principal strain contour

plot is shown. From these results the observed failure mechanism is deducted. Lastly, the pushover
curve is presented.

4.1.1 Wall 1: Regular wall
In the figure below the principal strain plot of wall 1 is shown:

Figure 26: Principal strain contour plot Wall 1

The observed failure mechanism is shear failure of the wall. This can be deducted from the diagonal
cracks developing when looking at the principal strain plot.

The pushover curve corresponding to Wall 1 is presented below:

Pushovercurve Wall 1

120 1

100 -

B0 4

Horizontal force in kN
2

0 5 10 15 20 P
x-displacement in mm

Figure 27: Pushover curve DIANA Wall 1
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4.1.2 Wall 2-5: Opening irregularity

In the figure below the principal strain plots of walls 2-5 is shown:

1.00e-3)

Figure 28: Principal strain plot Wall 2 (upper-left), Wall 3 (upper-right), Wall 4 (lower-left) and Wall 5 (lower-right)

The observed failure mechanism for the first two piers for all four walls is rocking. This can be
deducted from the cracks developing in the upper right and lower left corner of each pier when looking
at the principal strain plot. For the last pier, it is slightly more difficult to ascertain a particular failure
mechanism. Only for wall 3 and 4 one can see rocking patterns with slight shear failure patterns, but
for wall 2 and 5 a combination of shear and rocking failure is present.

The pushover curve corresponding to Wall 2 until 5 is presented below:

Pushovercurve Wall 2
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o
=
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B
§ 50
g
o
=
0 5 1 15 22 25 3 B 40
x-dlsplacement inmm
Pushovercurve Wall 4
&0
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c
o 40
=
8
£ 20
o
=
10
0

o 5 1 15 22 X 30 I 4

x-displacement in mm

Pushovercurve Wall 3

"1 b b

Horizontal force in kN
&

20

0 5 1 B 2 35 N B 40
x-displacement in mm

Pushovercurve Wall 5

21 W s

Horizontal force in kN
B

0 5 W 15 W™ B HD B L
x-displacement in mm

Figure 29: Pushover curve Wall 2 (upper-left), Wall 3 (upper-right), Wall 4 (lower-left) and Wall 5 (lower-right)

37



4.1.3 Wall 6-8: Slender pier irregularity
In the figure below the principal strain plot of wall 6 until 8 is shown:

Figure 30: Principal strain plot Wall 6 (upper-left), Wall 7 (upper-right) and Wall 8 (lower-left).

The observed failure mechanism is shear failure of the wall. This can be deducted from the diagonal
cracks developing when looking at the principal strain plot.

The pushover curve corresponding to Wall 6 until 8 is presented below:

Pushovercurve Wall 6 Pushovercurve Wall 7

T 70
Mm_ o
40
z $ 50
€ £
g Y 401
2 £
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10
10 1
0 0
0 5 10 15 20 5 30 35 40 0 5 10 15 20 5 30 35 40
x-displacement in mm x-displacement in mm
Pushovercurve Wall 8
80 4
?‘0 4
= B0+
]
(=4
E 5
5
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2
§ M
[
-
£ 20
10 4
o
T T T T T T T T T
o 5 10 15 20 25 30 35 40

x-displacement in mm

Figure 31: Pushover curve Wall 6 (upper-left), Wall 7 (upper-right) and Wall 8 (lower-left).
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4.1.4 Wall 9-12: Centre of mass irregularity
In the figure below the principal strain plot of wall 1 is shown:

Figure 32: Principal strain plot Wall 9 (upper-left), Wall 10 (upper-right), Wall 11 (lower-left) and Wall 12 (lower-
right)

The observed failure mechanism is shear failure of the wall. This can be deducted from the diagonal
cracks developing when looking at the principal strain plot.

The pushover curve corresponding to Wall 9 until 12 is presented below:

Pushovercurve Wall 9 Pushovercurve Wall 10
&0 801
50 501
= =
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[ (=4 4
w 40 i
g g
2 2
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g 5
g 20 520 4
o o
r r
10 10
0 0
0o 5 W 15 20 25 B 3B/ 4 o 5 W 15 20 3 0 B 40
x-displacement in mm x-displacement in mm
Pushovercurve Wall 11 Pushovercurve Wall 12
60 70 1
50 601
= =
- o 50 4
S :
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2 ) £ “
B B 5
15 (=
] 5
g2 5 20
£ £
10 10 4
0 0
0 5 W 15 20 25 3 3B 4 0 5 10 15 220 2% 3 31 40

x-displacement in mm x-displacement in mm

Figure 33: Pushover curve Wall 9 (upper-left), Wall 10 (upper-right), Wall 11 (lower-left) and Wall 12 (lower-right)
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4.1.5 Rotating Strain Crack Model

Below the results are given for Rotating Strain Crack Model and Engineering Masonry for wall 2 and

Pushovercurve Wall 2

8.
Pushovercurve Wall 2 TSC
0 | WW
=
£ 60
v
o
8
g
5
E
£
20
0

Horizontal force in kN

8 3 8 8

8

0 10 N
x-displacement in mm

w4

5 20 5 B 3B 40

Figure 34: Results Wall 2 Total Strain Crack Model (left) & Engineering Masonry Model (right)

Pushovercurve Wall 8 TSC

Horizontal force in kN

0 10 20 30 40 50 60

x-displacement in mm

Horizontal farce in kN

Pushovercurve Wall 8

Figure 35: Results Wall 8 Total Strain Crack Model (left) & Engineering Masonry Model (right)
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4.1.6 Models with lintels

To understand the influence of lintels on the in-plane behaviour of the wall fagade, wall 2 and wall 8
have been modelled with lintels. The lintels stretch from both sides of the opening out with 10 cm and
have a height of 20 cm. Below the results are presented of these models:

Pushovercurve Wall 2 with lintels Pushovercurve wall 2

B0 90 -
80 1

Z 601 ]

£ c 70 4

o

g g

£ S 60 -

B B

[ 5 50 -

g 8

g 5

£ 20 T

Figure 36: Results Wall 2 with lintels (left) & without lintels(right)

Pushovercurve Wall 8 with lintels Pushovercurve Wall 8
80 50
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= B0 z 60+
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] N
2 204 £ 20
10 10 -
0 0
T T T T T T T T T
0 0 20 a0 o 00 0 5 W 15 20 3 3 35 40
x-displacement in mm x-displacement in mm

Figure 37: Results Wall 8 with lintels(left) & without lintels(right)
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Summary

In this section the results were given of the models in DIANA. In the below figures the results are once
again given, but categorized for each variation.

Pushovercurves Opening irregularity

Pushovercurves Slender pier irregularity
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Figure 38: Pushovercurves DIANA for each variation.

42



4.2 2D EFM results

In this chapter the results from 3MURI are presented. For each model the failure mechanisms and the
pushover curves are illustrated. First the legend is shown below for the different failure mechanisms
possible:

Masonry

. Undamaged

Shear damage

Shear failure
. Bending damage

Bending failure

Compression failure
. Tension failure
. Failure during elastic phase

Figure 39: Legend Failure mechanisms

4.2.1 Wall 1: Regular wall
Below the failure mechanism and pushover curve is presented for Wall 1:

n2 n10 nd

ik
g
I

di dm=1.
0,

nl n3 0,00 1,44 2,88 432 5,76 720 8,64 10,08 11,52 12,96 14,40 15,84

& g ® d[mm]

Figure 40: Failure mechanism & Pushover curve Wall 1
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4.2.2 Wall 2-5: Opening irregularity
Below the failure mechanisms are presented for Walls 2-5:

n8

\

Figure 41: Failure patterns 3MURI Wall 2 (upper-left), Wall 3 (upper-right), Wall 4 (lower-left) and Wall 5 (lower-
right)

And below the pushover curves corresponding to Walls 2-5 are given:
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Figure 42: Pushover curve 3MURI Wall 2 (upper-left), Wall 3 (upper-right), Wall 4 (lower-left) and Wall 5 (lower-
right)
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4.2.3 Wall 6-8: Slender pier irregularity
Below the failure mechanisms are presented for Walls 6-8:

Figure

nii

,/.\
f

43: Failure patterns 3SMURI Wall 6 (upper-left), Wall 7 (upper-right), Wall 8 (lower-left)

And below the pushover curves corresponding to Walls 6-8 are given:
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Figure 44: Pushover curve 3MURI Wall 6 (upper-left), Wall 7 (upper-right), Wall 8 (lower-left)
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4.2.4 Wall 9-12: Centre of mass irregularity

Below the failure mechanisms are presented for Walls 9-12:

Figure 45: Failure patterns 3MURI Wall 9 (upper-left), Wall 10 (upper-right), Wall 11 (lower-left) and Wall 12

(lower-right)

And below the pushover curves corresponding to Walls 9-12 are given:
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Figure 46: Pushover curve 3MURI Wall 9 (upper-left), Wall 10 (upper-right), Wall 11 (lower-left) and Wall 12

(lower-right)
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Summary

In this section the results were given of the models in 3MURI. In the below figures the results are
once again given, but categorized for each variation.

Pushovercurves Opening irregularity Pushovercurves Slender pier irregularity
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Figure 47: Pushovercurves 3MURI for each variation
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4.2.5 Turnsek & Cakovic

Below the results are given for the Turnsek & Cakovic formula implemented in 3MURI for the left
figures and the right figures show results of the Mohr-Coulob criterion:
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Figure 48: Results 3MURI Wall 2 (above) & Wall 8 (below).

4.2.6 NPR9998:2018 model parameters
Below the results are presented for two wall configurations in 3MURI with NPR9998:2018 model

parameters implemented:

z
=

dm=3,

384 7,68 11,52 1536 1920 2304 26,88 30,72

VIkN]

|
3784
34,3
zu,sfn
 P—

34,56

27,5+
24,0
20,6
17,2
13,7
10,3

6,9

3,4

38,40

d[mm]

dm=3

0,0

0,00 3,30 6,60 9,89 13,19 16,49 19,79 23,08 26,38

29,68

32,98

36,27
d[mm]

¢ =

Figure 49: Results 3MURI Wall 2 (above) and Wall 12 (below).
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4.3 SLaMA results

In this chapter the results of the SLaMA are presented. The results consist of the pushover curves
and the observed failure mechanisms of each model.

4.3.1 Standard boundary condition formulation
In this chapter the results are based on the boundary conditions assessment of chapter 3.3.3.

4.3.1.1  Wall 1: Regular wall
In the table below the results are given of the individual pier:

Shear capacity Drift capacity Failure mechanism
Pier 1 112.4 kN 20.4 mm Shear
(Residual capacity) 87.2 kN

Table 2: Results Wall 1

Below the pushover curve corresponding to wall 1 is presented:

Pushovercurve Wall 1

100

Horizontal force in kN

00 25 50 75 100 125 150 175 200
x-displacement in mm

Figure 50: Pushover Curve SLaMA Wall 1

4.3.1.2 Wall 2-5: Opening irregularity
In the table below the results are given of the individual piers:

Pier no. Boundary Shear capacity  Drift capacity Failure
conditions (KN) (mm) mechanism
Wall 2 Pier 1 Cantilever 14.2 32.7 Rocking
Pier 2 Cantilever 9.4 24.5 Rocking
Pier 3 Cantilever 14.2 32.6 Rocking
Wall 3 Pier 1 Cantilever 11.3 32.7 Rocking
Pier 2 Cantilever 7.3 245 Rocking
Pier 3 Cantilever 11.3 32.6 Rocking
Wall 4 Pier 1 Cantilever 7.5 32.7 Rocking
Pier 2 Cantilever 4.9 245 Rocking
Pier 3 Cantilever 7.5 32.6 Rocking
Wall 5 Pier 1 Cantilever 12.7 32.7 Rocking
Pier 2 Cantilever 8.3 24.5 Rocking
Pier 3 Cantilever 12.8 32.6 Rocking

Table 3: Results Walls 2-5
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Below the pushover curve corresponding to wall 2 until 5 is presented:
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Figure 51: Pushover curve SLaMA Wall 2 (upper-left), Wall 3 (upper-right), Wall 4 (lower-left) and Wall 5 (lower-

right)
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4.3.1.3 Wall 6-8: Slender pier irregularity
In the table below the results are given of the individual piers:

Pier no. Boundary Shear capacity Drift capacity Failure
conditions (kN) (mm) mechanism
Wall 6 Pier 1 Cantilever 4.6 32.7 Rocking
Pier 2 Cantilever 3.1 24.5 Rocking
Pier 3 Cantilever 3.1 24.5 Rocking
Pier 4 Cantilever 4.6 32.6 Rocking
Wall 7 Pier 1 Cantilever 8.6 32.7 Rocking
Pier 2 Cantilever 3.2 24.5 Rocking
Pier 3 Cantilever 8.6 32.6 Rocking
Wall 8 Pier 1 Double- 4 32.7 Rocking
clamped
Pier 2 Cantilever 25.8 26.4 Shear
Pier 3 Double- 4 32.6 Rocking
clamped

Table 4: Results Walls 6-8

Below the pushover curve corresponding to wall 6 until 8 is presented:

Pushovercurve Wall 6 Pushovercurve Wall 7
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Figure 52: Pushover curve SLaMA Wall 6 (upper-left), Wall 7 (upper-right) and Wall 8 (lower-left).
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4.3.1.4 Wall 9-12: Centre of mass irregularity
In the table below the results are given of the individual piers:

Pier no. Boundary Shear capacity Drift capacity Failure
conditions (kN) (mm) mechanism
Wall 9 Pier 1 Cantilever 6.7 32.7 Rocking
Pier 2 Double- 3.7 24.5 Rocking
clamped
Pier 3 Cantilever 135 32.6 Rocking
Wall 10 Pier 1 Cantilever 2.7 40.8 Rocking
Pier 2 Cantilever 5 39.7 Rocking
Pier 3 Cantilever 14.4 33.6 Rocking
Wall 11 Pier 1 Double- 2.8 32.7 Rocking
clamped
Pier 2 Cantilever 4.4 24.5 Rocking
Pier 3 Cantilever 19.3 31.2 Rocking
Wall 12 Pier 1 Double- 0.8 32.7 Rocking
clamped
Pier 2 Cantilever 4.4 24.5 Rocking
Pier 3 Cantilever 24.4 29.4 Rocking

Table 5: Results Walls 9-12

Below the pushover curve corresponding to wall 9 until 12 is presented:
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Figure 53: Pushover curve SLaMA Wall 9 (upper-left), Wall 10 (upper-right), Wall 11 (lower-left) and Wall 12
(lower-right)
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Summary

In this section the results were given of the SLaMA based on the standard boundary condition
formulation. In the below figures the results are once again given, but categorized for each variation.

Pushovercurves Opening irregularity Pushovercurve Slender pier irregularity
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Figure 54: Pushovercurves SLaMA standard boundary conditions formulation for each variation.
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4.3.2 Linear interpolation of the boundary conditions
In this chapter

4.3.2.1  Wall 1: Regular wall

Shear capacity Drift capacity Failure mechanism
Pier 1 ‘ 112.4 kN 20.4 mm Shear
(Residual capacity) 87.2 kN

Table 6: Results Wall 1

Pushovercurve Wall 1

100 1 \

Horizontal force in kN

20 1

00 25 50 75 100 125 150 175 200
Zlf-difumaCEmErlt in mm

Figure 55: Pushover Curve SLaMA Wall 1

4.3.2.2  Wall 2-5: Opening irregularity

Pier no. Boundary Shear capacity  Drift capacity Failure
conditions (KN) (mm) mechanism
Wall 2 Pier 1 0.96 14.7 32.7 Rocking
Pier 2 0.93 10.1 24.5 Rocking
Pier 3 0.96 14.8 32.6 Rocking
Wall 3 Pier 1 0.91 12.4 32.7 Rocking
Pier 2 0.82 9.0 245 Rocking
Pier 3 0.91 12.4 32.6 Rocking
Wall 4 Pier 1 0.86 8.7 32.7 Rocking
Pier 2 0.72 6.9 245 Rocking
Pier 3 0.86 8.7 32.6 Rocking
Wall 5 Pier 1 0.94 13.5 32.7 Rocking
Pier 2 0.88 9.5 24.5 Rocking
Pier 3 0.94 13.6 32.6 Rocking

Table 7: Results Walls 2-5
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Figure 56: Pushover curve SLaMA Wall 2 (upper-left), Wall 3 (upper-right), Wall 4 (lower-left) and Wall 5 (lower-
right)
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4.3.2.3  Wall 6-8: Slender pier irregularity

Pier no. Boundary Shear capacity Drift capacity Failure
conditions (kN) (mm) mechanism
Wall 6 Pier 1 0.77 5.9 32.7 Rocking
Pier 2 0.55 5.6 24.5 Rocking
Pier 3 0.55 5.6 24.5 Rocking
Pier 4 0.77 6.0 32.6 Rocking
Wall 7 Pier 1 0.88 9.8 32.7 Rocking
Pier 2 0.56 5.7 24.5 Rocking
Pier 3 0.88 9.8 32.6 Rocking
Wall 8 Pier 1 Double- 4 32.7 Rocking
clamped
Pier 2 0.94 274 24.5 Shear
Pier 3 Double- 4 32.6 Rocking
clamped

Table 8: Results Walls 6-8
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Figure 57: Pushover curve SLaMA Wall 6 (upper-left), Wall 7 (upper-right) and Wall 8 (lower-left).
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4.3.2.4  Wall 9-12: Centre of mass irregularity

Pier no. Boundary Shear capacity Drift capacity Failure
conditions (kN) (mm) mechanism
Wall 9 Pier 1 0.84 7.9 32.7 Rocking
Pier 2 Double- 3.7 24.5 Rocking
clamped
Pier 3 0.92 14.6 32.6 Rocking
Wall 10 Pier 1 0.62 4.4 32.7 Rocking
Pier 2 0.72 7.0 24.5 Rocking
Pier 3 0.93 15.6 32.6 Rocking
Wall 11 Pier 1 Double- 2.8 32.7 Rocking
clamped
Pier 2 0.69 6.5 24.5 Rocking
Pier 3 0.94 20.4 31.2 Rocking
Wall 12 Pier 1 Double- 0.8 32.7 Rocking
clamped
Pier 2 0.69 6.5 24.5 Rocking
Pier 3 0.95 25.6 29.4 Rocking
Table 9: Results Walls 9-12
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Figure 58: Pushover curve SLaMA Wall 9 (upper-left), Wall 10 (upper-right), Wall 11 (lower-left) and Wall 12

(lower-right)
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Summary

In this section the results were given of the SLaMA based on linear interpolation of the boundary
conditions. In the below figures the results are once again given, but categorized for each variation.

Pushovercurves Opening irregularity Pushovercurves Slender pier irregularity
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Figure 59: Pushovercurves SLaMA linear interpolation for each variation.
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4.3.3 Boundary conditions based on MatrixFrame
4.3.3.1  Wall 1: Regular wall

Shear capacity Drift capacity Failure mechanism
Pier 1 112.4 kN 20.4 mm Shear
(Residual capacity) 87.2 kN

Table 10: Results Wall 1

Pushovercurve Wall 1

100 A \

Hornizontal force in kN

00 25 50 75 100 125 150 175 200
x-displacement in mm

Figure 60: Pushover Curve SLaMA Wall 1

4.3.3.2  Wall 2-5: Opening irregularity

Pier no. Boundary Shear capacity Drift capacity Failure
conditions (kN) (mm) mechanism
Wall 2 Pier 1 0.98 14.5 32.7 Rocking
Pier 2 0.98 9.6 24.5 Rocking
Pier 3 0.99 14.4 32.6 Rocking
Wall 3 Pier 1 0.98 11.6 32.7 Rocking
Pier 2 Cantilever 7.3 24.5 Rocking
Pier 3 0.98 11.6 32.6 Rocking
Wall 4 Pier 1 0.97 7.7 32.7 Rocking
Pier 2 Cantilever 4.9 245 Rocking
Pier 3 0.97 7.7 32.6 Rocking
Wall 5 Pier 1 0.98 12.9 32.7 Rocking
Pier 2 Cantilever 8.3 245 Rocking
Pier 3 0.98 13.0 32.6 Rocking

Table 11: Results Walls 2-5
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Figure 61: Pushover curve SLaMA Wall 2 (upper-left), Wall 3 (upper-right), Wall 4 (lower-left) and Wall 5 (lower-

right)
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4.3.3.3  Wall 6-8: Slender pier irregularity

Pier no. Boundary Shear capacity Drift capacity Failure
conditions (kN) (mm) mechanism
Wall 6 Pier 1 0.93 4.9 32.7 Rocking
Pier 2 0.95 3.3 24.5 Rocking
Pier 3 0.95 3.3 24.5 Rocking
Pier 4 0.93 4.9 32.6 Rocking
Wall 7 Pier 1 0.97 8.9 32.7 Rocking
Pier 2 Cantilever 3.2 24.5 Rocking
Pier 3 0.97 8.9 32.6 Rocking
Wall 8 Pier 1 0.93 2.2 32.7 Rocking
Pier 2 Cantilever 25.8 26.4 Shear
Pier 3 0.93 2.2 32.6 Rocking

Table 12: Results Walls 6-8
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Figure 62: Pushover curve SLaMA Wall 6 (upper-left), Wall 7 (upper-right) and Wall 8 (lower-left).
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4.3.3.4  Wall 9-12: Centre of mass irregularity

Pier no. Boundary Shear capacity Drift capacity Failure
conditions (kN) (mm) mechanism
Wall 9 Pier 1 0.96 7.0 32.7 Rocking
Pier 2 0.98 1.9 24.5 Rocking
Pier 3 0.83 16.3 32.6 Rocking
Wall 10 Pier 1 0.92 3.0 32.7 Rocking
Pier 2 0.99 5.1 24.5 Rocking
Pier 3 0.99 14.6 32.6 Rocking
Wall 11 Pier 1 0.88 1.6 32.7 Rocking
Pier 2 0.98 4.6 24.5 Rocking
Pier 3 Cantilever 19.3 31.2 Rocking
Wall 12 Pier 1 0.90 0.4 32.7 Rocking
Pier 2 0.96 4.6 24.5 Rocking
Pier 3 0.99 24.5 29.4 Rocking

Table 13: Results Walls 9-12
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Figure 63: Pushover curve SLaMA Wall 9 (upper-left), Wall 10 (upper-right), Wall 11 (lower-left) and Wall 12
(lower-right)
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Summary

In this section the results were given of the SLaMA based on MatrixFrame. In the below figures the
results are once again given, but categorized for each variation.

Pushovercurves Opening irregularity Pushovercurves Slender pier irregularity
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Figure 64: Pushovercurves SLaMA based on MatrixFrame for each variation.
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5 Discussion

This chapter covers the comparison of the results acquired in the previous chapter. The comparison is
split into several parts. First the formulation of the boundary conditions in SLaMA will be discussed.
Then the results will be compared with each other by presenting the difference between the simplified

calculation methods (SLaMA and 3MURI EFM) and DIANA FEA. Then the differences will be

discussed and elaborated.

5.1 Comparison of the results in terms of base shear

In the below tables the results of the different methods are given for each irregularity index. The
SLaMA results with the new formulations of the boundary conditions is also given below.

Model i, DIANA SLaMA 3MURI Ratio Ratio SLaMA Ratio SLaMA Ratio
SLaMA Linear Frame 3MURI
Walll | 0 116 87.2 80 0.75 0.75 0.75 0.69
Wall2 | 0.1 79.7 37.9 315 0.48 0.5 0.48 0.4
Wall 5 \0.15 75.7 33.8 30.4 0.45 0.48 0.45 0.4
Wall 3 ‘0.2 73 30 28.4 0.41 0.46 0.42 0.39
Wall 4 \0.35 59.9 19.9 22.5 0.33 0.4 0.34 0.38

Table 14: Comparison of the base shear values obtained at varying the opening irregularity

Model i, is DIANA SLaMA 3MURI Ratio Ratio Ratio SLaMA Ratio
SLaMA SLaMA Frame 3MURI
Linear
Wall 4 ‘ 035 O 59.9 19.9 225 0.33 04 0.34 0.38
Wall 7 ‘ 0.35 0.333 59.3 204 23 0.34 0.43 0.35 0.39
Wall 8 ‘ 0.35 0.667 70 33.8 31.3 0.48 0.51 0.43 0.45
Wall 6 ‘ 035 1 445 15.3 17 0.34 0.52 0.37 0.38
Table 15: Comparison results slender pier irregularity
Model i, is ic DIANA SLaMA 3MURI Ratio Ratio Ratio Ratio
SLaMA SLaMA SLaMA 3MURI
Linear Frame
Wall 0.35 0.333 0 59.3 204 23 0.34 0.43 0.35 0.39
7
Wall 0.35 0.333 0.1 575 23.9 22.3 0.41 0.46 0.44 0.39
9
Wall 0.35 0.333 0.2 545 22.2 211 0.41 0.49 0.42 0.39
10
Wall 0.35 0.333 0.3 56.9 26.5 22.6 0.47 0.52 0.45 0.4
11
Wall 0.35 0.333 04 58 29.6 24.6 0.51 0.57 0.51 0.42
12

Table 16: Comparison results centre of mass irregularity
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5.1.1 Opening irregularity

For the first irregularity, the models differed in the sizes of the openings. For all methods it can be
noticed in the figure below that the shear capacity undergoes a large drop for even the slightest
opening. In FEM the opening causes a disturbance in the stress field, which causes the stresses in
plane to increase and in return will cause the wall to fail at an earlier stage. For the simplified
methods, the opening influences the definition of the pier and spandrel geometry and in return causes
in a simplified way a decrease in the shear capacity. Beyond the first opening irregularity, the lateral
capacity decreases further with the increase of the opening irregularity index. However, the shear
capacity decreases for each method differently.

For the EFM in 3MURY, the difference with respect to the results obtained with DIANA FEA remains
constant for the different values of the index io. This can be observed in the figure below. The first
drop is due to the disturbance caused by adding an opening in a wall facade. This first decrease is for
all simplified methods large and can be related to the transition of the wall configurations from a single
pier to three piers. When multiple piers are present in a wall facade, the influence of the force
redistribution on the seismic capacity plays a more significant role. EFM makes use of the frame
approach to redistribute forces while SLaMA does not take into account the force redistribution of the
piers during loading. This can lead to more conservative results than DIANA. The parallel course of
the lateral capacities in EFM and FEM is due to the similar assumptions been made. 3MURI takes
into account the change of the axial load during lateral loading just like DIANA. However, this
research focuses on single floor wall configurations only. If a wall has multiple floors, other
irregularities could play a larger role in the difference, like the definition of a pier and a spandrel. As
far as the underestimation of 3SMURI compared to SLaMA concerned, the model parameters used in
3MURI are based on the Eurocode NL, while the SLaMA calculation is in correspondence with
NPR9998:2018. 3MURI has also the option to adjust model parameters in correspondence with the
NPR9998. This has been done for two wall configurations in chapter 4.3.6. The results of these
models are similar to the SLaMA as to the force and displacement capacity concerned.

For SLaMA, the first result does not differ much from the FEM results. At the first irregularity index of
0.1, the drop is very large and after that the difference only becomes larger between SLaMA and
DIANA. The SLaMA results are initially closer to DIANA than 3MURI, but eventually, as the opening
size increases, the SLaMA method underestimates the ultimate loading capacity compared to DIANA.
This underestimation can be caused by several factors. One of these factors could be the formulation
of the boundary conditions in the SLaMA. The SLaMA method takes a psi equal to 0.5 for double-
clamped condition and a psi equal to 1 for cantilever boundary conditions. In reality, these boundary
conditions do not occur that often, because a pier is always connected to a spandrel and the
connection between pier and spandrel is often neither infinitely rigid nor hinged. For the cases studied
in the figure below, the SLaMA method gave for all five walls piers with cantilever boundary
conditions. This, while the opening irregularity index was increasing. For a larger opening irregularity,
the piers increase in slenderness. This means in reality that the connection becomes more rigid
between piers and spandrels. So the underestimation is caused because SLaMA assumes cantilever
boundary conditions for all the 5 walls, while in reality the piers should behave more rigidly.
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As a solution for this underestimation, a new formulation for the boundary conditions is made. These
two formulations have been explained in chapter 5.1. In the figure below one can see that the shear
capacity differs less from DIANA with implementing the linear interpolation formulation in SLaMA. The
method is now also less dependent of the opening irregularity index. The second formulation gives
results similar to the initial boundary condition formulation. This means that most piers in the wall
configurations act close to cantilever and so the difference with the assessment approach in 3.3.3 is
small. This approach can also be verified in 3MURI. In 3MURI it can be observed that the spandrels
crack first in a wall, which causes the close to cantilever condition. Overall, the variations of the
SLaMA and especially EFM results compared to DIANA are limited with respect to the opening
irregularity.
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Figure 65: Comparison results opening irregularity

5.1.2 Slender pier irregularity

The second irregularity index is based on the slenderness of the piers. For each wall the number of
slender piers has been increased. For the EFM results there is no significant change in the ratio for all
the walls except wall 8. This can be caused because of shear failure of the middle pier in the wall
facade. The shear failure is based on the Mohr-Coulomb criterion while in case of rocking failure other
formulas are used.

The SLaMA results also do not show significant changes except for wall 8. Also, for SLaMA the same
applies. Failure due to shear is also based on the Mohr-Coulomb criterion and gives different results
than for rocking failure. What also can be noticed is the underestimation of the SLaMA results. It
should be noted that opening irregularity index for all the four walls is equal to 0.35. Which is
significant for the underestimation of the results as seen in the previous figure. Again implementing
the linear interpolation formulation of the boundary conditions gives lower differences with DIANA. For
the frame formulation, one can observe that the variation of the results compared to DIANA is smaller.
This is due to the boundary conditions in wall 8. With the assessment approach of 3.3.3 the boundary
conditions for the two outer piers are double clamped. This causes the large difference in the figure
below. The SLaMA Frame formulation shows a smaller variation that corresponds more with EFM.
Again it can be observed that the variations of the simplified methods are limited.
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Figure 66: Comparison results slender pier irregularity

The formulation of the slender pier irregularity could be altered. Because a slenderness ratio of 2 is
not always the definition of a slender pier in reality when observing the behaviour of a pier. The walls
that have been assessed with the slender pier irregularity, may have had a slenderness ratio lower
than two but still had rocking behaviour. This behaviour is typical for a slender pier and not for a thick
pier. After taking a closer look at which slenderness ratio rocking behaviour will initiate, it can be
concluded that it is not possible to determine such a slenderness ratio easily. This is because slender
behaviour of a pier also depends on the boundary conditions, axial force and material properties. For
Clay-brick pre 1945 an approximation is made of when a pier is slender:

81
h_p > 0.8
Ip— ¥
This statement is inaccurate for very large axial loads. Applying this condition on the piers in this
report gives a definition in correspondence with the behaviour of the pier in SLaMA. Piers with a

slenderness lower than the above condition fail due to shear and piers higher than the condition fail
due to rocking.
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5.1.3 Centre of mass irregularity

The last irregularity index is based on the position of the piers relative to the centre of mass of the
wall. This is a straightforward way to define the geometrical irregularity as far as asymmetry is
concerned. Again for the EFM results there are no substantial differences relatively.

The SLaMA method shows changes compared to the FEM results from 0.34 to 0.51. By implementing
the linear interpolation formulation of the boundary conditions, it can be observed that the results of
SLaMA change substantially less than before. It can also be said that the results of SLaMA with the
linear interpolation boundary condition formulation come for all indices closer to the FEM results than
3MURI. This is not necessarily because the formulation is better, because the SLaMA Linear
formulation still varies depending on the irregularities in the wall. The SLaMA Frame formulation
shows for all wall configuration results similar to the initial assessment approach. However,
implementing the formulation gives results less dependent on the irregularities in a wall.
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Figure 67: Comparison results centre of mass irregularity

The EFM in BMURI shows results similar to the SLaMA method, however less dependent on
geometrical irregularities for single floor 2D wall configurations. This could be due to the assessment
of the boundary conditions, as can be seen in the SLaMA Frame formulation. However, one factor
that plays a major role for the independence on geometrical irregularities in 3MURI is taking into
account the change of axial load during lateral loading. The SLaMA does not take this change into
account and assumes the initial axial load to be the final axial load. Further research about the effect
of the varying axial load on the in-plane behaviour can be found in the research of Nidal Ennali. The
variations for this irregularity are also very limited for SLaMA and especially EFM.

5.1.4 Influence of the new boundary conditions formulation

Based on the comparison of the results in section 5.1, one can see whether the two proposed
assessment methods of the boundary conditions improve the accuracy of SLaMA. The linear
interpolation formulation gives results closer to DIANA. An improvement between 0.02 and 0.18 can
be seen for all wall configurations. The Matrix Frame approach does not show significant
improvement of the results and even presents for some wall configurations results further away from
DIANA than the initial method.
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5.2 Failure mechanisms
For the different calculation methods the following failure mechanisms were observed:
Model DIANA SLaMA 3MURI Comparison Comparison
SLaMA-DIANA  3MURI-DIANA
Wall 1 | Shear failure Bed joint Shear failure  Good Good
sliding shear agreement agreement
Wall 2 | Shear/rocking failure pier 3 Rocking of all Shear failure ~ Reasonable Poor agreement
the piers all piers agreement
Wall 3 | Shear/rocking failure pier 3 Rocking of all Shear failure ~ Reasonable Reasonable
the piers pier 3 agreement agreement
Wall 4 | Shear/rocking failure pier 3  Rocking of all Shear failure Reasonable Reasonable
the piers pier 3 agreement agreement
Wall 5 | Shear/rocking failure pier 3  Rocking of all Shear failure Reasonable Reasonable
the piers pier 1 and 3 agreement agreement
Wall 6 | Rocking of all the piers Rocking of all Shear failure  Good Reasonable
the piers pier 4 agreement agreement
Wall 7 | Rocking/shear failure pier 3 Rocking of all Shear failure  Reasonable Reasonable
the piers pier 3 agreement agreement
Wall 8 | Shear failure pier 2 Shear failure  Shear failure Good Good
pier 2 pier 2 agreement agreement
Wall 9 | Rocking/shear failure pier 1  Rocking of all Shear failure Reasonable Reasonable
the piers pier 1 agreement agreement
Wall 10 | Rocking of all the piers Rocking of all Rocking of all Good Good
the piers the piers agreement agreement
Wall 11 | Rocking of all the piers Rocking of all Shear failure  Good Reasonable
the piers pier 3 agreement agreement
Wall 12 | Rocking of all the piers Rocking of all Shear failure Good Reasonable
the piers pier 3 agreement agreement

Table 17: Failure mechanisms wall configurations

The failure mechanisms described by SLaMA show good correspondence with DIANA. However,
SLaMA and EFM cannot define a combined failure mechanism as DIANA does. This makes it more
difficult to visualise which failure mechanism is the governing one in DIANA. Another remark, that

needs to be made is the use of the failure type ‘Tensile strength head-joint defined by bed-joint
frictional shear stress’. This failure gives a less accurate representation of the diagonal cracks

occurring in a wall. This makes it even more difficult to get an accurate governing failure mechanism.
Even though 3MURI shows a less correspondence with DIANA, based on the above argument this
does not mean 3MURI is less accurate.
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The SLaMA method shows mainly flexural failure mechanisms. This can be caused by not taking into
account the varying axial load during loading. Based on the loading direction, the axial load will
decrease during loading for the first pier and increase for the last pier. An increase in axial load could
cause shear failure as a governing failure mechanism. The below figure shows an example of how the
axial load can vary during loading.

Figure 68: Varying axial load (3MURI, 2019)

5.3 Ultimate displacement capacity

The drift limit results were different for all methods. SLaMA gave drift limits between 24-32 mm, while
3MURI presented drift limits between 12-18 mm. DIANA presented displacement capacities larger
than 40 mm. The differences are caused by the different relationships used for the drift limits. The
displacement capacity of DIANA is based on the material model, while SLaMA and 3MURI base their
results on empirical relationships of respectively the NPR and Eurocode NL. The large difference
between SLaMA and 3MURI is mainly caused by the prediction of different failure mechanisms. Shear
failure mechanisms cause in general lower displacement capacities than flexural failure mechanisms.
In the table below the drift limits are shown:

Model 3MURI drift SLaMA drift
limit(mm) limit(mm)
Walll | 144 20.4
Wall 2 | 12.9 32.6
Wall 3 | 13.9 32.6
Wall 4 | 14.3 32.6
Wall 5 | 13 32.6
Wall 6 | 39.8 32.6
Wall7 | 14.4 32.6
Wall 8 | 11.9 24.5
Wall 9 | 13.6 32.6
Wall 10 | 39.9 32.6
Wall 11 | 12.8 31.2
Wall 12 | 12.7 29.4

Table 18: Drift limits 3BMURI and SLaMA
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5.4 Influence of the different constitutive models in 3MURI and DIANA

This research focuses on the influence of the geometrical irregularities on the simplified calculation
methods as regards the in-plane behaviour of masonry wall facades compared to FEM. For the FEM
analysis, DIANA FEA was used. The comparisons have been done with one specific constitutive
model in DIANA and 3MURI. For the modelling in DIANA, the Engineering Masonry Model was used.
Using other constitutive models in DIANA could of course give different results for the in-plane
behaviour and there is not one specific, accurate constitutive model for all cases. It depends on the
loading conditions, material behaviour etc. in each specific situation which constitutive model should
be chosen. For this reason an additional comparison has been made for a different constitutive model
as seen in chapter 4.4. The constitutive model that has been picked, is the Rotating Strain Crack
Model. This constitutive model has been used for two wall configurations with squat piers. Below, the
results are given for these two constitutive models:

Model Shear capacity Shear capacity Failure Failure
TSC (kN) EMM (kN) mechanism TSC mechanism
EMM
Wall 2 | 81.2 79.7 Rocking/Shear ~ Rocking
wall 8 | 71 70 Rocking Rocking

Table 19: Results constitutive models DIANA

The results of the two different constitutive models were similar as far as shear and displacement
capacity concerned. As to the principal strains, the Rotating Strain Crack model showed better
representation of the strains in the piers. This is due to the failure type ‘Tensile strength head-joint
defined by bed-joint frictional shear stress’ as described in the DIANA Verification document.

As far as 3MURI concerned, the shear behaviour in the models were all based on the Mohr-Coulomb
criterion which describes bed joint sliding shear. A different approach is describing the shear
behaviour with the diagonal cracking formula of Turnsek & Cakovic. This has also been done for Wall
2 and 8 just like DIANA. In the below table a comparison of the results is shown:

Model Shear capacity Shear capacity Displacement Displacement
T&C (kN) MC (kN) capacity T&C capacity MC
(mm) (mm)
wall 2 | 31.4 315 24.2 12.9
wall 8 | 30.8 31.3 20.8 11.9

Table 20: Results different shear behaviour 3SMURI

The outcome was different from the Mohr-Coulomb criterion. Although the results showed similar
shear capacities this was not the case for the displacement capacities in the wall configurations. The
models based on Turnsek & Cakovic show twice as large displacement capacities as in the models
based on Mohr-Coulomb. This is due to the fact that in the models based on Turnsek & Cakovic ho
shear failure of a pier is occurring, but only flexural failure. Failure mechanisms like rocking have large
displacement capacities compared to shear failure mechanisms. In general it is unnecessary to check
the diagonal cracking failure for specific types of masonry as specified in 3.1.1 of the NEN EN 1996-1-
1. For this reason the Mohr-Coulomb criterion is the most accurate to describe the shear behaviour of
a pier.
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5.5 Influence of lintels on the in-plane behaviour in DIANA

A small study has been conducted on the influence of lintels on the in-plane behaviour. In two wall
configurations lintels have been modelled in DIANA. The influence of the lintels on the strain plots as
seen in section 4.1.6 is minimal. A negligible difference can be seen in the base shear force between

the two models in section 4.1.6.
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6 Conclusions and recommendations

6.1 Conclusions
The main goal of this research was answering the following research question:

¢ How do geometrical irregularities affect the assessment of the in-plane behaviour of single-
storey URM wall facades performed with a mechanism based and a frame based analysis
when compared to FEM?

The objective has been studied by looking into single-floor wall facades. The conclusions made in this
research can generally be applied to single-floor URM wall facades in Groningen of the masonry
material Clay-Brick pre 1945. For other masonry types, differences can be seen for example in the
definition of a slender pier. Also, significant changes in geometry outside the scope of this research
can also have an influence on the results. For example, wall configurations with different heights of
the spandrels can have an influence on the boundary conditions and their different formulations.

6.1.1 Effects of geometrical irregularities on the equivalent frame method
The following conclusions are drawn based on the comparison of the results of the DIANA and 3MURI
models:

Based on the findings in this research, it can be concluded that the in-plane behaviour of a URM wall
facade with EFM in 3MURI is not affected by the geometrical irregularities defined in this research in
comparison with DIANA. This can be observed in the base shear capacities, displacement capacities
and failure mechanisms of each model.

3MURI gave in general more conservative results than DIANA for all wall configurations. The models
showed conservative results even with the presence of geometrical irregularities.

The base shear capacity in 3MURI is affected by geometrical irregularities in the same way as in
DIANA. This is due to implementing the effective height method, the boundary conditions and the
varying axial load. These applications assist in the consistency of the base shear capacity compared
to DIANA when geometrical irregularities are present.

The ultimate displacement capacity or drift limit is in general lower in 3MURI compared to DIANA.
This can be related to the force redistribution in DIANA, which allows gradual softening in contrast to
3MURI. The displacement capacity cannot be compared with DIANA as the material model computed
high displacement capacities which did not show failure in the program. It can however be concluded
that the displacement capacities were conservative compared to DIANA for all wall configurations.
The SLaMA method did show differences with 3MURI. These differences were however caused by
the different predictions of the failure mechanisms, which is again related to the varying axial load.

The failure mechanisms described by 3MURI are mostly corresponding to DIANA. However, DIANA
shows often a combination of two failure mechanisms, whereas 3MURI only presents one failure
mechanism as governing. It also needs to be noted that the failure type chosen in DIANA is more
difficult for deducting the governing failure mechanism, because the diagonal cracks are hard to
visualise in the strain plots. The geometrical irregularities did not have a large influence on the
prediction of the failure mechanism by 3MURI compared to DIANA. By determining the effective
height and taking into account the varying axial load, 3MURI could predict the failure mechanisms in
correspondence to DIANA.
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6.1.2 Effects of geometrical irregularities on the SLaMA method
The following conclusions are drawn based on the comparison of the results of the DIANA models
and SLaMA calculations:

SLaMA gave in general more conservative results regarding force and displacement capacity than
DIANA for all wall configurations. The models showed conservative results even with the presence of
geometrical irregularities.

The SLaMA method showed large influences by the geometrical irregularities with respect to DIANA,
but these influences were reduced slightly with a new formulation of the boundary conditions in the
SLaMA. This can be observed in the base shear capacities, displacement capacities and failure
mechanisms of each model.

The SLaMA method computed base shear capacities dependent on the geometrical irregularities
compared to DIANA. The new formulation of the boundary conditions gave a base shear capacity
slightly less dependent on the geometrical irregularities. The results show that the irregularities can
vary the ratio of the shear capacity with DIANA between 0.34 and 0.75. This is still a large variation of
results. The variation could be smaller by taking into account a varying axial load like 3MURI. This
effect has been shown in the research of Nidal Ennali.

The ultimate displacement capacity or drift limit is in general lower in SLaMA compared to DIANA.
This is due to the fact that the drift limit in SLaMA is determined for single piers. And based on the
drift limits of the single piers a global displacement capacity is determined. The effect of the
geometrical irregularities on the displacement capacities is only found compared to 3SMURI.

SLaMA shows mainly flexural failure, which is caused by neglecting the axial load redistribution
between the piers. This effect can be seen in the displacement capacities of SLaMA compared to
3MURI. SLaMA overestimates the drift limit in comparison with 3SMURI. The influence of the varying
axial load on the prediction of the failure mechanisms depends on the geometrical irregularities in a
wall.
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6.2 Recommendations

This part describes some recommendations which follows from this study and from the study Nidal
Ennali. Both studies have been carried out in parallel and in cooperation with each other. Therefore,
the recommendations resulting from these studies are combined in this chapter.

Further research is required in determining how to include (in a simple way) the effect of the
varying axial load at the top of the piers within the SLaMA method. This is relevant for predicting
the failure mechanisms, especially when geometrical irregularities are present. Combining a
simplified equivalent frame method with the SLaMA method could be a possible solution.

A new procedure is needed to determine the boundary conditions of the piers in the in-plane
loaded wallls. Including the boundary conditions that lies between the double clamped boundary
condition and the cantilevered boundary condition would result in a less conservative prediction
and in a less dependent prediction on the geometrical irregularities in comparison with FEM
with the SLaMA method.

More research is needed to determine at which difference in shear capacities the combined
failure type occurs. One specific failure type will happen when the difference in shear capacity
is significant. How small needs this difference to be in order to adopt the combined failure
mechanism within the SLaMA method?

Further research is needed for the simplified methods regarding the effect of geometrical
irregularities for cases with a higher complexity of geometry like multi-storey URM walls or 3D
URM buildings.

The irregularity indices could be altered or different irregularity indices could be defined. For
example the slenderness ratio in the slender pier irregularity index can be replaced by the new
slenderness ratio that has been defined in chapter 5.3.2.

When deducting the failure mechanisms from the DIANA strain plots, it was difficult to observe
shear failure mechanisms in the piers. It is possible to consider a different failure type from the
Engineering Masonry Model which gives a more accurate representation of the strain plot, like
the failure type ‘Diagonal Staircase-cracks’.

The different constitutive models in DIANA did not show large differences in results, however
the walls that were modelled were sensitive to rocking. More research is needed on whether
walls with shear failure could give different results for the two constitutive models.

Different model parameters could be used in 3MURI and researched. For example, the model
parameters based on the NPR9998:2018 could be implemented instead of the Eurocode NL
parameters.

75



7 References

3MURI. (2019). 3MURI Manual version 12.2.0. S.T.A. Data.
Beyer, K. (2011). Peak and residual strengths of brick masonry spandrels. Switzerland: ELSEVIER.

F. Messali, J. R. (2017). In-plane drift capacity at near collapse of rocking unreinforced calcium
silicate and clay masonry piers. Delft.

Franklin L. Moon, T. Y. (2006). Recommendations for Seismic Evaluation and Retrofit of Low-Rise
URM Structures. JOURNAL OF STRUCTURAL ENGINEERING.

GUIDO MAGENES, G. M. (1997). IN-PLANE SEISMIC RESPONSE OF BRICK MASONRY WALLS.
Pavia.

Knox, C. (2012). Non-linear equivalent frame modelling: Assessment of a two-storey perforated
unreinforced masonry wall.

Lagomarsino, S., Penna, A., Galasco, A., & Cattari, S. (2013). TREMURI program: An equivalent
frame model for the nonlinear sesimic analysis of masonry buildings. Elsevier.

Messali, F., & Rots, J. (2018). In-plane drift capacity at near collapse of rocking unreinforced calcium
silicate and clay masonry piers.

MIHA TOMAZEVIC, I. K. (1997). SEISMIC BEHAVIOUR OF CONFINED MASONRY WALLS.
Slovenia.

Moon, F. (2004). Seismic strengthening of low-rise unreinforced masonry buildings. Atlanta: Georgia
Institute of Technology.

Moon, F. L. (2004). Seismic Strengthening of Low-Rise Unreinforced Masonry Structues with Flexible
Diaphragms.

NEN. (2018). NPR9998.
NZSEE. (2017). Unreinforced Masonry Buildings C8.

Parisi, F., & Augenti, N. (2012). Seismic capacity of irregular unreinforced masonry walls with
openings.

Quagliarini, E., Maracchini, G., & Clementi, F. (2017). Uses and limits of the Equivalent Frame Model
on existing unreinforcedmasonry buildings for assessing their seismic risk: A review.

Schreppers, G., Garofano, A., Messali, F., & Rots, J. (2017). DIANA Validation report for Masonry
modelling.

Siano, R., Camata, G., Sepe, V., Spacone, E., Roca, P., & Pela, L. (2017). Finite Elements vs.
Equivalent-Frame Models for URM walls' in-plane behaviour.

Smily, T. J., Deepa, M. V., & Sivan, P. P. (2018). Study of seismic effect in unreinforced masonry
structures with openings.

Tianyi Yi, F. L. (2006). Lateral Load Tests on a Two-Story Unreinforced Masonry Building.

Vecchio, F., & Collins, M. (1986). The modified compression field theory for reinforced concrete
elements subjected to shear. ACI Journal.

76



A.Appendix A: SLaMA calculation

Below the full SLaMA calculation is described. This procedure was used for all wall configuration in
this report.

1. Define geometry of the wall configurations:

# Define geometry piers and spandrels here as an array:

lpiers = np.array([np.array([5.66,8.81]),np.array([1.85, 1.38, 1.85]),np.array([1.65, 1.22, 1.65]), np.array([1.34,1,1.3

41),
np.array([1.75, 1.3, 1.75]),np.array([1.85,8.79,8.79,1.85]),np.array([1.44,8.8,1.44]) ,
np.array([©.695,2.29,08.695]),np.array([1.27,8.61,1.8]), np.array([©.81,1.81,1.86]),
np.array([0.58,08.95,2.15]), np.array([0.31,0.95,2.42])])

hpp = np.array([2.18, 1.63,2.17])

#hpp = np.array([2.17, 1.63,2.18]) negative direction

hpiers = np.array([np.array([2.72,8.1]),hpp,hpp, hpp,hpp,np.array([2.18, 1.63,1.63,2.17]),hpp, hpp,hpp,hpp, hpp, hpp])

lspandrels = np.array([np.array([8.@1]),np.array([6.29,8.29]),np.array([@.57,8.57]),np.array([©.99,0.99])
,Np.array([e.43,8.43]),np.array([@.66,8.66,08.66]),np.array([0.99,0.99]),np.array([©.99,8.99]),
np.array([8.99,8.99]),np.array([@.99,8.99]),np.array([0.99,8.89]),np.array([8.99,8.99])])

hspandrels = np.array([np.array([8.81]),np.array([6.55,8.55]),np.array([8.55,6.55]),np.array([8.55,8.55]),
np.array([8.55,08.55]),np.array([0.55,8.55,08.55]),np.array([©.55,8.55]),np.array([©.55,8.55]),
np.array([8.55,8.55]),np.array([@.55,8.55]),np.array([@.55,8.55]),np.array([8.55,8.55])]1)

i = np.array([len(lpiers[@]),len(1lpiers[1]),len(lpiers[2]),len(lpiers[3]),
len(1lpiers[4]},len(lpiers[5]),len{lpiers[6]),len{lpiers[7]),
len(lpiers[8]),1len(1lpiers[9]),len(lpiers[168]),len(1lpiers[11]}]) # i is number of piers

#lspandrelsf1] = np.array([6.99,8.99])

print(1.85/2+1.38/2+08.29)

2. Calculation of the shear capacities of the spandrels:

def v(1p,hp,i,1sp,hsp,psi):
W=1p * hp * tp * vg
P = g*lp
F = P+l
sigmay = F/(1lp * tp)
sigma = np.zeros(i-1)
for 1 in range(i-1):
sigma[l] = (sigmay[l]+sigmay[1+1])/2
# # Spandrels: Flexural strength
fteff= 1.3*((c+(8.5*mu*sigma)))+(c/(2*mu))
betas=1sp/hsp
fa=vg*lsp*tp*hsp/2
fdt=0.5%c+(fa*mu)
psp=(1+betas)*fdt*(lsp/np.sqrt(lsp**2+hsp**2))
VFl=(fteff)*(hsp**2)*tp/(3*1sp)
fhm=0.5*fma
VFlr= ((psp*(hsp**2)*tp)/(Lsp))*(1-(psp/(8.85*Fhm)))

# # Spandrels: Probable shear strength
Ws1=(2/3)*(c)*hsp*tp
b = np.zeros(i-1)
for j in range(i-1):
if Isp[j]/hsp[j] > 1.5:
b[j] - @.67
elif 1sp[j]1/hsp[j] <= 1.5 and lsp[j]/hsp[j] >=1
b[j]1 = 1+(((1sp[j1/hsp[j1)-1)* (@.67-1)/(1.5-1))

elif lsp[j]/hsp[j] < 1:
b[j]-1.e
#print(b) ##beta spandrels
Vs2=(fdt*b*np.sqrt(1+(psp/fdt))*hsp*tp)
VS = np.zeros(i-1)
VR = np.zeros(i-1)
for j in range(i-1):
V5[3] = min(Vs1i[j], VF1[31)
if vs[j] == vsi[]j]:
WR[]] = vs2[3]
else:
VR[§] = VFlr[j]
if VR[j] »= VvS[jl:
VR[] = vs[]]
#print(Vflr, vfl,Vvs1,vs2) #% check spandrel capacities
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3. Calculation of the shear capacities of the piers and assigning respectively the failure
mechanisms to each pier:

#Failure mechanism 1: Tee crushing capacity:
Vr = F*1p/(2*psi*hp)*(1-1.15%sigmay/fma)
#Failure mechanism 2: Sliding shear capacity:
alpha = psi*hp/lp
Vral = (2*mu*F**2 + 3*F*fmav*tp*1lp)/(6*alpha*fmav*tp*1lp + 2*F)#Diagonal cracking
Vrar = (2*mu*F**2)/(2*F)
Vrbl = (3*fb*1p*tp*F)/(6*fb*alpha*1p*tp+28*F) # Sliding shear capacity
theta = @.8135 * ( 1 - 2.6 * sigmay/fma) * (href/hp) * np.sqrt(hp/lp)
#Failure mechanism 3: Diagonal Tensile strength:
bp = np.zeros(i)
for j in range(i):
if hp[j1/1p[j] > 1.5:
bp[j]=0.67
else:
bp[i1-1.0

fa= (W/2 +P)/(tp*1p)
fdt=8.5%*c+fa*mu
An=1p*tp

Vdt=fdt*An*bp*np.sqrt(1+(fa/fdt))

#print(Vral, Vrbl, Vr, Vdt) ## Check Pier capacities

Vr2 = np.zeros(i)

mechanism = ['Rocking’, 'Sliding shear a’,'Sliding shear b', "Diagonal Tensile Failure’]
failure = []

for k in range(i):

Vr2[k] = np.min([Vral[k],Vrbl[k],Vr[k], Vdt[k]])

if vr2[k] == Vrail[k]:
failure.append(mechanism[1])

elif vr2[k] == vrbi[k]
failure.append(mechanism[2])

elif vr2[k] == vr[k]:
failure.append(mechanism[@])

elif vr2[k] == vdt[k]:
failure.append(mechanism[3])

4. Calculation of the drift capacities of the piers:

thetaNC = np.zeros(i)
thetaSD = np.zeros(i)
for k in range(i):
if vr2[k] == vrail[k]:
thetaNc[k] = @.8a75
thetasD[k] = ©.8@3
else:
thetaNC[k] = theta[k]
thetasD[k] = theta[k]
ulNC1 = thetaNC*hp
usSD1 = thetaSD*hp
ugrens = 1.5/18@*hp
UNC = np.zeros(i)
uSD = np.zeros(i)
for k in range(i):
ulNC[k] = np.min([uNC1[k],ugrens[k]])
usD[k] = np.min([uSD1[k],ugrens[k]])
#print(Vral, Vrbl, Vr)
return Vr2, VR, failure, Vrar, uNC, usSD, VS, Vral, Vrbl, vr

78



B. Appendix B: DIANA Results

In the following figures the DIANA strain plots are given for each wall configuration at five different
stages.

Wall 1

Analysis]

Load-step 100, Load-factor 0.49500E-02, disp
Total Strains E1 layer 1

min: -1.69e-4 max: 8.56e-2

[Analysis]

Load-step 200, Load-factor 0.99500E-02, disp
Total Strains E1 layer 1

min: -2.04e-4 max: 1.82e-1

[Anclysis]

Load-step 300, Load-factor 0.14950E-01, disp
Total Strains E1 layer 1

min: -3.36e-4 max: 2.92e-1

79



Analysis]

Load-step 400, Load-factor 0, 19980E-01, disp
Total Strains E1 layer 1

min: -3.05e-4 max: 4.03e-1

Analysis]

Load-step 501, Load-factor 0.25000E-01, disp
Total Strains E1 layer 1

min: -9.10e-4 max: 5.04e-1

Figure 69: Principal strain plot Wall 1 for steps 100, 200, 300, 400 and 501
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100, Load-facter 0.79200E-02, disp
Total Strains E1 layer 1

min: -1.78e-3 max: 1.47e-1

Analysis]

Load-step 200, Load-factor 0.15920E-01, disp
Total Strains E1 layer 1

min: -4.33e-3 max: 2.18e-1

[Analysis]

Load-step 300, Load-facter 0.23920E-01, disp
Total Strains E1 layer 1

min: -3.86e-3 max: 3.37e-1
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Analysis1

Load-step 400, Load-factor 0.31920E-01, disp
Total Strains E1 layer 1

min: -8.82e-3 max: 4.75e-1

Analysis]

Load-step 801, Load-factor 0.40000E-01, disp
Total Strains E1 layer 1

min: -1.47e-2 max: 6.12e-1

Figure 70: Principal strain plot Wall 2 for steps 100, 200, 300, 400 and 501

82



Load-step 100, Load-factor 0.79200E-02, disp
Total Strains E1 layer 1
min: -3.28e-3 max: 1.48e-1

[Anclysis]

Load-step 200, Load-factor 0.16920E-01, disp
Total Strains E1 layer 1

min: -4.75e-3 max: 3.17e-1

Analysis]

Load-step 300, Load-factor 0.23920E-01, disp
Total Strains E1 layer 1

min: -5.38e-3 max: 4.40e-1
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Analysis|

Load-step 400, Load-factor 0.31920E-01, disp
Total Strains E1 layer 1

min: -2.29e-3 max: 5.94e-1

1, Load-factor 0.40000E-01, disp

min: -7.40e-3 max: 7.55e-1

Figure 71: Principal strain plot Wall 3 for steps 100, 200, 300, 400 and 501
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Load-step 100, Load-factor 0.79200E-02, disp
Total Strains E1 layer 1
min: -3.89e-3 max: 1.25e-1

Analysis]

Load-step 200, Load-factor 0.16920E-01, disp
Total Strains E1 layer 1

min: -8.06e-3 max: 2.37e-1

Analysis|

Load-step 300, Load-factor 0.23920E-01, disp
Total Strains E1 layer 1

min: -2.19e-3 max: 4.33e-1
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[Anclysis]

Load-step 400, Load-factor 0.31920E-01, disp
Total Strains E1 layer 1

min: -1.18e-2 max: &.64e-1

Analysis]

Load-step 501, Load-factor 0.40000E-01, disp
Total Strains E1 layer 1

min: -6.96e-3 max: 5.50e-1

Figure 72: Principal strain plot Wall 4 for steps 100, 200, 300, 400 and 501
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Load-step 100, Load-factor 0.79200E-02, disp
Total Strains E1 layer 1

min: -2.29e-3 max: 1.73e-1

Analysis]

Load-step 200, Load-factor 0.15920E-01, disp
Total Strains E1 layer 1

min: -4.49e-3 max: 3.64e-1

Analysis]

Load-step 300, Load-factor 0.23920E-01, disp
Total Strains E1 layer 1

min: -3.54e-3 max: 5.08e-1
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[Anclysis]

Load-step 400, Load-factor 0.31920E-01, disp
Total Strains E1 layer 1

min: -6.56e-3 max: 6.82e-1

Analysis]

Load-step 501, Load-factor 0.40000E-01, disp
Total Strains E1 layer 1

min: -4.38e-3 max: 8.33e-1

Figure 73: Principal strain plot Wall 5 for steps 100, 200, 300, 400 and 501
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Load-step 100, Lead-factor 0.79200E-02, disp
Total Strains E1 layer 1

min: -3.83e-3 max: 1.06e-1

[Anclysis]

Load-step 200, Load-factor 0.15920E-01, disp
Total Strains E1 layer 1

min: -7.07e-3 max: 2.47e-1

[Anclysis]

Load-step 300, Load-factor 0.23920E-01, disp
Total Strains E1 layer 1

min: -1.08e-2 max: 3.46e-1
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[Anclysis]

Load-step 400, Load-factor 0.31920E-01, disp
Total Strains E1 layer 1

min: -1.21e-2 max: 4.65e-1

Analysis]

Load-step 501, Load-facter 0.40000E-01, disp
Total Strains E1 layer 1

min: -1.43e-2 max: 6.02e-1

Figure 74: Principal strain plot Wall 6 for steps 100, 200, 300, 400 and 501
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Load-step 100, Load-factor 0.79200E-02, disp
Total Strains E1 layer 1

min: -4.90e-3 max: 1.02e-1

Analysis1

Load-step 200, Load-factor 0.16920E-01, disp
Total Strains E1 layer 1

min: -6.80e-3 max: 2.13e-1

Analysis]

Load-step 300, Load-factor 0.23920E-01, disp
Total Strains E1 layer 1

min: -1.56e-3 max: 3.34e-1

4

i~ i
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[Anclysis]

Load-step 400, Load-factor 0.31920E-01, disp
Total Strains E1 layer 1

min: -8.34e-3 max: 4.32e-1

Analysis]

Load-step &01, Load-factor 0.40000E-01, disp
Total Strains E1 layer 1

min: -6.50e-3 max: 5.11e-1

Figure 75: Principal strain plot Wall 7 for steps 100, 200, 300, 400 and 501
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Load-step 100, Load-factor 0.79200E-02, pushover
Total Strains E1 layer 1
min: -3.79e-3 max: 1.5%e-1

Anclysis]

Load-step 200, Load-factor 0.15920E-01, pushover
Total Strains E1 layer 1

min: -6.21e-3 max: 2.63e-1

Analysis]

Load-step 300, Load-factor 0.23920E-01, pushover
Total Strains E1 layer 1

min: -7.18e-3 max: 4.27e-1
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Analysis]

Load-step 400, Load-factor 0.31920E-01, pushover
Total Strains E1 layer 1

min: -9.64e-3 max: 6.13e-1

Anclysis]

Load-step 501, Load-factor 0.40000E-01, pushover
Total Strains E1 layer 1

min: -7.38e-3 max: 8.56e-1

Figure 76: Principal strain plot Wall 8 for steps 100, 200, 300, 400 and 501
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Wall 9

Analysis]

Load-step 100, Load-factor 0.79200E-02, disp
Total Strains ET layer 1

min: -2.86e-3 max: 1.75e-1

Analysis1

Load-step 200, Load-factor 0.15920E-01, disp
Total Strains E1 layer 1

min: -5.09e-3 max: 3.50e-1

Analysis1

Load-step 300, Load-factor 0.23920E-01, disp
Total Strains E1 layer 1

min: -5.97e-3 max: 4.12e-1
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[Analysis]

Load-step 400, Load-factor 0.31920E-01, disp
Total Strains E1 layer 1

min: -7.58e-3 max: 5.43e-1

Anclysis]

Load-step 501, Load-factor 0.40000E-01, disp
Total Strains E1 layer 1

min: -1.16e-2 max: 6.74e-1

Figure 77: Principal strain plot Wall 9 for steps 100, 200, 300, 400 and 501
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Wall 10

[Analysis]

Load-step 100, Load-factor 0.79200E-02, disp
Total Strains E1 layer 1

min: -2.66e-3 max: 1.20e-1

Analysis1

Load-step 200, Load-factor 0.18920E-01, disp
Total Strains E1 layer 1

min: -6.81e-3 max: 2.66e-1

Analysis]

Load-step 300, Load-factor 0.23920E-01, disp
Total Strains E1 layer 1

min: -1.07e-2 max: 4.24e-1
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Analysis1

Load-step 400, Load-factor 0.31920E-01, disp
Total Strains E1 layer 1

min: -1.34e-2 max: 5.96e-1

Analysis]

Load-step 501, Load-factor 0.40000E-01, disp
Total Strains E1 layer 1

min: -1.23e-2 max: 7.82e-1

Figure 78: Principal strain plot Wall 10 for steps 100, 200, 300, 400 and 501
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Wall 11

Load-step 100, Load-facter 0.79200E-02, disp
Total Strains E1 layer 1
min: -6.45e-4 max: 1.07e-1

Analysis]

Load-step 200, Load-factor 0.15920E-01, disp
Total Strains E1 layer 1

min: -1.20e-3 max: 2.23e-1

Analysis]

Load-step 300, Load-factor 0.23920E-01, disp
Total Strains E1 layer 1

min: -1.52e-3 max: 3.73e-1

~

P
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Analysis]

Load-step 400, Load-factor 0.31920E-01, disp
Total Strains E1 layer 1

min: -4.15e-3 max: 5.11e-1

Analysis]

Load-step 601, Load-factor 0.40000E-01, disp
Total Strains E1 layer 1

min: -1.20e-2 max: 6.66e-1

Figure 79: Principal strain plot Wall 11 for steps 100, 200, 300, 400 and 501
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Wall 12

Analysis]

Load-step 100, Load-factor 0.79200E-02, disp
Total Strains E1 layer 1

min: -2.38e-3 max: 1.01e-1

Anclysis]

Load-step 200, Load-factor 0.15920E-01, disp
Total Strains E1 layer 1

min: -2.79e-3 max: 2.21e-1

[Anclysis]

Load-step 300, Load-factor 0.23920E-01, disp
Total Strains E1 layer 1

min: -56.70e-3 max: 3.48e-1
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[Analysis]

Load-step 400, Load-factor 0.31920E-01, disp
Total Strains E1 layer 1

min: -4.83e-3 max: 4.7%e-1

Analysis]

Load-step 801, Load-factor 0.40000E-01, disp
Total Strains E1 layer 1

min: -4.23e-3 max: 6.21e-1

Figure 80: Principal strain plot Wall 12 for steps 100, 200, 300, 400 and 501
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C.Appendix C: Total Strain Crack model
results

In the figures below the principal strain plots are shown at 4 different stages during loading for the
Total Strain Crack model results of wall 2 and 8.

Wall 2

Analysis]

Load-step 100, Load-factor 0.19800E-01, disp
Total Strains E1 layer 1

min: -7.15e-4 max: 2.03e-1

Analysis1

Load-step 201, Load-factor 0.40000E-01, disp
Total Strains E1 layer 1

min: -1.66e-3 max: 5.02e-1

Analysis]

Load-step 350, Load-factor 0.69800E-01, disp
Total Strains E1 layer 1

min: -4.65e-3 max: 1.07e+0
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Analysis 1

Load-step 624, Load-factor 0.12460, disp
Total Strains E1 layer 1

min: -3.70e-2 max: 2.37e+0

Figure 81: Principal strain plot Wall 2 for steps 100, 201, 350 and 624

Wall 8

Analysis]

Load-step 100, Load-factor 0.19800E-01, pushover
Total Strains E1 layer 1

min: -7.91e-3 max: 2.02e-1

Analysis]

Load-step 201, Load-factor 0.40000E-01, pushover
Total Strains E1 layer 1

min: -1.66e-2 max: 3.61e-1
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Analysis]

Load-step 350, Load-factor 0.69800E-01, pushover
Total Strains E1 layer 1

min: -1.84e-2 max: 6.91e-1

Analysis1

Load-step 624, Load-factor 0.12460, pushover
Total Strains E1 layer 1

min: -2.95e-2 max: 1.40e+0

Figure 82: Principal strain plot Wall 8 for steps 100, 201, 350 and 624
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D.Appendix D: Results walls with lintels

In the figures below, the strain plots are shown for the wall configurations modelled with lintels for wall
2 and 8 at five different stages.

Wall 2

Analysis]

Load-step 101, Load-facter 0. 10000E-01, disp
Total Strains E1 layer 1

min: -2.88e-3 max: 1.54e-1

Analysis]

Load-step 201, Load-factor 0.20000E-01, disp
Total Strains E1 layer 1

min: -7.61e-3 max: 2.30e-1

[Anclysis]

Load-step 401, Load-factor 0.40000E-01, disp
Total Strains E1 layer 1

min: -9.57e-3 max: 5.26e-1

B e

o
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Analysis]

Load-step 699, Load-factor 0.69800E-01, disp
Total Strains E1 layer 1

min: -1.16e-2 max: 1.10e+0

Anclysis]

Load-step 1007, Load-factor 0.10000, disp
Total Strains E1 layer 1

min: -1.50e-2 max: 1.57e+0

Figure 83: Principal strain plot Wall 2 for steps 101, 201, 401, 699 and 1001
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Load-step 101, Load-factor 0.10000E-01, pushowver
Total Strains E1 layer 1
min: -3.69e-3 max: 2.08e-1

Analysis]

Load-step 201, Load-factor 0.20000E-01, pushover
Total Strains E1 layer 1

min: -7.40e-3 max: 3.93e-1

Analysis]

Load-step 401, Load-factor 0.40000E-01, pushover
Total Strains E1 layer 1

min: -2.48e-2 max: 9.43e-1
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Analysis]

Load-step 699, Load-factor 0.69800E-01, pushover
Total Strains E1 layer 1

min: -2.13e-2 max: 1.74e+0

Analysis]

Load-step 1001, Load-factor 0.10000, pushover
Total Strains E1 layer 1

min: -1.81e-2 max: 2.78e+0

Figure 84: Principal strain plot Wall 8 for steps 101, 201, 401, 699 and 1001
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