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PREFACE
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conferences and visits. To Jiang, for such a good hospitality, when I visited Fudan
university in Shanghai, and great scientific discussions. To Akash and Franc̨ois, for
all our fruitful white-board discussions. To Stefan, Mihajlo, Chris, Frans, Kim and
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My work environment in Delft was also a place full of enthusiastic people who
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out. To Kim, for going to the gym with me: if it wasn’t for you, I would be too lazy
to go to the gym so often! To Gio and Chris for our so-called Saturday morning
workout tradition! To Mickael for taking me to climbing with him. To Ruta, for
being my tennis partner for over the last two years.

My experience in the Netherlands was completed with a great circle of friends
who I spent time after work. People who I could truly connect with, for whom
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and energetic person. To Nicole and Rakesh, for throwing cool parties. I hope you
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1
INTRODUCTION

MAGNETISM has led to revolutionary advances in data storage, and offers new
possibilities for novel computing paradigms. Thus, its fundamental under-

standing is of paramount importance for future applications. Currently, magnetic
recording in commercially available hard drives offers large storage capacity, ran-
dom access to data, and non-volatility, all at a low cost per byte. However, as data
processing power and speed is ever increasing, understanding and finding ways to
control the technological matters spawned the field of spintronics [1]. Spintron-
ics, or spin electronics, is the science and technology field that strives to study and
control spin, the intrinsic angular momentum of the electron. An important phe-
nomenon in spintronics is magnetism, i.e. spontaneous ordering of the spins even
far above room temperature.

Magnetization can be controlled by various means. The most straightforward
and traditional way of controlling the magnetization is using magnetic fields, that
orient the magnetization direction by the Zeeman interaction. However, the de-
sire to make data storage faster and smaller requires new approaches due to the
practical limitations of generating magnetic fields in small structures.

For faster control of the magnetization, alternatives such as all optical control
had been introduced [2, 3]. This is shown to have magnetization reversal at the
sub-picosecond time scales: currently one of the fastest means of switching. To go
smaller, Domain Wall (DW) seems to be a promising tool to extend the scaling of
spintronic devices to much smaller dimensions [4–6]. This inspired fundamental
studies during the last decade on the spin transfer effect, where an electrical cur-
rent is used to displace DWs along magnetic tracks [7]. Thus, studying the effect of

1
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an electric current on the spin state of the material is essential.
As a reciprocal phenomena, the spin of particles in a system could also affect

the conductance properties of a material. The Aharonov-Casher effect is a good
example of this. It shows the importance of spins, as controlled by Rashba spin or-
bit interaction (SOI), on conducting behaviors of materials. This will be explained
in more details in Section 1.3.

1.1 BASICS OF MAGNETISM
Magnetism has been known already to the Greek and Chinese for almost two mil-
lennia. Historically, it attracted attention due to its mysterious nature: magnetic
materials repel and attract each other or certain kinds of objects without having
contact with them. This was, in ancient times, attributed to magic. According to
the legends magnetism was discovered by a shepherd who noticed that the metal
tips of his shoes were stuck to a black stone he was standing on. The stone was
found in an area named Magnesia, thus, it is believed that the word ‘Magnetism’
originated from this name [8]. Later, it was found that magnetic slivers floating on
the surface of water, or otherwise properly suspended from their center of mass,
would spin around their centers until one end of the magnet always pointed north.
The Chinese appear to be the first who could use this technique to orient them-
selves in the oceans by simple compasses [9].

To study the magnetic materials, one could look at magnetism from two dif-
ferent perspectives: One is the classical picture, and the other, which is the more
recent realization, discusses magnetization quantum mechanically.

1.1.1 CLASSICAL DESCRIPTION
Magnetization is a material property for which the classical concept was known
long before the discovery of quantum mechanics. The most direct manifestation
of magnetism is the force of attraction or repulsion between two magnets. This
phenomenon can be described by assuming that there are ‘free’ magnetic poles on
the ends of each magnet that exert forces on one another.

Magnets are materials with a net magnetic moment, the quantity which de-
termines the amplitude of torque that a magnetic field applies on it. These mag-
netic moments originate from the angular momentum of charged particles, with
an elementary charge of q . An oversimplified but intuitive model treats elemen-
tary charges as spherical particles with charge uniformly distributed throughout
its volume. A rotating particle with angular momentum L has a magnetic dipole
moment of

µ= q

2m
L, (1.1)
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where m and q are the mass and charge of the particle, respectively. While the
above expression is correct for orbital angular momentum, it is off by a factor from
the spin magnetic moment, as will be shown in Section 1.1.2.

1.1.2 QUANTUM MECHANICAL DESCRIPTION
The discovery of quantum mechanics provided a more precise perspective to mag-
netization. Quantum mechanics introduced a second type of angular momentum,
which differs from the ordinary orbital angular momentum. This new type known
as spin, the analogue of which is absent in classical mechanics, is an intrinsic form
of angular momentum carried by elementary particles. Similar to a rotating electri-
cally charged bodies in classical mechanics, a magnetic dipole is allocated to par-
ticles with spin. The intrinsic magnetic moment for a particle with spin S, charge
q , and mass m is

µ= gs q

2m
S. (1.2)

where gs is the dimensionless factor absent in the classical picture of Eq. (1.1) and
is called the g-factor. The above equation is usually written in terms of Bohr mag-
neton, µB :

µ= gsµB
L

ħ , (1.3)

where ħ is the planck constant.
Based on their magnetic properties, materials are either ferromagnetic or non-

ferromagnetic. In ferromagnetic materials, the electron spins are partially aligned,
producing a macroscopic non-zero magnetic field, i.e. finite magnetization. How-
ever, this macroscopic magnetic field vanishes above the Curie temperature. This
is the critical temperature beyond which the spins are randomized and the magne-
tization is lost. In non-ferromagnet materials, individual dipoles in the absence of
external magnetic fields are always randomly oriented, producing a net zero mag-
netic field.

1.2 CONTROL OF MAGNETIZATION
The technological aspect of magnetic storage derives research aimed at finding
fast and efficient ways to control the magnetization. Magnetization switching, or
reversal, i.e. a 180° reorientation of the magnetization vector with respect to its
original direction, is one of the most important processes in magnetic data stor-
age. The reason is that with each magnetization direction a binary ’0’ or ’1’ can be
saved. By increasing the demand for faster and faster computers, it is necessary to
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find ways to store data on shorter time scales as well. An applied magnetic field is
historically the first tool to control the magnetization. The magnetic field applies a
torque on the magnetization, which tends to align it with the field. Thus, to switch
the magnetization, an external field opposite to the initial magnetization orienta-
tion is usually applied. This can be experimentally challenging if a switching time
shorter than a nanosecond is necessary.

Alternatively, one can inject a spin polarized current from a ferromagnet into
the magnetic domain to switch its magnetization [10–12]. If the polarization of the
conducting electrons is not aligned with the magnetization of the domain, con-
ducting electrons exert a torque on magnetization because of exchange interac-
tion. If the spin current density is high enough, a sufficiently large torque will be
generated, and the magnetization switches. Such a switching has been performed
on the hundreds of picoseconds time scale, for current densities above a few 106A
cm−2 [13, 14].

Optical tools provide another alternative to control the magnetization. This
method is currently the fastest tool for switching magnetization with reversal at
sub-picosecond time scales [2, 3]. This will be discussed in more depth in Section
1.2.1. These are the commonly known ways of controlling the magnetization.

In addition to these methods, one can control the magnetization with unpo-
larized current in the presence of an electric field, and noncollinear magnetization
texture. These two methods, and the non absorbing optical control of magnetiza-
tion are the focus of this thesis, and will be discussed in the sequel.

1.2.1 MAGNETO OPTICS: INVERSE FARADAY EFFECT

It has been shown that the magnetization can be switched by all optical tools [2, 3].
All optical switching refers to a method where the magnetization in a ferromagnet
is switched using a circular polarized light, where the orientation of the magneti-
zation is determined by the helicity of the light. Optical pulses can be made very
short, in femtosecond time scales, allowing ultrafast switching of the magnetiza-
tion. One possible mechanism for all optical switching is the Inverse Faraday effect
(IFE) [15, 16]. Originally, this effect is non-absorbing, i.e. the photons are not ab-
sorbed by the medium.

IFE is reciprocal to the original Faraday effect (FE), which was discovered by
Faraday in 1845 [17]. FE was one of the first evidences demonstrating that light
and magnetization interact. FE describes the rotation of the polarization plane
of linearly polarized light when passing through a material subject to an external
magnetic field, or a ferromagnet, with magnetic field or a magnetization compo-
nent parallel to the light vector, respectively. Linearly polarized light is a superpo-
sition of right and left handed circularly polarized light with equal amplitudes and
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different phases. These two polarizations propagate with a slightly different veloc-
ity in a magnetic material. This property, known as circular birefringence, is rooted
in the difference of the refractive indices of lights with opposite helicities in opti-
cally active materials. The difference is a measure of the strength of optical activity,
which is a material characteristic. Thus, upon exiting the magnetic material, the
two polarizations acquire a relative phase shift, which is equivalent to a rotation of
the orientation of the linear polarization upon transmission. This effect for light
traversing a material subjected to an external magnetic field B , in the direction of
propagation, can be formulated as follows:

β= V Bd (1.4)

whereβ is the angle of rotation, d is the length of the path where the light and mag-
netic field interact, and V is the Verdet constant of the material, which depends on
wavelength and temperature. When light traverses through a ferromagnet, Fara-
day rotation can be accompanied with ellipticity generation [18].

In contrast, the Inverse Faraday effect describes the effect of light on the mag-
netization, rather than the effect of the magnetization on the light. An IFE is the
ability of circularly polarized light to exert torques on a magnetization, which can
be interpreted in terms of an effective magnetic field along its wave vector and a
sign governed by its helicity. As mentioned earlier, neither FE nor IFE involves ab-
sorption of photons, which distinguishes these effects from photomagnetic effects
that involve excited electrons and holes. This makes IFE potentially very fast and
interesting, e.g. in data storage technologies.

The IFE was initially predicted by Pitaevskii in [15] and formulated in terms
of the dependence of the free energy on a time-dependent electric field. After
the observation of IFE by Van der Ziel et al. in Ref. [16], Pershan et al. devel-
oped a microscopic theory explaining the IFE in terms of an optically-induced
splitting of degenerate spin levels, followed by thermal relaxation [19]. Their ex-
pression for the magnetization created by circularly polarized light is given as M =
V λ0(2πc)−1(IR − IL)ek , where IR(L) is the intensity of the right (left) handed circu-
larly polarized light, ek is the direction of the propagation, λ0 and C are the wave-
length and speed of light, respectively.

IFE seemed to be well understood until a series of experiments in Nijmegen
demonstrated that ultrashort pulses of circularly polarized light is able to excite,
or even switch the magnetization on a femto-second time scale, which could not
be explained by thermal relaxation anymore [2, 3, 20, 21]. Furthermore, experi-
mental studies on a terbium gallium garnet crystal demonstrated that in the sub-
picosecond regime, the phenomenological models of IFE fail to explain the exper-
imental results, and the Verdet constant for IFE deviates from the one for FE in
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absorbing mediums [22]. Vahaplar et al. demonstrated that the values of the ef-
fective magnetic field as a result of circularly polarized light is as high as 20 Tesla,
while its origin is still under debate [3].

To provide an alternative and simple understanding of IFE, Hertel followed the
footsteps of plasma physicists by suggesting that the effective magnetic field in
IFE is caused by circular currents in collision-less systems [23]. He assumed that
in a collision-less electron plasma, a non-dissipating circular current arises in re-
sponse to high frequency circularly polarized light. A plasma can be characterized
by the velocity v(r, t ) and density n(r, t ), fields that can be considered as small fluc-
tuations around their average values, and are generated by the light’s electric field.
The current density, j = n(r, t )ev(r, t ), then reads

〈 j 〉 =− i

4e〈n〉ω∇∇∇× [
σ∗E∗×σE

]+ 1

4e〈n〉ω
[(

iσ∗E∇∇∇)
(σE )+c.c.

]
, (1.5)

where σ = i 〈n〉e2/(mω) is the conductivity of the isotropic collision-less plasma,
ω is the frequency, and E is the electric field of light. The first term is a circular
current, that turns out to be relevant to IFE. The second term is the current result-
ing from the so called ponderomotive force, which arises from the inhomogeneity
of the space (plasma), and is not relevant to the IFE. E∗×E vanishes for linearly
polarized light, and reduces to ±i |E |2ek for circularly polarized light propagating
in the ek direction, where the sign depends on the helicity of the light. Thus, Hertel
concludes that since the circular current can be written in the form of jm = c5×M ,
we have a magnetization of

M =
i eω2

p

16πω3mc

[
E ×E∗]

. (1.6)

However, the mechanism of how this magnetization is transferred to the material is
not explained. A metal is not likely to withstand a current large enough to induce
the 20 T magnetic field observed in experiments. Moreover, this theory cannot
explain why this effect is solely observed in certain materials, and not in the others.
Therefore, this theory appears to be incomplete.

A missing piece of Hertel’s scenario can be sought in the spin orbit interaction
(SOI). We set out to explain IFE by a light-induced circular-current mediated spin
polarization in the presence of SOI. According to Eq. (1.5) a clockwise or counter-
clockwise circular current flows depending on the helicity of circularly polarized
light. We argue below that in the presence of spin orbit interaction, currents gener-
ate a spin polarization that in conducting magnets can actuate the magnetization.
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1.2.2 SOI MEDIATED CURRENT-INDUCED SPIN TORQUE

Theoretically it has been demonstrated that currents induce torques in the pres-
ence of a Rashba SOI [24, 25]. The experimental results in Ref. [26] possibly con-
firm these theories. Spin orbit coupling is a relativistic effect in which the spin of
a particle is coupled with its motion: the spin of a moving electron experiences
the electric field as an effective magnetic field in its rest frame. This effect causes
a momentum dependent spin splitting of the energy levels. The electric field can
be generated by structural asymmetry or lack of inversion symmetry of the bulk
material. For electrons close to the band edges of semiconductors, the former is
know as Dresselhaus SOI, and the latter as Rashba SOI.

Rashba spin orbit coupling is due to an asymmetric confining potential, and
usually happens in heterostructures, in which a two dimensional electron gas (2DE-
G) is induced e.g. by modulation doping of semiconductor bilayers. The electrons
are nearly free and the spin orbit interaction is like the one in vacuum

HRashba = α

ħσ · (p×ez
)= α

ħ
(
σy px −σx py

)
, (1.7)

where the spin orbit coupling constant can be strongly enhanced, σi and pi are
the i th component of Pauli spin matrices and momentum operator, respectively,
and the electric field in the z-direction is constrained in α.

In contrast, in the case of bulk inversion asymmetry, which is caused by the lack
of inversion symmetry in unit cells of e.g. III-V semiconductors, we have Dressel-
haus type SO interaction. Projected to a 2DEG, the Hamiltonian reduces to

HDr esselhaus =
β

ħ
(
σx px −σy py

)
. (1.8)

where β is Dresselhaus spin orbit coupling strength.

The current-driven intrinsic spin torque in ferromagnets was discussed by Man-
chon and Zhang [24, 25], who predicted a torque induced by a current in the pres-
ence of a SOI of the Rashba type, which generates an effective magnetic field per-
pendicular to both the inversion symmetry-breaking electric field and the current:
BRashba = −α/ħ〈p〉× ez , where 〈p〉 is the average of momentum that vanishes at
equilibrium, see Fig. 1.1. This effect is essentially the Edelstein effect discussed
in Ref. [27] in a ferromagnetic system, i.e. a current induced spin accumulation in
the 2DEG plane and normal to the current. In a ferromagnet, this spin polariza-
tion is linked to the magnetization by exchange interaction, causing an effective
magnetic field, which, if not aligned with the initial magnetization, induces a spin
torque on the magnetization in a conducting ferromagnet.
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FIGURE 1.1: Schematic picture of the SO mediated current-induced effective magnetic field.

1.2.3 CURRENT INDUCED MAGNETIC DOMAIN WALL MOTION

A charge current exerts torque on noncollinear magnetization textures such as do-
main walls. Magnetic domains minimize the magnetostatic energy. Domain walls
(DW) are the transitional space connecting adjacent domains of opposite mag-
netization directions with a gradual reorientation of magnetization over a finite
distance, i.e. DW width, see Fig 1.2. The width of a DW is a balance between two
opposing energies, i.e. magnetocrystalline anisotropy and exchange energy of the
material, to minimize the total energy. The anisotropy energy is minimal when the
magnetic moments are aligned with the anisotropy axes, thus tending to reduce
the DW width. On the other hand, the exchange energy tends to align the neigh-
boring magnetic moments, thereby increasing the DW width. These two compete
and their balance results in a characteristic length, that is typically 100 nm for tran-
sition metal ferromagnets.

Impurity or crystal defects break the transitional symmetry and pin the DWs to
energetically favorable regions. DW pinning can be induced intentionally, e.g. by
a notch or antinotch in a thin magnetic wire. DWs can be depinned by sufficiently
large external forces exerted by magnetic fields, or electric currents [28, 29].

In an adiabatic regime, when a current flows through a wire containing a DW,
in each point the magnetization of the conducting electrons tries to align with the
direction of the local magnetization. Since the local magnetization changes over
the DW, the conducting electrons arrive at each point with a polarization aligned
with the previous point, and slightly noncollinear with the local magnetization.
Then the polarization of the electron aligns with the magnetization and the lost
angular momentum is transfered to the local magnetization which, if large enough,
causes DW depinning. The depinned DW then moves until it is pinned by another
pinning site.
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1.3 SPIN INDUCED CURRENT (CONDUCTANCE) DYNAM-
ICS: AHARONOV CASHER EFFECT

In Sections 1.2.2 and 1.2.3, we discussed how the current influences the spin of a
system. In this Section, we discuss an opposite situation where the spins of the
carriers under the effect of SOI change the conductance of the system, i.e. the
Ahahronov-Casher effect.

The Aharonov-Casher (AC) effect presented in [30] is an analogue of the Aharo-
nov-Bohm (AB) effect, but is caused by the SOI rather than by an external magnetic
field. The AB effect was introduced in 1959 by Aharonov and Bohm, for a system
with electrically charged particles traveling in a ring surrounding a confined mag-
netic field [31]. Even if the magnetic field vanishes on the ring, it nevertheless af-
fects the phase of the wave function because the electrons feel the vector potential
associated by the magnetic field. If electrons are injected into one side of the ring
and collected at the other as in Fig. 1.3 (upper left), either constructive or destruc-
tive interference occurs, depending on the phase difference between the electrons
passing through the upper and lower arms of the ring. This causes oscillations of
conductance as a function of the magnetic field strength, as observed experimen-
tally [32], for an illustrative example see Fig. 1.4.

Aharonov and Casher predicted in 1984 that a spin also accumulates a phase in
the presence of an external electric field [30]. The situation discussed by Aharonov
and Casher is similar to a single-mode ballistic ring with Rashba spin-orbit inter-
action, which can be understood as follows. In the ordinary AC effect, the electrons
injected into a quantum ring with SOI acquire spin phases when traversing the two
arms due to precession in the effective spin-orbit magnetic field. Interference of
the spinor wave functions at the exit point then leads to an oscillatory conduc-
tance as a function of the spin-orbit coupling constant that in Rashba systems can
be tuned by an external gate voltage. This is similar to ordinary AB effect but in-
duced by an electric field rather than a confined magnetic field, see Fig 1.3 (upper
right).

Phase interference is observable only when (half of) the circumference length
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FIGURE 1.3: Schematic comparison of AC and AB effect in a quantum ring. Left side demonstrates AB
effect and AC effect is demonstrated in the right side. Upper panel is the ordinary and lower panel is
the bound state version of these effects.

of the ring is sufficiently smaller than the phase coherence length. The typical size
of the rings in the experiments is known to be comparable with the phase coher-
ence length [33]. Thus, this all happens assuming that the electrons exit the ring
after traveling through the ring arm only once. This means that the coupling of the
ring to the leads should be very strong. Thus, AC phase modulation of the con-
ductance results in an oscillatory behavior with respect to a changing spin orbit
coupling constant, which can be controlled by a gate voltage tunning the asym-
metry of the potential in 2DEG. The AC effect in the ballistic 1D regime, i.e. with a
single transport channel and in the absence of defect and impurity scattering was
first calculated in Ref. [34]. A revision was necessary, however, since the Hamilto-
nian of the ring used was not Hermitian [35]. Eventually, Frustaglia et al. studied
the AC effect in a 1D ring subjected to a low bias, computing the zero tempera-
ture conductance of the 1D Rashba ring with symmetric contacts in the spirit of
the Landauer-Büttiker formalism [36]. Thus, the conductance, as a function of the
Rashba spin-orbit interaction strength, α, is

G = e2

h

[
1−cos

( π

cosθ

)]
= e2

h

1−cos

π
√

1+
(

2maα

ħ2

)2
 , (1.9)

where tanθ = 2maα/ħ2 and a is the radius of the ring.
Extensive experimental research aimed at observing such oscillatory behavior

in currents has been carried out [37, 38]. However, obstacles such as making a
perfectly symmetric ring, need to be overcome, since even a small asymmetry be-
tween the upper and lower arms of the ring can strongly change the phase. König
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FIGURE 1.4: Aharonov-Bohm effect in a ring. (a) An example of an experimental set up measuring the
oscillation of conductance due to AB effect. (b) Schematic picture of the phase interference in the ring,
where Φ is magnetic flux, and Φ0 = h/e, i.e. the magnetic flux quanta. (c) An Example of experimental
results of conductance oscillation due to AB effect. (Adapted by permission from Macmillan Publishers
Ltd: Nature Phys. Ref. [39], copyright 2010)

et al. reported the first experimental evidence of AC effect in a single HgTe ring [37].
They measured the phase shift of the AB-type magneto-conductance oscillations
caused by tuning the Rashba SO strength. However, the conductance modulation
was observed only at high magnetic fields, in a regime where SO interaction has
rather weak effects. In order to improve the AC signals Nitta and coworkers car-
ried out experiments on an array of connected rings [38]. The results were in good
agreement with a theory for a single-mode quantum ring symmetrically coupled
to two leads [36], see Fig. 1.5.

The precise electric connection of quantum rings to the electric contact can
be established by the absolute value of the conductance. In practice this is dif-
ficult to measure in the presence of parallel conductance paths through the bulk
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FIGURE 1.5: The oscillation in change of resistance as a result of AC effect. (Fig from Ref [33]-©2011
IEEE)

layers. Therefore, it makes sense to investigate the limit opposite to the usually
assumed strong coupling. In that case, electrons confined to the ring reside in
size quantized states only weakly perturbed by the contacts, i.e. the rings behave
like quantum dots, see Fig. 1.3 (lower images). In the low-biased regime, an os-
cillatory behavior in the quantum rings can be expected. However, this is due to
the discreteness of energy levels inside of the ring and not from quantum interfer-
ence. The oscillations arise from shifting energy levels due to changing the spin
orbit coupling constant. When an energy level is within the bias window, conduc-
tance occurs. Otherwise, the current is zero, see Fig. 1.6. As we will demonstrate in
this thesis, the experiments on ring arrays can theoretically be explained by both
weakly coupled ring arrays and a single ring strongly coupled to the leads equally
well.

1.4 THIS THESIS
In this thesis, we study the interplay of currents and spin in nanostructures. In the
first part of this thesis, we study the spin polarization generated by light-induced
electric currents in quantum rings. In Chapter 2, we study the electrons and holes
in non-magnetic single mode quantum rings in the presence of Rashba or Dressel-
haus type SOI and light induced circular currents. In Chapter 3, we address what
happens when the rings are magnetic, i.e. in the presence of an exchange potential
that breaks the Kramers degeneracy. As we demonstrate in this chapter, effects can
be maximized by tuning the Fermi energy into the exchange gap such that only one
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FIGURE 1.6: Schematic picture of energy levels inside a quantum ring weakly coupled to the leads. The
levels are tuned with changing SO coupling strength, α. The systems conducts only when a state is in
the bias window.

band is occupied. In Chapter 4, we study the current-induced motion of domain
walls initially pinned by the localized magnetic fields, e.g. generated intentionally
by notches in a metallic wire. We obtain the critical current needed to depin the
wall.

The second part of this thesis focuses on an opposite effect, viz. control of the
state of the spin by SOI on the conductance of an array of rings. We demonstrate
in Chapter 5 that transport through a weakly coupled ensembles of rings oscillates
as a function of a perpendicular electric field that controls the Rashba spin orbit
interaction. Moreover, in this chapter we study the effect of an external in-plane
magnetic field on such conductance oscillations.
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2
LIGHT-INDUCED SPIN

POLARIZATIONS IN

NON-MAGNETIZED QUANTUM

RINGS

Non-resonant circularly polarized electromagnetic radiation can exert torques on
magnetization by the so-called Inverse Faraday Effect (IFE). Here we discuss the en-
hancement of the IFE by spin-orbit interactions (SOI). We illustrate the principle
by studying a simple generic model system, i.e. the quasi 1D ring in the presence
of linear/cubic Rashba and Dresselhaus interactions. We combine the classical IFE
in electron plasmas that is known to cause persistent currents in the plane perpen-
dicular to the direction of the propagation of light with the concept of current and
spin-orbit induced spin transfer torques. We calculate light-induced spin polariza-
tion that in ferromagnets might give rise to magnetization switching.

17
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2.1 INTRODUCTION
The Faraday Effect (FE) describes the rotation of the plane of linear polarized light
when passing through a ferromagnet with magnetization component parallel to
the light vector. It is caused by the difference of phase shifts of transmitted light in
the two circular polarization states. The Inverse Faraday Effect (IFE) is the ability of
circularly polarized light to exert torques on a magnetization, which can be inter-
preted in terms of an effective light-induced magnetic field along its wave vector
with the magnitude proportional to the light intensity and the sign governed by
its helicity. In contrast to other photomagnetic effects neither FE nor IFE involve
the absorption of photons, which makes them potentially very fast and therefore
interesting e.g. for data storage technologies.

The IFE was initially predicted by Pitaevskii [1] and formulated in terms of the
dependence of the free energy on a time-dependent electric field. After observa-
tion of the IFE by van der Ziel et al. [2], Pershan et al. [3] developed a micro-
scopic theory explaining the IFE in terms of an optically-induced splitting of de-
generate spin levels, followed by thermal relaxation. They found a magnetization
M =V λ0(2πc)−1(IR − IL)ek created by the circularly polarized light propagating in
the ek direction with the intensity IR(L) of the right (left) handed circularly polar-
ized light component. Here V , λ0, and c are the Verdet constant, the wavelength
and the speed of the light, respectively.

Kimel et al. demonstrated the IFE in DyFeO3 by exciting magnetization dy-
namics with circularly polarized laser pulses on fs time scales [4]. These and sub-
sequent experiments as reviewed in Ref. [5] are not fully explained by the theory
presented by Pershan et al. [3], because thermal relaxation does not occur at such
short time scales. Subsequently, Stanciu et al. demonstrated that the perpendic-
ular magnetization of GdFeCo thin films can be switched on subpicosecond time
scale [6]. Vahaplar et al. [7] modeled the switching process by multiscale calcula-
tions of the magnetization dynamics [8] with effective magnetic fields of the order
of 20 T. However, the microscopic origin, magnitude and material dependence of
these fields remain unexplained.

The reciprocity between FE and IFE is not universally observed [9], and was
found by theory to break down in the presence of absorption [10]. Taguchi et al.
calculated the effect of terahertz electromagnetic radiation on disordered metals
with SOI [11]. They found a light induced magnetization, but at the cost of light
absorption. This is in contrast to the IFE phenomenology. Recently, strong effec-
tive magnetic fields were calculated for magnetic semiconductors that are caused
by the spin-selective dynamical Stark effect [12].

The IFE has also been studied in classical plasmas, in which it can be explained
in terms of the Ørsted magnetic fields generated by light-induced circulating DC
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charge currents [13–16]. Hertel investigated this process for solid state electron
plasmas [17]. He derived the eddy currents and associated magnetic fields gener-
ated by time-dependent circularly polarized light fields in a conducting metal film
modeled as a collisionless electron gas. Both currents and the related magnetic
fields are dissipationless and scale to second order in the electric field amplitude
of the circularly polarized light, in line with the microscopic theories for the IFE.
However, the effects is order of magnitudes too small to explain the light-induced
magnetization switching. Yoshino discussed dissipative corrections to Hertel’s the-
ory [18].

Here, we pursue the concept that the IFE is caused by light-induced DC cur-
rents, but invoke the spin-orbit interaction (SOI) to explain the large effective fields
apparently at work. This perspective of the IFE is motivated by the linear current
driven intrinsic spin torque in ferromagnets predicted by Manchon and Zhang
[19, 20], who demonstrated that a current in the presence of a SOI of the Rashba
type produces an effective magnetic field which is perpendicular to both an inver-
sion symmetry-breaking electric field and the current. The non-dissipative cur-
rents discussed above can be interpreted as a reactive response to a light-field, or
as a ground state property of the system in the presence of the light field, quite
analogous to the persistent currents or diamagnetic response to a magnetic field
that can be formulated as a ground states in the presence of a vector potential [21].
The quantum mechanical ground state nature of light-induced current in a 1D ring
has been investigated by Kibis [22]. A possible route to a theory of the IFE would
be extending Kibis’ approach to Hamiltonians with spin-orbit interactions. Rather
than focusing on the quantum mechanics of the generation of charge currents by
the light field, we concentrate here on the generation of effective magnetic fields
in the presence of circulating charge currents, while using the Hertel’s approach
to estimate the magnitude of these currents for a given light intensity. This is al-
lowed in the high frequency limit in which the length scale associated with the
direct response is much smaller than the geometric confinement or the spin-orbit
precession length.

In order to establish the principle we focus here on a non-magnetic system
with spin-orbit interaction and in the presence of an electron current bias that is
generated by circularly polarized light. For a magnetic sample, such a polarization
can exert spin-orbit torques on magnetization. We focus on a simple yet realis-
tic model system in which the spin-orbit interaction Hamiltonian is well known
and analytical results can be achieved, viz. a one-dimensional (1D/single trans-
verse mode) ring fabricated from a high-mobility two-dimensional electron/hole
gas (2DEG/2DHG) with Rashba and Dresselhaus SOI interactions. A SOI in a 2DEG
that is linear in the wave vector is known to be quite anomalous, causing e.g. a
vanishing spin Hall effect by impurity scattering [23]. Here we find that the light-
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induced effective fields in 1D rings with linear Rashba or Dresselhaus SOI also van-
ish, which can be traced to the state independence of the equilibrium spin tex-
ture. The holes of a 2DHG close to the valence band edge can also be described
by Rashba and Dresselhaus SOI interactions, but with a cubic dependence on the
wave vectors [24, 25]. A quantum ring containing a hole gas has an out-of-plane
state-dependent spin texture that indeed generates the current-induced spin po-
larization. In a ferromagnet these would indeed induce torques on a magnetiza-
tion, thereby confirming our working hypothesis.

The remainder of the chapter is organized as follows. We solve the problem of
a ground state in the presence of a given charge current by the method of Lagrange
multipliers as explained in Section 2.2. In Section 2.3, we apply this method to a
simple case of rings in the absence of SOI, and discuss the difference of the ground
state current induced by Lagrangian multiplier and the one induced by the mag-
netic field in a ring. In Section 5.1, we discuss the different SOIs in more detail. In
Sections 2.4.1 and 2.4.2, we address rings consisting of electrons in the presence
of a linear Rashba or Dresselhaus SOI, respectively, in which the current-induced
spin polarization vanishes. In Sections 2.4.3 and 2.4.4, we continue with a p-doped
quantum ring, in which a current-induced polarization is generated by the cubic
Dresselhaus or Rashba SOI, respectively. We summarize our conclusions in Sec-
tion 2.5.

2.2 METHOD OF LAGRANGE MULTIPLIERS

We are interested in the ground state of a conductor in the presence of currents
induced by an external perturbation such as the electric field of light. Rather than
diagonalizing the Hamiltonian in the presence of the electric field [22], we calcu-
late the ground state for a given persistent current.

According to current-density-functional theory [26] the ground state energy of
a system is a functional of the charge current distribution jext (r). The minimum
energy of the system under the constraint of a given jext (r) can be found by the
method of Lagrange multipliers. Here the Hamiltonian H0 is augmented by the
sum of the product of constraints and Lagrange multipliers that in continuous sys-
tems becomes an integral. We limit attention to non-interacting systems with sin-
gle particle states |Ψi 〉 and occupation numbers fi ∈ {0,1} with

∑∞
i=1 fi = N for a

number of N electrons. We may then express the constraint as

∑
i

fi ji (R) = jext (R) , (2.1)
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where the current operator ̂ (R) is defined in terms the expectation value

ji (R) = 〈Ψi | ̂ (R) |Ψi 〉 (2.2)

= e

2

∫
Ψ∗

i (r) [vδ (r−R)+δ (r−R)v]Ψi (r)dr (2.3)

= e ReΨ∗
i (R)vΨi (R) 6= e 〈Ψi |v |Ψi 〉 (2.4)

and v is the velocity operator. The objective functional under this constraint and
the normalization condition 〈Ψi |Ψi 〉 = 1 is

F
[
{Ψi } , jext

]=∑
i

fi (〈Ψi |H0 |Ψi 〉−εi (〈Ψi |Ψi 〉−1))

+
∫

A (R) ·
(

jext (R)−
∑

i
fi ji (R)

)
dR . (2.5)

Here A is the Lagrange multiplier functional. Minimizing F , i.e. δF /δΨ∗
i = 0, leads

to the Schrödinger equation with the eigenfunctions |Ψi 〉 corresponding to the
Hamiltonian

H = H0 −
∫

A (R) · ̂ (R)dR. (2.6)

In the absence of spin-orbit interactions ji = (eħ/m) ImΨ∗
i ∇∇∇Ψi and

H
(
r,p

)→ H0
(
r,p−eA (r)

)− ħ2e2A2 (r)

2m
(2.7)

When the objective current density jext (r) is constant in space and time, the La-
grange function A (r) a vector potential corresponding to a constant magnetic field
and the implementation of the charge current constraint is equivalent to a gauge
transformation. We note the close relation with current density functional theory
[26], in which effective vector and scalar potentials are introduced to construct
energy functionals of charge and current densities. Finally, we observe that the
time derivative of the vector potential is an electric field, E =−dA/d t . A harmonic
AC electric field therefore corresponds to a vector potential in the same direction
with the amplitude Aω = −i Eω/ω in frequency space. The effect of a finite Aω in
the DC limit ω→ 0 is then equivalent to the transport response to an electric field
that remains finite in a ballistic system. Alternatively, we can associate the vector
potential to an applied magnetic field inducing a persistent ground state current,
although it should be kept in mind that when the current is generated by other
means, our magnetic field is a fictitious one.
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2.3 SINGLE MODE QUANTUM RINGS WITHOUT SOI
In the following we focus on quantum rings fabricated from a 2DE(H)G in which
the charge carriers are confined normal to the plane by a potential V (z) and in
the radial direction by an axially symmetric confining potential U (r ) centered at
an effective radius r = a, but free to move along the azimuthal direction along the
unit vector eϕ. In the envelope function approximation with effective mass m for
electrons or (heavy) holes:

H0 =
p2

x +p2
y

2m
+V (z)+U (r ), (2.8)

where px(y) is the x(y)-component of the momentum operator. The eigenstates

are then separable asΨnlk (r,ϕ, z) =ψn(ϕ)Rl (r )Zk (z) normalized as
∫ ∣∣ψn(ϕ)

∣∣2 dϕ=∫
r |Rl (r )|2dr = ∫ |Zk (z)|2d z =1. To simplify the problem further, we assume that

the confinement is strong enough such that only the lowest subbands (k = l = 0)
are occupied, which makes the system effectively one-dimensional (1D) in az-
imuthal direction. The eigenstates of Eq. (2.8) are

ψn(ϕ) = 1p
2π

e i nϕ (2.9)

with energies εn =ħ2n2/
(
2ma2

)+ε0, where ε0 is the confinement energy of R0(r )
Z0(z).

We wish to model the system in the presence of a constant persistent current.
In the absence of SOI, the current operator along the ring is defined by its expecta-
tion value

jϕn (r, z) = jϕn (r, z)eϕ (2.10)

= eϕ
eħ
mr

|R0(r )|2 |Z0(z)|2 Imψn(ϕ)
∂

∂ϕ
ψn(ϕ) (2.11)

where we used vϕ =−iħ/(mr )∂/∂ϕ, and the total current in the wire is

Iϕ =
∫ ∫

d zdr jϕ (r, z) (2.12)

=−eħ
m

Imψn(ϕ)
∂

∂ϕ
ψn(ϕ)

∫
dr

1

r
|R0(r )|2

∫
d z |Z0(z)|2 (2.13)

=− eħ
ma2

∑
n

fn Imψn(ϕ)
∂

∂ϕ
ψn(ϕ). (2.14)

where e > 0, and we used
∫

dr |R0(r )|2 /r = 1/a2 assuming a Gaussian R0 [27]. The
current operator Eq. (2.3) is diagonal in the basis of the states in Eq. (2.9), which
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are therefore also eigenfunctions of the current carrying system. The total current
density in the ring then reads:

Iϕ =− eħ
2πma2

∑
n

fnn (2.15)

The projected Hamiltonian 〈Z0R0 |H0|Z0R0〉 in the presence of the Lagrange mul-
tiplier term −Aϕ Îϕ (parameterizing the vector potential as Aϕ = 2πħnλ/e where
nλ is dimensionless) is diagonal in the basis Eq. (2.9) with energies

εn = Ean2 − 2πħnλ
e

eħ
2πma2 n +ε0 (2.16)

= Ea (n −nλ)2 + ε̃0. (2.17)

where Ea =ħ2/(2ma2) and ε̃0 = ε0−Ean2
λ

. At zero temperature fn =Θ(εn−εF +ε̃0),
where εF is the Fermi energy andΘ the step function, therefore

Iϕ ≈ 2eħ
πma2 nλnF , (2.18)

where nF = p
(εF − ε̃0)/Ea . We assume that the number of electrons is constant

under variation of nλ, which implies that ε̃0 may be set to zero. The current con-
straint Iϕ = I determines the effective vector potential

nλ =
πma2

2eħnF
I = π

4e

ħ
Ea

I

nF
. (2.19)

such that the spectrum (2.16) is fully determined. The current is optimally accom-
modated by rigidly shifting the distribution function proportional to the applied
current.

A real magnetic field Bext also generates persistent currents [21]. There is a
difference, however. The energies of a quantum ring in the presence of a real mag-
netic fluxΦ=πa2Bext read

En = Ea

(
n − Φ

Φ0

)2

(2.20)

where Φ0 = e/h is the flux quantum and we can identify nλ =Φ/Φ0. The total en-
ergy in the presence of a diamagnetic persistent current is

E ′ =
n(+)

F∑
n(−)

F

En (2.21)



{{2

24 2. LIGHT-INDUCED SPIN POLARIZATIONS. . .

where n(±)
F =

⌊
±

√
2ma2 (εF −ε0)/ħ+Φ/Φ0

⌋
is the largest integer smaller of equal√

2ma2 (εF −ε0)/ħ. E ′ (Φ) is periodic, since the quantum numbers of the highest
occupied states jump by ±1 when two states cross the Fermi energy. The current

Iϕ′ = ∂

∂Φ
E ′ =−Φ0Ea

n(+)
F∑

n(−)
F

(
n − Φ

Φ0

)
. (2.22)

oscillates as a function ofΦwith a maximum

∣∣Iϕ′
∣∣
max = N EaΦ0 = 1.5×10−10 A

N

1000

(
0.1µm

a

)2

, (2.23)

where N = 2
(
n(+)

F +n(−)
F

)
is the total number of electrons.

The Lagrange multiplier on the other hand contributes the additional term
ħ2n2

λ
/
(
2ma2

)
, see Eq. (2.16), which modifies the expressions to

En

Ea
= (n −nλ)2 −n2

λ = n (n −2nλ) (2.24)

Iϕ =Φ0
∂E

∂nλ
=−EaΦ0

nF −nλ∑
−nF −nλ

n. (2.25)

which agrees with Eq. (2.15).
The current is finite for any nλ 6= 0 (except when N = 1 and n = 0 or 2nλ).

Thus, contrary to the diamagnetic current induced by a real magnetic field, the La-
grangian method generates unbound currents. However, due to the discreteness of
the energy levels the currents are quantized. see Fig. 2.1. In the following we work
with a large number of electrons such that the currents are quasi-continuous.

Nevertheless, if it is taken into account that there is a maximum for magnetic-
field induced currents, our method also predicts spin polarizations generated by
diamagnetic currents and correspondingly enhanced paramagnetic susceptibility
of quantum rings. It is instructive to compare the magnitudes of the Lagrange mul-
tipliers with the corresponding magnetic fields. With e Aϕ = 2πnλ = eBexta2/(2ħ)

Bext =
(
πħ
ea

)2 1

Ea

I

n0
=

(π
e

)2 2m

n0
I (2.26)

≈ 0.1mT
1000

n0

I

nA
, (2.27)

which does not depend on the size of the ring.
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FIGURE 2.1: Current versus nλ. The current axis is scaled in units of I0 = 2eħnF /(πma2).

2.4 SINGLE MODE RINGS IN THE PRESENCE OF SOI
In the weakly relativistic limit a particle spin experiences SOI, i.e. an effective mag-
netic field that scales with the particle velocity. It requires inversion symmetry
breaking induced either by space charges or asymmetric heterostructures or by a
unit cell without inversion symmetry, as is the case for the zinkblende structure.
The Rashba SOI in the quasi-two-dimensional electron gas (2DEG) is a simple re-
alization of the former [28, 29], while the Dresselhaus [30] SOI represents the latter
type. For a 2DEG in the x, y-plane the Hamiltonian (2.8) is then augmented by

H e
SO = αe

ħ
(
σy px −σx py

)+ βe

ħ
(
σx px −σy py

)
, (2.28)

whereσx(y) are the x(y)-components of the momentum operator for electrons and
vector of Pauli matrices, respectively. In a two-dimensional hole gas (2DHG), on
the other hand [31–33],

H h
SO =

(
i
αh

ħ3 p3
−+ βh

ħ3 p−p+p−
)
σ++h.c., (2.29)

and O± = Ox ± iOy , where O ≡ p,σ, are the momentum operator and Pauli spin
matrix vectors, respectively. αe(h) and βe(h) parameterize the linear (cubic) Rashba
and linear (cubic) Dresselhaus SOI. The canonical velocity operators are modified
by the spin-orbit interaction since they do not commute with the Hamiltonian.



{{2

26 2. LIGHT-INDUCED SPIN POLARIZATIONS. . .

Dropping the index for electrons and holes

v = ṙ = 1

iħ [r, H ] (2.30)

= v0 +vSO = ħ
i m

∇∇∇+++ 1

iħ [r, HSO] . (2.31)

where vSO is the anomalous velocity. The current operators are modified analo-
gously.

As before, we add an axially symmetric confinement potential to the 2DE(H)G
and consider the electric quantum confinement (1D) limit. Here, we separately
discuss electrons and holes in such quantum rings in the presence of a circular
current, and calculate the current-induced spin polarization in each system.

2.4.1 ELECTRONS WITH RASHBA SOI
For electrons in the 1D quantum ring the projection of the full Hamiltonian H onto
the azimuthal subspace, leads to [27]

H
(
ϕ

)= 〈Z0R0 |H0 +HSO |Z0R0〉 =− ħ2

2ma2 ∂
2
ϕ

− i
α

a

{(
σx cosϕ+σy sinϕ

)
∂ϕ+ 1

2

(
σy cosϕ−σx sinϕ

)}
− i

β

a

{(
σx sinϕ+σy cosϕ

)
∂ϕ+ 1

2

(
σx cosϕ−σy sinϕ

)}
. (2.32)

Let us first focus on the Rashba spin-orbit interaction, i.e. β= 0. The eigenstates of
the system are

ψR
n+

(
ϕ

)= 1p
2π

e i nϕ

(
cos θR

2
sin θR

2 e iϕ

)
; (2.33)

ψR
n−

(
ϕ

)= 1p
2π

e i nϕ

(
−sin θR

2
cos θR

2 e iϕ

)
, (2.34)

where n is an integer, with energies

Enσ

Ea
=

(
n + 1

2

)2

+σ
(
n + 1

2

)
secθR + 1

4
, (2.35)

where tanθR = 2maα/ħ2, and the velocity operator in this system reads

vϕ =− iħ
ma

∂ϕ+ α

ħσr . (2.36)
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and current is 〈Iϕ〉 = ∑
nσ fnσIϕnσ = I . The current operator is diagonal in the nσ

basis (Eqs. (2.33-2.34), but acquires a spin-dependence

Iϕnσ =− eħ
2πma2 n −σ eα

2πħa
sinθ

− eħ
2πma2

(
δσ,+1 cos2 θ

2
+δσ,−1 sin2 θ

2

)
, (2.37)

The projected Hamiltonian in the presence of the Lagrange multiplier term (pa-
rameterizing the vector potential as Aϕ = ħnλ/e where nλ is dimensionless) is di-
agonal in the basis Eq. (2.9) with energies

Enσ

Ea
=

(
n + 1

2

)2

+σ (n +1/2)secθR + 1

4

− 2πħnλ
e

2ma2

ħ2

[
eħ

2πma2 n +σ eα

2πħa
sinθR

+ eħ
2πma2

(
δσ,+1 cos2 θR

2
+δσ,−1 sin2 θR

2

)]
(2.38)

=
(
n −nλ+

1

2

)2

+σ
(
n −nλ+

1

2

)
secθR + 1

4
−n2

λ (2.39)

At zero temperature:

I =∑
nσ

fnσIϕnσ =∑
σ

nr +nλλ−σsecθR−1/2∑
−nr +nλλ−σsecθR−1/2

Iϕnσ = 2eħ
πma2 nλnr (2.40)

where nr ≡
√
εF /Ea + sec2θR /4 and we substituted Eq. (2.37). The leading term is

therefore the same as in the absence of spin-orbit interaction:

nλ =
π

4e

ħ
Ea

I

nr
. (2.41)

Since the system is not magnetic, the system is not spin polarized at equilib-
rium. The spin polarization of the current-carrying ground state reads

〈σz〉R
I =∑

nσ

〈
ψR

nσ |σz |ψR
nσ

〉
I =

∑
nσ

fnσσcosθR .

and 〈σy 〉R
I = 〈σx〉R

I = 0. In the absence of current the energy bands are equally filled
for both spins in the negative and positive directions, and we do not have unpaired
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electrons. Thus:

〈σz〉R
I=0 = cosθR

∑
nσ
σΘ(εF −Enσ) (2.42)

= cosθR
∑
σ

nr +nλ−σsecθR−1/2∑
−nr +nλ−σsecθR−1/2

σ= 0. (2.43)

In the presence of the current bias the electron distribution is shifted in reciprocal
space around the Fermi level by nλ. The spinors Eqs. (2.33, 2.34) that determine
the spin texture do not depend on n. Furthermore, the relative occupation of the
two spin bands also remains the same. Therefore, an induced current does not
generate a spin polarization and 〈σz〉R

I = 0 for all current levels. The conclusion
that there is no current-induced spin accumulation in the Rashba systems holds
also for 1D wires. The vanishing of the spin accumulation is caused by the com-
pensating effect of the two subbands. This can be suppressed when a gap is in-
duced at k = 0 by a Zeeman field or exchange interaction and a Fermi energy that
is tuned to fall into this gap [34]. We also note that the linear current-induced spin
accumulation does not vanish in the two-dimensional electron gas either [35].

2.4.2 ELECTRONS WITH DRESSELHAUS SOI
A similar situation arises for a ring with only a linear Dresselhaus interaction, i.e.
α= 0 in Eq. (2.32). Its eigenstates are [36]

ψD
n+

(
ϕ

)= 1p
2π

e i nϕ

(
−sin θD

2
i cos θD

2 e−iϕ

)
; (2.44)

ψD
n−

(
ϕ

)= 1p
2π

e i nϕ

(
cos θD

2
i sin θD

2 e−iϕ

)
, (2.45)

with energies identical to those for the Rashba ring

Enσ

Ea
=

(
n + 1

2

)2

+σ
(
n + 1

2

)
secθD + 1

4
, (2.46)

but tanθD = 2maβ/ħ2. Thus, the spin texture does not depend on the angular mo-
mentum. This means that shifting a distribution function rigidly does not change
the balance of the spin states, and as in the Rashba case, there is no current-induced
spin polarization.

2.4.3 HOLES WITH DRESSELHAUS SOI
Stepanenko et al.[37] derived an effective low energy Hamiltonian for heavy holes
from the Luttinger Hamiltonian that includes Dresselhaus and Rashba like SOI that
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FIGURE 2.2: Top: Electrons spin texture in the presence of linear Dresselhaus (left) or Rashba (right)
interaction. The angle of the spin with the ring in this case only depends to the SO coupling strength
and not the angular momentum.
Bottom: The hole spin texture in the presence of cubic Dresselhaus (left) or Rashba (right) spin-orbit
interaction. The direction the spins in both cases dependents on the angular velocity of the holes and
on the SO coupling strength.
Here, the particles orbit counterclockwise. The clockwise movement induces spin texture which is mir-
rored with respect to the plane containing the ring.

are cubic in the angular momenta. Simple analytical solutions were obtained in
two limits, representing the Dresselhaus-only interaction (αh = 0) and the Rashba-
only SOI (βh = 0). The spin textures in these two limits are shown in Fig. 2.2. In
contrast to the electron case, both spinors include terms quadratic in the angular
momentum. Here, we show that these do generate a current-induced spin accu-
mulation.

The heavy-hole Hamiltonian for a 1D ring with Dresselhaus SOI is [37]

H cD
0 =− ħ2

2mhh a2 ∂
2
ϕ

+βhe iϕ
(
G0 +G1∂ϕ+G2∂

2
ϕ+G3∂

3
ϕ

)
σ−

+βhe−iϕ
(
G0 −G1∂ϕ+G2∂

2
ϕ−G3∂

3
ϕ

)
σ+ , (2.47)

where G0 = i (R0+R1−R2), G1 =−(R1+R2), G2 = i (R2−2R3), and G3 =−R3, and the

coefficients R j =
〈

r− j∂
3− j
r

〉
radial

depend on the ground state radial confinement

wave function. For a ring with radius a and width w, R2 = R3/2 = 1/(2a3) and
R1 =−2/3R0 =−1/(aw2)[38]. mhh = m0/(γ1 + γ̃), where γ̃= γ2 for the [001] (γ̃= γ3

for [111]) growth direction and γi are the standard Luttinger parameters for the
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valence band of III-V semiconductors. The eigenfunctions of the system are

ψcD
l ,+ = 1p

2π
e i lϕ

(
i cos θcD (l )

2 e−iϕ/2

−sin θcD (l )
2 e iϕ/2

)
; (2.48)

ψcD
l ,− = 1p

2π
e i lϕ

(
i sin θcD (l )

2 e−iϕ/2

cos θcD (l )
2 e iϕ/2

)
, (2.49)

where l = n +1/2, and the texture angle θcD (l ) is

θcD (l ) = tan−1

[
2mhhβh

ħ2R2/3
3

(
2

3
R0 +

(
l 2 − 5

4

)
R3

)]
, (2.50)

with energies

Elσ = E h
a

(
l 2 + 1

4
+σl secθcD (l )

)
,

where E h
a =ħ2/(2mhh a2). In terms of the velocity operator

vϕ =− iħ
mhh a

∂ϕ+ i aβh

ħ e iϕ
(
G1 +2G2∂ϕ+3G3∂

2
ϕ

)
σ−

+ i aβh

ħ e−iϕ
(
−G1 +2G2∂ϕ−3G3∂

2
ϕ

)
σ+, (2.51)

the current operator reads

Îϕlσσ′ =
e

a
Reψ†

lσ(ϕ)vϕψlσ′ (ϕ). (2.52)

Both the Hamiltonian and current operators are diagonal in the orbital angular
momentum, which allows us to introduce 2×2 operators in spin space calculation
of the expectation values in position space:

−
Îϕl
e

=2E h
a (l−σ1 + l+σ2)

+ βh

ħ
(
G1 +2iG2l−+3G3l 2

−
)
σ−

+ βh

ħ
(
G1 −2iG2l++3G3l 2

+
)
σ+, (2.53)

where σ1, and σ2 are 2×2 matrices with all elements zero except for the first and
second diagonal one, respectively, and l± = l ±1/2. Thus, the Hamiltonian H cD +
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λ〈Iϕ〉 in spin space reads

H cD
l = E h

a

[(
l 2
−−nλl−

)
σ1 +

(
l 2
+−nλl+

)
σ2

]
−βh

(
G0 +G1l−+G2l 2

−+G3l 3
−
)
σ−

−βh
(
G0 −G1l++G2l 2

+−G3l 3
+
)
σ+

+nλβh
(
G1 +2G2l−+3G3l 2

−
)
σ−

+nλβh
(−G1 +2G2l+−3G3l 2

+
)
σ+ . (2.54)

The eigenstates in the presence of a current now read

ψcD
(l ,nλ),+ = 1p

2π
e i lϕ

(
cos θcD (l ,nλ)

2 e−(i /2)(ϕ+π/2)

sin θcD (l ,nλ)
2 e(i /2)(ϕ+π/2)

)
; (2.55)

ψcD
(l ,nλ),− = 1p

2π
e i lϕ

(
−sin θcD (l ,nλ)

2 e−(i /2)(ϕ+π/2)

cos θcD (l ,nλ)
2 e(i /2)(ϕ+π/2)

)
, (2.56)

with spin texture

θcD (l ,nλ) = arctan (2.57)[
2mhhβh

ħ2R2/3
3

(
2

3
R0 +

(
l 2 − 5

4
−3n2

λ+2
n3
λ

l

)
R3

)]
,

and energies

Elσ = Ea

(
(l −nλ)2 + 1

4
+σ (l −nλ)

cosθcD ((l −nλ) ,nλ)

)
.

We can obtain nλ from the current constraint by noting that the state lσ carries the
current

Iϕlσ =− e

2π

{ ħ
ma2 l −σ ħ

2ma2 cosθcD (l )

+σβh

ħ
(
G1 − iG2 −3G3

[
l 2 + 1

4

])
sinθcD (l )

}
. (2.58)

We now derive analytical expressions for nλ in the weak spin-orbit coupling
limit, i.e. for small θcD . Subsequently, we also present numerical results for larger
SOI strengths. For small angles θcD , the expectation value of the current reduces
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to

Iϕlσ ≈− e

2π

{ ħ
ma2 l −σ ħ

2ma2

+σ β2
h

ħE h
a

(
G1 − iG2 −3G3

[
l 2 + 1

4

])
×(

2

3
R0 +

(
l 2 − 5

4
−3n2

λ+2
n3
λ

l

)
R3

)}
. (2.59)

At zero temperature

Iϕ = ∑
σ=±1

nr +nλ−σ/2∑
−nr +nλ−σ/2

Iϕlσ = I , (2.60)

where nr ≈
√
εF /E h

a and εF is the Fermi energy in the absence of current. Taking

cosθcD ≈ 1 in the boundaries of the summation,

nλ ≈
ħ

4E h
a

π

e

I

nr

(
1+3

(
βhR3nr

Ea

)2)
≈ πħ

4eE h
a

I

nr
. (2.61)

which in the limit of weak SOI does not depend on βh . We find that the system is
now spin-polarized in the z-direction. With

〈σz〉lσ = 〈ψcD
(l ,nλ)σ|σz |ψcD

(l ,nλ)σ〉
=σcosθcD (l ,nλ) ≈σ(

1−θcD (l ,nλ)2) , (2.62)

the total spin polarization is

〈σz〉cD
I =∑

nσ
σ fnσ cosθcD (l ,nλ)

≈ ∑
σ=±1

nr −nλ+σ/2∑
n=−nr −nλ+σ/2

σ
(
1− (

θcD (l ,nλ)
)2

)
. (2.63)

This leads to

〈σz〉cD
I = β2

h(
E h

a
)2

a6

{
−4n3

λnr +64
n6
λ

n3
r

(
nλ−

1

2

)
+2nr nλ

(
4n2

λ+1+ (nr +1)(2nr +1)
)

−
(

a2

w2 −
(

5

4
+3n2

λ

))(
−4nλnr −16

n4
λ

n2
r

)}
. (2.64)
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To leading order in the current nλ:

〈σz〉cD
I → 2β2

h(
E h

a
)2

nr nλ
a6[

1+ (nr +1)(2nr +1)+ 2a2

w2 − 5

2

]
. (2.65)

The total number of electrons

N =∑
nσ

fnσ ≈ ∑
σ=±1

nr +nλ−σ/2∑
−nr +nλ−σ/2

1 = 4nr . (2.66)

For nr À a/w the term proportional to 2n3
r dominates and the spin polarization

simplifies to

〈σz〉cD
I ≈ 4β2

h

E h
a

2
R2

3 n3
r nλ =

εF

E h
a

πħβ2
h(

E h
a a2

)3

I

e
, (2.67)

while in the limit of a wide and narrow ring

〈σz〉cD
I ≈ 4β2

h(
E h

a a2
)2

nr nλ
w2 = a2

w2

πħβ2
h(

E h
a a2

)3

I

e
. (2.68)

The spin polarization is in both cases proportional to the current and the squared
amplitude of the SOI interaction, which is expected. The proportionality with
Fermi energy when nr À a/w reflects the increasing spin texture angle θcD with
energy. This implies a scaling with the squared number of particles as well as the
area of the ring. In the opposite limit, we find that the spin polarization increases
when tightening the laterally quantized subband, because this increases the SOI
matrix elements. For realistic and currently experimentally feasible dimensions,
the first approximation seems more appropriate, and thus, we focus on this limit
henceforth. One can estimate the the spin polarization in this regime from Eq.

(2.67) and the Dresselhaus coupling constant for GaAs [39] βh = 30 eVÅ
3

as:

〈σz〉cD
Iϕ

≈ 0.2
( εF

10meV

)(
a

1µm

)2 (
I

nA

)(
βh

30eVÅ3

)2

. (2.69)

For a better understanding we can derive an equivalent effective magnetic field
that would generate the same spin polarization (2.67) in the absence of SOI. Con-
sider the Hamiltonian HB = p2/(2mhh)1̂−∆σz , with the Zeeman energy ∆=ħegh
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FIGURE 2.3: The current-induced spin polarization of heavy holes in a quantum ring subject to the
cubic Dresselhaus (Rashba) SOI, plotted in the left (right) side. The plots are shown as a function of
the SOI parameters and mhh = 0.45m0, N = 1144, which in the absence of current is equivalent to
εF = 10 meV, a radius of a = 1 µm, and width of w = 50 nm. Here, we assumed a current of I = 35 nA,
which is equivalent to circularly polarized light with the frequency of ω= 2×1014s−1, and electric field
amplitude of |E0| =

p
60×107Vm−1, see appendix 2.6.1.

Beff/(4mhh), where gh is the gyromagnetic ratio. Clearly such a system is spin po-
larized and in the limit of ∆/εF ¿ 1:

〈σz〉Z ≈ ħ
2

eghBeff

mhh

1√
E h

a εF

. (2.70)

The ε−1/2
F dependence reflects the 1D density of states that decreases with energy.

Comparison of Eqs. (2.70) and (2.67) gives an equivalent effective field of

Beff =
32πp

2

m9/2
hh a

eħ7gh
ε3/2

F β2
h

I

e
,

where we assume the g-factor gh =−0.5 [40]. Inserting parameters

Beff = 1.3
( εF

10meV

)3/2 a

1µm

I

nA

(
βh

30eVÅ
3

)2

mT, (2.71)

we find that a light-induced current of the order of 10 nA (see Appendix) generates
an effective field of roughly 10 mT.

Keeping in mind that the current is quantized in steps as function of the sys-
tem parameters as discussed above, the spin polarization computed numerically
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FIGURE 2.4: Comparison of analytical and numerical results in the regime of small Dresselhaus SOI for
holes orbiting in a ring. Left: n2

r À a2/w2. The parameters are the same as in Fig. 2.3 in this limit.
Right: Limit of n2

r ¿ a2/w2 with w = 1 nm. The other parameters are the same as in Fig. 2.3.

increases linearly with the current level up to I = 100nA, in agreement with the an-
alytic result. The deviations from perturbation theory are quite large for the spin-
orbit interaction parameter for GaAs used above. The non-perturbative numerical
results for the spin polarization are plotted as a function of SOI strengths for con-
stant electron numbers in Fig. 2.3. We observe that at small βh the spin polariza-
tion increases quadratically with SOI as found in the weak SOI limit above but a
saturation at higher values. We also observe saw-tooth like behavior on top of this
trend that is caused by a repopulation of states: The SOI induces a spin polariza-
tion when the current bias shifts the occupation numbers around the Fermi level.
For small but increasing βh we expect an increasing spin polarization with SOI at
constant current since the state dependence of the spin texture increases. At large
βh , on the other hand, the angle of the spin with respect to the z-axis θcD (l ,nλ) can
be large, corresponding to smaller values of the z-component of the spin. Thus,
by further increasing βh , the overall polarization saturates and even slightly de-
creases. The jumps reflect level crossings with increasing βh . In these calculations
the number of electrons is kept constant. At such a discontinuity an electron va-
cates a high angular momentum state in favor of a smaller one, which reduces the
total spin polarization. In the regime of small SOI, the numerical and analytical
results for the current induced spin polarization agree well, see Fig. 2.4.
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2.4.4 HOLES WITH RASHBA SOI
The Hamiltonian of holes in the presence of the Dresselhaus SOI is [37]:

H cR
0 =− ħ2

2mhh a2 ∂
2
ϕ

+ iαhe3iϕ
(
F0 +F1∂ϕ+F2∂

2
ϕ+F3∂

3
ϕ

)
σ−

− iαhe−3iϕ
(
F0 −F1∂ϕ+F2∂

2
ϕ−F3∂

3
ϕ

)
σ+, (2.72)

where F0 = i (R0−3R1+3R2), F1 =−3R1+9R2−8R3, F2 = i (−3R2+6R3), and F3 = R3.
The Ri s depend on the radial confinement, and are defined in Section 2.4.3.

The current operator in spin space is:

Îϕl
e

=2E h
a

(
l ′−σ1 + l ′+σ2

)
− αh

ħ
(
F1 +2i F2l ′−+3F3l ′−

2)σ−

− αh

ħ
(
F1 −2i F2l ′++3F3l ′+

2)σ+, (2.73)

where l ′+ = l +1, and l ′− = l −2. Thus, the same procedure as before, leads to the
Hamiltonian carrying a ground state current. In spin space:

H cR =H cR
0 (l −nλ) |F̄1→F1,F̄0→F0

(2.74)

−2αhe iϕF3n3
λσ−+2αhF3n3

λe−iϕσ+,

where F̄1 = F1 + 3F3n2
λ

, and F̄0 = F0 − F2n2
λ

, and we neglect a constant shift of
−ħ2n2

λ
/(2mhh a2) in the Hamiltonian. Eigenstates are now:

ψcR
(l ,nλ),+ = e i lϕ

(
cos θcR (l ,nλ)

2 e−(3i /2)(ϕ)

sin θcR (l ,nλ)
2 e(3i /2)(ϕ)

)
; (2.75)

ψcR
(l ,nλ),− = e i lϕ

(
−sin θcR (l ,nλ)

2 e−(3i /2)(ϕ)

cos θcR (l ,nλ)
2 e(3i /2)(ϕ)

)
, (2.76)

where the texture angle θcR (l ,nλ) is

θcR (l ,nλ) = tan−1

[
α̃h

(
2

3
R0 +

(
13

12
− 1

3
l 2 +n2

λ−
2

3

n3
λ

l

)
R3

)]
, (2.77)
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with α̃h = 2mhhαh/(ħ2R2/3
3 ) and energies

Ek,σ = Ea

(
(l −nλ)2 + 1

4
+σ (l −nλ)

cos
[
θcR ((l −nλ) ,nλ)

] )
.

For small θcR we find, as above,

nλ ≈− ħ
4E h

a

π

e

I

nr
. (2.78)

and a spin polarization in the z-direction:

〈σz〉cR
Iϕ

≈− εF

E h
a

πħα2
h

9
(
E h

a a2
)3

I

e
. (2.79)

very similar to the Dresselhaus limit, but with a prefactor 1/9. Therefore above
discussions for the small SOI limit hold for the cubic Rasba Hamiltonian as well.
In the lower part of Fig. 2.3, we plotted numerical results for larger values of αh .
The values of the SO coupling used in this figure can be experimentally achieved
(e.g. Ref. [42]), by an external gate voltage.

2.5 CONCLUSION
The IFE allows in principle ultrafast and non-dissipative actuation and eventual
switching of magnetization. We investigated the impact of the SOI on this non-
absorbing ‘Opto-Spin’ phenomena. We provided a proof of principle for a mech-
anism that is based on the current-induced generation of a spin polarization that
would generate torques in a magnetic sample. The current bias can be generated
by the Lagrange multiplier method inspired by current-density functional theory.
For electrons moving in quantum rings in the presence of Rashba and Dresselhaus
SOIs, the effect vanishes. It becomes non-zero only when the Kramer’s degener-
acy is broken by an exchange potential or applied magnetic field, but the effects
are still small [34]. On the other hand, holes in a ring with cubic Dresselhaus and
Rashba SOI display a spin polarization under a current bias. This polarization is a
competition between two effects. On one hand, with increasing SOI the band split-
ting increases, which amplifies the magnitude of the polarization. Simultaneously,
however, the z-component of the spin of holes with energies near to the Fermi level
decreases, and therefore the net polarization decreases. These two might enhance
the effect rather than canceling each other when the spin texture would push the
spin out of the plane. This can be achieved in a ring with an asymmetric poten-
tial in the radial direction, such as a thin slice of GaAs|p-doped GaAlAs core/shell



{{2

38 2. LIGHT-INDUCED SPIN POLARIZATIONS. . .

nanowire. The second Rashba SOI would pull the spin toward the z-direction and
lead to monotonic increase of current-induced spin polarization with SOI.

Induced polarization in the z-direction, calculated in this section, could be ei-
ther parallel or anti-parallel to the z-axis depending on the direction of the current.
This is consistent with the IFE in which the effective magnetic field changes sign
with the helicity of light. Here, we focused on the spin polarization induced by
current in a material which is nonmagnetic. This spin polarization can be mea-
sured directly by pump and Kerr rotation probe measurements. GaMnAs in the
ferromagnetic state is a hole conductor. Here the current-induced spin polariza-
tion would induce torques on the magnetic order parameter, eventually causing
magnetization switching. The spin-dependent dynamic Stark effect also induces
torques by circularly polarized light [12]. The two processes are independent and
should be added. They can be distinguished by tuning the light frequency close to
the energy gap, where the dynamic Stark effect is resonantly enhanced.

The currents generated by non-resonant light are persistent, analogous to the
diamagnetic currents in conducting rings induced by dc magnetic fields [21]. While
this issue has not been central to our study, our results imply that the spin-orbit in-
teraction can induce large paramagnetic corrections to the diamagnetic response.
Cantilever-based torsional magnetometers with integrated mesoscopic rings al-
low very sensitive measurements of magnetic susceptibilities [43]. We suggest that
quantum ring arrays made from 2DHGs would be interesting subjects for such ex-
periments.

2.6 APPENDIX

2.6.1 LIGHT INDUCED CURRENTS
Here we show how to use the collisionless plasma model by Hertel [17] to ob-
tain the light-induced current in a quantum ring. This model can be used for the
present system in the high-frequency limit, in which the path an electron traverses
under a half-cycle of the oscillating light electric field is much smaller than the
characteristic length scales such as the finite radial thickness or the spin-orbit pre-
cession length.

Hertel finds a circular current as a result of the circularly polarized light in the
form of

jϕ =− i

4e〈n〉ω∇∇∇× [
σ∗E∗×σE

]
(2.80)

where E is the electric field of the light, and

σ= i 〈n〉e2

mω
, (2.81)
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is the conductivity of a collisionless plasma in a high frequency regime, 〈n〉 is the
volume density of the electrons and ω is the light frequency. For circularly polar-
ized light with helicityΛ=±

E×E∗ =Λi |E |2 ·ez

Thus,

jϕ(r ) =Λ 〈n〉e3

4m2ω3 ∇∇∇× (|E (r )|2 ez
)

(2.82)

=−Λ 〈n〉e3

4m2ω3

(
∂ |E (r )|2

∂r

)
eϕ (2.83)

Since this result does not depend on the z-coordinate, it holds for a 2DEG and
normally incident light.

In a ring we can project the current to one dimension by writing the current
density

jϕ = j 1D
ext eϕ, (2.84)

where

j 1D
ext = 〈R0(r )Z0(z)| jext (r ) |Z0(z)R0(r )〉 (2.85)

=−Λ 〈n〉e3

4m2ω3

∫
dr |R0(r )|2 ∂ |E (r )|2

∂r
. (2.86)

We consider a laser spot with Gaussian spatial distribution:

E(r ) = (ex +Λi ey )E0 exp

(
−γr 2

2

)
, (2.87)

|E |2 = E 2
0 exp

(−γr 2) , (2.88)

where E0 is the maximum value of the electric field in the spot center. Thus, the
total current in the ring with radius a then becomes

I =
∫ ∫

d zdr j 1D
ext =ΛγE 2

0 exp
(−a2γ

) Ne3

4πm2ω3 . (2.89)

where we used
∫

dr
∫

d z〈n〉 = N /(2πa), the linear density of a ring with N elec-
trons. The above current has dimension of Ampere. The result is also valid for
the holes (with modified mass and opposite current direction). The light intensity
reads in terms of the electric field

Intensity = cn′ε
2

|E |2 , (2.90)
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where c is the velocity of light in vacuum, ε is the dielectric constant , and n′ the
index of refraction. We estimate the current by assuming ε ≈ 10ε0, n′ ≈ 3. At a
typical laser intensity of 1013 Wm−2 , or equivalently |E0|2 ≈ 3× 1015 V2m−2, and
wave length/frequency λ′ = 12πµm/ω = 2×1014s−1 used in all-optical switching
[41], we find for the current in a 2DHG ring:

|I | = 16nA
E 2

0

3×1015V2m−2

γexp
(−a2γ

)
1012 exp(−1)m−2

N

1000
(2.91)

×
(

0.45m0

m

)2 (
2×1014s−1

ω

)3

(2.92)
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3
CHANGE IN SPIN POLARIZATION

OF ELECTRONS IN MAGNETIZED

QUANTUM RINGS FROM

LIGHT-INDUCED CURRENTS

In Chapter 2, we have shown that electrons orbiting Rashba/ Dresselhaus quantum
rings in the presence of light-induced current cannot accumulate spin polarization.
This situation can be different if an exchange energy is present, i.e. the ring is ini-
tially magnetized. To illustrate this situation, we investigate a quantum ring in the
presence of Rashba SOI and a ground state current. We demonstrate that the spin
polarization of the conducting electrons can be changed by a circular current.

43
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3.1 1D RING IN THE PRESENCE OF A SMALL EXCHANGE

GAP
In Chapter 2, it was shown that in 1D rings the shift in the distributions of the two
spin bands cause effects that exactly cancel each other. If the expectation value
of spin would be angular momentum dependent, these effects would not cancel
each other. This situation arises when exchange energy is present. For simplicity,
let’s first consider the Fermi energy to be exactly at the crossing point of two spin
bands at l = 0, where only the first energy band is occupied, and we consider a
small exchange energy to separate these two bands, see Fig 3.1. A small exchange
energy mainly affects the degeneracy point, and one could neglect the change of
high-momentum states at the Fermi energy. Thus, the energies around the Fermi
level remain as:

E = Ea
(
l 2 +σl secθR

)+ε0. (3.1)

ε0 is a constant energy caused by the confinement energies in the z and r di-
rections, and can be assumed zero without affecting the generality of the calcu-
lations. Thus, at the crossing point εF = 0, the Fermi wave numbers reduce to
lF,σ,max(min) = −σsecθR /2+ (−)secθR /2. Moreover, we assume that the low mo-
mentum states do not contribute to the current-induced spin accumulation, be-
cause the levels near to the Fermi energy are the ones mostly influenced by current.
Thus, the expectation value of the z-component of spin near to the Fermi energy
remains 〈l ,σ |σ̂z | l ,σ〉 =−σcosθR , and hence the spin polarization is:

〈σ̂z〉 =
∑
σ,l

fσ,l
〈
Ψl ,σ |σ̂z |Ψl ,σ

〉
(3.2)

=
lF,−,max+nλ∑

0
〈l ,−|σ̂z | l ,−〉+

0∑
lF,−,min−nλ

〈l ,+|σ̂z | l ,+〉= 2nλ cosθR . (3.3)

Where we consider only the lowest band in the presence of the exchange energy to
be occupied, with the spin band σ=+ for l < 0, and σ=− for l > 0. Satisfying the
Lagrange multiplier constraint, the same approach taken in Chapter 2, one obtains
nλ as following:

nλ =− πħ
eEa

cosθR Iϕ. (3.4)

Thus:

〈σ̂z〉I =
2πħ
eEa

cos2θR Iϕ. (3.5)
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FIGURE 3.1: Schematic picture of energy bands for a 1D system in the presence of a small exchange
energy. The band gap is exaggerated to be more illustrative. The solid violet and blue lines are the
energies in the presence of the exchange energy. The dashed lines, in the same color, represent the
energies in the absence of the exchange interaction. For the case of a ring, the energies are quantized
values on each curve.

Since we assume that the Fermi energy passes the crossing point of the energy
bands, one should note that the number of allowed energy levels, and therefore the
number of electrons in the system is directly dependent to SOI via N = 2/cosθR .
Thus, at zero temperature, vanishing SOI means zero particles in the system and
the above result is no longer valid. We can identify a theoretical upper bound for
the spin polarization as

〈σ̂z〉 = 2πħ
eEa

Iϕ. (3.6)

If we consider quantities for Au,α= 0.6×10−10 eV.m, meff ≈ m0 ≈ 9.1×10−31 kg,
g ≈ 2, the above spin polarization is equivalent to a magnetic field of:

→ Beff ≈ 3×104
[

Iϕ
A

]
T. (3.7)

where we assume a ring with radius a = 10µm.

3.2 1D RING WITH A BROADER RANGE OF EXCHANGE EN-
ERGY

In order to obtain a more general result for the change in spin polarization in the
presence of light induced current, here we use numerical approaches.
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3.2.1 NUMERICAL RESULTS OF SPIN POLARIZATION
The Hamiltonian for a ring in the presence of the Zeeman field reads [1]

Ĥ1D = ħ2

2ma2

(
i
∂

∂ϕ

)2

−α
a

(
cosϕσ̂x + sinϕσ̂y

)(
i
∂

∂ϕ

)
−i

α

2a

(
cosϕσ̂y − sinϕσ̂x

)+∆σ̂z ,

(3.8)
where a is the radius of the ring, α the spin-orbit coupling constant, and ∆ is the
exchange energy. Its eigenfunctions are

ψn,σ
(
ϕ

)= 1√
2π

(
A2

n,σ+B 2
n,σ

)e i nϕ
(

An,σ

Bn,σe iϕ

)
, (3.9)

and the energies read

E(σ=±)

Ea
= l 2 + 1

4
+σ

√
(l −δ)2 + l 2 tan2θR , (3.10)

where δ=∆/Ea , and for θR 6= 0:

An,σ = l tanθR√(
δ− l −σ

√
(δ− l )2 + l 2 tanθ2

R

)2
+ (l tanθR )2

(3.11)

Bn,σ =
δ− l −σ

√
(δ− l )2 + l 2 tanθ2

R√(
δ− l −σ

√
(δ− l )2 + l 2 tanθ2

R

)2
+ (l tanθR )2

. (3.12)

Thus, the expectation value of the z component of the spin reads:〈
ψl ,σ |σ̂z |ψl ,σ

〉= A2
n,σ−B 2

n,σ, (3.13)

and for the expectation value of the current we have:

〈
ψl ,σ

∣∣Îϕ
∣∣ψl ,σ

〉= 1

2πa

(
− eħ

ma
n −2

eα

ħ An,σBn,σ

)
. (3.14)

Using Eq. (3.10), one can find the Fermi wave numbers numerically and use
them to calculate the total spin polarization. The effect of the ground state cur-
rent is a constant shift of the wave numbers which is equivalent to a shift in the
Fermi wave numbers used in Eq. (3.10). This constant shift nλ can be obtained
numerically using the constraint, i.e.

∑
i fi Îϕi = I .

Due to the exchange energy, this system is initially spin polarized. Our goal is to
calculate the percentage of polarization that changes as a function of the current.
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FIGURE 3.2: Total spin polarization as a function of normalized exchange energy δ/δ0, and normalized
SO coupling constant, α/α0. The normalization constants are α0 = 6.25×1011eV.m, δ0 = 2.5×10−4.
The parameters used in this plots are: N = 104, EF = 3eV, a = 5µm, and the current is I = 1µA. These
are conventions that we will henceforth use in the figures of this chapter.

Therefore, we calculate both the total spin polarization and the change in the spin
polarization caused by the ground state current. These quantities are functions of
the SOI constant and exchange energy.

Fig. 3.2 shows increasing spin polarization with increasing exchange energy, as
we expect. However, this increase is a combination of two different effects: First,
we see a gradual increase in the spin polarization. This is the consequence of the
exchange energy dominating the SO energy, which encourages the spin to tilt in
the plane of the motion. The second behavior is a sharp jump in the spin polar-
ization, which occurs when the exchange energy increases enough to redistribute
two electrons from one band to the other band. This effect is similar to Pauli para-
magnetism.

The numerical result for the change in spin polarization in the presence of a
ground state current has been demonstrated in Fig. 3.3. In Appendix 3.3, this re-
sult has been compared with the analytical results in the regime of small exchange
energy. As we see in Fig. 3.3, for constant α and increasing δ, it becomes more
difficult to change the spin polarization. Therefore, as we expect, we need larger
currents to change the polarization for higher values of exchange energy. For a
constant exchange energy, we observe an initial increase in the change of polar-
ization from the increasing SOI. Gradually, we observe a secondary decrease in
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FIGURE 3.3: Change in spin polarization in the presence of a positive (right figure) and a negative (left
figure) current. Comparing the figures in the left and right side, we show that for different directions of
the current, which is a result of different helicities of the light, the change in spin polarization has the
same behavior but in opposite directions. The color bar in this figures indicates the value of δ〈σz 〉.

the change of polarization. The other outstanding features in these figures are the
jumps that occur at the same values of the exchange energy observed in Fig. 3.2.
These jumps are caused by an extra current that arises from the Pauli paramag-
netism redistribution. This redistribution amplifies the effect of the current and
the change in spin polarization becomes higher at these values. Thus, the overall
behavior is similar to the current induced spin polarization of holes in the absence
of the exchange energy, and can be understood similarly to what is discussed in
Chapter 2.

As we see in Fig. 3.3, the sign of the change in polarization depends on the
direction of the current; opposite currents induce equal spin polarizations but
with the opposite sign. This means that the total spin polarization increases or
decreases depending on the direction of the current. This is qualitatively in agree-
ment with experiments that show opposite helicities of circularly polarized light
induce magnetic fields in opposite directions [2]. One should note that opposite
helicities also induce currents in opposite directions [3].

We can calculate the percentage of the change in polarization by considering
the ratio of the change to the total polarization. As we can see in Figs. 3.3, and
3.2, the maximum change in polarization is δ〈σ̂z〉 ≈ 1.5×10−2, which happens at
α ≈ 3α0, and δ ≈ 10δ0, with a total polarization of 〈σ̂z〉 ≈ 4, resulting in a change
in polarization of about 4%. Even though it is nonzero, the effect of light induced
circular currents on electrons in the presence of Rashba SOI is small.

In this chapter, we have demonstrate that in principle the circular-current in-
duced spin polarization for electrons rotating in a Rashba ring in the presence of
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exchange energy is nonzero. However, the effect seems to be small in this system.
As we have demonstrated in this chapter, the change in the spin polarization can
be maximized by tunning the Fermi energy in the exchange gap, in such a way that
only one band is occupied.

3.3 APPENDIX

COMPARISON OF NUMERICAL AND ANALYTICAL RESULTS

Here, we compare our numerical result with the analytical solution for two cases
in the regime of small exchange energy: First, the result of Section 3.1 with only the
lowest band occupied, and second when both bands are occupied.

Fig. 3.4 presents a comparison of the analytical and numerical results for the
first case. As we discussed in Section 3.1, the result is only valid when α is not too
small. Accordingly, for larger values of the SO coupling constant, the analytical and
numerical results in this figure are in a good agreement. For the second case, we
calculate the change in spin polarization in the limit of small exchange, assuming
that both energy bands are filled. The change in spin polarization in this case is:
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δ〈σ̂z〉 =
∑
σ

[
nmax,σ+nλ∑
nmin,σ+nλ

〈σ̂z〉n,σ−
nmax,σ∑
nmin,σ

〈σ̂z〉n,σ

]

=∑
σ

[
−

nmin,σ∑
nmin,σ+nλ

〈σ̂z〉n,σ+
nmax,σ+nλ∑

nmax,σ

〈σ̂z〉n,σ

]
(3.15)

With typical parameters used in this calculation, even for large values of current
densities, nλ ¿ nF,σ. Thus, in the regime of the small exchange energy, δ¿ nF,σ,
one obtains:

〈σ̂z〉n,σ =σ
(
−cosθR + δ

n
cosθR sin2θR

)
. (3.16)

Therefore:

δ〈σ̂z〉 = δcosθR sin2θR
∑
σ
σ

[
−

nmin,σ∑
nmin,σ+nλ

1

n
+

nmax,σ+nλ∑
nmax,σ

1

n

]
(3.17)

For a typical quantum ring we have 1 ¿ nF at the Fermi level, therefore:

∑
σ
σ

[
−

nmin,σ∑
nmin,σ+nλ

1

n
+

nmax,σ+nλ∑
nmax,σ

1

n

]
≈ nλ

Nσ=+−Nσ=−
N 2 (3.18)
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where Nσ = 2σcosθR and N = 4
p
εF /Ea . Thus, the change in spin polarization

reduces to:

δ〈σ̂z〉 = nλδ
2 cos2θR sin2θR

Ea

εF
(3.19)

Fig. 3.5 demonstrates that the above analytical expression and the numerical cal-
culations are in a good agreement.
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4
CURRENT DRIVEN DOMAIN WALL

DEPINNING IN A

FERROMAGNETIC WIRE

Electric currents can move domain walls (DWs), which are initially pinned. Here,
we study the current induced depinning of a DW pinned by a local magnetic field
at the center of the wall, possibly caused by notches/anti-notches. We use Lagrange
multiplier method to calculate the Hamiltonian of the system in the presence of the
current in a ballistic regime. Using the energy considerations, we obtain the mini-
mum current needed to depin such a DW as a function of the pinning magnetic field.
In addition, we present a quantitative result for the local magnetic field by a simple
model of notch/antinotch in a dipole magnetic moment scheme. We also demon-
strate that for spin spiral magnetic texture in a ballistic regime, the current induced
torque obtained by quantum mechanical methods agrees with the adiabatic torque
obtained phenomenologically by Zhang et al. in Ref. [11]. Moreover, our results
agree with that by solving the dynamical Landau-Lifshitz-Gilbert equation in the
presence of a adiabatic spin transfer torque.
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4.1 INTRODUCTION

Understanding the physics of magnetic domain walls (DWs) in ferromagnets is im-
portant for potential applications in, e.g., data storage and computer logics [1–3].
DW motion driven by applied magnetic fields has been studied extensively in the
late 1970s [4]. Schryer and Walker [5] pioneered the collective coordinate approach
of rigid DW motion in magnetic wires. The DW race-track shift register [6, 7], on the
other hand, operates by current-induced DW motion [8–12]. The spacing between
consecutive DWs is controlled by pinning sites fabricated by patterning “notches”
along the edges of the track or modulating the track’s size and material properties.
The pinning sites define the bit length and provide DW stability against thermal
fluctuations or stray magnetic fields natural imperfections. The geometrically in-
duced pinning dominates when natural imperfections are sufficiently suppressed.
The depinning field in nanostructures with constrictions can be adjusted over a
wide range of values by changing the notch geometry. The strength and width of
the pinning potential are crucial parameters in designing memory devices with
low power consumption, which can be parameterized by the depinning threshold
current jth . Several experiments report the pinning of domain walls by artificial
notches in magnetic nanowires [13–18]. Tatara and Kohno [9] showed that in the
presence of the imperfections of material such as edge roughness, jth is entirely
determined by the pinning potential rather than the magnetization parameters
such as its anisotropy. Due to the complexity of the problem, the most theoretical
studies on the pinning by constrictions or notches are limited to micromagnetic
simulations [19, 20].

The physics of the present problem is rather well understood, at least in the
absence of interface spin transfer torques caused by the spin-orbit coupling, and
micromagnetic solvers can produce quantitative results. However, there is still the
need for simple models and calculations that give direct physical insights in pa-
rameter dependences etc. The wide spread belief, that the problem cannot be
formulated as a minimum principle [21], severely limits the possible approaches.
Here, we demonstrate that current-induced magnetic texture depinning can be
formulated as a minimum principle by current-density functional theory [22].

In order to demonstrate the principle, we focus here on a very simple problem,
viz. the current induced magnetization texture of a Walker-type rigid domain wall
in a thin-film wire trapped by a pinning site and in the absence of dissipation. At
current below the critical value the magnetization is static and can be obtained by
minimizing the energy of the wire under a current constraint. The critical value
at which there is no static solution anymore then corresponds to the depinning
current. We model a notch by its pinning magnetic field induced by the modified
demagnetization field. We assume a system of free electrons that carry the cur-



4.2. LAGRANGE MULTIPLIER METHOD 55

{{4

rent and are coupled to the ferromagnetic domain wall in an otherwise ballistic
wire by a constant exchange interaction. We study the effect of a current on the
pinned domain wall texture and the critical current at which the transfer torque
overcomes the pinning. These results agree with that obtained by conventional
methods, thereby illustrating that we can treat more complex problems beyond
the simple Walker ansatz. Since the basic torque calculation is based on quantum
mechanics, we expect that our method can be easily calculated by first principles
and in the presence of spin-orbit torques.

This chapter is organized as follows. In Section 4.2, we introduce the Lagrange
multiplier method for a magnetic wire. We use this method in Section 4.3 to study
the ground state of a DW in a magnetic nanowire in the presence of an external
current. In this section, we obtain and solve the Hamiltonian of the conducting
electrons in the presence of the current. We use energy minimization considera-
tions, and obtain a critical current where beyond that the minimization fails, and
therefore domain wall depins. The results on critical current is discussed in Section
4.4. We eventually conclude in Section 4.5.

4.2 LAGRANGE MULTIPLIER METHOD
We can study the effects of an electric current in an inhomogeneous electron gas
by current density-functional theory, which assures us that the ground state en-
ergy is the minimum of an energy functional of the electron current and density
distribution [22]. Essential here is the method of Lagrange multipliers, which is
a mathematical method to find the extremum of a function subject to boundary
conditions expressed as equality constraints. Let us consider a system, in our case
a metallic ferromagnet, be described by a Hamiltonian H . We can then calcu-
late F0 [M] , the ground state energy as a functional of the magnetization texture
M (r) with δF0 [M]/δM (r) = 0. If we subject the sample to a current density distri-
bution jext (r) we can set-up the new functional

F
[
M, j

]=F0
[
M, j

]+∫
A (r) · (j (r)− jext (r)

)
dr, (4.1)

where A (r) is a Lagrange multiplier function, which can be interpreted as an effec-
tive vector potential. We have to minimize this functional with respect to M and A.
The variation

δF
[
M, j

]
δA (r)

= j (r)− jext (r) , (4.2)

should vanish when the real and object current distribution are the same. We can
then compute the conditional ground state energy and current-induced magneti-
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zation texture as
δF

[
M, j

]
δM (r)

= 0. (4.3)

This functional derivative can be interpreted as an effective magnetic field that
has to vanish for a stable ground state. In the presence of several contributions
to the energy, Eq. (4.3) implies that torques of different physical origin have to
cancel each other. At some critical value of the current such a solution cannot be
found anymore and the net finite torque induces magnetization motion. This is
the depinning current we are looking for.

4.3 GROUND STATE OF DOMAIN WALL WITH CURRENT BIAS
We consider the standard system of a magnetic nanowire with easy axis in the z-
direction, containing a head-to-head transverse domain wall in the x-z plane. We
approximate the total energy by a sum of several contributions that are computed
separately by writing

F
[
M, jext

]= Fan [M]+Fpi n [M]+Fel [M]
(

jext
)

(4.4)

where the different contributions are Fel , the electronic energy, Fpi n , the pinning
energy and Fan the magnetic anisotropy. We compute the functional Fel quantum
mechanically, but use micromagnetic models for the latter energy contributions.

4.3.1 MAGNETIC ENERGY
We model the magnetic dipolar energy of the domain wall by the anisotropy energy
and a pinning energy for a notch in terms of a localized magnetic field H0 oriented
perpendicular to the wire. The magnetic free energy can then be written as an
integral over the domain wall texture:

FM
[
M, jext

]= ∫ DW
fM

[
M, jext

]
(z)d z −

∫ DW
µ0M(z) ·H0δ(z)d z (4.5)

Here the micromagnetic energy density reads

fM
[
M, jext

]= µ0

2
M 2

x (z)−µ0
Hk M 2

z (z)

2Ms
+ D

M 2
s

∣∣∣∣∂M(z)

∂z

∣∣∣∣2

, (4.6)

µ0 is the permeability of vacuum, Hk the anisotropy field, and D the exchange
energy constant. The terms on the right hand side of Eq. (4.6) are the thin-film de-
magnetization energy, anisotropy energy, and exchange energy, respectively. The
effective magnetic field is the functional derivative

Heff (r) =−δ
(
Fan +Fpi n

)
µ0δM (r)

. (4.7)
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We disregard here the current-induced Oersted fields for simplicity, which implies
that the magnetic energy does not explicitly depend on the current.

4.3.2 CONDUCTION ELECTRONS
The lateral dimension of a metallic wire (not considering atomic chains) is large
compared to the Fermi wave length and we adopt for simplicity parabolic bands
with spin-independent electron mass m. The Hamiltonian can be separated as
Ĥ = Ĥ⊥+ Ĥz .1 Ĥ⊥ = (p̂2

x + p̂2
y )/2m describes the lateral kinetic energy while

Ĥz =
p̂2

z

2m
+∆σ̂ ·n(z), (4.8)

where n(z) is the unit vector in the direction of the magnetization, ∆ > 0 the ex-
change energy, and σ̂ the vector of Pauli spin matrices. The eigenfunctions are
Ψk,σ = ψkz (z)exp[i (kx x +ky y)]/

p
w t , and E = Ek⊥ +Ekz , where w and t are the

thickness in the x and y directions, respectively, and Ek⊥ = ħ2k2
⊥/(2m), with k2

⊥ =
k2

x +k2
y . We may safely disregard the pinning magnetic fields below H0 . 1T on the

electron motion.
We wish to determine the ground state of the system in the presence of an ap-

plied current density jext , i.e.

jext =
∫

dr⊥
∑

i
fi 〈Ψi | ĵz (r⊥, z) |Ψi 〉 (4.9)

where fi is the Fermi Dirac distribution function for an electron state i = (k,σ), at
zero temperature fi =Θ(εF −Ei ) where εF is the Fermi energy, and ĵz is the current
density operator in the wire direction

〈Ψi | ĵz (r⊥, z) |Ψi 〉 = e ReΨ∗
i (r⊥, z)v̂zΨi (r⊥, z) (4.10)

where v̂z is the velocity operator. The ground state is obtained by minimizing the
energy functional including the current constraint and the normalization condi-
tion 〈Ψi |Ψi 〉 = 1 by introducing the Lagrange multipliers εi and λ:

Fel [M, {Ψ}]
(

jext
)=∑

i
fi

(〈Ψi | Ĥ |Ψi 〉−εi (〈Ψi |Ψi 〉−1)
)

−λ
(

jext −
∫

dr⊥
∑

i
fi 〈Ψi | ĵz |Ψi 〉

)
. (4.11)

1To avoid confusions, we distinguish operators with ˆ in this chapter.
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+

FIGURE 4.1: A schematic view of a ferromagnetic wire with domain wall head-to-head transverse. The
wall is pinned by a local magnetic field generated by a notch at the center of the domain wall. Here
the triangle notch has a base length of b, and height of a, and can be assumed as a summation of the
domain wall without notch, coincide with a magnetic pattern in the shape of the notch with opposite
direction of local magnetization of the wall.

The stationary condition of this functional with respect to the states 〈Ψi | leads to
an eigenvalue problem for a modified Hamiltonian

Ĥ j
z = p̂2

z

2m
−∆σ̂ ·n(z)+λ

∫
dr⊥ ĵz . (4.12)

A (r) → λ is the effective vector potential that shifts occupation numbers, hence
inducing a finite current in the ground state.

The magnetization texture n is usually modeled by the Walker profile, i.e. ln[tan
θ (z)/2] =πz/d , where θ(z) is the profile of the polar angle and the azimuthal angle
is kept constant. Here d is the domain wall width (see Fig. 4.1). The domain wall
is (initially) pinned at z = 0 by a magnetic field Hpi n , which represents a stray field
discussed in the Appendix 4.6.3.

We assume that the pinning field is localized on a scale that is short compared
to d , viz. Hpi n = H0δ(z)ex . We then do not have to take into account the full do-
main wall profile and describe the magnetization texture in vicinity to the notch by
a half-period spin spiral state with a constant gradient equal to that of the Walker
profile at the domain wall center, viz.

θ(z) =


0

Λ(z + d
2 )

π

for
z ≤−d

2
−d

2 ≤ z ≤ d
2

z ≥ d
2

, (4.13)

where Λ = π/d is the pitch of the spiral. By adapting the wave functions of elec-
trons in an infinite spin spiral we sacrifice an accurate description of the states
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in the tails of the domain wall, but avoid the artifacts of electron scattering at the
edges of the profile Eq. (4.13).

We can diagonalize the Hamiltonian Ĥz by a local gauge transformation ˆ̃Hz =
T †(z)Ĥz T (z), which rotates the system to a local frame with magnetization along
ez direction [23–25]. Using T̂ (z) = σ̂z cosθ/2+ σ̂x sinθ/2 for θ(z) =Λ(z + d

2 ) :

ˆ̃Hz = ħ2

2m

(
−i

∂

∂z

)2

+ i
Λħ2

2m

∂

∂z
σ̂y −∆σ̂z . (4.14)

Then the energies for each spin state σ=±1 are

Ẽkzσ = ħ2k2
z

2m
+σ ∆

cos%(kz )
, (4.15)

and normalized eigenfunctions (for kz 6= 0) are:

ψ̃kz ,+(z) = e i kz z

p
L

 i
√

cos%(kz )
−2+2sec%(kz ) (1− sec%(kz ))√

cos%(kz )
−2+2sec%(kz ) tan%(kz )

 , (4.16)

ψ̃kz ,−(z) = e i kz z

p
L

( 1
2

∣∣cos%(kz )sec%(kz /2)
∣∣ (1+ sec%(kz ))

− 1
2 i

∣∣cos%(kz )sec%(kz /2)
∣∣ tan%(kz )

)
. (4.17)

Here

%(kz ) = arctan
ħ2Λkz

2m∆
≈ 1

∆

ħ2Λ2

2m

kz

Λ
(4.18)

and the approximation we introduced in the above, holds in the limit of a wide
domain wall and large exchange interaction, which is the case for elemental ferro-
magnetic metals and their simple alloys.

For a given Fermi energy, again invoking the wide domain wall limit, the two
Fermi surfaces are the solutions of

ħ2
(
kF

zσ

)2

2m
+σ ∆

cos%kF
zσ

≈ ħ2
(
kF

zσ

)2

2m

(
1+σ 1

2∆

ħ2Λ2

2m

)
+σ∆= εF − ħ2

(
kF
⊥σ

)2

2m
. (4.19)

The domain wall deforms the originally spherical Fermi surfaces into prolate(oblate)
ellipsoids along z.(

1+σ 1

2∆

ħ2Λ2

2m

)(
kF

zσ

)2 = 2m

ħ2 (εF −σ∆)− (
kF
⊥σ

)2
(4.20)

(
kF

zσ

)2 =
((

kF
0σ

)2 − (
kF
⊥σ

)2
)(

1−σβ)
(4.21)
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where we defined (kF
0σ)2 = 2m(εF −σ∆)/ħ2, and the above holds when

β= 1

2∆

ħ2Λ2

2m
¿ 1. (4.22)

The total current operator in the z-direction is modified by the magnetization
texture by an “anomalous velocity”:

ˆ̃vz = ħ
i m

∂

∂z
−−− Λħ

2m
σ̂y (4.23)

ˆ̃H I
z = T †(z)Ĥ I

z T (z) is diagonal in k-space:

ˆ̃H I
z = ħ2

2m

[
(kz +λ)2 −λ2]− Λħ2

2m
(kz +λ)σ̂y −∆σ̂z , (4.24)

while Ĥ⊥ is modified by neither current constraint nor spin spiral. The eigenstates
of the above Hamiltonian remain the same as in Eqs. (4.16) and (4.17), and the
energies are modified to:

Ẽkzσ = ħ2 (kz +λ)2

2m
+σ ∆

cos%(kz +λ)
. (4.25)

The current is reflected by replacing kz by kz +λ and adding the constant ∼λ2 that
rigidly shifts the Fermi energy and can be disregarded. The lowest energy state for
a given current therefore corresponds to a Fermi-Dirac distribution that is rigidly
shifted in momentum space along the kz direction.

The current in the domain wall as a function of λ reads

jz =
∑
kzσ

∑
k⊥

fkσ
〈
ψ̃kzσ

∣∣ ˆ̃jz
∣∣ψ̃kzσ

〉= A

4π

k2
⊥σ(kz+λ)≥0∑

(kz+λ)σ

(
kF
⊥σ

)2
(kz )

〈
ψ̃kzσ

∣∣ ˆ̃jz
∣∣ψ̃kzσ

〉
(4.26)

where (
kF
⊥σ

)2
(kz ) = (

kF
0σ

)2 − (kzσ)2 (
1+σβ)

(4.27)

and the boundaries in the kz summation are

k±
zσ ≈−λ±kF

0σ

(
1−σβ

2

)
(4.28)

To leading order in β

〈
ψ̃kzσ

∣∣ ˆ̃jz
∣∣ψ̃kzσ

〉≈ e

V

(
1−−−σβ) ħkz

m
(4.29)
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and

∑
kzσ

∑
k⊥

fkσ
〈
ψ̃kzσ

∣∣ ˆ̃jz
∣∣ψ̃kzσ

〉= e

4πL

k+
zσ∑

kzσ=k−
zσ

((
kF

0σ

)2 − (kz )2 (
1+σβ))(

1−−−σβ) ħkz

m

= e

4πL

L

2π

∑
σ

∫ k+
zσ

k−
zσ

dkz

((
kF

0σ

)2 − (kz )2 (
1+σβ))(

1−−−σβ) ħkz

m

≈ e

4π2m
λ3

(
2
√

2m (εF −∆)+β
(√

2m (εF +∆)−
√

2m (εF −∆)
))

(4.30)

We can now determine λ by demanding that the current calculated is equal to the
externally applied current bias jext :

λ3 = π2
p

2m jext

e

1p
εF −∆

1

1+β(p
(εF +∆)−p

(εF −∆)
)

/(2
p

(εF −∆))
(4.31)

≈ π2
p

2m jext

e

1p
(εF −∆)

(
1− β

2

(
1−

p
εF +∆p
εF −∆

))
. (4.32)

To leading order in β (and εF >∆) :

λ=
(√

2m

εF −∆
π2 jext

e

)1/3

. (4.33)

Knowing λ, the Hamiltonian in Eq. 4.24, its eigenstates, and eigenvalues are fully
determined.

4.3.3 ENERGY MINIMIZATION AND TORQUE CANCELLATION

We can now proceed to determine the magnetization profile. We assume that the
magnetization texture including wall width and saturation magnetization does not
depend on the current, i.e., the DW can move only rigidly with fixed width. The re-
maining free parameters are the domain wall center position Z and rotation angle
out of the plane ϕ. This approximation can be relaxed by systematically including
harder degrees of freedom by the collective coordinate method [26]. A stationary
state exists when there is a minimum energy solution as a function of position, tilt
angle, and applied current

∂

∂ϕ
F

(
Z ,ϕ, jext

)= ∂

∂Z
F

(
Z ,ϕ, jext

)= 0, (4.34)
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i.e. when the total effective magnetic fields on the domain wall cancel each other.
The electronic energy of a static texture in the presence of a current reads

Fel
(
Z ,ϕ, jext

)= ħ2

2m

∑
k,σ

[
(kz +λ)2 −λ2]−∆∫ DW

〈σ̂ ·n〉d z (4.35)

= ħ2

2m

∑
k,σ

[
(kz +λ)2 −λ2]

−∆
∫ d/2−Z

−d/2−Z
〈σ̂x〉sin(Λ(z +Z +d/2))d z −∆

∫ d/2−Z

−d/2−Z
〈σ̂z〉cos(Λ(z +Z +d/2))d z.

(4.36)

which consists of kinetic and exchange energies.
We observe that this energy does not depend on the rotation angle ϕ because

the magnetization is assumed static, while the lowest energy state in the absence
of anisotropies is rotating with a constant velocity ϕ̇. This issue could be solved by
a generalized functional F ′

el

(
Z ,ϕ,ϕ̇, Iext

)
. Here we sidestep the issue by not focus-

ing on the free energy and its derivative with respect to ϕ, but by addressing the
current-induced torques dM(z)/d t . The field cancellation condition Eq. (4.34) is
then equivalent to a torque cancellation condition. The time derivative of the spin
angular momentum operator reads

d ŝ

d t
= ħ

2

dσ̂

d t
=− i

2

[
σ̂, Ĥ

]= ∆
2

n(z)× σ̂(z) (4.37)

with expectation value
d 〈ŝ〉
d t

= ∆
2

n(z)×〈σ̂(z)〉 . (4.38)

In Appendix 4.6.1 we compute the components of the spin polarization 〈σ̂(z)〉
from the electron wave functions determined above. The exchange interaction be-
tween conduction electrons and local magnetization conserves the total angular
momentum of the system. So, the magnetization receives a reciprocal torque from
the conduction electrons

τ(z) = 1

γ

dM

d t
=−M× ∂Fel [M]

∂M
(4.39)

where γ= gµB /ħ in terms of the factor g and Bohr magneton µB . Its z-component
reads:

∂Fel [M]

∂ϕ

∣∣∣∣
ϕ̇=0

=−τz . (4.40)
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For the pinning potential we have:

Fpi n
(
Z ,ϕ, jext

)=−µ0H0Ms sin

(
Λ

(
Z + d

2

))
cosϕ. (4.41)

The magnetic energy reads

Fan
(
Z ,ϕ, jext

)
=

∫ d/2−Z

−d/2−Z
d z

{
µ0

2
(Mx (z +Z ))2 −µ0Hk

(Mz (z +Z ))2

2Ms
+ D

M 2
s

∣∣∣∣∂M(z +Z )

∂z

∣∣∣∣2}
(4.42)

=µ0πM 2
s cos2ϕ

d

2
−µ0

Hk Ms

2

d

2
+DΛ2d . (4.43)

Now only the pinning energy depends on Z . Its minimum is found by

∂F
(
M , jext

)
∂Z

=−µ0H0Ms
π

d
cos

(
π

d

(
Z + d

2

))
cosϕ= 0

to be at Z = 0, independent of the current. Minimizing the energy with respect to
φ at Z = 0

∂

∂ϕ
F

(
Z = 0,ϕ, jext

)= 0 (4.44)

leads to
b

(
jext

)= (γ
π

H0 −γMs d cosϕ
)
µ0 sinϕ (4.45)

where the current-induced torque b
(

jext
)

has been defined in Appendix 4.6.1. Eq.
(4.45) determines the tilt angle of the domain wall ϕ as a function of the applied
current.

4.4 RESULTS
While b

(
jext

) ∼ jext , the right hand side of the equation of 4.45 has a maximum.
This implies that above a critical current jth , the static solution does not exist, the
wall depins and starts to move. The maximum value occurs in an threshold angle,
where for the threshold angle we obtain:

ϕth =−arccos

−H0 +
√

H 2
0 +8d 2M 2

s π
2

4d Msπ2


Substituting this value into Eq. (4.45) give us the critical value of b

(
jth

)
and equiv-

alently the critical value of the current to depin the wall. The critical value of b
(

jth
)
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0.4 0.2 0.2 0.4

4

8

-4

-8

--

FIGURE 4.2: Critical current as a function of the pinning field. Here we plot the current density to
depin the DW from the localized pinning magnetic field, in the presence and absence of the demag-
netization field, red and green plots, respectively. For this plot, we have taken the spin spiral pitch
of Λ = 0.02 nm−1, and characteristic constants of permalloy, with Ms = 86× 104 A/m, Fermi energy
εF = 1eV, and exchange energy ∆= 0.5 eV.

is:

b
(

jth
)= ±γ (3 |H0|+ϑ(H0))

√
−H 2

0 +4d 2M 2
s π

2 +|H0|ϑ(H0)

8d Ms
p

2π2
(4.46)

where ϑ(H0) =
√

H 2
0 +8d 2M 2

s π
2. In the limit of zero pinning this reduces to

b
(

jth
)→±2πdγMs (4.47)

as derived by Tatara and Kohno [9].

Using Eq. (4.46), we obtain the value of critical current shown in Fig. 4.2, where
we take the parameters for a permalloy wire. In the absence of the demagnetiza-
tion field and pinning field, any current can drive the DW, i.e. the threshold current
is zero. In the presence of the demagnetization field a threshold current is needed
to move the wall, which is the intrinsic pinning derived by Tatara and Kohno [9].
As we see in Fig. 4.2, the pinning magnetic field in both cases, in the presence and
absence of demagnetization field, causes an increase in threshold current.
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4.5 CONCLUSION

We propose and implement a minimum energy principle to calculate the threshold
current in the presence of localized pinning sites, such fabricated notches, thereby
contradicting the common wisdom that this is not possible [21]. The trick is cur-
rent density functional theory combined with the Lagrange multiplier method. In
order to illustrate the method we consider a simple Hamiltonian for a magnetic
wire. Through minimizing the energy in the presence of electric currents and in
the adiabatic limit of wide domain walls we find analytical solutions for the eigen-
states of the conducting electrons. We compute the torque quantum mechanically,
which means that we can generalize the methods easily to include arbitrary spin-
orbit torques. We calculate the minimum current beyond which the static solution
does not exist, i.e. the DW depins and recover the intrinsic threshold current that
exist [9] when there is no pinning potential and damping.

It is straightforward to treat more complicated magnetic textures, such as in
non-adiabatic domain walls, vortices and skyrmions. In the case it is necessary
to resort to numerical methods, but presumably much simpler than full-scale mi-
cromagnetic simulations. Going beyond the infinite spin spiral approximation will
lead to non-adiabatic torques due to reflections at the domain wall that contribute
to the field-like, so-called β term. As a side product we then obtain as well the
deformations of the domain wall at currents below the depinning threshold.

The result can be extended to study the dynamics of the depinned DW by con-
sidering the full functional F

[
M,Ṁ, I

]
, which leads to effective equations of mo-

tion on optimization. The weak point of the present calculation is disregard of
the damping that has qualitative effects on the domain wall depinning. The dissi-
pation induces a contribution to the field-like torque that induces sliding motion
below the intrinsic threshold. It remains to be proven that the present formalism
can be extended to take into account Gilbert damping, for example by including
dissipation in terms of the Rayleigh functional [27].

4.6 APPENDIX

4.6.1 CURRENT INDUCED SPIN TORQUE

Here we compute the current-induced spin polarization, and spin-transfer torques
by recovering the eigenstates in the lab frame using the inverse transformation
ψkz ,σ = T̂ †(z)ψ̃kz ,σ, resulting in z-dependent spinors. Spin density is defined as

ρs (z) =
∑
k,σ

fk,σΨ
†
k,σ (z)σ̂Ψk,σ (z) . (4.48)
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Using the eigenstates and Fermi wave vectors in the lab frame, we obtain

ψ†
kz ,σ (z) σ̂xψkz ,σ (z) =− 1

L
σcos%(kz )sin(Λ(z +d/2)) ≈− 1

L
σsin(Λ(z +d/2))

(4.49)

ψ†
kz ,σ (z) σ̂yψkz ,σ (z) = 1

L
σ tan%(kz ) ≈σ%(kz ) (4.50)

ψ†
kz ,σ (z) σ̂zψkz ,σ (z) =− 1

L
σcos%(kz )cos(Λ(z +d/2)) ≈− 1

L
σcos(Λ(z +d/2))

(4.51)

where the approximation is an expansion to first order in %(kz ). The spin density
reads:

ρx
s (z) = 1

8π2

∑
σ

∫ k+
zσ

k−
zσ

dkz

((
kF

0σ

)2 − (kz )2 (
1+σβ))

ψ†
kz ,σ (z) σ̂xψkz ,σ (z)

= sinθ(z)F (λ), (4.52)

where

f (λ) = 1

24π2ħ2

[
8

ħ
(√

(εF +∆)3 m3

(
1+ β

2

)
+

√
(εF −∆)3 m3

(
−1+ β

2

))
+ 6ħλ2

(√
(εF +∆)m

(
1+ β

2

)
+

√
(εF −∆)m

(
−1+ β

2

))]
, (4.53)

and

ρ
y
s = 1

8π2

∑
σ

∫ k+
zσ

k−
zσ

dkz

((
kF

0σ

)2 − (kz )2 (
1+σβ))

ψ†
kz ,σ (z) σ̂yψkz ,σ (z)

= 1

8π2

ħ
m∆

λ3Λ

(
−

√
2m (εF −∆)

(
1+ β

2

)
+

√
2m (εF +∆)

(
1− β

2

))
(4.54)

ρz
s =

1

8π2

∑
σ

∫ k+
zσ

k−
zσ

dkz

((
kF

0σ

)2 − (kz )2 (
1+σβ))

ψ†
kz ,σ (z) σ̂zψkz ,σ (z)

= cosθ(z)F (λ). (4.55)

We obtain the torque from the Heisenberg operator equation

τ̂= (ħ/2)dσ̂/d t =−i /2
[
σ̂, Ĥ

]= (∆/2)n× σ̂, (4.56)

Thus using Eqs. 4.52, 4.54, and 4.55 in Eq. 4.56, one can obtain the local torque as:∑
k,σ

fk,σΨ
†
k,σ (z) τ̂Ψk,σ (z) =C

(
jext

) ∂

∂z
n, (4.57)
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where

C
(

jext
)≡ ħ(p

(εF −∆)(2+β)−p
(εF +∆)(2−β)

)
8e

(p
(εF +∆)(2+β)+p

(εF −∆)(2−β)
) jext . (4.58)

This could be consistently obtained from spin continuity equation in the station-
ary state. The above mentioned result can be rewritten in the common form the
adiabatic torque in our geometry [28]

τa =−Ms b
(

jext
)

n× [n× (ez · ∂
∂z

)n]. (4.59)

Here b
(

jext
)≡ γC

(
jext

)
/Ms has the dimension of velocity. This result agrees with

the phenomenological adiabatic torque obtained in Ref. [28]. Note that we did not
ignore the nonadiabatic torque here. That torque for an infinite spin spiral domain
wall in the absence of the impurities and diffusions vanishes.

4.6.2 CRITICAL CURRENT OBTAINED BY LANDAU-GILBERT-LIFSHITZ

EQUATION
Here, we show that using the torque obtained in Appendix 4.6.1 in the LLG equa-
tion results in an equivalent equation for the critical current. The LLG equation
reads [27]

∂M

∂t
=−γµ0M×He f f +αn× ∂M

∂t
−b

(
jext

)
n×

(
n× ∂M

∂z

)
. (4.60)

The effective field reads

He f f =
Hk Mz

Ms
ẑ + 2D

µ0M 2
s
∇2M−Mx x̂ +Hext x̂ (4.61)

where Mi is the i-th component of M, Hk the anisotropy field, D the exchange
constant, and Mx is demagnetization field. The x and y components of the LLG
equation in polar coordinates read:

α
∂θ

∂t
− ∂ϕ

∂t
sinθ =γµ0H0δ(z)cosθcosϕ+ 2Dγ

Ms

(
∂2θ

∂z2 −cosθ sinθ

(
∂ϕ

∂z

)2)
−Hkγµ0 cosθ sinθ−b

(
jext

) ∂ϕ
∂z

sinθ−Msγµ0 cosθ sinθcos2ϕ, (4.62)

and the z component give us:

∂θ

∂t
+α∂ϕ

∂t
sinθ =γµ0H0δ(z)sinϕ+ 2Dγ

Ms

(
∂2ϕ

∂z2 sinθ+2cosθ
∂ϕ

∂z

∂θ

∂z

)
+b

(
jext

) ∂θ
∂z

−Msγµ0 cosϕsinϕsinθ. (4.63)
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We solve these two partial differential equations using Walker’s analysis of domain
wall motion by introducing:

ϕ=ϕ(t ); ln

[
tan

θ

2

]
= π

d
(z − vz t ) (4.64)

Since we are interested in the critical current, we assume that in the steady state ϕ
is constant. The second equation postulates that the domain wall shape maintains
its shape with constant width d and velocity vz . By replacing these trial functions
into Eqs. (4.62) and (4.63), and using the identities

∂ϕ

∂z
= ∂2ϕ

∂z2 = 0,
∂ϕ

∂t
= 0

∂θ

∂z
= π

d
sinθ,

∂2θ

∂z2 = π2

d 2 sinθcosθ,
∂θ

∂t
=−π

d
vz sinθ, (4.65)

and integrating over the z-axis, we obtain:

αvz +H0γµ0 cosϕcos

(
2arctan

[
exp

(
− t vz

d

)])
= 0, (4.66)

and
vz +b

(
jext

)+ γ

π
µ0H0 sinϕ−γµ0Ms d cosϕsinϕ= 0. (4.67)

Eq. (4.66) is self-consistent for vz = 0 , while Eq. (4.67) at v(t ) = 0 is identical to Eq.
(4.45).

4.6.3 GEOMETRICALLY INDUCED PINNING MAGNETIC FIELD
In domain wall shift register devices, notch/anti-notches of different geometries
allow the controlled trapping of DWs (Refs. [18]-[14]) in ferromagnetic nanowires.
The strength of these trapping/pinning features depends on the form of the notch
and the magnetic material [14–16, 29]. Tatara et al. model the pinning effects by a
parabolic potential [9]. Here we suggest a simple model for fine (anti)notches in-
teracting with wide domain walls in terms of a local pinning magnetic field. Such
a notch causes a disturbance in the magnetic dipolar energy of the perfect wire,
which outside the notch region can be treated in terms of an effective dipole. We
consider here semicircular and triangular notches and antinotches. The missing
magnetization is equivalent with an additional magnetization with direction op-
posite to the local magnetization of the wire, see Fig. 4.1. For an antinotch we
simply attach additional magnetization to the wire edge. The dipole magnetic field
caused by a distribution of magnetic moments can be written in terms of the scalar
potential

ΦM (z) = M · r̂

4πr 3 (4.68)
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related to the magnetic field as H =−∇ΦM (z), where r = r r̂ and r the average dis-
tance from the area of missing or attached magnetic material. M is the total mag-
netization of the (anti)notch, which we calculate for two different shapes and a
domain wall centered at the origin and far away from the notch.

Half disk (anti)notch
For a half disc (anti)notch with radius R centered at z = 0 in the x-z plane, we

have:

m =
∫ t

0
d y

∫ R

0
r ′dr ′

∫ π

0
dϕM (4.69)

Since the spin texture is initially in the x-z plane, my = 0, and because of the sym-
metry mz = 0, therefore M = mx ı̂ , and

mx =ιMs

∫ t

0
d y

∫ R

0
r ′dr ′

∫ π

0
dϕcos

(
r ′ cosϕ

d

)
≈ ιMs t

πR2

2

(
1− R2

4d 2

)
≈ ιMs t

πR2

2
, (4.70)

where ι=−(+) for the (anti)notch and we assumed r ′/d ¿ 1 and R/d ¿ 1, i.e. the
dimension of the notch is small compared to the width of the domain wall.

Isosceles triangle (anti)notch
For an isosceles triangle my = mz = 0, and

mx = ιMs t
∫ b/2

−b/2
d z

∫ a

0
d x cos

( z

d

)
= ι2Ms t ad sin

(
b

2d

)
, (4.71)

where b the base and a is the height of the triangle, see Fig 4.1. The pinning mag-
netic field is proportional to the value of M, therefore, this result suggest that this
field always increases linearly with a. However, b does not change this field much
when its length becomes comparable with d , in agreement with the experimental
observation in Ref [29]. In the small notch size limit M = ιMs abt ı̂ .

Dipolar field and pinning energy

H =−∇
(

M · r̂

4πr 3

)
= Ms$

4πr 3

(
x̂ −4

(
xz

r 2 ẑ +
( x

r

)2
x̂

))
, (4.72)

Where r =
p

x2 + z2, and in the limit of small sized notch, for a half disk$=πR2t/2,
and for a isosceles triangle $= abt . This field decreases as 1/r 3 with the distance
which makes the approximation of delta function field reasonable, and for z ¿ r
the magnetic field is approximately in the x-direction.
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5
AHARONOV-CASHER EFFECT IN

QUANTUM RING ENSEMBLES

We study the transport of electrons through a single-mode quantum ring with elec-
tric field induced Rashba spin-orbit interaction that is subject to an in-plane mag-
netic field and weakly coupled to electron reservoirs. Modelling a ring array by en-
semble averaging over a Gaussian distribution of energy level positions, we predict
slow conductance oscillations as a function of the Rashba interaction and electron
density due to spin-orbit interaction-induced beating of the spacings between the
levels crossed by the Fermi energy. Our results agree with experiments by Nitta c.s.,
thereby providing an interpretation that differs from the ordinary Aharonov-Casher
effect in a single ring.

The result presented in this chapter have been published in Phys. Rev. B 88, 115410 (2013).
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74 5. AHARONOV-CASHER EFFECT IN QUANTUM RING ENSEMBLES

The Aharonov-Casher (AC) effect [1] is an analogue of the Aharonov-Bohm (AB)
effect, but caused by the spin-orbit interaction (SOI) rather than an external mag-
netic field. Originally, Aharonov and Casher predicted in 1984 that a spin accu-
mulates a phase when the electric charge is circling in an external electric field
[1]. This situation is similar to a single-mode ballistic ring with Rashba spin-orbit
interaction. Quantum rings in high-mobility semiconductor material have there-
fore attracted extensive attention, both experimentally and theoretically, as model
devices to investigate fundamental quantum mechanical phenomena.

In the AC effect, the electrons injected into a quantum ring with SOI acquire
spin phases when traversing the two arms due to precession in the effective spin-
orbit magnetic field. Interference of the spinor wave functions at the exit point of
the ring then leads to an oscillatory conductance as a function of the spin-orbit
coupling constant that in Rashba systems can be tuned by an external gate volt-
age. The electrons injected into a quantum ring with SOI acquire spin phases
when traversing the two arms due to precession in the effective spin-orbit mag-
netic field. Interference of the spinor wave functions at the exit point of the ring
then leads to an oscillatory conductace as a function of the spin-orbit coupling
constant that in Rashba systems can be tuned by an external gate voltage. König
et al. [2] reported the first experimental evidence of the AC effect in a single HgTe
ring by measuring the phase shift of the AB-type magneto-conductance oscilla-
tions caused by tuning the Rashba SO strength. Since several subbands in the ring
were occupied, they supported their experiments by multi-mode transport calcu-
lations. This study focussed on the symmetry points, at which the Rashba SOI is
small, and high values of the applied magnetic field [2]. Experiments on an array
of InGaAs rings [4] agreed well with the theory provided for a single-mode quan-
tum ring symmetrically and strongly coupled to the leads [3]. More recently, the
zero magnetic field conductance as a function of gate field has been interpreted
in terms of the modulation of (electron density-independent) Altshuler-Aronov-
Spivak (AAS) oscillations by the SOI [5], emphasizing the importance of statistical
averaging by the ring arrays.

In reality, however, the situation is not as simple as it appears. The assumed
ideal link of the ring to the leads is equivalent to the strong coupling limit in terms
of a connectivity parameter [6]. The implied absence of backscattering is at odds
with the interpretation of the observed oscillations in terms of AAS oscillations due
to coherent backscattering [5, 7]. Ref. [8] addresses the effects of scattering at the
contacts of a single-mode Rashba ring to the reservoirs, interpolating between the
fully open and isolated ring regimes. However, the experiments [4, 5] were not car-
ried out on single rings in the one-dimensional quantum limit, but a large array
of connected rings, each containing several transport channels. Some theoreti-
cal papers compute transport through an array of single-mode rings [9, 10], but
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assuming a constant Fermi wave number, thereby disregarding the strong density
changes associated with tuning the Rashba spin-orbit parameter [7]. In the present
chapter, we offer an explanation of the robustness of the observed AC oscillations
with respect to the complications summarized above.

Source

Drain

B
SOI

B
SOI

x

z
y

Bx

Bx

FIGURE 5.1: Schematic of a quantum ring weakly coupled to source and drain contacts in the presence
of SOI effective field BSOI and in-plane magnetic field Bx .

A quantitative analysis of the multi-mode ring array is challenging and requires
large scale numerical simulations [11]. Here we proceed from a single single-mode
quantum ring [3], taking backscattering into account by assuming weak coupling
to the electron leads and correcting for the multimode character a posteriori (see
below). The conductance of a quantum ring can be understood as resonant tun-
neling through discrete eigenstates at the Fermi energy [6] that are modulated by
the SOI Rashba parameter. In-plane magnetic field [11] allows tuning of the con-
ductance oscillations without interference of the AB oscillations (see Fig. 5.1). We
consider a modulation of the Rashba interaction strength that is associated with
an experimentally known large change in the electron density [7]. Small deviations
between different rings in nanofabricated arrays can be taken into account by an
ensemble averaging over slightly different single rings. We find that this procedure
leads to an agreement with experiments that rivals that of previous theories.

We consider a ring with a radius of R, defined in the high-mobility two-dimensi-
onal electron gas in the x y-plane. The Rashba SOI with the strengthα is is a known
function of an external gate potential. The Hamiltonian of an electron in the ring
has the form [12]

Ĥ (0)
1D = ħ2

2mR2

(
−i

∂

∂ϕ

)2

− α

R

(
cosϕσ̂x + sinϕσ̂y

)(
i
∂

∂ϕ

)
− i

α

2R

(
cosϕσ̂y − sinϕσ̂x

)
, (5.1)

where m is the effective mass, ϕ is the azimuthal angle, and σ̂i are the Pauli matri-
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FIGURE 5.2: Energies of a quantum ring with the radius R = 630 nm close to the Fermi energy µ =
10meV as function of the SOI strength α. Energies are labeled as n0 + i and n0 = 72, for n > 0, whereby,
each level is Kramers degenerate with −n0 − i −1 and opposite spin direction. The effective mass for
conduction electrons in InGaAs m = 0.045 m0, where m0 is the electron mass. The conductance is
nonzero when µ crosses an energy level.

ces in the spin space. The eigenstates are

E (0)
nσ = ER

[(
n + 1

2

)2

+ 1

4
+σn + 1

2

cosθ

]
, (5.2)

where ER =ħ2/(2mR2), tanθ = 2mRα/ħ2, the integer n is the angular momentum
quantum number, and σ=± denotes the spin degree of freedom.

An in-plane magnetic field B along the x-direction contributes the Zeeman en-
ergy H ′ = EB σ̂x , where EB = gµB B/2, µB is the Bohr magneton and g the effective
g-factor. We assume that the Zeeman energy is small compared to the (kinetic)
Fermi energy and can be treated as a perturbation of the zero-field Hamiltonian,
H (0)

1D .
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FIGURE 5.3: Shift of the conductance peaks, that for zero magnetic field coincide with the crossings
of the Fermi energy in Fig. 2, by an in-plane magnetic field as obtained by perturbation theory. The
magnetic field is seen to break Kramers spin degeneracy. The parameters are the same as in Fig. 5.2 and
g =−2.9 for InGaAs.

To leading order in EB the energies E (0)
nσ are shifted by the in-plane field as:

∆(2)
nσ = E 2

B

8ER

[
sin2 (2θ)

(2n cosθ+σ) (2(n +1)cosθ+σ)

+ 4sin4 θ
2 cosθ

n (cosθ+σ)
− 4cos4 θ

2 cosθ

(n +1)(cosθ−σ)

]
. (5.3)

The gate voltage Vg modifies the asymmetry of the electron confinement po-
tential, thereby modulating the Rashba SOI strength α. We discuss here first the
effects of varying SOI for constant Fermi energy and subsequently take the gate-
induced density variation into account. In the absence of a magnetic field, the
energy levels move with α according to Eq. (5.2). The four-fold degeneracy in the
absence of SOI En,σ = En,−σ = E−n−1,−σ = E−n−1,σ is broken when α 6= 0 into two
Kramers-degenerate doublets with En,σ = E−n−1,−σ, see Eq. (5.2). For σn > (<)0
the energy increases (decreases) with α as indicated in Fig. 5.2. The experiments
by Nitta c.s. were carried out in the low temperature regime with level spacings
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FIGURE 5.4: Energy levels around the Fermi energy for α ≈ 2.4×10−12 eVm relative to µ that strongly
depends on the gate voltage tuningα. Here n0 = 380, while dashed and solid lines represent nσ< 0 and
nσ> 0, respectively. Similar to Fig. 5.2, we label the energies for n > 0, keeping in mind that the levels
are twofold degenerate.

larger than the thermal energy [4, 5], therefore we assume zero temperature in the
following.

Resonant tunneling occurs when the energy of the highest occupied level in the
quantum ring, EnF ,σ, equals the chemical potential µ in the leads, i.e. EnF ,σ (α) =
µ, as indicated in Fig. 5.2. Doublets of spin-split conductance peaks merge when
α= 0, µ= EnF ,σ, and the conductance becomes twice as large. The in-plane mag-
netic field shifts the energy levels as ∝ B 2. As illustrated in Fig. 5.3, the resonant
tunneling peaks at EnF ,σ(α,B) =µ are spin-split and non-parabolic. Fig. 5.3 agrees
qualitatively with the experiments [11] when assuming the strong coupling limit
and justifying the apparent independence on the large µ variation with gate volt-
age by coherent backscattering. In the following we suggest an alternative inter-
pretation.

According to the experiments [4, 5], α depends on the gate voltage as α[10−12

eVm] = 0.424−0.47×VG
[
10−12 V

]
and on the electron density as α

[
10−12eVm

] =
7.81− 3.32× Ns

[
1012cm−2

]
. In Fig. 5.4 we plot the ring energies as a function of
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FIGURE 5.5: Conductance oscillations of an ensemble of rings with energy levels broadened by a Gaus-
sian with Γ = 0.003 peV/m as a function of an in-plane magnetic field. The dashed lines are guides
to the eye, to compare the oscillation amplitudes while varying the magnetic field. All amplitudes are
scaled with those at B = 0 T that display a modulation of (Gmax −Gmi n )/Gmax = 50%. The in-plane
magnetic field splits Kramers degenerate spin states that evolve differently with gate voltage.

α including the chemical potential µ that varies much faster with α than the sin-
gle particle energies, leading to conductance peaks that as a function of gate volt-
age are very closely spaced. In ring arrays [4, 5] we do not expect to resolve such
narrow resonances due to disorder, multi-mode contributions and ring size fluc-
tuations. We can model the latter by averaging over an ensemble of rings with a
Gaussian distribution of resonant energies or conductance peak positions with a
phenomenological broadening parameter Γ. Fig. 5.5 illustrates the result of the av-
eraging procedure in the form of the normalized conductance modulations [13].
While the resonant tunneling peaks are smeared out, slow (AC) oscillation as a
function ofα reappears, which represents the beating of the level spacings induced
by the SOI, in qualitative agreement with experiments.

The experiments of AC oscillations in arrays with different ring radii [5] are
compared in Fig. 5.6 with our results.
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3.0 2.0 1.0- --

FIGURE 5.6: The conductance G of a array of rings modeled as an ensemble energy levels as a func-
tion of α broadened by a Gaussian for various nominal radii R. The broadening parameters are
Γ = 0.005, 0.0035, 0.003, 0.002 and 0.001 peV/m, for R = 524; 608; 681; 857 and 1050 nm, respectively.
All amplitudes are scaled to a panel height corresponding to (Gmax −Gmi n )/Gmax = 50%. We use
the experimentally determined relations between Rashba constant and electron density as before. We
compare our calculations (lines) with the experimental results (points) from Ref. [5] (see also Ref. [13]).

In Fig. 5.5, we also illustrate the effect of in-plane magnetic fields on the en-
semble of Rashba rings. The magnetic field shifts the phase of the oscillation to
lower values of the gate voltage or larger α and thus suppresses the amplitude
of the conductance oscillations increasingly for lower values of the gate voltage.
These features agree again well with those observed experimentally by Nitta et al.
[11]. The magnetic field splits the Kramers degeneracy, thereby leading to two sets
of superimposed oscillations that might be experimentally resolved in the form of
different Fourier components.

The suppression of AAS oscillations in disordered ring arrays at constant den-
sity [9] can be interpeted in favor of our model. Most previous theories [3, 12]
treat ideally open rings, while we consider the weak coupling limit. Both extremes
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are likely not met in experiments. The intermediate regime can be modeled in
terms of a connectivity parameter [6, 8]. An increased coupling causes a Lorentzian
smearing of the conductance peaks, which is likely to effectively enhance the phe-
nomenological broadening of the ensemble average and cannot be resolved in the
experiments. The presence of several occupied modes in the rings also contributed
to the average, since each radial node can be approximated as a ring with a slightly
different radius. We therefore believe that our results are robust with respect to de-
viations from our Hamiltonian and these deviations can be captured by the phe-
nomenological broadening parameter Γ.

In conclusion, we investigated the conductance of single rings and an ensem-
ble of them as a function of the Rashba spin-orbit interaction in the limit of weak
coupling to the leads. We considered both constant and gate voltage-dependent
density of electrons. Both situations can in principle be realized experimentally by
two independent (top and bottom) gate voltages. We compare results with exper-
iments on ring arrays in which a single gate changes both the SOI α as well as the
electron density. We found that, in agreement with experiments, the ensemble av-
eraged conductance oscillates as a function ofα. The oscillations undergo a phase
shift under an in-plane magnetic field, and the period varies with the ring diame-
ter, as observed. We conclude that experiments observe SOI-induced interference
effects that are more complicated than the original Aharonov-Casher model but
are robust with respect to the model assumptions. It should be possible to experi-
mentally distinguish between the different models by separating effects of spatial
inversion symmetry (and therebyα) and the Fermi wave number modulation. This
should be possible by employing a double gate configuration in which the electric
field is varied, but density is kept constant [14].
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SUMMARY

THE INTERPLAY OF CURRENT AND SPIN IN NANOSTRUCTURES
Controlling magnetization on short time scales and/or small dimensions is a hot
topic in the field of spintronics, owing to its fundamental physics and its applica-
tions for information technology. The most straightforward way to control mag-
netization is by using an external magnetic field. However, because of the tech-
nical limitation in using a magnetic field at smaller sizes and larger amplitudes,
alternatives have been investigated such as using currents or light to control the
magnetization. In this thesis, we study the interplay of current and spin in nanos-
tructures. The charge current, in the work of this thesis, is generated by shining
circularly polarized light on conducting rings, or by applying a voltage to magnetic
wires. In Chapter 2, we study the electrons and holes in non-magnetic single mode
quantum rings in the presence of Rashba or Dresselhaus type spin orbit interac-
tion (SOI) and light induced circular currents. We consider the effect of circular
currents induced by the circularly polarized light on orbiting holes and electron
in the rings in the presence of only Dresselhaus or Rashba SOI. We show that the
z-component of the polarization induced by the current vanishes for the case of
electrons. However, the holes gain a non-zero polarization. This polarization has
a higher value in the case of the Dresselhaus SOI compared to the case of Rashba
SOI.

To investigate the effect of the polarization on magnetic rings, in Chapter 3, we
consider electrons in the presence of Rashba SOI, and an exchange energy which
breaks the Kramers degeneracy. We demonstrate in this chapter that current can
change the polarization of the electrons, and the effect can be maximized by tun-
ing the Fermi energy into the exchange gap such that only one band is occupied.

In Chapter 4, we study the current-induced motion of domain walls (DWs) in
a metallic wire, that are initially pinned by the localized magnetic fields, e.g. gen-
erated intentionally by notches. In DWs, the current is locally magnetized by the
noncollinear magnetization. Thus, the conducting electrons apply a torque on the
magnetization when they arrive with a different polarization direction. We use the
Lagrangian multiplier method to obtain the Hamiltonian of the system quantum
mechanically. By only using energy considerations, we obtain the critical current
needed to depin the wall. The calculated current-induced torque, for adiabatically
varying magnetization textures agrees with known results. We also provide a sim-
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ple mathematical expression for the localized magnetic field generated by notches
with circular and triangular shapes.

The second part of this thesis focuses on an opposite effect, viz. the conduc-
tance controlled by SOI in an array of rings. In Chapter 5, we calculate the con-
ductance oscillations of an ensemble of weakly coupled rings as a function of the
SO coupling constant. We demonstrate that the oscillations for arrays of rings with
different average radii are in good agreement with the experimental as well as the
theoretical results obtained for a single mode ring strongly coupled to the leads.
We suggest experiments to distinguish between these fundamentally different the-
oretical models.



SAMENVATTING

DE WISSELWERKING TUSSEN STROOM EN SPIN IN NANOSTRUCTUREN
De controle van magnetisatie op korte tijd- en/of lengteschalen is een hot topic in
het onderzoeksveld van de spintronica, vanwege de fundamentele natuurkunde
en de mogelijke toepassingen in informatietechnologie. De meest directe manier
om magnetisatie te beïnvloeden is door gebruik te maken van een extern mag-
netisch veld. Door de technische beperkingen in het gebruik van magnetische
velden op kleine lengteschalen en grote amplitudes zijn er echter ook alternatieven
onderzocht, zoals het gebruik van elektrische stromen of van licht om de magneti-
satie te beïnvloeden. In dit proefschrift onderzoeken we de wisselwerking tussen
stroom en spin in nanostructuren. De ladingsstroom wordt, in het werk van dit
proefschrift, gegenereerd door een geleidende ring te belichten met circulair gepo-
lariseerd licht of door een spanning toe te passen op een magnetische draad. In
hoofdstuk 2 worden elektronen en gaten bestudeerd in een niet-magnetische kwan-
tumring, met een enkele mode, in de aanwezigheid van spinbaan interactie (SBI)
van het type Rashba of Dresselhaus en in de aanwezigheid van circulair gepo-
lariseerd licht. We beschouwen het effect van circulaire stromen, geïnduceerd
door het circulair gepolariseerde licht, op rondcirkelende gaten en elektronen in
de ring, in de aanwezigheid van alleen Rashba of Dresselhaus SBI. We tonen aan
dat de z-component van de polarisatie, welke geïnduceerd is door de stroom, verd-
wijnt voor het geval van de elektronen. De gaten verkrijgen echter een polarisatie
die ongelijk is aan nul. De waarde van deze polarisatie is groter in het geval van
Dresselhaus SBI, vergeleken met het geval van Rashba SBI.

Om het effect van polarisatie op magnetische ringen te bestuderen, in hoofd-
stuk 3, beschouwen we elektronen in de aanwezigheid van Rashba SBI en omwis-
selingsenergie, welke de Kramers-ontaarding breekt. We demonstreren in dit hoofd-
stuk dat de stroom de polarisatie van elektronen kan veranderen. Dit effect kan
gemaximaliseerd worden door de Fermi energie zodanig af te stemmen dat deze
in het energiegat komt dat veroorzaakt wordt door de uitwisselingsenergie, zodat
slechts één band gevuld is.

In hoofdstuk 4 bestuderen we de, door stroom geïnduceerde, beweging van
domeinmuren (DM-en) in metalen draden welke aanvankelijk vastgepind zijn door
gelokaliseerde magnetische velden, die bijvoorbeeld bewust gegenereerd zijn door
inkepingen. In DM-en is de stroom lokaal gemagnetiseerd door niet-collineaire
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magnetisatie. Als gevolg daarvan oefenen de geleidende elektronen een koppel
uit op de magnetisatie als ze aankomen met een andere polarisatierichting. We
maken gebruik van de methode van Lagrange-multiplicators om de Hamiltoniaan
van het systeem kwantummechanisch te verkrijgen. Door alleen gebruik te maken
van overwegingen met betrekking tot de energie, verkrijgen we de kritische stroom
die nodig is om een DM te ontpinnen. De berekende, door stroom geïnduceerde,
koppel waarmee magnetische texturen adiabatisch veranderen is in overeenkomst
met bekende resultaten. We voorzien ook in een eenvoudige mathematische uit-
drukking voor het gelokaliseerde magnetische veld dat gegenereerd wordt door
inkepingen met circulaire en triangulaire vormen.

Het tweede deel van dit proefschrift is gericht op een tegengesteld effect, name-
lijk de geleiding die gecontroleerd wordt door SBI in een rij van ringen. In hoofd-
stuk 5 berekenen we de geleidingsoscillaties van een verzameling van zwak gekop-
pelde ringen als een functie van de koppelingsconstante van de SBI. We laten zien
dat, in het geval van rijen van ringen met verschillende gemiddelde radii, deze os-
cillaties goed overeenstemmen met zowel de experimentele als de theoretische re-
sultaten die verkregen zijn voor een ring met een enkele mode die sterk gekoppeld
is aan de leidingen. We stellen experimenten voor om deze fundamenteel verschil-
lende theoretische modellen van elkaar te onderscheiden.
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