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Data-driven clay-fouled ballast permeability assessment using 
analytical-numerical and machine learning approaches 
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A B S T R A C T   

The occurrence of ballast contamination or fouling frequently results in a sudden decline in the capacity of 
railway ballasted tracks. Considering the various sources of ballast fouling, clay is the most severe one for causing 
a drastic reduction in the drainage capacity of the ballast layer. In the current study, we utilized a large-scale 
flume test to measure the water height along the cross-section of the clay-fouled ballast. Subsequently, an 
analytical–numerical (A-N) approach was developed to simulate the movement of water through porous media 
under steady-state conditions, while also considering the flow regime. This A-N approach was validated using the 
results of flume tests. Finally, the validated A-N approach was employed to generate a dataset and develop 
machine learning models for predicting water height. The characterized machine learning models included 
random forest regression (RFR), support vector machine (SVM), and extreme gradient boosting (XGBoost). 
Various variables, such as ballast gradation, fouling ratio, bed slope, rainfall rate, and water height on the side 
ditch, were incorporated into the machine learning models to reveal the contribution of each individual variable. 
Results show that for clean ballast, the incorporation of a nonlinear model between flow velocity and hydraulic 
gradient in the A-N approach is crucial to properly estimate the experimental measurements. However, a 
comparison of the water height measured via the flume test and the water level estimated based on the A-N 
approach confirms the suitability of the linear model, i.e., Darcy’s law, for the water flow regime through clay- 
fouled ballast. According to the machine learning results, particularly those from the XGBoost model, which was 
characterized as the elite model, the rainfall rate and the fouling index emerged as the most influential variables 
affecting the water height in the clay-fouled ballast layer of the railway track.   

Introduction 

Railway ballasted tracks are the most commonly used structure 
worldwide [26]. Among the major components of the track structure, 
the ballast layer is the most crucial part of the substructure, specially 
functioning as a drainage layer [18]. This granular medium facilitates 
the process of adjusting the geometry of the track. However, fouling 
among ballast particles is a major deterioration factor that affects the 
proper performance of the course (Hai [16,33,44]. In relation to various 
factors, the infiltration of clay—from either underlying layers or the 
surface—into the ballast layer is identified as a source causing acceler-
ation of track failure [20,43]. 

In this context, Huang et al. [17] highlighted the reduction in 
strength properties of ballast contaminated with clay and mineral filler. 
Without the interference of water, coal dust was identified as the most 

detrimental fouling agent. Furthermore, Danesh et al. [8] observed a 
more severe impact of clay fouling on shear strength compared to sand 
contamination by conducting a direct shear test. As noted by Indraratna 
et al. [19], soils with low-to-medium plasticity were more prone to mud 
pumping. Given the various issues associated with clay fouling in the 
ballast layer, inadequate hydraulic conductivity and water ponding are 
key factors that negatively influence the drainage competence of both 
this layer and the overall track structure. 

The measurement of hydraulic conductivity is a well-established 
approach to determining the drainage capacity of ballast materials 
[15]. For instance, the interrelation between fouling, permeability, and 
resistivity demonstrated that using clay as a fouling material, compared 
to fines produced by ballast degradation, led to a more significant 
reduction in permeability [32,34,22]. Moreover, hydraulic conductivity 
measurements of ballast fouled with distinct fine particles, including 
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kaolin, limestone, and crushed ballast were performed in [9], which 
revealed the most drastic effect was kaolin. Koohmishi [24] conducted 
the constant-head permeability test on degraded ballast particles fouled 
with clay. The experimental observations corroborated that the hy-
draulic conductivity of degraded ballast was still acceptable, however, 
the intrusion of clay led to an unacceptable drainage capacity of ballast 
layer. Recently, Mayuranga and Navaratnarajah [29] carried out a full- 
scale permeability test on ballast fouled with sandy lean clay. The results 
showed that the reduction in hydraulic conductivity exceeded 90 % 
when the void contamination index (VCI) was above 25 %. 

An effective and efficient means for assessing railway track drainage 

is estimating the water height along the cross-section of the substruc-
ture. In this regard, Heyns [13] conducted laboratory flume tests to 
investigate subballast drainage, considering different variables such as 
rainfall intensity, subballast thickness, and slope of the subballast/sub-
grade interface. The use of a mixture of coarse sand and gravel as a clean 
subballast material was proposed to reduce the likelihood of subballast 
saturation. Tennakoon et al. [37] proposed ballast cleaning using un-
dercutting when the top ballast had VCI greater than 50 % representing 
poor drainage capacity. 

Machine learning approaches for estimating and predicting physical 
properties, such as the permeability coefficient were feasible in earlier 

Fig. 1. Outlined description of the present study for estimation of water height in the clay-fouled ballast layer under steady-state flow condition.  

Fig. 2. Gradation curves of fresh crushed ballast particles and kaolin representing the clay fouling material.  
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studies. For example, Araya and Ghezzehei [2] applied machine learning 
to a large database to predict the saturated hydraulic conductivity of 
soil, identifying the 10th percentile particle diameter as an important 
predictor. Menke et al. [30] employed the extra-trees regression to 
bridge between the pore scale and Darcy scale for the permeability of 
microporous carbonate. Moreover, Tian et al. [38] used a combination 
of artificial neural network and genetic algorithm to predict perme-
ability by generating different porous media. The results confirmed that 
tortuosity and the number of pores were characterized as the effective 
parameters inversely proportional to permeability. Furthermore, Azar-
hoosh and Koohmishi [4] noted that the random forest (RF) model was 
superior in predicting the hydraulic conductivity of granular specimens 
composed of large-sized aggregates. 

The aforementioned studies have thoroughly investigated the 
permeability of clay-fouled ballast [24,32,37]. However, determining 
water height in porous media, instead of measuring hydraulic conduc-
tivity, can provide a more practical appraisal of drainage capacity. 
Indeed, identifying which fouling ratios and rainfall rates lead to a sig-
nificant surge in water height would be helpful for implementing 
maintenance activities at appropriate times. This is particularly true 
when considering that the extent of contamination, whether determined 
based on destructive or non-destructive tools, could influence these 
timings. In this regard, no study has been conducted to determine the 
water height along the cross-section of a ballast layer contaminated with 
clay material. Additionally, conducting large-scale experimental pro-
grams, such as flume tests, to assess the drainage performance of a 
ballast layer can be time-consuming. Therefore, establishing compound 
approaches like analytical–numerical (A-N) methods, alongside experi-
mental setups, is a viable solution to this problem. Furthermore, the 
porosity of fresh ballast aggregate dictates the turbulence of the flow 
regime, but additional fouling would inevitably lead to a transition in 
the flow regime. This transition in the flow regime condition can also be 
incorporated into these approaches. 

In this study, we establish a composite procedure to obtain the water 
level in the clay-fouled ballast layer, using a large-scale flume test and 
the characterized analytical–numerical (A-N) approach. This A-N 
approach takes into account different variables, such as aggregate 

gradation, fouling level, ballast bed slope, rainfall rate, and water height 
on the side ditch; while also considering laminar, transitional, or tur-
bulent flow regimes under steady-state conditions. This approach is used 
to generate a dataset in which these variables are considered. Subse-
quently, machine learning (ML) models—including random forest 
regression (RFR), support vector regression (SVR), and extreme gradient 
boosting (XGBoost)—are trained and tested based on the prepared 
dataset. Finally, the best-performing ML model is used to delineate the 
importance of distinct characterized variables. Fig. 1 succinctly illus-
trates the outline of the present study. 

Materials and laboratory test setup 

Materials  

– Fresh crushed ballast 

The sieve-size divisions of the crushed ballast particles, derived from 
a basalt parent rock, comply with the gradation bands defined by 
AREMA [3]. These are designated as AREMA No. 3, No. 4, No. 24, and 
No. 25, as illustrated in Fig. 2. The ballast has a specific gravity of 2.72 
and a water absorption rate of 0.56 %. Table 1 presents the main 
properties associated with these characterized gradation curves.  

– Clay soil, simulation of ballast fouling 

In the current study, kaolin was selected as the external fouling 
material. This fine-grained soil has a considerable plasticity index, with 
a liquid limit of 53 % and a plastic limit of 29 %. Fig. 2 also shows the 
gradation curve of this clay soil. 

Test setup 

Large-scale constant-head permeability test 
Fig. 3 schematically illustrates the large-scale permeability testing 

apparatus. This apparatus consists of a large reservoir used to control the 
water head applied to the specimen and a cylindrical, smaller repository 
designed for placing the granular specimen. For each defined hydraulic 
head difference, the water collected after moving through the granular 
media is weighed to determine the flow velocity in relation to the 
applied hydraulic gradient. Further details have been provided in a 
preceding study conducted by [25]. 

Large-scale flume test 
The large-scale flume testing apparatus primarily consists of a 

reservoir, with a length of 2.0 m, a width of 0.6 m, and also a height of 

Fig. 3. Schematic drawing of constant-head permeability tester [25].  

Table 1 
Main properties relevant to characterized gradation curves for ballast particles.  

Grading type dmax (mm) dmin (mm) d10 (mm) d60 (mm) Cu 

AREMA No. 3  50.0  25.0  28.1  41.2  1.47 
AREMA No. 4  37.5  9.5  20.1  26.4  1.31 
AREMA No. 4A  62.5  9.5  19.5  35.2  1.81 
AREMA No. 25  62.5  4.75  15.0  41.3  2.75  
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Fig. 4. Details of large-scale flume test.  
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0.6 m. Ballast samples, with a thickness of 0.3 m and whether clean or 
fouled with clay, are densely placed in this repository. A rain generation 
system is employed to distribute simulated continuous rainfall over the 
prepared specimen. The characterized prototype mirrors the half-sized 
cross-section of a ballast layer, from the track centreline towards the 
side ditch. It also simulates water movement through this granular 
media. This goal is achieved by keeping the upper side closed and the 
lower side open, while also maintaining a specific bed slope. To control 
the water height throughout the cross-section of this porous course, four 
piezometers are installed within the ballast bed. Fig. 4 illustrates the 
details of the flume test manufactured for water height measurement. 

Quantification of ballast fouling 

Distinct proportions of clayey soil (kaolin) by dry weight of ballast 
were added to account for various fouling ratios (FR), which represent 
the dry mass of clay divided by the dry mass of the ballast. The values of 
FR used in this study were 10 %, 20 %, 30 %, 40 %, and 50 %. As noted 
by Parsons et al. [32], the fouling index, introduced by Selig and Waters 
[35], represents the sum of the percentages of particles by weight 
passing through both sieve No. 4 and sieve No. 200. This is considered a 
superior index, especially when evaluating ballast hydraulic conduc-
tivity. Given the gradation curves for both ballast particles and kaolin, 
the aforementioned FR values correspond to 15 %, 28 %, 39 %, 48 %, 
and 56 % of the fouling index. To simulate the deposition of fine par-
ticles onto the track, kaolin was initially spread over the intermittent 
layers of compacted ballast specimens, followed by blowing the tamping 
rod. Fig. 5 illustrates ballast particles contaminated with various ratios 
of clay. 

Analytical-numerical approach established for modelling water 
flow through ballast layer 

Characterizing the water flow regime 

The primary measurements from the constant-head permeability test 
involve determining the variations in water flow velocity through the 
granular specimen with respect to the applied hydraulic head. To this 
end, Table 2 presents the established relationships that elucidate the 
connection between flow velocity (V) and hydraulic gradient (i), 
encompassing both linear and non-linear trend lines. 

In Table 2, characterizing ballast as porous granular media, the 
establishment of a nonlinear formula, such as Izbash’s law, can appro-
priately account for the relationship between V and i. The further 
infiltration of clay particles diminishes the turbulence of water flow 
through this media, thus making a linear formula, specifically Darcy’s 
law, more appropriate. 

A-N approach for estimation of water surface 

The schematic cross-section of the ballast layer, as illustrated in 
Fig. 6, characterizes the ballast bed as an impermeable surface, which 
leads to a transverse water flow through the ballast layer. Therefore, 
considering the unit length of this layer, the transverse flow equates to 
the rainfall rate over the considered surface. This characterized condi-
tion results in the following formula: 

V =
rx

h(x)
(1)   

V = Water flow velocity (cm/s) 
x = Distance from the centreline of the railway track (cm) 
h(x) = Elevation of water in the ballast layer (cm) 
r = Constant rainfall rate (cm/s) 

Incorporation of preceding equation for flow velocity in Izbash’s law, 
results in: 

dH
dx

= - c1

(rx
h

)n
(2) 

Given the transverse slope of the ballast layer from the centreline 
towards the side ditches, the hydraulic gradient is composed of a 
gradient from the ballast bed slope and a gradient from the saturated 
thickness of the ballast layer, as expressed below: 

dH
dx

=
dh
dx

+ s (3)   

s = Slope of the bed of ballast layer (%) 

Combining Eqs. (2) and (3) leads to the main differential equation for 
steady-state flow through the porous layer given by: 

Fig. 4. (continued). 
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a.1 a.2

a Kaolin used as fouling material

b.1 FR: 20%

c.1 FR: 20%

b.2 FR: 30%

Fig. 5. Clay-fouled ballast in the main reservoirs of permeability and flume testing apparatus considering various fouling ratios.  
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dh
dx

= - c1

(rx
h

)n
- s (4) 

To further separate the Eq. (4), the following new variable is defined: 

η =
h
x

(5) 

Differentiating the new defined variable with respect to x: 

dh
dx

= η+ x
dη
dx

(6) 

Substitution of the Eq. (6) and new defined variable η into the dif-
ferential equation (4), results in: 

-x
dη
dx

= c1

(r
η

)n
+ η+ s (7) 

Establishing further arrangement, the Eq. (8) is derived: 

-
dx
x

=
ηndη

ηn+1 + sηn + c1rn (8) 

Considering Fig. 6, the boundary condition of x = L, while h(x) = hL 
is incorporated to solve this differential equation by establishment of 
fourth order Runge-Kutta method. The characterized boundary condi-
tion represents the water height on ditch located at right-hand side of 
the ballast layer. 

Details of process of training and testing the ML models 

Input/output dataset and evaluation method 

As shown in Fig. 7.a, the dataset, validated based on the A-N 
approach estimations, consists of 1200 input–output data points. The 
inputs are aggregate gradation (Cu), fouling ratio (FR), bed slope (s), 
rainfall rate (r), and boundary condition (hL), and the outputs are 
average water height (hAve) and maximum water height (hMax). Based on 
previous studies [4,23], 70 % of the entire dataset was used to train the 
ML models, and the remaining 30 % was used as the testing dataset. The 
functions are defined as follows: 

hAve = f(Cu , FR , s , r , hL) (9)  

hMax = f(Cu , FR , s , r , hL) (10) 

The robustness of ML models established for prediction of water 
height in the ballast layer is evaluated by computing the following 
indices [14,27,31]: 

R2 =

⎡

⎢
⎢
⎣

∑n
i=1

(
y − μy

)(
ŷi − μ̂y

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
yi − μy

)2 ∑n

i=1

(
ŷi − μ̂y

)2
√

⎤

⎥
⎥
⎦

2

(11)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n

i=1
(yi − ŷi)

/

n

√
√
√
√ (12)  

VAF =

(

1 −
Var|y − ŷ|

Var(y)

)

× 100 (13)   

R2 = Coefficient of determination 
RMSE = Root mean square error 
VAF = Variance account for 
y = Actual values of y1,y2,⋯,yn 

ŷ = Predicted values of ŷ1, ŷ2,⋯, ŷn 
μy = E(y) = Average value of y 
μ̂y = E(ŷ) = Average value of ŷ 

Cross-validation and grid search implementation 

A 5-fold cross-validation procedure was used, which is a resampling 
method where the dataset is divided into five portions. Four subsets are 

Table 2 
Formulae established for characterizing the relationship between water flow 
velocity and applied hydraulic gradient considering flow regime.  

Author (Year) Formula Description 

Darcy [10] 
V = k

( ΔH
L

)

= ki 
Linear trend line 

Fwa et al. [11] V = k1im Nonlinear trend line - Power law 
Izbash [21] i =

dH
dl

= − c1Vn  Nonlinear trend line - Power law 

V: Water flow velocity (cm/s); L: Distance in the direction of water flow (cm); 
H: Hydraulic head (cm); ΔH: Hydraulic head difference between two points 
(cm); 
i: Applied hydraulic gradient; 
k: Hydraulic conductivity (cm/s); k1, m, c1, n: Experimental coefficients. 

Fig. 6. Schematic cross-section of the ballast layer of the railway track substructure (after [6].  
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Fig. 7. Details of process of training and testing the ML models.  

M. Koohmishi and Y. Guo                                                                                                                                                                                                                    



Transportation Geotechnics 43 (2023) 101151

9

Fig. 7. (continued). 
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used as training data, and the remaining subset is used as testing data 
[39]. In the current study, as illustrated in Fig. 7.b, this process is 
repeated on the 5 folds of the training dataset, and then the average of 
the models is applied to the remaining 30 % of all data, designated as the 
testing data. Furthermore, the grid search method is concurrently uti-
lized to tune hyperparameters and find the optimal model. In this re-
gard, all possible values are tested to reveal the best hyperparameters 
that form the structure of the model. 

ML models 

Random forest regression 
Introduced by Breiman [5], the Random Forest Regression (RFR) 

approach is based on building multiple decision trees on categorized 
samples, with the final output predicted based on the average values 
derived from these trees. The ability to handle continuous variables 
makes this supervised ML method applicable for regression prediction. 
The initial stage of selecting subsets from the entire dataset is known as 
bagging, while the final step of generating output based on the results of 
the decision trees is defined as aggregation. Some of the key hyper-
parameters relevant to the structure of RFR include: the number of trees 
(n_estimators); the maximum number of levels in an individual regres-
sion tree (max_depth); and the minimum number of data points allowed 
in a leaf node (min_samples_leaf). 

Support vector machine 
The Support Vector Regression (SVR) approach seeks to find a 

function, or hyperplane, that approximates the relationship between 
input and output in a continuous space, while also minimizing the 
prediction error (as illustrated in Fig. 7.c). As proposed by Vapnik [40], 
the kernel function incorporated in this ML method enables the 
consideration of non-linear relationships. It transforms the input data 
into a higher-dimensional space to effectively model the relationship 
with a linear decision boundary. Using the radial basis function (RBF) as 
a kernel function, two specific hyperparameters are considered: the 
regularization parameter (C), and the width of the kernel function 
(Gamma). The value of the regularization parameter controls the 

Fig. 7. (continued). 

Fig. 8. Variation of flow velocity with applied hydraulic gradient.  
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complexity or simplicity of the function: a large C may lead to over- 
fitting, while a small C can result in under-fitting. A larger gamma 
value defines a more complex decision boundary that captures the de-
tails of the training data, while a smaller gamma creates a smoother 
boundary. 

Extreme gradient boosting 
The XGBoost algorithm, developed by Chen and Guestrin [7], is a 

robust ensemble ML approach in which regression trees form the 
framework. As illustrated in Fig. 7.c, the algorithm minimizes the loss 
gradient while fitting the model, thereby correcting the prediction errors 
made by previous models. The major hyperparameters of this ML model 
include the number of trees (n_estimators), tree depth (max_depth), and 
learning rate (eta). Here, n_estimators defines the number of trees to be 
fitted. Max_depth determines whether a tree is shallow or deep; 
increasing max_depth represents further complexity in the model, 
raising the possibility of over-fitting. The eta value indicates the 
shrinkage weight applied to the scores of all leaves in every iteration, 
helping to prevent over-fitting and providing sufficient space for sub-
sequent trees. 

Results and discussion 

Experimental results 

Summary results of constant-head permeability test 
The variations of water flow velocity with the hydraulic gradient are 

depicted in Fig. 8, and the coefficients of regressions applied to the 
experimental data, which represent the relationship between V and i, are 
summarized in Table 3. As illustrated, Darcy’s law, a linear relationship, 
effectively characterizes the variation of flow velocity with the applied 
hydraulic gradient in the case of clay-fouled ballast. However, utilizing 
the nonlinear model, power law, is necessary for a more accurate rep-
resentation of this trend in the case of clean ballast. The general trend 
increasingly conforms to a linear trendline as the fouling ratio rises. For 
instance, the exponent n of Izbash’s law is around 2 for clean ballast 
particles of AREMA No. 3, while this coefficient approaches 1 under 
highly-fouled conditions. Similarly, for ballast particles with an initial 
gradation of AREMA No. 25, the value of k for highly-fouled ballast 
particles is roughly one twenty-fifth of that for clean aggregates. 

Summary results of flume test 
In this study, we conducted 36 flume tests with varying ballast gra-

dations, fouling levels, and rainfall rates. Fig. 9 shows the measurements 
of water height in the 4 installed piezometers, taking into account the 

initial gradation of ballast particles, the fouling ratio, and the rainfall 
rate. As expected, the water height increases proportionally with the 
fouling ratio and rainfall rate. While the effect of aggregate gradation on 
water height is minimal in the case of clean ballast particles, it becomes 
significant when clay fouling occurs. Specifically, ballast with a more 
uniform gradation effectively stores water among the granular particles 
due to an increase in voids, even under fouled conditions. However, 
gradations with higher Cu values lead to a reduction of air voids between 
granular particles, a variation that becomes more pronounced in highly 
fouled conditions. Therefore, the gradation of granular particles not only 
affects the shear strength behaviour of ballast [41], but also this physical 
property influences the drainage potential of this porous layer. 

Results of A-N approach 

Validation of A-N approach 
The observations derived from our laboratory experiments confirm 

that the water flow regime transitions from a turbulent to a laminar 
condition. To further evaluate the A-N approach’s efficacy, the water 
surface estimations were compared based on the A-N model with mea-
surements from the flume test, considering both linear and nonlinear 
models. 

To solve the differential equation in Eq. (8), we set the ’s’ value at 
− 3% and the length of the half-sized cross-section at 180 cm. These 
values were chosen to represent the typical dimensions of the ballast 
layer in railway track structures and to simulate the dimensions of the 
large-sized flume test. It was considered rainfall rates (r) of 1, 3, and 10 
cm/h, as well as a boundary condition (hL) of 1 cm, reflecting the values 
used in the flume test. 

Considering the V-i curves derived from the permeability test for 
both clean and clay-fouled ballast specimens, we assumed values of 2 
and 1.7 for the exponent ’n’ in Izbash’s law. 

Considering n = 1, representing the linear flow condition, Eq. (8) is 
simplified as follows: 

dx
x

=
η.dη

− c1r − sη − η2 (14) 

Considering n = 1.7, characterizing flow condition between laminar 
and turbulent: 

dx
x

=
η1.7.dη

− c1r1.7 − sη1.7 − η2.7 (15) 

Hence, defining η = ϛ10: 

dx
x

=
η26.dη

− c1r1.7 − sη17 − η27 (16) 

Table 3 
Summary results of large-scale constant-head permeability test.  

Gradation a Clean ballast specimens Linear model 

Nonlinear models  

c1 n R2 k1 (cm/s) m R2 k (cm/s) R2 

AREMA No. 3  5.378  1.972  0.988  0.422  0.501  0.988  0.493  0.733 
AREMA No. 4  4.236  2.019  0.936  0.460  0.464  0.936  0.537  0.2 
AREMA No. 4A  4.448  1.733  0.985  0.415  0.568  0.985  0.454  0.755 
AREMA No. 25  4.183  1.653  0.981  0.410  0.594  0.981  0.435  0.736  

FR (%) b Clay-fouled ballast specimens 

k (cm/s) - Establishing Darcy’s law 
Gradation of ballast particles 

AREMA No. 3 AREMA No. 4 AREMA No. 4A AREMA No. 25 

10  0.480  0.530  0.442  0.390 
20  0.395  0.455  0.360  0.320 
30  0.235  0.265  0.200  0.165 
40  0.115  0.145  0.085  0.057 
50  0.050  0.070  0.035  0.021  
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Fig. 9. Summary results of large-scale flume test.  
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Fig. 10. Water level along the cross-section of the ballast layer comprising clean ballast particles.  
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Finally, considering η = 2, representing the turbulent flow condi-
tion, the Eq. (8) is presented as follows: 

dx
x

=
η2.dη

− c1r2 − sη2 − η3 (17) 

For clean ballast particles, the exponent of the power law (n) was set 

to 2 and 1.7, depending on the aggregate gradation, to reflect the 
nonlinear flow regime. Fig. 10 clearly illustrates that using the nonlinear 
model in the A-N approach aligns more closely with water level mea-
surements from the flume test than the linear model. In this context, Li 
et al. [28] highlighted the post-Darcian flow phenomenon when large- 
sized pores form due to an increased contribution from the inertial 

Fig. 10. (continued). 
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force. Consequently, clean ballast does not follow the linear Darcy’s law 
due to the increased momentum transference, resulting in a rise in flow 
rate that is less than the estimated value from the established linear 
model. Wang et al. [42] observed the same trend in groundwater flow 
studies. Moreover, the difference in water height between various gra-
dations of fresh ballast is insignificant, both in experimental measure-
ments and A-N estimations. 

For clay-fouled ballast, the integration of a linear model into the A-N 
approach effectively approximates the water height due to a reduction 
in the turbulence of water movement, as illustrated in Fig. 11. As ex-
pected, an appreciable increase in water level is observed as FR values 
rise. In this scenario, the initial gradation of ballast emerges as a sig-
nificant variable. Considering the acceptable limit of permeability of 
fouled ballast to be as low as 10− 2 cm/s [1,35], the hydraulic 

a r= 3 cm/h
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Fig. 11. Water level along the cross-section of the ballast layer comprising clay-fouled ballast particles.  
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conductivity values of all clay-fouled ballast specimens (as presented in 
Table 3.b) are within the acceptable range, but the water height rises 
above the ballast surface under moderately to highly fouled conditions. 
As highlighted by Tennakoon et al. [37], the critical condition for 
maintenance implementation occurs when the VCI exceeds 50 %. Given 
the physical properties of the ballast and kaolin materials used in this 
study, this contamination level is reached when the FR value is greater 
than 30 %. Under heavy rainfall rates, such as 10 cm/h, nearly half of the 
ballast thickness is saturated even when the FR is only 20 %. As noted by 
Li et al. [26], the increased settlement of fouled ballast is due to the 
presence of water in this granular layer. 

Generation of dataset 
The validated A-N approach was utilized to generate the character-

ized outputs, including the average water height (hAve) and the 
maximum water height (hMax). Fig. 12 displays the statistical distribu-
tions of the considered input variables and the computed outputs based 
on the A-N approach, assuming a laminar flow regime. Indeed, previous 
discussions on the results of hydraulic conductivity and water height 

from permeability and flume tests have demonstrated that Darcy’s law 
can effectively account for water flow through clay-fouled ballast. 

Results of ML models 

Training and testing the ML models 
The ML models were implemented using the Python programming 

language to develop the optimal structures. The grid search method was 
employed to determine the most suitable parameters for each specific 
ML model. For the RFR, optimal values were characterized as a n_esti-
mators of 50, a max_depth of 10, and a min_samples_leaf of 1. For SVR, 
the optimal values of C and gamma were determined to be 10 and 0.1, 
respectively. The XGBoost structure was developed by tuning the 
hyperparameters, resulting in 100 trees, a maximum depth of 4, and a 
learning rate of 0.1. 

Table 4 summarizes the performance indices computed based on the 
differences between estimations of the A-N approach and predictions of 
the ML models, validating XGBoost as the most suitable model. Fig. 13 
shows the calculated as well as the predicted values of water height 

Fig. 12. Range of inputs and outputs for training and testing the ML models.  

Table 4 
Performance indices of characterized ML models.  

ML model hAve hMax 

R2 RMSE VAF R2 RMSE VAF 

Train Test Train Test Train Test Train Test Train Test Train Test 

RFR  0.999  0.989  0.434  1.325  99.94  99.28  0.999  0.992  0.486  1.322  99.95  99.54 
SVR  0.972  0.959  2.382  2.488  96.85  96.65  0.963  0.962  2.939  2.934  96.93  97.05 
XGBoost  0.999  0.998  0.325  0.479  99.97  99.93  0.999  0.998  0.381  0.612  99.97  99.92  
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based on XGBoost for the training dataset, with all estimations arranged 
in ascending order. Similarly, Fig. 14 illustrates the estimated water 
levels versus the predicted ones for the testing dataset, confirming an 
error of less than 10 %. 

Discussion on factor of importance for characterized variables 
The influence of specific inputs, including ballast gradation, fouling 

ratio, ballast bed slope, rainfall rate, and boundary condition are 
assessed using the best-performing ML model, i.e., XGBoost. As illus-
trated in Fig. 15, the most influential parameter for hAve is the rainfall 
rate, followed by the fouling ratio. However, this order varies in the case 
of hMax, where FR has a higher influence. On the contrary, the ballast 
bed slope is the least influential variable compared to all other factors 

for the water level prediction using the XGBoost model. As pointed out 
by Gong et al. [12], the simulation of water movement through a typical 
track section by establishment of computational fluid dynamics (CFD) 
confirmed the critical effect of fouling index on lateral flow rate. Fig. 16 
provides more detailed insights into the influence of individual variables 
based on the SHAP values. Notably, fouling ratio and rainfall rate are 
crucial variables; increases in these values lead to higher water levels. 
Also, an increase in Cu, indicative of a wider range of particle sizes, 
results in a rise in water height, though this effect is relatively minor. As 
noted by Shi et al. [36], a Cu value of 2.2 optimizes drainage capacity 
while minimizing ballast breakage, as long as a suitable drainage system 
is provided along the track and highly fouled conditions are prevented. 
The SHAP values of Cu and hL indicate an exacerbated boundary effect in 

Fig. 13. Variation of the differences between computed (based on the A-N solution) and predicted (based on the XGBoost model) values of water level in an 
ascending form - training data set. 
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Fig. 14. Observed versus predicted water height by establishment of A-N approach and the elite ML model (XGBoost) - Testing dataset.  

Fig. 15. Factor of importance derived based on the elite ML model (XGBoost).  
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the case of hAve, as water ponding on the side ditch results in a more 
uniform water level throughout the ballast layer cross-section. 
Furthermore, the slope of the ballast bed is inversely proportional to 
the water height; however, this effect is negligible. 

Conclusions 

In this study, we investigated the water level in the clay-fouled 
ballast layer under steady-state conditions using both flume test mea-
surements and calculated values from the validated A-N approach. 
Various variables were considered, including ballast gradation, fouling 
ratio, ballast bed slope, rainfall rate, and boundary condition. Machine 
learning (ML) models, including RFR, SVR, and XGBoost, were used for 
automatic data processing. In addition, the most effective ML model for 
ballast drainage capacity estimation was identified. The main conclu-
sions are as follows:  

• Clean ballast samples follow a non-laminar flow regime. For accurate 
water level estimation, it is necessary to use Izbash’s law, which 
aligns closely with flume test measurements.  

• Comparisons between water heights measured via the flume test and 
those estimated with the A-N approach show that increasing clay 
fouling enhances the applicability of the conventional linear model, 
Darcy’s law. This trend aligns with the relationship between flow 
velocity and applied hydraulic head, as established by the constant- 
head permeability test.  

• For a fouling ratio (FR) of 20 %, ballast saturation is significant 
during heavy rainfall, despite negligible water height recorded at 
lower rainfall rates. However, an FR of 50 % leads to rising water 
heights above the ballast surface.  

• Aggregate gradation’s effect on water height is minor for clean 
ballast particles, but both flume test measurements and A-N 
approach estimations confirm its substantial influence under highly- 
fouled conditions. 

Fig. 16. Summary plot of SHAP values of characterized inputs for each specific row of dataset based on the XGBoost model - Red colour representing the higher 
values of input, blue colour representing lower values of input. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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• According to predictions from the most effective ML model, XGBoost, 
fouling ratio and rainfall rate are the key factors affecting water 
height in clay-fouled ballast.  

• More uniform gradation and a steeper ballast bed slope predict lower 
water height values, but their effects are less significant than the 
influence of the fouling ratio and rainfall rate. 
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