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Enabling High Performance Posit Arithmetic
Applications Using Hardware Acceleration

Thesis

submitted in partial fulfillment of the requirements for the degrees of

Master of Science

in

Computer Engineering
&

Embedded Systems

by

Laurens van Dam
born in Spijkenisse, The Netherlands

to be defended publicly on September 17, 2018 at 15:00.

Student number: 4203321

Submission date: September 10, 2018

Responsible professors: prof. dr. H. P. Hofstee IBM Research, TU Delft
dr. ir. Z. Al-Ars TU Delft

Thesis committee: prof. dr. H. P. Hofstee IBM Research, TU Delft, jury chairman
dr. ir. Z. Al-Ars TU Delft, jury member
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Abstract

The demand for higher precision arithmetic is increasing due to the rapid development of
new computing paradigms. The novel posit number representation system, as introduced
by John L. Gustafson, claims to be able to provide more accurate answers to mathemati-
cal problems with equal or less number of bits compared to the well-established IEEE 754
floating point standard.
In this work, the performance of the posit number format in terms of decimal accuracy is
analyzed and compared to alternative number representations.
A framework for performing high-precision posit arithmetic in reconfigurable logic is
presented. The supported arithmetic operations can be performed without rounding off
intermediate results, minimizing the loss of decimal accuracy. The proposed posit arith-
metic units achieve approximately 250 MPOPS for addition, 160 MPOPS for multiplication
and 180 MPOPS for accumulation operations.
A hardware accelerator for performing Level 1 BLAS operations on (sparse) posit col-
umn vectors is presented. For the calculation of the vector dot product for an input vec-
tor length of 106 elements, a speedup of approximately 15000× compared to software
is achieved. The decimal accuracy is improved by one decimal of accuracy on average
compared to posit emulation in software, and two additional decimals of accuracy are
achieved compared to calculation using the IEEE 754 floating point format.
A study of the application of posit arithmetic in the field of bioinformatics is performed.
The effect on decimal accuracy of the pair-HMM forward algorithm by replacing tradi-
tional floating point arithmetic with posit arithmetic is analyzed. It is shown that the
maximum achievable decimal accuracy using posit arithmetic is higher compared to the
IEEE floating point format for the same number of required bits.
The design of a hardware accelerator for the pair-HMM forward algorithm using posit
arithmetic is proposed for two different interfaces: a streaming-based accelerator and an
accelerator interfacing with Apache Arrow columnar data, both connected by the CAPI
(SNAP) platform. Overall, the posit number format beats the IEEE floating point number
format in terms of decimal accuracy, ranging from an improvement of 0.5 to 1 additional
decimal of accuracy for the performed test cases. A throughput of 1.6 and 1 giga cell
updates per second is measured for both accelerator implementations, respectively.
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Chapter 1

Introduction

1.1 Motivation

The demand for higher precision arithmetic units is increasing due to the rapid devel-
opment of new computing paradigms. The IEEE Standard for Floating-Point Arithmetic
(IEEE 754) is the floating point implementation standard that the vast majority of con-
temporary computing systems have adopted. Although the first version of the standard
was published in 1985, its main characteristics have to date not been changed, mainly
for compatibility reasons. Because we now have more computing power at our disposal,
the ability to process larger amounts of data becomes possible. In addition to this, we
impose large precision requirements, either while accumulating big portions of data or
when there is the desire to have a high-precision calculation result while imposing strict
boundaries on bandwidth and the available processing power. This is often the case when
limited computing resources are available, for example in low-power applications such as
in embedded systems.

Over the course of the past few decades, the IEEE floating point representation has
become the de facto standard in modern computing systems. Although it has proven to
be a popular standard for representing floating point numbers, multiple shortcomings
have been identified that have not been treated as major issue in the past, mainly because
the standard was simply ”good enough” for the conditions and requirements imposed at
that time. A selection of the shortcomings of the IEEE floating point standard are listed
below [1].

• Different computers using the same IEEE floating point format are not required to
produce the same result. If a computation result does not fully fit into the chosen
number representation, the number will be rounded to the nearest representable
value. Hidden guard digits were introduced to improve the accuracy of those rounded
off answers. However, hardware designers are not obliged to implement these hid-
den guard digits. Therefore, inconsistent results can occur across different comput-
ing platforms.

17



18 CHAPTER 1. INTRODUCTION

• Non-conformance of the law of Associativity and Distributivity: due to the fact that
rounding is performed on individual operands of a specific calculation, the basic
mathematical laws of associativity, commutativity and distributivity do not hold.
This means that, for instance, the sum of two numbers in floating point representa-
tion does not necessarily match the exact sum of those two numbers if they were to
be represented as exact numbers.

• A portion of the available number of bit patterns is ”wasted” on exceptions. An ex-
ample of an exception is the Not-A-Number (NaN) value, which is used to represent
an undefined or unrepresentable number. This is often the result of having illegal
arguments as an input to a mathematical function. For instance, dividing by zero
leads to a NaN. The IEEE 754 floating point standard defines different types of NaN
representations. This is discussed in detail in Section 2.2.1.

The aforementioned discussion regarding the shortcomings of the widely adopted
IEEE 754 standard was what led to the idea of developing an alternative number rep-
resentation system that would serve as a worthy successor. The recently introduced posit
number representation system was introduced by John L. Gustafson and claims to be able
to provide more accurate answers to mathematical problems with an equal or smaller
number of bits for some applications [2]. The posit data type is discussed in Section 2.1.3.
Furthermore, the discussion on the shortcomings of the floating point standard and how
the posit data type fixes these shortcomings is described. A key feature of this format is
the quire, a scratchpad that can be used to perform fused operations, such as a multiply-
accumulate operation, without rounding intermediate values and therefore reducing loss
of precision in the final result.

The differences in semantics of the posit number format compared to the traditional
IEEE 754 floating point number format lead to the question whether the posit number for-
mat might be a suitable replacement for applications that rely on precision. Furthermore,
applications with smaller accuracy requirements could also benefit from a more accurate
number representation system as a smaller number of bits could be used compared to
floating point numbers, while preserving results with tolerable precision.

1.2 Thesis Aim & Contributions

The main goal of this thesis is to explore a selection of potential applications for the novel
posit number representation system. The potential advantages of the posit representation
are exploited through the design of multiple hardware accelerator designs. These accel-
erators are built upon the most recent Coherent Accelerator Processor Interface (CAPI) in
order to establish a high-speed connection between a host and accelerator. Furthermore,
the accelerators presented in this work will be able to interface with data represented in
the Apache Arrow columnar in-memory format.
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Research Questions

The main research questions for this thesis are formulated as follows.

1. Study the suitability of the posit number representation for replacing traditional
IEEE 754 floating point numbers in terms of accuracy and performance.

2. Does the posit number format deliver better, more accurate results compared to the
IEEE 754 floating point standard for the following applications:

a) Pair Hidden Markov Model (pair-HMM) for pairwise alignment of DNA se-
quence reads

b) Level 1 BLAS Vector Operations (addition/subtraction, multiplication and dot
product)

3. Can the computational performance of the posit implementation of the applications
as mentioned in (2) be improved through acceleration using reconfigurable logic?

Research Methodology

The procedure to address the above mentioned research questions is described as follows.
First, a theoretical analysis is performed on the definition of the posit number representa-
tion format. As the IEEE 754 floating point format is seen as the most popular alternative
to the posit number format, a detailed analysis is made regarding the characteristics of
both number formats. After analyzing the theoretical characteristics of both formats, a
more practical exploration is performed in the context of the pair-HMM pairwise align-
ment algorithm. The algorithm is evaluated for both number formats and compared in
terms of decimal accuracy of the calculation results. For the implementation of posit arith-
metic in reconfigurable logic, a framework is designed that enables posit arithmetic in
hardware with a focus on the preservation of decimal accuracy. Using this framework,
an implementation of an accelerator for the pair-HMM algorithm using posit arithmetic
is designed, as well as an accelerator for performing Level 1 Basic Linear Algebra Subpro-
grams (BLAS) operations on column vectors consisting of posit numbers. Both hardware
implementations are evaluated based on performance and the achieved decimal accuracy.
Finally, a conclusion is made based on the obtained results.

Contributions

The contributions described in this thesis can be summarized as follows.

• A feasibility study to explore potential improvement in accuracy of computation re-
sults when replacing traditional floating point numbers with numbers represented
in the posit number format.

• Design, implementation and evaluation of a novel framework for performing posit
arithmetic operations in hardware while minimizing loss in decimal accuracy caused
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by intermediate calculations.
https://github.com/lvandam/posit_arith_hdl

• Design, implementation and evaluation of a vector arithmetic accelerator for posit
vectors interfacing with the Apache Arrow columnar in-memory format through
the CAPI SNAP platform.
https://github.com/lvandam/posit_blas_hdl

• Design, implementation and evaluation of a hardware accelerator for the pair-HMM
forward algorithm using posit arithmetic for two different interfaces:

– A streaming-based implementation interfacing through the CAPI platform.
https://github.com/lvandam/pairhmm_posit_hdl_stream

– Interfacing with data structures represented in the Apache Arrow columnar
in-memory format through the CAPI SNAP framework.
https://github.com/lvandam/pairhmm_posit_hdl_arrow

1.3 Thesis Outline
This thesis is structured as follows. Chapter 2 discusses background information related
to the proposed unum arithmetic framework. Next, a comprehensive analysis of the posit
number format compared to the IEEE 754 floating point standard is performed. The chap-
ter is concluded with an overview of existing methods for controlling the desired numer-
ical precision in software applications during the compilation time of a program. The
feasibility of applying posit arithmetic in the field of bioinformatics is discussed in Chap-
ter 3. In particular, the Pair Hidden Markov Model and its computational implementa-
tions are discussed. A detailed theoretical and empirical analysis is performed in order
to determine the potential improvement in terms of calculation precision. Chapter 4 dis-
cusses the design, implementation and evaluation of a novel framework for performing
posit arithmetic in reconfigurable logic. The framework consists of posit arithmetic units
that can be used for performing calculations that are optimized with respect to decimal
accuracy. The design and implementation of a hardware accelerator for performing posit
vector arithmetic operations are discussed in Chapter 5. Subsequently, the design, imple-
mentation and evaluation of an accelerator for the pair-HMM forward algorithm using
posit arithmetic in discussed in Chapter 6. An overall conclusion on the analysis, design
and implementation efforts presented in this thesis, including recommendations based
on the performed analyses, is given in Chapter 7. Additionally, a recap on the research
questions initially proposed in the introduction of this thesis is given.

https://github.com/lvandam/posit_arith_hdl
https://github.com/lvandam/posit_blas_hdl
https://github.com/lvandam/pairhmm_posit_hdl_stream
https://github.com/lvandam/pairhmm_posit_hdl_arrow


Chapter 2

Background

In this chapter we discuss background information related to the analyses performed and
the implementations presented in this work. First, a description of the unum arithmetic
framework, consisting of the proposals of unum type I, II and III (posit), is discussed.
Next, a comparison between features of the IEEE 754 floating point standard and the novel
posit number format is performed. Building upon the background theory on the posit
number format, the recent efforts in hardware implementations of posit arithmetic are
then discussed. We will also explore alternative number representation systems. In the
concluding sections of this chapter we will cover background information on compiler op-
timizations for controlling desired floating point calculation accuracy, the Apache Arrow
columnar in-memory format and a definition of the measure of decimal accuracy.

2.1 The Unum Arithmetic Framework

The shortcomings of the IEEE 754 floating point number standard as discussed in Sec-
tion 1.1 have led to an alternative number format that could resolve those issues. The uni-
versal number, abbreviated as unum [1], is introduced by John L. Gustafson and is seen as
one of the most promising alternatives to the IEEE standard that has been the standard
for decades. The unum number format has evolved over the past few years, dividing the
unum into three different iterations or types: type I, II and III.

2.1.1 Type I Unum

The main feature of a unum value compared to a regular IEEE 754 number is its ability
to represent either an exact number or an open interval of 1 Unit of Least Precision (ULP)
wide. The reason for wishing to incorporate this feature in the unum number scheme is
that a computation is often not able to provide a numerically exact answer due to limita-
tions in the number representation it uses. Therefore, when a number is unrepresentable
in a certain degree of precision, it is rounded off to the nearest representable number. A
unum is able to indicate that the value is accurate within a range of 1 ULP through the
so-called ubit, which is a 1-bit field within the unum number representation. In this way,

21



22 CHAPTER 2. BACKGROUND

1 es f 1 4 7

sign exponent (e) fraction (f) ubit exponent
size (es-1)

fraction
size (fs-1)

Figure 2.1: Schematic overview of the bit fields of a unum type I. The field widths are
indicated above each field.

ubit = 0 indicates that the unum corresponds to an exact number while ubit = 1 indicates
that the unum corresponds to an interval between exact unums.

The unum format borrows most of the components of the IEEE 754 floating point
scheme, such as the exponent and fraction (or mantissa) fields. The distinctive feature of
the type I unum, however, is the fact that the widths of those fields are variable. One
could choose to either represent a large number by assigning more bits to the exponent
field, or one could opt for more decimal precision by having more fraction bits. The ex-
ponent size and fraction size fields are added to the unum scheme in order to annotate the
widths of the exponent and fraction fields, biased upward by 1 as there is always at least
one exponent and fraction bit.

In order to cover all the bit field widths of the exponent field as defined in the IEEE
754 standard, having 4 bits to indicate the exponent size (es−1) is sufficient [1]. Similarly,
having 7 bits to indicate the fraction size (fs − 1) is sufficient to cover the different IEEE
floats. The complete format of unum type I is schematically depicted in Fig. 2.1.

2.1.2 Type II Unum & SORNs

Motivation & Shortcomings of Unum Type I

The proposal of the type I unum proved to be a promising new number representation
system, but was not free of any drawbacks. Implementing type I unum arithmetic in hard-
ware is particularly challenging [3]. For example, the fact that unums can have a variable
number of total bits and exponent bits leads to the requirement having variable storage
sizes available. As implementing dynamic storage in hardware is challenging, one would
need to unpack unums to a fixed storage size using a specific scheme [1]. Furthermore, the
ubit field in a unum always has to be determined before the remaining fields of a unum
can be unpacked. This introduces more complexity to a hardware implementation. For
example, the ubit introduces more comparisons that have to be performed compared to
a hardware implementation for floats. Another drawback of type I unums is that certain
values can be represented in different ways, i.e. with different combinations of the num-
ber of total bits and exponent bits. Therefore, a number could be represented by using
fewer exponent bits compared to another possible representation for the same number
that would fill up a bigger portion of the fraction field. The second version of unum, type
II, was proposed to resolve some of the shortcomings described above.
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±∞

0

11 01

00

10

Negative
reals

Positive
reals

Figure 2.2: Visual representation of the projective real number line of type II unums in
the case of a 2-bit unum type II [3].

Description

One of the distinctive features of the type II unum is its different mapping of unum values
onto the projective real line. This mapping consists of a line with negative and positive
reals, where the two ends meet at a single point, representing either plus or minus infinity.
A visualization of how unums are mapped to the real line is depicted in Fig. 2.2. As can
be seen, the point where a 2’s complement number changes from positive to negative is
the same point as where the positive reals wrap into the negative reals. This point also
represents the value ±∞.

Another component the type II specification introduces is the Sets Of Real Numbers
(SORN). The SORN is a bit string that represents whether or not a region or subset is
present (1) or absent (0) in a given range. A SORN is therefore able to define a specific
interval using subsets of the projective real numbers. The subsets of the projective reals
depicted in Fig. 2.2 are±∞, (−∞, 0), 0 and (0,∞). If one were to use a SORN to encode a
unum with an interval of (−∞, 0], the SORN would be 0110 (thereby indicating that the
subsets (∞, 0) and 0 are part of the interval).

As noted by the author, the SORN can be used for operations that would normally re-
sult in indeterminate forms with single numbers. Expressions that would usually result
in an indeterminate form such as zero divided by zero or infinity minus infinity are valid
expressions when using SORNs because they produce valid SORNs. A SORN, for exam-
ple, is able to represent the range of all numbers (by including all subsets). Analogously,
for a division by zero, one can take the limit to 0 and end up with either or minus infinity.
A SORN is then able to represent the value ±∞.

In order to perform arithmetic operations on SORNs it is necessary to perform table
lookups to determine the outcome of any SORN operation on two or more operands.
An example of such an operation (addition) is depicted in Fig. 2.3. Since these lookups
need to be frequently performed, it is imperative to make this fast and efficient. When
implementing unums in hardware these Lookup Tables (LUTs) could, for instance, be
implemented in ROMs.

An interesting property that arises from the way in which the projective reals are
mapped (as described above) is that there are geometrical analogies about the horizon-
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+

Figure 2.3: Two-input SORN addition table. Red and blue represent the negative and
positive values, while a circle represents an open interval and a rectangle an exact value
[3].

±∞

0

1100

1101

0100

0100

0000
0001

0010

0010

0110

0110

1010

1011

1110

1111

1000
1001

–1 1

2

½
(0, ½)(–½, 0)

(½, 1)(–1, –½)

(1, 2)(–2, –1)

(2, ∞)(–∞, –2)
–2

–½

Figure 2.4: The mapping to projective reals of a 4-bit type II unum, showing the symme-
tries along the horizontal (negation) and vertical (reciprocal) axes [3].

tal and vertical axes of the unum representation. Take for instance the four-bit unums
depicted in Fig. 2.4. When flipping about the horizontal axis, the values are negated.
Analogously, flipping about the vertical axis results in the reciprocal value. Like type I
unums, the ubit field classifies a unum as representing an open interval (ubit = 1) between
adjacent exact points (ubit = 0).

Critique

One can imagine that the proposal of a new, alternative number representation system
that directly competes with a settled number format (the IEEE 754 floating point standard)
sprouts discussions between proponents of both number formats. Prof. W. Kahan, one
of the lead architects on the initial version of the IEEE 754 floating point standard [4], has
publicly expressed his critique on the proposed unum type II number format that includes
the concept or SORNs. His critique led to a major discussion between proponents of both
the IEEE 754 and unum number representation systems. We will now review a summary
of Kahan’s opinions and arguments as described in a document published in 2015 [5] and
presented at ARITH 23 in 2016 [6].
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The following arguments are directed towards unum type I and II (SORNs), for which
some have been addressed in the type III (posit) number format as discussed in the next
section.

• The algebraic integrity is violated with SORNs, as different expressions or the same
rational function could produce different SORN results.

• Unum computation involves a too high cost:

– The latency compared to floats is increased because of the additional unpack-
ing pipeline stages for variable-width unums.

– Fetching unums costs at least one extra indirect address reference compared to
floats due to the variable fraction and exponent sizes.

• The area cost for SORN arithmetic can be significantly large: depending on the num-
ber of available collections of SORNs, chip area might increase significantly. Arbi-
trary SORN collections would require O(23N ) area for SORNs each represented by
2N bits wide words. Schemes with pairs of N-bit pointers would needO(N × 22N ),
but this is slower. This might be good for low-precision interval arithmetic. How-
ever, low-precision interval arithmetic might not be used at all.

• The debugging of SORNs and unum arithmetic might be difficult:

– Lengthy computations with SORNs would produce too wide intervals which
are difficult to diagnose and/or resolve.

– The IEEE 754 flags are absent in SORNs and unums: wide SORNS or unums
caused by underflow or overflow would be difficult to diagnose and/or resolve
as there are no pointers to the location of the first occurrence of an exception.
Furthermore, no Not-A-Number (NaN) value exists for unums, which might
make it difficult to discover invalid operations.

2.1.3 Type III Unum (Posit)

Motivation

Although type II unums were praised for their mathematical properties, one of the biggest
drawbacks is the reliance on lookup tables in hardware implementations. For an n-bit
type II unum there is a worst-case LUT size of 22n per 2-argument function scenario [2].
As discussed in Section 1.1, one of the most desired features of a number format is to
have support for fused operations. However, type II unums prove to be unsuitable for
use in fused operations due to the fact that any unum can have a variable number of
(exponent) bits. This makes it difficult to store unums with different configurations in
one accumulator. A successor to type II unums was therefore proposed. Type III unums,
also known as posits, would take the general ideas and advantages of the type I and II
unums to a point where hardware implementations supporting posit arithmetic would
be very similar to the existing logic used for IEEE 754 floating point arithmetic [2].
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Description

Compared to types I and II unums, the scheme of posits changed drastically. The posit
format consists of the sign, regime, exponent and fraction fields.

Sign The sign bit is 0 for positive numbers and 1 for negative numbers, in which case the
2’s complement form for the remaining part of the posit has to be taken before extracting
the remaining fields.

Regime The regime field is used for calculating a scale factor k. This scale factor is
determined by the number of repetitions of the leading bit in the regime field. If the
regime field consists of leading 1’s, this number determines the value k after subtracting
1. For a number of leading 0’s, the number is negated. For example, if a 4-bit regime field
is set to 1110, then k = 2. Analogously, regime = 0001 would indicate k = −3. Therefore,
a bit that is opposite to the other leading bits terminates the regime field and marks the
first position of the next field (exponent).

Exponent Similar to the type I and II unums, the exponent field has a variable width
and determines the scaling factor 2es of the value represented by a posit. Recall that type
I unums have a dedicated field to indicate the width of the exponent field. Posits do not
require this field, as the number of exponent bits (es) is known in advance. Furthermore,
the first bit of the exponent field is located directly after the regime field (which is dynam-
ically terminated by a bit opposite to its leading bits, as mentioned above).

Fraction The remaining bits that have not been occupied by the sign, regime and ex-
ponent occupy the fraction field. The format for the fraction bits is the same as for IEEE
floating point numbers (also sometimes termed significand or mantissa). The value of the
fraction field is normalized, i.e. the represented decimal value starts with 0.xxx.

The decimal value of a posit is then calculated as
(−1)sign × useedk × 2e × (1 + f) (2.1)

where:
useed the scaling factor determined by the number of exponent bits (es), equal to 22es

k the value of the regime field
e the value of the exponent field
f the value of the fraction field

Fig. 2.5 shows the representable values for a selection of posit configurations. The
bit strings around the outside of the rings can be treated as 2’s complement integers. As
can be seen, the point where the integers transition from positive to negative values is
the same point as where the represented numbers transition from positive to negative as
well. In much the same way as the characteristics of unum type II (Section 2.1.2), flipping
a posit number around the vertical axis yields its negative value. For 0, ±∞ and powers
of two flipping across the horizontal axis yields the reciprocal.
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Figure 2.5: Representable values for combinations of nbits = 3, 4, 5 and es = 1, 2 [7].

Fused Operations

When performing any calculation on one or multiple operands, rounding is performed in
order to fit the final result back into a specific format. Intermediate rounding of results
can therefore be a source of accuracy loss. This is especially the case when calculation
results are being used as input operands for next calculations. Multiple approaches ex-
ist in order to defer the rounding of results until the very last calculation, such as the
Fused Multiply-Add (FMA) operation (refer to Section 2.5.3). The proposal of the posit
number representation system describes the concept of the quire, which can be seen as a
fixed-size scratchpad register that can be used for different operations. The size of this
scratchpad register is wide enough to obviate the need of having to round intermediate
answers. The calculation of the required quire width for a specific calculation is discussed
in Appendix B. Although the concept of scratchpad registers that can be used for fused
operations is not novel, the concept of the quire yields a slightly different approach. While
existing scratchpad registers are not controllable on the user-level, a quire unit would be
accessible by the user. Hence, the user could instantiate a quire and provide a reference
to this quire in any calculation he would like to perform without rounding of calculation
results.
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Valids

The specification for the posit number system also describes the notion of the valid mode,
representing a number range that can be used for interval arithmetic. In its simplest form,
a valid consists of two posits indicating the start and end of a bound. Valids are there-
fore useful for computations that require bounds on their results. Any loss of accuracy
is tracked, since the inaccuracy bound will increase whenever any uncertainty is added
to the overall computation. Another advantage of applying valids would be to verify the
correct numerical behavior of a program, thereby keeping track of how much inaccuracy
a program introduces in its intermediate computations [7]. The resulting bound could
therefore serve as an indication to perform calculations with higher precision in order to
decrease the error bounds for precision-critical applications.

2.2 Feature Comparison of IEEE Float and Posit

As the proposal for the posit number format advertises itself as an alternative for the IEEE
754 floating point standard, direct comparisons are often made between both number
formats. In this section we will discuss the major differences between both formats on an
architectural level. Furthermore, we take a look at past discussions between opponents
and advocates of the novel number format.

2.2.1 Not-A-Number (NaN)

The IEEE 754 standard has defined that an exceptional number (such as NaN or ±∞)
should be represented by having all exponent bits set to one [4]. The remaining sequence
of bits (fraction bits) then determines the exception cases: if the bit sequence is set to zero,
the complete bit pattern represents ±∞, depending on the sign bit. A non-zero sequence
represents NaN (as discussed in Chapter 1). The first bit of this bit string indicates the
type of NaN, which can be either quiet NaN (propagating through arithmetic operations
without an exception being raised) or signaling NaN (signaling an invalid operation excep-
tion). The remaining fraction bits are to be used as a payload, which could for example
be used to indicate where in the program the NaN has occurred. However, this is often
not used in practice as there is no user-friendly software-defined interface for program-
mers to control the payload (mantissa) field of a NaN floating point value. As the payload
field of a NaN value can yield any value, there are different implementations for several
programming languages that each have their own way of making use of the ”unused”
payload field of NaN values. This method is otherwise known as NaN boxing and is heav-
ily used in JavaScript engines, among others [8]. The idea of ”hacking” numbers via the
principles of NaN boxing draws negative feedback. John L. Gustafson for example notes
that this ”breaks just about every rule there is about creating maintainable standards” [1].

In the case of a 32-bit single-precision IEEE 754 floating point number, there are 23
fraction bits available. Since the value zero is used to represent±∞, this means that there
are 223−2 = 8 388 606 different bit patterns to represent NaN. This is approximately 0.2%
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of the total number of representations possible for a 32-bit single-precision number. One
would argue that it is a waste of bit patterns to dedicate this amount to solely represent
an invalid number.

As discussed in Section 2.1.3, the posit number format employs a different view on the
use of NaN values. Instead of encoding different types of NaN values (such as quiet or
signaling NaN), the posit arithmetic framework has no bit representations for NaN values
at all [7]. The rationale behind this is that cases where a program returns a NaN value
during or after calculation should not occur. Therefore, an interrupt should be asserted
whenever a situation arises where an invalid value is the result of a computational rou-
tine. This interrupt can be handled by the program to, for instance, run a backup routine
that acts as a ”workaround” to still be able to generate a valid outcome.

There are multiple advantages of not having to represent NaN values in a number
representation system. For example, the arithmetic hardware becomes less complex as
less checks have to be performed to identify a bit string as either a number or a special
value. Furthermore, the number of bit patterns that would have been used to represent
NaN (or any other special value) can be used to represent a bigger range of numbers. As
discussed, the 32-bit single precision IEEE 754 format has approximately 0.2% of all bit
patterns reserved for NaN values. For posits, this portion can actually be used to represent
more numbers.

2.2.2 Negative Zero and ±∞

As discussed in the analysis in Section 2.1.3, positive values change to negative values at
the same point as for 2’s complement integers. This is contrary to the IEEE 754 floating
point standard which also contains a value to represent the value negative zero. This
value is not representable in posits. Analogously, posits have a single representation for
the value ±∞ (similar to the wraparound at ±∞ shown in Fig. 2.2) whereas IEEE floats
have separate values for∞ and −∞.

2.2.3 Critique

As discussed in Section 2.1.2, William Kahan, principal architect of the IEEE 754 floating
point standard, has expressed a considerable amount of critique on the unum number
format. The posit (type III unum) format addresses multiple points of criticism from Ka-
han, including the removal of interval arithmetic using the concept of SORNs (refer to
Section 2.1.2). Furthermore, as opposed to the unum type II proposal, unum bit lengths
are not variable any more and instead calculations are performed for a pre-selected fixed
posit configuration. Kahan’s suggested alternative solution to accomplishing more reli-
able arithmetic compared to the current state-of-the-art is by investing in software support
for IEEE 754 diagnostics such as the NaN flags that point to sites where the first arithmetic
exception has occurred. As discussed earlier in this chapter, the signaling NaN values in-
tended for diagnostics purposes are often either not supported or used for other purposes.
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2.3 Posit Arithmetic Hardware Implementations
Since the initial introduction of the posit number format in mid-2017, the amount of re-
search and development related to this novel number representation has been increasing
rapidly. Starting from the introduction of the type I unum, a range of different hardware
implementations for arithmetic units have been proposed, including hardware arithmetic
implementations for the type III unum (posit). Recent developments in the design of posit
arithmetic units have resulted in a range of different approaches to implementing posit
arithmetic operations such as additions and multiplications in hardware.

The design of the posit matrix-multiply unit presented by Chen et al. [9] proves to
be a high-performance implementation of posit arithmetic, achieving approximately 10
GFlops on an IBM POWER8 platform featuring the CAPI 1.0 interface. The Coherent Ac-
celerator Processor Interface (CAPI) 1.0 interface is used to feed input data from the host
to the accelerator. In this work, a quire register (refer to Section 2.1.3) is implemented
that enables vector dot products to be performed without intermediate rounding. For the
Xilinx Virtex-7 VX690 FPGA, the reported effective performance is 16 GPOPS (Giga Posit
Operations Per Second) when streaming in posit elements and performing a multiply-
accumulate operation. This implementation is limited to 32-bit posit numbers with es = 2.

As discussed in Section 2.1.3, one of the key features of the posit number format is
the ability to adjust the total number of bits used to represent a number, along with the
amount of bits used to represent the number exponent (similar to the IEEE floating point
format). The ability to deal with posit numbers of variable-width fields becomes chal-
lenging when designing a hardware implementation of posit arithmetic due to the fixed,
static nature of hardware. Although earlier work has focused on designing posit arith-
metic units for reconfigurable logic with a configurable number of (exponent) bits using
a synthesis parameter, being able to provide accurate computation results for all input
combinations still proves to be challenging. For instance, the arithmetic hardware gener-
ator with configurable number of posit bits as proposed by [10] is not synthesizeable for
any posit configuration with zero exponent bits. Furthermore, the posit arithmetic units
presented in this work do not apply a rounding scheme. Instead, fraction values are sim-
ply truncated when normalizing to an N -bit posit word. Moreover, the presented posit
arithmetic unit implementations are not pipelined, placing an entire calculation in a sin-
gle combinational path, and as such are not directly useable in high-speed designs. For
the proposed posit multiplier with the posit<32,2> configuration, a latency of approxi-
mately 16 ns is reported for the Xilinx Virtex-6 Field-Programmable Gate Array (FPGA),
resulting in a operating frequency of 62.5 MHz.
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2.4 Alternative High-Precision Number Formats

With the IEEE 754 floating point standard being the most popular number representation
system, alternative number formats that can be used in software are often based on this
standard. The reason for this is the fact that integrated Floating-Point Units (FPUs), which
are designed specifically for performing operations on floating point numbers, exist since
the era of the x87 subset of the x86 architecture, providing an instruction set related to
performing floating point operations in hardware [11].

Number formats that are not based on the IEEE 754 floating point format often rely on
software emulation due to the lack of dedicated hardware support. Software emulation
of number representation formats often appears to be significantly slower than hardware
floating point operations, as we will see for the emulation of a posit dot product calcula-
tion discussed in Section 5.3.

In this section, we discuss a selection of alternative number formats, based on the IEEE
754 standard, that are designed to perform calculations with more decimals of accuracy.

2.4.1 Decimal Floating Point

The decimal floating-point format is part of the 2008 version of the IEEE 754 specification
[12]. The format differs from other floating point representations in the sense that the
decimal format is able to emulate decimal rounding. Hence, floating point numbers are
rounded exactly on decimals, which is often wanted in financial applications. Further-
more, the number fields are not normalized. This makes it possible for multiple repre-
sentations to exist for the same number.

The significand of a decimal floating point number can be represented by two dif-
ferent methods, being Binary Integer Decimal (BID) or Densely Packed Decimal (DPD).
However, both representations result in the same range of representable values. For BID,
the significand is represented by a positive integer in binary representation. In the DPD
representation, the significand is stored as decimal digits. Hence, in order to represent
a single decimal digit, 4 bits are required per digit. The Densely Packed Decimal (DPD)
[13] encoding is used in order to encode the digits after the most significant digit in order
to save bandwidth.

Although the decimal floating point number format proves to be useful for applica-
tions critical for exact decimal calculations, there are a number of disadvantages for using
this concept.

Hardware Support Several checks have to be performed before performing calculations.
For example, it is determined which significand representation is used. Furthermore, not
all possible combinations inside a decimal number are supported. For example, the BID
significand representation does not support significand values larger than 1034 − 1. Any
values above this limit are treated as zero. These checks need to be performed in hardware
and thus can be a source for performance issues or an increase in area usage.
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Rounding Errors Extreme rounding errors may occur. As significands do not have to be
normalized, a large error can occur when adding values with different exponents. This is
caused by the fact that the smallest number is shifted in order to match both exponents.
After addition, the result is rounded up to a fixed number of digits. As the bits truncated
in the final result are weighted by a factor of 10e, the decimal error can increase signif-
icantly. An example 7-digit calculation is depicted below, illustrating the possibility of
having large rounding errors.

1.460147 ×106 + 2.194512× 102

= 1.460147 ×106 + 0.0002194512× 106 (shift)
= 1.4603664512 ×106

= 1.460366 ×106 (round)

2.4.2 Boost Multiprecision

The Boost C++ libraries [14], a widely used set of C++ extensions, provides the Multipreci-
sion library that is designed to provide arithmetic types with a high number of decimals
of accuracy. The cpp dec float type, for instance, claims to provide at least 100 decimals
of precision. Internally, cpp dec float numbers are represented in radix-10, similar to
the decimal floating point format discussed before. Similar to IEEE 754 floating point
numbers, both infinity and NaN values are supported. As reported in the Boost docu-
mentation, multiple guard digits are implemented in order to reduce error when values
are being truncated.

2.5 Compiler Optimization

Although the semantics of the employed number representation system are of great im-
portance to calculation accuracy, it is often possible to adjust the desired level of precision
of computation results through available options that can be set at the compiler level. In
this section we will explore a selection of compiler options that can be used to control the
desired level of floating point calculation precision.

2.5.1 Optimization Level

It is often possible to choose the desired floating point semantics at compile-time of a
program by setting corresponding compiler flags. This way, the user is able to control the
level of granularity of floating point calculations to a certain degree. For the majority of the
compilers available, the amount of optimization that is performed is controlled through
the optimization level flag. For an optimization level of 0 (-O0), optimization transforma-
tions on a program are minimized. Each increasing level of optimization might improve
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Optimization Description
no-math-errno Single-instruction math operations do not set the errno (Error Number) field
unsafe-math-optimizations Arithmetic input operands and results are assumed valid without validation
finite-math-only No checks are performed for NaN or ±∞ numbers, allowing finite numbers only
no-rounding-math Assume default rounding behavior when performing optimizations
no-signaling-nans Reduced number of NaN values that would generate user-visible traps
excess-precision=fast Compute with wider precision whenever this would result in a faster program

Table 2.1: Effect of the GCC fast Optimization Level on floating point calculation seman-
tics for the GCC compiler [15].

program performance, while potentially giving in on accuracy of floating point calcula-
tions. For the GNU Compiler Collection (GCC), the optimization levels 0−3 do not affect
floating point arithmetic behavior. However, the fast optimization level does enable sev-
eral optimizations regarding floating point semantics. The optimizations that are in effect
for this mode are depicted in Table 2.1.

2.5.2 Subnormal Numbers

Arithmetic underflow can occur when a calculation result becomes smaller than the actual
representable value in a certain number representation. Depending on the distribution
of the representable numbers by a number representation system, the underflow gap be-
tween the smallest positive representable number and the smallest negative representable
number is several orders of magnitude larger than the interval of one ULP in the regu-
lar, non-overflow case. Multiple approaches to dealing with underflowing values exist.
Historically, underflow values were treated as zero. This feature, also known as Flush-
To-Zero (FTZ), is still a configurable option in common compilers through a FTZ flag. In
particular, asserting the FTZ flag flushes underflowing floating point computation results
to zero [16]. The main advantage of setting the FTZ flag is the potential performance im-
provement. As more values are treated as zero, fewer computations have to be performed.
However, this does induce a potential loss of precision, as information is being discarded.
Therefore, the flush-to-zero option gives the user control over a trade-off between pro-
gram performance and the desired level of accuracy.

An alternative to the traditional flush-to-zero behavior, the concept of subnormal num-
bers, was introduced in the IEEE 754 floating point specification and fills in the under-
flow gap described above [17]. Subnormal numbers are values smaller than the smallest
”normal” representable value in a number representation system. For the IEEE 754 float-
ing point standard, a subnormal value is indicated by setting the exponent field to the
smallest representable value. Although the mantissa of a normal floating point value is
represented by a hidden 1 bit, subnormal numbers are represented by a hidden 0 bit and
therefore allow for smaller numbers to be represented. The introduction of subnormal
numbers enables gradual underflow: instead of underflowing to zero, the nearest subnor-
mal value is used [18]. Although the process of gradual underflow induces a loss of pre-
cision, the severity of the precision loss is minimized since a flush-to-zero is avoided.



34 CHAPTER 2. BACKGROUND

2.5.3 Multiply-Accumulate

Multiply-Accumulate (MAC) is an instruction designed to compute the product of two
input numbers and add the result to an accumulated value. Hence, the MAC operation
performs the following calculation:

z ← z + x× y (2.2)

The MAC instruction rounds the result of the product (x× y) to a specific number of
significant digits, followed by an addition to the accumulated value z, after which round-
ing to a specific number of significant digits is performed again. This procedure is alter-
natively called double rounding. It is trivial to see the disadvantage of having the double
rounding scheme in place for the MAC operation. For every MAC operation, two round-
ings are performed, which can in turn cause a significant error.

As opposed to the double rounding scheme for the MAC operation, the FMA opera-
tion performs rounding only once: the complete multiply-accumulation x × y + z is cal-
culated and then rounded to a specific number of significant digits. The FMA operation
was initially introduced as part of the RISC instruction set of the IBM POWER1 processor
[19]. Subsequently, the FMA instruction has found its way into nearly all contemporary
processors. The FMA operation has been part of the IEEE 754 floating-point standard
since 2008 [12].

2.6 Measure of Decimal Accuracy
In order to express the error between a value and an exact reference value, a wide range
of measures exist. For example, the absolute error, calculated as the absolute difference
between a value and its reference, is a popular error metric. Building upon this defini-
tion, the relative error gets rid of the order of magnitude of both numbers by dividing the
absolute error by the exact value. This measure, however, is particularly unsuitable for
quantifying the number of digits that are correct between a computed and exact value,
as only a ratio is given. Furthermore, the relative error is not informative for cases when
the computed value has a different sign compared to the reference value as the absolute
value is taken.

The previously described drawbacks of the commonly used measures for error lead
to the proposal of the measure of decimal accuracy [7]. Suppose we have the true value X
and the calculated value X̃ , which for example can be the result of a calculation in float or
posit mode. We can define the decimal error as the ratio between an exact and computed
value:

decimal error =

∣∣∣∣∣log10

(
X̃

X

)∣∣∣∣∣ (2.3)
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(a) Table

Field 1 Field 2 Field 3
Row 1 1 2 3
Row 2 4 5 6
Row 3 7 8 9

(b) Regular Buffer

Row 1
1
2
3

Row 2
4
5
6

Row 3
7
8
9

(c) Arrow Buffer

Field 1
1
4
7

Field 2
2
5
8

Field 3
3
6
9

Table 2.2: Example table (a) represented in a traditional memory buffer (b) and an Apache
Arrow columnar memory buffer (c).

The decimal accuracy is then defined as a measure of the number of decimals of accuracy
and is equal to the log base 10 of the inverse of the decimal error [7]:

decimal accuracy = − log10

∣∣∣∣∣log10

(
X̃

X

)∣∣∣∣∣ (2.4)

The presented measure of decimal accuracy is able to express how many decimals in a
computed value are accurate. For example, take a computed value of 1.001 and a reference
value of 1. The decimal accuracy is then equal to approximately 3.362, indicating that
approximately 3 decimals (including non-fractional decimals) are accurate.

2.7 Apache Arrow
The Apache Arrow [20] platform is a cross-language development platform designed for
representing in-memory data. Software libraries are available for a wide range of pro-
gramming languages, among others C, C++, Java and Python. The memory layout of
Apache Arrow is designed to enable zero deserialization overhead when transferring data
among different platforms (such as the big data platform Apache Spark). As opposed to a
traditional memory buffer, Arrow buffers are organized with columnar data locality as is
illustrated in Table 2.2. Data stored in a table-like structure is stored per column instead of
per row. This brings an advantage when requesting data for a single column, as the rows
inside each column are stored consecutively, avoiding the need of requesting a column
for each row index. For the representation of data structures in Apache Arrow, a schema
is defined. A schema can contain multiple arrays. These arrays can be compared with a
table-like structure: each array represents a separate table column. Each column is char-
acterized by a number of parameters. The column field describes these parameters, and
includes the name of the column as well as the logical type that is stored in the column.
A column can be nested, i.e. it is able to hold children, which is particularly useful when
constructing structures or lists.





Chapter 3

Applications in Bioinformatics

In this chapter, we explore the feasibility of implementing posit arithmetic in the field
of bioinformatics. In particular, we explore the feasibility of applying posit arithmetic
in the evaluation of the pair-HMM model. By simulating a set of pair-HMM likelihood
computations in a software-based environment that is able to emulate the posit scheme
we obtain a first impression of the performance of the posit number format in this ap-
plication. We analyze the results of the empirical analysis in order to determine whether
implementing posit arithmetic does indeed prove to be beneficial to the overall accuracy
of pair-HMM computations. We use the measure of decimal accuracy as defined in Sec-
tion 2.6 to compare the accuracy of numbers with a higher-precision reference calculation.

First, we discuss background information in the field of bioinformatics with a focus on
the pair-HMM model. Next, we discuss past work on hardware acceleration of the pair-
HMM algorithm. The feasibility of applying posit arithmetic in the pair-HMM forward
algorithm is then explored by means of a theoretical as well as an empirical analysis of
the performance of the posit number format compared to calculations performed using
the traditional IEEE 754 floating point format.

As posits can be configured with variable number of total and exponent bits, we use
the notation posit<nbits,es> for a posit with nbits total bits and es exponent bits.

3.1 Pair Hidden Markov Model (Pair-HMM)

A Hidden Markov Model (HMM) is a discrete Markov chain that is augmented with the
concept of hidden states. The observation of a hidden state is non-deterministic: it is a prob-
abilistic function of the state itself [21]. Consider a system with N states S1, S2, . . . , SN ,
and let the state transition probability from state i to j be aij with aij > 0,

∑N
j=1 aij = 1.

This process has observable states, i.e. one is able to observe the current state and the
order of states prior to the current state. That is, at each time step one is able to observe
the current set of states.

The concept of Markov chains can be extended with the notion of hidden states: the
stochastic process is extended with a second, unobservable (hidden) stochastic process.

37
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x G T A T G A - -
y - - A T G A T A
z Ix Ix M M M M Iy Iy

Table 3.1: Example sequence observations x and y and their underlying sequence of hid-
den states z for the pair-HMM model illustrated in Fig. 3.1.

An example of a simple HMM is the observation of a coin toss result where the toss per-
formance itself is not observable. Hence, a sequence of coin tossing experiments results
in a set of outcome observations of heads and tails [22]. The previously described concept
of HMMs can again be extended by having multiple observations instead of only a sin-
gle observation. The resulting Pair Hidden Markov Model (PHMM) can be used for the
generation of probability distributions for sequences of pairs of observations. This type
of HMM is particularly useful for finding alignments between sequences, for example in
DNA analysis when matching DNA reads with a specific haplotype sequence [23].

An example of a pair-HMM model is depicted in Fig. 3.1. This model consists of three
states (Ix, Iy, M). States Ix and Iy are able to insert an (unaligned) symbol in sequence x
and y respectively, while state M is able to insert an aligned symbol pair (xi, yi) in both
sequences x and y. In this example, a direct transition from state Ix to Iy and vice versa is
not possible.

Ix
θ

ε

Iy
υ

ζ

M
α

δ

γ γ

η

βx y

Figure 3.1: A pair-HMM with 3 states. Symbols can be inserted into sequences x or y.
δ and η are the probabilities of emitting symbol x and y respectively, while α denotes
the probability of emitting two aligned symbols into sequences x and y. The remaining
symbols denote the state transition probabilities.

Let the hidden state sequence for this pair-HMM model be denoted by z. A one-to-
one relationship exists between z and the alignment of the two sequence observations x
and y. This can be illustrated as follows. Consider the two observed sequences x and y
and the underlying sequence of hidden states z depicted in Table 3.1. In this example,
symbol pairs (x3, y1), (x4, y2), (x5, y3) and (x6, y4) have been emitted by hidden state A,
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indicating an alignment of these symbols. Based on this example, in order to find the
best alignment between two sequence observations x and y we need to maximize the
alignment probability resulting from the most optimal sequence of hidden states y.

It is often meaningful to determine whether two sequences are related, and not nec-
essarily perfectly aligned. By summing over the possible state sequences we obtain the
joint observation probability as [23]:

P (x,y|t, ε, π) =
∑
y

P (x,y, z|t, ε, π) (3.1)

where:

x, y the two observed sequences
z the sequence of hidden states
t the transition probabilities
ε the emission probabilities
π the initial state probabilities

The aforementioned pair-HMM model is especially suitable in the field of genome an-
alytics, where the pair-HMM model can be used to align a read sequence against a set
of candidate haplotypes. This process is used in order to assign genotypes to potentially
variant regions. Given a set of candidate haplotypes, each haplotype needs to be evaluated
in order to determine if a haplotype is indeed matches a specific read sequence. There-
fore, the pair-HMM model can be used to align each individual read base pair against
each candidate haplotype. Along with the read data sequence, metadata such as the base
read and Insertion/Deletion (INDEL) quality scores (refer to Section 3.2) of each read de-
termines the emission and transmission probabilities used in the pair-HMM model. The
final output of the pair-HMM model then yields a likelihood of observing a specific read
given a haplotype [24].

3.1.1 Pair-HMM Forward Algorithm

The pair-HMM model as described in Section 3.1 provides a method to compute the align-
ment probability between two observed sequences. The traditional method of evaluating
the aforementioned pair-HMM model is through exploration of all possible states. The
computational complexity of this adhoc method is equal toO(nmn) [25], where n denotes
the read sequence length and m the length of the haplotype sequence to compare with.
As can be seen, the computational complexity rapidly increases for long input sequences
as the number of possible state sequences increases. One of the possibilities to calculate
the maximum alignment probability more efficiently is through dynamic programming.
The pair-HMM forward algorithm is able to compute the maximum alignment probability
of two sequences in a recursive manner. The pair-HMM forward algorithm is defined as
follows. Refer to Section 3.1 for the pair-HMM model used in the following definition.
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Define the following recursion variables:

M(i, j) = αi,j [βiM(i− 1, j − 1) + γi(Ix(i− 1, j − 1) + Iy(i− 1, j − 1))]

Ix(i, j) = θi [δiM(i− 1, j) + εiIx(i− 1, j)] (3.2)
Iy(i, j) = υj [ηiM(i, j − 1) + ζiIy(i, j − 1)]

where:

M(i, j) the combined probability of all alignments up to symbol (i, j) that end in state M
Ix(i, j) the combined probability of all alignments up to symbol (i, j) that end in state Ix
Iy(i, j) the combined probability of all alignments up to symbol (i, j) that end in state Iy
αi,j the probability of emitting two aligned symbols into sequences x and y
θi, υj the probabilities of emitting symbol xi and yi respectively
β, γ, δ, ε, η, ζ the state transition probabilities

with initial conditions:

M(0, 0) = 1 Ix(0, 0) = 0 Iy(0, 0) = 0

M(i,−1) = 0 Ix(i,−1) = 0 Iy(i,−1) = 0 (3.3)
M(−1, j) = 0 Ix(−1, j) = 0 Iy(−1, j) = 0

Then
P (x,y|t, ε, π) = M(n,m) + Ix(n,m) + Iy(n,m) (3.4)

where:

P (x,y|t, ε, π) the likelihood of sequences x and y being related
n the length of the x sequence
m the length of the y sequence

The computational complexity of the pair-HMM forward algorithm is O(nm) as this
algorithm only scales linearly with both input sequence lengths n and m. This is signifi-
cantly more efficient compared to the O(nmn) complexity of the adhoc state exploration
method described in Section 3.1. Due to the reduced complexity of the pair-HMM for-
ward algorithm compared to the regular pair-HMM model, this algorithm is suitable for
scientific computing. The pseudo code of an implementation of the pair-HMM forward
algorithm is described in Appendix A.

Preventing Underflow

The pair-HMM forward algorithm as described in this section provides a time-efficient
method for computing the alignment likelihood between an input read sequence and a
reference haplotype. The forward algorithm is therefore often applied in genome analysis
toolkits such as the Genome Analysis Tool Kit (GATK) [26]. Note that for small emission
and transition probabilities, computation results of the recursion variables as defined in
Eq. (3.2) can become very small since these calculations consist of multiple products of
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these emission and transmission probabilities. A possible consequence of computing with
relatively small values is the risk of underflow: a computation result becomes too small to
be representable in a specific number format. A common solution to prevent underflow
during computation of the recursion variables of the pair-HMM forward algorithm is the
scaling of the input values through the use of a chosen initial constant. The initial condition
M(0, 0) = 1 as defined in Eq. (3.3) can be set to a higher value (e.g. a power of 2) in
order to scale all intermediate calculations by a fixed constant, preventing underflow as
intermediate results are again representable in a specific number format [27].

3.1.2 Pair-HMM Hardware Acceleration

X

Y

Figure 3.2: Anti-diagonal
recurrence. The anti-
diagonal dashed lines
indicate computations
that can be calculated in
parallel. Dotted lines indi-
cate a data dependency.

The pair-HMM model is a widely used model for pairwise
alignment tasks that are often performed in the field of
genome analysis, as discussed in Section 3.1. An example
of such analysis toolkit is the GATK, as discussed in Sec-
tion 3.2. While the pair-HMM model has proven to be a com-
putationally well-suited algorithm, the performance can de-
crease significantly when considering large amounts of in-
put data. The pair-HMM forward algorithm as discussed in
Section 3.1.1 serves as an appropriate target for paralleliza-
tion as the algorithm accomodates a form of intra-task par-
allelism through the anti-diagonal recurrence pattern of the
pair-HMM forward algorithm.

An illustration of the anti-diagonal recurrence pattern
in the pair-HMM forward algorithm is depicted in Fig. 3.2.
In this figure, each circle represents a base pair comparison
task. The dotted arrows indicate a data dependency between
base comparison tasks. As can be seen, one is able to ex-
ploit the parallelism among cells on the same anti-diagonal,
as there are no computation dependencies among these cells.
Apart from the intra-task parallelism the forward algorithm has a form of inter-task par-
allelism on the data level in the sense that every task where two bases are compared using
the recurrence variables as described in Section 3.1.1 is independent of base comparison
tasks that are performed for other bases.

Although pair-HMMs have been implemented for different applications for over a
decade, research in accelerating the pair-HMM model through (reconfigurable) hardware
is an ongoing effort. Accelerated implementations of the pair-HMM algorithm have been
presented for Single Instruction, Multiple Data (SIMD) platforms such as Graphics Pro-
cessing Units (GPUs) [28][29]. Furthermore, recent efforts in accelerating the pair-HMM
forward algorithm show effective implementations using reconfigurable hardware such
as Field-Programmable Gate Arrays (FPGAs) [30][31][32]. The majority of past efforts of
implementing the pair-HMM forward algorithm in reconfigurable hardware exploit the
intra-task parallelism, making use of the anti-diagonal recurrence pattern of the forward
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Pass
1 2

↓ Y 1,1 2,1 3,1 4,1
1,2 2,2 3,2 4,2
1,3 2,3 3,3 4,3
1,4 2,4 3,4 4,4

X→

Figure 3.3: Mapping of 2 processing ele-
ments (highlighted as white and gray) to
base comparison tasks for a read and hap-
lotype sequence length of 4 base pairs. As
the number of PEs is smaller than the input
sequence length, two passes are required.

PE
1 2 3

↓ t 1,1
1,2 2,1
1,3 2,2 3,1
1,1 2,3 3,2
1,2 2,1 3,3
1,3 2,2 3,1

2,3 3,2
3,3

Figure 3.4: Mapping to three processing el-
ements (PEs) of two batches (highlighted
white and gray) of a read and haplotype
sequence of 3 base pairs each. One clock
cycle is represented by each row.

algorithm as depicted in Fig. 3.2. This form of parallelism is most often implemented
by an architecture based on a Systolic Array (SA). A SA consists of a network of coupled
Processing Elements (PEs) that are able to work independently on an identical computa-
tion process. For the application of the pair-HMM forward algorithm, each PE computes
one element of the match, insertion and deletion matrices of the pair-HMM model as de-
scribed in Section 3.1.1.

For the example shown in Fig. 3.2, one could implement one PE for every horizontal
cell (in theX-direction) in order to calculate the matrix elements of one anti-diagonal per
cycle update. In case a SA consists of less PEs than the largest input sequence length,
multiple passes are required in order to compute all matrix elements of the forward algo-
rithm. This is illustrated in Fig. 3.3.

Although the SA structure proves to be an effective way of parallelizing pair-HMM
forward algorithm computations in hardware, a common drawback of this structure is the
potential underutilization of resources, for example when only a part of the SA is working
on calculating the alignment probability between two pairs while the remaining PEs could
have been working on calculations for the pairs of the next alignment task already. The
pair-HMM SA design as proposed by Peltenburg et al. [31] is optimized for SA utilization
by being able to work on multiple pairs in parallel. Hence, PEs are able to work on the
next batch while other PEs might still be working on the previous batch. This is illustrated
in Fig. 3.4, where the next batch is scheduled for PEs that are done calculating matrix
elements of the previous batch.
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3.2 GATK
The Genome Analysis Tool Kit (GATK) [26] is a widely used toolkit for genome analy-
sis, mainly containing tools for genotyping and variant discovery processes. The GATK
analysis pipeline roughly consists of the following steps [33]:

1. Pre-Processing: The raw input sequence data is cleaned up based on a set of rules.
Furthermore, the sequence data is aligned to a reference genome. This step consists
of the following processes:

a) Map to Reference: Individual read pairs in the input sequence data is mapped
to a reference genome.

b) Mark Duplicates: Before the variant discovery, any read pairs that originate from
duplicate DNA fragments are tagged in order to be ignored in the variant call-
ing step. These duplicates can arise during any of the preparation steps where
DNA samples are prepared for reading.

c) Base Quality Score Recalibration: Confidence scores that are given by the se-
quencer for every DNA sample read, often represented by the Phred scale (dis-
cussed in Section 3.3.2), could contain a systematic bias. This systematic bias
needs to be corrected in order to obtain reliable quality scores that can be used
during the variant calling process.

2. Variant Discovery: Variations in one or multiple reads are identified compared to
a reference genome, generating so-called variant calls.

a) Per-Sample Variant Calling: On a per-sample basis, mutations in the input genome
are detected (called). These mutations can be either a Single Nucleotide Poly-
morphisms (SNPs), being a single base being different compared to a reference
genome, or an INDEL where a base is inserted or deleted in the input genome
compared to the reference.

b) Joint Genotyping: The variant calls produced in the previous step are collected
and passed into a joint genotyping tool. In this process, SNPs and INDELs
are collected and prepared for filtering. The result of this process is a set of
genotypes for samples of interest.

c) Variant Quality Score Recalibration: Similar to the Base Score Recalibration pro-
cess in the Pre-Processing step, the variant callset produced in the previous
steps are recalibrated in order to obtain more reliable quality scores that have
been produced by the variant caller.

3. Filtering/Annotation: By combining known information about variations in the
DNA that map to a specific disorder, filtering and annotation can be performed in
order to obtain better readable results during downstream analysis. This informa-
tion can also be combined with related metadata, resulting in additional information
compared to the raw pre-processed genome data.
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In the GATK, the HaplotypeCaller tool is used for the per-sample variant calling process
(step 2a). Regions of the input genome sequence where one or multiple variants might
be present are defined. Next, the reference haplotypes are determined. These reference
haplotypes might be a match to the region that potentially contains variant(s). For every
candidate haplotype, the pair-HMM algorithm as discussed in Section 3.1 is performed
in order to perform pairwise alignment of the haplotypes to the input genome. The al-
gorithm then returns a likelihood for each candidate haplotype. Candidate haplotypes
can be converted to a likelihood for every potential variant in the read genome. Finally,
the most likely genotype can then be assigned to the variant sample. The pair-HMM pro-
cess in the HaplotypeCaller is seen as one of the performance bottlenecks in the GATK
pipeline due to its computational complexity. Therefore, the pair-HMM algorithm is often
targeted by accelerators.

3.3 Pair-HMM in Float and Posit Representation

The decimal accuracy of the calculation results produced by evaluating the pair-HMM
model, as discussed in Section 3.1, is seen as an important factor in the process of DNA
variant calling. More accurate model evaluations could result in more accurate predic-
tions of a potentially variant site. The pair-HMM model therefore serves as one of the
potential applications where posit arithmetic could potentially improve overall decimal
accuracy. In this section, both a quantitative and an empirical analysis on the feasibility
of applying posit arithmetic in this application is performed.

3.3.1 Quantitative Analysis

We perform a theoretical analysis in order to evaluate the behavior of the posit number
format compared to the traditional IEEE 754 float format. More specifically, we will focus
on the analysis of the application of the posit number format in the pair-HMM pairwise
alignment algorithm (as discussed in Section 3.1).

Define the following variables:

n the total number of bits in a posit configuration
es the number of exponent bits in a posit configuration
k the decimal value represented by the regime field

We define the minimum representable number posmink for a given regime value k as

posmink = (22es)k−1 (3.5)

Furthermore, let fbits denote the number of fraction bits available in ann-bit posit number,
which is equal to n subtracted by the number of bits used to represent the sign, regime
and exponent:

fbits = n− kbits− es− 1 (3.6)
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where kbits denotes the number of bits required to represent a regime k (including termi-
nating bit) and is defined, according to the encoding specification of the regime field [2],
as

kbits =

{
k + 2 k ≥ 0

k + 1 otherwise
(3.7)

Then, we can define the relative change in magnitude ∆ of a posit number as the log
base 10 of the ratio between a posit value and its next representable value, where the
fraction field is increased by one Least Significant Bit (LSB), given the total number of bits
n, exponent bits es and regime k:

∆n,es,e,k = 10 log10

(
valuef=1

valuef=0

)
∆n,es,e,k = 10 log10

(
(22es)k · 2e · (1 + 2−fbits)

(22es)k · 2e · (1 + 0)

)
∆n,es,k = 10 log10(1 + 2−fbits) (3.8)

As can be deducted from the combination of Eq. (3.6), Eq. (3.7) and Eq. (3.8), the rela-
tive change in magnitude of a posit number is dependent on its regime k. It is therefore
imperative to observe the posit number spectrum at specific boundary conditions. There-
fore, we observe the following:

Observation 1 Let p be a number representing an emission or transmission probability used
in the pair-HMM forward algorithm, where 0 ≤ p ≤ 1. Then, the regime value k of a posit
representing p satisfies k < 0.

As described in Observation 1, any posit number p representing a probability score in
the pair-HMM application is within the range 0 ≤ p ≤ 1, which implies the regime value
k is negative. Hence, we focus our analysis on situations for negative regime values. We
compare the relative change in magnitude ∆ between posit values (for regime k < 0) and
the IEEE 754 float number format in the same value range of 0 ≤ p ≤ 1.

The relative change in magnitude of a 32-bit IEEE 754 floating point number can be
defined as:

∆float = 10 log10

(
1 + 2−fbits

)
= 10 log10

(
1 + 2−23

)
≈ 5.1772× 10−7 (3.9)

Note that this value is constant: the number of fraction bits in the float format is fixed
and equal to 27 [4].

In Fig. 3.5, the relative change in magnitude for the posit<32,2> and posit<32,3>

number based on Eq. (3.8) is compared against the (constant) relative change in magnitude
for the float format for different values of the scale. The scale represents the factor 2k used
in the conversion of a posit and IEEE 754 floating point format.
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Figure 3.5: Relative change in magnitude for posit<32,2>, posit<32,3> and float.

For a posit value, the scale is calculated based on the regime and the exponent of
the posit value. Since the regime value accounts for a factor of (22es

)regime (where es de-
notes the configurable size of the exponent field) and the exponent value adds a factor of
2exponent, combining these factors results in the following scale factor [34]:

scale = (22es
)regime × 2exponent = 22es×regime+exponent (3.10)

For a IEEE 754 floating point value, the scale is equal to the factor 2exponent−127 and
thus only depends on the exponent.

As can be concluded from Fig. 3.5, the relative change in magnitude for a posit number
decreases for higher values of the scale. This can be explained by the fact that for values
of the scale closer to 0, less bits are required to represent the regime k (refer to Eq. (3.7)),
in which case more fraction bits are available to represent a wider range of fractions. Al-
though a smaller change in magnitude for values of the regime k close to 0 is beneficial for
minimizing decimal accuracy due to rounding errors, the minimum representable value
increases (Eq. (3.5)). The relative change of magnitude of the posit<32,2> format be-
comes lower than the relative change in magnitude of float for scale values greater than
or equal to −20. The relative change in magnitude for a posit<32,3> number is lower
compared to the float format for scale ≥ −32.

Summary

The analysis performed in this section focused on the measure of relative change in mag-
nitude. For this measure, we have performed a comparison between the posit and IEEE
754 floating point number format. A small relative change in magnitude for an increment
of one LSB in a number fraction is considered beneficial for reducing errors in decimal
accuracy, as rounding errors are less penalized when contributing to an overall result. At
the same time, the minimum representable number is desired to be as small as possible
since lower probabilities (in the case of the pair-HMM forward algorithm) can then be
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represented. For the posit number format, both measures are controlled by the regime
value and the exponent. For the representation of probabilities, the combined scale is
negative in order to represent values between 0 and 1. However, the relative change in
magnitude depends on the overall scale value as can be seen in Fig. 3.5. From this we
can conclude that values exist that would induce less rounding error when representing
the value in the posit<32,2> or posit<32,3> formats compared to the IEEE 754 float

format, depending on the value of the regime and exponent.

3.3.2 Phred Scale

The Phred scale is a widely used scale for representing probabilities and confidence scores.
In particular, the Genome Analysis Tool Kit (GATK) (as discussed in Section 3.2) uses
this scale for representing a wide variety of probabilities and scores. Moreover, the read
quality of DNA sequencing data, which is often represented by the Phred scale, is used
heavily in the pair-HMM model for pairwise alignment.

Background

DNA reads that are performed by a DNA sequencer assigns individual scores to each base
call, called the base quality score. These scores indicate the level of confidence for a specific
base read. These scores are often represented in the Phred scale. Similar to the base qual-
ity scores, the variant quality score estimates the level of confidence of a variant call. Variant
calling is a process where variants are being identified between a reference genome and
a given sample. In this case, the Phred-scaled variant quality score determines the level
of confidence that the variant has indeed been correctly detected.

The Phred quality score is based on a logarithmic scale, and is calculated based on the
error probability. Let E be the error probability (0 ≤ E ≤ 1) that is to be represented in
the Phred scale. The Phred quality score Q is then defined as:

Q = −10 logE (3.11)

According to the characteristics of this definition, a high quality score Q indicates a
small error probability, i.e. a read or variant call has been correctly determined. Con-
versely, low quality scores indicate a possibly erroneous read or variant call. Table 3.2
shows a range of sample Phred-scaled quality scores and their associated error probabil-
ity. As can be seen, a Phred quality score ranging between 20 and 50 yields an accuracy
between 99% and 99.999%.

Analysis

As we explore the feasibility of implementing posit arithmetic in the pair-HMM forward
algorithm, it is of interest to compare the accuracy of the conversion of Phred-scaled scores
to error probabilities for both the posit number format and for the IEEE 754 floating point
type.
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Q E 1−E

10 1/10 10% 90%
20 1/100 1% 99%
30 1/1000 0.1% 99.9%
40 1/10000 0.01% 99.99%
50 1/100000 0.001% 99.999%

Table 3.2: Example Phred-scaled quality scores and their associated error probability.
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Figure 3.6: Decimal Accuracy for the conversion to error probabilities of Phred-scaled
quality scores ranging from 1 to 100 for float, posit<32,2> and posit<32,3>.
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Fig. 3.6 shows the decimal accuracy when converting a Phred quality score ranging
from 1 to 100 to an error probability through the formula P = 10−Q/10. The reference cal-
culation performed in order to determine the decimal accuracy of the different number
formats is performed in a 100-decimal accuracy number format using the Boost Multi-
precision C++ library, providing a number type with a customizable number of decimal
digits of precision at compile-time [35]. The decimal accuracy of these conversions are
compared for the float format against the posit<32,2> and posit<32,3> posit formats
respectively. As can be seen, the conversion of Phred scores to error probabilities using
the posit<32,2> format results in approximately one more decimal of accuracy for scores
ranging from 1 to 40, with decimal accuracy performing similar or worse in the range be-
tween 60 and 100. Since a typical score of a read ranges between 2 and 40 [36], these results
prove that the posit format with 32 bits and 2 or 3 exponent bits could be an effective alter-
native to floats in order to represent error probabilities associated with the Phred quality
score.

3.3.3 Pair-HMM Forward Algorithm

In order to explore the feasibility of applying posit arithmetic in the application of the
pair-HMM forward algorithm (Section 3.1.1) and to benchmark its decimal accuracy by
comparing to traditional IEEE 754 floating point calculations, a software implementation
of the pair-HMM forward algorithm is developed that is able to perform all arithmetic op-
erations using posit arithmetic using a well-established external library for posit number
emulation [34]. A pseudo-code of this implementation is depicted in Appendix A. The
source code is hosted open source [37]. The pair-HMM forward algorithm application is
also benchmarked for the IEEE 754 32-bit float format in order to compare computation
results for posits against regular floats.

Note that the test dataset for the analyses performed in the next sections are based on
randomly generated emission and transmission probabilities (refer to Section 3.1). In or-
der to obtain a fair benchmark between the float, posit<32,2> and posit<32,3> number
formats, the probabilities for this test case are generated in such a way that the exact rep-
resentation of each number is equal for all three number formats. The benchmark can be
considered fair in the sense that different number representations should not have a head
start during a decimal accuracy measurement for a specific application (in this case, the
pair-HMM forward algorithm). Any head start could potentially be caused by the fact that
one representation might be better at representing a specific random number compared
to other representations. By ensuring the randomly generated number can be exactly rep-
resented in every candidate number format, accuracy loss caused by the representation
of initially random numbers is omitted.

Initial Scaling Constant Dependency

As described in Section 3.1.1, a computational implementation of the pair-HMM forward
algorithm often scales input values with a fixed initial constant in order to prevent un-
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Figure 3.7: Comparison of decimal accuracy for the evaluation of the pair-HMM forward
algorithm for different values of the initial scaling constant.

derflow in intermediate stages of computation. In order to determine the value of these
initial constants, one has to take into account the number format that is used to represent
intermediate numbers.

Fig. 3.7 shows the decimal accuracy when computing the likelihoods through the pair-
HMM forward algorithm with the float, posit<32,2> and posit<32,3> number formats
for a range of different initial constants that are used to initialize the computation matrices.
This figure illustrates that the IEEE float format achieves a stable decimal accuracy of
approximately 7.6 for this range of initial constants and for this particular test case. From
the benchmark we can deduce that posit<32,2> achieves better decimal accuracy for all
initial constants lower than approximately 230 when comparing with float. Furthermore,
the posit<32,3> type (where we increased the number of dedicated exponent bits by one)
outperforms the float type in terms of accuracy for initial constant lower than 240. For
both posit number configurations, the decimal accuracy is improved by 1.5 decimals in
the most optimal case for an initial scaling constant of approximately 215.

The reason for the reduced decimal accuracy for higher initial constant values can be
explained as follows. In the example above, the traditional float format is replaced by
a 32-bit posit number type with, for example, 2 exponent bits. Assume an initial scaling
constant set at 2100. In order to convert an initial constant set at 2100 to a posit<32,2> en-
vironment, we calculate how many regime bits are required. Since 2100 = 1625 = useed25

(for useed = 22es = 222 = 16), this value fits entirely in the regime field. In order to encode
the value 25 in the regime, 27 regime bits are needed (refer to Section 2.1.3). Taking into
account the remaining bits needed for the sign and exponent, this will leave us with only 2
bits left for the fraction. Naturally, this will result in poor decimal accuracy of any further
calculations using this number.
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Figure 3.8: Decimal accuracy of pair-HMM forward algorithm calculations for
posit<32,2> and posit<32,3> compared to the decimal accuracy of calculations with
the float type. X and Y denote the read and haplotype input sequence lengths respec-
tively.

Overall Decimal Accuracy

Fig. 3.8 shows the decimal accuracy for the pair-HMM likelihood computation for differ-
ent lengths of the read (X) and haplotype (Y) sequences. As can be seen, the decimal
accuracy of the computation results is dependent on the input sequence lengths. This can
be explained by the fact that longer input data sequences result in longer chains of calcu-
lations that depend on previous calculations. Therefore, the decimal accuracy generally
decreases for longer calculations. Typical values for the length of read sequence lengths
(X) average around 35 base pairs per read sequence [38]. Therefore, on the basis of the
performed evaluation there is reason to believe that the posit number format could in-
deed be a worthy successor to the traditional IEEE 754 floating point format, costing the
same number of bits, for evaluating the pair-HMM forward algorithm.





Chapter 4

Framework for Hardware Posit
Arithmetic

The existing efforts to implement posit arithmetic hardware do not fulfill our require-
ments for applying posit arithmetic in hardware accelerator designs, as discussed in Sec-
tion 2.3. For example, recall that existing units either (1) were not optimized for provid-
ing accurate answers by, for example, not applying any rounding scheme, or (2) were not
designed for high-speed applications as the implementation consists of a single combina-
tional path.

The aforementioned limitations in the state-of-the-art in hardware implementations
for posit arithmetic lead to the proposal of a novel posit arithmetic framework that is
designed to explore the potential use cases of applying posit arithmetic in hardware ac-
celerators. This framework can be used to perform posit arithmetic in hardware without
intermediate normalization of computation results, resulting in more accurate final an-
swers. The posit adder, multiplier and accumulator units presented in this work therefore
take the characteristic fields that represent a posit number as input instead of a serialized
posit word. A posit normalization unit is able convert the unrounded regime, exponent
and fraction fields to a traditional posit word whenever desired. Furthermore, a rounding
scheme is applied in order to take into account bits that are truncated in the normaliza-
tion process. In order to integrate posit arithmetic units into high-speed accelerators, the
arithmetic units are pipelined such that the arithmetic units do not violate any timing
constraints imposed by the interface between the host and accelerator.

This chapter is structured as follows. In Section 4.1 we will discuss the overall design
of the arithmetic framework, including a detailed description of its individual compo-
nents. The hardware implementation of the described framework in reconfigurable logic
is discussed in Section 4.2, followed by an evaluation of the accuracy of the calculation
results and its performance in Section 4.3. This chapter is concluded with a recap on the
achieved results and relevant recommendations are discussed in Section 4.4.
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Figure 4.1: Schematic overview of the in- and output products for the proposed posit
extraction unit.

4.1 Framework Design
The posit arithmetic framework presented in this work is built around the following three
steps:

1. Extraction: extract the posit characteristics (sign, regime, exponent, fraction, infinite/zero)
from an N -bit input word

2. Operation: perform an operation on the extracted posit fields

3. Normalization: normalize the output posit fields back into an N -bit posit word

The advantage of separating the extraction, operation and normalization steps be-
comes apparent when performing multiple arithmetic operations on a posit number, with-
out having to normalize the result after every operation. Therefore, any loss of precision is
averted. Based on this advantage, we propose a posit adder, accumulator and multiplier
that take extracted posit fields as an input instead of an N -bit posit word that needs to be
extracted (or unpacked) first. This allows us to feed in results from a previous addition
or multiplication without having to normalize back and extract again the intermediate
results.

In the next parts of this section, we will discuss the individual steps of the data flow
described above, along with the behavior of the supported posit operations that are im-
plemented.

4.1.1 Posit Extraction

The posit extraction unit converts an N -bit posit word to a data structure containing the
characteristic fields of the posit operand. For both input operands the sign, scale and
fraction bits are extracted. The scale serves as a scaling factor that is calculated based on
the regime and the exponent of the input operands. Since the regime value accounts for a
factor of (22es

)regime (where es denotes the configurable size of the exponent field) and the
exponent value adds a factor of 2exponent, combining these factors results in the following
scale factor for a posit<nbits,es> number [34]:

scale = (22es
)regime × 2exponent = 22es×regime+exponent (4.1)
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Figure 4.2: Schematic overview of the in- and output products for the proposed posit
normalization unit.

For storing the separate fields of a posit, the base of 2 is made implicit. Therefore,
the scale value represents the value 2es × regime + exponent. Since the maximum value
represented by the regime field is equal to nbits− 2 and 2es− 1 for the exponent, the total
number of bits required to represent any scale is equal to

scale width = dlog2 (2es × (nbits− 2) + 2es − 1)e (4.2)
= dlog2 (2es × (nbits− 1)− 1)e (4.3)

Based on this, in order to represent the full characteristics of a posit value, the sign,
scale, fraction and infinite/zero status flags are extracted. The overall schematic overview
of the posit extraction module is depicted in Fig. 4.1. The bit field widths of each field for
the different values are derived in Appendix B.

4.1.2 Posit Normalization

In order to convert the internal structure of posit fields back into a regular posit word
(including the unrounded fraction), normalization needs to be performed.

Normalization of an addition, accumulation or multiplication result induces a loss in
decimal accuracy as a part of the fraction field is truncated. Since the fraction of an N -bit
posit number can be up to (N− es− 2) bits wide (including hidden bit), integer addition
or multiplication of the two operand fractions results in a larger fraction. Therefore, this
number will be truncated when included in the final N -bit product posit. The number of
bits that are truncated depends on the number of bits discarded in order to represent the
regime and the exponent in the final posit number.

In order to preserve as much decimal accuracy as possible, a rounding scheme is im-
plemented. The rounding scheme implemented for the proposed arithmetic units is round
to nearest, tie to even. This rounding scheme is chosen as being the only rounding mode
available for the posit scheme [7], and is chosen as default rounding scheme for the IEEE
float format. Rounding is thus performed to the nearest value. Consequently, all fraction
bits that are discarded (in order to fit the final result in an N -bit value) are used to deter-
mine whether a value has be rounded. For a tie (midway value), the value is rounded to
an even number, i.e. the Least Significant Bit (LSB) is zero. The posit adder and accumu-
lator units, described later in this section, are able to assert a truncated flag whenever bits
need to be truncated in order to match the scales of both input operands. This flag is also
taken into account by the rounding scheme implemented in the posit normalization unit.
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Figure 4.3: Schematic overview of the in- and output products for the proposed posit
adder and multiplier.

The scale field of the input posit structure is used to determine the regime and ex-
ponent for the resulting N -bit posit number. The regime is calculated as scale/2es, while
the exponent is determined by the remainder (scale mod 2es). The combination of ex-
ponent and fraction is shifted right by the amount of bits needed to represent the final
regime. After the packed regime, exponent and fraction have been obtained, rounding
is performed when needed by adding 1 LSB to this result. Finally, in case the sign of the
final posit number is negative, the 2’s complement of the regime, exponent and fraction
are determined.

4.1.3 Posit Adder

After normalization of any N -bit input operands, the extracted posit fields can be passed
to a posit adder, along with a start signal that validates the output results as they are
propagated through the adder. A summary of the step-by-step operations in the posit
adder design is as follows:

1. As a preparation before performing the actual posit addition, the hidden bit is prepended
to the input fraction fields.

2. In order to match the scale (as defined in Eq. (4.1)) of both operands, the smallest
operand needs to be shifted right in order to match the scale of the largest operand.
Therefore, the largest and smallest operands are determined. The smallest operand
fraction is shifted right by the difference between both operand scales.

3. In the aforementioned process, the fraction field of the smallest operand might lose
bits due to the shifting performed in order to match both operand scales. A trun-
cated flag is asserted by the adder that can be used by the normalization unit when
performing the rounding of the truncated sum fraction (described in Section 4.1.2)
whenever a result needs to be normalized.

4. Both operand fractions are added (or subtracted for unequal operand signs) using
an unsigned integer adder.
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Figure 4.4: Schematic overview of the in- and output products for the proposed posit
accumulator.

5. After detecting the location of the hidden bit in the sum, the fraction sum is nor-
malized by shifting left until the normalized form 1.xxx is reached. The sum scale,
which is set at the scale of the largest input operand, is updated accordingly.

The resulting posit sum, consisting of a structure of the unrounded scale and fraction
fields (among others), can then be used as an input operand for next operation(s) or can
be normalized back into a regular N -bit posit word through the posit normalization unit
described in Section 4.1.2.

4.1.4 Posit Multiplier

Similar to the posit adder, the posit multiplier unit performs a multiplication operation
on two posit operands, producing a set of fields which represents the unrounded posit
product. A summary of the operations for the posit multiplier is as follows:

1. The fraction field of the input posit operands are multiplied using an unsigned in-
teger multiplier.

2. The scale of the output product, as defined in Eq. (4.1), is determined by adding the
scales of both input operands. This scale is increased by 1 in case of an overflow in
the fraction multiplication.

3. The resulting product fraction is shifted in order to obtain the normalized form
1.xxxx.

The posit multiplier returns a structure of the unrounded scale and fraction fields,
among others. This structure can be used as an input operand for next operation(s) or can
be normalized (or packed) into a regular N -bit posit number using the proposed posit
normalization unit.

4.1.5 Posit Accumulator

The posit adder described in Section 4.1.3 is designed to calculate the sum of two N -bit
input posit words. Recall that the fraction of the smaller input operand is shifted in order
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Figure 4.5: Schematic overview of the posit wide accumulator, consisting of a posit adder
module with the accumulated looped back as an input operand.

to match the scale of both input operands. It is therefore possible that one or multiple
fraction bits of the smaller operand are discarded before the fraction addition step is be-
ing performed. This is undesirable when designing an implementation that is optimized
in terms of achievable decimal accuracy.

In order to avoid any input information to be discarded, the posit wide accumulator
as depicted in Fig. 4.4 is proposed. The wide accumulator consists of a posit adder that
is similar to the design proposed in Section 4.1.3, but differs in the fact that the adder
only takes one posit input. The second input consists of the sign, scale and fraction of
the accumulated number so far, which is the result of the accumulator looped back to the
input port. This is illustrated in Fig. 4.5. Note that the looped back accumulated fraction is
not normalized and consequently contains all bits resulting from the sum with the input
posit operand, preserving the input information. The output of the wide accumulator
consists of the posit fields of the accumulated number. This output can, for example, be
directed to a posit normalization unit (refer to Section 4.1.2) to obtain a regularN -bit posit
number.

4.2 Hardware Implementation

The design of the novel posit adder, accumulator and multiplier as described in Section 4.1
are implemented in reconfigurable hardware for the posit<32,2> and posit<32,3> con-
figurations. The target FPGA for this implementation is the Xilinx Kintex R© UltraScaleTM

XCKU060. Area utilization for the different implementations can be found in Table 4.1.
For the accumulator, two separate designs are implemented in order to accumulate either
regular values, or values coming from a multiplier (which have twice as many fraction



4.3. EVALUATION OF FRAMEWORK ACCURACY & PERFORMANCE 59

Implementation
posit<32,2> posit<32,3>

LUTs Registers LUTs Registers
Extractor 236 0 236 0

Adder (4-stage) 331 241 325 245
Adder (8-stage) 385 287 373 374

Accumulator (Regular) 2311 2437 4014 4029
Accumulator (Product) 2409 2479 4252 4070

Multiplier (4-stage) 80 254 78 252
Normalizer (Regular) 246 0 218 0

Normalizer (Accumulated Value) 290 0 905 0
Normalizer (Accumulated Product) 306 0 1090 0

Standalone Adder (4-stage) 1151 230 1141 262
Standalone Adder (8-stage) 1095 382 1095 380

Standalone Multiplier (4-stage) 963 225 864 226

Table 4.1: Area utilization for the implementation of the posit adder, accumulator and
multiplier designs discussed in Section 4.1.

bits compared to a regular posit number). Multiple implementations are also considered
for the posit normalizer unit as different inputs can be accepted, such as a regular posit
value, an accumulated value or a product. As there are use cases where a single operation
is performed on arithmetic numbers, standalone posit arithmetic units are also consid-
ered. These standalone units consist of the extraction, operation and normalization steps
combined in one unit.

One of the conclusions that can be made from the utilizations reported in Table 4.1
is the fact that the accumulator implementation LUT usage is approximately 6.5× and
12.5× higher compared to the regular adder design for 2 and 3 exponent bits respectively.
This can be explained by the fact that in this design, wider fraction fields are maintained
while accumulating (refer to Appendix B), without truncating any intermediate result.
Therefore, a tradeoff exists between the amount of area used and the degree of precision
that is required in a specific application. One could opt for a simple accumulator built
using the regular posit adder design with the output looped back to one of the inputs
instead. This would save on resources but gives in on achievable decimal accuracy, as
will be shown in the next section.

4.3 Evaluation of Framework Accuracy & Performance

As the discussed posit arithmetic framework is designed with decimal accuracy in mind,
a benchmark is performed in order to measure the amount of decimal accuracy achieved
compared to related implementations. Furthermore, the performance achieved by the
individual components presented in this framework is quantified.
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Figure 4.6: Decimal accuracy of an accumulation of 300 incrementing fractional numbers
for a 32-bit posit number format with 2 and 3 exponent bits, respectively.

4.3.1 Decimal Accuracy

We compare the results of the novel posit arithmetic unit designs with a reference cal-
culation performed by software using the Boost multiprecision library [35], capable of
performing calculations with at least 100 decimals of accuracy. In order to quantify the
accuracy of the proposed arithmetic units, the definition of decimal accuracy as discussed
in Section 2.6 is used. This calculation is also performed based on a 100-decimal precision
reference calculation. Furthermore, the decimal accuracy results are evaluated for the
accumulator described in this work (Section 4.1.5), as well as for an accumulator that is
implemented using the posit adder design as presented by Jaiswal et al. [10] (discussed in
Section 2.3). In order to perform a more ”fair” comparison, results are also shown for the
accumulator built with a single posit adder unit from this work where extraction, addi-
tion and normalization are performed in each cycle. Hence, the wide unrounded fraction
fields are omitted in this design.
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Fig. 4.6a shows the decimal accuracy of an accumulation of the first 300 smallest repre-
sentable fractions for a posit<32,2> configuration. As can be seen, the decimal accuracy
of the accumulator built with the traditional adder presented in this work is improved
by approximately 1 decimal of accuracy for the final (rightmost) result, when comparing
to the accumulator built with the adder presented by [10]. Using the wide accumulator
presented in this work results in an improvement of more than 2 decimals of accuracy
compared to the results of the alternative implementation by [10], and a tight 1 decimal
of accuracy improvement toward the adder presented in this work.

Similar to the results for a posit<32,2> configuration, the decimal accuracy of an accu-
mulation of posit<32,3> fractions is depicted in Fig. 4.6b, showing similar improvement
in decimal accuracy for the accumulator design presented in this work. It can be noted that
the decimal accuracy results of the wide accumulator and the accumulator built with a
regular posit adder lie closer towards each other for the posit<32,3> configuration com-
pared to the previous results for posit<32,2>. This can be explained by the following
observation. Increasing the number of exponent bits by one unit yields a quadratic in-
crease of useed, i.e. changing the number of exponent bits from 2 to 3 changes useed from
16 to 256. Recall that the smallest representable number for a specific posit configuration
is calculated as follows [2]:

minpos = useed2−n = 22es(2−n) (4.4)

Based on this equation, switching from 2 to 3 exponent bits results in a change in the
smallest representable number from approximately 10−37 to 10−73 for 32-bit posit num-
bers. At the same time, as bits are occupied in order to represent the exponent, less fraction
bits are available. This reduces the achievable dynamic range of a specific posit configu-
ration. It is trivial to see that these two implications are the explanation for the fact that
less decimal accuracy is lost due to rounding errors (which could modify a calculation
result by at most one bit), since one LSB will represent a considerably smaller number as
the number of exponent bits in the posit configuration increases.

4.3.2 Performance

For each unit presented in this work, the maximum achievable performance in Posit Op-
erations Per Second (POPS) is depicted in Table 4.2. The target FPGA used for these mea-
surements is the Xilinx Kintex R© UltraScaleTM XCKU060 FPGA. The proposed implemen-
tations achieve a performance of approximately 250 MPOPS for addition, 160 MPOPS for
multiplication and 180 MPOPS for accumulation operations. Although measures of per-
formance are highly dependent on the target platform, the implementation in this work
shows to be more suitable in high-speed applications compared to related work. For ex-
ample, the posit arithmetic units proposed by Jaiswal et al. [10] have a latency of approx-
imately 12.5 ns (80 MPOPS) and 12.9 ns (77.5 MPOPS) for addition and multiplication op-
erations respectively for the same FPGA that is used for this implementation. From this
we can deduce that the implementation presented in this work achieves a speedup of over
2× compared to the latest related work in posit arithmetic hardware development.
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Hardware Implementation posit<32,2> posit<32,3>

Adder (4-stage) 229.62 MPOPS 283.53 MPOPS
Adder (8-stage) 223.66 MPOPS 261.51 MPOPS

Accumulator (Regular) 186.36 MPOPS 171.44 MPOPS
Accumulator (Product) 186.36 MPOPS 175.04 MPOPS

Multiplier (4-stage) 158.05 MPOPS 166.20 MPOPS
Standalone Adder (4-stage) 150.46 MPOPS 151.29 MPOPS
Standalone Adder (8-stage) 170.42 MPOPS 162.28 MPOPS

Standalone Multiplier (4-stage) 158.83 MPOPS 152.51 MPOPS

Software Emulation posit<32,2> posit<32,3>

Addition 0.1006 MPOPS 0.1004 MPOPS
Multiplication 0.0177 MPOPS 0.0173 MPOPS

Table 4.2: Computation performance in MPOPS of the units presented in the posit arith-
metic framework, as well as for posit operations computed by means of posit emulation
through an external library for the platform described in Section 4.3.2.

Table 4.2 also shows performance measurements in software for performing posit
arithmetic operations using an external posit emulation library [34]. These measure-
ments have been performed on an Intel R© Xeon R© E5-2680 v4 CPU running at 2.4 GHz
with 192 GB RAM and is averaged over 100.000 unique calculations. Based on these
numbers, an average speedup of 2500× is achieved for calculation in hardware versus an
emulation through software. It is imperative to acknowledge the fact that this speedup
calculation is only a rough estimate: a performance comparison between software and
hardware is highly dependent on the target platform. However, these results do indicate
the advantage of performing posit arithmetic in hardware opposed to performing only an
emulation of the posit number representation system in software.

4.4 Summary

In this chapter we proposed a novel framework for performing posit arithmetic optimized
for decimal accuracy. In order to perform high-precision posit operations, a posit extract
module extracts, or unpacks, the properties of an input posit number. Consequently, ad-
dition and multiplication operations can be performed without rounding off intermediate
results. Instead, a final posit normalization unit can be used in order to convert the inter-
nal memory layout of the unrounded result back to a regular posit number. This way, we
minimize loss of decimal accuracy that might occur through intermediate calculations.
Together with the aforementioned advantages, implementing the round to nearest, tie to
even rounding scheme in the posit normalization unit of this work results in more accu-
rate computation results as fraction bits that are about to be discarded in the final result
are taken into account when determining the final posit word.
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Based on the discussed results regarding accuracy and performance in Section 4.3.2,
several conclusions can be made. Regarding decimal accuracy of calculation outcomes,
a major improvement in decimal accuracy is observable when comparing with related
work such as [10]. For example, it is shown that the implementation of the posit accumu-
lator unit yields an improvement of approximately one decimal of accuracy compared to
accumulation using the regular posit adder presented in this work. Furthermore, approx-
imately two more decimals of accuracy are achieved when comparing our results to the
alternative implementation presented by [10].

The implementation of the designs presented in this work achieve approximately 250
MPOPS for addition, 160 MPOPS for multiplication and 180 MPOPS for accumulation
operations. Although measures of performance are highly dependent on the target plat-
form, the implementation in this work shows to be more suitable in high-speed applica-
tions compared to related work where, for example, single-cycle implementations have
been developed.

Although increased decimal accuracy is achieved, there are also limitations with re-
spect to area usage. As discussed in Section 4.2, implementing a wide accumulator that
is designed to accumulate posit numbers without intermediate fraction rounding results
in a 6.5 to 12.5× increase in area usage for 2 and 3 exponent bits respectively when com-
paring with the regular adder design presented in this work.

The added value of the proposed arithmetic framework becomes apparent in the next
chapters where practical examples of the application of the presented posit arithmetic
building blocks will be shown.





Chapter 5

Posit Vector Arithmetic Accelerator

In this chapter, we discuss the implementation of an accelerator for performing Level 1
BLAS operations on posit column vectors, connected through the Coherent Accelerator
Processor Interface (CAPI) SNAP framework and able to read input column vector data
using the Apache Arrow in-memory data platform. The Apache Arrow platform, format
and its advantages and/or disadvantages are discussed in Section 2.7.

The main goal of the proposed posit arithmetic accelerator design is to accelerate com-
mon operations on column vectors, also known as Level 1 Basic Linear Algebra Subpro-
grams (BLAS), for vectors consisting of posit numbers. Level 1 BLAS vector operations
consist, among others, of the element-wise vector addition or subtraction and multipli-
cation operations, including element-wise operations with a scalar operand, returning a
result vector. Furthermore, common linear algebra operations are the vector dot product
and vector sum aggregation operations that transform one or multiple (variable length)
vectors into a single, scalar posit value.

First, we discuss the design of the posit arithmetic accelerator in Section 5.1. The
synthesized implementation of this design, as discussed in Section 5.2, is then evaluated
based on performance and accuracy in Section 5.3. This chapter is then summarized and
future work regarding the implementation presented in this chapter is discussed in Sec-
tion 5.4.

5.1 Accelerator Design

The proposed posit arithmetic accelerator is designed with modularity and usability in
mind. As different vector operations are supported, the number of input vectors is vari-
able, as well as the type of output, being either a scalar value or a vector. The different
vector operations can be combined in order to implement a specific algorithm. An exam-
ple algorithm (the Gram-Schmidt process) is discussed in Section 5.3.2.

The input posit vectors for this accelerator design are represented in the Apache Ar-
row in-memory format. Therefore, the accelerator should be able to retrieve the input

65
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Figure 5.1: Schematic overview of the data flow for the posit vector arithmetic accelera-
tor, starting from the input vector representations in Apache Arrow. Each component is
annotated with the operations this component is used for.

vectors from this format. The CAPI SNAP platform is used in order to interface between
host memory and the accelerator. In order to retrieve data stored in the Apache Arrow
format, the Fletcher framework is used [39]. This framework is designed for integrating
FPGA accelerators with Apache Arrow. For the posit arithmetic operations performed in
this accelerator, the arithmetic framework as described in Section 4.1 is implemented.

A schematic overview of the accelerator structure is depicted in Fig. 5.1, along with
annotations of which components are used for each supported vector operation. The gen-
eral behavior of the accelerator during the process of performing a vector operation can
be described as follows. For each input vector, one column reader is instantiated in order
to read the input vector elements. These column readers are provided by the Fletcher
framework [39]. A column reader enables reading from an Apache Arrow column buffer.
As the accelerator is designed to accept two input vectors, one column reader is instanti-
ated per posit input vector. In this design, the vector elements are stored into one FIFO
component for each vector, which has two advantages. First, we are able to keep receiving
vector elements while performing the desired vector arithmetic operation. Secondly, the
posit arithmetic units are fed with one unique input element every cycle. Hence, the FI-
FOs act as a buffer to compensate for the potential irregular output of the column readers.

As part of the initialization of the accelerator, the Arrow buffers containing the in-
put element vectors are initialized with the input data. Consequently, the addresses of
these buffers are communicated to the accelerator through Memory Mapped Input/Out-
put (MMIO) registers. The column readers are then able to access the element vectors
located inside these buffers. After instantiation of the Arrow buffers containing the input
vectors for the accelerator, the host is able to start the accelerator. Subsequently, the ac-
celerator FIFOs are filled with vector elements produced by the column reader. The FIFO
outputs are connected to posit extraction units, extracting the fields of the input posit
elements (refer to Section 4.1).
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Depending on the desired vector arithmetic operation, the extracted posit fields of
both vector elements serve as operands to a posit multiplier or adder. For a vector addi-
tion/subtraction or multiplication, the resulting sum or product directly serves as one of
the elements in the final result vector (see Fig. 5.1). In case of a posit dot product calcu-
lation, the unrounded multiplication result is passed to an accumulator unit that is able
to accumulate unrounded posit products (Section 4.1.5). This process is repeated until all
elements of both vectors have been processed. If this is the case, the final aggregation of ac-
cumulated posit products will start. This step is necessary, as the posit accumulator used
in this design is pipelined with 16 stages. Thus, 16 individual accumulations are main-
tained, accepting new input posits every cycle. These 16 accumulations are aggregated
by another posit accumulator serving as aggregation unit. This process of calculating the
dot product of two input vectors can also be used to calculate the sum of a single vector.
In this case, the second input vector is set to a vector of ones.

Note that the resulting values coming from the adder, multiplier or accumulator con-
sist of an unrounded set of posit fields (as described in Section 4.1.1). These values are
normalized to a regular N -bit posit in the final stage of the accelerator. The elements of
the resulting posit vector (or single value for a dot product or vector sum calculation) are
written back to host memory, represented by an Apache Arrow buffer using a column
writer.

As discussed in the beginning of this section, the accelerator has been designed with
modularity taken into account. Therefore, a software library (C++) is developed in or-
der to easily interface with the proposed accelerator. This library provides the following
functions to the programmer in order to perform a specific vector operation.

• vector add: Element-wise vector addition
• vector sub: Element-wise vector subtraction
• vector mult: Element-wise vector multiplication
• vector dot: Vector dot product
• vector sum: Vector sum

The provided library serves as a drop-in replacement for existing software routines
for performing (posit) vector arithmetic. The described functions prepare any input data
that is not yet represented in the Apache Arrow columnar memory format (Section 2.7) by
transforming it into this format. Furthermore, the desired vector operation to be executed
will be communicated to the accelerator, after which the addresses to the Arrow buffers
containing the input vectors is transmitted. The library will handle the buffering of the
final result vector (or scalar) and provides it to the user for any further processing.
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(a) es = 2 (b) es = 3

Figure 5.2: Post-route layouts of the posit vector arithmetic accelerator interfacing with
Apache Arrow in-memory data using the CAPI SNAP platform. FPGA device: Xilinx
UltraScale XCKU060.

5.2 Hardware Implementation

In this section we discuss the implementation of the accelerator design as discussed in
Section 5.1. An implementation has been generated and tested for a posit<32,2> and
posit<32,3> configuration. The target FPGA for this implementation is the Xilinx Kintex R©
UltraScaleTM XCKU060 FPGA. The working frequency of this implementation is 125 MHz.
The post-route layouts of these implementations are depicted in Fig. 5.2.

Table 5.1 shows the area utilization statistics for the posit dot product accelerator im-
plementation as well as the estimated power consumption. The area usage of both the ac-
celerator core only as well as for the total design is displayed. The overall design includes
the implementation of the Power Service Layer (PSL), required for interfacing with the
host using CAPI. Overall, approximately 40% of the available FPGA resources are used
for this design.

5.3 Evaluation of Performance & Accuracy

For the implementation as described in Section 5.2, we evaluate the performance of the im-
plementation in terms of performance and decimal accuracy of the accelerator calculation
results. In order to quantify the performance of the proposed accelerator, we compare the
execution time of the hardware accelerator versus the same calculation in software, us-
ing the most popular library used for emulating the posit number format [34]. Note that
the execution time of the benchmark calculations performed in software are highly de-
pendent on the specifications of the machine used. The machine used in this experiment
is the IBM R© Power SystemsTM S822LC featuring two 10-core POWER8 CPUs running at
2.92 GHz.
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Configuration Available Used (core) Used (total)

posit<32,2>

LUT 331680 52265 (15.76%) 131189 (39.55%)
Register 663360 64969 (8.64%) 156747 (23.63%)
BRAM 1080 91 (9.79%) 417 (37.18%)
DSP 2760 4 (0.14%) 23 (0.83%)
Power 2.495 W 9.543 W

posit<32,3>

LUT 331680 52262 (15.76%) 131179 (39.55%)
Register 663360 65033 (8.29%) 156827 (23.64%)
BRAM 1080 91 (8.43%) 417 (38.61%)
DSP 2760 4 (0.14%) 23 (0.83%)
Power 2.294 W 9.358 W

Table 5.1: FPGA resource utilization and power consumption estimation of the posit dot
product accelerator implementation, both for the accelerator core only and for the total
implementation including the Power Service Layer.

5.3.1 Vector Operations

As multiple vector operations are supported by the proposed accelerator, each operation
is benchmarked based on its performance and speedup compared to software calculation.
Furthermore, in order to illustrate the average accuracy achieved by the discussed accel-
erator, will evaluate the decimal accuracy of the posit dot product operation performed
by the accelerator.

Performance

Fig. 5.3 shows the execution times for both hardware and (single thread) software im-
plementations for the calculation of the dot product of two input posit vectors, for an
increasing number of input vector lengths. The measured hardware execution time in-
cludes the overhead caused by the initialization of the hardware device and the reading
and writing of the in- and output data respectively. The right axis shows the speedup
of the hardware implementation compared to software. As can be seen, the speedup of
the hardware implementation compared to the software implementation is dependent on
the input vector lengths. For an input vector length of 106 posit elements, a speedup of
approximately 15000× is achieved. The speedup for smaller input vector sizes is absent
or relatively low for small input vector sizes. This can be explained by the accelerator
overhead. The accelerator overhead can be seen at the execution time for an input vector
length of 1 element, which effectively reduces the dot product calculation to a single mul-
tiplication operation. For larger input vector sizes, starting around 105, the slope of the
speedup curve is reduced. This can be explained by hardware saturation: the bandwidth
of the accelerator becomes limited by the input buffer FIFOs of the accelerator design.
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Figure 5.3: Execution time for a posit dot product calculation using the proposed hard-
ware accelerator compared to dot product calculation in software (single-thread) for dif-
ferent input vector lengths. The curve illustrates the speedup of the hardware posit im-
plementation compared to software posit emulation.
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Figure 5.5: Decimal accuracy of calculation results of the posit dot product operation per-
formed by the proposed posit vector arithmetic accelerator and compared to software
calculation results through software emulation, for different input vector lengths.

Fig. 5.4 shows the speedup compared to software calculation of the other vector oper-
ations supported by the proposed accelerator. The accelerator throughput in Posit Op-
erations Per Second (POPS) is depicted on the right axis (bold line). As can be seen,
especially the element-wise vector multiplication operations benefit from hardware ac-
celeration with around 800× speedup for a vector length of 103 elements. For this input
vector length, other operations benefit from acceleration as well by achieving a speedup
of over 100×.

Decimal Accuracy

As described in Section 5.2, implementations of the posit vector arithmetic accelerator
have been generated for the posit<32,2> and posit<32,3> configurations. Fig. 5.5 shows
the decimal accuracy of the posit dot product calculation results produced by the accel-
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erator for both posit configurations. The decimal accuracy is compared to software cal-
culation in the posit and IEEE 754 float format for a range of input vector lengths. The
input vectors for this test case consist of randomly generated values. Similar to the analy-
sis performed for the pair-HMM forward algorithm in Section 3.3.3, the generated values
for this test case are created such that the exact representation of each number is equal for
all three number formats. Hence, an improved decimal accuracy of one number format
compared to another is not possible at the initial stage of computation.

As can be seen, for both posit configurations, the decimal accuracy of the hardware
results are improved by approximately one decimal of accuracy compared to calculation
results by software (through emulation of the posit number format). Furthermore, an
increase of approximately two decimals of accuracy is achieved compared to calculation
using the traditional IEEE 754 floating point format.

5.3.2 Gram-Schmidt Process

Among the potential applications of the proposed posit vector arithmetic accelerator is
the Gram-Schmidt process. The Gram-Schmidt process is a common method for orthog-
onalization of a set of vectors. Using the capabilities of the posit arithmetic accelerator
discussed in this chapter, it is possible to implement a hardware accelerated version of
the Gram-Schmidt process using posit arithmetic.

Given a set S = {σ1, . . . , σk} consisting of k vectors from the vector space Rn, the
Gram-Schmidt process generates a set of vectors {u1, . . . , ue} (e ≤ k) which are pairwise
orthogonal, i.e.

〈σi, σj〉 = δi,j =

{
1 i = j

0 otherwise
(5.1)

and form the basis of a subspace S′ of Rn [40].
Define the projection operator proju (v) that performs the projection of a given vector

v onto u:

proju (v) =
〈u,v〉
〈u,u〉

u (5.2)

where 〈u,v〉 denotes the inner product between u and v.
Then, the Gram-Schmidt sequence u1, . . . , uk is calculated as

u1 = v1

ue = ve −
e−1∑
j=1

projuj
(ve) for e = 2, . . . , k (5.3)

The obtained Gram-Schmidt sequence forms a set of vectors orthogonal to each other.
By normalizing the obtained set of vectors u, an orthonormal set can be obtained. The
Gram-Schmidt process has an application in the QR-decomposition of matrices, which is
the process of decomposing a given matrix A into

A = QR (5.4)
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Figure 5.6: Speedup of the Gram-Schmidt process implementation using the proposed
posit arithmetic hardware accelerator compared to Gram-Schmidt calculation in software
for different number of vectors and vector dimensions.

whereQ is an orthogonal matrix andR an upper triangular matrix. The orthogonal matrix
Q in the QR-decomposition process can be computed by performing the Gram-Schmidt
process on the given matrix A.

The described Gram-Schmidt process consists of multiple different vector operations
such as vector subtraction, scalar multiplication and vector dot product calculations. These
vector operations can be performed using the proposed posit arithmetic accelerator using
the provided software library that is able to pass the correct instruction and input data to
the accelerator hardware (refer to Section 5.1). Fig. 5.6 shows the performance of the de-
scribed Gram-Schmidt process implementation compared to traditional execution times
in software, where an emulation of the posit number format is performed. The perfor-
mance of the accelerator is measured for different input vector lengths. Furthermore, the
performance is measured for different number of input vectors k. From this figure we
can see that the achieved speedup is dependent on the dimension of the input matrix as
well as the number of input vectors. This speedup stays relatively constant for dimension
values higher than 5000. Similar to the discussed evaluation of the posit dot product per-
formance, hardware saturation occurs around this point. The main reason for the lower
performance of the posit Gram-Schmidt computation compared to the accelerator im-
plementation is that no dedicated hardware exists on a CPU to perform posit arithmetic
operations. Therefore, posit arithmetic currently relies on emulation of the posit format.
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5.4 Summary

In this chapter we described a novel design of a Level 1 BLAS vector arithmetic acceler-
ator for vectors consisting of posit numbers. The accelerator is enabled with a coherent
hardware-software interface using the CAPI SNAP framework. Input data is fed from
column buffers represented by the Apache Arrow in-memory format, and is able to be
fetched directly by the proposed accelerator. The speedup of the hardware accelerator
compared to software emulation of the posit number format is dependent on the length
of the input vectors. For example, for the calculation of the vector dot product for an
input vector length of 106 elements, a speedup of approximately 15000× is achieved for
the machine configuration as described in Section 5.3. The achieved decimal accuracy of
the posit dot product operation is on average one decimal of accuracy higher compared
to posit emulation in software. Note that both software calculations of the vector dot
product have been computed using a regular loop mechanism. One could improve the
accuracy of these calculations by making use of special software libraries for performing
BLAS operations such as the Intel Math Kernel library [41].

As described in Section 5.2, the accelerator implementation proposed in this chapter
utilizes approximately 40% of the resources for the targeted FPGA. Therefore, for this plat-
form, there are multiple ways of utilizing the remaining area available. One of the options
for improving the current design is by extending the accelerator with support for multi-
ple posit configurations. Another option is to run multiple identical accelerator cores in
parallel. These cores could work on the same input vector in parallel, or work on different
input vectors. In the case where the accelerator cores work on the same input vectors, the
final results of the accelerator cores are to be combined in order to obtain the resulting
output vector.

When comparing the proposed vector arithmetic accelerator to related work, such as
the posit vector dot product accelerator presented by Chen et al. [9] (as discussed in Sec-
tion 2.3), several observations can be made. The implementation presented in that work
has a working frequency of 200 MHz, supporting vector lengths up to 1024 to 32K ele-
ments, depending on the target platform. While the working frequency of the imple-
mentation presented in our work is set at a lower 125 MHz, this implementation is able to
continuously read posit column vector elements represented in the Apache Arrow format
without a fixed limit on the maximum supported input vector length.

A practical application of the proposed vector arithmetic accelerator is shown by eval-
uating the Gram-Schmidt process on a set of different input matrices. For this implemen-
tation of the Gram-Schmidt application, each required vector operation is performed in a
separate call to the accelerator. For every operation performed, the accelerator will load
the input vectors, process the data and output the result back to the host. Naturally, this
process could be significantly accelerated by removing the communication overhead be-
tween the host and the accelerator. This might be a suitable goal for future work, as this
application mainly serves as a test case for evaluating the individual vector operations
that the proposed accelerator is able to perform.
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Based on the overall results shown for the presented posit vector arithmetic acceler-
ator we can conclude that the application of hardware acceleration for performing posit
arithmetic on (large) input vectors is beneficial when aiming towards improving the over-
all performance of an application working with posit numbers. The modularity of the
proposed accelerator makes this design particularly useful in existing applications as the
presented wrapper library serves as a drop-in replacement for existing software routines
for performing vector arithmetic.





Chapter 6

Pair-HMM Posit Accelerator

In this chapter, we discuss several designs of a pair-HMM accelerator using posit arith-
metic. For the implementation of the pair-HMM posit accelerator, two different designs
are proposed: (1) a streaming-based accelerator connected through the Coherent Accel-
erator Processor Interface (CAPI) interface, and (2) an accelerator reading columnar data
through the Apache Arrow in-memory format and the CAPI SNAP host-accelerator in-
terface. For both implementations we discuss the design, implementation and results in
detail. The common, top-level design of the accelerators is discussed in Section 6.1, in-
cluding a description of the common components for both proposed accelerator designs.
Next, the streaming-based accelerator design and its implementation and result evalua-
tion is discussed in Section 6.2. Section 6.3 covers the pair-HMM accelerator capable of
interfacing with Apache Arrow. A final summary and an overall comparison between
both proposed accelerator designs is discussed in Section 6.4.

6.1 Overall Design

As discussed in Section 3.1.2, a Systolic Array (SA) architecture proves to be an efficient ar-
chitecture for pair-HMM accelerators. For the proposed pair-HMM hardware accelerator
with posit arithmetic we therefore implement the design using a systolic array architec-
ture in order to parallelize the calculation of the elements in the pair-HMM matrices as
described in Section 3.1.1. The architecture proposed for this implementation is based on a
fixed-size systolic array design that is optimized for minimal overhead [31]. Fig. 6.1 shows
an overview of the pair-HMM accelerator core design. As can be seen, the input data of
the first Processing Element (PE) is fed from the pair-HMM controller. This data consists
of control signals (enable/valid signals), the input test case reads and the transmission/e-
mission probabilities corresponding to these reads. Furthermore, the initial constant used
in the forward algorithm calculation (refer to Section 3.1.1) is provided.

The information received from the host, which includes the pair-HMM test cases, are
being processed by the individual computing elements within the accelerator core, such
as the Processing Elements (PEs) and the final score accumulator. These components are
discussed in detail at the end of this chapter. An overview of the design of a PE is dis-
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Figure 6.1: Overall overview of the pair-HMM accelerator core design.

cussed in detail in Section 6.1.1. The number of PEs in the systolic array, alternatively
called the depth, determines the number of matrix elements, or cell updates, that can be
calculated in parallel. The implemented pair-HMM accelerator core consists of 16 PEs,
each calculating one element of the three pair-HMM matrices (M , Ix, Iy) as described in
Section 3.1.1.

6.1.1 Processing Element (PE)

A schematic overview of the various arithmetic operations performed per PE is shown in
Fig. 6.2. As each PE in the systolic array is connected in series, each PE receives calculation
dependencies from the previous PE. These dependencies consist of the top-left, top and
left elements of the M , Ix and Iy pair-HMM matrices (Section 3.1.1). The PE then calcu-
lates the matrix elements for the current (i, j)-position according to the inner loop of the
forward algorithm as described in Section 3.1.1. Together with the previously calculated
matrix elements, the corresponding emission and transmission probabilities are received
from the previous PE.

The arithmetic operations performed in the PE are usually performed using floating
point arithemtic. For this design, all calculations are performed using posit arithmetic.
This is done by integrating the posit adder and multiplier units as described in Chapter 4.
As can be seen in the schematic overview of the PE, the PE design contains both 4-cycle
and 8-cycle arithmetic units in order to match the total latency of all data paths such that
all newly computed matrix elements arrive at the proper clock cycle. Therefore, both 4-
stage and 8-stage pipelined posit arithmetic units are implemented.
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Figure 6.2: Schematic overview of a Processing Element. The latency (in clock cycles) of
each unit is indicated between parentheses.

6.1.2 Accumulator

As described in Section 3.1.1, the elements of the last row in the M and I matrix are added
and accumulated for each column. These matrix elements are calculated by the last PE
in the systolic array design. This section describes two approaches to implementing the
aforementioned accumulator.

2-Adder Accumulator

In order to implement the accumulation mechanism of the final matrix elements coming
from the PEs, one could use a design that involves two adder units as depicted in Fig. 6.3.
Both matrix elements calculated for the match and insertion matrices, denoted as M and
Ix respectively in Section 3.1.1, serve as input to an individual posit adder. The first posit
adder receives the previously accumulated result as second input, resulting in the sum
of the previously accumulated result and the last element in the M matrix (refer to Sec-
tion 3.1.1). This result is fed to the second posit adder, adding the last element in the I
matrix. This element is delayed by the latency of the previous posit adder such that both
elements are added together in the correct cycle.
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Figure 6.3: Schematic overview of the pair-HMM accumulation stage using two regular
posit adder units.

As this design uses regular posit adder units, information loss can occur when adding
two posit numbers due to rounding and normalization (as described in Section 4.1.2). The
loss of decimal accuracy can be disadvantageous when accumulating a potentially large
amount of posit numbers as the final accumulated result could have a significant error
compared to its exact value when aggregating without any loss in accuracy.

Wide Accumulator

The loss of decimal accuracy induced by the use of regular posit adder units leads to
the proposal of implementing the posit wide accumulator which is discussed in detail
in Section 4.1.5. The posit wide accumulator can be used to implement a more accurate
overall accumulator for the pair-HMM systolic array design. A schematic overview of
the pair-HMM accumulator utilizing posit wide accumulator units is shown in Fig. 6.4.
A regular posit adder sums the two normalized values of the accumulated pair-HMM
matrix elements, resulting in the final accumulated score.

For each matrix of the pair-HMM forward algorithm (Section 3.1.1), a separate wide
accumulator sums every column of its last row. The latency of a posit accumulator unit in
terms of number of cycles is equal to the depth of the systolic array (16 PEs) because each
matrix element is calculated per pair, thus allowing up to 16 pairs to be computed per
pass through the systolic array (refer to Section 6.1). Therefore, the accumulated value
for a given pair is updated every 16 cycles when new matrix elements for this pair are
computed.

The advantage of this approach over the previously proposed design that uses two
regular posit adders is that there is no information loss while accumulating the matrix el-
ements of the forward algorithm. Implementing this design in the pair-HMM accelerator
will result in higher area demand, however, since more logic is needed in order to process
the wider fractions of accumulated values. Furthermore, this design yields a higher la-
tency compared to the accumulator design depicted in Fig. 6.3 due to the additional final
adder that is required. Therefore, the decision whether to integrate the wide accumulator
design into an overall accelerator design depends on a tradeoff that is to be made between
performance and desired degree of precision.
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Figure 6.4: Schematic overview of the pair-HMM accumulation stage using posit wide
accumulator units.

6.2 Streaming Implementation (CAPI)

In this section we will discuss a pair-HMM accelerator design with a host streaming inter-
face using the CAPI 1.0 platform. The streaming interface is built upon the CAPI Stream-
ing Framework [42]. First, the overall design of the accelerator will be discussed. Next,
several implementations of this design are shown and analyzed based on performance
with regard to decimal accuracy of the calculation results and accelerator throughput.

6.2.1 Accelerator Design

The pair-HMM accelerator receives a stream of read data (based on the input test case)
from the host. The stream of base pair reads is passed to the systolic array FIFO in order
to calculate the pair-HMM matrix elements. While read data is streamed through the
systolic array, the corresponding haplotype base pairs that are to be compared with the
read base pairs is distributed by the controller through a bus structure (as depicted in
Fig. 6.1) [31].

In order to communicate with the pair-HMM accelerator and to be able to send test
cases to the accelerator, a host application is implemented that is to be executed on the
CPU. The host application targets the IBM POWER8 platform featuring the Coherent Ac-
celerator Processor Interface (CAPI). This platform is widely used for setting up coherent
memory interfaces between a host CPU and an external accelerator such as an FPGA.
CAPI offers direct memory access (DMA) connectivity, allowing a memory region to be
shared across the host and the accelerator [43]. The CAPI Streaming Framework from [42]
is used to abstract away from the PSL by implementing our accelerator core in a Comput-
ing Unit (CU) interfacing with a controller and DMA engine. A schematic overview of
the communication between the host and the accelerator (FPGA) is shown in Fig. 6.5.
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Figure 6.5: Communication between host (CPU) and FPGA through CAPI. The pair-HMM
accelerator core is implemented in a Computing Unit that communicates with the Power
Service Layer (PSL).

In order to provide any metadata that the pair-HMM accelerator requires about the
dataset that is to be analyzed, a Work Element Descriptor (WED) is set up. The WED is a
data structure containing metadata about the data that is to be processed and is located
in shared memory between the host and accelerator. The pair-HMM accelerator host ap-
plication fills the WED with the following information:

• Source address (memory location of the test case data)

• Destination address (memory location where the accelerator stores its results)

• Total number of workload batches

The pair-HMM host application is provided with the total number of pairs to calcu-
late, along with the read length and haplotype sequence lengths per pair. A workload is
then generated based on the provided number of pairs and read/haplotype lengths. This
workload is split into multiple batches based on the number of Processing Elements in
the hardware accelerator. For the systolic array design as discussed in Section 6.1 with
a depth of 16 Processing Elements (PEs), the total number of batches when performing
calculations for 32 pairs is equal to pairs

# of PEs = 32
16 = 2. The number of batches is then com-

municated to the accelerator as part of the WED. Since batches are located adjacent to
each other in memory, the FPGA is able to access these consecutive batches based on the
total number of batches communicated by the WED. The host application is responsible
for filling each batch with the split workload data. For each pair to be compared by the
accelerator, the following data is placed in shared memory (in its corresponding batch):

• Initial value used for initialization of computation matrices

• Haplotype base pairs

• Read base pairs
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(a) es = 2 (b) es = 3

Figure 6.6: Post-route layouts of the pair-HMM posit accelerator with streaming interface
using the CAPI platform. FPGA device: Xilinx Virtex-7 XC7VX690T-2.

• Probabilities for each read

– Emission probabilities (read score, θ, υ)

– Transmission probabilities (α, β, δ, ε, ζ, η)

As discussed in Section 3.1.1, an initial scaling constant can be chosen that scales the
first row of the initial pair-HMM matrices.

6.2.2 Hardware Implementation

The proposed pair-HMM accelerator (with streaming interface) featuring posit arithmetic
is tested and analyzed for different posit configurations. As the total number of exponent
bits of a posit can be configured, different implementations for the pair-HMM accelera-
tor are possible. As described in Section 6.1.2 two ways of implementing the final score
accumulator are presented. In order to optimize for calculation precision, the wide ac-
cumulator design has been implemented. Note that the Power Service Layer (PSL) runs
at a frequency of 250 MHz. This frequency is used as a reference for generating the core
frequency of the pair-HMM accelerator, which is equal to 125 MHz.
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Configuration Available Used (core) Used (total)

posit<32,2>

LUT 433200 253891 (58.61%) 326249 (75.31%)
Register 866400 95042 (10.97%) 173499 (20.03%)
BRAM 1470 66 (4.49%) 374.5 (25.48%)
DSP 3600 512 (14.22%) 536 (14.89%)
Power 10.458 W 18.095 W

posit<32,3>

LUT 433200 250249 (57.77%) 322662 (74.48%)
Register 866400 97666 (11.27%) 176123 (20.33%)
BRAM 1470 66 (4.49%) 374.5 (2.55%)
DSP 3600 512 (14.22%) 536 (14.89%)
Power 10.465 W 18.105 W

Table 6.1: FPGA resource utilization and power consumption estimation of the streaming-
based pair-HMM posit accelerator implementation, both for the accelerator core only and
for the total implementation including the Power Service Layer.

The pair-HMM posit accelerator has been implemented and tested on an Alpha Data
ADM-PCIE-7V3 FPGA accelerator card. The card features a Xilinx R© Virtex-7 R© XC7VX690T
FPGA. The post-route layouts of these implementations are depicted in Fig. 6.6. Table 6.1
shows the post-routing area usage and estimated power consumption for the target FPGA
device. Note that the power consumption of the IBM PSL module (which is, among others,
responsible for the interface between the host and the FPGA) is estimated at 6.975 W. The
power consumption is listed for the overall design as well as for the pair-HMM accelerator
core only.

6.2.3 Evaluation of Performance & Accuracy

We will evaluate the results of the pair-HMM accelerator design presented in this section.
This design consists of the pair-HMM accelerator core described in Section 6.1 connected
to the host through the CAPI Streaming Framework by [42] as described in Section 6.2.1.

Using the concept of the measure of decimal accuracy as defined in Section 2.6, we
will analyze the precision of the posit pair-HMM accelerator. Similar to the analysis per-
formed in Section 3.3.3, we compare the results of the posit pair-HMM accelerator design
with a reference calculation performed on the host using a multi-precision arithmetic li-
brary capable of performing calculations with at least 100 decimals of accuracy [35]. Refer
to Section 6.2.1 for a detailed description on the host application and how the benchmark
test case is transferred to the hardware accelerator.

The test case generated for this benchmark consists of a randomized sequence of base
pairs (A, C, T, G) for both the read as well as the haplotype base pair sequences. The emis-
sion and transmission probabilities per read are randomly generated numbers in the range
of [0, 1), and are crafted in such a way that the exact value represented by the float and
posit formats that are to be benchmarked are equal. This requirement is important as we
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want to have a fair precision benchmark between float and posit results. If the proba-
bilities were to be defined in the posit format, errors could arise when converting these
probabilities to the float type when used in precision benchmarks. Namely, the pair-HMM
calculations with float would already be inaccurate as the used initial probabilities hold
some error.

The workload for the comparison of decimal accuracy consists of 32 pairs. A combi-
nation of different values for the read (X) and haplotype (Y) sequence lengths are tested.
The initial constant used to fill computation matrices is set to 210. For an extensive analy-
sis of the dependency of calculation results on the chosen initial scaling constant, refer to
Section 3.3.3.

The performance in terms of throughput of the pair-HMM systolic array implementa-
tion is measured in Cell Updates Per Second (CUPS), indicating the total number of matrix
elements updates inside each PE per second. Note that, as the systolic array is driven by
a 125 MHz input clock, the maximum performance Pmax in CUPS is equal to

Pmax = # PEs · f = 16 · 125 · 106 = 2000 MCUPS (6.1)

The total utilization of the systolic array is reduced for X < # PEs = X < 16, where
padding is applied for the non-utilized Processing Elements [31]. Therefore, the average
number of cell updates per second will decrease for X < 16, as will be shown in the
presented results.

Decimal Accuracy

Fig. 6.7 shows the decimal accuracy of the calculation results produced by the proposed
hardware pair-HMM accelerator for different combinations of input sequence lengths X
and Y. Furthermore, the decimal accuracy of the same computations performed using the
float format are shown for comparison. The initial scaling constant (as described in Sec-
tion 3.1.1) is set at 210. As can be seen, the posit number format performs better than the
float format for all combinations of input sequence lengths X and Y. This is the case for
both the posit<32,2> as well as the posit<32,3> number format. At first glance, the pre-
sented results show a superior performance of the posit number format compared to the
traditional IEEE 754 float format. However, the results should be interpreted with caution.
As discussed in Section 3.3.3, the decimal accuracy of the forward algorithm calculations
(for all number formats) depends on the initial scaling constant chosen. Nevertheless,
as was shown in Fig. 3.7, initial scaling constants exist where the maximum achievable
decimal accuracy for the posit number format exceeds the maximum achievable decimal
accuracy for the float format.
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Figure 6.7: Decimal accuracy of the proposed pair-HMM hardware accelerator results,
compared to traditional float computation for posit<32,2> and posit<32,3>. X and Y
denote the read and haplotype input sequence lengths respectively.
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Figure 6.8: Performance in terms of throughput (in MCUPS) of the proposed pair-HMM
accelerator design. X and Y denote the read and haplotype input sequence lengths re-
spectively.

Performance

The average performance in terms of MCUPS for different combinations of sequence lengths
X and Y is depicted in Fig. 6.8. This performance benchmark is performed for 1014 base
pair comparisons. These performance measurements include the hardware overhead
caused by initialization and reading and writing of the input and output data respectively.
As mentioned in the introduction of this section, the average number of cell updates per
second is decreased for values of X lower than the number of PEs available (16), as the
systolic array becomes underutilized. This can also be seen in Fig. 6.8. The calculated
theoretical maximum throughput in MCUPS (Eq. (6.1)) is not completely reached. This
can be explained by the additional hardware overhead for this design, where input batch
data is loaded into the accelerator buffers between consecutive batches. The performance
could be improved by loading the next batch during calculation of the previous batch (as
described in Section 3.1.2).

6.3 Higher-Accuracy In-Memory Hardware Implementation

In this section, we discuss the implementation of the pair-HMM accelerator that is able to
read columnar data represented by the Apache Arrow columnar in-memory data format.
Recall that the streaming-based accelerator discussed in Section 6.2 is designed to stream
in the haplotype and read data located in host memory, making use of the CAPI Streaming
Framework [42]. In this design, the input data is stored in the Apache Arrow in-memory
format. The advantage of using this format is the fact that it is widely used for represent-
ing in-memory data, being language-independent and capable of storing large amounts
of data. Our application, which lies in the field of genome analytics, often has to deal with
large quantities of information that have to be processed. Therefore, integration with the
Apache Arrow framework makes this design suitable for contemporary computing infras-
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tructures. The Apache Arrow platform, format and its advantages and/or disadvantages
are discussed in Section 2.7. Similar to the posit vector arithmetic accelerator design (dis-
cussed in Section 5.2), the CAPI SNAP framework is used in order to interface between
host memory and the accelerator.

For this design, intermediate results of calculations performed inside a Processing El-
ement (PE) as depicted in Fig. 6.2 are kept unrounded whenever possible, using the posit
arithmetic framework presented in Chapter 4. The goal for this improvement is to im-
prove the overall decimal accuracy of the final likelihood computation results produced
by the pair-HMM accelerator by means of the forward algorithm.

After a detailed discussion of the accelerator design in the next section, we analyze
the implementation of this design in Section 6.3.2. This implementation is then evaluated
based on the decimal accuracy of the calculation results and the accelerator performance
in terms of throughput.

6.3.1 Accelerator Design

Similar to the streaming-based pair-HMM accelerator, as described in Section 6.2, the in-
put to the accelerator consists of a set of haplotype base pairs, read base pairs and the
emission and transmission probabilities related to these reads. The pair-HMM algorithm
is then performed on this input data using posit arithmetic. The posit arithmetic opera-
tions are designed and implemented through the arithmetic framework as described in
Section 4.1.

Contrary to the streaming-based design discussed in Section 6.2.1, the data source for
this implementation of the pair-HMM accelerator is provided by an in-memory represen-
tation served through the Apache Arrow framework. Therefore, the accelerator design
incorporates column readers and writers in order to retrieve and store data from and to
the host memory. The connection between host and accelerator is made through the CAPI
SNAP framework. Similar to the vector arithmetic accelerator proposed in Section 5.2, the
Fletcher framework is used [39] for retrieval of data stored in the Apache Arrow format.
The Fletcher framework provides the ColumnReader component, which is able to read from
an Arrow column. Furthermore, the ColumnWriter component can be utilized in order to
write to Arrow columns located in the host memory.

The Arrow schema designed for this implementation is depicted in Table 6.2. As can
be seen, the scheme consists of two separate tables used to represent the haplotypes as
well as the reads for a specific batch. The haplotype and read base pairs are represented
by an 8-bit wide field, being able to represent any ASCII character. For each read, the
emission and transmission probabilities (refer to Section 3.1.1) for this read are located in
the second column of this table. The probability α can contain a penalty if the read and
haplotype base pairs are not equal during the pair-HMM forward algorithm evaluation
(refer to Appendix A). Hence, two values for this probability are stored. As there are eight
emission and transmission probabilities in total, the width of this column is equal to 256
bits, as each probability is represented by a 32-bit posit number.
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Haplotypes Reads
haplo (8-bit) read (8-bit) probabilities (256-bit)

0
base pair

0
base pair αdiff αsimi β γ δ ε η ζ

. . . . . . . . .
base pair base pair αdiff αsimi β γ δ ε η ζ

1
base pair

1
base pair αdiff αsimi β γ δ ε η ζ

. . . . . . . . .
base pair base pair αdiff αsimi β γ δ ε η ζ

... . . .
... . . . . . .

Table 6.2: Schematic overview of the Arrow schema for the Arrow pair-HMM Accelerator
implementation, consisting of the columns used to feed the pair-HMM accelerator.

The entry index indicated in the diagram represents the batch to be processed by the
accelerator. The accelerator is able to access specific batches based on this index, as will
be illustrated later. As the amount of base pairs inside one batch is variable, the length of
each entry is also variable. When an entry is read by the accelerator, it also receives the
length of this entry.

A schematic overview of the high-level components of this pair-HMM accelerator de-
sign is depicted in Fig. 6.9. For the input basepair reads, a column reader is used in order
to read the base pairs and emission/transmission probabilities from the Apache Arrow
data structure. A second column reader is instantiated for reading the basepairs from the
input haplotype Arrow column. The data output of the column readers are fed into FI-
FOs. The FIFO control signals are controlled by an overall scheduler that makes sure the
input data is fed into the systolic array at the correct cycle. The posit fields of the input
probabilities, represented as 32-bit posit numbers, are extracted using the posit extraction
unit as discussed in Section 4.1.1.

The outgoing calculation results from the systolic array, being raw posit values with
unrounded fraction fields (as described in Chapter 4), are then normalized. The normal-
ized 32-bit posit words are fed into a column writer in order to write the results into an
Arrow column residing in host memory. These results are buffered by a FIFO, ready to
be absorbed by the column writer.

In order to enable parallelism in the overall pair-HMM accelerator, the accelerator core
is designed such that it is possible to instantiate multiple instances of the proposed pair-
HMM accelerator core. A read/write bus arbiter can be used in order to connect multiple
cores to the overall read/write bus of the CAPI SNAP framework. A schematic overview
of this setup is depicted in Fig. 6.10. As mentioned in the description of the Arrow schema
for this implementation, each batch stored in the Arrow memory format is addressable
by its own index. Each accelerator core features a batch offset register that is writable by
the host through Memory Mapped Input/Output (MMIO). As multiple batches can be
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Figure 6.9: Schematic overview of the high-level components inside the pair-HMM accel-
erator core design, interfacing with Apache Arrow.
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Figure 6.10: Schematic overview of the high-level connection between multiple pair-
HMM accelerator core instantiations and the host, interfacing with a read/write bus ar-
biter connected to the CAPI SNAP AXI bus.

prepared for the columns as depicted in the Arrow schema shown in Table 6.2, each ac-
celerator core is able to work on a different batch individually by addressing the correct
batch based on the batch offset assigned to the accelerator core. While the address point-
ers for the Arrow input columns are equal for every instance of an accelerator core, sep-
arate buffers are instantiated for storing the results of every accelerator core. The reason
for this is that it is possible for an accelerator to work on multiple batches consecutively,
and therefore each accelerator is able to append the results of each batch to its own result
buffer.
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(a) es = 2 (b) es = 3

Figure 6.11: Post-route layouts of the pair-HMM posit accelerator interfacing with Apache
Arrow in-memory data using the CAPI SNAP platform. FPGA device: Xilinx UltraScale
XCKU060.

6.3.2 Hardware Implementation

In this section, we discuss the implementation of the pair-HMM accelerator design as
discussed in Section 6.3.1. An implementation has been generated and tested for the
posit<32,2> and posit<32,3> configurations. The post-route layouts of these imple-
mentations are depicted in Fig. 6.11. For both configurations, the design is implemented
with a single pair-HMM accelerator core. The target FPGA for these implementations is
the Xilinx Kintex R© UltraScaleTM XCKU060 FPGA, which is supported by the Open-
POWER CAPI SNAP framework.

Table 6.3 shows the area utilization statistics for the posit dot product accelerator im-
plementations, along with estimated power consumptions. The power consumption for
only the accelerator core as well as for the total design is displayed. The overall design
includes the implementation of the Power Service Layer (PSL), required for interfacing
with the host using CAPI [44].

6.3.3 Evaluation of Performance & Accuracy

Similar to the evaluations performed for the streaming-based implementation discussed
in Section 6.2.3, we analyze the implementations of the accelerator design presented in
this section with regard to decimal accuracy of calculation results and performance in
terms of throughput as well as speedup compared to similar software implementations
of the pair-HMM algorithm. The machine used in these experiment is the IBM R© Power
SystemsTM S822LC featuring two 10-core POWER8 CPUs running at 2.92 GHz. This ma-
chine is equipped with the Alpha Data ADM-PCIE-KU3 accelerator card featuring the
Xilinx Kintex R© UltraScaleTM XCKU060 FPGA used for this design.
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Configuration Available Used (core) Used (total)

posit<32,2>

LUT 331680 185174 (55.83%) 264078 (79.62%)
Register 663360 179229 (27.02%) 271031 (40.86%)
BRAM 1080 99 (9.17%) 425 (39.35%)
DSP 2760 704 (25.51%) 723 (26.20%)
Power 18.299 W 25.379 W

posit<32,3>

LUT 331680 191827 (57.83%) 270820 (81.65%)
Register 663360 186591 (28.13%) 278385 (41.97%)
BRAM 1080 99 (9.17%) 425 (39.35%)
DSP 2760 704 (25.51%) 723 (26.20%)
Power 17.412 W 24.479 W

Table 6.3: FPGA resource utilization and power consumption estimation of the pair-HMM
posit accelerator implementation for Apache Arrow, both for the accelerator core only and
for the total implementation including the Power Service Layer.

Decimal Accuracy

Fig. 6.12 shows the decimal accuracy of the calculation results produced based on sim-
ulation of the proposed hardware pair-HMM accelerator. Similar to the evaluation per-
formed for the streaming-based accelerator described in Section 6.2.3, the decimal accu-
racy of the posit<32,2> and posit<32,3> hardware implementations are evaluated, to-
gether with a software evaluation of the pair-HMM forward algorithm using the float

format. For these evaluations, different combinations of input sequence lengths X and Y
have been tested. The initial scaling constant (as described in Section 3.1.1) is set at 210.
For these conditions, both the software and accelerator calculation results (using both the
posit<32,2> and posit<32,3> configurations) is performing better than the traditional
float format for nearly every test case, with an increase in decimal accuracy ranging be-
tween approximately 0.5 and 2 decimals of accuracy.

As discussed in Section 6.2.3, appropriate caution should be taken with regard to the
presented results. All pair-HMM forward algorithm calculations heavily depend on the
initial conditions. These conditions are, apart from the input read/haplotype bases and
emission/transmission probabilities, influenced by the chosen initial scaling constant.
The comparison of different initial scaling constants and their effect on the decimal ac-
curacy of final calculation results as depicted in Fig. 3.7 shows this behavior, along with
the proof that scaling constants exist that result in better decimal accuracy compared to
the best achievable decimal accuracy for the float format.
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Figure 6.12: Decimal accuracy of the proposed pair-HMM hardware accelerator results,
compared to traditional float computation for posit<32,2> and posit<32,3>. X and Y
denote the read and haplotype input sequence lengths respectively.
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Figure 6.13: Performance in terms of throughput (in MCUPS) and speedup compared to
software calculation for the proposed pair-HMM accelerator design. X and Y denote the
read and haplotype input sequence lengths respectively.

Performance

Similar to the analysis of the streaming-based pair-HMM accelerator discussed in Sec-
tion 6.2.3, the performance in terms of throughput is measured in CUPS which indicates
the total number of matrix elements updates performed by each PE per second. The max-
imum theoretical throughput Pmax is equal to 2000 MCUPS as determined by Eq. (6.1).

The average performance for the pair-HMM hardware accelerator interfacing with the
Apache Arrow columnar memory format implementation in terms of MCUPS for differ-
ent combinations of sequence lengths X and Y is depicted in Fig. 6.13a. Similar to the
evaluation performed for the streaming-based accelerator, this performance benchmark
is performed for 215 base pair comparisons. As can be seen, the throughput decreases
for any input sequence length X lower than the number of PEs in the systolic array due
to underutilization of the overall accelerator. The theoretical maximum throughput of
2000 MCUPS is not fully reached due to the present hardware overhead. The explana-
tion for this is similar to the reason stated during the evaluation of the performance of
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the streaming-based accelerator (Section 6.2.3): batch data is loaded into the accelerator
buffers between batches, and the next batch will be loaded after finishing the previous
batch. The overhead between initiating the read request to the host and receiving the full
data set decreases the maximum achievable performance. The speedup of the pair-HMM
hardware accelerator calculations compared to calculation in software (using a posit for-
mat emulation library) is depicted in Fig. 6.13b for the same data sets. A significant
speedup is observed for all tested combinations of read and haplotype input sequence
lengths, ranging from a factor of approximately 105 to 106 times speedup.

6.4 Summary
In this chapter, two approaches are presented to implementing a hardware accelerator
for the pair-HMM forward algorithm using posit arithmetic. The first design that was
described and implemented is an accelerator based on a streaming interface connected
with the CAPI 1.0 platform (Section 6.2). The second proposed design uses the CAPI
SNAP framework and is able to interface with in-memory data represented in the Apache
Arrow columnar memory format, and was discussed in Section 6.3. Furthermore, this
implementation consists of posit arithmetic units that are able to perform calculations
without intermediate rounding during the calculation of cell updates of the pair-HMM
matrix (as described in Section 3.1.1).

Decimal Accuracy

The decimal accuracy of calculation results for both pair-HMM accelerator designs are
evaluated. On average, the streaming-based pair-HMM algorithm achieves an increase
of approximately 0.5 decimals of accuracy compared to software posit emulation for the
same input data set, consisting of a read sequence length of 40 base pairs and a haplotype
sequence length of 56 base pairs. Overall, the posit number format beats the IEEE floating
point number format in terms of decimal accuracy. Note, however, that the presented dec-
imal accuracy measurements have been performed for a specific initial scaling constant,
which partly determines the accuracy of calculation results as described in Section 3.3.3.
However, as discussed in the same section, initial scaling constants exist that outperform
the maximum achievable decimal accuracy for the IEEE float format.

The second proposed accelerator implementation (discussed in Section 6.3), interfac-
ing with the Apache Arrow columnar memory format, achieves similar results in terms
of decimal accuracy of the final calculation results when comparing with the previously
introduced implementation. Although this implementation consists of posit arithmetic
units with a wider range of fraction bits available, a significant improvement in decimal
accuracy is not observed. Since only the arithmetic units inside the processing elements
of the systolic array are equipped with the posit arithmetic units that accept and produce
unrounded intermediate results (Chapter 4), the in- and output of each PE is normalized.
The main reason for this trade-off is the limited area available for the targeted hardware
platform.
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Performance

The measured throughput in terms of Cell Updates Per Second (CUPS) is equal to ap-
proximately 1600 MCUPS for the streaming-based accelerator and 1000 MCUPS for the
second implementation, interfacing with the Apache Arrow columnar memory format.
The reason for the lower performance of the second implementation is similar to the rea-
son stated for the streaming-based accelerator. During different calculation batches, the
accelerator loads the next batch that is located inside the Apache Arrow data format. The
overhead associated with loading the the input data into the accelerator buffers there-
fore becomes significant for small input batches. Improvements to this mechanism can
be made by loading the next batch while processing the previous batch (as described in
Section 3.1.2) so that the next batch computation can immediately be started.



Chapter 7

Conclusions

A new generation of number representation systems naturally draws the attention of
many due to its impact on the broad field of computing. The IEEE 754 floating point
standard has been the de facto standard for representing floating point numbers since
hardware supported floating point arithmetic was introduced. Hence, the proposal of
the novel posit number format is closely monitored and evaluated as it presents itself as
a direct competitor to the well-established and trusted IEEE standard.

In this thesis, we investigated the capabilities of posit arithmetic to IEEE floating point
arithmetic to identify their advantages and disadvantages. We will summarize the con-
tributions and results of the work presented in this thesis. Furthermore, additional dis-
cussion and recommendations for future work are given.

Contributions & Results

In this work, the performance of the posit number format in terms of decimal accuracy
has been analyzed and compared with alternative number representations.

In particular, a study of the application of posit arithmetic in the field of bioinformat-
ics was performed. The effect on decimal accuracy of the pair-HMM forward algorithm
caused by the replacement of traditional IEEE 754 floating point arithmetic by posit arith-
metic is analyzed. Based on this analysis, it can be concluded that the posit number for-
mat does perform better than the traditional IEEE 754 floating point standard in terms of
decimal accuracy of calculation results. Although the overall accuracy is dependent on
the test case, it is proven that the best achievable decimal accuracy using posit arithmetic
is higher compared to the IEEE floating point format. Combining this observation with
the fact that the posit configurations that have been analyzed in this work cost the same
number of bits as the float format that it is compared to, there is reason to believe that the
posit number format could be a worthy successor to the IEEE 754 floating point format
for evaluating the pair-HMM model.

After theoretical and empirical analyses of the application of the posit number format
in existing applications, multiple designs for accelerating posit arithmetic in hardware
have been proposed and implemented.

97
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A framework for performing high-precision posit arithmetic in reconfigurable logic
is presented. The supported arithmetic operations, which consist of posit vector addi-
tion/subtraction, multiplication and accumulation operations, can be performed without
rounding off intermediate results. Final posit normalization takes place only after the last
calculation has been performed in a computation procedure, and a rounding scheme is
applied to perform correct rounding based on the truncated fraction bits. Because of these
two measures, loss of decimal accuracy is minimized. The proposed posit arithmetic units
achieve approximately 250 MPOPS for addition, 160 MPOPS for multiplication and 180
MPOPS for accumulation operations.

Building upon the presented posit hardware arithmetic framework, the design of an
accelerator for performing vector arithmetic on posit column vectors is presented and im-
plemented. The accelerator inhibits a modular design which enables one to develop a
hybrid design where accelerated operations on (sparse) input posit vectors can be per-
formed. The accelerator calculation results are directly useable in existing software ap-
plications using the corresponding software interface library. The performance of the
hardware accelerator is dependent on the length of the input vectors. For the calculation
of the vector dot product for an input vector length of 106 elements a speedup of approxi-
mately 15000× is achieved. The decimal accuracy of the dot product results produced by
the proposed accelerator is improved by one decimal of accuracy on average compared to
a software implementation, which in turn yields one extra decimal of accuracy compared
to calculation with the IEEE 754 floating point format. Therefore, it can be concluded that
the posit number format overall performs better for the test cases presented in this work
in terms of accuracy.

Based on the performed theoretical analysis of the feasibility of applying posit arith-
metic to the pair-HMM forward algorithm, a hardware accelerator for the pair-HMM for-
ward algorithm using posit arithmetic is proposed. Two versions of the hardware accel-
erator are implemented. The first design uses a streaming interface to connect with the
host through the CAPI platform. The second design interfaces with data represented in
the Apache Arrow columnar memory format using the CAPI SNAP framework. Further-
more, this design is implemented using posit arithmetic units that only perform normal-
ization at the output of a processing element, which implements the calculation of the in-
ner loop inside the pair-HMM forward algorithm. Overall, the posit number format beats
the IEEE floating point number format in terms of decimal accuracy, ranging from an im-
provement of 0.5 to 1 additional decimal of accuracy. As concluded during the empirical
analysis of the pair-HMM forward algorithm, the choice of initial scaling constant partly
determines the achieved decimal accuracy. However, the maximum achievable decimal
accuracy is higher for the posit number format compared to the IEEE float format. Similar
results in terms of decimal accuracy are observed for the second implementation. In this
case, enlarging the fraction fields of intermediate results during calculation of the inner
loop of the pair-HMM forward algorithm does not significantly improve overall accuracy
due to the normalization of intermediate results between separate processing elements in
the systolic array.
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The proposed accelerator has a throughput of 1600 MCUPS for the streaming-based
accelerator and 1000 MCUPS for the accelerator with interface to the Apache Arrow colum-
nar data format. The lower throughput is explained by the fact that hardware overhead
influences the throughput significantly, as new batch information is loaded from the host
memory between consecutive batches. This can be improved by loading the next batch
already during the processing of the previous batch, and is considered future work.

Discussion & Recommendations

While preserving bits in intermediate computations could improve the decimal accuracy
of the final computation result, an increase in chip area usage is naturally inevitable.
Larger bus widths are required in accuracy-optimized implementations, as opposed to
implementations consisting of standalone posit arithmetic units where the result is di-
rectly packed into a regular posit number. Therefore, more registers are needed and an
increase in wiring is expected. This illustrates a direct trade-off between the desired dec-
imal accuracy of computation results and the amount of chip area available. It might be
of interest to analyze the point where the potential increase in decimal accuracy does not
outweigh the required increase in area any more. In any case, these boundaries highly
depend on the precision requirements for the application one is interested in augmenting
with posit arithmetic. Furthermore, this trade off highly depends on the targeted plat-
form. For example, for a reconfigurable target such as an FPGA the chosen platform size
determines how much area is available for additional wiring, enabling more intermediate
bits to be communicated between arithmetic units.

One of the key features of the posit number representation system is the configurable
number of total and exponent bits. However, the fixed nature of silicon hinders the pos-
sibility of truly flexible arithmetic, where one is able to modify its posit configuration on-
the-fly during computation. Therefore, posit arithmetic hardware implementations are
mostly bound to a specific configuration of total and exponent bits. Multiple posit arith-
metic units for a specific set of posit configurations could be implemented on a single
chip, requiring additional conversion logic in order to interchange posit values between
different posit configurations.





Appendix A

Pair-HMM Pseudocode

Listing A.1: Pseudocode of the pair-HMM forward algorithm as discussed in Section 3.1.1,
used in the precision analysis performed in Section 3.3.3.
1
2 funct ion randomNumber
3 f l o a t floatNumber
4 pos i t positNumber
5
6 do
7 floatNumber = random ( )
8 positNumber = floatNumber
9 while ( positNumber != floatNumber )

10
11 r e turn positNumber
12 end
13
14 P = 0
15 fo r r ≤ rows
16 α, β, γ, δ, ε, η, ζ ← random number
17
18 fo r c ≤ columns
19 i f read base pair == haplotype base pair
20 α← 1− α
21 e l s e
22 Apply a penalty for a read base pair that is not matching with the haplotype base pair
23 α← α/3
24 end
25
26 Below variables represent M, Ix, Iy elements for the current row and column
27 Mr,c ← α× (β ×Mr−1,c−1 + γ × Ixr−1,c−1 + γ × Iyr−1,c−1)

28 Ixr,c ← δ ×Mr−1,c + ε× Ixr−1,c

29 Iyr,c ← η ×Mr,c−1 + ζ × Iyr,c−1

30
31 Accumulation of results resulting in the overall likelihood of sequences x and y being related (refer to Eq. (3.4))
32 i f r == rows
33 P = P + Mr,c + Ixr,c + Iyr,c
34 end
35 end
36 end
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Appendix B

Posit Field Widths for Arithmetic
Framework

wx bit field width (in bits) of field x
nbits total number of bits in posit configuration
es number of exponent bits in posit configuration

B.1 Regular Value

Sign, Infinite, Zero

wsign = 1 winfinite = 1 wzero = 1

Fraction

wfraction = nbits− es− 3 (B.1)

Scale

wscale =
⌈
log2

(
useedmaximum regime ×maximum exponent

)⌉
=
⌈
log2

(
(22es)maximum regime × (2es − 1)

)⌉
=
⌈
log2

(
(22es)nbits−2 × (2es − 1)

)⌉
=
⌈
log2

(
22es×(nbits−2)+2es−1

)⌉
=
⌈
log2

(
22es×(nbits−1)−1

)⌉
= dlog2 (2es × (nbits− 1)− 1)e (B.2)
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B.2 Sum

Sign, Infinite, Zero

wsign = 1 winfinite = 1 wzero = 1

Fraction

wfraction = wfraction|regular + 1

= nbits− es− 3 + 1

= nbits− es− 2 (B.3)

Scale As the lowest input operand is matched by scale of the larger input operand, the
maximum scale does not change, and hence is equal to the maximum scale value of a
regular posit value.

wscale = wscale|regular

= dlog2 (2es × (nbits− 1)− 1)e (B.4)

B.3 Product

Sign, Infinite, Zero

wsign = 1 winfinite = 1 wzero = 1

Fraction

wfraction = wfraction|regular × 2

= 2× (nbits− es− 3) (B.5)

Scale For multiplication of two input operands, the product scale is equal to the sum of
both input operand scales. Hence, the number of bits required to represent the scale is
increased by 1.

wscale = wscale|regular + 1

= dlog2 (2es × (nbits− 1)− 1)e+ 1 (B.6)

B.4 Accumulation

Sign, Infinite, Zero

wsign = 1 winfinite = 1 wzero = 1
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Fraction The width of the fraction field should be equal to the fraction size of a regular
posit value plus the maximum amount an input fraction might be shifted in order to match
the scale of both input operands. This shift is largest when the scale difference between
two input operands is at a maximum, which is equal to the maximum regime scale value
(2es × (nbits− 2)).

wfraction = wfraction|regular + maximum shift
= nbits− es− 3 + 2es × (nbits− 2) (B.7)

Scale As the lowest input operand is matched by scale of the current accumulated value,
the maximum scale does not change, and hence is equal to the maximum scale value of a
regular posit value.

wscale = wscale|regular (B.8)
= dlog2 (2es × (nbits− 1)− 1)e (B.9)
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