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Abstract
Logic-based puzzle solving serves as a stan-
dard benchmark for evaluating computational
paradigms; however, comparisons are frequently
biased by the researcher’s familiarity with specific
tools. To ensure an objective evaluation, we con-
tribute to a collaborative benchmarking effort by
analysing the suitability of the Constraint Satis-
faction Problem (CSP) paradigm for solving the
puzzle Hitori. Specifically, we use PUMPKIN [5].
Our results show that redundant constraints can
have a positive impact on solve time, particularly
when using a Lazy constraint strategy where dy-
namic constraint generation is employed. Addi-
tionally, our analysis of puzzle characteristics re-
veals that the Lazy strategy benefits significantly
from high counts of non-adjacent duplicates, while
the Distance strategy proves sensitive to devia-
tions in the total black cell count. We demon-
strate that this Lazy strategy significantly outper-
forms the Distance strategy, offering superior scal-
ability with respect to puzzle size. Furthermore, in
a comparative analysis against other computational
paradigms, our solver proved more efficient than
LP (GUROBI), Prolog, and SMT (Z3) implementa-
tions, ultimately ranking second, surpassed only by
ASP (CLASP). This establishes CSP, specifically
with the Lazy strategy, as a competitive approach
for modelling and solving Hitori.

1 Introduction
Logic puzzles are frequently used in computer science
because they transform complex computational challenges
into a format that is intuitive for humans to understand and
solve, rather than relying on abstract or highly specialized
mathematical topics. This accessibility makes them an ideal
medium for evaluating various computational problem-
solving paradigms. A common challenge, however, is that
comparisons are often biased: researchers tend to be more
familiar with certain paradigms, giving those approaches an
inherent advantage. To achieve fair and objective compar-
isons, our group has organized a collaborative effort in which
each member focuses on a single paradigm, ensuring that
each solver is developed by an expert in that paradigm. To
allow for fair benchmarking results, the puzzle instances will
be generated randomly, so that the problem instances do not
favour certain paradigms over others.

The puzzle covered in this research is Hitori. Hitori
presents a combination of global connectivity constraints and
local structural rules. A Hitori puzzle consists of an n × n
grid with numbers ranging from 1 to n. To solve it, certain
numbers must be marked so that the resulting grid satisfies
the following conditions:

• Uniqueness: every number only appears once in the
white tiles of a row or column.

• Adjacency: black tiles are never orthogonally adjacent.

• Connectivity: all white tiles are connected to all other
white tiles.

(a) Puzzle (b) Solution

Figure 1: A Hitori puzzle and its solution

Puzzles also differ by specific characteristics, such as the
count of marked tiles required in the solution. As Hitori is
proven to be NP-complete [9], it presents significant chal-
lenges that scale with puzzle size. This makes it a solid can-
didate for evaluating the efficiency of different computational
paradigms and modelling choices.

This research investigates how well the CSP implementa-
tion PUMPKIN is suited for solving the Hitori puzzle.

The research questions we answer are:

• What is the impact of adding redundant constraints to
our base encoding on solving time?

• What impact do the puzzle size and puzzle characteris-
tics have on encoding size and solve time?

• How does Pumpkin compare to different paradigms at
solving Hitori puzzles in solving capability and time?

In this paper, we begin by showing relevant work done,
then show the differences between candidate paradigms, and
the relevant background information. We will then model Hi-
tori for PUMPKIN and create a solver. Using this solver, we
explore the impact of redundant constraints, evaluate solve
time and encoding size scalability across sizes and puzzle
characteristics and compare our solver to other solvers cre-
ated by the research group.

2 Related Work
In this section, we show what related work has already been
done into logic puzzle solving using CSP and Hitori.

Wensveen conducted a comprehensive study on the
Hitori puzzle, focusing on the interplay between solving,
generation, and difficulty classification [12]. Wensveen’s
work provides a robust framework for generating valid Hitori
instances and analysing their complexity using metrics de-
rived from standard SAT solvers. However, while Wensveen
uses existing solving technologies to facilitate generation
and classification, the primary scope of that research lies in
the properties of the puzzle itself.

M. Gander and C. Hofer used an SAT solver to solve
Hitori [6]. They used methods to encode the constraints
that lead to exponential encodings, which caused slow solve
times for large puzzles. They also identified and described



many puzzle patterns, but they did not analyse their impact.

Simonis provides an analysis of Sudoku viewed through
the lens of Constraint Programming [11]. Simonis estab-
lishes the critical importance of global constraints; he shows
that applying Generalized Arc Consistency (GAC) on these
global constraints allows the solver to perform much stronger
propagation, pruning values that binary constraints would
miss, often allowing the solver to deduce the solution without
requiring any backtracking search. This work underscores
the necessity of expressive constraint modelling for logic
puzzles, an approach we use for solving the Hitori puzzle by
utilizing the advanced global constraint capabilities of the
PUMPKIN solver.

A specific challenge in Hitori is ensuring the connectivity
constraint holds. Dumas et al. demonstrated that reasoning
about connectivity as a global constraint allows for powerful
pruning of the search space [3]. While their work represents
the theoretical state-of-the-art for connectivity propagation,
our implementation adopts a standard constraint modelling
approach. This allows us to evaluate the performance of mod-
ern solvers like PUMPKIN on logic puzzles without the need
for domain-specific algorithmic augmentations.

3 Background
Logic puzzles can be solved using a variety of paradigms,
each offering their own strengths and weaknesses. To high-
light these differences, this literature review examines two
specific paradigms, discussing their inner workings as well
as their respective strengths and weaknesses. We then evalu-
ate these paradigms in the context of a Hitori implementation
so that a comparison can be made for these approaches. This
is followed by discussing related work on Hitori and other
logic puzzles, showing their relevance to this research.

3.1 Constraint Satisfaction Programming (CSP)
A constraint satisfaction problem (CSP) involves finding a
valid assignment for a set of variables. This assignment must
select values from a finite domain so that all defined con-
straints are satisfied [1]. An important concept CSP solvers
use to reduce variable domains is arc consistency. By uti-
lizing the problem’s constraints, the solver identifies specific
values that can never result in a satisfiable solution and re-
moves them from the domain. More specifically, if a binary
constraint C involves variables x and y with domains Dx and
Dy , the domains are reduced to include only values for which
a valid combination exists. A value a is kept in Dx if:

∃b ∈ Dy such that (a, b) satisfies C

If no such supporting value b exists, a is pruned from the do-
main [1]. CSP solvers are particularly effective for highly
constrained problems, which is the case for the Hitori puzzle.
In these scenarios, the restrictive constraints actively guide
the search, allowing propagation techniques to prune large
portions of the search space efficiently. Crucially, this local
pruning allows CSPs to solve problems without generating
the entire logical search space upfront [1]. The CSP solver

that has been chosen for this research is PUMPKIN [5]. It
is a solver that can be used as a solving engine for MiniZ-
inc, a high-level modelling language, as well as directly as a
package for Rust. PUMPKIN is a CSP solver that implements
the Lazy Clause Generation (LCG) paradigm. LCG enhances
standard constraint propagation by incorporating SAT solving
techniques, giving the solver the ability to learn from failures,
nogoods, and add them as constraints [4].

3.2 Answer Set Programming (ASP)
Answer Set Programming (ASP) is a declarative paradigm
where problems are modelled as logic programs consisting
of rules. Unlike CSP, which is defined by variables and do-
mains, an ASP problem is defined by a set of logical rules,
and the solutions correspond to the stable models (or an-
swer sets) of that program [7]. For this research, the chosen
solver is CLASP. CLASP uses Conflict-Driven ASP, this im-
proves ASP by allowing back-jumping and Conflict-Driven-
Learning (CDL) [7].

In terms of problem modelling, an ASP program consists
of a finite set of logic rules. As defined in the preliminaries
of [7], a rule r is typically expressed in the form:

a0 ← a1, . . . , am, not am+1, . . . , not an

Here, a0 is the head of the rule, and the remaining elements
form the body. The comma represents a logical conjunc-
tion (AND), while “not” denotes default negation (negation
as failure). Intuitively, this rule states: “if a1 through am are
true, and there is no evidence that am+1 through an are true,
then a0 must be true.”

Constraints, which are vital for puzzles like Hitori, are of-
ten modelled as rules with an empty head:

← a1, . . . , an

This structure forbids any solution where the body is satis-
fied, effectively acting as a nogood that prunes invalid states
from the search space [7]. An advantage of ASP for the Hitori
puzzle is its native support for recursive definitions, allowing
for the direct modelling of the connectivity constraint. While
standard propositional logic struggles with such structures,
ASP solvers handle them through the stable model semantics.
Specifically, Gebser et al. describe how modern solvers uti-
lize unfounded set propagation to verify the support of atoms
within recursive loops (referred to as “non-tight” programs),
ensuring that cyclic dependencies are resolved correctly [7].
However, ASP also retains the same issue CSP has, where
it was designed for satisfaction. Consequently, identifying a
unique solution may be computationally expensive.

3.3 Comparison
Having analysed the inner workings of both CSP (the LCG
approach of PUMPKIN) and ASP (the CDL approach of
CLASP), we now compare their suitability for the Hitori im-
plementation.

In terms of pure expressiveness, ASP offers a distinct ad-
vantage for the Hitori puzzle due to its native support for
recursion. However, while CSP solvers lack this native re-
cursive syntax, the PUMPKIN solver’s architecture allows for



tight integration with the host language (Rust). Instead of re-
lying on a solver to pre-calculate all connectivity paths, we
can implement some additional constraints that remove most
of these invalid solutions, and add a connectivity check in
Rust which dynamically adds constraints to cut off discon-
nected solutions. This approach grants finer control over the
performance trade-offs than the black-box nature of standard
ASP solvers.

Furthermore, computational requirements must be consid-
ered. ASP solvers like CLASP require a full grounding phase.
For large Hitori grids, this could lead to an explosion in mem-
ory usage and startup time, as the solver must generate rules
for every possible tile connection upfront.

In contrast, the CSP paradigm avoids this bottleneck by
relying on domain propagation (arc consistency) and dynamic
clause generation. By generating SAT clauses dynamically
during the search and only when necessary, PUMPKIN can
potentially identify solutions for large instances significantly
faster while taking up less computational resources.

Given the need for scalable performance and the desire
for fine-grained control over constraint application via Rust,
the CSP paradigm (using PUMPKIN) is selected for this re-
search. The LCG architecture offers an effective balance be-
tween memory efficiency and search speed for the specific
constraints of Hitori.

4 Approach
To answer our research questions, this research adopts a
hybrid approach. It combines a collaboratively developed
benchmarking infrastructure to ensure fair comparison across
paradigms, with an individual implementation focus on puz-
zle size, characteristics and redundant constraints.

4.1 Collaborative Benchmarking Framework
To ensure a robust evaluation, we use a shared infrastructure
developed by our research group. Using these tools, we cre-
ate our puzzle instances. This approach mitigates the selec-
tion bias inherent in static problem libraries. As J.N. Hooker
describes [10], rigorous empirical science requires moving
beyond ‘competitive testing on limited datasets’ to instead
analysing how algorithmic performance scales across varying
problem characteristics.

The shared infrastructure contains:

1. Puzzle Generator
We developed a Puzzle Generator capable of produc-
ing any valid, unique Hitori instance of size n × n. By
unique, we mean that the puzzle admits exactly one valid
solution. A proof that the generator is able to generate
all unique puzzle instances can be found in Appendix B.

2. Solution Checker
A Solution Checker was developed to allow verification
of solver solutions.

4.2 Constraint Modelling in Pumpkin
The modelling process transforms the logical rules of Hi-
tori into a Constraint Satisfaction Problem (CSP) compati-
ble with the PUMPKIN solver. This process is divided into

three stages: variable definition, constraint formulation, and
the implementation of global connectivity strategies.

Variable Representation
The grid is mapped to a 2D array of boolean decision vari-
ables, Br,c, where:

Br,c =

{
true if tile (r, c) is marked (Black)
false if tile (r, c) remains unmarked (White)

Inside PUMPKIN, these variables are mapped to numerical
values, true being 1 and false being 0, so that numerical con-
straints can also be applied.

Constraint formulation
The local rules of Hitori are directly encoded as propositional
logic clauses.

• Adjacency Constraint: To satisfy the rule that no
two painted tiles may be orthogonally adjacent, binary
clauses are added for every tile (r, c) and its neighbours
(nr, nc) ∈ ((r + 1, c), (r − 1, c), (r, c+ 1), (r, c− 1)):

¬Br,c ∨ ¬Bnr,nc

• Uniqueness Constraint: For any two different tiles
(r, c) and (r′, c′) in the same row or column that con-
tain the same initial numerical value, at least one of them
must be marked:

Br,c ∨Br′,c′

Connectivity Strategies
The condition that all unpainted tiles must form a single con-
nected component is a global constraint that poses a signif-
icant modelling challenge in CSP. To evaluate performance
trade-offs, two distinct strategies are implemented
1. Lazy Connectivity In this approach, the solver initially
ignores the connectivity constraint. It generates a candi-
date solution satisfying only the local constraints. An ex-
ternal Breadth-First Search (BFS) algorithm then verifies the
connectivity of the white tiles. If disconnected, a nogood
clause is learned, preventing that specific configuration, and
the solver searches for a new solution until a valid solution is
found or no other options are possible.
2. Distance-Based Connectivity This strategy, used by
Wensveen in their solver [12], encodes connectivity directly
into the CSP using a distance matrix. The implementation of
this requires introducing auxiliary variables:

• Rootr,c: A boolean variable indicating if tile (r, c) is the
root of the connected component.

• Distancer,c: An integer variable representing the dis-
tance of a white tile from the root.

The constraints enforce a single-source valid path for every
white tile:

• Single Root: Exactly one white tile is designated as the
root (

∑
Rootr,c = 1), with the root being the only tile

with Distancer,c = 0.
• Parent Validation: Every non-root White tile (r, c)

must have at least one valid “parent” neighbour:
(nr, nc) ∈ ((r + 1, c), (r − 1, c), (r, c + 1), (r, c − 1)),
such that the neighbour is white and closer to the root
(Distancenr,nc < Distancer,c).



Redundant Constraints
Finally, a set of logically redundant constraints implied by the
constraints of Hitori but useful for pruning the search space
are implemented. These constraints can be toggled on or off,
allowing for an experimental analysis of their impact on our
solver’s solving time. These are based on common Hitori pat-
terns and human solving strategies. A summary of the con-
straints can be found in Table 1. A full explanation can be
found in Appendix C.

Table 1: Summary of Redundant Constraints.

Abbr. Name Summary

WN White Neighbours Every white tile must have ≥ 1 white
neighbour.

CCH Corner Check A 2×2 block of two pairs next to a cor-
ner force white assignment to prevent
isolation.

SP Sandwich Pair If a number is between a pair, it must be
white.

EP Edge Pair Prevents border tiles from being marked
if it has a pair neighbour and a pair di-
agonal neighbour in the same direction.

CC Corner Close Prevents black tiles from isolating a cor-
ner tile.

FI Flanked Isolation A tile flanked by two adjacent pairs
must be black.

LW Least White Sets a minimum for the number of
white tiles in a row/col.

UC Unique Cell Symbols unique in their row/col are set
to white.

PI Pair Isolation Prevents isolation when identical sym-
bols flank a tile.

CI Close Isolation In a 9 tile square, if the 4 tile “diamond”
is black, the other are white.

WB White Bridges Adjacent rows must share ≥ 1 pair of
orthogonal white tiles.

DW Diagonal Wall Ensures no full diagonal is entirely
black tiles.

4.3 Puzzle Characteristics
In order to identify structural differences in puzzle instances,
we categorize them based on the following characteristics.

• Black Count (BC): The total number of marked tiles in
the solution.

• Adjacent Duplicates (AD): The number of duplicate
pairs that are orthogonally adjacent.

• Non-Adjacent Duplicates (NAD): The number of dupli-
cate pairs in the same row or column that are separated
by at least one other tile.

• Triple Adjacent Duplicates (TAD): The frequency of
three identical numbers appearing consecutively (e.g.,
“5 5 5”).

4.4 Paradigm Benchmarking

As this paper is part of a larger collaboration, a critical step is
the comparative evaluation of the CSP paradigm against other
paradigms.

To ensure an objective evaluation, we benchmark our
solver against those developed by other members of the re-
search group, specifically covering the paradigms of Answer
Set Programming (CLASP), Linear Programming (GUROBI),
Prolog, and Satisfiability Modulo Theories (Z3). This col-
laborative framework mitigates the implementation bias often
present when a single researcher attempts to implement mul-
tiple paradigms, ensuring that each solver is optimized by a
dedicated researcher.

5 Experimental Setup

In this section, we will discuss the setup used to run our ex-
periments, as well as how our measurements are taken, and
the Metrics we will use.

5.1 Puzzle Generation

The Puzzle Generator, which generates n × n puzzle grids,
employs a “reverse-generation” strategy: it first constructs a
valid solution state (topology), a grid that shows what tiles
need to be marked when solving the puzzle, and then popu-
lates the grid with numbers that force that specific solution.

The generation consists of three distinct phases:

1. Solution Topology Generation
The first phase generates a valid solution mask (a binary
grid denoting black and white tiles) without yet assign-
ing numerical values. This process ensures the structural
rules of Hitori are met from the start.

The algorithm initializes an n× n grid of white tiles
and iterates through a randomized list of coordinates.
For each tile, it attempts to toggle the state to black.
This change is accepted only if it violates neither the
adjacency constraint nor the connectivity constraint.

To ensure that our generator is capable of produc-
ing the full spectrum of possible solution topologies, we
provide a theoretical proof of coverage in Appendix B.1.

2. Constraint-Based Number Population
Once the solution topology is established, the generator
populates the grid with integers v ∈ {1, . . . , n}. This is
done in two steps using a recursive backtracking algo-
rithm:

• White Tile Assignment: The algorithm first as-
signs numbers to the white tiles. To satisfy Hitori
rules, these numbers are placed such that no num-
ber appears more than once in any row or column.

• Black Tile Assignment: The black tiles are popu-
lated subsequently. To ensure the puzzle is solv-
able, a black tile must contain a number that is
equal to a number of a white tile in its respective
row or column.



(a) Solution topol-
ogy

(b) White cell val-
ues

(c) Black cell val-
ues

Figure 2: A visualisation of the Puzzle Instance Generation

We demonstrate that this two-step population method
can generate valid numerical configurations for any
given valid topology in Appendix B.2.

3. Uniqueness Check
Generated grids are sent to a Base Solver. This is a Hi-
tori solver that is distinct from our experimental models,
it is written in MiniZinc-Python using the solving en-
gine Chuffed. It verifies that the puzzle yields exactly
one unique solution. If the solver finds multiple solu-
tions or no solution, the grid is discarded, and the pro-
cess restarts.

5.2 Measurement in Rust
To ensure accurate performance profiling, we strictly define
the boundaries of the measured solving time, as well as the
encoding size. File I/O operations are excluded from the per-
formance metrics. These operations are heavily dependent
on disk speed and serialization libraries, which are not rel-
evant to the algorithmic efficiency of the solver. The mea-
sured Solving Time is the sum of two measurements: Encod-
ing Time, the time required to declare variables and define
constraints within the solver instance, and Search Time, the
time spent by the solver’s internal engine to propagate con-
straints and backtrack to a valid solution. These durations
are captured using the high-precision std::time::Instant
monotonic clock in Rust, measuring elapsed wall-clock time.

The measured Encoding Size is recorded immediately after
the solver finds a solution and is a combination of: Variables,
the total number of decision variables, and Clauses, the num-
ber of propositional logic clauses.

5.3 Experimental Procedure
To answer our research questions, we designed three separate
experiments to evaluate our solver. We first analyse the im-
pact of redundant constraints, then evaluate the solver’s be-
haviour regarding scaling and puzzle characteristics, and fi-
nally benchmark against solvers from other paradigms.

Throughout these experiments, when reporting quantitative
changes in solving time or encoding size, we use the arith-
metic mean. We prioritize the mean over the median to ensure
that the computational impact of outliers is fully reflected in
our performance assessment.

All internal experiments are conducted on a Desktop with
an AMD Ryzen 7 5800X and 32 GB 3000-MHz RAM. The
operating environment is Ubuntu 22.04 running via Windows
Subsystem for Linux (WSL) on Windows 11. To ensure con-
sistent benchmarking, the solver is restricted to a maximum

memory allowance of 8 GB and a solving timeout of 10 sec-
onds per instance. For the Collaborative benchmarking, we
use the same Desktop, but inside of a Docker container run-
ning python:3.11-slim with a hard resource limit of 8GB. This
allows for more accurate reproducibility of benchmarking, as
everyone is able to simulate the same environment.

Redundant Constraint Analysis
To answer RQ1, we evaluate the baseline performance of
each connectivity encoding strategy. We use the redundant
test set, comprising 40 puzzle instances per grid size, with
sizes ranging from 5 × 5 to 25 × 25. Subsequently, using
the same instances, we analyse the change in solving perfor-
mance when redundant constraints are enabled. To identify
statistically significant performance changes, we employ the
Wilcoxon Signed-Rank test, where we consider p < 0.05 to
be significant. We use this test because our data consists of
paired measurements on identical puzzle instances, allowing
us to isolate performance differences from instance hardness
while accounting for the non-normal distribution of runtimes.

Solver Behaviour Analysis
To answer RQ2, this experiment measures how puzzle size
and structural puzzle characteristics impact solving time and
encoding size.

• Size Analysis: To isolate the impact of grid dimensions,
we use the size analysis set, consisting of 100 random
puzzle instances per grid size (5 × 5 to 25 × 25). We
report the growth in solving time and encoding size as
dimensions increase.

• Characteristics Analysis: To isolate structural effects
from size scaling, we use the characteristics set, com-
prising 1000 puzzles at a fixed grid size of 10× 10.

For each puzzle characteristic defined in Section 4.3, we
partition the instances into three groups based on their quar-
tile distribution: Low (x < Q1), Medium (Q1 ≤ x ≤ Q3),
and High (x > Q3). We then apply the Mann-Whitney U test
to compare the Low and High extremes against the Medium
baseline to determine if structural deviations significantly im-
pact performance. We consider p < 0.05 to be significant.
This test is used here because the groups consist of indepen-
dent, unpaired samples (distinct puzzle instances) and the test
is robust to both non-normal distributions and the unequal
sample sizes resulting from our quartile-based partitioning.

Paradigm Benchmarking
To answer RQ3, we benchmark our solver against the
other solvers developed by the research group for alterna-
tive paradigms. For this comparison, we select the best-
performing strategy by analysing our previous results.

For testing, we use a python script that tracks the CPU time
elapsed between the start and end of the solver. This is done to
get accurate measurements between different code languages

For the benchmarking, we use the stress-test set, a set of 50
randomly generated puzzle instances per grid size, for sizes
5 × 5 to 50 × 50 with a step size of 5. The benchmark com-
parison focuses on Scalability, a comparison of solve time
growth as grid size increases, and Robustness, evaluating the
consistency of the solver across varying puzzle instances. For



any instance that reaches the timeout without a solution, a 20-
second penalty is recorded as the completion time.

To analyse the scalability, we use the mean solving time
per grid size, where a mean solve time of 20 seconds indi-
cates the solver was unable to solve any puzzles of that grid
size within the time limit. To measure robustness, we use Per-
formance Profiles as proposed by Dolan and Moré [2]. These
profiles visualize the robustness of each paradigm by plotting
the probability P that a solver’s performance is within a fac-
tor τ of the best-performing solver for any given instance, the
performance ratio.

6 Results
In this section, we present the experimental results to address
our three research questions. We first analyse the impact of
redundant constraints across different connectivity strategies.
Next, we examine the solver’s scaling behaviour and the im-
pact of specific puzzle characteristics. Finally, we benchmark
our solver against external paradigms.

6.1 Impact of Redundant Constraints (RQ1)
This section provides results to answer RQ1 “What is the im-
pact of adding redundant constraints to our base encoding
on solving time?”. We compared our two implementations of
the connectivity constraint against versions with a redundant
constraint added to it across the redundant test set.

Lazy Connectivity Strategy
The impact of redundant constraints on the Lazy strategy is
detailed in Table 2. Although the baseline and most redun-
dant constraints failed to solve all the puzzles within the time
limit, the White Neighbours (WN) constraint significantly
improved the solving capability, enabling a 100% success
rate. This gain is likely due to the pruning of the solution
space by the WN constraint. By enforcing local white-tile
connectivity, the solver generates fewer nogood solutions, re-
ducing the amount of BFS connectivity checks needed. Con-
sequently, we adopted this configuration as the updated base-
line for the Lazy Connectivity strategy, hereafter referred to
as the LazyWN solver.

When evaluating additional redundant constraints on the
LazyWN solver, we found that the impacts of LW, EP, WB,
DW and CC on solving time were not statistically significant.
PI and SP showed a significant slowdown for every puzzle
size. FI, CI, CCH showed a significant improvement in mean
solving time, but the actual impact is minimal, with mean
decreases of 0.4%, 1.7% and 1% at all grid sizes. However,
UC, which showed a significant improvement in solving time,
has a mean solve time decrease of 16.4% over all grid sizes,
and a 93.7% mean decrease for n = 25. This likely has the
same reason as the impact of WN, UC forces a lot of tiles
to be white, making the solution space smaller, and thus the
solver comes up with fewer nogood solutions.

Distance Connectivity Strategy
During the experiments on the Distance solver, we found that
LW and FI both did not show a statistically significant impact
on solving time. While CCH yielded a significant result, it
actually introduced a 2.82% slowdown in performance over

all grid sizes. Among the constraints that significantly im-
prove solving time, the actual mean impact was modest. Sev-
eral constraints, including CI, CC, DW, PI and SP, clustered
around a 4.8% to 4.9% mean decrease in solving time for
all grid sizes. WB offered the smallest significant decrease
at 1.78%. The Distance strategy benefits less from the con-
straints than the Lazy strategy does; this is likely because
while the redundant constraints prune the search space for
black-tile selection, the solver must still assign roots and cal-
culate distances for all white tiles. This suggests the Distance
solver maintains a high computational baseline regardless of
the pruned black-tile options.

6.2 Solver Behaviour Analysis (RQ2)
This section provides results to answer RQ2: “ What impact
do the puzzle size and puzzle characteristics have on encod-
ing size and solve time?”.

Impact of Puzzle Size
Using the size analysis set, we measured the solving time and
encoding size as the grid dimension n increases from 5 to 25.

Figure 3: Mean solving time in seconds (log) per grid size for size
analysis set. Shaded regions represent the standard deviation.

Figure 4: Encoding size (Variables + Clauses) per grid size for size
analysis set. Shaded regions represent the standard deviation.

Figures 3 and 4 demonstrate a strong correlation between
encoding size and solving time. While the Distance strategy
provides predictable solve times with low variance, it suffers
from an encoding overhead that scales aggressively with grid



Table 2: Impact of redundant constraints on Lazy strategy solving capability for puzzles from redundant tests set, ordered by Max solved grid
size.

Metric W
N

U
C

W
B

PI LW C
C

C
I

B
as

e

E
P

FI
.

D
W

C
C

H

PS

Max Solved Grid Size (N ) 25 23 21 17 17 16 16 16 15 15 15 15 15
Solved (%) 100.0 65.1 42.1 37.7 37.1 39.6 37.0 36.8 38.5 38.2 37.7 37.6 37.5

Table 3: Distribution of puzzle characteristics across characteristic
set. Groups are defined by quartiles: Low (< Q1), Medium (Q1 −
Q3), and High (> Q3).

Thresholds Group Size [N (%)]

Char. Q1 Q3 Low Medium High

BCC 121 124 208 (20.8%) 599 (59.9%) 193 (19.3%)
AD 21 27 209 (20.9%) 561 (56.1%) 230 (23.0%)
NAD 184 196 224 (22.4%) 528 (52.8%) 248 (24.8%)
TAD 0 0 0 (0.0%) 790 (79.0%) 210 (21.0%)

size. This is explained by the rapid growth in variables re-
quired to represent the root and distance values; for each size
increase, the number of decision variables added expands the
solution space significantly. In contrast, LazyWN maintains
an encoding size that is 80% smaller at n = 25, which ap-
pears to facilitate better scalability in solve times for larger
instances, despite showing higher variance in performance
across individual puzzles.

Impact of Puzzle Characteristics
To isolate structural difficulty from size, we analysed the per-
formance of our solver strategies on the characteristics set.
The distribution for each of the puzzle characteristics in the
set can be found in Table 3. For most characteristics, we can
see a distribution of approximately 50-60% of puzzles falling
into the Middle category. However, TAD shows a norm of 0,
meaning that there is no low group to analyse.

Analysis of the LazyWN solver identified NAD as the only
characteristic statistically significantly impacting solve time,
with the high-count group achieving a 47.38% mean decrease
in solving time over the medium group. NAD also signifi-
cantly altered the encoding size with a 9.61% mean increase
for Low and a 6.06% mean decrease for High. This is likely
because high NAD counts spread out duplicate values, mean-
ing that decisions on one part of the grid can have an impact
on distant tiles, allowing the solver to propagate constraints
more effectively.

The Distance solver proved to be more robust but less re-
active. For BC, we saw a statistically significant increase in
solving time for High and Low groups when compared to the
medium group, with a 1.26% and 6.39% mean increase re-
spectively. This indicates that the Distance strategy is sensi-
tive to the stability of the black-tile count. For low counts,
an explanation could be that because if there are more white
tiles, there are more roots to choose, increasing solve time for
root and distance assignment. With a higher black count a
reason could be that, because there will likely be many black
tiles diagonal of each other, it is easier for the solver to create

islands, which would require more backtracking. The over-
all influence of the characteristics on encoding size remained
minimal, with BC, AD and NAD showing significant impact,
but the mean changes being below 1%.

6.3 Paradigm Benchmarking (RQ3)
To answer RQ3 “How does Pumpkin compare to differ-
ent paradigms at solving Hitori puzzles in solving capabil-
ity and time?”. We compare the best configuration of our
solver against the solvers from the other paradigms. When
analysing the results from our previous sections, we can see
that LazyWN, although less stable, is the fastest of the two
solvers. As UC had the biggest impact on solve time out of
the redundant constraints applied to LazyWN, we add this to
the solver used for our benchmarking.

Figure 5: Mean solving time in seconds (log) per grid size for Stress-
Test Set using script reported solve time.

Comparing Figures 5 and 6 reveals that the script-reported
solve time introduces significant bias. Our solver, as com-
piled binary, incurs negligible startup time. In contrast,
the other solvers face substantial overhead from Python
initialization and license verification. To ensure a fair com-
parison, we will instead use the internal solve time reported
by each solver. For our solver, this means the measured
time as explained in Section 5.2. For the other solvers, this
corresponds to the measured CPU time, excluding file I/O
operations. While this provides a more accurate reflection of
the solve times, it is important to note that the difference in
internal clocks introduces a degree of measurement variance.
However, we believe the removal of the overhead outweighs
the potential skew of internal timing differences.

Figures 6 and 7 illustrate solver performance across grid
sizes ranging from 5 to 50.



Figure 6: Mean solving time in seconds (log) per grid size for Stress-
Test Set using solver reported solve time.

Figure 7: Performance profile of the internally reported solve times,
showing the probability (vertical axis) that a solver is within a certain
ratio of the fastest solve time (horizontal axis).

The ASP solver consistently outperforms all other solvers,
with a mean solving time for n = 50 of less than 0.1 seconds,
and a maximum performance ratio of τ = 4; this indicates
that its solving time is, at most, four times slower than the
fastest solve time of a puzzle. The dominance of ASP can be
attributed to its efficient handling of connectivity rules during
its grounding phase, avoiding the iterative overhead of our
Lazy approach.

Our LazyWN solver also demonstrates competitive perfor-
mance, having a mean solving time for n = 50 of 3.3 sec-
onds. It also achieves the fastest solve time in approximately
30% of puzzle instances, and 80% of its solving times fall
within a performance ratio of τ = 4. However, the LazyWN
performance curve plateaus at 90%, indicating that for the
remaining 10% of puzzle instances it either timed out or ex-
ceeded a performance ratio of τ = 10.

The remaining solvers struggle with performance. Prolog
and Gurobi display poor scalability, failing to solve any in-
stances for grid sizes n ≥ 20 and n ≥ 25 respectively. Conse-
quently, their performance profiles flatline early, with Gurobi
exceeding a performance ratio τ = 10 at around 30% and
Prolog around 10%. In contrast, while Z3 is able to solve
puzzles up to n = 50, it is consistently orders of magnitude

slower than the leaders, its performance profile only appears
at τ > 9, showing it is never within competitive range of the
other solvers.

7 Conclusion and Future Work
In this research, we explored the suitability of the Constraint
Satisfaction Problem (CSP) paradigm for solving Hitori puz-
zles. By implementing a solver using PUMPKIN, we evalu-
ated the paradigm’s performance across varying puzzle sizes
and characteristics, ultimately finding CSP to be a compet-
itive approach. To facilitate this, we developed a gener-
ator proven to produce any unique Hitori puzzle instance,
which served as the foundation for our evaluation and cross-
paradigm benchmarking.

We investigated the impact of redundant constraints on
solving performance, demonstrating that they yield a substan-
tial positive impact on the Lazy connectivity strategy and a
minor but consistent improvement for the Distance strategy.
Furthermore, our analysis of scaling behaviour revealed a dis-
tinct trade-off: while the Lazy strategy scales efficiently with
puzzle size, the Distance strategy’s performance degrades
rapidly as grid size increases. Regarding puzzle character-
istics, we found that a high frequency of non-adjacent dupli-
cates significantly accelerates the LazyWN solver, whereas
the Distance strategy is sensitive to deviations in the count of
black tiles.

Finally, our benchmarking establishes PUMPKIN as a
top-tier contender, securing the second-fastest solving times
and outperforming LP, Prolog, and SMT implementations.
While ASP remains dominant, our results prove that a well-
optimized CSP approach is a robust and viable alternative for
modelling and solving Hitori.

Future research into CSP could focus on optimizing con-
nectivity, either by refining the Lazy and Distance strategies
presented here or by exploring entirely new strategies. Ad-
ditionally, further investigation is required to identify other
structural puzzle characteristics that may govern solving diffi-
culty. Finally, replicating these experiments with CSP solvers
other than PUMPKIN would help verify the generalizability of
our findings and isolate solver-specific performance.

Future research could expand the scope of this study by
evaluating additional paradigms on Hitori and comparing
them to our established benchmarks. In addition, a more in-
depth analysis of current paradigms is required to pinpoint
the specific structural areas where each approach excels.

Future research should also aim to establish a standard-
ized, balanced benchmarking library that comprehensively
covers the full spectrum of Hitori’s structural characteristics.
Furthermore, the benchmarking methodology requires refine-
ment to mitigate artifacts such as solver initialization over-
head, ensuring a more equitable comparison between com-
piled and interpreted solving environments.

8 Responsible Research
In alignment with the ethical guidelines of our course and the
broader research community, we have taken specific steps to



ensure the transparency, reproducibility, and integrity of our
work.

8.1 Reproducibility
To ensure that our findings are reproducible, all artifacts re-
quired to replicate our experiments are publicly available.
The source code for the solver and puzzle instances used in
this research can be found in our repository.1 The source code
for the puzzle generator, benchmarking setup and solution
checker can be found in our shared research group reposi-
tory 2. Both of these repositories contain an MIT license so
that our code can be used in future experiments.

We have included a README file that details:

• Instructions on how to run the solver, as well as exam-
ples.

• Instructions on how to run a benchmark.

• A list of all third-party libraries used, all containing li-
cences (MIT, Apache 2.0), ensuring our right to use and
analyse these tools.

All of the used repositories accessed were open source, and
used both MIT and Apache 2.0 Licenses. These licenses al-
low the source code to be freely distributed, as long as the
copyright notices in the code are retained.

• Rust-Language Repository 3

• Pumpkin Repository 4

8.2 Generative AI Usage
In this research, we utilized Generative AI (Google’s Gemini
3 Pro model 5) as a supportive tool to enhance the quality and
efficiency of our work. Our usage was strictly limited to the
following areas:

• Syntax Engine: Since Rust’s naming convention differs
from other coding languages, we used AI as a descriptive
search engine for the documentation. (e.g., “How do I
parse an array from a comma separated string”).

• Technical Troubleshooting: We utilized the tool to as-
sist in debugging software errors.

• Scripting: We let AI generate boiler plate code for files
that we needed (e.g., “Generate a rust file that accesses a
file and calls a function on every line. It has a 2D array
as output.”).

• Writing Assistance: We used AI-assisted tools to im-
prove the grammar, flow, and readability of the final text
(e.g., “How do I make the sentence ‘test the strengths
and weaknesses of lazy and distance strategies and the
strengths and weaknesses of redundant constraints’ flow
nicely without repeating the same sentence”).

1https://github.com/LesleySmits/Pumpkin-Hitori-Solver/tree/
50cd4dd1897003970b9adc02dab8cb4f553d8c80

2https://github.com/sappho3/Thesis-Hitori-shared/tree/
2a5b61ce05c3ff93de09e61e64e8952a4556940f

3https://github.com/rust-lang/rust
4https://github.com/ConSol-Lab/Pumpkin
5https://aistudio.google.com/models/gemini-3

We never copied AI-generated answers without critical re-
view, nor did we present AI-hallucinated facts as our own. All
claims, definitions, and code logic suggested by the model
were cross-referenced with official documentation and pri-
mary literature to ensure accuracy. We retain full responsi-
bility for the content of this paper.
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B Generator Proof
Below, we prove that our generator can generate only any single-solution Hitori puzzle. We do so in three steps. In the first step
we prove that we can generate any valid solution topology. In the second step we prove that, given a valid solution topology S,
we can generate any valid Hitori puzzle that has that solution topology. In the last step we put everything together to prove the
following theorem:

Theorem B.1. Our generator is complete. That is, Algorithm 1 can generate exactly only every uniquely-solvable puzzle H .

Algorithm 1 Algorithm that exactly any valid Hitori instance H

1: function GENERATEHITORIINSTANCE
2: Let S = GENERATESOLUTIONTOPOLOGY
3: Let H = GENERATEHITORIINSTANCE(S)
4: while H is not uniquely solvable do
5: H = GENERATEHITORIINSTANCE(S)
6: end while
7: return H
8: end function

B.1 Generating Solution Topologies
A solution topology S is an n × n grid where each element Si,j (with i, j ∈ [1..n]) is marked or unmarked. Given a Hitori
instance H with S as its solution topology, having Si,j be marked means the solution of H has tile Hi,j marked. Similarly, if
Si,j is unmarked, the solution of H has tile Hi,j unmarked. A solution topology S is valid if it adheres to the adjacency and
uniqueness constraints defined by the Hitori rules.

Algorithm 2 is a pseudo-code representation of the algorithm with which we generate our solution topologies.

Algorithm 2 Algorithm that generates a solution topology S.

1: function GENERATESOLUTIONTOPOLOGY
2: Let S[1, . . . , n][1, . . . , n] be the two-dimensional array of tiles, all unmarked
3: Let C be the collection of all coordinates in S ((1, 1), (1, 2), . . . (1, n), (2, 1), . . . , (n, n)) in random order
4: for i = C[1] to C[n2] do
5: if no orthogonally adjacent tile is marked then
6: S[i] = marked
7: if the unmarked tiles of S are disconnected then
8: S[i] = unmarked
9: end if

10: end if
11: end for
12: return S
13: end function

Lemma B.2. Algorithm 2 only generates valid solution topologies.

Proof. For any marked tile that the algorithm places it checks whether the adjacency or connectivity constraint are met. If
this is not the case, it rolls back the decision and moves on.

Since our generator loops over every tile on the board and checks whether it can be marked, and only leaves the tile unmarked
if it were to break the adjacency or connectivity constraints, it cannot generate any solution topology with unmarked tiles that
could be marked without violating the adjacency or connectivity constraints.



Lemma B.3. Algorithm 2 can generate exactly only any valid solution topology.

Proof. Algorithm 2 generates solution topologies by iterating over the tiles in a random order. We will use this to show that it
can generate any valid solution topology.

Take any valid solution topology S with marked tiles M and unmarked tiles U . Since the solution topology is valid, none
of the tiles in M violate the adjacency or connectivity constraints. Since Algorithm 2 visits tiles in a random order, there is
a non-zero chance that it will first visit all the tiles in M before visiting any tile in U . Marking any of the tiles in M does not
violate the adjacency or connectivity constraints, and as such all will be marked by the algorithm.

Since S is a valid solution topology, no tiles in U could be marked without breaking the adjacency or connectivity con-
straints, thus when the algorithm visits the tiles in U after already marking the tiles in M , it will mark none of them. After
having visited the last tile in U , the algorithm will return solution topology S.

Now given that Lemma B.2 proves that Algorithm 2 can only generate valid solution topologies, we have now proven that
the algorithm can generate exactly only any valid solution topology.

B.2 Generating Hitori instances
A puzzle instance of Hitori H is an n × n grid of numbers where each element Hi,j ∈ [1..n] with i, j ∈ [1..n]. Algorithm 3
is a pseudo-code representation of our algorithm for generating an instance H from a given solution topology S. It consists of
two subsequent algorithms, Algorithm 4 which generates numbers for the tiles in H which correspond to unmarked tiles in S,
and Algorithm 5 which generates numbers for the tiles in H which correspond to marked tiles in S.

Algorithm 3 Algorithm that generates a Hitori instance H from a solution topology S.

1: function GENERATEHITORIINSTANCEFROMS(S)
2: Let H[1, . . . , n][1, . . . , n] be a grid of 0s
3: FILLUNMARKEDTILES(H, S, n, 1)
4: FILLMARKEDTILES(H, S, n, 1)
5: return H
6: end function

Algorithm 4 Algorithm that fills in the unmarked tiles given a partial Hitori instance H and a solution topology S.

1: function FILLUNMARKEDTILES(H, S, n, k)
2: Let i = ⌈ kn⌉
3: Let j = ((k − 1) mod n) + 1
4: if k > n2 then
5: return true
6: else if S[i][j] == marked then return FILLUNMARKEDTILES(H, S, n, k + 1)
7: else
8: Let row be the numbers used in the row of H[i][j]
9: Let col be the numbers used in the column of H[i][j]

10: C = {1, . . . , n} \ row \ col
11: if C = ∅ then
12: ▷ We check if a conflict occurred
13: return false
14: ▷ this is optimized by analyzing the conflict and returning to the conflict’s cause
15: else
16: shuffle C
17: H[i][j] = C[1]
18: ▷ Assign H[i][j] the first element in C
19: end if
20: end if

return FILLUNMARKEDTILES(H, S, n, k + 1)
21: end function

Lemma B.4. Given a valid solution topology S, Algorithm 4 can generate all valid combinations of numbers in unmarked
tiles.



Proof. Take any valid partial Hitori instance H corresponding to solution topology S, which has numbers assigned to all its
unmarked tiles such that all of the assigned numbers are unique in their row and column. We will now show that our generator
can create this partial Hitori instance.

Our generator iterates over all tiles in order, moving from left to right, top to bottom. At each unmarked tile the generator
will create a list C of valid numbers to put in this tile. This list consists of the numbers 1, 2, . . . , n excluding any number that
is already present in the row or column.

If a number is not in C, putting it in the given tile would not result in a valid partial Hitori instance corresponding to the
solution topology S, as it would either break the uniqueness constraint if it remains unmarked in the solution, or it would
break the adjacency or connectivity constraints if it is marked (by the definition of S).

Since C contains all valid numbers that the tile could receive, and Algorithm 4 selects a number at random, each possible
valid number has a non-zero chance of being chosen, including the corresponding value in H . Since this holds for every
unmarked tile that the algorithm visits, it can generate H . As such, given a valid solution topology S, Algorithm 4 can generate
all valid combinations of numbers in unmarked tiles.

Lemma B.5. Given a valid solution topology S, Algorithm 4 can only generate valid combinations of numbers in unmarked
tiles.

Proof. Any invalid combination of numbers in unmarked tiles has to contain two of the same numbers on a given row or
column. Since Algorithm 4 selects a number to give to a tile from a list C that contains every number from 1 to n excluding
any number that is already present in the row or column, the generator cannot create an invalid combination of numbers in
unmarked tiles.

Algorithm 5 Algorithm that fills in the marked tiles of a partial Hitori instance H .

1: function FILLMARKEDTILES(H, S, n, k)
2: Let i = ⌈ kn⌉
3: Let j = ((k − 1) mod n) + 1
4: if k > n2 then
5: return true
6: else if S[i][j] == unmarked then return FILLMARKEDTILES(H, S, n, k + 1)
7: else
8: Let row be the numbers used in the unmarked tiles of the row of H[i][j]
9: Let col be the numbers used in the unmarked tiles of the column of H[i][j]

10: C = row ∪ col
11: shuffle C
12: H[i][j] = c[1]
13: ▷ Assign H[i][j] the first element in C
14: end if

return FILLMARKEDTILES(H, S, n, k + 1)
15: end function

Lemma B.6. Given a valid solution topology S, and a valid partial Hitori instance H with numbers assigned to each unmarked
tile, Algorithm 5 can generate any valid combination l of numbers for in the marked tiles.

Proof. For a combination of numbers for in the marked tiles to be valid, each number in l must already be present in the row
or column that l will be assigned to. When assigning numbers to tiles, Algorithm 5 will create a list C which consists of all
numbers of unmarked tiles in the row and column of the given tile.

Furthermore, since all numbers in l must be covered, assigning multiple tiles in l with a new number that is not present in
their row and column is not a valid move: at least one of those tiles will not have to be covered.

Algorithm 5 then randomly selects a number from C and assigns it to the given tile. Given that C contains all valid options
for in the tile, and given that the number is chosen at random from C, each number has a non-zero chance of being selected for
the tile. As such, Algorithm 5 can generate any valid combination l of numbers for in the marked tiles.

Lemma B.7. Given a valid solution topology S, and a valid partial Hitori instance H with numbers assigned to each unmarked
tile, Algorithm 5 can generate only any valid combinations l of numbers for in the marked tiles.

Proof. For a combination of numbers for in the marked tiles to be invalid, at least one number in l must not already be present
in the row or column that l will be assigned to. Since we pick a number at random from C, and C only contains numbers from
the tiles’ row and column, it is not possible for the generator to pick an invalid number. As such, Algorithm 5 cannot generate
an invalid combination of numbers for in the marked tiles.



Lemma B.8. Given a valid solution topology S, Algorithm 3 can generate any valid puzzle instance H .

Proof. Lemma B.4 proves that, given any valid solution topology S, we can generate all valid combinations of numbers for the
unmarked tiles of a valid corresponding partial Hitori instance H . Lemma B.5 proves that we can generate nothing but valid
combinations of numbers.

Lemma B.6 then proves that given a valid solution topology S, and a valid partial Hitori instance H , we can generate any
valid combination of numbers for the marked tiles in H . Lemma B.7 proves that we can only generate valid combinations of
numbers for the marked tiles in H .

Since we can generate only exactly any valid combination of unmarked tiles, and given any valid combination of unmarked
tiles we can generate only exactly any valid combination of marked tiles, we can generate any valid combination of tiles to
create a valid Hitori instance given a valid solution topology S.

B.3 Proving Theorem B.1

Proof. Lemma B.3 has proven that our algorithm can generate exactly any valid solution topology S, and Lemma B.8 has
proven that, given any valid solution topology S we can generate exactly only any valid puzzle instances H . In the last part
of Algorithm 1 we keep generating new instances H from S until we have found one that is uniquely solvable. Once we have
found such an H , we return it.

Given this, we know that the generator can only return uniquely-solvable valid instances H , and as such we have proven
Theorem B.1

C Redundant Constraints

In this Appendix:

• blacki,j denotes the cell (i, j) being colored black.

• whitei,j denotes the cell (i, j) being colored white.

• symboli,j denotes the value of the cell (i, j).

White Neighbours (WN)

For every puzzle with n > 1, every white cell has at least one white neighbour.

Corner Close (CC) [12]

For every puzzle with n > 1, we cannot block the connectivity of the corner cell. Formally, for every corner:
(Top-left corner)

black0,1 ⇒ ¬black1,0, black1,0 ⇒ ¬black0,1

(Top-right corner)

black0,n−2 ⇒ ¬black1,n−1, black1,n−1 ⇒ ¬black0,n−2

(Bottom-left corner)

blackn−2,0 ⇒ ¬blackn−1,1, blackn−1,1 ⇒ ¬blackn−2,0

(Bottom-right corner)

blackn−1,n−2 ⇒ ¬blackn−2,n−1, blackn−2,n−1 ⇒ ¬blackn−1,n−2

Corner Check (CCH) [12;
6]

Generalisation of Triple Corner and Quad Corner. Is visualised in Figure 8. Only applicable in corners of puzzles of size n > 2.



Figure 8: Pattern 9 and implication

Sandwich Pair (SP) [6;
12]
Similar to the Sandwich Triple, but now the centre tile has a different symbol than the sandwiching tiles. The sandwiched tile
is always white.

Edge Pair (EP)
This constraint is a generalisation of the fourth and fifth pattern described by Gander and Hofer [6], it can be seen in 9.

Figure 9: Edge pair constraint, yellow shows DEP, blue shows TEP and green shows how this works for longer “edge pair blocks”.



Figure 10: Pattern 8 and implication

Flanked Isolation (FI)
If there are two adjacent pairs, any other value must be black [8].

Figure 11: Flanked Isolation

Least Whites (LW)
for every row and column, there are at least ⌊n2 ⌋ white cells. The logic used to implement this also implies Black Count (BC):
For every row and column, there are at most ⌈n2 ⌉ black cells.

Unique Cell [12]
If a tile’s number is unique in its row and column, set it to white. This can be done dynamically, in which case cells marked
black are ignored when checking uniqueness.

Pair Isolation (PI) [6;
12]
The sixth pattern as described by Gander and Hofer [6] and Wensveen [12], visualized in Figure 12. This pattern is applicable
anywhere in a puzzle of size n > 3 for both rows and columns.

Figure 12: Pattern 6 and implication

Close Isolation (CI)
The seventh pattern as described by Gander and Hofer [6], visualized in Figure 13. This pattern is applicable anywhere in a
puzzle of size n > 4 for both rows and columns.



Figure 13: Pattern 7 and implication

White Bridges (WB)
For every pair of adjacent rows, there exists at least one pair of orthogonally adjacent white cells.

Diagonal Wall (DW)
For any full diagonal D, meaning a diagonal that touches both sides it spans, spanning the board with size n > 1, the following
constraint holds:

∃(i, j) ∈ D such that (i, j) is white. (1)
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