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Conserved cell types with divergent 
features in human versus mouse cortex
        rebecca D. Hodge1,13, trygve e. Bakken1,13, Jeremy A. Miller1, Kimberly A. Smith1, eliza r. Barkan1, lucas t. Graybuck1,  
Jennie l. close1, Brian long1, Nelson Johansen2, Osnat Penn1, Zizhen Yao1, Jeroen eggermont3, thomas Höllt3,4, Boaz P. levi1, 
Soraya i. Shehata1, Brian Aevermann5, Allison Beller6, Darren Bertagnolli1, Krissy Brouner1, tamara casper1, charles cobbs7, 
rachel Dalley1, Nick Dee1, Song-lin Ding1, richard G. ellenbogen8, Olivia Fong1, emma Garren1, Jeff Goldy1, ryder P. Gwinn9, 
Daniel Hirschstein1, c. Dirk Keene6, Mohamed Keshk5, Andrew l. Ko8,10, Kanan lathia1, Ahmed Mahfouz3,4, Zoe Maltzer1, 
Medea McGraw1, thuc Nghi Nguyen1, Julie Nyhus1, Jeffrey G. Ojemann8,10, Aaron Oldre1, Sheana Parry1, Shannon reynolds1, 
christine rimorin1, Nadiya V. Shapovalova1, Saroja Somasundaram1, Aaron Szafer1, elliot r. thomsen1, Michael tieu1,  
Gerald Quon2, richard H. Scheuermann5,11, rafael Yuste12, Susan M. Sunkin1, Boudewijn lelieveldt3,4, David Feng1, lydia Ng1, 
Amy Bernard1, Michael Hawrylycz1, John W. Phillips1, Bosiljka tasic1, Hongkui Zeng1, Allan r. Jones1, christof Koch1 & ed S. lein1*

Elucidating the cellular architecture of the human cerebral cortex is central to understanding our cognitive abilities and 
susceptibility to disease. Here we used single-nucleus RNA-sequencing analysis to perform a comprehensive study of cell 
types in the middle temporal gyrus of human cortex. We identified a highly diverse set of excitatory and inhibitory neuron 
types that are mostly sparse, with excitatory types being less layer-restricted than expected. Comparison to similar mouse 
cortex single-cell RNA-sequencing datasets revealed a surprisingly well-conserved cellular architecture that enables 
matching of homologous types and predictions of properties of human cell types. Despite this general conservation, 
we also found extensive differences between homologous human and mouse cell types, including marked alterations 
in proportions, laminar distributions, gene expression and morphology. These species-specific features emphasize the 
importance of directly studying human brain.

The cerebral cortex is responsible for our higher cognitive abilities 
and is the most complex structure known to biology: it comprises  
16 billion neurons and 61 billion non-neuronal cells organized into 
more than 100 distinct anatomical or functional regions1,2. Human 
cortex is expanded relative to mouse—the dominant model organ-
ism used in research—with a more-than-1,000-fold larger area and 
number of neurons3. Whereas the general principles of cortical devel-
opment and basic architecture of the cortex appear to be conserved 
across mammals4, previous studies suggest differences in the cellular 
makeup of human cortex5–11. For example, superficial cortical layers are 
expanded in mammalian evolution12 and some cell types, such as inter-
laminar astrocytes13 and rosehip neurons14, have specialized features in 
human compared to mouse. Likewise, transcriptional regulation varies 
between mouse and human, including the transcription of genes that 
are associated with neuronal structure and function15–17.

Single-cell transcriptomics enables molecular classification of cell 
types, provides a metric for comparative analyses, and is fuelling 
efforts to understand the complete cellular makeup of the mouse 
brain18 and even the entire human body19. Single-cell RNA sequencing  
(scRNA-seq) of mouse cortex demonstrates robust transcriptional 
signatures of cell types20–22 and suggests around 100 cell types per cor-
tical area. Dissociating live cells from human brain is difficult, which 
makes scRNA-seq challenging to apply to this type of tissue, whereas  
single-nucleus RNA-seq (snRNA-seq) enables transcriptional profiling  
of nuclei from frozen human brain specimens23,24. Of note, nuclei 
contain sufficient gene-expression information to distinguish closely 

related cell types at a similar resolution to scRNA-seq25,26, but early 
applications of snRNA-seq to human cortex did not have sufficient 
depth of coverage to achieve similar resolution to mouse studies27,28. 
Here, we established robust methods for the classification of cell types 
in human brain using snRNA-seq and compared cortical cell types to 
reveal conserved and divergent features of human and mouse cerebral 
cortex.

Transcriptomic taxonomy of cell types
To transcriptomically define cell types in human cortex, we used  
snRNA-seq and focused on middle temporal gyrus (MTG) largely from 
postmortem brain. MTG is often available from epilepsy resections, 
permitting comparison of postmortem versus live neurosurgical tissues, 
and enabling future correlation with in vitro slice physiology. Tissues 
were processed as described14 (Fig. 1a, Extended Data Fig. 1a). Nuclei 
were collected from eight donor brains (Extended Data Table 1), with 
most coming from postmortem donors (n = 15,206) and a minority 
(n = 722) from layer (L)5 of MTG removed during neurosurgeries 
(Extended Data Fig. 2).

In total, 15,928 nuclei passed quality control, including those from 
10,708 excitatory neurons, 4,297 inhibitory neurons and 923 non-neu-
ronal cells. Nuclei from each broad class were iteratively clustered as 
described26 (see Methods). Clusters were generally robust to differ-
ent iterative clustering methods and were distinguished from nearest 
neighbours by at least 30 differentially expressed genes and at least one, 
and often more, binary markers. Requiring more binary markers led 
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to the merging of some clusters (Extended Data Fig. 3). Marker genes 
for stringent clusters defined by four binary markers are provided 
in Supplementary Table 2. On average, neuronal nuclei were larger 
than non-neuronal nuclei, and median gene detection was higher for 
neurons (9,046 genes) than for non-neuronal cells (6,432 genes), as 
reported for mouse21,22 (Extended Data Fig. 1). Transcriptomic cell 
types were largely conserved across individuals and tissue types, as 
all curated clusters contained nuclei from multiple donors, and nuclei 
from postmortem and neurosurgical tissues clustered together and had 
highly correlated expression within cell classes (Fig. 1b). Postmortem 
nuclei had slightly lower median gene detection than neurosurgical 
nuclei, and there was a small, consistent expression signature of tissue 
type. For example, neurosurgical nuclei had higher expression of some 
activity-regulated genes (for example, FOS), whereas postmortem 
nuclei had higher expression of ribosomal genes that correlate with 
postmortem interval29 (Extended Data Fig. 2, Supplementary Table 1).

We defined 75 transcriptomically distinct cell types, including 45 
inhibitory neuron types that express the GABAergic interneuron 
marker GAD1, 24 excitatory neuron types that express the vesicular glu-
tamate transporter SLC17A7 and 6 non-neuronal cell types that express 
the glutamate transporter SLC1A3. As expected22, hierarchical rela-
tionships among types roughly mirror their developmental origins. We 
refer to clusters as cell ‘types’, intermediate order nodes as ‘subclasses’, 
higher order nodes (for example, interneurons from caudal ganglionic 
eminence (CGE)) as ‘classes’, and broad divisions (for example, excit-
atory neurons) as ‘major classes’. Neurons split into two major classes: 
cortical plate-derived excitatory neurons and ganglionic eminence- 
derived inhibitory neurons. Non-neuronal types formed a separate 
branch based on differential expression of many genes (Fig. 1c). We 
developed a nomenclature for clusters on the basis of: (1) major cell class; 
(2) layer enrichment; (3) subclass marker gene; and (4) cluster-specific 
marker gene (Fig. 1c, Extended Data Fig. 4, Supplementary Table 2). We 
generated a searchable semantic representation of these clusters to link 
them to existing ontologies30 (MTG ontology, Supplementary Table 3). 
We found broad correspondence to previous human cortex snRNA-seq 
studies24,27,28, but identified many additional neuron types (Extended 
Data Fig. 5). Most cell types were rare (less than 0.7% of MTG neurons), 
including almost all interneuron types and deep-layer excitatory neuron 
types. However, upper-layer excitatory neurons were dominated by a 
small number of abundant types (more than 3.5% of MTG neurons). 
Excitatory types and many interneuron types were spatially restricted, 
whereas non-neuronal nuclei were distributed across all layers, with the 
notable exception of one astrocyte type (Fig. 1c).

Excitatory types often span layers
Excitatory neuron types broadly segregated by layer, expressed known 
laminar markers and were generally most similar to types in the same 
or adjacent layers (Fig. 2, Extended Data Fig. 6)—perhaps reflecting a 
developmental imprint of the inside-out generation of cortical layers16. 
Similarity by laminar proximity was also apparent in the hierarchical 
dendrogram structure except for excitatory L5–L6 neurons expressing  
THEMIS and C1QL3 (Exc L5–L6 THEMIS C1QL3), which were tran-
scriptionally similar to several L2–L3 and L5–L6 types. Exc L4–L5 
FEZF2 SCN4B and Exc L4–L6 FEZF2 IL26 were so distinct that they 
occupied separate branches on the dendrogram (Fig. 2a). Complex 
relationships between clusters are represented as constellation diagrams 
that capture both continuous and discrete variation in gene expression 
among types, as described22 (Extended Data Fig. 6a).

Each excitatory type selectively expressed marker genes (Fig. 2b), 
although a combinatorial profile was often necessary to distinguish 
each type from all other types (Extended Data Fig. 7). Many of the 
markers have, to our knowledge, not been identified as such previously, 
and are important for cell function, such as basic helix–loop–helix 
(bHLH) transcription factors (TWIST2), collagens (COL22A1) and 
semaphorins (SEMA3E). Notably, 16 out of the 37 most-specific marker 
genes were unannotated or non-coding RNAs (ncRNAs). Cell-type-
specific expression of ncRNAs is consistent with previous studies31–33, 

could be validated in tissue sections and may have been detected here 
owing to preferential nuclear localization32 or physical linkage of  
ncRNAs to chromatin31 (Fig. 2b, Extended Data Fig. 8).
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Fig. 1 | Cell-type taxonomy in human MTG. a, Schematic of RNA-
sequencing analysis of neuronal (NeuN+) and non-neuronal (NeuN−) nuclei 
isolated from human MTG. Human brain image © 2010 Allen Institute for 
Brain Science. Allen Human Brain Atlas. Available from: http://human.
brain-map.org/. b, t-distributed stochastic neighbour embedding (t-SNE) 
visualization of 15,928 nuclei grouped by expression similarity and coloured 
by cluster, donor and dissected layer. c, Taxonomy of 69 neuronal and 6 
non-neuronal cell types based on median cluster expression. Branches are 
labelled with major cell classes. Cluster sizes, estimated laminar distributions 
(white, low; red, high) and median log-transformed expression of marker 
genes (blue, non-coding) across clusters are shown to the left. Maximum 
median gene expression (CPM, counts per million) is shown below.
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Unexpectedly, most excitatory neuron types were not restricted 
to dissections from single layers. Three types were enriched in  
L2–L3, ten RORB-expressing types were enriched in L3–L6, and four 
THEMIS-expressing and seven FEZF2-expressing types in L5–L6 
(Fig. 2a, Extended Data Fig. 6a). Distribution across layers was not 
a result of dissection error; gene expression was consistent within 
each cluster across nuclei that were dissected from different layers 
(Extended Data Fig. 6b–e) and in situ distributions largely matched 
multilayer snRNA-seq predictions (Fig. 2a, c, Extended Data Fig. 7). 
Three types were localized to L3c and upper L4 (Fig. 2c). One (Exc 
L3–L4 RORB CARM1P1) had large nuclei (Extended Data Figs. 1b, 7), 
consistent with the giant pyramidal L3c neurons in MTG34. Two types 
were mostly in L4, but five others spanned multiple layers (Fig. 2c, 
Extended Data Fig. 7c). This heterogeneity implies that anatomical 
laminar location alone is insufficient to predict neuron type, although 
it remains to be seen whether this is a feature of MTG or human cortex 
generally.

Although upper layers are greatly expanded in human cortex relative 
to mouse, we still only found three main L2–L3 restricted excitatory 
types, just as in mouse cortex22. However, examination of Exc L2–L3 
LINC00507 FREM3 (n = 2,284 nuclei) revealed continuous gene- 
expression variation within this type (Fig. 2d, Supplementary Video 1), 

consistent with demonstrated diverse cellular properties in human  
L2–L3 excitatory neurons34,35. Fluorescence in situ hybridization 
(FISH) confirmed enrichment of LAMP5 and COL5A2 in L2 and L3 
neurons, respectively, and Exc L2–L3 LINC00507 FREM3 split into 
multiple subtypes with varying clustering parameters (Fig. 2e, Extended 
Data Figs. 3, 9). Thus, there is transcriptomic diversity within and 
between subtypes of L2–L3 excitatory neurons that probably corre-
sponds to the anatomical and functional heterogeneity of these cells.

Inhibitory neuron diversity
Inhibitory neurons formed two major branches, distinguished by expres-
sion of ADARB2 and LHX6—similar to mouse cortex, in which these 
branches correlate with developmental origins in CGE and medial gan-
glionic eminence (MGE), respectively22. The LHX6 branch36,37 included 
PVALB and SST subclasses and the ADARB2 branch contained LAMP5 
PAX6 and VIP subclasses. Consistent with mouse, the ADARB2 branch 
showed more diversity in L1–L3 than L4–L6, and the opposite was true 
for the LHX6 branch (Fig. 3, Extended Data Fig. 10). As with excitatory 
neurons, many interneuron markers were ncRNAs (Fig. 3, Extended 
Data Fig. 4a). Surprisingly, the canonical mouse CGE interneuron 
marker HTR3A38 was not expressed in human CGE types (Fig. 3c).

The LAMP5 PAX6 subclass comprised six types mostly enriched in 
L1–L2 (Fig. 3a). Inhibitory (Inh) L1–L6 LAMP5 LCP2 matched rosehip 
cells (Extended Data Fig. 5d), discovered in L114 but present in all cor-
tical layers. Among LAMP5 PAX6 types, only Inh L2–L6 LAMP5 CA1 
expressed LHX6, suggesting possible origins in MGE, similar to Lamp5 
Lhx6 cells described in mouse22. VIP was the most diverse subclass 
(21 types), with many types enriched in upper layers (Fig. 3a). Several 
VIP types were closely related to the LAMP5 PAX6 type L1 LAMP5 
NMBR and localized to L1–L2. Some CGE-derived cell types in L1 
expressed SST (Fig. 3a, c), as described in human14 but not in mouse 
L1 interneurons22.

The SST subclass had 11 types that were spatially restricted, including 
the distinctive types Inh L5–L6 SST TH and Inh L3–L6 SST NPY in 
L5–L6 (Fig. 3b, d, Extended Data Fig. 10c). In situ hybridization showed 
sparse TH expression in L5–L6 of human MTG and the mouse homol-
ogous region (temporal association area (TEa)), suggesting that this 
gene marks similar cell types in both species, whereas NPY was much 
more sparsely expressed in human, indicating differential expression 
of this closely studied marker between species39,40. The PVALB subclass 
contained seven clusters; several SST and PVALB types were very sim-
ilar (Fig. 3d, Extended Data Fig. 10b), pointing to close links between 
these subclasses. Inh L2–L5 PVALB SCUBE3 is a distinctive type that 
expresses chandelier cell marker UNC5B41 and probably corresponds 
to these specialized cells. Novel marker genes of this cluster label cells 
enriched in L2–L4 in situ (Fig. 3, Extended Data Fig. 10d).

Human MTG had similar proportions of MGE (44% LHX6+ 
nuclei) and CGE (50% ADARB2+ nuclei) interneurons on the basis of  
snRNA-seq data. By contrast, previous studies report around 70% MGE 
versus about 30% CGE interneurons in mouse cortex38,42. To further 
examine these differences, we quantified proportions of ADARB2+ 
and LHX6+ interneurons in human MTG and mouse TEa (Fig. 3e, 
Extended Data Fig. 10e, f). Interneurons co-expressing ADARB2 
and LHX6 (Figs. 1, 3) were considered separately. Again, we found 
similar proportions of MGE (50.2 ± 2.3%, mean ± s.d.) and CGE 
(44.2 ± 2.4%) interneurons in human, and more than twice as many 
MGE (67.8 ± 0.9%) than CGE (30.8 ± 1.2%) interneurons in mouse. 
The increased proportion of CGE interneurons in human was greatest 
in L4 and the greatest decrease in MGE interneurons in human was 
in L4–L6 (Fig. 3e). snRNA-seq (6.1% of GAD1+ cells) and cell counts 
(5.6 ± 0.3% of GAD1+ cells) confirmed an increase in the proportion 
of ADARB2 and LHX6 co-expressing interneurons in human versus 
mouse (1.4 ± 0.2% of GAD1+ cells), particularly in L6 (Fig. 3e).

Diverse morphology of astrocyte types
We identified major subclasses of non-neuronal cells, including two 
astrocyte types (Fig. 4). Astrocytes in human cortex are functionally43 
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b, Violin plots of marker-gene (blue, non-coding) expression distributions 
across clusters (n = 10,525 nuclei). Rows represent genes, black dots 
represent median expression and maximum expression (CPM) is shown 
on the right. c, Representative inverted images of DAPI-stained cortical 
columns with cells (red dots) in each cluster (red bars in a) identified 
using marker genes listed in Extended Data Fig. 7. Experiments repeated 
on at least 2 donors per cell type. Scale bar, 250 µm. Bar plots summarize 
layer distributions for at least n = 2 donors per cell type. d, t-SNE maps 
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PDGFD, LAMP5 and COL5A2. e, smFISH quantification of LAMP5 and 
COL5A2 expression.
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and morphologically13 specialized compared with rodent (Fig. 4c), with 
primate-specific interlaminar astrocytes residing in L1 and extend-
ing long processes, and protoplasmic astrocytes in L2–L613. Indeed, 
we found two astrocyte types with different laminar distributions: 
Astrocyte (Astro) L1–L2 FGFR3 GFAP in L1–L2 and Astro L1–L6 
FGFR3 SLC14A1 in all layers (Fig. 4a). snRNA-seq showed that Astro 
L1–L2 FGFR3 GFAP expressed ID3 and had higher GFAP and AQP4 
expression than Astro L1–L6 FGFR3 SLC14A1 (Fig. 4b, d). Multiplex 
FISH (mFISH) for GFAP and AQP4 showed cells with high expression 
of these genes in L1, and combined mFISH and GFAP immunohisto-
chemistry showed cells in L1 that co-expressed AQP4 and ID3 and had 
long GFAP+ processes, consistent with interlaminar astrocytes. GFAP+ 
cells with protoplasmic astrocyte morphology lacked ID3 expression, 

consistent with Astro L1–L6 FGFR3 SLC14A1 (Fig. 4e). Whereas most 
nuclei in Astro L1–L2 FGFR3 GFAP came from L1–L2, seven were from 
L5–L6 dissections and expressed ID3 and distinct markers. mFISH 
analysis showed that astrocytes co-expressing ID3 and AQP4 at the L6–
white matter border had fibrous astrocyte morphology13 (Fig. 4c–e). 
Therefore, we predict that sampling more non-neuronal nuclei will 
identify additional astrocyte diversity.

Human and mouse cell-type homology
To examine conservation of cellular architecture, we aligned tran-
scriptomic cell types in human MTG to two distinct mouse cortical 
areas: primary visual cortex (V1) and a premotor area, the anterior 
lateral motor cortex (ALM)22. Matching cell types requires shared 
expression patterns between species, and we found that gene families 
(mean = 21 genes per set) that best discriminated mouse interneu-
rons41 also discriminated human interneurons (Fig. 5a). Similar 
genes also discriminated human and mouse excitatory types, but 
were less discriminating for non-neuronal cell types (Extended Data 
Fig. 11a).

0
2
4
6
8

20

40

60

80

0
10
20
30
40
50
60
70
80
90

100

0
10
20
30
40
50
60
70
80
90

100

0

5

10

15

20

25

Human
Mouse

GAD1+ ADARB2+ LHX6–

CGE MGE
LAMP5/PAX6, VIP

GAD1+ ADARB2– LHX6+

PVALB, SST

GAD1+ ADARB2+ LHX6+

Inh L2–6 LAMP5 CA1 (human)
Lamp5 Lhx6 (mouse)

***

*** *

*

*** ***

***

**

**

**

Broad classes of
interneurons

L1 L2/3 L4 L5 L6 L1 L2/3 L4 L5 L6 L1 L2/3 L4 L5 L6

GAD1
+  A

DARB2
+

LH
X6

–  (C
GE)

GAD1
+  A

DARB2
–

LH
X6

+  (M
GE)

GAD1
+  A

DARB2
+

LH
X6

+

P
er

 c
en

t 
G

A
D

1+
 c

el
ls

2.0 × 103
8.5 × 102
7.2 × 102
3.7 × 102
3.1 × 102
1.1 × 103
1.1 × 103
6.5 × 102
6.1 × 102
9.5 × 102
7.7 × 102
7.3 × 102
8.8 × 102
1.5 × 103
8.8 × 102
5.8 × 102
5.9 × 102
8.0 × 103
1.5 × 103
2.5 × 103
1.4 × 103
9.5 × 102
7.1 × 102
5.5 × 102
1.8 × 103
2.1 × 103
1.4 × 103
4.6 × 102
1.1 × 103
1.1 × 103
4.9 × 102
1.6 × 103
8.5 × 102
5.1 × 102
4.5 × 102
4.9 × 103
1.0 × 103
3.3 × 102
1.8 × 103
6.2 × 102
1.9 × 104
2.3 × 103
1.1 × 103
2.7 × 104

OPRM1
SPAG17

LINC00923
CASC6

LBH
LOC644919

GGH
CCDC184

CBLN1
CHRM2

LOC100421401
TYR

SERPINF1
PCDH20

LOC101927460
HS3ST3A1

QPCT
PENK

LOC105371331
ADAMTSL1

LOC105373452
CHRNA6

TSPAN12
SYT6

BAGE2
LOC105377434

MC4R
CHRNA4

CA1
LOC105371641

DBP
LCP2

NMBR
TNFAIP8L3
PAX6-AS1

CDH12
LOC102724124

HTR3A
SST

LHX6
VIP

LAMP5
PAX6

ADARB2
Max CPM

7.2 × 102
1.5 × 102
1.6 × 103
1.5 × 103
5.1 × 102
4.4 × 103
7.2 × 102
2.6 × 102
5.4 × 102
1.3 × 103
1.0 × 103
4.1 × 102
3.8 × 103
5.2 × 103
2.1 × 103
8.2 × 102
7.2 × 102
3.8 × 102
1.7 × 102
5.7 × 102
1.3 × 103
1.1 × 103
1.4 × 103
6.3 × 104
9.0 × 102
1.0 × 104
8.0 × 102
4.1 × 103

SCUBE3
MIR548F2

ZFPM2-AS1
SULF1

WFDC2
MEPE
LGR5

GLP1R
TH

FRZB
ADGRG6

LOC105374696
CALB1

LOC101929028
STK32A
GXYLT2

LOC105377401
NPM1P10

LOC105371658
KLHDC8A

LOC101927132
B3GAT2

HPGD
NPY

PVALB
SST

LHX6
ADARB2

Max CPM

In
h 

L3
−

6 
S

S
T 

N
P

Y
In

h 
L3

−
6 

S
S

T 
H

P
G

D
In

h 
L4

−
6 

S
S

T 
B

3G
A

T2
In

h 
L5

−
6 

S
S

T 
K

LH
D

C
8A

In
h 

L5
−

6 
S

S
T 

N
P

M
1P

10
In

h 
L4

−
6 

S
S

T 
G

X
Y

LT
2

In
h 

L4
−

5 
S

S
T 

S
TK

32
A

In
h 

L1
−

3 
S

S
T 

C
A

LB
1

In
h 

L3
−

5 
S

S
T 

A
D

G
R

G
6

In
h 

L2
−

4 
S

S
T 

FR
Z

B
In

h 
L5

−
6 

S
S

T 
TH

In
h 

L5
−

6 
LH

X
6 

G
LP

1R
In

h 
L5

−
6 

P
V

A
LB

 L
G

R
5

In
h 

L4
−

5 
P

V
A

LB
 M

E
P

E
In

h 
L2

−
4 

P
V

A
LB

 W
FD

C
2

In
h 

L4
−

6 
P

V
A

LB
 S

U
LF

1
In

h 
L5

−
6 

S
S

T 
M

IR
54

8F
2

In
h 

L2
−

5 
P

V
A

LB
 S

C
U

B
E

3

SST PVALB

L6

L5

L4

L3

L2

L1

D
is

se
ct

ed
 la

ye
r

In
h 

L1
–2

 P
A

X
6 

C
D

H
12

In
h 

L1
–2

 P
A

X
6 

TN
FA

IP
8L

3
In

h 
L1

 L
A

M
P

5 
N

M
B

R
In

h 
L1

–6
 L

A
M

P
5 

LC
P

2
In

h 
L1

–2
 L

A
M

P
5 

D
B

P
In

h 
L2

–6
 L

A
M

P
5 

C
A

1
In

h 
L1

 S
S

T 
C

H
R

N
A

4
In

h 
L1

–2
 A

D
A

R
B

2 
M

C
4R

In
h 

L1
–2

 S
S

T 
B

A
G

E
2

In
h 

L1
–3

 V
IP

 S
Y

T6
In

h 
L1

–2
 V

IP
 T

S
P

A
N

12
In

h 
L1

–4
 V

IP
 C

H
R

N
A

6
In

h 
L1

–3
 V

IP
 A

D
A

M
TS

L1
In

h 
L1

–4
 V

IP
 P

E
N

K
In

h 
L2

–6
 V

IP
 Q

P
C

T
In

h 
L3

–6
 V

IP
 H

S
3S

T3
A

1
In

h 
L1

–2
 V

IP
 P

C
D

H
20

In
h 

L2
–5

 V
IP

 S
E

R
P

IN
F1

In
h 

L2
–5

 V
IP

 T
Y

R
In

h 
L1

–3
 V

IP
 C

H
R

M
2

In
h 

L2
–4

 V
IP

 C
B

LN
1

In
h 

L1
–3

 V
IP

 C
C

D
C

18
4

In
h 

L1
–3

 V
IP

 G
G

H
In

h 
L1

–2
 V

IP
 L

B
H

In
h 

L2
–3

 V
IP

 C
A

S
C

6
In

h 
L2

–4
 V

IP
 S

P
A

G
17

In
h 

L1
–4

 V
IP

 O
P

R
M

1

LAMP5/
PAX6

VIP

L6

L5

L4

L3

L2

L1

D
is

se
ct

ed
 la

ye
r

e

ba

dc

Fig. 3 | Inhibitory neuron diversity and layer distribution. a, b, Layer 
distributions of cell types estimated on the basis of dissected layer of 
nuclei (n = 4,164) (dots) and validated in situ for three clusters (red 
bars, Extended Data Fig. 10a, b). c, d, Violin plots of marker-gene (blue, 
non-coding) expression distributions across clusters (c; n = 2,320 nuclei; 
d; n = 1,844 nuclei). Rows represent genes, black dots show median 
expression and maximum expression (CPM) is shown on the right. 
e, Relative proportions and layer distributions of interneuron classes in 
human MTG and mouse TEa quantified by in situ labelling of marker 
genes with mFISH. Data are mean ± s.d. and circles represent individual 
specimens for human and mouse (n = 3). Two-tailed t-test with Holm–
Sidak correction for multiple comparisons; degrees of freedom = 20; 
*P < 0.05 **P < 0.01, ***P < 0.001.
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Fig. 4 | Non-neuronal cell-type diversity and marker-gene expression. 
a, Layer distributions of cell types estimated on the basis of dissected 
layer of nuclei (dots; n = 914). b, Violin plots of marker-gene (blue, non-
coding) expression distributions across clusters. Rows represent genes, 
black dots show median expression and maximum expression (CPM) is 
shown on the far right. c, Immunohistochemistry (IHC) for GFAP shows 
morphologically defined human astrocyte types. Boxed regions are shown 
at higher magnification on the right. Scale bars, low magnification, 250 µm;  
high magnification, 50 µm. WM, white matter. d, Heat map of marker-
gene expression with nuclei (columns) ordered by dissected layer. Several 
nuclei in deep layers (black box) express distinct markers. e, mFISH and 
immunohistochemistry of astrocyte subtype markers highlighted (red 
boxes) in b, d. Experiments repeated on n = 2 human donors. Left, cells 
with high expression of AQP4 and GFAP in L1 (white arrowheads). Scale 
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low magnification, 25 µm; high magnification, 15 µm.
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Applying principal component analysis (PCA) to combined expres-
sion data from inhibitory neurons from human MTG and mouse V1 
separated samples first by species and then by cell type (Extended Data 
Fig. 11b). Applying canonical correlation analysis (CCA) based on 
shared co-expression patterns44 and a neural network-based alignment 
algorithm (scAlign45) aligned human and mouse cortical samples that 
were then clustered. Homologous types were identified based on shared 
cluster membership (Fig. 5b–e, Extended Data Fig. 11d–f). Consistent 
cell-type homologies were obtained using a second alignment method 
based on dynamic time warping (Seurat) (Extended Data Fig. 11g, h) 
and by aligning human MTG to mouse V1 and ALM (Extended Data 
Fig. 12). These homologies were supported by shared marker genes 
between species (Extended Data Fig. 13, Supplementary Table 4). 

Clusters were combined into a hierarchical taxonomy of 32 neuronal 
and 5 non-neuronal cell types and subclasses (Fig. 5f). All major classes 
and subclasses were aligned and seven types were matched one-to-one 
between species.

Alignment of homologous types enabled prediction of cellular 
properties in human cortex. For example, Inh L2–L5 PVALB SCUBE3 
matched mouse chandelier cells (Pvalb Vipr2) and is predicted to selec-
tively innervate axon initial segments of pyramidal neurons (Fig. 5d). 
Likewise, Inh L3–L6 SST NPY matched mouse Sst Chodl and is pre-
dicted to have long-range projections and contribute to sleep regu-
lation46. Many other anatomically defined interneuron types could 
be inferred (Fig. 5d), although further experiments would be needed 
to test these predictions. Long-range projection targets of human 
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Fig. 5 | Evolutionary conservation of cell types between human 
and mouse. a, Similar functional gene families (n = 384 gene sets) 
discriminate inhibitory neuron types in human and mouse. Error bars 
correspond to the s.d. of mean MetaNeighbour AUROC scores across 
ten subsamples of cells. b, Schematic of unsupervised alignment and 
clustering of combined human (h) and mouse (m) cortical samples using 
scAlign or Seurat. c, t-SNE visualization of human (n = 3,594 nuclei) 
and mouse (n = 6,595 cells) inhibitory neuron clusters after alignment 
with scAlign. d, e, Human and mouse cell-type homologies for inhibitory 
neurons (d) and excitatory neurons from mouse V1 (e), predicted on 

the basis of shared cluster membership. Grey shade corresponds to the 
minimum proportion of human nuclei or mouse cells that co-cluster. Rows 
show human clusters and columns show mouse clusters. Homologous 
clusters are labelled on the basis of human and mouse cluster membership 
and include excitatory neuron projection targets (IT, intratelencephalic; 
ET, extratelencephalic–pyramidal tract; NP, near-projecting). Known 
morphologies indicated for mouse inhibitory types. VISp, primary visual 
cortex. f, Taxonomy of 32 neuronal and 5 non-neuronal homologous 
cell types and cell classes. Asterisks mark one-to-one matches. PVM, 
perivascular macrophages.
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excitatory neurons could also be predicted. For example, Exc L4–L5 
FEZF2 SCN4B cells matched mouse extratelencephalic-projecting (ET) 
L5 excitatory neurons (Fig. 5e) and are predicted to project subcorti-
cally. Of note, ET neurons are much less abundant in human than in 
mouse (1% versus 20% of L5 excitatory neurons)22 (Extended Data 
Fig. 12e, f). Some homologous types shift layers between species, such 
as Exc L3–L4 RORB CARM1P1 in L3 of human MTG, which matched 
L5-enriched types in mouse (Extended Data Fig. 12g).

Human non-neuronal cells matched a subset of mouse types 
(Extended Data Fig. 12c). Human oligodendrocytes matched two 
mouse mature oligodendrocyte types, whereas human oligoden-
drocyte precursor cells (OPCs) matched mouse one-to-one. Only 
nine endothelial cells were sampled in human and mapped to two 
endothelial subtypes in mouse. Both human astrocyte clusters mapped 
to one astrocyte cluster in mouse. Finally, human microglia clustered 
with mouse microglia and perivascular macrophages (Extended Data 
Fig. 11f).

Three rare mouse neuronal types lacked homologous human types. 
The mouse Meis2 inhibitory type, primarily found in white matter22, 
may have been missed owing to limited sampling of L6b white matter 
in human. Cajal–Retzius cells are very rare in adult human cortex (less 
than 0.1% of L1 neurons)47 and were therefore unlikely to be sampled. 
Finally, mouse L5 pyramidal tract (PT) primary visual cortex Chrna6+ 
cells, an ET type that projects to superior colliculus48, aligned with only 
two human nuclei (Extended Data Fig. 11e), suggesting that a matching 
type may be found with deeper sampling in human.

Whereas many homologous subclasses had comparable diversity 
between species, some had expanded diversity in human and others 
were more diverse in mouse. For example, there was an apparent higher 
diversity of L4 excitatory neurons in human MTG than mouse V1. 
Mouse ET types were much more diverse than putative ET types in 
human, which may reflect either a species difference or likely under-
sampling, as they made up less than 1% of L5 excitatory neurons in 
MTG. L6 corticothalamic (CT) types were also more diverse in mouse 
V1 than human MTG. However, there were only two L6 CT types in 
mouse ALM, so this may reflect differences between primary sensory 
and association areas (Fig. 5e, f, Extended Data Fig.  12b, d).

Divergent cell-type expression between species
Identification of homologous types or classes enables analysis of con-
servation and divergence of gene-expression patterns across types. For 
each pair of homologous types, we compared expression of 14,553 ort-
hologous genes between human and mouse (Fig. 6). Nuclear expression 
levels were estimated from intronic reads to better compare human 
snRNA-seq and mouse scRNA-seq data, as we previously found few dif-
ferences in intronic expression between matched sets of mouse nuclei 
and whole cells26 (Extended Data Fig. 11c). Comparison of homologous 
types showed a mix of conserved and divergent expression. The Sst 
Chodl type (Inh L3–L6 SST NPY in human) had conserved expression 
overall, but 18% of genes had highly divergent expression (defined con-
servatively here as a more-than-tenfold difference), including many 
marker genes. OPCs also had conserved expression and 14% highly 
divergent genes. Two thirds of all genes analysed (9,748) had diver-
gent expression in at least one of 37 homologous types, and many had 
expression changes restricted to one type or class. Non-neuronal types 
had the most divergent expression (3,643 genes with more than tenfold  
difference), supporting increased evolutionary divergence of non- 
neuronal expression patterns between human and mouse17 (Fig. 6a, b).

Most genes showed divergent expression only in a subset of types, 
resulting in a shift in the cell-type specificity of genes (quantified as 
the β-score, Methods, Supplementary Table 5). Genes with higher 
scores had high expression in at least one cell type and low expres-
sion in the remaining types, and were expressed in different subsets 
of types between species. Twenty-three per cent of genes (3,382) were 
more highly divergent than 95% of 252 housekeeping genes (Fig. 6c) 
recently shown to be stably expressed in multiple cell types in mouse 
and human49. Cell-type markers were less conserved than commonly 

expressed genes, and many markers were not shared between human 
and mouse. For example, chandelier cells express Vipr2 in mouse but 
COL15A1 and NOG in human (Extended Data Fig. 10d). Notably, the 
same gene families that show cell-type specificity in both species also 
show changed patterning across cell types (Figs. 5a, 6d, Supplementary 
Table 6).

Serotonin receptors exhibit highly divergent expression between spe-
cies: four of seven G-protein-coupled receptors and both ionotropic 
receptor subunits (HTR3A and HTR3B) were in the top 10% most- 
divergent genes (Fig. 6e). The most-divergent gene families include 
neurotransmitter receptors, ion channels, extracellular matrix elements 
and cell-adhesion molecules. Among the top 3% most-divergent genes 
(Supplementary Table 5), the collagens COL24A1 and COL12A1 and 
glutamate receptor subunits GRIK1 and GRIN3A were expressed in 
different cell types between species and were validated to have different 
laminar distributions in human and mouse (Fig. 6f, g). The cumula-
tive effect of so many differences in the cellular patterning of genes 
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Fig. 6 | Divergent cell-type expression between human and mouse. 
a, Comparison of expression levels of 14,553 orthologous genes between 
human and mouse for Sst Chodl and OPCs. Genes outside the blue lines 
have highly divergent expression (>tenfold change) and include cluster-
specific markers (orange dots). Pearson correlation (r). b, Patterns of 
expression change between human and mouse for 9,748 divergent genes 
(67% of orthologous genes). Groups of genes with similar patterns are 
labelled by the affected cell class. Top, number of genes with expression 
divergence restricted to each broad class of cell types. c, Distribution of 
scores (Methods) measuring the magnitude of expression change across 
homologous cell types for all genes (dark blue) and housekeeping genes 
(light blue). d, Gene families (n > 10 genes) with the most divergent 
expression patterns (highest score) include neurotransmitter receptors, 
ion channels and cell-adhesion molecules. e, Expression (trimmed average 
CPM) of most serotonin receptors differs between homologous cell types. 
Scores listed on far right. f, g, In situ hybridization of divergent genes 
shows shifts in laminar expression consistent with different cell-type 
expression in human and mouse. Red bars show layers with enriched 
expression. Scale bars, human, 250 µm; mouse, 100 µm.
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with well-characterized roles in neuronal signalling and connectivity 
is certain to cause many differences in human cortical circuit function.

Discussion
Single-cell transcriptomics enables systematic characterization of 
cellular diversity in the brain, allowing a paradigm shift in neurosci-
ence from the historical emphasis on cellular anatomy to molecular 
classification of cell types. Echoing early anatomical studies11, dense 
sampling of mouse cortex using scRNA-seq demonstrated great 
cellular diversity21,22. Here, similar dense sampling defined 75 cell 
types that represent non-neuronal (6), excitatory (24) and inhibitory 
(45) cells in human MTG. Notably, robust cell typing was achieved 
despite increased biological and technical variability between indi-
vidual human brains. Importantly, these methods enabled the study 
of the cellular architecture of the human brain and the identification 
of homologous cell types to predict properties that cannot be directly 
measured in humans and generate hypotheses about conserved and 
divergent cell features.

Despite differences across datasets, alignment based on expression 
covariation reveals a cellular architecture that is largely conserved 
between cortical areas and species, as anatomical studies have shown 
for the last century. Here, mouse scRNA-seq was compared to human 
snRNA-seq; to mitigate this, expression levels were estimated using 
nuclear intronic sequence26. In addition, young adult transgenic mice 
were compared to genetically much more diverse older humans, but 
previous studies show stable gene expression in adulthood50. Finally, 
human MTG was compared with non-homologous mouse cortical 
areas. Although a matched analysis is preferable, primary visual cortex 
is specialized in human and likely to be highly divergent from mouse. 
Matching the human MTG taxonomy to mouse V1 and ALM taxon-
omies may seem at odds with the finding that excitatory neurons in 
mouse V1 and ALM cluster separately22, but the magnitude of differ-
ential gene expression between cortical areas in mouse is small com-
pared with that between species. Beyond similarities in overall diversity 
and hierarchical organization, most cell types mapped at the subclass 
level, seven cell types mapped one-to-one, and no major classes had 
missing homologous types despite the last common ancestor between 
humans and mice living at least 65 million years ago51 and despite the 
thousand-fold difference in brain size and number of cells. Therefore, 
the transcriptomic organization of cell classes and subclasses appears 
conserved, with species and regional variation found at the finest level 
of cell-type distinction.

Our results demonstrate species divergence of gene expression 
between homologous cell types, as shown at the single-gene15 and 
gross-structural level16. These differences are likely to be functionally 
relevant, as divergent genes are associated with connectivity and signal-
ling, and many cell-type markers show divergent expression. Notably, 
serotonin receptors are the second-most-divergent gene family, chal-
lenging the use of mouse models for many neuropsychiatric disorders 
that involve serotonin signalling52. Homologous cell types can have 
highly divergent features in concert with divergent gene expression. 
For example, interlaminar astrocytes correspond to one of two human 
transcriptomic astrocyte types. Similarly, two astrocyte types were 
described in mouse cortex21, including an L1 type that lacks the long 
processes of interlaminar astrocytes. Thus, a tenfold size increase and 
formation of long processes13 are evolutionary variations on a con-
served cell type. We observed several other evolutionary changes 
including differences in proportions of inhibitory neuron classes con-
sistent with increased CGE generation of interneurons in human36. 
In addition, putative human L5 ET neurons are reduced in frequency 
(less than 1% in human versus approximately 20% in mouse), probably 
reflecting the 1,200-fold expansion of human cortex relative to mouse, 
compared with the only 60-fold expansion of the sub-cortical regions 
that these neurons target2,3.

These observations quantitatively frame the debate of whether 
human cortex is different from that of other mammals10,11, revealing 
basic transcriptomic similarity of cell types punctuated by differences 

in proportions and gene expression between species that are likely 
to influence microcircuit function. Furthermore, these results help 
to resolve the paradox of failures in the use of mouse for preclinical 
studies despite conserved structure across mammals52,53, and highlight 
the need to analyse human brain in addition to model organisms. The 
magnitude of differences between human and mouse suggests similar 
profiling of closely related non-human primates is necessary to study 
many aspects of human brain structure and function. The enhanced 
resolution afforded by these molecular technologies also shows great 
promise for accelerating our mechanistic understanding of brain evo-
lution and disease.
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Methods
No statistical methods were used to predetermine sample size. The experiments 
were not randomized. The investigators were not blinded to allocation during 
experiments and outcome assessment.
Ethical compliance. De-identified postmortem human brain tissue was collected 
after obtaining permission from decedent next-of-kin. The Western Institutional 
Review Board (WIRB) reviewed the use of de-identified postmortem brain tissue 
for research purposes and determined that, in accordance with federal regulation 45 
CFR 46 and associated guidance, the use of and generation of data from de-identified 
specimens from deceased individuals did not constitute human subjects research 
requiring institutional review board review. Postmortem tissue collection was per-
formed in accordance with the provisions of the United States Uniform Anatomical 
Gift Act of 2006 described in the California Health and Safety Code section 7150 
(effective 1/1/2008) and other applicable state and federal laws and regulations.

Tissue procurement from neurosurgical donors was performed outside of the 
supervision of the Allen Institute at local hospitals, and tissue was provided to 
the Allen Institute under the authority of the institutional review board of each 
participating hospital. A hospital-appointed case coordinator obtained informed 
consent from donors before surgery. Tissue specimens were de-identified before 
receipt by Allen Institute personnel. The specimens collected for this study were 
apparently non-pathological tissues removed during the normal course of surgery 
to access underlying pathological tissues. Tissue specimens collected were deter-
mined to be non-essential for diagnostic purposes by medical staff and would have 
otherwise been discarded.

All animal procedures were approved by the Institutional Animal Care and Use 
Committee at the Allen Institute for Brain Science (Protocol No. 1511). Mice were 
provided food and water ad libitum, maintained on a regular 12-h day/night cycle, 
and housed in cages with various enrichment materials added, including nesting 
materials, gnawing materials, and plastic shelters. Mice used in the study were adult 
(P56 ± 3 days) male and female wild-type C57Bl/6J animals.
Postmortem tissue donors. Males and females donors 18–68 years of age with no 
known history of neuropsychiatric or neurological conditions (‘control’ cases) were 
considered for inclusion in this study (Extended Data Table 1). Routine serological 
screening for infectious disease (HIV, Hepatitis B, and Hepatitis C) was conducted 
using donor blood samples and only donors negative for all three tests were consid-
ered for inclusion in the study. Tissue RNA quality was assessed using an Agilent 
Bioanalyzer-generated RNA Integrity Number (RIN) and Agilent Bioanalyzer 
electropherograms for 18S/28S ratios. Specimens with RIN values ≥ 7.0 were 
considered for inclusion in the study (Extended Data Table 1).
Processing of whole postmortem brain specimens. Whole postmortem brain 
specimens were transported to the Allen Institute on ice. Standard processing 
of whole brain specimens involved bisecting the brain through the midline and 
embedding of individual hemispheres in Cavex Impressional Alginate for slab-
bing. Coronal brain slabs were cut at 1cm intervals through each hemisphere and 
individual slabs were frozen in a slurry of dry ice and isopentane. Slabs were then 
vacuum sealed and stored at −80 °C until the time of further use.

MTG was identified on and removed from frozen slabs of interest, and sub-
divided into smaller blocks for further sectioning. Individual tissue blocks were 
processed by thawing in PBS supplemented with 10 mM dl-dithiothreitol (DTT, 
Sigma Aldrich), mounting on a vibratome (Leica), and sectioning at 500 µm in 
the coronal plane. Sections were placed in fluorescent Nissl staining solution 
(Neurotrace 500/525, ThermoFisher Scientific) prepared in PBS with 10 mM DTT 
and 0.5% RNasin Plus RNase inhibitor (Promega) and stained for 5 min on ice. 
After staining, sections were visualized on a fluorescence dissecting microscope 
(Leica) and cortical layers were individually microdissected using a needle blade 
micro-knife (Fine Science Tools).
Processing of neurosurgical tissue samples. Neurosurgical tissue was trans-
ported to the Allen Institute in chilled, oxygenated artificial cerebrospinal fluid 
(ACSF) consisting of the following: 0.5 mM calcium chloride (dehydrate),  
25 mM D-glucose, 20 mM HEPES, 10 mM magnesium sulfate, 1.2 mM sodium 
phosphate monobasic monohydrate, 92 mM N-methyl-d-glucamine chloride 
(NMDG-Cl), 2.5 mM potassium chloride, 30 mM sodium bicarbonate, 5 mM 
sodium l-ascorbate, 3 mM sodium pyruvate, and 2 mM thiourea. The osmolality 
of the solution was 295-305 mOsm/kg and the pH was 7.3. Slices were prepared 
using a Compresstome VF-200 or VF-300 vibratome (Precisionary Instruments). 
After sectioning, slices were recovered in ACSF containing 2 mM calcium chloride 
(dehydrate), 25 mM D-glucose, 20 mM HEPES, 2 mM magnesium sulfate, 1.2 mM 
sodium phosphate monobasic monohydrate, 2.5 mM potassium chloride, 30 mM 
sodium bicarbonate, 92 mM sodium chloride, 5 mM sodium l-ascorbate, 3 mM 
sodium pyruvate, and 2 mM thiourea at room temperature for at least 1 h. After 
the recovery period, slices were transferred to RNase-free microcentrifuge tubes, 
snap frozen, and stored at −80 °C until the time of use. Microdissection of cortical 
layers was carried out on tissue slices that were thawed and stained as described 
above for postmortem tissue.

Nucleus sampling plan. Nuclei were sampled from 8 total human donors (4 male, 
4 female; 4 postmortem, 4 neurosurgical; 24–66 years of age). To evenly survey 
cell-type diversity across cortical layers, nuclei were sampled based on relative 
proportions of neurons in each cortical layer54. We estimated that 16 cells were 
required to reliably discriminate two closely related Sst+ interneuron types reported 
by Tasic et al.20. Monte Carlo simulations were used to estimate the sampling depth 
N needed to be 95% confident that at least 16 nuclei of frequency f have been 
selected from the population. Calculating N for a range of f revealed a simple linear 
approximation: N = 28/f. Subtypes of mouse cortical L5 projection neurons can be 
rarer than 1% of the population48, so we targeted neuron types as rare as 0.2% of 
all cortical neurons. Based on Monte Carlo simulations, we estimated that 14,000 
neuronal nuclei were needed to target types as rare as 0.2% of the total neuron 
population. Using an initial subset of RNA-seq data, we observed more transcrip-
tomic diversity in L1, L5 and L6 than in other layers so additional neuronal nuclei 
(~1,000) were sampled from those layers. We also targeted 1,500 (10%) non-neu-
ronal (NeuN-) nuclei and obtained approximately 1,000 nuclei that passed quality 
control (QC, see below), and we expected to capture types as rare as 3% of the 
non-neuronal population. Therefore, the final dataset contained <10% non-neu-
ronal nuclei because nearly 50% of NeuN-negative nuclei failed QC, potentially 
due to the lower RNA content of glia compared to neurons22.
Nucleus isolation and sorting. Microdissected tissue pieces were placed in into 
nuclei isolation medium containing 10mM Tris pH 8.0 (Ambion), 250mM sucrose, 
25mM KCl (Ambion), 5mM MgCl2 (Ambion) 0.1% Triton-X 100 (Sigma Aldrich), 
1% RNasin Plus, 1X protease inhibitor (Promega), and 0.1mM DTT in 1ml Dounce 
homogenizer (Wheaton). Tissue was homogenized using 10 strokes of the loose 
Dounce pestle followed by 10 strokes of the tight pestle and the resulting homoge-
nate was passed through 30µm cell strainer (Miltenyi Biotech) and centrifuged at 
900xg for 10 min to pellet nuclei. Nuclei were resuspended in buffer containing 1X 
PBS (Ambion), 0.8% nuclease-free BSA (Omni-Pur, EMD Millipore), and 0.5% 
RNasin Plus. Mouse anti-NeuN conjugated to PE (EMD Millipore) was added 
to preparations at a dilution of 1:500 and samples were incubated for 30 min at 
4 °C. Control samples were incubated with mouse IgG1k-PE Isotype control (BD 
Pharmingen). Samples were then centrifuged for 5 min at 400xg to pellet nuclei 
and pellets were resuspended in 1X PBS, 0.8% BSA, and 0.5% RNasin Plus. DAPI 
(4′, 6-diamidino-2-phenylindole, ThermoFisher Scientific) was applied to nuclei 
samples at a concentration of 0.1µg/ml.

Single nucleus sorting was carried out on either a BD FACSAria II SORP or BD 
FACSAria Fusion instrument (BD Biosciences) using a 130-µm nozzle. A standard 
gating strategy was applied to all samples. First, nuclei were gated on their size and 
scatter properties and then on DAPI signal. Doublet discrimination gates were used 
to exclude nuclei aggregates. Lastly, nuclei were gated on NeuN signal (PE). Ten 
percent of nuclei were intentionally sorted as NeuN-negative and the remaining 
90% of nuclei were NeuN-positive. Single nuclei were sorted into 8-well strip tubes 
containing 11.5 µl of SMART-seq v4 collection buffer (Takara) supplemented with 
ERCC MIX1 spike-in synthetic RNAs at a final dilution of 1x10-8 (Ambion). Strip 
tubes containing sorted nuclei were briefly centrifuged and stored at −80 °C until 
the time of further processing. Index sorting was carried out for most samples to 
allow properties of nuclei detected during sorting to be connected with the cell-
type identity revealed by subsequent snRNA-seq.
RNA-seq. We used the SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing 
(Takara #634894) per the manufacturer’s instructions for reverse transcription 
of RNA and subsequent cDNA amplification. Standard controls were processed 
alongside each batch of experimental samples. Control strips included: 2 wells 
without cells, 2 wells without cells or ERCCs (that is, no template controls), and 
either 4 wells of 10 pg of Human Universal Reference Total RNA (Takara 636538) 
or 2 wells of 10 pg of Human Universal Reference and 2 wells of 10 pg Control 
RNA provided in the Clontech kit. cDNA was amplified with 21 PCR cycles after 
the reverse transcription step. AMPure XP Bead (Beckman Coulter A63881) puri-
fication was done using an Agilent Bravo NGS Option A instrument with a bead 
ratio of 1x, and purified cDNA was eluted in 17 µl elution buffer provided by 
Takara. All samples were quantitated using PicoGreen (ThermoFisher Scientific) 
on a Molecular Dynamics M2 SpectraMax instrument. cDNA libraries were exam-
ined on either an Agilent Bioanalyzer 2100 using High Sensitivity DNA chips or 
an Advanced Analytics Fragment Analyzer (96) using the High Sensitivity NGS 
Fragment Analysis Kit (1 bp–6,000 bp). Purified cDNA was stored in 96-well plates 
at −20 °C until library preparation.

The NexteraXT DNA Library Preparation (Illumina FC-131-1096) kit with 
NexteraXT Index Kit V2 Sets A-D (FC-131-2001, 2002, 2003, or 2004) was used for 
sequencing library preparation. NexteraXT DNA Library prep was done at either 
0.5x volume manually or 0.4x volume on the Mantis instrument (Formulatrix). 
Three different cDNA input amounts were used in generating the libraries: 75 pg, 
100 pg, and 125 pg. AMPure XP bead purification was done using the Agilent 
Bravo NGS Option A instrument with a bead ratio of 0.9x and all samples were 
eluted in 22 µl of Resuspension Buffer (Illumina). Samples were quantitated using 
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PicoGreen on a Molecular Bynamics M2 SpectraMax instrument. Sequencing 
libraries were assessed using either an Agilent Bioanalyzer 2100 with High 
Sensitivity DNA chips or an Advanced Analytics Fragment Analyzer with the High 
Sensitivity NGS Fragment Analysis Kit for sizing. Molarity was calculated for each 
sample using average size as reported by Bioanalyzer or Fragment Analyzer and 
pg/µl concentration as determined by PicoGreen. Samples were normalized to 
2–10 nM with Nuclease-free Water (Ambion). Libraries were multiplexed at 96 
samples per lane and sequenced on an Illumina HiSeq 2500 instrument using 
Illumina High Output V4 chemistry. Libraries were sequenced at a median depth 
of 2.6 ± 0.5M reads/nucleus.
RNA-seq gene-expression quantification. Raw read (fastq) files were aligned to 
the GRCh38 human genome sequence (Genome Reference Consortium, 2011) 
with the RefSeq transcriptome version GRCh38.p2 (current as of 4/13/2015) and 
updated by removing duplicate Entrez gene entries from the gtf reference file for 
STAR processing. For alignment, Illumina sequencing adapters were clipped from 
the reads using the fastqMCF program55. After clipping, the paired-end reads were 
mapped using Spliced Transcripts Alignment to a Reference (STAR)56 using default 
settings. STAR uses and builds it own suffix array index which considerably accel-
erates the alignment step while improving on sensitivity and specificity, due to its 
identification of alternative splice junctions. Reads that did not map to the genome 
were then aligned to synthetic constructs (that is, ERCC) sequences and the E.coli 
genome (version ASM584v2). The final results files included quantification of the 
mapped reads (raw exon and intron counts for the transcriptome-mapped reads). 
This quantification only includes uniquely mappable sequences, which makes up 
the vast majority of reads. A median of 88.4% of reads are uniquely mappable 
(range: 45.4–93.7%) compared with only 3.2% that are multi-mapping (range 
1.6–10.1%), suggesting that any bias related to exclusion of multi-mappers would 
be relative minor. Also, part of the final results files are the percentages of reads 
mapped to the RefSeq transcriptome, to ERCC spike-in controls, and to E. coli,  
and summaries of these percentages are saved for quality control assessments. 
Quantification was performed using summerizeOverlaps from the R package 
GenomicAlignments57. Read alignments to the genome (exonic, intronic, and inter-
genic counts) were visualized as beeswarm plots using the R package beeswarm.

Expression levels were calculated as counts per million (CPM) of exonic plus 
intronic reads, and log2(CPM + 1) transformed values were used for a subset of 
analyses as described below. Gene detection was calculated as the number of genes 
expressed in each sample with CPM > 0. CPM values reflected absolute transcript 
number and gene length, that is, short and abundant transcripts may have the same 
apparent expression level as long but rarer transcripts. Intron retention varied 
across genes so no reliable estimates of effective gene lengths were available for 
expression normalization. Instead, absolute expression levels were estimated as 
fragments per kilobase per million (FPKM) using only exonic reads so that anno-
tated transcript lengths could be used.
Quality control of RNA-seq data. Nuclei were included for clustering analysis if 
they passed all of the following QC thresholds: >30% cDNA longer than 400 base 
pairs; >500,000 reads aligned to exonic or intronic sequence; >40% of total reads 
aligned; >50% unique reads; TA nucleotide ratio > 0.7.

After clustering (see below), clusters were identified as outliers if more than 
half of nuclei co-expressed markers of inhibitory (GAD1, GAD2) and excitatory 
(SLC17A7) neurons or were NeuN+ but did not express the pan-neuronal marker 
SNAP25. Median values of QC metrics listed above were calculated for each clus-
ter and used to compute the median and inter-quartile range (IQR) of all cluster 
medians. Clusters were also identified as outliers if the cluster median QC metrics 
deviated by more than three times the IQRs from the median of all clusters. In 
total, 15,928 nuclei passed QC criteria and were split into three broad classes of 
cells (10,708 excitatory neurons, 4,297 inhibitory neurons, and 923 non-neuronal 
cells) based on NeuN staining and cell class marker-gene expression

Clusters were identified as donor-specific if they included fewer nuclei sampled 
from donors than expected by chance. For each cluster, the expected proportion 
of nuclei from each donor was calculated based on the laminar composition of the 
cluster and laminar sampling of the donor. For example, if 30% of L3 nuclei were 
sampled from a donor, then a L3-enriched cluster should contain approximately 
30% of nuclei from this donor. In contrast, if only L5 were sampled from a donor, 
then the expected sampling from this donor for a L1-enriched cluster was zero. If 
the difference between the observed and expected sampling was greater than 50% 
of the number of nuclei in the cluster, then the cluster was flagged as donor-specific 
and excluded. In total, 325 nuclei were assigned to donor-specific or outlier clusters 
that contained marginal quality nuclei and were excluded from further analysis. 
Three donor-specific clusters came from neurosurgical donors (n = 95 nuclei) and 
were similar to other L5 types reported in our analysis, but had higher expression 
of activity-dependent genes.

To confirm exclusion, clusters automatically flagged as outliers or donor-specific 
were manually inspected for expression of broad cell class marker genes, mitochon-
drial genes related to quality, and known activity-dependent genes.

Clustering RNA-seq data. Nuclei and cells were grouped into transcriptomic cell 
types using an iterative clustering procedure based on community detection in 
a nearest neighbour graph as described in Bakken et al.26. In brief, intronic and 
exonic read counts were summed, and log2-transformed expression (CPM + 1) 
was centred and scaled across nuclei. X- and Y-chromosome were excluded to 
avoid nuclei clustering based on sex. Many mitochondrial genes had expression 
that was correlated with RNA-seq data quality, so nuclear and mitochondrial genes 
downloaded from Human MitoCarta2.058 were excluded. Differentially expressed 
genes were selected while accounting for gene dropouts, and PCA was used to 
reduce dimensionality. Nearest-neighbour distances between nuclei were calcu-
lated using up to 20 principal components, Jaccard similarity coefficients were 
computed, and Louvain community detection was used to cluster this graph with 
15 nearest neighbours. Marker genes were defined for all cluster pairs using two 
criteria: 1) significant differential expression (> 2-fold; Benjamini–Hochberg false 
discovery rate < 0.01) using the R package limma and 2) binary expression (CPM 
> 1 in more than half of nuclei in one cluster and <30% of this proportion in the 
second cluster). Pairs of clusters were merged if either cluster lacked at least one 
marker gene. Clustering was then applied iteratively to each sub-cluster until the 
occurrence of one of four stop criteria: 1) fewer than six nuclei (due to a minimum 
cluster size of three), 2) no significantly variable genes, 3) no significantly variable 
PCs, 4) no significant clusters.

To assess the robustness of clusters, the iterative clustering procedure described 
above was repeated 100 times for random subsets of 80% of nuclei. A co-clustering 
matrix was generated that represented the proportion of clustering iterations that 
each pair of nuclei were assigned to the same cluster. We defined consensus clusters 
by iteratively splitting the co-clustering matrix as described in Tasic et al. 201822. 
We used the co-clustering matrix as the similarity matrix and clustered using either 
Louvain (≥ 4,000 nuclei) or Ward’s algorithm (<4,000 nuclei). We defined Nk,l as 
the average probabilities of nuclei within cluster k to co-cluster with nuclei within 
cluster l. We merged clusters k and l if Nk,l > max(Nk,k, Nl,l) - 0.25 or if the sum  
of −log10(adjusted P-value) of differentially expressed genes between clusters k 
and l was less than 150. Finally, we refined cluster membership by reassigning each 
nucleus to the cluster to which it had maximal average co-clustering. We repeated 
this process until cluster membership converged.

Next, we assessed the robustness of clusters using a similar clustering pipeline 
that was recently used to identify cortical cell types in mouse V1 and ALM22. This 
pipeline closely resembled the analysis described above except for three differences. 
First, this pipeline required that differentially expressed genes between all cluster 
pairs had more highly significant P values, and this penalized small clusters from 
splitting into sub-clusters. Second, the pipeline used Ward’s agglomerative hierar-
chical clustering instead of Louvain community detection for iterations with fewer 
than 3,000 nuclei. Ward’s method was computationally less efficient but improved 
detection of cluster heterogeneity when large and small clusters were present due 
to the well-known resolution of community detection algorithms that optimize 
global modularity59. Third, dimensionality reduction could be performed using 
WGCNA60 rather than PCA, and this method was empirically more sensitive to 
subtle expression variation but also technical noise. This pipeline was run with four 
parameter settings, and the clustering results were compared to the reference clus-
ters defined by the initial clustering pipeline. Confusion matrices were computed 
for each comparison and the Jaccard index was computed for all cluster pairs, and 
these results were summarized using box plots (Extended Data Fig. 3e).

The final set of clusters were compared to nearest neighbouring clusters and the 
number of differentially expressed genes (>2-fold change, Benjamini–Hochberg 
false discovery rate < 0.01) and binary marker genes (CPM > 1 in more the half of 
nuclei in one cluster and <30% of this proportion in the second cluster) were quan-
tified and compared (Extended Data Fig. 3b) to the proportion of binary markers 
that were unannotated (that is, ‘LOC’ genes). If more markers were required to 
separate each cluster from its nearest neighbour, then clusters were merged and 
visualized as a river plot (Extended Data Fig. 3c). Clusters recently defined in 
mouse V1 and ALM required at least 4 binary markers (8 total markers with higher 
or lower expression than the nearest neighbouring cluster)22. 63 clusters in human 
MTG have at least 4 markers and are reported in Supplementary Table 2 along with 
markers selected as described below.

Cluster names were defined using an automated strategy which combined 
molecular information (marker genes) and anatomical information (layer of dis-
section). Clusters were assigned a broad class of interneuron, excitatory neuron, 
microglia, astrocyte, oligodendrocyte precursor, oligodendrocyte, or endothelial 
cell based on maximal median cluster CPM of GAD1, SLC17A7, TYROBP, AQP4, 
PDGFRA, OPALIN or NOSTRIN, respectively. Enriched layers were defined as 
the range of layers which contained at least 10% of the total cells from that cluster. 
Clusters were then assigned a broad marker, defined by maximal median CPM of 
PAX6, LAMP5, VIP, SST, PVALB, LINC00507, RORB, THEMIS, FEZF2, TYROBP, 
FGFR3, PDGFRA, OPALIN or NOSTRIN. Finally, clusters in all broad classes with 
more than one cluster (for example, interneuron, excitatory neuron, and astrocyte) 
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were assigned a gene showing the most-specific expression in that cluster (see 
details below). We developed a principled nomenclature for clusters based on:  
(1) major cell class, (2) layer enrichment (including layers containing at least 10% 
of nuclei in that cluster), (3) a subclass marker gene (maximal expression of 14 
manually-curated genes), and (4) a cluster-specific marker gene (maximal detec-
tion difference compared to all other clusters). For example, the inhibitory neuron 
type at the top of the plot in Fig. 1c, found in samples dissected from L1 and L2, and 
expressing the subclass marker PAX6 and the specific marker CDH12, is named 
Inh L1-2 PAX CDH12. A few cluster names were manually adjusted for clarity.
Marker-gene selection. Scoring cluster marker genes. Many genes were expressed 
in the majority of nuclei in a subset of clusters. A marker score (β) was defined for 
all genes to measure how binary expression was among clusters, independent of 
the number of clusters labelled (Supplementary Table 5). First, the proportion (xi) 
of nuclei in each cluster that expressed a gene above background level (CPM >1) 
was calculated. Then, scores were defined as the squared differences in proportions 
normalized by the sum of absolute differences plus a small constant (ε) to avoid 
division by zero. Scores ranged from 0 to 1, and a perfectly binary marker had a 
score equal to 1.
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Specific cell-type marker genes. Specific marker genes were selected for cell-type 
naming and generation of violin plots and heat maps, and are included as part of 
Supplementary Table 2. For each cell type, the top marker genes were selected by 
filtering and sorting: first, only genes with highest proportion (CPM > 1) in the 
target cluster compared with every other cluster and with median expression at 
least twofold higher than in every other cluster were considered; and second, genes 
were filtered based on the difference in median expression in the top cluster com-
pared with cluster with the next-highest median expression. The highest-ranked 
annotated gene (for example, not a ‘LOC’ or related gene) was selected as the 
specific gene to include in each cluster name. In clusters with no specific markers 
fold-change requirement was relaxed, and if still no marker was found then the 
most-specific gene compared with similar cell types (category level 3) was used 
(see Supplementary Table 2).
Combinatorial cell-type marker genes. Combinatorial marker genes were identi-
fied using NS-Forest v.261 (https://github.com/JCVenterInstitute/NSForest), an 
algorithm designed to select the minimum number of genes whose combined 
expression pattern is sufficient to uniquely classify cells of a particular type based 
on gene-expression clustering results. Briefly, for each gene-expression cluster, 
NS-Forest produces a random forest (RF) model for a target cluster vs all other clus-
ters binary classification. The top-ranking genes (features) from each RF are then 
filtered by expression level (positive intermediate-high expression) and reranked by 
binary score. The binary score is calculated by first finding median cluster expres-
sion values for a given gene in each cluster. These values are then scaled by dividing 
by the median expression value in the target cluster. Next, we take one minus this 
scaled value such that the value will be 0 for the target cluster and 1 for clusters 
that have no expression (negative scaled values are set to 0). These values are then 
summed and normalized by dividing by the total number of clusters. In the ideal 
case, where all off-target clusters have no expression, the resulting binary score is 
1. Finally, for the top 6 genes ranked by this binary score, optimal expression level 
cutoffs are determined using single decision trees, and all permutations of these 
genes are evaluated for classification accuracy using the f − β-score, where the β 
is weighted to favour precision. This f score indicates the power of discrimination 
for a cluster and a given set of genes. Top combinatorial markers are included as 
part of Supplementary Table 2.
Donor tissue-specific marker genes. Gene expression was compared between nuclei 
isolated from four neurosurgical and four postmortem donors. Differential expres-
sion analysis was performed with the limma R package using all NeuN-positive 
nuclei isolated from L5 of MTG. Donor sex and MTG cluster were included as 
covariates in a linear model, and all genes with at least a twofold difference in 
expression and Benjamini–Hochberg adjusted P value <0.05 are reported in 
Supplementary Table 1.
Cross-species marker genes. For each homologous cell type, cross-species markers 
were defined as having cluster-enriched expression (expressed in >50% of cells or 
nuclei in the cluster of interest and five or fewer additional clusters) in both species. 
Marker genes were rank ordered based on their cell type-specificity in human and 
mouse using a tau score defined in Yanai et al.62. Up to ten markers were plotted in 
Extended Data Fig. 11 and listed in Supplementary Table 4.
Assigning core and intermediate nuclei. We defined core and intermediate nuclei 
as described in22. Specifically, we used a nearest-centroid classifier, which assigns a 
nucleus to the cluster whose centroid has the highest Pearson’s correlation with the 
nucleus. Here, the cluster centroid is defined as the median expression of the 1,200 

marker genes with the highest β-score. To define core versus intermediate nuclei, 
we performed fivefold cross-validation 100 times. In each round, the nuclei were 
randomly partitioned into 5 groups, and nuclei in each group of 20% of the nuclei 
were classified by a nearest centroid classifier trained using the other 80% of the 
nuclei. A nucleus classified to the same cluster as its original cluster assignment 
more than 90 times was defined as a core nucleus, the others were designated 
intermediate nuclei. We define 14,204 core nuclei and 1,399 intermediate nuclei, 
which in most cases classify to only two clusters (1,345 out of 1,399, 96.1%). Most 
nuclei are defined as intermediate because they are confidently assigned to a dif-
ferent cluster from the one originally assigned (1,220 out of 1,399, 87.2%) rather 
than because they are not confidently assigned to any cluster.
Cluster dendrograms. Clusters were arranged by transcriptomic similarity based 
on hierarchical clustering. First, the average expression level of the top 1,200 
marker genes (highest β-scores, as above) was calculated for each cluster. A corre-
lation-based distance matrix ρ= − /D x y( (1 ( , )) 2)xy  was calculated, and com-
plete-linkage hierarchical clustering was performed using the hclust R function 
with default parameters. The resulting dendrogram branches were reordered to 
show inhibitory clusters followed by excitatory clusters, with larger clusters first, 
while retaining the tree structure. Note that this measure of cluster similarity is 
complementary to the co-clustering separation described above. For example, two 
clusters with similar gene-expression patterns but a few binary marker genes may 
be close on the tree but highly distinct based on co-clustering.
Organizing clusters into a provisional cell ontology. Annotations for gene- 
expression cluster characteristics were used to produce a provisional cell ontology 
representation as proposed37, accessible through the BioPortal resource (https://
bioportal.bioontology.org/ontologies/PCL) and an RDF representation available 
through a GitHub Repo (https://github.com/mkeshk2018/Provisional_Cell_
Ontology). This ontology is presented in table form in Supplementary Table 3, 
along with more details about the components of this ontology.
Mapping cell types to reported clusters. 69 neuronal clusters in MTG were 
matched to 16 neuronal clusters reported by Lake et al.24 using nearest-centroid 
classifier of expression signatures. Specifically, single nucleus expression data was 
downloaded for 3,042 cells and 25,051 genes. 1,359 marker genes (β-score >0.4) 
of MTG clusters that had a matching gene in the Lake et al. dataset were selected, 
and the median expression for these genes was calculated for all MTG clusters. 
Next, Pearson’s correlations were calculated between each nucleus in the Lake et al. 
dataset and all 69 MTG clusters based on these 1,359 genes. Nuclei were assigned 
to the cluster with the maximum correlation. A confusion matrix was generated 
to compare the cluster membership of nuclei reported by Lake et al. and assigned 
MTG cluster. The proportion of nuclei in each MTG cluster that were members 
of each of the 16 Lake et al. clusters were visualized as a dot plot with circle sizes 
proportional to frequency and coloured by MTG cluster colour. The same com-
parative approach was performed for clusters defined using single nuclei isolated 
from prefrontal cortex, including 10,319 nuclei from Lake et al.27 and 5,433 nuclei 
from Habib et al.28.
Colorimetric in situ hybridization. In situ hybridization (ISH) data for human 
and mouse cortex was from the Allen Human Brain Atlas and Allen Mouse Brain 
Atlas. All ISH data are publicly accessible at https://www.brain-map.org. Data was 
generated using a semi-automated technology platform as described63, with mod-
ifications for postmortem human tissues as previously described15. Digoxigenin-
labelled riboprobes were generated for each human gene such that they would 
have >50% overlap with the orthologous mouse gene in the Allen Mouse Brain 
Atlas63. ISH experiments shown in Fig. 6 were repeated 4 (COL24A1), 3 (COL12A1, 
GRIK1), and 6 (GRIN3A) times for human, and 2 (Col24a1, Col12a1, Grin3a) and 
6 (Grik1) times for mouse.
GFAP immunohistochemistry. Tissue slices (350 µm) from neurosurgical spec-
imens were fixed for 2-4 days in 4% paraformaldehyde in PBS at 4 °C, washed 
in PBS and cryoprotected in 30% sucrose. Cryoprotected slices were frozen and 
re-sectioned at 30 µm using a sliding microtome (Leica SM2000R). Free floating 
sections were mounted onto gelatin coated slides and dried overnight at 37 °C. 
Slides were washed in 1X tris buffered saline (TBS), followed by incubation in 3% 
hydrogen peroxide in 1X TBS. Slides were then heated in sodium citrate (pH 6.0) 
for 20 min at 98 °C. After cooling, slides were rinsed in MilliQ water followed by 
1X TBS. Primary antibody (mouse anti-GFAP, EMD Millipore, #MAB360, clone 
GA5, 1:1500) was diluted in Renaissance Background Reducing Diluent (Biocare 
#PD905L). Slides were processed using a Biocare intelliPATH FLX Automated 
Slide Stainer. After primary antibody incubation, slides were incubated in Mouse 
Secondary Reagent (Biocare #IPSC5001G20), rinsed with 1X TBS, incubated in 
Universal HRP Tertiary Reagent (Biocare #IPT5002G20), rinsed in 1X TBS, and 
incubated in IP FLXDAB (Biocare Buffer #IPBF5009G20), and DAB chromogen 
(Biocare Chromogen #IPC5008G3). Slides were then rinsed in 1X TBS, incubated 
in DAB sparkle (Biocare #DSB830M), washed in MilliQ water, dehydrated through 
a series of graded alcohols, cleared with Formula 83, and coverslipped with DPX. 
Slides were imaged using an Aperio ScanScope XT slide scanner (Leica).

https://github.com/JCVenterInstitute/NSForest
https://bioportal.bioontology.org/ontologies/PCL
https://bioportal.bioontology.org/ontologies/PCL
https://github.com/mkeshk2018/Provisional_Cell_Ontology
https://github.com/mkeshk2018/Provisional_Cell_Ontology
https://www.brain-map.org
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Multiplex fluorescence in situ hybridization. Genes were selected for mFISH 
experiments that discriminated cell types and broader classes by visual inspec-
tion of differentially expressed genes that had relatively binary expression in the 
targeted types.
Single molecule FISH. Fresh-frozen human brain tissue from the MTG was sec-
tioned at 10 µm onto Poly-l-lysine coated coverslips as described previously64, 
let dry for 10 min at room temperature, then fixed for 15 min at 4 °C in 4% PFA. 
Sections were washed 3 × 10 min in PBS, then permeabilized and dehydrated with 
100% isopropanol at room temperature for 3 min and allowed to dry. Sections were 
stored at −80 °C until use. Frozen sections were rehydrated in 2X SSC (Sigma 
Aldrich 20XSSC, 15557036) for 5 min, then treated 2 × 5 min with 4% SDS (Sigma 
Aldrich, 724255) and 200 mM boric acid (Sigma Aldrich, cat# B6768) pH 8.5 at 
room temperature. Sections were washed 3 times in 2X SSC, then once in TE pH 8  
(Sigma Aldrich, 93283). Sections were heatshocked at 70 °C for 10 min in TE pH 8,  
followed by 2X SSC wash at room temperature. Sections were then incubated in 
hybridization buffer (10% Formamide (v/v, Sigma Aldrich 4650), 10% dextran 
sulfate (w/v, Sigma Aldrich D8906), 200 µg/mL BSA (Ambion AM2616), 2 mM 
ribonucleoside vanadyl complex (New England Biolabs, S1402S), 1 mg/ml tRNA 
(Sigma 10109541001) in 2X SSC) for 5 min at 38.5 °C. Probes were diluted in 
hybridization buffer at a concentration of 250 nM and hybridized at 38.5 °C for 2 h.  
Following hybridization, sections were washed 2 × 15 min at 38.5 °C in wash 
buffer (2X SSC, 20% Formamide), and 1 × 15 min in wash buffer with 5 µg/ml  
DAPI (Sigma Aldrich, 32670). Sections were then imaged in Imaging buffer  
(20 mM Tris-HCl pH 8, 50 mM NaCl, 0.8% glucose (Sigma Aldrich, G8270),  
3 U/ml glucose oxidase (Sigma Aldrich, G2133), 90 U/ml catalase (Sigma Aldrich, 
C3515). Following imaging, sections were incubated 3 × 10 min in stripping buffer 
(65% formamide, 2X SSC) at 30 °C to remove hybridization probes from the first 
round. Sections were then washed in 2X SSC for 3 × 5 min at room temperature 
before repeating the hybridization procedure.
RNAscope mFISH. Human tissue specimens used for RNAscope mFISH came 
from a cohort of both neurosurgical or postmortem tissue donors that were inde-
pendent from the donors used for snRNA-seq. Mouse tissue for RNAscope exper-
iments was from adult (P56 +/− 3 days) male and female wild-type C57Bl/6J 
mice. Mice were anesthetized with 5% isoflurane and intracardially perfused with 
either 25 or 50 ml of ice cold, oxygenated artificial cerebral spinal fluid (0.5 mM 
CaCl2, 25 mM D-Glucose, 98 mM HCl, 20 mM HEPES, 10 mM MgSO4, 1.25 mM 
NaH2PO4, 3 mM Myo-inositol, 12 mM N-acetylcysteine, 96 mM N-methyl-d-
glucamine, 2.5 mM KCl, 25 mM NaHCO3, 5 mM sodium L-Ascorbate, 3 mM 
sodium pyruvate, 0.01 mM Taurine and 2 mM Thiourea). The brain was then 
rapidly dissected, embedded in optimal cutting temperature (OCT) medium, and 
frozen in a slurry of dry ice and ethanol. Tissues were stored at −80 °C for later 
cryosectioning.

Fresh-frozen mouse or human tissues were sectioned at 14–16 µm onto 
Superfrost Plus glass slides (Fisher Scientific). Sections were dried for 20 min at 
−20 °C and then vacuum sealed and stored at −80 °C until use. The RNAscope 
multiplex fluorescent v1 kit was used per the manufacturer’s instructions for 
fresh-frozen tissue sections (Advanced Cell Diagnostics), with the following 
minor modifications: (1) fixation was performed for 60 min in 4% paraformal-
dehyde in 1X PBS at 4 °C, and (2) the protease treatment step was shortened to 
10 min. Positive controls used to assess RNA quality in tissue sections were either 
from a set from Advanced Cell Diagnostics (POLR2A, PPIB, UBC, #320861) or a 
brain-specific probe combination (SLC17A7, VIP, GFAP). Sections were imaged 
using either a 40X or 60X oil immersion lens on a Nikon TiE fluorescent micro-
scope equipped with NIS-Elements Advanced Research imaging software (version 
4.20). For all RNAscope mFISH experiments, positive cells were called by manually 
counting RNA spots for each gene. Cells were called as positive for a gene if they 
contained ≥ 5 RNA spots for that gene. Lipofuscin autofluorescence was distin-
guished from RNA spot signal based on the larger size of lipofuscin granules and 
the broad fluorescence spectrum of lipofuscin.
RNAscope mFISH with GFAP immunohistochemistry. Tissue sections were 
processed for RNAscope mFISH detection of ID3 (Advanced Cell Diagnostics, 
#492181-C3, NM_002167.4) and AQP4 (Advanced Cell Diagnostics, #482441, 
NM_001650.5) exactly as described above. At the end of the RNAscope proto-
col, sections were fixed in 4% paraformaldehyde for 15 min at room temperature 
and then washed twice in 1X PBS for 5 min. Sections were incubated in blocking 
solution (10% normal donkey serum, 0.1% Triton-x 100 in 1X PBS) for 30 min 
at room temperature and then incubated in primary antibody diluted 1:100 in 
blocking solution (mouse anti-GFAP, Sigma-Aldrich, #G3893, clone G-A-5) for 
18 h at 4C. Sections were then washed 3 times for 5 min each in 1X PBS, incubated 
with secondary antibody (goat anti-mouse IgG(H+L) Alexa Fluor 568 conjugate, 
ThermoFisher Scientific, #A-11004) for 30 min at room temperature, rinsed in 1X 
PBS 3 times for 5 min each, counterstained with DAPI (1 µg/ml), and mounted 
with ProLong Gold mounting medium (ThermoFisher Scientific). Sections were 
imaged using either a 40X or 60X oil immersion lens on a Nikon TiE fluorescent 

microscope equipped with NIS-Elements Advanced Research imaging software 
(version 4.20).
In situ validation of excitatory cell types and non-coding transcripts. To validate 
excitatory neuron types, clusters were labelled with cell-type-specific combinato-
rial gene panels using RNAscope mFISH. For each gene panel, positive cells were 
manually called by visual assessment of RNA spots for each gene, as described 
above. The total number of positive cells was quantified for each section. Positive 
cells were counted on at least three sections derived from at least two donors for 
each probe combination. DAPI staining was used to determine the boundaries of 
cortical layers within each tissue section and the laminar position of each positive 
cell was recorded. The percentage of labelled cells per layer, expressed as a frac-
tion of the total number of labelled cells summed across all layers, was calculated 
for each type. Probes used were as follows (all from Advanced Cell Diagnostics): 
SLC17A7 (#415611, NM_020309.3), RORB (#446061, #446061-C2, NM_006914.3), 
CNR1 (#591521-C2, NM_001160226.1), PRSS12 (#493931-C3, NM_003619.3), 
ALCAM (#415731-C2, NM_001243283.1), MET (#431021, NM_001127500.1), 
MME (#410891-C2, NM_007289.2), NTNG1 (#446101-C3, NM_001113226.1), 
HS3ST4 (#506181, NM_006040.2), CUX2 (#425581-C3, NM_015267.3), PCP4 
(#446111, NM_006198.2), GRIN3A (#534841-C3, NM_133445.2), GRIK3 
(#493981, NM_000831.3), CRHR2 (#469621, NM_001883.4), TPBG (#405481, 
NM_006670.4), POSTN (#409181-C3, NM_006475.2), SMYD1 (#493951-
C2, NM_001330364.1). Probes for non-coding transcripts were as follows (all 
from Advanced Cell Diagnostics): LINC01164 (# 559051-C3, NR_038365.1), 
LOC102723415 (#559031, XR_001741660.1), LOC401134 (LINC02232, #559061-
C3, NR_033976.1), LOC105369818 (#508351-C3, XR_945055.2), IFNG-AS1 
(#508348-C2, NR_104124.1). LOC105376081 (XR_929926.1) was assayed using 
colorimetric ISH as described above.
Imaging and quantification of smFISH expression. smFISH images were  
collected using an inverted microscope in an epifluorescence configuration  
(Zeiss Axio Observer.Z1) with a 63x oil immersion objective with numerical 
aperture 1.4. The sample was positioned in x, y and z with a motorized x, y stage 
with linear encoders and z piezo top-plate (Applied Scientific Instruments MS 
2000-500) and z stacks with 300 nm plane spacing were collected in each colour 
at each stage position through the entire z depth of the sample. Fluorescence 
emission was filtered using a high-speed filterwheel (Zeiss) directly below the 
dichroic turret and imaged onto a sCMOS camera (Hamamatsu ORCA Flash4.0) 
with a final pixel size of 100 nm. Images were collected after each round of hybrid-
ization using the same configuration of x,y tile locations, aligned manually before 
each acquisition based on DAPI fluorescence. smFISH signal was observed as 
diffraction-limited spots which were localized in 3D image stacks by finding 
local maxima after spatial bandpass filtering. These maxima were filtered for 
total intensity and radius to eliminate dim background and large, bright lipo-
fuscin granules. Outlines of cells and cortical layers were manually annotated on 
images of GAD, SLC17A7 and DAPI as 2D polygons using FIJI. The number of 
mRNA molecules in each cell for each gene was then calculated and converted 
to densities (spots per 100 µm2).

Background expression of the excitatory neuron marker SLC17A7 was defined 
as the 95th quantile of SLC17A7 spot density among cells in cortical L1, since no 
excitatory cells should be present in L1. Excitatory neurons were defined as any 
cell with SLC17A7 spot density greater than this threshold. To map excitatory cells 
to MTG reference clusters, spot counts were log-transformed and scaled so that 
the 90th quantile of expression for each gene in smFISH matched the maximum 
median cluster expression of that gene among the reference clusters. Reference 
clusters that could not be discriminated based on the smFISH panel of nine genes 
were merged and all comparisons between smFISH and RNA-seq cluster classes 
were performed using these cluster groups. Scaled spot densities for each cell were 
then compared to median expression levels of each reference cluster using Pearson 
correlation, and each cell was assigned to the cluster with the highest correlation. 
For cells that mapped to the Exc L2-3 LINC00507 FREM3 cluster, LAMP5 and 
COL5A2 expression was plotted as a dot plot where the size and colour of dots 
corresponded to probe spot density and the location corresponded to the in situ 
location.
In situ validation of putative chandelier cells. Tissue sections were labelled with 
the gene panel GAD1, PVALB, and NOG, or COL15A1, specific markers of the 
Inh L2-5 PVALB SCUBE3 putative chandelier cell cluster. Probes were as follows 
(all from Advanced Cell Diagnostics): GAD1 (#404031-C3, NM_000817.2), 
PVALB (#422181-C2, NM_002854.2), NOG (#416521, NM_005450.4), COL15A1 
(#484001, NM_001855.4). Counts were conducted on sections from 3 human tis-
sue donors. For each donor, the total number of GAD1+, GAD1+, PVALB+ and 
NOG+ cells was summed across multiple sections. The laminar position of each 
cell, based on boundaries defined by assessing DAPI staining patterns in each 
tissue section, was recorded. The proportion of chandelier cells in each layer was 
calculated as a fraction of the total number of GAD1+PVALB+NOG+ cells summed 
across all layers for each specimen.
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Cell counts of broad interneuron classes. Tissue sections were labelled with the 
RNAscope Multiplex Fluorescent kit (Advanced Cell Diagnostics) as described 
above. For human tissue sections, the following probes (all from Advanced Cell 
Diagnostics) were used: GAD1 (#404031, NM_000817.2); ADARB2 (#511651-C3, 
NM_018702.3); LHX6 (#460051-C2, NM_014368.4). For mouse tissue sections, 
the following probes were used: Gad1 (#400951, NM_008077.4); Adarb2 (#519971-
C3, NM_052977.5); Lhx6 (#422791-C2, NM_001083127.1). The expression of each 
gene was assessed by manual examination of corresponding RNA spots. Cell counts 
were conducted on sections from 3 human tissue donors: 2 neurosurgical and 1 
postmortem. For mouse, 3 independent specimens were used. For both human and 
mouse, >500 total GAD1+ cells per specimen were counted (Human, n = 2,706, 
1,553, and 3,476 GAD1+ cells per donor, respectively; Mouse, n = 1,897, 2,587, 
and 708 GAD1+ cells per specimen, resepectively). Expression of ADARB2/Adarb2 
and LHX6/Lhx6 was manually assessed in each GAD1+ cell and cells were scored 
as being positive (≥5 RNA spots/gene) or negative for each gene, as described 
above. At the same time, the laminar position of each GAD1+ cell was recorded. 
Cell density, highlighted by DAPI staining, was used to determine laminar bound-
aries. The percentage of each cell class expressed as a fraction of total GAD1+ cells 
and the percentage of each cell class per layer, expressed as a fraction of the total 
number of GAD1+ cells per layer, were calculated for each specimen. Statistical 
comparisons between human and mouse were done using unpaired two-tailed 
t-tests with Holm–Sidak correction for multiple comparisons.
MetaNeighbour analysis. To compare the ability of different gene families to 
distinguish cell types in mouse versus human cortex, we performed a modified 
supervised MetaNeighbour analysis65 independently for both species. First, we 
divided our datasets into two artificial experiments, selecting random groups of 
equal size up to a maximum of 10 cells per cluster for each experiment. We next 
ran MetaNeighbour separately for clusters from each broad class (GABAergic, 
glutamatergic, and non-neuronal) using the R function run_MetaNeighbor where 
experiment_labels are 1 or 2 corresponding to the two artificial experiments, cell-
type_labels are 2 for cells in the targeted cluster and 1 for cells in all other clusters 
of the same broad class, and genesets were all of the HGNC gene sets included in 
supplementary table 3 of ref. 41. Mean AUROC scores for each gene set were then 
calculated by averaging the reported AUROC scores for a gene set across all clus-
ters within a given broad class. This processes was repeated for 10 divisions of the 
human and mouse data into random experimental groups. Means and standard 
deviations of these mean AUROC scores for human and mouse GABAergic cell 
types are compared in Fig. 5.
Estimation of cell-type homology. We aligned single nucleus and single cell 
RNA-seq data from human MTG and either mouse primary visual cortex (V1) or 
ALM cortex by applying two data integration methods, Seurat44 and scAlign45, to 
remove species-specific differences. As a secondary analysis, we aligned mouse V1 
to mouse ALM excitatory neurons using the same analysis pipeline.

First, we quantified expression levels as log2-transformed CPM of intronic plus 
exonic reads. Including exonic reads increased experimental differences due to 
measuring whole cell (mouse) versus nuclear (human) transcripts, but this was 
out-weighed by improved gene detection. We separated each dataset into three 
broad cell classes: GABAergic, glutamatergic, and non-neuronal, based on their 
assigned clusters, and selected up to 200 cells from each cluster. For excitatory 
neurons from ALM, we selected up to 50 cells from each cluster to improve the 
alignment of rare types. For each species comparison, we selected the union of 
the top 2,000 genes with the highest dispersion for human and mouse and calcu-
lated up to 40 canonical correlates with diagonal CCA. We used these canonical 
correlates as input to scAlign’s encoder neural network or Seurat’s dynamic time 
warping algorithm44.

In brief, scAlign is a neural network that learns a mapping from the canonical 
correlation space of data from each species into a common cell state space in which 
functionally similar cells occupy the same region of the cell state space. The neural 
network optimizes a loss function which encourages overlap of similar cells across 
species while preserving cell-cell similarity within each species to minimize the 
species-specific distortion in the learned cell state space. The default network archi-
tecture for scAlign is defined by: Input (CCA) → FC(512) → FC(256) → FC(128) 
→ FC(32). The input nodes consist of the single cell transcriptome profiles that 
have been preprocessed via canonical correlation analysis. Here, FC(n) defines a 
fully connected layer with n hidden units and a ReLU activation function. The 
final FC(n) layer outputs the cell embeddings. Following each FC(n) layer, we 
used batch normalization and dropout at a rate of 30%. Key hyperparameters for 
scAlign were set as follows. (1) Mini-batch size ranged between 100 and 1,000 cells 
to ensure sufficient representation of each cell type to avoid bias. (2) Perplexity 
values of 5, 10, and 30 defined the number of neighbours for each cell. (3) Weight 
of L2 regularization in the loss function was set to 0.0001. (4) Learning rate was 
initialized at 0.0001 and followed a linear decay pattern during training. (5) The 
number of FC(n) layers varied from 2 to 4 as larger FC(n) layers were consecutively 
removed. All training converged in less than 15,000 iterations.

To identify the optimal model architecture(s) for each experiment, we measured 
two quality metrics defined on scAlign’s cell embeddings: (1) accuracy of a 5-near-
est neighbours classifier for labelling human and mouse cells and (2) alignment 
score44 measuring the degree of mixing between human and mouse cells. These 
scores were averaged across three random weight initializations to validate that the 
model produced robust alignments. We also tested the robustness of the alignment 
to different methods by using nonlinear warping implemented in the Seurat R 
package for alignment.

We defined homologous cell types by clustering the aligned embedding output 
from scAlign or Seurat and identifying human and mouse samples that co-clus-
tered. First, a weighted graph was constructed based on the Jaccard similarity of 
the nearest neighbours of each sample. Louvain community detection was run to 
identify clusters that optimized the global modularity of the partitioned graph. 
For each pair of human and mouse clusters, the overlap was defined as the sum of 
the minimum proportion of samples in each cluster that overlapped within each 
CCA cluster. This approach identified pairs of human and mouse clusters that 
consistently co-clustered within one or more aligned clusters. Cluster overlaps 
varied from 0 to 1 and were visualized as a heat map with human MTG clusters in 
rows and mouse V1 or ALM clusters in columns.

Cell-type homologies were identified as one-to-one, one-to-many, or many-to-
many based on the pattern of overlap between clusters. Including more canonical 
correlates or fewer nearest neighbours increased the number of cell types that 
could be discriminated within each species but also reduced alignment between 
species and resulted in more species-specific clusters. A grid based search was used 
to select the optimal number of canonical correlates (30, inhibitory neurons; 40, 
excitatory neurons; 10, non-neuronal) and nearest neighbours that maximized 
detection of homologous cell types. Most homologies were consistent between 
MTG and two mouse cortical areas (V1 and ALM) and between alignment meth-
ods, although scAlign gave somewhat higher resolution homologies (Extended 
Data Fig. 9). Inconsistencies between cell-type homologies in MTG and V1 or ALM 
were resolved by grouping clusters to identify a coarser homology. For example, 
all L6b clusters in human and mouse were assigned to a single L6b homologous 
type. Supplementary Table 3 lists homologies defined using scAlign between MTG 
and V1 for all clusters and between MTG and ALM for excitatory neuron clusters. 
Homologous type names were assigned based on the annotations of member clus-
ters from human and mouse.
Quantification of expression divergence. For each pair of 37 homologous human 
and mouse cell types, the average expression of 14,553 orthologous genes was 
calculated as the average counts per million of intronic reads. Only intronic reads 
were used to better compare these single nucleus (human) and single cell (mouse) 
datasets. Average expression values were log2-transformed and scatter plots and 
Pearson’s correlations were calculated to compare human and mouse. Genes were 
ranked based on their cell type-specificity in human and mouse using a tau score 
defined in Yanai et al.62, and the union of the top 50 markers in human and mouse 
were highlighted in the scatter plots. The fold difference in expression between 
human and mouse was calculated for all genes and homologous cell types and 
thresholded to identify large (>10-fold), moderate (2 to tenfold), and small (<2-
fold) differences. A heat map was generated showing expression differences across 
cell types, and hierarchical clustering using Ward’s method was applied to group 
genes with similar patterns of expression change. For each of 6 major classes of 
cell types (LAMP5/PAX6, VIP, SST, PVALB, excitatory, non-neuronal), the number 
of genes was quantified that had >10-fold change in at least one cell type in that 
class and <10-fold change in all cell types in the other 5 classes. The expression 
pattern change of 14,553 genes was quantified as the β-score (see marker score 
methods above) of log2-expression differences across 37 homologous cell types 
(Supplementary Table 2). Scores ranged from 0–1 and measured the magnitude 
of expression changes between species while normalizing for the number of cell 
types that changed expression. Genes with high scores have a large fold change in 
expression in one or more (but not all) cell types. For each gene, the number of 
clusters with median expression (CPM) > 1 was compared to the median pattern 
change of those genes. A loess curve and standard error were fit using the R pack-
age ggplot. Finally, the median pattern change was calculated for functional gene 
families downloaded from the HUGO Gene Nomenclature Committee (HGNC) 
at https://www.genenames.org/download/statistics-and-files/.
Reporting summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this paper.

Data availability
Data can be accessed through the Allen Brain Atlas data portal at http://portal.
brain-map.org/ and RNA-seq data from this study are publicly available and can be 
downloaded at http://celltypes.brain-map.org/. Data can be visualized and analysed 
using two complementary viewers: the RNA-seq Data Navigator (http://celltypes.
brain-map.org/rnaseq/human) and the Cytosplore Viewer (https://viewer.cytos-
plore.org/), an extension of Cytosplore66 that presents a hierarchy of t-SNE maps 
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https://viewer.cytosplore.org/
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of different subsets of MTG clusters67. An ontology of cell types can be navigated 
at http://bioportal.bioontology.org/ontologies/PCL. Controlled access raw RNA-
seq data are registered with dbGAP (accession number phs001790) and have been 
deposited at the NeMO archive (https://nemoarchive.org/). Applications to access 
raw sequencing data should be submitted via dbGAP.

Code availability
The data and code used to produce figures are available from https://github.com/
AllenInstitute/MTG_celltypes.
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Extended Data Fig. 1 | Nuclei metadata summarized by cluster. a, FACS 
gating scheme for nuclei sorts. b, FACS metadata for index-sorted single 
nuclei (n = 571) show significant variability in NeuN fluorescence 
intensity (NeuN–PE-A), size (forward-scatter area, FSC-A) and 
granularity (side-scatter area, SSC-A) across clusters. As expected, non-
neuronal nuclei have almost no NeuN staining and are smaller (as inferred 
by lower FSC values). Error bars represent 95% bootstrapped confidence 
intervals on mean values (points). c, d, Scatter plots of single nuclei from 

all clusters (n = 15,928) plus median and interquartile interval of three 
quality control metrics grouped and coloured by cluster. c, Median total 
reads were approximately 2.6 million for all cell types, although slightly 
lower for non-neuronal nuclei. d, Median gene detection was highest 
among excitatory neuron types in L5 and L6 and a subset of types in L3, 
lower among inhibitory neuron types and significantly lower among non-
neuronal types.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Small but consistent expression signature of 
donor tissue source. a, mRNA quality was only slightly higher for nuclei 
isolated from neurosurgical (n = 722) versus postmortem (n = 15,206) 
donors (~3% more uniquely aligned reads and ~350 more genes detected). 
All nuclei were dissected from cortical L5 and sorted on the basis of 
NeuN-positive staining, and transcripts were sequenced to a median 
depth of approximately 2.5 million reads per nucleus. Median values (red 
points) and interquartile interval are indicated. b, Dot plot showing the 
proportion of nuclei isolated from neurosurgical and postmortem donors 
among human MTG clusters. Note that most nuclei from neurosurgical 
donors were isolated only from L5, so clusters enriched in other layers, 
such as L1 interneurons, have low representation of these donors. c, Highly 

correlated (Pearson’s) expression between nuclei from postmortem and 
neurosurgical donors among two subclasses of excitatory neurons and 
one subclass of inhibitory neurons. Nuclei were pooled and compared 
within these subclasses owing to the low sampling of individual clusters 
from neurosurgical donors. Average expression of n = 2,180, 1,636 and 
815 postmortem nuclei and 127, 38 and 114 neurosurgical nuclei were 
included for the L5a excitatory, L4 excitatory and SST+ interneuron 
comparisons, respectively. d, Expression (log10(CPM + 1)) heat maps 
of the top-10 upregulated genes in nuclei from postmortem and 
neurosurgical donors including ribosomal genes and activity-dependent 
genes, respectively.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Cluster robustness. a, Cluster separability 
(mean co-clustering within a cluster minus the maximum co-clustering 
between clusters) varied substantially among cell types (n = 15,928 
nuclei), with a subset of neuronal types and all non-neuronal types being 
highly discrete. b, Scatter plots quantifying the separation of each cluster 
from its nearest neighbour. Left, cluster separability based on rounds of 
iterative clustering using all variable genes is correlated with the number 
of binary marker genes. Middle, all clusters express at least 30 genes with 
>twofold increased expression, but only a subset are binary markers. 
Right, A substantial fraction of markers of many clusters are unannotated. 
c, River plots of clusters that merge with more binary markers required 
for separation. Note that clusters that appear distinct on the basis of layer 
position (excitatory neurons in L2 and L3), morphology (interlaminar 
astroctyes in L1) or homology with mouse (SST+ interneuron subtypes) 
can have few binary markers. Marker genes for clusters defined by 
four markers are listed in Supplementary Table 2. d, Confusion plots 
comparing cluster membership of single nuclei (n = 15,928) in reference 
MTG clusters and clusters generated using a different iterative clustering 
pipeline. Above each plot are listed the parameter settings and total 

number of clusters detected. Point size is proportional to the number of 
nuclei and point colour corresponds to the Jaccard index, with darker 
colours corresponding to a higher Jaccard index and greater consistency 
between clustering. e, Box plots summarizing consistency of cluster 
membership of single nuclei (n = 15,928) across the four iterative 
clustering runs shown in c. Box plots show median, interquartile interval 
and full range of values. Top, the number of clusters that overlap each 
reference cluster. A cluster count of 1 indicates a one-to-one match, 0 
indicates that a reference cluster was not detected and was merged with 
a related cluster, and >1 indicates that a reference cluster was split into 
sub-clusters. *The Exc L2−3 LINC00507 FREM3 reference cluster was 
consistently divided into subclusters. Bottom, reference clusters with 
higher Jaccard index values have more consistent membership of nuclei 
and therefore more distinct borders with related clusters. f, Violin plots 
of marker-gene expression for FREM3 subclusters (n = 2,284 nuclei) 
identified in one clustering run show relatively binary expression. In 
the violin plot, rows are genes and black dots correspond to median 
expression. Expression values are on a linear scale.
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Extended Data Fig. 4 | Expression of cell-type-specific markers.  
a, b, Heat maps of the top cell-type markers for inhibitory neurons (a) and 
excitatory neurons and non-neuronal cell types (b). Markers include many 
non-coding and unannotated genes (blue). Median expression values are 
shown on a logarithmic scale, with maximum expression values shown 
on the right side of each row. Up to five marker genes are shown for each 

cell type. Note that LOC genes were excluded from cluster names, and the 
best non-LOC marker genes were used instead. Dendrograms and cluster 
names are reproduced from Fig. 1. Marker genes for broad classes, as 
defined manually and using NS-Forest, are also shown in the top rows of 
each heat map.
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Extended Data Fig. 5 | Clusters in this study capture reported human 
cortical cell types and additional subtype diversity. a–c, Dot plots 
showing the proportion of each MTG cluster that matches reported 
clusters based on a centroid expression classifier. a, Three of sixteen 
neuronal clusters reported by Lake et al.24 (n = 3,042 nuclei) match human 
MTG clusters one-to-one, and the remaining clusters map to multiple 
MTG clusters. *Ex3 was highly enriched in visual cortex and not detected 
in temporal cortex by Lake et al. b, Four of eighteen neuronal clusters and 
three of four non-neuronal clusters reported by Lake et al.27 (n = 10,319 

nuclei) match human MTG clusters one-to-one, including two rare but 
distinct interneuron types (Inh L3–6 SST NPY and Inh L2–5 PVALB 
SCUBE3) and one rare but distinct excitatory type (Exc L4–5 FEZF2 
SCN4B). c, Four neuronal clusters reported by Habib et al.28 (n = 5,433 
nuclei) correspond to broad classes of inhibitory and excitatory neurons. 
Seven non-neuronal clusters include two astrocyte types that correspond 
to the types reported in this study, and one additional oligodendrocyte 
subtype. d, Sixteen clusters detected in L1 of human temporal cortex14 
(n = 914 nuclei) are captured at finer subtype resolution in this study.
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Extended Data Fig. 6 | Excitatory neuron types express marker genes 
across multiple cortical layers. a, Constellation diagram showing cluster 
relationships, relative frequencies and average layer position. b–e, Heat 
maps of log-transformed expression in individual nuclei ordered by 

cluster and then layer. Clusters are grouped on the basis of their dominant 
class-marker gene, which corresponds to position in superficial (LAMP5/
LINC00507, c; RORB, b) and deep (THEMIS, d; FEZF2, e) layers.
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Extended Data Fig. 7 | RNAscope mFISH validation of ten excitatory 
neuron types. a, Heat map summarizing combinatorial three-gene panels 
used for multiplex FISH assays to explore the spatial distribution of ten 
excitatory clusters. Gene combinations for each cluster are indicated by 
coloured boxes on the heat map. Maximum expression values for each 
gene are listed on the right of the heat map and gene-expression values are 

displayed on a log scale. Experiments were repeated on at least two donors 
for each probe combination with similar results. b, Gene combinations 
probed are listed above each image. Labelled cells are indicated by 
white arrows. Scale bar, 20 µm. c, Schematic representing the laminar 
distribution of clusters on the basis of the observed positions of labelled 
cells across at least three sections from at least two donors per cell type.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | In situ validation of LOC, long non-coding RNA 
and antisense transcripts as cell-type-specific markers. a, LINC01164 
specifically labels the Exc L3–5 RORB COL22A1 cluster (n = 160 nuclei). 
Left, violin plots showing expression of genes used for cluster validation 
by mFISH. Middle, read pile-ups shown for LINC01164 across all 
excitatory clusters (n = 24), viewed in UCSC genome browser. Red box 
indicates Exc L3–5 RORB COL22A1 cluster. Right, mFISH validation 
of cluster-specific marker genes. Laminar distribution of the Exc L3–5 
RORB COL22A1 cluster marked by LINC01164 is consistent with the 
distribution shown using protein-coding marker genes (panel showing 
staining for RORB, MME and NTNG1 reproduced from Fig. 2c). Scale 
bars, 100 µm (low-magnification DAPI-stained columns); 5 µm (mFISH 
images). Experiments were repeated on two donors with similar results. 
b, The Exc L4–6 FEZF2 IL26 cluster (n = 344 nuclei) is specifically marked 
by INFG-AS1 and LOC105369818. Top, heat map showing expression of 
these genes along with protein-coding marker gene CARD11. Bottom, 
mFISH validation of cluster-specific marker genes. Experiments were 
repeated on three donors with similar results. Scale bars, 5 µm. Right, 

read pile-ups shown for INFG-AS1 across all excitatory clusters, viewed in 
UCSC genome browser. Red box indicates Exc L4–6 FEZF2 IL26 cluster. 
c, Violin plots showing expression of LOC105376081 in the Exc L3–5 
RORB ESR1 cluster (n = 1,428 nuclei). Right, ISH for LOC105376081 
shows expression in L4 (red bar), consistent with the anatomical location 
of Exc L3–5 RORB ESR1 (left, laminar distribution from Fig. 2). Scale bars, 
100 µm. d, Violin plots showing expression of LOC401134 and the protein-
coding gene CRYM in three L3–5 RORB-expressing clusters (n = 1,674 
nuclei). Right, mFISH showing three possible combinations for the genes 
assayed as indicated by labelled arrows. Scale bars, 10 µm. Experiments 
were repeated on two donors with similar results. e, LOC102723415 labels 
a subset of PVALB clusters (n = 618 nuclei) as shown in the violin plots 
on the left and mFISH images on the right (clusters indicated by labelled 
arrows). Scale bars, 5 µm. Experiments were repeated on two donors with 
similar results. For all violin plots, rows are genes, black dots correspond 
to median expression and maximum expression (CPM) is listed on the far 
right. Expression values are on a linear scale. Asterisks indicate lipofuscin 
in mFISH images.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Laminar distribution of superficial excitatory 
neuron types validated by smFISH. a, smFISH (image, 100×) was 
performed with probes against SLC17A7, CUX2, CBLN2, RFXP1, 
GAD2, COL5A2, LAMP5, PENK and CARTPT mRNA. Spots for each 
gene are pseudocoloured as indicated in the bottom right legend. Layer 
demarcations are indicated in magenta. Scale bar, 300 µm. b, Spot 
indications for each gene, pseudocoloured as indicated in the bottom 
right legend, as in a. a,a′, Superficial L2 cells express SLC17A7(lavender), 
CUX2 (magenta) and LAMP5 (mint). b,b′, At deeper locations in L2, an 
example of an SLC17A7-expressing cell with CUX2, LAMP5 and COL5A2 
expression. Note that LAMP5 expression (mint) decreases in CUX2/
SLC17A7-expressing cells, whereas COL5A2/CUX2-expressing cells 

increase with depth along L2 and L3 (see, c,c′; d,d′; e,e′). c, Probe density 
(spots per 100 µm2) for nine genes assayed across L1–L4 (and partially 
L5) of human MTG. The cortical slice was approximately 0.5 mm wide 
and 2 mm deep. Points correspond to cellular locations in situ where the y 
axis is the cortical depth from the pial surface and the x axis is the lateral 
position. Point size and colour correspond to probe density. Cells that 
lack probe expression are shown as small grey points. Experiments were 
repeated on three donors with similar results. d, In situ location of cells 
mapped to indicated cell types and classes (different panels) on the basis 
of expression levels of nine genes shown in a. Numbers indicate qualitative 
calls of the layer to which each cell belongs based on cytoarchitecture, and 
0 indicates that the cell was not annotated.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Layer distributions and frequencies of 
inhibitory neuron types. a, b, Constellation diagram showing cluster 
relationships, relative frequencies and average layer position for LAMP5/
PAX6 (n = 2,320 nuclei) (a) and SST/PVALB (n = 1,844 nuclei) (b) classes 
of inhibitory neurons. c, Chromogenic ISH for TH, a marker of Inh L5–6 
SST TH and NPY, a marker of Inh L3−6 SST NPY, from the Allen Human 
Brain Atlas. Left columns show greyscale images of the Nissl section 
nearest the ISH section shown on the right for each gene. Red dots show 
cells positive for the gene assayed by ISH. Experiments were repeated 
9 (NPY) and 40 (TH) times with similar results. Chromogenic ISH for 
Th and Npy in mouse TEa from the Allen Mouse Brain Atlas are to the 
right of the human images. Experiments were repeated six (Npy) and 
two (Th) times with similar results. Scale bars, human, 250 µm; mouse, 
100 µm. d, RNAscope mFISH for markers of Inh L2−5 PVALB SCUBE3. 
Left, inverted DAPI-stained cortical column with red dots marking cells 
positive for the genes GAD1, PVALB and NOG (scale bar, 250 µm). Middle, 
cells positive for GAD1, PVALB and the specific marker genes NOG 
(top: scale bar, 10 µm) and COL15A1 (bottom: scale bar, 10 µm). White 
arrows mark triple-positive cells. Experiments were repeated on three 
donors with similar results. Right, counts of GAD1+PVALB+NOG+ cells 
across layers (expressed as percentage of total triple-positive cells). Data 

are mean ± s.d. and dots show the data points for individual specimens 
(n = 3 subjects). Violin plots show gene-expression distributions across 
clusters in the PVALB subclass (n = 802 nuclei) for the chandelier cell 
marker UNC5B and the Inh L2−5 PVALB SCUBE3 cluster markers 
NOG and COL15A1. Rows are genes, black dots correspond to median 
expression and maximum expression (CPM) is listed on the far right. 
Expression values are on a linear scale. e, Inverted DAPI-stained cortical 
column illustrating laminar positions of cells labelled with interneuron 
class markers. Green dots mark GAD1+/Gad1+, ADARB2+/Adarb2+ 
and LHX6−/Lhx6− cells (that is, ADARB2 branch interneurons); blue dots 
mark GAD1+/Gad1+, ADARB2−/Adarb2− and LHX6+/Lhx6+ cells (that 
is, LHX6 branch interneurons); and pink dots mark GAD1+/Gad1+, 
ADARB2+/Adarb2+ and LHX6+/Lhx6+ cells (that is, Inh L2–6 LAMP5 
CA1 cells in human or Lamp5 Lhx6 cells in mouse). f, Representative 
images of cells labelled with the GAD1, ADARB2 and LHX6 gene panel 
for human (top) and mouse (bottom). Left to right: cells double positive 
for GAD1 and ADARB2; cells double positive for GAD1 and LHX6; 
and GAD1, ADARB2 and LHX6 triple-positive cells. Scale bars, 15 µm 
(human), 10 µm (mouse). Experiments were repeated on three donors and 
three mice with similar results.
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Extended Data Fig. 11 | Aligning snRNA-seq and scRNA-seq data from 
human and mouse cortex. a, Heat map of Pearson’s correlations between 
average MetaNeighbour AUROC scores (n = 384 gene sets) for three 
broad classes of human and mouse cortical cell types. Rows and columns 
are ordered by average-linkage hierarchical clustering. b, Human (blue; 
n = 3,594 nuclei) and mouse (orange; n = 6,595 cells) inhibitory neurons 
projected on the first two principal components of a PCA combining 
expression data from both species. Almost 20% of expression differences 
are explained by species, whereas 6% are explained by major classes of 
interneurons. c, Number of highly differentially expressed (>tenfold 
change) genes (out of 14,551 orthologous genes) between homologous 
cell types matched between species (n = 37 types), mouse cortical area22 
(n = 103 types) and sample type26 (n = 11 types). Box plots show median, 
interquartile interval, range and outlier values. d, Schematic of scAlign 

analysis to align RNA-seq data from human nuclei and mouse cells.  
e, t-SNE plots of human (blue; n = 3,503 nuclei) and mouse (orange; 
n = 4,127 cells) excitatory neurons after alignment with scAlign and 
coloured by species and cluster. Arrow highlights two human nuclei  
that cluster with the mouse-specific (M) L5 PT Chrna6 cluster.  
f, t-SNE plots of human (blue; n = 670 nuclei) and mouse (orange; n = 671 
cells) non-neuronal cells coloured by species and cluster. g, t-SNE plots 
of human (blue; n = 3,594 nuclei) and mouse (orange; n = 6,595 cells) 
inhibitory neurons after alignment with scAlign (as in Fig. 5c) and Seurat 
and coloured by species. h, Consistently higher accuracy and alignment 
of inhibitory neurons using scAlign versus Seurat with several neural 
network architectures and parameter settings. Box plots show median and 
interquartile interval of values.
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Extended Data Fig. 12 | See next page for caption.
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Extended Data Fig. 12 | Quantifying human and mouse cell-type 
homology and comparing cell-type frequencies between species. 
a–c, Heat maps with inferred cell-type homologies highlighted in blue 
boxes. For each pair of clusters, the shade of grey indicates the minimum 
proportion of samples that co-cluster. Homologies for human and mouse 
inhibitory neurons (a), excitatory neurons (b) and non-neuronal cells (c)  
were predicted on the basis of shared cluster membership using mouse 
cells from two cortical areas (V1 and ALM) and two unsupervised 
alignment algorithms (scAlign and Seurat). d, Mouse V1 and mouse 
ALM excitatory neurons were aligned with scAlign. Blue boxes indicate 
V1 and ALM clusters that align to the same human clusters in b and are 
members of homologous cell types. Note that cell types can be matched at 
higher resolution within species than between species, as expected. e, Left 
to right: violin plots (n = 10,525 nuclei) showing expression of specific 
markers of the putative extratelencephalic EXC L4–5 FEZF2 SCN4B 
cluster (black box) and NPTX1, a gene expressed by all non-PT excitatory 
neurons. Each row represents a gene, the black dots in each violin 
represent median gene expression within clusters, and the maximum 
expression value for each gene is shown on the right-hand side of each 
row. Expression values are shown on a linear scale. Representative inverted 

DAPI-stained cortical column (scale bar, 200 µm) with red dots marking 
the position of cells positive for the genes SLC17A7 and FAM84B and 
negative for NPTX1 illustrates the relative abundance of the EXC L4–5 
FEZF2 SCN4B type in human MTG. Representative examples (arrows) 
of FAM84B (scale bar, 25 µm) and POU3F1-expressing cells (scale bar, 
25 µm). Expression of Fam84b in mouse TEa (scale bar, 75 µm) is shown 
in the adjacent panel. f, mFISH for NPTX1, a marker of non-PT excitatory 
types and SLC17A7, shows that NPTX1 labels most SLC17A7+ cells across 
all cortical layers. Boxed region shown at higher the magnification to the 
right. One SLC17A7+ cell (white arrow) is NPTX1−, but all other all other 
SLC17A7+ cells are NPTX1+. Scale bars, 200 µm (left); 50 µm (right). 
Right, representative inverted DAPI-stained cortical column with red dots 
that represent SLC17A7+, NPTX1− and POU3F1+ cells. Scale bar, 200 µm. 
e, f, Experiments were repeated on three donors (human) and two mice 
with similar results. g, ISH validation of layer distributions in human MTG 
and mouse primary visual cortex (data from ref. 22). Cells are labelled by 
cluster marker genes in human (RORB+/CNR1−/PRSS12+) and mouse 
(Scnn1a+/Hsd11b1+). ISH was performed on three human donors with 
similar results. For mouse, one experiment was performed.
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Extended Data Fig. 13 | Marker genes with relatively conserved 
expression in homologous cell types between human and mouse. 
Expression heat maps of homologous cell-type markers in human 
cortical nuclei and mouse cortical cells. Rows, median expression based 
on intronic and exonic reads and log-transformed (log10(CPM + 1)). 
Values listed on the right side of each heat map indicate the maximum 

expression level (CPM) for each gene. Columns: single nuclei (human) or 
cells (mouse) grouped by homologous types identified in this study. For 
each homologous type, up to ten marker genes were identified based on 
relatively specific expression (median CPM >1 in six or fewer clusters and 
ordered by τ score) in both species. Note that many more genes support 
individual homologies but may not be cell-type-specific markers.
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extended data table 1 | summary of human tissue donor information

Tissue types: P, postmortem; N, neurosurgical. Cause of death: CV, cardiovascular; N/A, not applicable. PMI, postmortem interval; RIN, RNA integrity number. Tissue RIN was measured using three 
tissue samples per donor, except for H16.06.009, for which RIN was derived from a single tissue sample. Values listed are the mean ± s.d.
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Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection BD Diva software v8.0, Nikon NIS-Elements Advanced Research imaging software v4.20, SoftMax Pro v6.5; VWorks v11.3.0.1195 and 
v13.1.0.1366; Hamilton Run Time Control v4.4.0.7740; Fragment Analyzer v1.2.0.11; Mantis 
Control Software v3.9.7.19; Illumina HiSeq 2500 instrument control software.

Data analysis FIJI distribution of ImageJ, GraphPad Prism v7.04. Paired-end reads were mapped using Spliced Transcripts Alignment to a Reference 
(STAR) using default settings. R packages GenomicAlignments, limma, MetaNeighbor (https://github.com/maggiecrow/MetaNeighbor), 
ggplot. Seurat package is available at https://satijalab.org/seurat/. ScAlign is available at https://github.com/quon-titative-biology/
scAlign. Custom R code written for clustering single nucleus RNA-seq data and marker gene analysis and using open source R packages is 
available from https://github.com/AllenInstitute/MTG_celltypes. The NSforest code is available at https://github.com/JCVenterInstitute/
NSForest.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Data and code used to produce figures are available from https://github.com/AllenInstitute/MTG_celltypes. Data can be accessed through the Allen Brain Atlas data 
portal at http://portal.brain-map.org/ and RNA-seq data from this study is publicly available and can be downloaded at http://celltypes.brain-map.org/. Data can be 
visualized and analyzed using two complementary viewers, the RNA-seq Data Navigator (http://celltypes.brain-map.org/rnaseq/human) and the Cytosplore Viewer 
(https://viewer.cytosplore.org/), an extension of Cytosplore (T. Höllt 2016) that presents a hierarchy of t-SNE maps of different subsets of MTG clusters (Hollt 2018). 
An ontology of cell types can be navigated at http://bioportal.bioontology.org/ontologies/PCL. RNA-seq data has been registered with dbGAP and deposited at 
NeMO (https://nemoarchive.org/) and a link to controlled access raw sequencing data will be available at: http://portal.brain-map.org/explore/transcriptome as 
well as dbGAP (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001790.v1.p1). The dbGAP accession number for this submission is: 
phs001790. 
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Life sciences study design
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Sample size Sample size was not pre-determined. Single nuclei were isolated from postmortem brains of 4 donors and neurosurgically derived tissues 
from 4 donors. This allowed us to collect nuclei from high quality specimens that met stringent quality control metrics while also confirming 
that transcriptomic clusters were consistent between donors and not driven by technical artifacts.

Data exclusions Poor quality nuclei were excluded from clustering if they failed to meet the following pre-established quality control (QC) thresholds: 
 
    >30% cDNA longer than 400 base pairs 
    >500,000 reads aligned to exonic or intronic sequence 
    >40% of total reads aligned 
    >50% unique reads 
    TA nucleotide ratio > 0.7 
 
After clustering, a small number (n=325) of nuclei were excluded from further analysis if they fell into outlier or donor-specific clusters.  
Outlier Clusters: 
Clusters were identified as outliers if more than half of nuclei co-expressed markers of inhibitory (GAD1, GAD2) and excitatory (SLC17A7) 
neurons or were NeuN+ but did not express the pan-neuronal marker SNAP25. Median values of QC metrics listed above were calculated for 
each cluster and used to compute the median and inter-quartile range (IQR) of all cluster medians. Clusters were also identified as outliers if 
the cluster median QC metrics deviated by more than three times the IQRs from the median of all clusters. 
 
Donor-specific clusters: 
Clusters were identified as donor-specific if they included fewer nuclei sampled from donors than expected by chance. For each cluster, the 
expected proportion of nuclei from each donor was calculated based on the laminar composition of the cluster and laminar sampling of the 
donor. For example, if 30% of layer 3 nuclei were sampled from a donor, then a layer 3-enriched cluster should contain approximately 30% of 
nuclei from this donor. In contrast, if only layer 5 were sampled from a donor, than the expected sampling from this donor for a layer 1-
enriched cluster was zero. If the difference between the observed and expected sampling was greater than 50% of the number of nuclei in the 
cluster, then the cluster was flagged as donor-specific and excluded. 
 
To confirm exclusion, clusters automatically flagged as outliers or donor-specific were manually inspected for expression of broad cell class 
marker genes, mitochondrial genes related to quality, and known activity-dependent genes.

Replication Flow cytometry data were reproducible across human tissue specimens from the 8 donor used in the study and across different nuclei 
isolations from individual tissue donors.  
 
Reproducibility of clustering results was measured by performing clustering analysis 100 times using a randomly-selected 80% of cells. Next, 
we assessed the robustness of clusters using a similar clustering pipeline that was recently used to identify cortical cell types in mouse V1 and 
ALM (Tasic et al., Nature, 2018 doi: 10.1038/s41586-018-0654-5). This pipeline was run with four parameter settings, and the clustering 
results were compared to the reference clusters defined by the initial clustering pipeline. Confusion matrices were computed for each 
comparison and the Jaccard index was computed for all cluster pairs, and these results were summarized using boxplots as shown in Extended 
Data Figure 3.  
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For in situ hybridization and immunohistochemistry experiments, the number of times an experiment was repeated with similar results is 
listed in relevant figure legends. In general, experiments using human tissues were repeated on at least 2 independent donor tissues. For data 
from the Allen Brain Atlas, the number of replicates available on the website is listed in relevant figure legends for each gene shown in the 
paper. 

Randomization All human specimens were controls and were therefore allocated into the same experimental group. Randomization was not used. Likewise, 
all mouse specimens used were controls and were allocated into the same experimental group without randomization. 

Blinding Human specimens were de-identified and assigned a unique numerical code. Researchers had access to basic information about donors (age, 
sex, ethnicity) as well as the unique numerical code assigned to each donor. 

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used mouse anti-NeuN-PE conjugated EMD Millipore, Milli-Mark, clone A60, #FCMAB317PE 

mouse anti-GFAP, Sigma-Aldrich, #G3893, clone G-A-5 
mouse anti-GFAP, EMD Millipore, #MAB360, clone GA5, 1:1500 
Mouse Secondary Reagent (Biocare #IPSC5001G20) 
goat anti-mouse IgG(H+L) Alexa Fluor 568 conjugate, ThermoFisher Scientific, #A-11004 
mouse IgG1,k PE Isotype control, clone MOPC-21,#555749, BD Pharmingen

Validation 1. mouse anti-NeuN-PE conjugated EMD Millipore, Milli-Mark, clone A60, #FCMAB317PE:  evaluated by flow cytometry using 
U251 cells. 
2. Mouse anti-GFAP, Sigma-Aldrich, #G3893, clone G-A-5: evaluated by indirect immunofluorescent staining on alcohol-fixed 
sections of rat brain (cerebrum or cerebellum). 
3. Mouse anti-GFAP, EMD Millipore, #MAB360, clone GA5, 1:1500: routinely evaluated by Western Blot on Mouse brain lysates.

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Adult (P56 +/- 3 days) wildtype C57Bl/6J mice, male and female

Wild animals No wild animals were used in the study 

Field-collected samples No field-collected samples were used in the study

Human research participants
Policy information about studies involving human research participants

Population characteristics Tissue donors used in the study: 
 
H200.1023, 43 years old, female, Iranian descent, postmortem donor  
H200.1025, 50 years old, male, Caucasian, postmortem donor 
H200.1030, 54 years old, male, Caucasian, postmortem donor 
H16.24.010, 66 years old, male, Caucasian, postmortem donor    
H16.06.002, 35 years old, female, Caucasian, neurosurgical donor, epilepsy 
H16.06.008, 24 years old, female, Hispanic, neurosurgical donor, epilepsy 
H16.06.009, 48 years old, female, Caucasian, neurosurgical donor, epilepsy 
H16.03.004, 25 years old, male, race unknown, neurosurgical donor, epilepsy and tumor removal  
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Recruitment Postmortem specimens: 
Postmortem tissue specimens from males and females between 18 – 68 years of age with no known history of neuropsychiatric 
or neurological conditions (‘control’ cases) were considered for inclusion in this study of cell transcriptional profiles. Key 
conditions for exclusion were: 
 
• Known brain injury, cancer or disease 
• Known neuropsychiatric or neuropathological history 
• Epilepsy or other seizure history 
• Drug/alcohol dependency 
• > 1 hour on ventilator 
• Positive for infectious disease 
• Prion disease 
• Chronic renal failure 
• Death from homicide or suicide 
• Sleep apnea 
• Time since death (postmortem interval, PMI) > 25 hours 
 
Neurosurgical specimens: Tissue procurement from neurosurgical donors was performed outside of the supervision of the Allen 
Institute at local hospitals, and tissue was provided to the Allen Institute under the authority of the IRB of each participating 
hospital. A hospital-appointed case coordinator obtained informed consent from donors prior to surgery.

Flow Cytometry
Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Microdissected tissue pieces were placed in into nuclei isolation medium containing 10mM Tris pH 8.0 (Ambion) , 250mM 
sucrose, 25mM KCl (Ambion), 5mM MgCl2 (Ambion) 0.1% Triton-X 100 (Sigma Aldrich), 1% RNasin Plus, 1X protease inhibitor 
(Promega), and 0.1mM DTT in 1ml dounce homogenizer (Wheaton). Tissue was homogenized using 10 strokes of the loose 
dounce pestle followed by 10 strokes of the tight pestle and the resulting homogenate was passed through 30μm cell strainer 
(Miltenyi Biotech) and centrifuged at 900xg for 10 min to pellet nuclei. Nuclei were resuspended in buffer containing 1X PBS 
(Ambion), 0.8% nuclease-free BSA (Omni-Pur, EMD Millipore), and 0.5% RNasin Plus. Mouse anti-NeuN conjugated to PE (EMD 
Millipore) was added to preparations at a dilution of 1:500 and samples were incubated for 30 min at 4°C. Control samples were 
incubated with mouse IgG1,k-PE Isotype control (BD Pharmingen). Samples were then centrifuged for 5 min at 400xg to pellet 
nuclei and pellets were resuspended in 1X PBS, 0.8% BSA, and 0.5% RNasin Plus. DAPI (4ʹ, 6-diamidino-2-phenylindole, 
ThermoFisher Scientific) was applied to nuclei samples at a concentration of 0.1μg/ml. 

Instrument Single nucleus sorting was carried out on either a BD FACSAria II SORP or BD FACSAria Fusion instrument (BD Biosciences)

Software BD Diva Software V8.0

Cell population abundance We intentionally sorted ~10% NeuN-negative (non-neuronal) and ~90% NeuN-positive (neuronal) nuclei to enrich for neurons. 

Gating strategy Nuclei were first gated based on size (forward scatter area, FSC-A) and granularity (side scatter area, SSC-A). B, Nuclei were then 
gated on DAPI fluorescence, followed by gates to exclude doublets and aggregates (FSC-single cells, SSC-single cells). E, Lastly, 
nuclei were gated based on NeuN PE ignal (NeuN-PE-A) to differentiate neuronal (NeuN+) and non-neuronal (NeuN-) nuclei. 

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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