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1 
Introduction 
 

Problem statement 
Wood, a timeless and versatile material, has played a pivotal role in constructing structures 
across diverse cultures throughout history. It is employed in heritage structures featuring 
wood-wood connections that can date back hundreds or thousands of years (van Nimwegen 
& Latteur, 2023).  

As a hygroscopic material, timber exhibits sensitivity to environmental factors such as light, 
temperature, and moisture. Moreover, it is susceptible to biological factors including fungi 
and insects. This leads to a gradual decline in both physical and mechanical characteristics, 
adversely impacting the stability and safety of wooden structures (Xin et al., 2022). The 
increasing effects of climate change pose a significant challenge to the long-term 
performance and structural integrity of timber elements in construction, particularly in 
historical buildings. The evolving climatic conditions can lead to complex changes in the 
mechanical properties of timber, necessitating a proactive approach to inspection and 
maintenance planning. 

Traditional methods of assessing timber structures have not been shown to adapt to the 
dynamic nature of climate change impacts on this hydro-sensitive material. Moreover, current 
practices require time-consuming processes and mainly rely on the individual experiences and 
skills of inspectors. Recognizing the potential effectiveness of machine learning, there is an 
opportunity to leverage this technology to develop a nuanced understanding of the evolving 
condition of timber structures. This proactive approach has the potential to significantly 
enhance timber inspection processes and optimize maintenance planning. 

This master's thesis addresses the intricate relationship between climate change, timber 
sensitivity, and the maintenance challenges in traditional construction. The central focus is on 
leveraging machine learning methodologies to create an optimized maintenance model 
tailored to the unique characteristics of timber. By harnessing the power of machine learning, 
this research aims to enhance the accuracy and efficiency of inspection planning, allowing for 
timely interventions to preserve the structural integrity and longevity of timber structures in the 
face of climate-induced variations. The proposed model will not only contribute to the field of 



timber engineering but will also provide a scalable and adaptable solution for sustainable 
construction practices in the context of evolving climate patterns. 

Research Questions 
As per the problem statement, the main research question is articulated. To address the main 
research question, several subordinate research questions are posed as outlined below. 

Main research question:  

“How can machine learning consider climate change effects to inform inspection and 
maintenance for timber structures?” 

Sub-Research questions:  

- What are the key factors that significantly influence timber structural degradation and 
what are their processes? 

- How does climate change impact timber degradation factors and how does it result in 
the alteration in the mechanical properties of timber? 

- What are the current inspection and maintenance methods of historical timber 
structures?  

- Which machine learning (ML) model is most suitable for assessing timber strength and 
planning the maintenance needs of timber structures? 

- How can the ML model be optimized to provide accurate and reliable planning? 
- How can the model planning be validated and evaluated? 
- What measures can be taken to ensure the interpretability of the machine learning 

models for practical application in maintenance planning? 

 

Research framework 
Designing machine learning models that can be effectively applied to predict inspection and 
maintenance planning for timber structures while considering the impact of climate change 
on the mechanical properties of timber.  



 
Figure 1.1: Dynamic Policy Framework under climate change (Own work) 

Methodology 
The research objective is to set up a framework that cooperates with the climate alteration, 
degradation of timber structures, and optimal inspection & maintenance planning. The 
making of inspection & maintenance plans relies on the climate scenarios and structural 
conditions. The framework that is set up will be implemented in the selected case study. The 
outcome policies will be compared with the traditional expert-based heuristic policies as an 
evaluation. In the end, the results gained from the framework will be analyzed to answer the 
research questions and will lead to the conclusion and further discussion.  

The outline and workflow of this research can be elaborated as follows:  

 
1. Background Knowledge and Relevant Data Collection: 

Conduct an extensive literature review on the scope of timber mechanical properties, 
its deterioration factors and process, climate change and its effects on timber, 
inspection and maintenance methods, dynamic policy framework set up under the 
specific conditions, and the possible machine learning methods that can be 
implemented into the framework. The sources are obtained from both online platforms 
and printed books.  
 

2. Framework Strategy Planning: 
The information and data that are acquired from the literature review will be utilized to 
establish the framework. The framework is structured into three primary stages to 
establish the optimal sequence of inspection and maintenance actions. Initially, it 
involves setting up the physical model of the structural components. Following this, the 
Decentralized Partially Observable Markov Decision Process (Dec-POMDP) is 
configured. The final stage focuses on determining the optimal policy. This framework 
integrates climate scenarios and the stochastic deterioration of various structural 
elements to facilitate these decisions. 
 

3. Case Study Selection and Structural Analysis: 



A case study is selected based on the information available in the historical inspection 
and maintenance records in the archive section at the Kyoto Institute of Technology in 
Kyoto, Japan. This case study will be analyzed in the Finite Element Model. Its results 
will be utilized to set up the structural deterioration model which is one of the essential 
parts of the Dec-POMDP framework. 
 

4. Machine Learning Framework Execution: 
The framework will be applied based on the selected case study information. Then, the 
Multi-Agent Reinforcement Learning (MARL) will be executed to solve the Dec-POMDP 
framework.  
 

5. Evaluation and Discussion:  
The benchmark of the framework is set concerning the traditional method namely, 
expert-based heuristic policies where the outcome policies will be discussed and 
analyzed. In addition, the policies considering climate change different from the 
original policies will be, too, analyzed and discussed in terms of their effectiveness. 
Eventually, the conclusions will be drawn, the limitations will be stated, and the 
potential further studies will be suggested.  

 

 
Figure 1.2: Research outline and workflow (Own work) 

 

Research methods 

The methodologies employed in this study encompass a comprehensive approach, 
integrating various research techniques to ensure a thorough investigation of the subject 
matter. These methods include a literature review, data collection from archival records, 
interviews, onsite visits, and consultation with mentors. 

1. Literature Review:  



This initial step involves a systematic review of existing literature, serving as a 
foundational element of the research. The literature review aids in narrowing down the 
scope of the study by identifying key areas and concepts pertinent to the research 
questions. It provides essential background information and helps frame the 
subsequent stages of the research. 
 

2. Data Collection from Archival Records:  
Considering the need to select a case study based on the availability of information, 
this research method is crucial. The Kyoto Institute of Technology houses a significant 
archive with extensive data on the inspection and maintenance of historical timber 
structures in Japan. This archival information is instrumental for the study, offering a 
rich source of historical data. 
 

3. Interviews: 
To further detail the specific methods used in the inspection and maintenance of 
timber structures, interviews are conducted. These are particularly vital as the archival 
records often lack comprehensive details about the processes involved. Engaging with 
professionals from companies that specialize in these maintenance activities provides 
deeper insights, helping to bridge the information gap identified in the historical 
records. 
 

4. Onsite Visits: 
Observing the actual buildings where maintenance work has been performed offers 
practical insights that are not always apparent in the documentation. These visits allow 
for the examination of physical evidence and traces of maintenance procedures, 
enhancing the understanding of the practical applications and outcomes of the 
theoretical methods discussed in the literature and archives. 
 

5. Mentorship and Guidance: 
The research process is overseen and guided by three main mentors, each expert in a 
distinct aspect relevant to the study: structural integrity, timber construction, and 
computational analysis. Their expertise provides a multidimensional perspective on the 
research, ensuring a balanced approach and enhancing the scientific rigor of the 
study. 

This combination of diverse research methods supports a holistic exploration of the topic, 
enabling a well-rounded understanding of both theoretical and practical elements involved in 
the inspection and maintenance of historical timber structures. 

 

 

 



 
 
2 
Literature Review 
 
Theories 

1. Mechanical properties of timber 
2. Climate change 

o Illustrative climate scenarios 
o Timber Deterioration and the Effect of Climate Change on Timber Structure 

3. Methods of timber monitoring, testing, and grading 
4. Optimal inspection and maintenance policies 

o IMP-MARL method: Multi-agent reinforcement learning (MARL) for large-scale 
Infrastructure Management Planning (IMP)  

 

1.  Mechanical properties of timber 
Timber is an orthotropic material which means its mechanical properties are dependent on 
the direction of the grain. The directions of three mutually perpendicular axes are 
Longitudinal (L), Radial (R), and Tangential (T) (Gedeon, 1999). 



 

 

 

 

 

 

Figure 2.1: Three principal axes of wood concerning grain direction and 
growth rings (Gedeon, 1999) 

σL >> σR > σT 

 

Strength of Timber  

Timber can withstand various types of stresses being central to its utility in construction and 
manufacturing. The strength of timber refers to the stress measured from the maximum force 
exerted at the point of failure, or at a specific strain level, such as 2% strain when pressure is 
applied perpendicular to the wood fibers. This measure provides critical insight into the load-
bearing capacity and resilience of the wood under different conditions. 

The evaluation of timber's strength is primarily categorized based on the speed of the applied 
load, distinguishing between static and dynamic strength. Static strength pertains to the 
timber's resistance to loads that increase gradually, leading to failure at a slower rate. This 
type of strength test replicates conditions where timber is subjected to sustained weight or 
pressure, mirroring common scenarios in building structures. In contrast, dynamic strength is 
concerned with the wood’s response to swiftly changing or repeated loads. Examples include 
the impact of bending forces or the stresses of cyclical loads as evaluated in tests like the 
Wöhler test for fatigue. These dynamic conditions are crucial for assessing the performance of 
timber in environments where it is exposed to shocks or oscillating forces (Niemz et al., 
2023). 

Additionally, the direction of the load relative to the wood's natural grain also significantly 
impacts its strength. Timber's strength varies when forces are applied in different directions—
longitudinal (along the grain: L), radial (R), and tangential (T) as previously mentioned. The 
types of strength characterized in these contexts include tensile strength, which measures the 
force required to pull the wood apart; compressive strength, which gauges the wood's ability 
to resist compression; bending strength; shear strength, which involves sliding layers of wood 
over each other; splitting strength, which tests the wood's resistance to being split apart; and 
torsional strength, concerning its ability to withstand twisting forces. 

Beyond these primary categories, timber’s strength properties also extend to its capacity to 
hold fasteners such as nails and screws — referred to as nail and screw pull-out resistance. 
This characteristic is crucial for applications involving connections and joints in construction. 
Furthermore, the hardness and abrasion resistance of timber are essential factors in 



determining its suitability for flooring and other surfaces subject to wear. Each of these 
strength properties plays a vital role in defining the appropriate uses of timber in various 
engineering and architectural applications, ensuring safety, durability, and performance. 

 

Failure Criteria of Timber 

In assessing the strength of timber as a construction material, the basic principles outlined in 
EN 1995-1-1 Eurocode 5 are pivotal. According to this standard, the stress in a timber 
component is calculated as the ratio of force to the cross-sectional area (σ = Force / Area). 
When this stress exceeds the intrinsic strength of the timber, the component is deemed to have 
failed, as it cannot sustain the load without risk of damage or structural failure. Additionally, 
the bending strength of timber is evaluated through the bending moment when bending 
moment (σm) = Moment (M) × 𝑦𝑦 / 𝐼𝐼, where ' 𝑦𝑦 ' represents the distance from the neutral axis 
to the fiber furthest from it, and ' 𝐼𝐼 ' is the moment of inertia of the cross-section. If this 
bending moment surpasses the Modulus of Rupture (MOR), which is the maximum stress the 
material can withstand in static bending, the component is also considered failed.  

In terms of design considerations, Ultimate Limit States (ULS) focus on ensuring the safety of 
people and the structure itself, calculating forces from design loads that include safety factors 
of 1.35 for permanent actions (dead loads: Gk) and 1.5 for variable actions (live loads: Qk). 
Thus, the loads that are taken into consideration = 1.35Gk + 1.5Qk. Conversely, 
Serviceability Limit States (SLS) is concerned with the structure’s functionality, user comfort, 
and aesthetic integrity under normal usage. SLS criteria necessitate a distinction between 
reversible and irreversible conditions, verifying aspects like deformations, vibrations, and 
potential damage that could impair the structure's appearance, durability, or functionality. 
This comprehensive approach ensures that timber structures are both safe and effective for 
their intended uses, adhering to stringent standards for load-bearing and user interaction. 

 

2.  Climate change 
Climate refers to the long-term patterns of weather conditions in a specific region or globally. 
It can be described as the statistic of weather in terms of the mean and variation of relevant 
factors, for example, seasonal temperature, rainfall averages, and wind patterns. Climate 
change is the long-term alteration of the climate, as defined by the World Meteorological 
Organization (WMO), for a time of 30 years (IPCC, 2023b). 

 

Illustrative Climate Scenarios 

This study relies on climate projection data sourced from Coupled Model Inter-comparison 
Projects (CMIP6), a compilation of global climate models under the auspices of the World 



Climate Research Program. CMIP6 data serves as a cornerstone of the IPCC's Sixth 
Assessment Report, providing insights into future climate trends. The Intergovernmental Panel 
on Climate Change (IPCC), a United Nations committee, is tasked with evaluating climate 
change science, and proposing projections of future climate change per the different 
scenarios.  

Climate scenarios embedded within this dataset are the Shared Socio-economic Pathways 
(SSPs), each denoted as SSPx-y. These pathways represent a spectrum of socio-economic 
trajectories ('x') alongside levels of radiative forcing ('y') in watts per square meter, or W m-2 
projected for the year 2100. They were designed to encapsulate diverse challenges related to 
climate mitigation and adaptation. 

This project’s analysis adopts illustrative scenarios based on SSPs. These scenarios integrate 
socio-economic assumptions, climate mitigation efforts, land use changes, and air pollution 
controls. They are shown in the levels of GHG emissions in the table below (IPCC, 2023a). 

SSPx-y GHG emissions scenarios Description 
   
SSP1-2.6 Low limit warming to 2°C (>67%) 
SSP2-4.5 Intermediate limit warming to 3°C (>50%) 
SSP3-7.0 High limit warming to 4°C (>50%) 
SSP5-8.5 Very high limit warming to 4°C (>50%) 
   

Table 2.1: Scenarios and pathways across AR6 Working Group reports  

 

 
Figure 2.2: AR6 integrated assessment framework on future climate, impacts, and mitigation (IPCC, 2023a) 

 



The Climate Change Knowledge Portal (CCKP), provided by the World Bank Group, offers 
climate scenarios for various countries, including Japan, based on the previously mentioned 
analysis. 

Each scenario is represented through data projected over five distinct periods: historical 
reference (1950-2014), 2020 to 2039, 2040 to 2059, 2060 to 2079, and 2080 to 2099. 
This portal displays information on several climate metrics such as the average maximum 
(90th percentile), minimum (10th percentile), and mean (median) surface air temperatures, as 
well as precipitation levels. 

 
Figure 2.3: Projected Average Mean Surface Air Temperature Anomaly for 2080-2099 (Annual) globally; (Ref. Period: 
1950-2014), SSP5-8.5, Multi-Model Ensemble (source: 
https://climateknowledgeportal.worldbank.org/country/japan/climate-data-projections) 

 



 

 
Figure 2.4: Projected Average Mean Surface Air Temperature Japan; (Ref. Period: 1950-2014), Multi-Model Ensemble 
(source: https://climateknowledgeportal.worldbank.org/country/japan/climate-data-projections) 

 
Figure 2.5: Projected Average Mean Surface Air Temperature (Anomaly) in Japan; (Ref. Period: 1950-2014), SSP5-8.5, 
Multi-Model Ensemble (source: https://climateknowledgeportal.worldbank.org/country/japan/climate-data-projections) 

 

https://climateknowledgeportal.worldbank.org/country/japan/climate-data-projections


 
Figure 2.6: Projected Number of Days with Precipitation >20mm Anomaly for 2080-2099 (Annual) globally; (Ref. Period: 
1950-2014), SSP5-8.5, Multi-Model Ensemble (source: 
https://climateknowledgeportal.worldbank.org/country/japan/climate-data-projections) 

 



 

Figure 2.7: Projected Number of Days with Precipitation >20mm Japan; (Ref. Period: 1950-2014), Multi-Model Ensemble 
(source: https://climateknowledgeportal.worldbank.org/country/japan/climate-data-projections) 

 

Figure 2.8: Projected Number of Days with Precipitation >20mm Anomaly Japan; (Ref. Period: 1950-2014), SSP5-8.5, 
Multi-Model Ensemble (source: https://climateknowledgeportal.worldbank.org/country/japan/climate-data-projections) 

 

Timber Deterioration and Effect of Climate Change on Timber Structure 

As wood is a biological substance, it is subject to degradation over time. The relevant 
characteristics and factors leading to the decline or deterioration of timber structures can be 
classified into three categories (Verbist et al., 2019). 

1. Biologic Degradation 

1.1 Fungi 

Three types of fungi—sap stain, mold, and decay fungi—can lead to wood 
degradation and decay. While sap stain and mold fungi generally only discolor the 
wood's surface, affecting its appearance, decay fungi significantly impact the wood's 
physical and chemical properties, weakening its structural integrity (Verbist et al., 
2019). 

https://climateknowledgeportal.worldbank.org/country/japan/climate-data-projections
https://climateknowledgeportal.worldbank.org/country/japan/climate-data-projections


C.H. Wang et al. (2008) conducted extensive experiments in Australia, developing 
service life models to predict timber decay from these fungi, applicable to various 
locations. These models categorize decay based on the timber's exposure: direct 
ground contact, above-ground but exposed to weather, and being protected within the 
building envelope. In this research, the timber structure above ground and in the 
building envelope decay models will be in focus. 

 

Timber structure installed above-ground decay model: 

This model is defined by two key parameters: the initial delay before decay starts, and 
the rate of decay. It accounts for various factors in predicting the progression of 
decay, including the type of wood, the annual duration of moisture exposure from 
rainfall, whether the wood surface is painted, the size and alignment of the timber, 
and the specific geometrical configurations of the wood assembly. The model is 
described as follows: 

    (1.1) 

In which       

     (1.2) 

     (1.3) 

And the decay lag (tlag in years) can be explained by 

     (1.4) 

The decay rate, r is received from: 

    (1.5) 

When  kwood = wood parameter  kclimate = climate parameter 

kp = paint parameter   kt = thickness parameter 

kw = width parameter  kn = fastener parameter 

kg = geometry parameter. 



  
Figure 2.9: The graph depicting the idealized progress of decay depth over time (C.H. Wang, 2008a) 

The kclimate value (Climate parameter) can be acquired by the Scheffer Climate Index 
which can be calculated by: 

 (Carll, 2009) 

When  T = mean average temperature (monthly) in °C 

  D = mean number of days per month with the precipitation amount of 0.25 

       mm or more 

The decay rate (r), which directly varies per kclimate value, will change based on the 
temperature and precipitation days alteration under the different climate change 
scenarios. 

 

Timber structure protected in the building envelope decay model: 

   (2.1) 

In which 

     (2.2) 



       
Figure 2.10: The graph depicting the idealized progress of decay depth over time (C.H. Wang, 2008b) 

The decay rate, r is received from: 

   (2.3) 

When kwood = wood parameter  kclimate = climate parameter 

kgeometry = geometry parameter concerning the orientation and layout of the 

      structural component. 

Different from the previous model, kclimate in this case can be acquired by the time of 
wetness value (twet): 

   (2.4) 

 In the case of the roof structural elements, twet can be shown in: 

    (2.5) 

The decay rate (r), which changes following kclimate value, will vary based on the 
alteration in the number of days of precipitation under the different climate change 
scenarios. 

 

1.2 Insects 

Wood-boring beetles and termites, the most common pests in aboveground timber 
buildings, thrive in temperatures above 20°C and humidity over 60%. They infest 
damp areas like basements and attics due to condensation, poor damp-proofing, or 
leaks from gutters or pipes (Verbist et al., 2019). 



However, the decay processes per these species of insects are not clearly described, 
additionally, this research focuses on the structures above ground. This factor will not 
be included in the consideration.  

 

     2.  Chemical and physical agents  

2.1 Weathering 

Weather factors consider various aspects including UV radiation, Temperature, and 
Moisture & Humidity. 

 

UV radiation  

The impact of UV and solar radiation on the degradation of wood's mechanical 
properties remains inconsistent across studies. For instance, research by Sharratt et al. 
(2009) indicates that accelerated UV exposure can lead to a significant reduction in 
the strength of Scots pine wood strips, with a decrease of 20-40% reported. Nasir et 
al. (2021) conducted experiments on four different wood species, observing not only 
significant color changes in weathered wood but also alterations in its mechanical 
properties. 

 
Figure 2.11: The variation of MOE and MOR in weathered wood samples (Nasir et al., 2021) 

Conversely, György Papp (2005) found that UV radiation primarily affects the 
aesthetic appearance of timber, with minimal impact on its structural integrity.  

Aside from these findings, the specific variations in UV radiation due to climate 
change remain unclear. Consequently, this research will not consider the effects of UV 



radiation on timber, focusing instead on other environmental factors that influence 
wood degradation. 

 

Moisture and Humidity 

Timber is a hygroscopic material that strives to reach equilibrium with its surrounding 
climate, reacting to daily and seasonal changes in temperature and relative humidity 
(RH). These fluctuations impact its moisture content (MC), leading to potential twisting 
and distortion of the wood.  

 
Figure 2.12: The relationship between relative humidity (RH) and wood moisture content (wood MC) (source: 
https://workshopcompanion.com/KnowHow/Design/Nature_of_Wood/2_Wood_Movement/2_Wood_Movement.h
tm) 

The moisture content significantly influences the wood's strength, which varies based 
on its proximity to the Fiber Saturation Point (FSP). The FSP, typically between 25% and 
35% MC for many wood types, marks the threshold at which free water in the wood 
has been fully dissipated and below which wood begins to swell and shrink (Csébfalvi 
& Len, 2020). 

 

https://workshopcompanion.com/KnowHow/Design/Nature_of_Wood/2_Wood_Movement/2_Wood_Movement.htm
https://workshopcompanion.com/KnowHow/Design/Nature_of_Wood/2_Wood_Movement/2_Wood_Movement.htm


 
Figure 2.13: Relations between moisture content and mechanical parameters from pine wood (Roszyk, 2013) 

 

Figure 2.14: Relations between moisture content and mechanical parameters from pine wood (Niemz et al., 2023) 

The Equilibrium Moisture Content (EMC) is where the wood's moisture levels align with 
the ambient environment, usually stabilizing between 10% and 15% MC in controlled 
settings. Moisture content can be measured with a portable moisture meter. Wood 
strength decreases as moisture content approaches the FSP and increases as it drops 
below this point, although shrinkage can counteract this strength gain by weakening 
wood fibers. 

Repeated drying and wetting cycles can cause significant deformation in timber, 
impairing its mechanical and functional integrity, and making it unsuitable for 
construction and use. These cycles also lead to timber cracking—manifesting as 
shakes, checks, splits, or loosened grains—which, while generally having a minor 
impact on mechanical performance, can exacerbate biological deterioration, fostering 
fungi and insect growth (Aghayere A, 2007; Verbist et al., 2019). 



Given the above traits, climate change influences temperature and humidity trends, 
which in turn affect the mechanical strength of timber. However, data on relative 
humidity for various climate scenarios in Japan is limited. Additionally, predicting 
fluctuations in moisture content over the years is challenging. Therefore, relative 
humidity will not be included in the timber deterioration model of this research. 

 

Temperature  

The impact of temperature on timber's strength properties can be divided into two 
categories: reversible effects and irreversible effects. 

Reversible Effects (Immediate effect) 

Typically, the mechanical properties of wood tend to decline with heating and improve 
with cooling. Below about 150ºC, and at a stable moisture content, these properties 
change in a roughly linear manner with temperature. This alteration in properties due 
to rapid heating or cooling, followed by immediate testing at that temperature, is 
known as an immediate effect. At temperatures under 100ºC, this immediate effect is 
largely reversible, meaning the properties will revert to their original values if the 
temperature is quickly changed back to its initial state (Gedeon, 1999). 



 
Figure 2.15: Temperature impact on various wood properties (Gedeon, 1999) 

 

For dry lumber, which has a moisture content of about 12%, strength changes are 
minimal when temperatures fluctuate between -29ºC and 38ºC. In the case of green 
lumber, which contains more moisture, strength tends to decline with rising 
temperature. Nonetheless, between temperatures of approximately 7ºC and 38ºC, 
these alterations in strength are potentially not critically different from those observed 
at normal room temperature (Gedeon, 1999). 

Irreversible Effects 



The rising temperature can cause permanent effects in the aspect of wood weight loss 
and declining wood strength. The factors that impact these degradations include types 
and dimensions of wood, wood MC value, temperature, and duration of exposure. 
The geometry and size of the wood are critical when assessing temperature effects. For 
instance, in short-term exposures, the internal sections of a large piece of wood may 
not reach the surrounding medium's temperature, thus experiencing less strength 
reduction compared to the outer sections. Yet, the type of mechanical stress applied, 
such as bending, can make the outer layers more critical since they bear the most 
stress and generally determine the piece's overall strength. This makes the lower 
temperatures of the inner parts less relevant under such conditions (Gedeon, 1999). 

During prolonged exposures where the wood is consistently subjected to high 
temperatures, it is likely that the entire piece will stabilize at the medium's temperature, 
resulting in uniform strength degradation across the piece, irrespective of its size or 
how it is stressed. However, in typical building scenarios, wood may not experience 
the extreme daily temperature fluctuations of the surrounding air; therefore, long-term 
effects should consider the cumulative temperature exposure of the most crucial 
structural elements. 

Higher temperatures, especially during processes like steaming, coupled with weight 
loss, significantly diminish wood's modulus of elasticity and impact bending strength, 
as well as its compressive strength after being redried (Niemz et al., 2023). 



 

Figure 2.16: Temperature's permanent impact on various wood properties (Gedeon, 1999) 

Nevertheless, the temperature ranges mentioned in the study are too extreme to be 
included in this research. 

 

2.2 Fire 

Although untreated timber structures are generally recognized for their fire resistance, 
wood is combustible and can degrade chemically when exposed to high temperatures, 
typically starting between 280 and 300°C. This leads to the formation of a char layer, 
which, while being a better insulator than the original wood, possesses significantly 
weaker mechanical properties. Historically, charring has been used to enhance the 
durability of timber against moisture, making the wood more stable under varying 
moisture conditions. According to Eurocode 5, in designing fire-exposed timber 
structures, the charred portion should not be counted towards structural integrity, 
requiring a reduction in the effective cross-section of timber elements. Charring rates 
vary from 0.5 to 0.8 mm/min depending on the type and density of the wood. 
Following severe fire damage, immediate steps must be taken to preserve any 
remaining timber structures by minimizing water penetration and facilitating drying 
through adequate ventilation (Cruz et al., 2015). 



Nevertheless, in the scope of this research, the degradation according to fire will not 
be included in consideration.  

 

3.  Methods of timber monitoring, testing, grading, 
 inspection, and maintenance 

There are various ways to grade timber structures, the three main testing/evaluations are 
Non-destructive Testing/Evaluation (NDT/NDE), Semi-destructive Testing/Evaluation 
(SDT/SDE), and Destructive Testing.  

Non-destructive Testing/Evaluation (NDT/NDE) 

o Visual inspection 
o Moisture Content Measurement 
o Ultrasonic Testing 
o Resistance Micro drilling 
o Pulse Echo Sonic Tomography 
o Acoustic Emission Testing 
o Thermal Imaging 
o X-ray and Gamma-ray Radiography 
o Magnetic Resonance Imaging (MRI) 

Semi-destructive Testing/Evaluation (SDT/SDE) 

o Drilling Resistance Measurement 
o Incremental Boring 
o Ultrasonic Testing 
o Radiography 
o Resistance Drilling 
o Pilodyn Testing 
o Stress Wave Timing (SWT) 
o Pull-out Tests 

Destructive Testing 

o Bending and Flexural Testing 
o Compression Testing 
o Tensile Testing 
o Shear Testing 
o Impact Testing 
o Compression Perpendicular to Grain 
o Density and Moisture Content Determination 
o Chemical Analysis 
o Microscopic Examination 



For heritage buildings, evaluations are primarily conducted using non-destructive and semi-
destructive methods. However, per the nature of timber which contains high variability and 
non-linearity, the data concerning timber’s properties and NDT parameters are typically 
presented in statistical terms. Furthermore, since natural aging has a complex effect on timber 
members of ancient buildings, combined various Non-destructive testing/evaluations 
(NDT/NDE) are needed for more accurate results (Xin et al., 2022). 

 

4.  Machine Learning method 
Machine learning encompasses a variety of methods designed to enable machines to learn 
from and make predictions or decisions based on data. These methods are broadly 
categorized into supervised learning, where the model is trained on labeled data (input-
output pairs), enabling it to predict the output from new inputs; unsupervised learning, which 
deals with finding hidden patterns or intrinsic structures in input data that is not labeled; and 
reinforcement learning, where an agent learns to make decisions by performing actions and 
receiving feedback in the form of rewards or penalties. This feedback helps the agent learn 
the strategy, or policy, that will maximize its long-term rewards.  

 
Figure 2.17: Different machine learning methods (Own work) 

For this study of developing an optimal inspection and maintenance plan for historical timber 
structures, reinforcement learning is particularly suited. In recent times, advancements in 
reinforcement learning have demonstrated a capability to surpass traditional expert-driven 
heuristic maintenance strategies for intricate engineering systems. For instance, research 
conducted by Andriotis et al. (2019) illustrates the effectiveness of the Deep Centralized 
Multi-Agent Actor-Critic (DCMAC) framework. This approach outperforms traditional methods 
by offering more effective life-cycle management for large systems with multiple components 
and complex dimensional spaces, achieving superior results compared to optimized 
conventional policies. Another example is the study by Leroy et al. (2023) benchmarks 



cooperative Multi-Agent Reinforcement Learning (MARL) methods against expert-based 
heuristic policies revealing that MARL, particularly Centralized Training with Decentralized 
Execution (CTDE) methods, significantly outperforms heuristic policies in terms of scalability 
and performance in high-dimensional and complex IMP environments.  

 

Markov Decision Processes (MDPs) 

The foundation of many reinforcement learning applications is the Markov Decision Process 
(MDP), a mathematical framework used to model decision-making situations where outcomes 
are partly random and partly under the control of a decision-maker. MDPs are characterized 
by a set of states s ∈ S, actions A(s), transition probabilities P(sʹ∣s, a) that define the likelihood 
of moving from state s to state sʹ given action, and rewards R(s, a, sʹ) that quantify the benefit 
of taking certain actions in specific states. Additionally, MDPs incorporate a discount factor γ, 
which is a value between 0 and 1 that weighs the importance of future rewards compared to 
immediate rewards, influencing the agent’s strategy toward short-term or long-term benefits. 
In other words, MDPs can be defined by the tuple: < S, A, R, P, γ >. The policy π(a∣s), a 
crucial component of MDPs, dictates the action a to be taken when in state s. This policy aims 
to maximize the expected sum of discounted rewards over time, guiding the agent toward the 
most beneficial outcomes as defined by the model. 

 
 

 

 

 

 

 

 

 

 

Figure 2.18: Interaction between agent and environment (Richard S. Sutton, 2018) 

The objective in solving an MDP is to find a policy π that maximizes the expected sum of 
discounted rewards, known as the value function Vπ(s), defined for a policy π as:  

 

where 𝔼𝔼 denotes the expected value, assuming the agent follows policy π starting from state 
s. 

 



Partially Observable Markov Decision Processes (POMDPs) 

In many real-world problems, however, the agent cannot directly observe the underlying state 
of the system. These scenarios are modeled as Partially Observable Markov Decision 
Processes (POMDPs), where the agent must make decisions based on incomplete and 
possibly noisy observations of the state. POMDPs extend MDPs by including a set of 
observations o ∈ O that provides partial information about the state and an observation 
function Z(o∣sʹ, a) which specifies the probability of receiving observation o after taking action 
a and landing in state sʹ. This function models the uncertainty about the state given the 
observations. This complicates the decision-making process as the agent must infer the most 
probable state of the environment from the observations received. POMDP can be described 
by a tuple: < S, A, R, P, γ, O, Z >.  

To manage this complexity, the agent maintains a belief state, which is a probability 
distribution over all possible states based on past actions and observations. This belief state 
represents the agent's current understanding of the probability of being in each possible state. 
When an action is taken, the belief state is updated through a prediction step based on the 
transition probabilities P(sʹ∣s, a), reflecting the likelihood of transitioning to each possible new 
state sʹ from a current estimated state s under action a. Subsequently, upon receiving an 
observation o, the belief state is further refined using the observation function Z(o∣sʹ, a). This 
updates the belief to incorporate the new information provided by the observation, adjusting 
the probability distribution to better reflect which states are more likely given the observed 
outcome (Richard S. Sutton, 2018). The updated belief state is calculated using the formula: 

 

Here, b(s) is the prior belief state, and bʹ(sʹ) is the updated belief state after observing o. This 
update ensures that the agent's decisions remain informed by the most current assessment of 
the environment's state, despite the inherent uncertainties. The normalization ensures that the 
updated beliefs form a valid probability distribution. 

The optimal value function V∗(b) guides the selection of the best action to take from any given 
belief state. It quantifies the maximum expected cumulative discounted reward that can be 
achieved, starting from any belief state b and following the best strategy. The value function 
essentially serves as a compass that helps the agent navigate through the decision space, 
where each decision is complicated by the uncertainty of partial observations and the need to 
operate based on probabilistic beliefs rather than certain knowledge. The optimal policy 
derived from the value function uses the updated belief states to make decisions that 
maximize the expected utility, balancing immediate rewards with the benefits of future actions, 
as modulated by the discount factor γ. 

Computing the optimal value function in a POMDP is challenging due to the need to 
consider a continuous space of belief states and the dynamics of belief updates based on 



actions and observations. The Bellman equation for POMDPs, which underlies the 
computation of V∗(b), is given by: 

 

The term ∑s∈S  b(s)R(s, a) calculates the expected immediate reward for taking action a in the 
belief state b, while the term γ∑o∈O P(o∣b, a)V∗(bʹ) accounts for the expected discounted future 
rewards. 

This ongoing cycle of action, observation, and belief update, guided by the optimal value 
function, is crucial for effective decision-making in environments characterized by uncertainty 
and partial observability. It allows the agent to "guess" the current state of the system with the 
best possible accuracy based on incomplete information, thereby enabling more informed 
and strategically advantageous decisions. 

 

Reinforcement Learning (RL) 

Reinforcement Learning (RL) is a framework in machine learning where an agent learns to 
make decisions by interacting with an environment to achieve a goal. Unlike other forms of 
machine learning, in RL, the agent is not taught the correct actions to take. Instead, it must 
discover them by trying different strategies and learning from the outcomes of its actions, 
typically represented through rewards. This method mirrors the way humans and animals 
learn from the consequences of their actions over time, making it particularly effective for 
complex decision-making tasks that require a sequence of decisions. 

The core idea behind reinforcement learning is the concept of the agent-environment 
interaction loop. In this loop, the agent takes an action in the environment, the environment 
responds to the action by presenting a new state and providing a reward, and the agent then 
makes the next decision. This cycle continues until a terminal state is reached, which might 
represent the completion of a task or an episode. The key components of this interaction 
include the state (what is currently observable about the environment), the action (what the 
agent can do), and the reward (feedback from the environment indicating the value of the 
action taken). The cumulative reward, or return, from a series of actions is formalized as: 

 

Where Gt is the total cumulative reward from time step t, Rt+k+1 is the reward received at time 
t+k+1, and γ is the discount factor (0 ≤ γ ≤ 1) that weighs the importance of future rewards 
relative to immediate ones. 

The objective of an RL agent is to learn a policy — a mapping from states of the environment 
to actions — that maximizes the cumulative reward over time. This policy could be 
deterministic, where a state directly maps to an action, or stochastic, where a policy provides 



probabilities of selecting possible actions from a given state. Learning the optimal policy often 
involves evaluating the consequences of actions based on the long-term return, not just the 
immediate reward. This optimization can be mathematically represented using the Bellman 
equation for the state-value function: 

 

This equation illustrates how the value of a state under a policy is recursively determined by 
the immediate rewards and the discounted value of subsequent states. 

Several algorithms exist for implementing RL, ranging from simple table-based methods like 
Q-learning, which utilizes the update rule 

 

to sophisticated deep learning approaches like Deep Q-Networks (DQN) and policy gradient 
methods. These algorithms differ primarily in how they estimate the value of actions taken in 
given states and how they update the policy based on the estimated values. Policy gradient 
methods, for instance, optimize the policy directly by adjusting the policy parameters θ in the 
direction that maximizes the expected return, as given by the policy gradient theorem: 

 

RL has been successfully applied to a variety of complex tasks that require a sequence of 
decisions, such as playing video games at a superhuman level, autonomous driving, robotic 
control, and more. One of the key challenges in RL is the trade-off between exploration 
(trying new actions to discover their effects) and exploitation (using known actions that yield 
high rewards). Additionally, in environments like POMDPs where the agent does not fully 
observe the underlying state, the agent must operate under uncertainty, which complicates the 
learning process and the design of effective policies. 

 

Multi-Agent Reinforcement Learning environments for large-scale 
Infrastructure Management Planning (IMP-MARL) 

MDPs and POMDPs offer a robust framework for decision-making in engineering systems 
management. These methods leverage offline knowledge about the environment to develop 
detailed policies for systems where state and action spaces are manageable in size (Andriotis 
& Papakonstantinou, 2019). 

In practice, MDPs and POMDPs are particularly effective for smaller systems with well-defined 
parameters. They allow decision-makers to model uncertainties and dynamics systematically, 
providing a clear strategy for operational actions. This is especially useful in environments 
where conditions can be closely monitored and predicted. 



However, the application of MDPs and POMDPs becomes challenging when dealing with 
large, multi-component systems. In such cases, the number of possible states and actions 
increases exponentially with each additional component, leading to what is known as the 
"curse of dimensionality." This complexity makes it impractical to directly apply traditional 
MDP or POMDP approaches due to the vast computational resources required (Andriotis & 
Papakonstantinou, 2019). 

Additionally, the dynamics of the environment in large systems are often complex and cannot 
be easily encapsulated in simple models. Instead, they might only be understood through 
advanced, computationally intensive numerical simulations. This necessity further complicates 
the decision-making process, as obtaining timely and accurate data to feed into the decision 
models becomes a significant challenge. 

The outlined challenges with MDPs and POMDPs in managing large multi-component 
systems can be effectively addressed through Decentralized Partially Observable Markov 
Decision Processes (Dec-POMDPs) and Multi-Agent Reinforcement Learning for Infrastructure 
Management Planning (IMP-MARL). These methodologies refine the approach to 
infrastructure management planning by integrating cooperative multi-agent systems to 
optimize decision-making processes under uncertainty. 

 

Decentralized Partially Observable Markov Decision Processes (Dec-POMDPs)  

Dec-POMDPs offer a robust framework for distributed decision-making where multiple agents 
operate independently but are evaluated on a collective outcome. In this structure, each 
agent has limited knowledge about the state of the environment and must base its decisions 
on local observations. The agents' actions are coordinated through a shared policy that aims 
to maximize collective rewards over time. This approach is particularly beneficial in scenarios 
where the system's state cannot be fully observed by any single agent, and decisions must be 
made based on incomplete and decentralized information (Leroy et al., 2023). 

A Dec-POMDP is defined by the tuple < S, Z, U, n, O, R, P, γ >: 

Where S represents the set of possible states in the environment, and Z is the observation 
space. The environment state at any given time t is denoted by st ∈ S. Each of the n agents, 
indexed from 1 to n, perceives an observation 𝑜𝑜𝑡𝑡

𝑎𝑎 ∈ Z based on the observation function O : S 
× {1, …, n} → Z, which maps the state and agent index to an observation. Agents choose 
actions 𝑢𝑢𝑡𝑡

𝑎𝑎 ∈ Ua, where Ua is the action space for agent a, and the collective actions form the 
joint action space U = U1 × … × Un. 

Upon execution of a joint action ut ∈ U, the environment transitions to a new state according 
to the transition function P(st+1∣st, ut) : S2 × U → ℝ⁺, which determines the probability of moving 
to state st+1 from state st given the action ut. The reward function R(st+1, st, ut) : S2 × U → ℝ 
specifies the reward obtained by all agents based on the state transition and actions taken. 



Each agent's policy, πa(𝑢𝑢𝑡𝑡
𝑎𝑎∣𝜏𝜏𝑡𝑡

𝑎𝑎, 𝑜𝑜𝑡𝑡
𝑎𝑎) : (Z × Ua)t → ℝ⁺, maps the agent’s observation and action 

history to the probability of selecting action 𝑢𝑢𝑡𝑡
𝑎𝑎. The collective goal of the agents is 

represented by the joint policy π = (π1, …, πn), aiming to maximize the cumulative discounted 
reward from time t over the next T steps, defined as ∑ 𝛾𝛾𝑘𝑘𝑟𝑟𝑡𝑡+𝑘𝑘

𝑇𝑇−1
𝑘𝑘=0 , where γ ∈ [0,1) is the 

discount factor. The ultimate objective for the agents is to derive the optimal joint policy π∗ 
that maximizes the expected cumulative reward E[R0∣π] over the entire episode. The expected 
sum of discounted reward can be defined by 𝔼𝔼[R0] = 𝔼𝔼[∑ 𝛾𝛾𝑡𝑡𝑇𝑇−1

𝑡𝑡=0  [𝑅𝑅𝑡𝑡,𝑓𝑓 + ∑  (𝑅𝑅𝑡𝑡,𝑖𝑖𝑖𝑖𝑖𝑖
𝑎𝑎 +𝑛𝑛

𝑎𝑎=1
 𝑅𝑅𝑡𝑡,𝑟𝑟𝑟𝑟𝑟𝑟

𝑎𝑎 ) + 𝑅𝑅𝑡𝑡,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐]]. 

 

IMP-MARL 

The IMP-MARL framework is an open-source suite extending the capabilities of traditional 
MARL frameworks designed for large-scale Infrastructure Management Planning (IMP). The 
framework is tailored for assessing the scalability and effectiveness of cooperative MARL 
methods in real-world engineering applications. It involves central training with decentralized 
execution, allowing agents to benefit from shared knowledge during the training phase while 
operating independently in execution. This methodology has shown considerable success in 
environments modeled after real-world engineering systems, such as offshore wind farms, 
where it manages up to 100 agents. IMP-MARL enhances scalability and efficiency, 
outperforming expert-based heuristic policies, especially in complex multi-agent settings 
(Leroy et al., 2023). 

Among the various environments that IMP-MARL offers, the k-out-of-n system environment is 
well-suited for this research. This environment is designed to simulate scenarios where the 
failure of a certain number (k) out of a total number (n) of components leads to system 
failure. The environment models each component's damage condition over time, influenced 
by natural deterioration and external interventions such as inspections and repairs. The 
damage condition of components is probabilistically updated based on actions taken, and 
the system's overall integrity is contingent upon the collective state of all components. This 
modeling is particularly relevant for infrastructure like bridges or industrial machinery where 
safety and functionality are directly dependent on the reliability of multiple components. It can 
be defined as st = (p(𝑑𝑑𝑡𝑡

1), …, p(𝑑𝑑𝑡𝑡
𝑛𝑛), t/T) and 𝑜𝑜𝑡𝑡

𝑎𝑎 = (p(𝑑𝑑𝑡𝑡
𝑎𝑎), t/T). 



 
Figure 2.19: Visual representation of (a) IMP problem (b) A k-out-of-n system environment: system failure occurs if n−k+1 
components fail (c) A campaign cost environment (d) Uncorrelated and correlated initial damage distribution: the 
information received from inspecting one element will or will not affect the other uninspected elements (Leroy et al., 2023) 

 

The IMP-MARL utilizes a Decentralized Partially Observable Markov Decision Process (Dec-
POMDP) approach to handle the decentralized nature of information and decision-making in 
the system. Each agent only has partial information about the state of the entire system but 
must cooperate with others to achieve the best overall outcome. The framework employs 
state-of-the-art cooperative MARL methods, with a focus on five centralized training with 
decentralized execution (CTDE) approaches, namely, QMIX, QVMix, QPLEX, COMA, and 
FACMAC allowing agents to learn from a global perspective while operating independently 
based on local observations. 

According to the research results conducted by Leroy et al. (2023), all selected methods 
outperform the expert-based heuristic method. However, QMIX: Monotonic Value Function 
Factorization for Deep Multi-Agent Reinforcement Learning, highlights the efficient outcome 
policies with the low variance overrun as shown in the diagram below. 



 
Figure 2.20: Performance achieved by MARL methods concerning normalized discounted rewards compared to expert-based 
heuristic policies across all IMP environments (Leroy et al., 2023) 



QMIX uses a mixing network to combine individual value functions in a way that maintains 
consistency with the global value function, ensuring that the joint policy is optimal. This 
feature makes QMIX suitable for the k-out-of-n system, where the interdependencies between 
different components' states are critical to the system's overall performance and reliability. 

 
Figure 2.21: Graphs showing the learning curves of selected methods in all environments without the campaign cost (Leroy 
et al., 2023) 

 



 
Figure 2.22: Graphs showing the learning curves of selected methods in all environments with the campaign cost (Leroy et 
al., 2023) 

 

Bridging the Gap 
Existing literature provides a foundation for understanding how environmental factors 
influence timber deterioration, yet fails to integrate these insights with structured inspection 
and maintenance strategies. While there is substantial research focusing on the application of 
reinforcement learning to develop inspection and maintenance policies for concrete 



infrastructures—which take deterioration into account—such methodologies have not been 
extended to timber structures, particularly in the context of climate change. 

This study aims to bridge this gap by synthesizing three distinct but interrelated theoretical 
domains: climate change, timber structure integrity, and reinforcement learning. Timber, as a 
hygroscopic material, exhibits high sensitivity to environmental conditions, making it 
vulnerable to the impacts of climate change. This susceptibility necessitates adaptive 
inspection and maintenance (I&M) planning to effectively manage the risks associated with 
ongoing environmental shifts. 

Traditional heuristic-based approaches to I&M are not only time-intensive but also demand a 
high level of skill from workers, which can be a limiting factor in timely and effective 
maintenance. In contrast, reinforcement learning offers a promising alternative by leveraging 
the ability to handle stochastic uncertainty and dynamically optimizing I&M policies. This 
approach utilizes a probabilistic belief about the environment's state, incorporating variables 
such as the current climate conditions, the physical state of the timber structure, and the 
outcomes of previous I&M actions. 

The proposed study will develop a framework for dynamic inspection and maintenance 
planning that continuously updates in response to evolving information about climate change 
impacts, structural conditions, and the efficacy of implemented I&M actions. This innovative 
approach aims to enhance the resilience of timber structures to environmental changes, 
ensuring their longevity and structural integrity in the face of uncertain future conditions. 

 

 

 

 

 

 

 

 

 

 

 



3 
Framework  
 
Framework Strategies 

 
Figure 3.1: Machine Learning framework setting workflow (Own work) 

To establish an optimal inspection and maintenance policy for timber structures, a 
comprehensive machine-learning framework has been devised. Initially, a timber 
deterioration mechanism model is configured based on existing models identified through a 
literature review. This model incorporates four illustrative climate scenarios, each modifying 
the input climate parameters to produce distinct trends in the decay rate, quantified as decay 
depth per time. This increase in decay depth is interpreted as a proportional reduction in the 
cross-sectional area of the structural components. 

A specific case study is selected to illustrate the practical application of this framework. 
Detailed information relevant to the case study and its environmental conditions are collected, 
allowing for precise adjustments to the decay model to reflect the unique conditions and 
details of the selected case study. Structural analysis is then conducted using the Finite 
Element Analysis (FEA) method based on the load cases applied to the structure of the case 
study. This analysis assesses how the structural components respond to these loads in 
conjunction with the reduced cross-sectional area. Subsequently, the probability of structural 
failure is calculated using the Gamma process. This calculation informs the belief space and 



transitional state necessary for the Decentralized Partially Observable Markov Decision 
Process (Dec-POMDP) model. 

Within this model, specific inspection and maintenance actions are defined, along with the 
consequences and costs associated with each action, the maintenance periods, and the time 
steps. These elements are crucial for the Dec-POMDP model. Ultimately, the Interactive Multi-
Agent Reinforcement Learning (IMP-MARL) method is employed to solve this model and 
determine the optimal inspection and maintenance policy. This policy is optimized based on 
the balance of maintenance costs and the condition of the structure, ensuring sustained 
structural integrity and cost-effectiveness. 

 

Case study 
To demonstrate the practical application of the proposed framework, a case study of 
Toshodaiji Temple will be examined. This temple, established in 780 AD, features a hall that 
has stood for 1244 years, located in Nara, Japan. The hall primarily serves to shelter the 
main Buddhist statues, allowing devotees to pay their respects from outside. Notably, the 
structure is elevated on stone bases, strategically designed to avoid direct ground contact. 
This design choice serves dual purposes: firstly, to shield the timber columns from ground 
moisture, and secondly, to enhance earthquake resilience. 

Constructed entirely from Japanese Cypress (Chamaecyparis obtusa), known in Japanese as 
Hinoki, the temple exhibits exceptional durability and aesthetic qualities characteristic of this 
wood. Details on the specific mechanical properties and mathematical values pertinent to the 
temple's structure will be further explored in the subsequent section. 

The selection of Toshodaiji Temple for this case study is based on its moderate scale and 
symmetrical layout, which simplifies the analysis to a single span—findings from which can be 
extrapolated to other spans of the structure. Moreover, the temple's exposure to varied 
weather conditions offers a unique opportunity to assess the impact of environmental factors 
on the decay model and its application. Historical records provide comprehensive data 
regarding inspections and maintenance carried out over the centuries, alongside evidence of 
preservation efforts visible on the structure itself. This wealth of information not only enhances 
the reliability of the study but also enriches our understanding of historical preservation 
techniques. 



 
Figure 3.2: Toshodaiji Temple Map showing the location of Kondo Hall (Taken onsite) 

 
Figure 3.3: Toshodaiji Temple Kondo (Golden Hall), Nara, Japan (Taken onsite) 

 

Details 

The hall features a rectangular layout, encompassing roughly 410 square meters of 
functional space. It is supported by 36 main cylindrical columns, each with a diameter of 600 
mm, which bear the weight of the hipped roof structure and its extended eaves. Inside, the 
Buddha statues are enclosed and safeguarded by walls, while access for visitors is restricted 
to the exterior only. However, these static loads from the statues and the live loads from the 



visitor happen on the stone bases, they will not be taken into account in the structural 
analysis, merely roof load and wind load will be considered in this study. 

Detailed architectural drawings, including the floor plan, roof plan, elevations, sections, and 
detailed sections with dimensions, are provided below for further reference. 

 
Figure 3.4: Floor Plan (Office of Cultural Assets Preservation, 2009) 



 

Figure 3.5: Roof Plan (Office of Cultural Assets Preservation, 2009) 

 
Figure 3.6: South Elevation and East Elevation (Office of Cultural Assets Preservation, 2009) 



 
Figure 3.7: Long Section and Cross Section (Office of Cultural Assets Preservation, 2009) 

 

Figure 3.8: Detailed Long Section (Office of Cultural Assets Preservation, 2009) 



 

Figure 3.9: Detailed Cross Section (Office of Cultural Assets Preservation, 2009) 

 

Maintenance records: Historical Timeline and methods 

 
Figure 3.10: Historical maintenance timeline (Office of Cultural Assets Preservation, 2009 & Own work) 

According to the historical records, the hall has undergone at least three partial repairs and 
three major restorations, the latter involving complete dismantlement and overhaul. In an 



interview with Mr. Akira Nishimura, a senior advisor at the Takenaka Carpentry Tools 
Museum—which is affiliated with the corporation responsible for the hall's most recent 
restoration—it was noted that such major restorations typically occur every 100 years and can 
span up to a decade. The most recent comprehensive restoration takes place from January 
2000 to December 2009, with a total expenditure of 3,023,609,004 JPY (approximately 
18,520,873.73 Euro). This budget covered the costs of dismantling, scaffolding, new 
materials, reinforcing structural elements, and other associated expenses.  

Most of the major maintenance efforts are prompted by visibly apparent structural 
deteriorations, such as the tilting of additional eaves and the columns that support them, this 
shows the potential that the structure can eventually fail. 

Minor repairs, which may involve replacing parts of the structure or installing metal fasteners, 
are carried out as needed and are not always systematically recorded. 

 

Japanese Heritage Building Inspecting and Maintenance 

In Japan, visual inspection has historically been the primary method for assessing building 
components. This visual inspection is normally performed for the approximate timeframe. If 
any parts are found to be deteriorated, they are either partially or fully replaced. After the 
Meiji period in the 19th century, the use of steel fasteners was introduced. In cases where 
critical damage is observed that could lead to structural failure, the entire structure is 
dismantled for a thorough examination of each element. Any components that are no longer 
functional are replaced with new ones matching the original dimensions. This method is 
considered to be time-consuming as it can take up to ten years to execute the whole process 
and it also requires a high level of accuracy of work that calls for the high skilled workers. 
More recently, a method has been implemented for reinforcing redundant structures to 
strengthen aging ones. However, this technique is only applied in areas not visible to 
occupants, such as above the ceiling. (Interviewing with Mr. Akira Nishimura, the senior 
advisor at Takenaka Carpentry Tools Museum, 2024). 



 
Figure 3.11: Diagram of Maintenance and Inspection Process of Japanese Timber Temples (Own work) 

 
Figure 3.12: Minor maintenance: Metal fasteners (Taken onsite) 



 
Figure 3.13: Minor maintenance: Components partly replace (Taken onsite) 

 
Figure 3.14: Minor maintenance: Components fully replace (Taken at Takenaka Carpentry Tools Museum) 



 
Figure 3.15: Major maintenance: Fully dismantle (Office of Cultural Assets Preservation, 2009) 

 

Figure 3.16: Major maintenance: Fully dismantle (Office of Cultural Assets Preservation, 2009) 



 

Figure 3.17: Major maintenance: Reinforcement with redundant structures (Office of Cultural Assets Preservation, 2009) 

This visual inspection method is based on the heuristic decision rules, namely, it relies on 
either time-based or condition-based metrics to guide the maintenance actions. Time-based 
maintenance, a form of preventive maintenance, operates on predetermined intervals, 
scheduling activities like component replacement or repair strictly according to the passage of 
time. This approach assumes that the deterioration or failure likelihood of a component 
increases with time, regardless of its actual condition. On the other hand, condition-based 
maintenance tailors maintenance actions to the actual state of the structure, with decisions 
driven by direct performance metrics, such as the depth of decay observed during inspections. 

While both methods aim to preempt failure and extend the lifespan of structural components, 
their effectiveness heavily depends on the knowledge and experience of the maintenance 
planner. These heuristic-based policies often utilize exhaustive policy searches to address life-
cycle management challenges, however, this approach can become computationally 
burdensome, particularly in systems with multiple components or those requiring long-term 
planning. The limitations in scalability and potential sub-optimality in complex scenarios 
highlight the need for more sophisticated decision-making frameworks in maintenance 
management (Pablo G. Morato, 2022). 

 

The Climate of the Location 

The climate data and illustrative scenarios utilized in this study are derived from the data 
previously specified for Japan, as mentioned in the preceding section. 

 

Japanese Cypress (Hinoki) mechanical properties 



Hinoki cypress (Chamaecyparis obtusa) is a coniferous tree commonly utilized as a building 
material in Japan highlighting remarkable durability and lightness. Renowned for its ability to 
endure harsh weather conditions such as wind and snow over millennia, it stands as a 
testament to its resilience.   

 
Figure 3.18: Hinoki leaf and texture (Museum, 2014) 

Pierre et al. (2011) conduct a series of experiments employing various methodologies 
including the method of the single cube, four-point bending, compression, and off-axis tensile 
test, to investigate the mechanical characteristics of Hinoki cypress sourced from three 
different prefectures in Japan. The results are as follows: 

Properties Value Unit SD 

    
Density 446 kg/m3 5.36% 
MOE 11.72 GPa 3.10% 
MOR 70.12 MPa 14.91% 

    
Elastic properties    
Young's moduli    

 ER 0.93 GPa 13.10% 

 ET 0.62 GPa 8.01% 

 EL 11.89 GPa 6.41% 
Shear moduli    

 GTL 0.82 GPa 8.59% 

 GLR 0.86 GPa 13.12% 

 GRT 0.027 GPa 19.78% 
Poisson ratios    

 vLT/RT 0.416 GPa 23.04% 

 vLR/TR 0.424 GPa 45.09% 

     
Strength properties    
Compression    
 R 6.3 MPa 8.57% 



 T 6.7 MPa 11.93% 

 L 37.1 MPa 3.59% 
Shear    
 LT 19.31 MPa 3.09% 

 LR 21.31 MPa 2.67% 

 RT 4.97 MPa  
Tensile strength    
 R 3 MPa  
 T 3 MPa  
 L 110.8 MPa  
     

Table 3.1: Hinoki cypress mechanical properties (Pierre Berard, 2011) 

 

The findings from these experiments contain the crucial data points that will be used to 
develop the finite element analysis (FEA) model to enhance the understanding of the 
performance and condition of Hinoki cypress-based structures that will change over time per 
the deterioration. Ultimately, this information will be used in the transitional model setup of 
the machine learning framework. 

 

Framework setup 
To establish the mathematical framework for the Dec-POMDP, it is essential to systematically 
process the information obtained from the case study. This initial step is simplifying the 
structures and components. Then incorporating advanced modeling techniques such as Finite 
Element Analysis (FEA) and the gamma process is involved to accurately simulate and predict 
structural deterioration. Finite Element Analysis provides a detailed simulation of the physical 
behavior of the structure under various loads and conditions, while the gamma process 
models the statistical distribution of damage increments over time. Together, these 
methodologies form a comprehensive basis for understanding and quantifying the structural 
changes that inform the Dec-POMDP framework. This processed data is then allocated to 
different elements of the decision-making model, including state spaces, observation and 
action spaces, and the functions governing observations, transitions, rewards, and the 
discount factor. Each component of this setup will be thoroughly explained to provide a clear 
understanding of how each contributes to the overall decision-making process in structural 
maintenance and management. 

 

Structural deterioration model setup 

Simplified case study structure and components 



Once the case study has been selected, the complex structure is simplified to facilitate the 
setup of the model. Each component of the structure is assigned a number, and details such 
as dimensions, cross-sectional area, and conditions of exposure to weather are cataloged in 
the table provided below. 

 
Figure 3.19: Simplified component numbers with load cases (Own work) 

Component Structural Type width, b 
(mm) 

height, h 
(mm) 

cross-sectional 
area (mm2) 

Condition 

1 Column d = 600 282600 Exposed to climate: above-ground 

1' Column d = 600 282600 Exposed to climate: above-ground 

2 Column d = 600 282600 Exposed to climate: above-ground 

2' Column d = 600 282600 Exposed to climate: above-ground 

3 Roof beam (vertical) 210 180 37800 In building envelope 

3' Roof beam (vertical) 210 180 37800 In building envelope 

4 Beam 240 325 78000 Exposed to climate: above-ground 

4' Beam 240 325 78000 Exposed to climate: above-ground 

5 Beam 330 440 145200 In building envelope 

6 Beam 240 270 64800 In building envelope 

6' Beam 240 270 64800 In building envelope 

7 Roof beam 240 325 78000 Exposed to climate: above-ground 

7' Roof beam 240 325 78000 Exposed to climate: above-ground 

8 Roof beam 180 235 42300 In building envelope 

8' Roof beam 180 235 42300 In building envelope 

9 Roof beam (vertical) 180 210 55800 In building envelope 

10 Roof beam 300 200 60000 In building envelope 

10' Roof beam 300 200 60000 In building envelope 

11 Roof beam 150 200 30000 In building envelope 



11' Roof beam 150 200 30000 In building envelope 

12 Roof beam 140 150 21000 In building envelope 

12' Roof beam 140 150 21000 In building envelope 

13 Roof beam 150 150 22500 In building envelope 

13' Roof beam 150 150 22500 In building envelope 

Table 3.2: Component list with dimensions and condition 

In traditional Japanese timber structures, the joints between components are critical structural 
elements that can significantly influence overall stability and durability. These structures 
typically employ dry joint connections, which do not rely on glue, bolts, nails, or screws. Such 
joints are meticulously crafted to fit together through precise and complex carpentry 
techniques, allowing for both aesthetic appeal and structural integrity without the use of metal 
fasteners. This method of construction requires specialized structural and failure analysis to 
understand the behavior of the joints under various loads. 

 
Figure 3.20: One example of the dry joints of Toshodaiji Temple (Office of Cultural Assets Preservation, 2009) 

However, despite their importance, the specific analysis of these discrete joints, which vary 
depending on their position within the structure, will not be included in this study due to time 
constraints. Consequently, while the joints are acknowledged as crucial components, this 
research will focus on other aspects of the structure's integrity and decay, leaving the detailed 
examination of dry joints for future investigation. 

 

Structural Analysis 

The Finite Element Analysis (FEA) model is conducted using two distinct methodologies. The 
initial method employs the Karamba3D plugin within the Grasshopper platform. However, 
this approach identifies errors in certain sections of the structure. Furthermore, the numerical 
results produced by this method do not seem to be entirely precise. 



 
Figure 3.21: Axial stress results from the Karamba3D plugin (Own work) 

Consequently, an alternative method is employed. A supplementary 2D model is developed 
using the platform available at https://structural-analyser.com. Within this model, various 
parameters are meticulously defined, including load cases, component dimensions, types of 
supports, hinge types, and material properties, with specific attention to Young’s Modulus for 
each axis. Following these specifications, the structural analysis is executed. The outcomes of 
this analysis are comprehensively illustrated through Free Body Diagrams, which display the 
axial forces, bending moments, shear forces, and deflections observed in the model. The 
results are shown as follows: 

 

Axial Loads 



 

 
Figure 3.22: Free Body Diagram (FBD) showing axial loads with (upper) and without (lower) safety factors (Own work) 

 

Bending Moments 



 
Figure 3.23: Free Body Diagram (FBD) showing bending moments with (upper) and without (lower) safety factors (Own work) 

 

 



Deflections 

 

 
Figure 3.24: Free Body Diagram (FBD) showing deflections with (upper) and without (lower) safety factors (Own work) 



After the structural analysis is completed, the results were systematically compiled. The 
maximum axial loads, encompassing both compression and tension, along with the maximum 
bending moments for each component, are tabulated. These were presented alongside the 
cross-sectional area, moment of inertia, and specific strength of the timber along each axis 
for each component. These critical parameters will be utilized to determine the critical decay 
depth necessary to predict the failure of the components. 

 
Table 3.3: Component list with the details needed for defining the failure conditions 

The table above indicates that components 12, 12’, 13, and 13’ exhibit neither axial force 
nor bending moment. Consequently, these specified components will be excluded from the 
model. 

 

Decay Models with Climate Scenarios 

The decay models are established according to the research conducted by Wang et al. 
(2008), as referenced in the previous section. These models are configured based on the 
specific conditions of each component, with separate models for 1) components within the 
building envelope and 2) components that are located above ground and exposed to climatic 
conditions. Furthermore, various climate scenarios are integrated into these models through 
the application of climate parameters. 

 

Model for components in the building envelope 

In this model, the decay rate (r) is determined by three specific parameters: material, 
geometry, and climate. These parameters are tailored based on the information from the 
case study. 

Component Structural Type
width, b 

(mm)
height, 
h (mm) y (mm)

cross-
sectional area 

(mm2)
Moment of 

Inertia, I (mm4)

Hinoki: Axial 
strength 

(MPa)

Maximum 
axial force: 
with safety 
factors (kN)

Maximum axial 
force: without 
safety factors 

(kN)
Hinoki: MOR 

(MPa)

Maximum 
bending moment 

with safety 
factors (kNm)

Maximum 
bending moment 

without safety 
factors (kNm)

1 Column 600 300 282600 6358500000 110.8 135 101 70.12 319 233
1' Column 600 300 282600 6358500000 37.1 101 75.9 70.12 298 219
2 Column 600 300 282600 6358500000 37.1 200 140 70.12 492 359
2' Column 600 300 282600 6358500000 37.1 166 122 70.12 344 253
3 Roof beam (vertical) 210 180 90 37800 138915000 37.1 248 175 70.12 37.9 28.6
3' Roof beam (vertical) 210 180 90 37800 138915000 37.1 250 183 70.12 71.2 53.2
4 Beam 240 325 162.5 78000 686562500 6.3 207 152 70.12 20.7 15.3
4' Beam 240 325 162.5 78000 686562500 6.3 23.4 16.6 70.12 15.6 11.5
5 Beam 330 440 220 145200 2342560000 6.3 101 73.6 70.12 17.6 13
6 Beam 240 270 135 64800 393660000 6.3 170 124 70.12 13.7 10.5
6' Beam 240 270 135 64800 393660000 6.3 17.2 11.2 70.12 13.7 10.5
7 Roof beam 240 325 162.5 78000 686562500 6.3 368 268 70.12 81 58.2
7' Roof beam 240 325 162.5 78000 686562500 6.3 166 121 70.12 107 80.5
8 Roof beam 180 235 117.5 42300 194668125 3 44.1 33.8 70.12 38.6 27.9
8' Roof beam 180 235 117.5 42300 194668125 6.3 74.2 54.7 70.12 38.2 28.5
9 Roof beam (vertical) 180 210 105 55800 102060000 37.1 54.2 38.9 70.12 13.7 11.3
10 Roof beam 300 200 100 60000 200000000 6.3 170 124 70.12 10.4 7.73
10' Roof beam 300 200 100 60000 200000000 6.3 17.2 11.2 70.12 5.45 4.16
11 Roof beam 150 200 100 30000 100000000 3 21.4 17.2 70.12 0.58 0.44
11' Roof beam 150 200 100 30000 100000000 6.3 153 112 70.12 1.59 1.16
12 Roof beam 140 150 75 21000 39375000 0 0 0 70.12 0 0
12' Roof beam 140 150 75 21000 39375000 0 0 0 70.12 0 0
13 Roof beam 150 150 75 22500 42187500 0 0 0 70.12 0 0
13' Roof beam 150 150 75 22500 42187500 0 0 0 70.12 0 0

(-) compression
(+) tensile



Material parameter (𝑘𝑘𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤): This parameter is defined by the durability class of the structural 
material. For this case study, the focus is on Hinoki Cypress, which is renowned for its 
durability. Given its proven longevity of over 400 years, it is classified as class 1, indicating 
the highest level of durability. 

Geometry parameter (𝑘𝑘𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔): This parameter assesses the contact surface factor, 
determining whether the structural member is in contact with other structural elements. 

Climate parameter (𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐): For components located in the roof space, the climate 
parameter is gauged by the annual duration of timber wetness, measured in hours per year. 
The relationship between the 𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 value and the frequency of rainfall events is illustrated 
as follows: 

 
Figure 3.25: Relationship between the rain occasion and 𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 value (Own work) 

The graph illustrates that as rain occurrences vary due to climate change, the 𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 value 
also adjusts. Consequently, this alteration affects the decay rate (r). Ultimately, this impact is 
depicted through the relationship between decay depth (measured in millimeters) and time 
(expressed in years), as demonstrated in the following representation: 



 
Figure 3.26: Decay depth (mean) over time of components within building envelope for different climate scenarios (Own 
work) 

 

Model for components exposed to climate 

The decay rate (r) in this model is defined by the wood durability parameter (𝑘𝑘𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤), climate 
parameter (𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐), paint parameter (𝑘𝑘𝑝𝑝), thickness parameter (𝑘𝑘𝑡𝑡), width parameter (𝑘𝑘𝑤𝑤), 
fastener parameter (𝑘𝑘𝑛𝑛), and geometry parameter (𝑘𝑘𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔).  

While each component shares identical values for the wood durability parameter, paint 
parameter, and fastener parameter, the decay rate will differ due to the varying dimensions 
(specifically thickness and width) of each component. Additionally, the decay rate is 
influenced by different climate scenarios. 

In this model, the climate parameter is characterized by the Climate Scheffer Index, which is 
determined based on temperature and precipitation days, as outlined in the literature review. 
With varying scenarios of climate change, the 𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 will adapt accordingly. The 
methodology for determining the 𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, as described in the referenced paper concerning 
climate conditions in Australia, is utilized to establish the relationship between the k value and 
the Scheffer Index Value. Ultimately, the 𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 for each climate scenario will be defined 
based on this approach. 



 
Figure 3.27: Relationship between the Climate Scheffer Index and 𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 value (Own work) 

The impact of varying 𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and dimension parameters on the decay rate (r) are illustrated 
through the differences in the increase of decay depth (in millimeters) over time across each 
climate scenario for the different components: 

 
Figure 3.28: Decay depth (mean) over time of components 1 and 1’ above exposed to the weather for different climate 
scenarios (Own work) 



 
Figure 3.29: Decay depth (mean) over time of components 2 and 2’ above exposed to the weather for different climate 
scenarios (Own work) 

 
Figure 3.30: Decay depth (mean) over time of components 4, 4’, 7, and 7’ above exposed to the weather for different 
climate scenarios (Own work) 



 

Damaged cross-sectional area 

In this research, the decay depth (in mm) is assumed as the mass loss in the cross-sectional 
area of timber elements. 

 
Figure 3.31: Decay depth and the loss of cross-sectional area of timber components (Own work) 

The damaged cross-sectional area is represented by:  𝐴𝐴(0)−𝐴𝐴(τ)
𝐴𝐴(0)

  

When 𝐴𝐴(0) is an initial cross-sectional area and 𝐴𝐴(τ) is a cross-sectional area at the 
exposure time τ. 

 
Figure 3.32: Damaged cross-sectional area changes over time for every component (Own work) 



 

Stochastic deterioration process 

Gamma Process 

The gamma process is essential for simulating random positive damage increments for each 
component and updating the belief state based on a transition model. It effectively captures 
continuous Markovian transitions in discrete time steps. Specifically, for two-time steps, 
deterioration τ1 and τ2 where τ1 < τ2, the damage increment also adheres to a gamma 
distribution. Employing the gamma process is a practical modeling approach in many 
stochastic deterioration engineering scenarios, such as structural maintenance. It is 
particularly effective for modeling gradual damage accumulation, such as decay (van 
Noortwijk, 2009). 

Assumptions include that each component's damage process is independent and that no 
decay occurs in any component (maintaining intact condition) at the beginning of the 
inspection and maintenance schedule at τ = 0. Only temperature and precipitation are 
considered to influence the decay rate due to fungi, with other climate effects disregarded. 
Given a time constraint, component 7 is chosen to exemplify the decay pattern for all 
components. 

The gamma process results in random positive damage increments at each decision step for 
each component. As resistance is influenced by potential climate scenarios, a stochastic 
deterioration process is established for each. This process is used to set up the environmental 
transition model, 𝑇𝑇 ←  𝑃𝑃(𝑠𝑠′|𝑠𝑠, 𝑎𝑎). 

The mean uniform section loss percentage, 𝑑𝑑𝑚𝑚, is approximated as proportional to τ𝛽𝛽, 

𝑑𝑑𝑚𝑚 =  
𝐴𝐴(τ)
𝐴𝐴(0)

 ∝  τ𝛽𝛽  

Where 𝛽𝛽 is a constant typically ranging between 0 <  𝛽𝛽 ≤ 2.0 depending on environmental 
conditions, causes of deterioration, material properties, etc. 𝛽𝛽 controls the shape parameter 
of the gamma distribution; when 𝛽𝛽 = 1, the relationship is linear, in other words, stationary. 
To model the stochastic nature of deterioration, the section loss percentage, 𝑑𝑑, is treated as a 
gamma process with a mean value of 𝑑𝑑𝑚𝑚. The rate of deterioration is assumed to correlate 
directly with exposure time. 

The input for the gamma process is based on the relationship between the loss of cross-
sectional area and time, as described by the earlier-mentioned equation. The average 
damage to the area after 100 years varies according to different climate scenarios, as 
outlined in the table below. It is assumed that the standard deviation is 10% over a 100-year 
period. The deterioration process corresponding to these parameters is illustrated in the figure 
below. 



 

Table 3.4: Average decay depth and damaged cross-sectional area at the time of 100 years per different climate scenarios 

 

Climate scenarios Variable Average Unit

historical Decay depth 80.15 mm
Damaged Area 13260 mm2

Damage 0.83 n/a
SSP1-2.6 Decay depth 84.59 mm

Damaged Area 11700 mm2

Damage 0.85 n/a
SSP2-4.5 Decay depth 87.55 mm

Damaged Area 10140 mm2

Damage 0.87 n/a
SSP3-7.0 Decay depth 89.03 mm

Damaged Area 9360 mm2

Damage 0.88 n/a
SSP5-8.5 Decay depth 93.47 mm

Damaged Area 7800 mm2

Damage 0.9 n/a



 



Figure 3.32: Relationship between damaged cross-sectional area and time from fungi deterioration model (left) and Random 
trajectories of a Gamma Process describing cross-sectional damage over time (right) per climate scenarios (a) historical (b) 
SSP1-2.6 (c) SSP2-4.5 (d) SSP3-7.0 (e) SSP5-8.5 of component 4 and 7 (Own work) 

 

Dec-POMDP framework setup 

 
Figure 3.33: Dec-POMDP framework (Own work) 

 

Following the setup of the Structural Deterioration Model, the gathered data is integrated into 
the Dec-POMDP, which is the mathematical framework used for sequential decision-making. 
This integration involves distributing the data across various components of the framework, 
including the number of structural elements, state space (S), observation space (Z), action 
space (U), observation function (O), reward function (R), transition function (P), and discount 
factor (γ). Each aspect of this process will be elaborately detailed in the subsequent sections. 

 

Belief State 

In the Decentralized Partially Observable Markov Decision Process (Dec-POMDP) framework, 
the belief state plays a crucial role in managing the uncertainty inherent in the monitoring and 
maintenance of structural health. The belief state encapsulates the agent's uncertainty 
regarding the actual state of the environment by representing all possible probability 
distributions over the states. For the scenario described, the belief space is modeled as a 20-
dimensional discrete space, with each dimension corresponding to the belief about the 
condition of one of the structural elements in a timber structure. 

The belief values are determined by several factors, including the Ultimate Limit States (ULS) 
and Serviceability Limit States (SLS), which define acceptable limits for structural integrity and 



functionality, respectively. Additionally, operational guidelines dictate maintaining decay 
depth over 10mm, guiding the updates to the belief state. 

This environment assumes that during extreme load events, the resistance of the structure 
does not degrade, and failure is only triggered when loads exceed the established thresholds. 
At the onset of the maintenance life cycle, it is assumed that all components are in an intact 
state. However, varying loads and exposure to different weather conditions introduce 
stochasticity, causing each component to potentially deteriorate uniquely. As such, at each 
time step, the belief regarding the cross-sectional area damage of each structural component 
may change. 

For this study, we focus solely on the belief space related to component 7, simplifying the 
analysis within a belief space that totals 420 discrete states. This approach allows for a 
detailed examination of the deterioration processes under specific environmental and load 
conditions, providing a nuanced understanding of structural health progression within the 
Dec-POMDP framework. 

 
Figure 3.34: Four discrete states of the cross-sectional area of component 7 defining from ULS, SLS, and research 
suggestion (Own work) 

 

Action space 

The action space plays a role in guiding the management strategies to maintain structural 
integrity. The ultimate objective is to implement maintenance and inspection actions that 
ensure the structures remain in a condition deemed acceptable, balancing effectiveness and 
economic considerations.  

After considering the current inspection and maintenance methods, in this study, the action 
space is scoped and categorized into four distinct actions for each structural component, 
designed to address different levels of deterioration and information requirements: 

Do Nothing: This action is chosen when the belief state indicates that the structural 
component is in good condition or when intervening may not be cost-effective at that time. 

Inspection: This is a cost-effective action aimed at updating the belief state about the 
condition of a component. Inspections provide valuable data that help in assessing the 



current state of the structure, although they do not directly improve the condition of the 
component. 

Repair: This action is used to address early signs of deterioration or damage. Minor repairs 
are less costly than full replacements and are crucial for extending the lifespan of a 
component and preventing further degradation. This case study considers repairing using 
metal fasteners and adding extra elements to reinforce the existing structure. 

Replace: This action involves replacing the entire component. It is the costliest option and is 
typically reserved for cases where the component's condition has severely deteriorated or is no 
longer feasible to repair. 

Different maintenance actions impact building structural components in discrete key ways. As 
detailed by Neves and Frangopol (2005), the influence of these actions on building 
components can be represented through one or a combination of the following effects: 

1. Improvement of Degradation Condition: Maintenance actions such as replacement 
can immediately improve a building component’s condition. When components are 
replaced, the degradation condition reverts to an intact or better state as shown in 
Figure 3.35. This improvement is crucial for ensuring that parts of the structure meet 
safety and functionality standards without compromising the building's integrity. 

 
Figure 3.35: Improvement of the degradation condition (Neves & Frangopol, 2005) 

2. Suppression of the Degradation Process: Certain maintenance actions can halt the 
degradation process for a specified period. For example, the use of metal fasteners 
not only stabilizes the structure but also helps to maintain its form, preventing further 
deterioration. This is particularly effective in controlling the shape of the structure, 
thereby mitigating factors like moisture penetration that can accelerate degradation. 
During the period of suppression, the component does not deteriorate, which is 
beneficial for extending the life span of vulnerable elements within the structure. The 
effect can be depicted in the figure below. 



 

Figure 3.36: Suppression of the degradation process during a given period (Neves & Frangopol, 2005) 

3. Reduction of the Degradation Rate: Other maintenance interventions are designed to 
reduce the rate of degradation. This approach involves adjusting how quickly a 
component deteriorates over time by introducing supportive measures like additional 
structural reinforcements. These reinforcements help to distribute loads more evenly, 
thereby reducing the stress on aging components. By doing so, the overall 
degradation rate is slowed, extending the functional life of the building components 
and delaying the need for more invasive repairs. 

 

Figure 3.37: Reduction of the degradation rate during a given period (Neves & Frangopol, 2005) 

The table below provides a summary of the actions available, along with their respective 
consequences and costs for the environment setup. 



 
Table 3.5: Four Actions with their consequences and costs 

By selecting from these actions, agents can strategically manage each component of the 
structure based on its current state, predicted deterioration, and the costs associated with 
each action. This action space thus enables a dynamic and responsive maintenance strategy, 
tailored to maximize the longevity and safety of the structure while optimizing resource 
allocation. 

 

Transition Probabilities 

Transition probabilities model how the state of a system evolves over time, particularly in 
response to various actions taken by the agent. For the purposes of this thesis project, these 
probabilities are used to describe the likelihood of transitioning from one structure’s condition 
state to another, within the context of managing structural integrity. 

The transition model is constructed by generating a large number of random samples using 
the gamma process tailored to a specific climate scenario. This data is used to calculate how 
frequently state transitions occur, thereby defining the probabilities of moving between 
different states of deterioration. 

This model not only predicts state transitions but also updates the belief state with each 
decision step. This updated belief state is then used to estimate the probability of structural 
failure in subsequent steps. The structure of the transition probabilities matrix is denoted as 

(𝐴𝐴, 𝑆𝑆, 𝑆𝑆), where 𝐴𝐴 represents the number of possible actions, and 𝑆𝑆 denotes the number of 
discrete belief states. 

The transition probabilities are specifically arranged in a matrix form: 

𝑃𝑃(𝑠𝑠𝑡𝑡+1|𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡)  = �

𝑝𝑝(𝑠𝑠0|𝑠𝑠0) 𝑝𝑝(𝑠𝑠1|𝑠𝑠0) 𝑝𝑝(𝑠𝑠2|𝑠𝑠0) 𝑝𝑝(𝑠𝑠3|𝑠𝑠0)
0 𝑝𝑝(𝑠𝑠1|𝑠𝑠1) 𝑝𝑝(𝑠𝑠2|𝑠𝑠1) 𝑝𝑝(𝑠𝑠3|𝑠𝑠1)
0 0 𝑝𝑝(𝑠𝑠2|𝑠𝑠2) 𝑝𝑝(𝑠𝑠3|𝑠𝑠2)
0 0 0 𝑝𝑝(𝑠𝑠3|𝑠𝑠3)

�   
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unchanged for a determined period, 
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Here, 𝑃𝑃(𝑠𝑠𝑡𝑡+1|𝑠𝑠𝑡𝑡) is the transition model for an environment undergoing deterioration, where 
𝑝𝑝(𝑠𝑠𝑖𝑖|𝑠𝑠𝑗𝑗) indicates the likelihood of transitioning to a state 𝑠𝑠𝑖𝑖 from state 𝑠𝑠𝑗𝑗. This matrix explicitly 
shows that states do not revert to a better condition once they have deteriorated, as 
evidenced by the zeros below the diagonal—reflecting the irreversible nature of damage once 
it has occurred. The sum of the probabilities for any given state transition scenario equals 
one, ensuring a complete and normalized model. This meticulous construction of transition 
probabilities provides a robust framework for predicting and managing the evolution of 
structural states under varying operational and environmental conditions. 

𝑃𝑃(𝑠𝑠′|𝑠𝑠, {"𝐷𝐷𝐷𝐷 𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑖𝑖𝑖𝑖𝑖𝑖", "𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼"}) =   �
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Observation Probabilities 

In the Dec-POMDP framework, observation probabilities are essential for accurately inferring 
the current state of a structure based on the actions and observations of an inspector. These 
probabilities quantify the likelihood of observing a particular outcome given the actual state 
of the environment and an action taken by the agent. Specifically, they help in reducing the 
uncertainty associated with the belief state, particularly through visual inspections which, 
despite their utility, do not always guarantee perfect observations due to the potential 
misinterpretation of the structural condition. 

The observation model for this framework is captured by a matrix 𝑂𝑂, where the element 𝑂𝑂 =
[𝑝𝑝�𝑜𝑜𝑡𝑡+1

(𝑙𝑙) = 𝑗𝑗 �𝑥𝑥𝑡𝑡+1
(𝑙𝑙) = 𝑖𝑖, 𝑎𝑎𝑡𝑡)]𝑖𝑖,𝑗𝑗∈𝑋𝑋 defines the probability of observing the state 𝑗𝑗 given the true 

state 𝑖𝑖 of component 𝑙𝑙 after action 𝑎𝑎𝑡𝑡 has been taken. In this study, it is assumed that 
inspectors correctly infer the state of the structure with a probability of 𝑝𝑝 = 0.8. This leads to 
an observation matrix for each component 𝑙𝑙 of size 𝑆𝑆 ×  𝑆𝑆, where 𝑆𝑆 is the number of possible 
states (or beliefs). 



𝑂𝑂(𝑜𝑜𝑖𝑖+1 = 𝑗𝑗|𝑠𝑠𝑡𝑡+1 = 𝑖𝑖, 𝑎𝑎𝑡𝑡) =   �

𝑝𝑝 1 − 𝑝𝑝 0 0
(1 − 𝑝𝑝)/2 𝑝𝑝 (1 − 𝑝𝑝)/2 0

0 (1 − 𝑝𝑝)/2 𝑝𝑝 (1 − 𝑝𝑝)/2
0 0 1 − 𝑝𝑝 𝑝𝑝

�  

This matrix configuration suggests that while the agent observes the correct component state 
with a high probability 𝑝𝑝, there is still a chance of observing adjacent states, indicating 
imperfect observations. In scenarios of perfect observation, the matrix would simply be the 
identity matrix, where the diagonal elements are 1, reflecting absolute certainty in 
observation: 

𝑂𝑂 =  �

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

�  

This observation model assigns a probability of 1 to observing the true state, highlighting the 
ideal but often unattainable scenario of perfect inspection accuracy. Such detailed modeling 
of observation probabilities in the Dec-POMDP framework allows for a more nuanced 
understanding and management of structural integrity assessments under uncertainty. 
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Reward function 

The reward function is designed to support the primary objective of minimizing maintenance 
costs in the management of timber structures. It quantitatively assesses the economic impact 
of various actions within the structured environment, guiding decision-making towards cost-
efficiency. 

The reward function incorporates all monetary costs associated with the maintenance and 
inspection of timber structures, ensuring a comprehensive evaluation of financial implications. 
These costs include: 

Cost of Maintenance Actions: This includes expenses incurred from performing maintenance 
activities on a timber structure, as detailed in the previously mentioned table. These actions 
are necessary to prevent or correct deterioration and extend the lifespan of the structure. 



Cost of Inspection Actions: This covers the costs associated with conducting inspections to 
assess the current condition of the timber structures. Inspections are critical as they provide 
the data needed to update the belief state of the structure’s condition and to make informed 
decisions about subsequent maintenance actions. 

Cost of Global Failure: This involves the financial implications associated with a complete 
failure of a timber structure, encompassing the replacement costs, potential liability, loss of 
service, and other associated consequences. Given the severe impact of such events, this cost 
is typically substantial. For instance, the cost could be estimated at 100 times the average 
cost of maintenance actions, reflecting the severe financial and operational repercussions of 
a global failure. 

By integrating these cost elements, the reward function effectively prioritizes actions that yield 
the greatest benefit in terms of cost savings and structural health, guiding the system toward 
the most economical and effective maintenance strategies. This tailored reward function is 
essential for managing the delicate balance between maintaining safety and minimizing 
expenditure in timber structure maintenance. 

 

Discount factor 

The discount factor, denoted as 𝛾𝛾, plays a role in balancing the importance of immediate 
versus future decisions within the decision-making process. 𝛾𝛾 is a positive scalar-valued less 
than 1, which quantitatively adjusts the weight given to rewards received at different times. 
Specifically, a lower value of 𝛾𝛾 (approaching 0) signifies that the decision-making is 
predominantly influenced by immediate outcomes, effectively focusing the strategy on the 
present moment. In this scenario, only the rewards obtained in the current decision step, 𝑡𝑡, 
are considered, discounting the importance of future rewards. 

Conversely, when 𝛾𝛾 is set closer to 1, the model attributes nearly equal significance to 
decisions made across all time steps up to a designated horizon, 𝑇𝑇. This implies that every 
decision, from the initial to the final step within the specified time frame, contributes equally 
to the overall outcome, promoting a strategy that is more forward-looking and 
comprehensive. By adjusting 𝛾𝛾, decision-makers can strategically shift the focus of the model 
between immediate and long-term objectives, allowing for a tailored approach to planning 
and execution in complex environments where both present actions and future outcomes are 
critical. 

 

Finding the optimal policy 

After each component of the Dec-POMDP is thoroughly defined, effectively completing the 
setup of the environment, the subsequent step involves developing an optimal inspection and 
maintenance policy for this environment. 



This section will delve into the implementation of the IMP-MARL algorithm and the 
benchmarks for comparison. 

 

Algorithm 

In the previous section of this report, we explored the main categories of Multi-Agent 
Reinforcement Learning for Infrastructure Management Planning (IMP-MARL) algorithms. 
Building upon that foundational knowledge, the initial implementation of MARL in our study 
employed the uncorrelated k-out-of-n method, particularly focusing on a system with three 
components. This trial utilized the QMIX algorithm, which is known for its Monotonic Value 
Function Factorization approach, tailored specifically for deep multi-agent reinforcement 
learning scenarios. The setup was configured to handle three distinct actions for each agent: 
Do Nothing, Inspection, and Replace. The entire trial was facilitated using the EpyMARL 
wrapper, a versatile tool that provides a structured environment for running and evaluating 
MARL algorithms. This running was based on the GitHub repository provided by Pascal Leroy 
and his coworkers, leveraging their collective expertise and contributions to ensure the 
robustness and efficacy of the implementation. This configuration represents a strategic 
application of MARL techniques, aimed at optimizing decision-making processes in a 
controlled, yet complex, multi-agent setting. 
 
 
Benchmarks 

In this study, the benchmarking process is grounded in a traditional heuristic approach, which 
utilizes a conventional method where decisions are driven by a set of predefined, optimized 
rules. These rules are specifically designed to minimize inspection and maintenance costs 
while effectively managing the probabilities of system failure. For the initial experiment within 
this benchmark framework, the performance of heuristic policies is quantitatively evaluated 
based on their ability to optimize rewards. The specific values for these rewards are derived 
from a dictionary that is part of the extensive resources available on the GitHub repository 
maintained by Pascal Leroy and his coworkers. This approach ensures that the benchmark not 
only reflects realistic operational conditions but also adheres to established industry practices, 
providing a robust baseline against which the efficacy of more advanced Multi-Agent 
Reinforcement Learning (MARL) strategies can be assessed. 

 

 

 

 

 

 



4 
Results and analysis 
This section shows the results and discussion of the outcomes derived from applying this 
strategy to determine the optimal policy. Each result will be briefly analyzed and discussed in 
the respective section. 

 
Results 
The preceding sections have detailed the algorithm selected for identifying the optimal policy 
and the benchmarks used to verify the results. This section presents the application of the 
algorithm to a specific case study, which includes a comprehensive description of the training 
process and the data obtained from it. 

The training environment utilizes the EpyMARL wrapper, enabling a four-hour training session 
during which agents interact with their surroundings. As the agents engage with the 
environment, the distributions of observations and rewards evolve, showcasing the learning 
process through the data collected. 

Given the time limitations, the study applies a 'k-out-of-n' framework, selecting only five 
components for analysis. The failure criterion is stringent, with all five components required to 
fail for the overall system to be considered failed. Each component is chosen based on the 
variation in failure modes, type of cross-sectional area, and exposure to environmental 
conditions. 

In this framework, four different actions are implemented: do nothing, inspect, repair, and 
replace. These actions allow for dynamic decision-making as each component's state and the 
associated risks evolve. The analysis highlights the unique policies adapted for each 
component, which differ according to their state configurations and transition probabilities 
from the deterioration model. 

 

 

 

 

 



 
Figure 4.1: Policy realization of five components (Own work) 

 

The initial performance analysis of the run shows that, while the outcomes are somewhat 
comparable to those of heuristic-based policies, significant advantages emerge when 
contrasted with traditional maintenance methods, particularly those employed in Japan. The 
conventional Japanese approach typically involves dismantling the entire building and 
reassembling it, a process that not only requires a large number of skilled workers but is also 
time-consuming. 

In contrast, the component-based policy employed in this study offers a markedly more 
efficient solution. By focusing on individual component failures and addressing these through 
targeted actions such as inspection, repair, or replacement, this policy minimizes downtime 
and reduces the need for extensive labor. This approach not only optimizes maintenance 
operations but also potentially decreases overall costs and disruption, making it a compelling 
alternative to traditional methods. This efficiency gain underscores the value of adopting 
advanced maintenance strategies like MARL, which facilitate precise and adaptive decision-
making in complex systems. 



 
Figure 4.2: Policies for each component in the timeline (Own work) 

 

Analysis 
In the initial analysis, the study focused on five distinct components, each characterized by its 
unique deterioration model. The policies derived highlight the differences in policies between 
each component, reflecting variations in their states and transition probabilities. Components 
exhibiting higher rates of deterioration are identified as requiring more frequent maintenance 
actions. Notably, the analysis observed minimal utilization of the repair action. This outcome 
may be attributed to the minimal cost difference between the repair and replacement actions 
within the action model, suggesting a potential area for model adjustment to better 
distinguish between these actions. 

Although the preliminary findings did not demonstrate a marked performance advantage of 
Multi-Agent Reinforcement Learning (MARL) methods over traditional heuristic-based policies, 
research by Pascal Leroy et al. (2023) supports the superiority of MARL in more complex 
scenarios. MARL's strength lies in its ability to manage intricate, high-dimensional decision 
spaces and coordinate the interdependencies among numerous agents in expansive systems. 
This capability becomes increasingly significant as the number of agents and the complexity 
of the environment grow. 

There is potential for further optimization of the environment setup to improve both efficiency 
and accuracy in future studies. Additionally, the exclusion of climate scenarios in this initial 
analysis is noted as a limitation that could significantly influence the outcomes in subsequent 
runs. Integrating these scenarios could provide a more comprehensive understanding of the 
environmental impacts on component deterioration and policy effectiveness. 



5 
Discussion, conclusion, and reflection 
 

Conclusion 
This analysis underscores the potential of Multi-Agent Reinforcement Learning (MARL) 
methods in optimizing inspection and maintenance policies within large-scale infrastructure 
systems. Although the initial results are promising, they do not conclusively demonstrate the 
superiority of MARL over heuristic approaches under the tested conditions. However, the 
literature and prior studies indicate that MARL's advantages are likely to become more 
apparent in more complex scenarios involving a greater number of agents and environmental 
variables. Future explorations should focus on refining the environmental setup and 
incorporating variables such as climate scenarios, which could critically affect the outcomes. 
It is also essential to expand the deterioration models to include all components rather than a 
subset, to provide a more comprehensive assessment of MARL's capabilities. 

 

To address the research question, "How can machine learning consider climate change 
effects to inform inspection and maintenance for timber structures?" the study proposes a 
detailed workflow requiring specific inputs: 

 
Figure 5.1: Framework’s workflow with the required information (Own work) 



1. Specification of the timber building and its location, 
2. Climate data for the location, 
3. Identification of the wood species and its properties, 
4. Dimensions of each structural component, 
5. Types of connections between components, 
6. Load cases applicable to the building, 
7. Inspection and maintenance methods applied to the building. 

This framework, while simplified, highlights the foundational elements necessary for 
integrating climate change effects into machine learning models for timber structure 
maintenance. The components and considerations excluded from this study are further 
elaborated in the reflection section that follows. 

Thus, while these findings contribute valuable insights into the application of MARL for 
infrastructure management, they represent only the beginning of a more extensive exploration 
into its potential. Further research and more detailed simulations are needed to fully leverage 
MARL's capabilities and refine the strategies for practical applications. 

 

Reflection 
MARL Method's Efficacy vs. Traditional Methods 

The initial findings suggest that the MARL approach could potentially enhance the efficiency 
of inspection and maintenance plans for historical timber structures by adopting a proactive 
strategy. This strategy aims to identify and address potential structural failures before they 
reach critical stages, contrasting with traditional methods that rely heavily on visual 
inspections and the experience and judgment of inspectors. While the current results do not 
yet show a significant advantage over heuristic methods, MARL holds promise for reducing 
the need for detailed inspections of every component. By allowing for more targeted 
maintenance, MARL could save time and resources, and minimize human error in the long 
run. Further research and refinement of this approach are needed to fully realize these 
potential benefits. 

Traditionally, major maintenance of the case study structure, a 1244-year-old temple in 
Nara, Japan, involved a complete dismantling and reassembly approximately every 100 
years, a process that could extend up to a decade. The MARL-generated policies suggest a 
shift from this highly labor-intensive and time-consuming method to a more efficient, data-
driven approach. 

 

Limitations and Challenges 



Even though the perks of this machine learning method are previously mentioned, there are 
some challenges and limitations that should be pointed out for this study.  

1. Complexity and Accessibility:  
The complexity of setting up and operating the MARL framework is a significant 
barrier. This complexity limits accessibility for practitioners who are not well-versed in 
artificial intelligence techniques as it requires specific technical skills and resources, 
which may not be readily available, particularly in regions with limited technological 
infrastructure. 

2. Exclusions in the Study: 

 
Figure 5.2: Exclusions from the study (Own work) 

• Natural Defects in Timber: Timber, as an organic material, inherently possesses 
natural defects that arise during its growth. These defects include knots, pitch 
pockets, cross-grain, and other irregularities that can significantly affect the 
mechanical properties and strength of wood. The complexity and variability of 
these defects present substantial challenges in predicting their effects on 
timber's performance, particularly under changing climatic conditions. Due to 
the broad scope of this study and the difficulty in quantifying how these defects 
influence long-term deterioration, a detailed analysis of natural timber defects 
has been excluded. Future research could focus on integrating advanced 
imaging and analysis techniques to better understand and model how these 
natural variations impact the structural integrity of timber.  

• Timber Deterioration Factors and other Modes of Timber Failure Criteria: The 
study excluded several critical factors affecting timber deterioration due to the 



lack of comprehensive data on their precise impacts and the complex 
interactions with climate change. These exclusions include: 

1. Weather-related Factors: Direct effects from environmental conditions 
such as temperature fluctuations, moisture levels, ultraviolet (UV) 
radiation, and exposure to fire. Each of these factors can independently 
or synergistically influence the degradation and longevity of timber 
structures. 

2. Time-related Factors: The duration of load effects and chemical 
changes over time in the cellular structure of timber. These aspects 
involve the gradual transformation in wood properties under sustained 
loads and the natural aging process, which can weaken timber's 
structural capabilities. 

3. Mechanical Integrity: Timber failure due to cracking and other structural 
integrity issues that arise from internal stresses, material fatigue, or 
external forces. Cracking is a significant concern as it can compromise 
the load-bearing capacity and overall stability of timber constructions. 

• Extreme Events: The model does not account for extreme climate-related events 
such as floods, windstorms, blizzards, or earthquakes. These are critical gaps, 
given that such events are likely to increase in frequency and intensity due to 
climate change. 

• Analysis of Traditional Japanese Timber Joints: In traditional Japanese timber 
structures, the joints between components are critical for ensuring structural 
stability and durability. These structures typically utilize dry joint connections 
that do not involve glue, bolts, nails, or screws. Instead, they rely on precise 
and complex carpentry techniques that allow the components to fit together 
seamlessly, providing both aesthetic appeal and structural integrity without 
metal fasteners. Despite their crucial role, the specific analysis of these discrete 
joints—each varying depending on its position within the structure—will not be 
included in this study due to time constraints. Acknowledging their importance, 
this research will focus more broadly on the structural integrity and decay of the 
overall construction, deferring the detailed examination of dry joints to future 
investigations.  

• Snow load in Structural Analysis: The study does not account for the impact of 
snow load in the Finite Element Analysis (FEA). This is primarily due to the 
uncertainty surrounding the projected increases in snowfall and the duration of 
snow cover as consequences of climate change. Reliable data on these 
variables are crucial for accurately modeling the additional stress and strain 



that snow can impose on timber structures, particularly in regions prone to 
heavy snowfall. 

• Partial Decay of Structural Components: Observations from onsite visits to 
Japanese timber structures revealed that decay does not occur uniformly across 
structural components. Different parts of a single component may be exposed 
to varying levels of weathering, with areas experiencing higher moisture levels 
showing more significant decay and potential fungal growth. The study does 
not delve into the granularity of decay at the component level nor does it 
explore methods for partial replacement of components. This is a significant 
area for future development, as understanding and addressing partial decay 
can lead to more targeted and efficient maintenance strategies, reducing the 
need for complete component replacement. 

• Structural Deflection: The deflection of the structure under specific load cases, 
which could indicate the transitional state of a timber structure’s condition, is 
also excluded from this study. Monitoring and analyzing deflection can provide 
valuable insights into the structural health of timber and its ability to withstand 
external loads over time. In this study, the deflection analysis is already 
conducted, however, its effects on the structure’s condition are not yet included 
in the current research framework. 

• Advanced Inspection and Maintenance Techniques: The study did not 
incorporate various developing NDT methods that utilize supervised learning to 
detect flaws or deterioration in timber structures. These methods, which can 
include technologies like ultrasonic testing, infrared imaging, and digital 
radiography, represent a significant advancement in the ability to diagnose 
structural health without causing damage to the material. 

Including these NDT methods in the MARL framework could potentially refine 
maintenance policies by providing more precise data on the condition of the 
structure, leading to even more targeted and effective maintenance 
interventions. 

• Innovative Maintenance Approaches: Another significant exclusion from the 
research was the exploration of maintenance methods that involve adding 
redundant structures to reinforce existing timber without the need for 
dismantling. This approach can offer a less invasive and potentially more cost-
effective alternative to traditional methods that require extensive disassembly 
and reassembly of structures. 
Integrating these maintenance techniques into the MARL model could provide 
a broader range of solutions for preserving historical timber structures, 
especially in scenarios where traditional restoration methods are either too 
invasive or economically unfeasible. 



The exclusion of these cutting-edge inspection and maintenance techniques 
may limit the scope of the MARL policies developed in this study. By not 
incorporating the full spectrum of available technologies, the model might not 
fully capitalize on the potential efficiencies and effectiveness these methods 
offer. 

• Unexplored Reinforcement Learning Methods: This study focuses on the 
application of Multi-Agent Reinforcement Learning (MARL) for the inspection 
and maintenance planning of historical timber structures. However, there are 
several other reinforcement learning techniques and configurations that were 
not explored within this framework. Techniques such as Deep Reinforcement 
Learning (DRL), which utilizes deep neural networks to handle high-dimensional 
state spaces, could potentially offer more nuanced insights into complex 
decision-making scenarios involving historical preservation. Additionally, 
Single-Agent Reinforcement Learning, although less suited to scenarios 
requiring coordination among multiple decision-makers, could provide 
valuable baseline comparisons or simpler models for initial exploratory 
analysis. 
The potential integration of hybrid models combining elements of both MARL 
and DRL, or the use of alternative reward structures and state representations, 
also remains unexplored. These methods could further refine the accuracy of 
predictive maintenance schedules and adapt more dynamically to the unique 
challenges posed by the preservation of historical timber structures under the 
impact of climate change. 

 

Recommendations for Future Research 

The study of historical timber structures under the influence of climate change and their 
maintenance using Multi-Agent Reinforcement Learning (MARL) has opened several avenues 
for exploration and highlighted specific areas where current research is limited. While this 
thesis has laid foundational work in understanding the complexities of maintaining timber 
structures, several critical factors were necessarily excluded due to constraints in data, 
technology, and scope. These exclusions not only define the limitations of the current study 
but also delineate clear paths for future research. 

Addressing these gaps is crucial for advancing the field and enhancing the practical 
application of conservation techniques. The following recommendations are designed to 
guide subsequent investigations, ensuring that future research builds comprehensively on the 
insights gained and addresses the nuanced challenges of preserving historical timber 
structures in a changing climate. Each recommendation corresponds directly to the exclusions 
identified, proposing targeted studies and methodologies that promise to refine our 
understanding and improve the longevity and integrity of these valuable cultural assets. 



1. Integration of Natural Defects in Timber Analysis: 
Future research should incorporate detailed studies on the natural defects of timber, 
such as knots, pitch pockets, and cross-grain. Advanced imaging techniques, machine 
learning models, or stochastic models that simulate the random nature of defect 
impact on timber strength and durability could be used to predict how these defects 
affect the timber's mechanical properties and long-term durability under various 
environmental conditions. 

2. Comprehensive Timber Deterioration and Failure Criteria:  
Expanding the study to include more exhaustive factors in timber deterioration, such as 
direct effects from weather-related factors (temperature, moisture, UV radiation, and 
fire) and time-related factors (duration of load effects and chemical changes in 
timber's cellular structure) can be challenging. While experiments have been 
conducted on certain wood species, these studies have not yet culminated in a 
generalized model applicable to a broad range of wood species. To address this, the 
following specific steps are recommended: 

• Species-Specific Analysis/Experiments: Conduct controlled experiments on 
various wood species to understand specific degradation patterns under 
different environmental conditions. 

• Predictive Model Development: Use experimental data to develop predictive 
models that reflect the unique responses of different wood species to 
environmental stressors. 

• Long-Term Observational Studies: Monitor historical timber structures over 
extended periods to validate laboratory findings and adjust models based on 
real-world data. 

• Enhanced Simulations: Improve simulation models to include detailed wood 
chemistry and structural responses to prolonged environmental exposure and 
mechanical stress. 

3. Inclusion of Extreme Events in Structural Analysis: 

Integrate models that account for extreme weather events such as floods, earthquakes, 
and increased snow load due to climate change. This could involve developing 
probabilistic models that simulate the impact of these events on structural integrity 
over time. 

4. Specialized Studies of Traditional Japanese Timber Joints: 
Conduct specialized studies focusing on the unique construction techniques of 
traditional Japanese timber joints. These joints are fundamental to the structural 
stability and aesthetic integrity of timber structures and require comprehensive analysis 
under various stress conditions. The steps that can enhance the understanding of these 
joints are as follows: 

• Detailed FEA Modeling: Utilize FEA models to simulate the behavior of the 
joints under various loads. This simulation should accurately reflect the intricate 



carpentry techniques used in these joints, allowing for precise analysis of stress 
distribution and joint performance. 

• Incorporation of Decay Effects: It is critical to investigate the impact of decay, 
particularly how the loss of cross-sectional area due to deterioration affects the 
mechanical properties and load-bearing capacity of the joints. This analysis 
should consider different stages of decay and their corresponding impact on 
structural integrity. 

• Advanced Imaging and Scanning: Employ advanced imaging and scanning 
techniques to assess the internal condition of the joints, focusing on areas 
susceptible to decay. This technology can provide a more accurate assessment 
of the extent of decay and its spatial distribution within the joint. 

• Material Property Assessment: Analyze how the deterioration of material 
properties due to decay influences the overall behavior of the joints. This 
involves studying changes in the wood's mechanical properties such as 
elasticity, strength, and toughness as the material loses mass and integrity. 

• Load Redistribution Analysis: Explore how the deterioration and loss of material 
in one part of the joint affect the load redistribution across the entire joint 
structure. Understanding this redistribution is crucial for predicting failure 
modes and for planning appropriate maintenance or reinforcement strategies. 

5. Snow Load Impact Studies: 
Future models should incorporate dynamic climate data to assess the impact of 
changing snow load patterns on timber structures. This involves collaboration with 
climatologists to obtain accurate, predictive climate models for snowfall and 
temperature variations. 

6. Targeted Research on Partial Decay of Structural Components: 
Investigate the partial decay phenomena in timber components, focusing on 
differential decay patterns due to varied environmental exposures. Implement localized 
treatment and maintenance strategies that include partial replacements or localized 
strengthening techniques in the framework. 

7. Analysis of Structural Deflection Under Load: 
Implement sensors and monitoring technologies to study how timber structures deflect 
under various load cases. This data can help refine the predictive models used in 
MARL to better anticipate and mitigate potential failures. 

8. Exploration of Advanced Inspection and Maintenance Techniques: 

Explore and integrate advanced NDT methods that utilize emerging technologies in AI 
and machine learning to improve the detection and analysis of structural weaknesses 
without damaging the material. The more precise the data gathered from these 
methods, the more robust the reinforcement learning framework will become. 

9. Development of Innovative Maintenance Approaches: 



Research the effectiveness of adding redundant structures or reinforcements that do 
not require dismantling the original timber framework. Such studies would provide 
alternatives that preserve structural integrity while maintaining the historical 
authenticity of the structure. 

10. Exploration of Diverse Reinforcement Learning Methods: 
Investigate the potential of different reinforcement learning configurations, including 
Deep Reinforcement Learning and hybrid models, to handle complex decision-making 
environments more effectively. This could enhance the adaptability and efficiency of 
maintenance planning for historical structures under varied and changing conditions.  

 

Societal and Ethical Implications 

1. Potential Societal Impact: If broadly implemented, the MARL method could 
revolutionize the maintenance of historical timber structures worldwide, potentially 
extending their lifespan and reducing maintenance costs. This would have significant 
cultural and economic benefits by preserving heritage structures in a more sustainable 
manner. Moreover, a deeper understanding of the factors that affect timber's structural 
strength can enhance the use of timber in modern buildings. This knowledge can 
improve the efficiency and resilience of modern timber construction, supporting the 
broader adoption of timber as a sustainable building material. 

2. Ethical Considerations: The use of advanced technologies in historical conservation 
raises ethical questions, particularly regarding the potential for technology to replace 
traditional practices and skills, which are cultural heritages in their own right. There is 
a need to balance technological advancement with the preservation of traditional 
crafts and techniques. As the understanding of timber's properties improves, it is vital 
to consider how these technologies can complement rather than replace the 
craftsmanship that defines many cultural heritage structures. 

3. Sustainability and Environmental Impact: The project aligns with sustainable 
development goals by promoting the longevity of materials and reducing the 
frequency of invasive maintenance procedures, which can be both resource-intensive 
and environmentally taxing. Enhanced knowledge and application of timber's strength 
factors not only benefit the conservation of historical structures but also pave the way 
for more sustainable practices in contemporary architecture. By demonstrating the 
viability and durability of timber, the research supports its wider use as a sustainable 
material in the construction industry, potentially reducing reliance on more 
environmentally harmful materials. 

 

 



References 
Aghayere A, V. J. (2007). Structural Wood Design a Prac�ce-Oriented Approach Using the Asd Method.  

Andrio�s, C. P., & Papakonstan�nou, K. G. (2019). Managing engineering systems with large state and 
ac�on spaces through deep reinforcement learning. Reliability Engineering & System Safety, 191, 
106483. htps://doi.org/htps://doi.org/10.1016/j.ress.2019.04.036  

C.H. Wang, R. H. L., M.N. Nguyen. (2008a). Manual 4 - Decay above-ground.  
C.H. Wang, R. H. L., M.N. Nguyen. (2008b). Manual 9 – Models for timber protected in building envelope.  
Carll, C. G. (2009). Decay Hazard (Scheffer) Index Values Calculated from 1971–2000 Climate Normal 

Data.  
Cruz, H., Jones, D., & Nunes, L. (2015). Wood. In M. C. Gonçalves & F. Margarido (Eds.), Materials for 

Construction and Civil Engineering: Science, Processing, and Design (pp. 557-583). Springer 
Interna�onal Publishing. htps://doi.org/10.1007/978-3-319-08236-3_12  

Csébfalvi, A., & Len, A. (2020). THE CLIMATE IMPACT ON TIMBER STRUCTURES. Iran University of Science 
& Technology, 11, 143-154.  

EN 1995-1-1 Eurocode 5: Design of �mber structures - Part 1-1: General-Common rules and rules for 
buildings,  (2004).  

Gedeon, G. (1999). Wood handbook--Wood as an engineering material.  
IPCC. (2023a). Climate Change 2023: Synthesis Report (Contribu�on of Working Groups I, II and III to the 

Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Issue.  
IPCC. (2023b). Synthesis Report (SYR) Glossary.  
Museum, T. C. T. (2014). Permanent Exhibi�ons Catalog. In T. C. T. Museum (Ed.). 
Nasir, V., Fathi, H., Fallah, A., Kazemirad, S., Sassani, F., & Antov, P. (2021). Predic�on of Mechanical 

Proper�es of Ar�ficially Weathered Wood by Color Change and Machine Learning. Materials, 
14(21), 6314. htps://www.mdpi.com/1996-1944/14/21/6314  

Neves, L., & Frangopol, D. (2005). Condi�on, safety and cost profiles for deteriora�ng structures with 
emphasis on bridges. Reliability Engineering [?] System Safety, 185-198. 
htps://doi.org/10.1016/j.ress.2004.08.018 

Niemz, P., Sonderegger, W., Gustafsson, P. J., Kasal, B., & Polocoşer, T. (2023). Strength Proper�es of 
Wood and Wood-Based Materials. In P. Niemz, A. Teischinger, & D. Sandberg (Eds.), Springer 
Handbook of Wood Science and Technology (pp. 441-505). Springer Interna�onal Publishing. 
htps://doi.org/10.1007/978-3-030-81315-4_9  

Office of Cultural Assets Preserva�on, t. B. o. E. i. N. P. (2009). Toshodai-ji Kondo (Golden Hall). B. o. E. 
Nara Prefecture.  

Office of Cultural Assets Preserva�on, t. B. o. E. i. N. P. (2009). Report on the Restoration Work at the 
TOSHODAI-JI KONDO, a National Treasure. B. o. E. Nara Prefecture. 

Pablo G. Morato, C. P. A., Konstan�nos G. Papakonstan�nou, Philippe Rigo. (2022). Inference and 
dynamic decision-making for deteriora�ng systems with probabilis�c dependencies through 
Bayesian networks and deep reinforcement learning. Reliability Engineering and System Safety 
htps://doi.org/10.48550/arxiv.2209.01092  

Pascal Leroy, P. G. M., Jonathan Pisane, Athanasios Kolios, Damien Ernst. (2023). IMP-MARL: a Suite of 
Environments for Large-scale Infrastructure Management Planning via MARL. 
htps://doi.org/htps://doi.org/10.48550/arXiv.2306.11551  

Pierre Berard, P. Y., Hidefumi Yamauchi, Kenji Umemura, Shuichi Kawai. (2011). Modeling of a cylindrical 
laminated veneer lumber I: mechanical proper�es of hinoki (Chamaecyparis obtusa) and the 
reliability of a nonlinear finite element model of a four-point bending test. The Japan Wood 
Research Society, 57, 100-106. htps://doi.org/10.1007/s10086-010-1150-1 

https://doi.org/https:/doi.org/10.1016/j.ress.2019.04.036
https://doi.org/10.1007/978-3-319-08236-3_12
https://www.mdpi.com/1996-1944/14/21/6314
https://doi.org/10.1016/j.ress.2004.08.018
https://doi.org/10.1007/978-3-030-81315-4_9
https://doi.org/10.48550/arxiv.2209.01092
https://doi.org/https:/doi.org/10.48550/arXiv.2306.11551
https://doi.org/10.1007/s10086-010-1150-1


Richard S. Suton, A. G. B. (2018). Reinforcement Learning: an Introduction (Second edi�on ed.). The MIT 
Press.  

Roszyk, E. (2013). The effect of ultrastructure and moisture content on mechanical parameters of pine 
wood (Pinus sylvestris L.) upon tensile stress along the grains. Turkish Journal of Agriculture and 
Forestry, 38, 413-419. htps://doi.org/10.3906/tar-1306-81  

van Nimwegen, S. E., & Lateur, P. (2023). A state-of-the-art review of carpentry connec�ons: From 
tradi�onal designs to emerging trends in wood-wood structural joints. Journal of Building 
Engineering, 78, 107089. htps://doi.org/htps://doi.org/10.1016/j.jobe.2023.107089  

van Noortwijk, J. M. (2009). A survey of the applica�on of gamma processes in maintenance. Reliability 
Engineering & System Safety, 94(1), 2-21. 
htps://doi.org/htps://doi.org/10.1016/j.ress.2007.03.019  

Verbist, M., Nunes, L., Jones, D., & Branco, J. M. (2019). 11 - Service life design of �mber structures. In B. 
Ghiassi & P. B. Lourenço (Eds.), Long-term Performance and Durability of Masonry Structures (pp. 
311-336). Woodhead Publishing. htps://doi.org/htps://doi.org/10.1016/B978-0-08-102110-
1.00011-X  

Xin, Z., Ke, D., Zhang, H., Yu, Y., & Liu, F. (2022). Non-destruc�ve evalua�ng the density and mechanical 
proper�es of ancient �mber members based on machine learning approach. Construction and 
Building Materials, 341, 127855. 
htps://doi.org/htps://doi.org/10.1016/j.conbuildmat.2022.127855  

 

https://doi.org/10.3906/tar-1306-81
https://doi.org/https:/doi.org/10.1016/j.jobe.2023.107089
https://doi.org/https:/doi.org/10.1016/j.ress.2007.03.019
https://doi.org/https:/doi.org/10.1016/B978-0-08-102110-1.00011-X
https://doi.org/https:/doi.org/10.1016/B978-0-08-102110-1.00011-X
https://doi.org/https:/doi.org/10.1016/j.conbuildmat.2022.127855

