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Abstract
Clouds, specifically shallow clouds, are known as a major source of uncertainty in global climate mod­
els. Shallow clouds over the global oceans show different spatial patterns and organizations that may
be influenced by climate change. Besides, the frequency of these patterns can change the climate
feedback of marine clouds in the subtropics. Experts in atmospheric sciences have proposed different
kinds of organization metrics. In a recent paper (Janssens et al., 2021), 21 cloud organization metrics
were collected and computed over 5000 satellite scenes of shallow clouds located near the east of
Barbados. Almost all of the existing metrics of cloud organization are bulk parameters of the cloud
field. Accordingly, over the same data as Janssens et al. (2021), this project aims to define a metric
that originated from the mutual arrangements of the individual clouds in the field. To this end, network
theory as a mathematical tool is employed to define new cloud organization metrics to explore how
cloud objects interact with and coordinate concerning each other. It should be noted that this research
is the first in which cumulus cloud fields are considered as complex spatial networks.

In this regard, an important question is whether a new network metric can distinctly explain a variability
which has not been captured by previously defined metrics in cloud organization. To address the re­
search question, we utilize a multivariate regression model to understand whether a linear combination
of principal components of the existing metrics can encapsulate a variation in newly proposed network
metrics. We found that degree standard deviation and mean of clustering coefficient are two network
metrics that can distinctly capture a variability that has not been encapsulated by the existing metrics in
cumulus cloud organizations. Degree standard deviation simultaneously measures the homogeneity
of the cloud size distribution and the distance between nearest neighboring clouds distribution. A large
value of the average clustering coefficient indicates that the network field consists of either large clouds
located on corners of triangles or relatively small clouds closely coagulated. Additionally, two sensitivity
analyses were performed to understand how the main results are influenced by either center­spacing
or edge­spacing distance between clouds and the nodes (clouds) located close to the boundaries of
the field. Finally, one should note that all of the results of network theory­based approaches are com­
prehensively affected by how the network is defined. Defining a network that combines both geometric
and physical interaction between cloud objects will be the future work of this research.
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1
Introduction

Shallow Cumuli are affected by numerous processes. Most of these processes are not resolved in
Global Climate Models (GCMs), since the behavior of these processes is extremely difficult to be pa­
rameterized (Nuijens and Siebesma, 2019). Also, the cloud radiative effect (CRE) of low clouds plays
a crucial role in the global radiation budget of our planet Earth. Although clouds cool the Earth by
reflecting the shortwave radiation to space, they can contribute to warm the Earth by trapping the out­
going infrared radiation emitted from the Earth’s surface and radiate it backward as a downwelling
longwave radiation towards the surface of the Earth (Wallace and Hobbs, 2006). The response of a
GCM to the CO2 doubling is quantified by EquilibriumClimate Sensitivity (ECS) (Nuijens and Siebesma,
2019). These interacting processes have been indicated in the determination of ECS, which diverges
remarkably in GCMs (Bony and Dufresne, 2005;Cess et al., 1990;Vial et al., 2013). This consider­
able uncertainty in GCMs is mainly due to the shallow clouds (Schneider et al., 2017) (see Figure 1
by Schneider et al. (2017)). Accordingly, GCMs cannot adequately capture whether shallow clouds
contribute to a lower ECS (cooling effect, negative feedback) or a higher ECS (heating effect, positive
feedback) (Nuijens and Siebesma, 2019). Especially, the scientists in the atmospheric and climate
sciences community have not yet understood:

• how the profile of the wind speed, the interaction between moisture and radiation, and horizontal
advection modulates shallow clouds

• what mesoscale aggregation of low clouds indicates for the CRE

in the current and warmer climate (Nuijens and Siebesma, 2019).

The mesoscale organization is a concept widely discussed in cloud studies. Various formations of
clouds which are often heterogeneously distributed in the horizontal dimension, ranging from open and
close cells in Stratocumulus to cold pool patterns in cumulus clouds are denominated as mesoscale
organization (Nuijens and Siebesma, 2019). A vital question is to what extent mesoscale organizations
can change due to global warming, and how this feedbacks on CRE (Nuijens and Siebesma, 2019).
Further, Stevens et al. (2020) proposed a visual interpretation for the four prominent patterns broadly
seen in shallow cumulus cloud fields. Those frequently available patterns are called sugar, gravel, fish,
and flower (see Figure 1.1). Correspondingly, Schulz et al. (2021) investigated what meteorological
conditions and large­scale motions are in favor of distinct cloud patterns. Besides, various researchers,
have proposed quantifiable metrics for cloud organizations, which are objective and interpretable. In
this regard, Janssens et al. (2021) collected 21 cloud organization metrics and computed all 21 metrics
over 5000 clouds scenes. They found that four principal components of those metrics are amazingly
able to capture 82% of all metrics’ variance.

This study aims to propose new organization metrics based on a complex network theory approach. A
network is a set of points (nodes) connected to each other in pairs by lines (edges) (Newman, 2003b).
So far, the previously defined organization metrics are mostly the bulk parameters of the cloud field.
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2 1. Introduction

However, network theory­based metrics provide advantageous information that originated from the mu­
tual arrangements between the clouds. In other words, network metrics can potentially quantify how
cloud objects interact with and coordinate concerning each other on a cloud field. The idea of con­
sidering the cloud field as a network is inspired by Glassmeier and Feingold (2017) who investigated
Stratocumulus cloud fields as cellular networks for the first time. Since cumulus clouds are not dis­
tributed as homogeneously as Stratocumulus clouds in the horizontal domain, we employ the complex
networks to be derived from cumulus clouds. It should be noted that it is the first study in the field
of atmospheric sciences that cumulus clouds are investigated as complex networks. In this research,
cloud objects are considered geometric complex networks where centroids of cloud objects are defined
as the network’s vertices. Besides, edges are denoted by different approaches such as removed­link
Delaunay triangulation graph and weighted Delaunay graph. Consequently, after proposing new net­
work metrics for cloud organization, we are led to investigate whether a network metric can distinctly
encapsulate a characteristic that has not been explored by previously defined organization metrics in
the cumulus cloud field.

The research question is can a newly proposed network metric explain a variability that is not captured
by the previously defined metrics in cumulus cloud fields?
if Yes:

• What does a newly defined network metric distinctly measure for cloud organizations?

if No:

• What is the relationship between the network metric and the existing metrics?

• Is it possible for a network metric to replace one of the first four PCs of previously proposed
metrics? If yes, it means that this specific network metric is individually able to capture a variability
which is captured by a range of previously defined metrics in the organization of cumulus cloud
fields. Consequently, one may not need to compute a lot of metrics and its related principal
components.

This thesis starts with the description of data in chapter 2. chapter 3 explains how the networks are
derived from cloud fields. Then, different network schemes are introduced. In the sequel, various
network measures are elaborately discussed. Finally, chapter 3 finishes with the explanation of two
statistical methods, multiple linear regression model and principal component analysis. chapter 4 in­
dicates the results of this study and is followed by the associated discussion. Eventually, conclusions
are presented in chapter 5.

Figure 1.1: The figure reveals the prominent patterns in cumulus cloud scenes. Sugar: A dust of very
small­scale clouds that are slightly extended along the vertical direction. Gravel: A pattern of cloud
fields that are along meso­𝛽 scale (20­100 km) lines constructing cells. Compared to Sugar, Gravel

includes brighter cloud elements. Fish: Meso­𝛼 (200­2000 km) scale clouds in the shape of
fish­bone. It is generally associated with a distinct cloud­free region. Flower: Well­separated cloud
objects that are shaped meso­𝛽 scale stratiform cloud objects irregularly (Stevens et al., 2020).

Figures are taken by Aqua satellite and are from NASA worldview website.



2
Description of the Data

Similar to studies Stevens et al. (2020); Bony et al. (2020); Janssens et al. (2021), the focus of this
project is on the shallow trade­wind cumulus clouds. These cumulus clouds are considerably involved
in the monthly and seasonal diversity in cloud fraction, in North Atlantic Ocean, near the east of Bar­
bados (Nuijens and Siebesma, 2019;Nuijens et al., 2014). Cumulus clouds near the east of Barbados
(20∘ − 30∘ N, 48∘ − 58∘ W) are appropriately indicative for the whole trades.
The cloud fields are extracted from the Aqua and Terra satellites of the NASA worldview website1. The
fields are sampled during the daytime from December 2002 to May 2020. It ought to be noted that the
data is only downloaded for months from December to May each year.
In this regard, the data­set includes 512 × 512 km2 cumulus cloud fields enclosed by 10∘ × 10∘ obser­
vations. The preprocessing of the data exactly follows Janssens et al. (2021):

1. To increase the size of the data­set, the cloud scenes are let to overlap 256 km.

2. Some of the cloud scenes are removed from the data­set due to the present errors in the produc­
tions of remote sensing equipment. To this end, a cloud scene is removed if:

• Approximately 20% of cloud tops exceeds 5 km
• The sensor zenith angle is more than 45∘ (see Figure 2.2)
• The cloud image is notably affected by the amount of sunlight (see Figure 2.3)

In the next step, the complex networks are derived from the cloud scenes. To analyze complex net­
works, the network metrics are computed for each cloud field. Those network metrics are elaborately
introduced in section 3.3.

Figure 2.1: The approximate location of interest is shown in the figure.

1https://worldview.earthdata.nasa.gov/
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4 2. Description of the Data

Figure 2.2: An example of a removed scene due to the zenith angle more than 45∘ and missing data
associated with the black region.

Figure 2.3: An example of a removed cloud field due to the sunlight error. The sunlight is the white
thick diagonal shed in the middle of the image. The cloud scenes that suffered from the sunlight error

are removed manually from the data set.



3
Methods

3.1. Networks
A network is a collection of objects called vertices with links called edges that connect vertices. There
are numerous systems in the world that shape in the form of networks. Social networks, neural net­
works, metabolic networks, the World Wide Web, the internet, organizational networks, networks of
citations between papers, postal delivery routes, traffic roads, etc., are all real examples of networks
in the world. Furthermore, one of the substantial parts of discrete mathematics is the study of the
networks using mathematical graph theory. From the first true proof of the network theory by Euler in
1735 to the twentieth century, network theory has expanded up to a vital part of knowledge (Newman,
2003b).
Complex networks have been for long one of the applied branches of mathematics in different fields
including computer sciences and social networks. In this regard, complex networks are mostly orga­
nized in the shape of graphs where vertices and links are defined in space. Neural networks, Internet,
mobile phone networks, transportation systems are all categorized as spatial networks. Spatial net­
works are graphs where the topology itself does not adequately contain all the characteristics. Rather,
space plays a key role. Thus, comprehension of the organization of spatial networks is vital for various
fields from epidemiology to urbanism (Barthélemy, 2011). In this research, the aim is to explore the
characteristics of cumulus cloud field organizations employing complex spatial networks.

3.2. Networks and Clouds
To derive a network from the cumulus cloud field, the structure of the network must be defined. To
this end, the centroids of cloud objects are determined to be vertices of the network. To determine
the edges, an important assumption of this research is that each node has a relationship with only its
nearest neighbors. In other words, there are edges between each node and only its nearest neigh­
bors. Therefore, all derived networks from cumulus cloud fields are Delaunay graphs (see Figure 3.1).
This assumption is firstly made by Glassmeier and Feingold (2017) who derived a Delaunay network
from Stratocumulus cloud fields. However, since there is commonly a notable heterogeneity in both of
the cloud size distribution and distribution of the distance between the nearest neighbors of cumulus
cloud fields, we are led to change the Delaunay graph. Accordingly, two schemes are proposed in
subsection 3.2.1 and subsection 3.2.2.

3.2.1. Weighted Delaunay Network
The weighted Delaunay network is the nearest neighbor network with weighted links (see Figure 3.2).
To better include the spatial characteristics of cumulus clouds in the network structure, the weight of
each link is a function of two important parameters. The first is the area of two connected cloud objects,
and the second is the distance between those two objects. In this regard, the link’s weight is denoted
as:

𝑤𝑖𝑗 =
√𝐴𝑖 +√𝐴𝑗
𝑑𝑖𝑗 ⋅ √𝜋

(3.1)

5
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Figure 3.1: Left: Cumulus cloud field from NASA worldview website, right: cloud mask with Delaunay
triangulation. Cloud mask is defined as the elements of an image array with values large than 0.5.
Each cloud object is an object with an area larger than or equal to 4 pixel­squared. The numbers on

the x and y axes are related to the number of image’s grids (pixels).

where 𝐴 is the area of each cloud object and 𝑑𝑖𝑗 is the distance between the centroids of objects 𝑖 and
𝑗. This idea is inspired by White et al. (2018) who proposed a different cloud organization metric which
is called Convective Organization Potential (COP). Considering each cloud object as a circle with the
same area and centroid, Equation 3.1 can be written in a different way as:

𝑤𝑖𝑗 =
1
𝑑𝑖𝑗

(√𝐴𝑖
√𝜋

+ √
𝐴𝑗
√𝜋

) = 1
𝑑𝑖𝑗

(𝑅𝑖 + 𝑅𝑗) (3.2)

where, 𝑅𝑖 and 𝑅𝑗 are the equivalent radii of clouds 𝑖 and 𝑗, respectively. Hence, with respect to the
values of the terms 𝑅𝑖 and 𝑅𝑗, 𝑤𝑖𝑗 can obtain these values:

𝑤𝑖𝑗 {
< 1 if 𝑅𝑖 + 𝑅𝑗 < 𝑑𝑖𝑗
= 1 if 𝑅𝑖 + 𝑅𝑗 = 𝑑𝑖𝑗
> 1 if 𝑅𝑖 + 𝑅𝑗 > 𝑑𝑖𝑗

3.2.2. Removed­edge Delaunay Network
In this scheme, some of the edges of the Delaunay graph are removed based on criteria similar to those
in subsection 3.2.1. The edge 𝑖𝑗 of the Delaunay graph is removed if:

• First criterion. The mean area of cloud objects 𝑖 and 𝑗 is smaller than the 3rd quartile of cloud
size distribution of the field,

• Second criteria. The distance 𝑑𝑖𝑗 is larger than the 3rd quartile of the distribution of the distance
between all cloud objects in the field.

It should be noted that both conditions need to be fulfilled. Intuitively, it means that there is no relation­
ship between two small cloud objects which are far from each other. An example of a cloud field with
the derived removed­edge Delaunay network can be seen in Figure 3.3.

3.3. Network Measures
In case the network’s structure is known, it is possible to compute helpful measures that encapsulate
the specific characteristics of network topology. Most of the ideas originate from the field of social
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Figure 3.2: The plot represents a cumulus cloud mask with the derived weighted network from it.
Cloud objects are painted with different colors, to be better distinguished individually by the human’s

eyes. Besides, both link’s thickness and opacity are proportional to the corresponding weight.

Figure 3.3: The plot demonstrates a cumulus cloud mask with the derived removed­edge Delaunay
graph. Compared to Figure 3.1, it is attempted to remove the links that had connected two small

objects located far from each other.
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network analysis, and much of the terminology used to express these ideas indicate their sociological
origin. Nevertheless, the upcoming network measures are widely used in various fields such as biology,
computer sciences, physics, and constitute a crucial part of the network toolbox (Newman, 2018).

3.3.1. Degree
In each graph, the degree of node 𝑖 is equal to the number of edges connected to it (Van Mieghem,
2014). Also, the degree of node 𝑖 is the sum of the 𝑖th row of the graph’s adjacency matrix 𝐴 . For a
graph with 𝑁 nodes, 𝐴 is a 𝑁 × 𝑁 matrix and it is computed as (Barthélemy, 2011):

𝐴𝑖𝑗 = {
1 if 𝑖 and 𝑗 are connected
0 otherwise

(3.3)

Thus, the degree of node 𝑖, 𝑘𝑖 is calculated by:

𝑘𝑖 =∑
𝑗
𝐴𝑖𝑗 (3.4)

Similarly, the degree of node 𝑖 in a weighted graph, is given by Barthélemy (2011):

𝑠𝑖 = ∑
𝑗∈Γ(𝑖)

𝑤𝑖𝑗 (3.5)

where, Γ(𝑖) is the set of neighbors of node 𝑖, and 𝑤𝑖𝑗 is the weight that is assigned to the link between
nodes 𝑖 and 𝑗.

3.3.2. Clustering
The local clustering coefficient for node 𝑖 is given by Newman (2018):

CCi =
𝑇(𝑖)
(𝑘𝑖2 )

(3.6)

where 𝑇(𝑖) is the number of pairs of neighbors of vertex 𝑖 that are linked, and the binomial coefficient
(𝑘𝑖2 ) is the number of all possible pairs of neighbors of 𝑖. In social networks, the clustering coefficient is
explained by the probability that two friends of node 𝑖 are friends of each other (Newman, 2018).

Clustering coefficient of node 𝑖 in a weighted graph is defined as Onnela et al. (2005):

1
𝑘𝑖(𝑘𝑖 − 1)

∑
𝑗𝑘
(�̂�𝑖𝑗�̂�𝑖𝑘�̂�𝑗𝑘)1/3 (3.7)

where �̂� is normalized by the maximum weight in the graph, and (�̂�𝑖𝑗�̂�𝑖𝑘�̂�𝑗𝑘)1/3 is the geometric mean
of assigned weights to the edges of each triangle.

3.3.3. Shortest Path
Generally, there are numerous paths between nodes 𝑖 and 𝑗 in a connected graph. The shortest path
is written as Barthélemy (2011):

𝑙(𝑖, 𝑗) = min
paths(𝑖→𝑗)

|paths| (3.8)

where |path| is the length of the path and it is given by counting the number of edges along the path.
A small average shortest path in the network is associated with the fast spreading of the signals along
the network (small­world effect) (Newman, 2018).

The definition of the shortest path in a weighted graph is dependent on how the weights are defined.
In this study, the shortest path is given by:

𝑙𝑤(𝑖, 𝑗) = min
paths(𝑖→𝑗)

|path|𝑤 (3.9)
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where, if there are 𝑁 links between nodes 𝑖 and 𝑗, |path|𝑤 is defined as:

|path|𝑤 =
𝑁

∑
𝑛=1

1
𝑤𝑛

(3.10)

Implying that the larger the weights the shorter the path between nodes 𝑖 and 𝑗. This means that if two
clouds are larger and closer to each other, the assigned weight to the edge that links them together is
larger, thus the path between them is shorter.

3.3.4. Betweenness Centrality
Generally, the term “centrality” of a node in the network reflects the significance of the node. In the
network theory community, there are different measures for centrality including closeness centrality,
degree centrality, etc. In this study, we selected the betweenness centrality measure. Considering
every node pairs 𝑠 and 𝑡, betweenness centrality 𝑔(𝑖) of node 𝑖 is calculated as Barthélemy (2011):

𝑔(𝑖) =∑
𝑠≠𝑡

𝜎𝑠𝑡(𝑖)
𝜎𝑠𝑡

(3.11)

where 𝜎𝑠𝑡 is the number of shortest (𝑠, 𝑡) paths, and 𝜎𝑠𝑡(𝑖) is the number of those paths that pass
through node 𝑖 (Brandes, 2008). Intuitively, higher betweenness centrality is an indication of network’s
resilience to node removal (Newman, 2018;Barthélemy, 2011).

3.3.5. Average Degree of Neighbors
For node 𝑖, the average degree of neighbors is given by Barthélemy (2011):

𝑘𝑛𝑛(𝑖) =
1
𝑘𝑖

∑
𝑗∈Γ(𝑖)

𝑘𝑗 (3.12)

where Γ(𝑖) is the set of neighbors of node 𝑖.
Similarly, the average degree of neighbors for node 𝑖 in a weighted network is defined as Barrat

et al. (2004):

𝑠𝑛𝑛(𝑖) =
1
𝑠𝑖
∑
𝑗∈Γ(𝑖)

𝑠𝑗 (3.13)

where 𝑠𝑖 and 𝑠𝑗 are weighted degrees for nodes 𝑖 and 𝑗.

3.3.6. Assortativity
Assortativity is the inclination of each node to be connected to the other nodes that are similar (or
dissimilar) to them in some aspects (Newman, 2003a). The degree of assortativity is determined via
the Pearson correlation coefficient of the degree­degree correlation (Allen­Perkins et al., 2017). If the
correlation 𝑟 is between 0 and 1, the network is assortatively mixed. In case −1 < 𝑟 < 0, the network
is disassortatively mixed. Besides, if the degree of assortativity is close to 0, the network is a neutrally
mixed one (Newman, 2003a). A larger degree of assortativity means high (low) degree vertices are
connected to high (low) degree vertices.

3.3.7. Algebraic Connectivity
One of the important branches of mathematics is spectral graph theory that investigates the network’s
structure through calculating the eigenvalues of the network’s Laplacian. In this regard, algebraic con­
nectivity is a measure of how connected a network is and denoted as the second smallest eigenvalue
of the network’s Laplacian matrix (Newman, 2018). Laplacian matrix of each graph is defined as:

𝐿 = 𝐷 − 𝐴 (3.14)

where 𝐷𝑖𝑗 = 𝑘𝑖𝛿𝑖𝑗 (𝛿𝑖𝑗: identity matrix) is the diagonal matrix of vertices’ degrees and 𝐴 is the graph’s
adjacency matrix (Barthélemy, 2011). Algebraic connectivity for the disconnected network is zero and it
reaches its maximum value for the complete graph. Besides, for weighted graphs, the more the density
of high­weighted edges, the more algebraic connectivity.
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3.4. Statistical Methods
In this section, two statistical methods are introduced in summary. These two methods are utilized
within the analyses of this study.

3.4.1. Multivariate Regression Model
Multivariate regressionmodel is a linear regressionmodel withmultiple regressors. Assuming 𝑥1, 𝑥2, ..., 𝑥𝑛
as independent features, the model is defined as Montgomery et al. (2021):

𝑦 =
𝑛

∑
𝑖=1
𝑎𝑖𝑥𝑖 + 𝜖 (3.15)

where 𝑦 is a dependent feature, 𝑎𝑖 are coefficients, and 𝜖 indicates the error term. There are important
assumptions that should be taken into account:

• The errors are normally distributed, and are uncorrelated.

• There is a negligible co­linearity between regressors.

To check whether the model is able to adequately capture the variation in the target feature, three
crucial items should be noticed:

1. 𝑅2. It indicates to what extent the variation in the target value is explained by the model. For
instance, a value larger than 0.5 represents that the model can capture more than 50% of the
variation in the data.

2. 𝐹­value. This parameter is the output of the 𝐹−test which is employed to test the global signifi­
cance of the regression. In other words, 𝐹−test helps to understand whether the model has an
overall adequacy or not. The associated hypothesis is:

𝐻0 ∶ 𝑎1 = 𝑎2 = ... = 𝑎𝑛 = 0
𝐻1 ∶ 𝑎𝑖 ≠ 0 for at least one 𝑖

rejection of the null hypothesis (𝐻0) indicates that the model is adequate enough to capture the
variation in the target value 𝑦. In this regard, the larger the 𝐹­value the more adequate the model.

3. 𝑝­value. This is the output of the 𝑡−test which is utilized to test the significance of each regressor.
After the global adequacy is met the requirement, we are led to ask which regressor is significant
to capture the variation in the dependent feature. The corresponding hypothesis is:

𝐻0 ∶ 𝑎𝑖 = 0
𝐻1 ∶ 𝑎𝑖 ≠ 0

The regressor 𝑥𝑖 can be removed from the model if the null hypothesis 𝐻0 can not be rejected. If
the 𝑝­value is smaller than 0.05 for 𝑎𝑖, the associated regressor 𝑥𝑖 is significant at 95% level of
confidence.

3.4.2. Principal Component Analysis
The principal component analysis is a famous statistical technique widely used for dimensionality re­
duction performed by projecting the features’ vectors onto the first few principal components. With
this method, it is possible to achieve a data­set containing much lower dimensions, while explaining a
considerable variation of the original data­set. Also, all the principal components are orthogonal, i.e.
they are completely uncorrelated (Tipping and Bishop, 1999).

Commonly, to derive principal components one should employ a “standardized linear projection that
maximizes the variance in the projected space” (Hotelling, 1933;Tipping and Bishop, 1999). If the
original data includes 𝑛 vectors, principal components are 𝑛 unit vectors. The 𝑖th principal component
is the one that is orthogonal to the first 𝑖 − 1 unit vectors (i.e. principal components) that maximize
the variance of the projected data. The first principal component is the one that captures the largest
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variance in the data set compared to the other principal components, the second principal component
captures the second greatest variance of the data, and so on. Intuitively, principal component analysis
tries to fit an ellipsoid with 𝑛 dimensions to the data with 𝑛 vectors. In this case, principal components
are the axes of the 𝑛−dimensional ellipsoid. A particular axis being small implies that the variation
along that axis is therefore small.





4
Results and Discussions

As it is mentioned before, network metrics are calculated for each cloud scene. Then, we do a correla­
tion analyses for network metrics and previously defined organization metrics. To answer the research
question, the multiple linear regression method is employed to understand whether a linear combina­
tion of previously defined metrics are able to capture a considerable variation in newly defined network
metrics. If yes, a network metric cannot distinctly capture a variability that is not explored by previously
defined metrics in cumulus cloud organizations, and vice versa.

4.1. Weighted Delaunay Network Metrics
The computed metrics for this graph scheme are different statistical moments of degree, clustering
coefficient, the average degree of neighbors, weights, betweenness centrality. Besides, algebraic con­
nectivity, average shortest path, and degree of assortativity are calculated as well. Figure 4.1 indicates
the correlation heat­map of all calculated network metrics with each other. Large correlation values
are between the degree and weights distribution, as well as along and next to the diagonal, different
statistical moments of the same metrics are mostly correlated. This is due to the mathematical rela­
tionships between some network metrics such as degree and weight that are defined for nodes and
links, respectively. Thus, to avoid analyzing similar distributions, it is attempted to reduce the size of
the data­set. To this end, we reduced the number of metrics that are tightly correlated with each other,
for example, if two metrics are tightly correlated, one of them is removed from further analyses.
Figure 4.2 illustrates the correlation heat­map of reduced weighted network metrics with each other.
The final weighted network metrics that are going to be analyzed are:

1. Gw degree mean: the mean of nodes’ degree distribution

2. Gw degree std: the standard deviation of nodes’ degree distribution

3. Gw cc mean: the mean of nodes’ clustering coefficient distribution

4. Gw avdegnei mean: the mean of nodes’ average degree of neighbors’ distribution

5. Gw avdegnei std: the standard deviation of nodes’ average degree of neighbors’ distribution

6. Gw alg con: algebraic connectivity of the network

7. Gw deg assor: degree of assortativity of the network

8. Gw btw mean: the mean of nodes’ betweenness centrality distribution

9. Gw btw max: the maximum of nodes’ betweenness centrality distribution

10. Gw ave sh p: the average of all available shortest paths of the network

In subsection A.1.1, for each network metric, cloud scenes are ordered by the network metrics’ val­
ues. In each figure of subsection A.1.1, the corresponding network metric increases from left to right.
Additionally, the outliers of each metric distribution are removed from the low to high plots.
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Figure 4.1: Correlation heat­map of all weighted network metrics
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Figure 4.2: Correlation heat­map of reduced weighted network metrics
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Figure 4.3 shows the heat­map of correlation values between the weighted network metrics (x­axis)
and the previously defined metrics (y­axis). All the metrics illustrated in the y­axis are from the data­set
that is prepared by Janssens et al. (2021). Since the first name of the first author isMartin, we use this
name for the previously defined metrics in the remained parts of the thesis.

Importantly, there are only two correlations with a value larger than 0.7. First is the correlation be­
tween the degree of assortativity and size exponent (|𝑅| = 0.72), and the second is between fractal
dimension and betweenness centrality(|𝑅| = 0.73). Accordingly, the reason for the tightly correlated
metrics is explained in section 4.3. Interestingly, some of the weighted network metrics have low cor­
relation with Martin’s metrics. Consequently, section 4.4 investigates what poorly correlated metrics
with Martin’s metrics distinctly imply for cloud organization.
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Figure 4.3: Correlation heat­map of network metrics with Martin’s metrics. “Martins” refers to
Janssens et al. (2021)
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4.2. Removed­edge Delaunay Network Metrics
For this graph scheme, the calculated metrics are also various statistical moments of degree, clustering
coefficient, the average degree of neighbors, betweenness centrality. In addition to mentioned met­
rics, the degree of assortativity is computed for the removed­link network scheme. Unlike the weighted
scheme, algebraic connectivity and average shortest path are not calculated for the removed­link net­
works, since the removed­link networks are all disconnected, thus algebraic connectivity and average
shortest path are not helpful measures for the analysis of them. Figure 4.4 indicates the correlation
heat­map of all calculated network metrics with each other.

In subsection A.1.2, for each network metric, cloud scenes are ordered by the network metrics’ val­
ues. In each figure of subsection A.1.2, the corresponding network metric increases from left to right.
Additionally, the outliers of each metric distribution are removed from the low to high plots.
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Figure 4.4: Correlation heat­map of all removed­link network metrics
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Furthermore, Figure 4.5 depicts how removed­link network metrics are correlated with Martin’s metrics.
Surprisingly, the maximum of all correlation values is smaller than 0.5. Therefore, it indicates that all
removed­link network metrics are completely different metrics. Hence, we are led to ask whether the
removed­link metrics are nearly random. Recalling from subsection 3.2.2, this scheme is defined based
on arbitrary threshold values which are the function of the size and distance distribution of each field.
This raises the question of whether that threshold choice results in approximately random metrics.
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Figure 4.5: Correlation heat­map of removed­edge network metrics with Martin’s metrics
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To answer the mentioned question on the previous page, an important analysis is performed. To test
whether the removed­edge networks are randomly constructed, in addition to removed­edge networks,
randomly removed­edge networks are constructed. The removing process for the random version is
done based on two conditions:

for u, v, weight in G2.edges.data():

x1 = np.array([0,1])
r1 = np.random.random(1)
y1 = x1[0] * (r1 >= 0.5) + x1[1] * (r1 < 0.5)
x2 = np.array([0, 1])
r2 = np.random.random(1)
y2 = x2[0] * (r2 >= 0.5) + x2[1] * (r2 < 0.5)

if (y1 == 0 and y2 == 0) : G3.remove_edge(u, v)

where every two conditions have two different cases, thus, there are four cases in total. In each step,
only one case out of all four cases is chosen. In other words, it is attempted to keep everything as
much as similar to the removing process based on thresholds, and this makes the analysis somewhat
logical. For the comparison, the related code for the removed­link network based on area and distance
is as follows:
for u, v, weight in G2.edges.data():

xu, yu = G2.nodes()[u]['position']
xv, yv = G2.nodes()[v]['position']
d = np.sqrt((xv ­ xu) ** 2 + (yu ­ yv) ** 2)
area_u = (G2.nodes()[u]['cloud_area'])
area_v = (G2.nodes()[v]['cloud_area'])

if d > np.percentile(all_distances, 75) and 0.5 * np.mean(area_u,area_v) <
np.percentile(area,75): G3.remove_edge(u, v)↪

To compare the random metrics and removed­edge network metrics, the mean and standard deviation
of the distribution of the metrics are computed and plotted versus each other in Figure 4.6. Amazingly,
the figure shows that the distribution of both random and removed­edge network metrics are very similar
to each other. This result prohibits us to continue the analysis of this scheme in the remained parts of
the thesis.
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Figure 4.6: The mean (left) and standard deviation (right) values of the distribution of all
removed­edge network metrics and random metrics are plotted versus each other. The gray diagonal

line is the plot of equation 𝑦 = 𝑥.



4.3. Highly Correlated Metrics with Previously Defined Metrics 19

4.3. Highly Correlated Metrics with Previously Defined Metrics
In this section, how and why the tightly correlated network metrics and Martin’s metrics are related
is explored. Although it seems challenging to find and understand the justification, an appropriate
visualization of results may significantly clarify the interpretation.

4.3.1. Degree of Assortativity & Size Exponent
Figure 4.7 displays the two­dimensional histograms of assortativity degree (y­axis) and size exponent
(x­axis). The Pearson correlation between these metrics is negative with an absolute value of 0.72
i.e., with increasing the assortativity degree, the value of size exponent is decreasing. Additionally, the
degree of assortativity distribution manifests that this metric for the cloud fields is limited between 0
and 0.8, implying that all cloud fields are assortatively mixed networks.

The size exponent 𝑏 is obtained by
log𝑁𝑐 ∝ 𝑏 log 𝑙 (4.1)

where 𝑁𝑐 is the number of all clouds with sizes in bins that their width are increasing exponentially. The
term 𝑙 is a length scale that is calculated as 𝑙𝑖 = √𝐴𝑖 for the cloud object 𝑖 with the area 𝐴𝑖 (Ding et al.,
2014;Janssens et al., 2021).

Recalling from subsection 3.3.6, higher values of assortativity degree is associated with a larger ten­
dency of larger (smaller) clouds to be connected with larger (smaller) clouds. Figure 4.8 shows that in
cloud fields with a larger degree of assortativity, small clouds mostly tend to be linked to small clouds.
As figure 4.8a shows, this is related to a cloud field with a more homogeneous cloud size distribution.
Inversely, Figure 4.9 indicates that the more the homogeneity of cloud size distribution, the more the
value of size exponent. Hence, the larger the degree of assortativity, the smaller (larger) the value
(absolute value) of the size exponent.
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Figure 4.7: The figure shows the two­dimensional histograms of degree of assortativity and size
exponent.
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(a) Clouds

(b) Network; the size of each circle is scaled by the node’s degree.

Figure 4.8: The plots are arranged from low to high (left to right) by the degree of assortativity.
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(a) Cloud scenes

(b) Networks; the size of each circle is scaled by the node’s degree.

Figure 4.9: The value of size exponent increases from left to right.
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4.3.2. Betweenness Centrality & Fractal Dimension
Two­dimensional histogram of betweenness centrality mean (y­axis) and the fractal dimension (x­axis)
is illustrated in Figure 4.10. The two­dimensional histogram explains a negative correlation between
the metrics i.e., for a cloud field, the larger the fractal dimension, the lower the mean betweenness
centrality.

The fractal dimension 𝐷𝑓 is derived by

log𝑁𝑐 = 𝐷𝑓 log 𝑙𝑏 (4.2)

where 𝑁𝑐 is the number of square boxes with size 𝑙𝑏 that are neither completely filled by clouds nor
completely cloudless. The term 𝐷𝑓 is computed as a slope of fitted line to Equation 4.2 (Cahalan and
Joseph, 1989;Janssens et al., 2021).

The investigation of the relationship between the fractal dimension and mean betweenness centrality
appears to be complicated though, visualization helps us to intuitively comprehend the association of
these two metrics. In this regard, larger values of fractal dimension are corresponded to sugar types
of clouds (see Figure 4.11), accordingly the fields covered by the sugar clouds poss smaller values of
mean betweenness centrality (see Figure 4.12). In other words, a cloud field with homogeneously dis­
tributed small cloud objects, weights are relatively smaller compared to the other fields, consequently,
this reduces the availability of nodes with relatively high betweenness centrality.
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Figure 4.10: The figure shows the two­dimensional histograms of mean betweenness centrality and
fractal dimension.
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(a) cloud

(b) Network; the circle sizes are scaled by the nodes’ betweenness centrality.

Figure 4.11: Value of fractal dimension grows from left to right.
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(a) cloud

(b) Network; the circle sizes are scaled by the nodes’ betweenness centrality.

Figure 4.12: The scenes are arranged by the value of mean betweenness centrality from low (left) to
high (right).
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4.3.3. Can A Network Metric Replace One of the Principal Components?
One of the research questions of this study is whether a network metric can replace one of the first
principal components of the existing metrics. Figure 4.13 illustrates that the maximum absolute value
of Pearson’s correlation between the network metrics and the first four principal components of Mar­
tin’s metrics is 0.72. Figure S3. of Janssens et al. (2021) represents that the size exponent and the
fractal dimension have correlation values of more than 0.8 and 0.7 with the first and second principal
components, respectively. The absolute correlation values of assortativity degree and average be­
tweenness centrality are 0.72 and 0.68 with the first and second principal components. In addition to
what is mentioned, considering Figure 4.3 and Figure 4.13 led us to deduce that none of the network
metrics can replace one of the first principal components of Martin’s metrics, since Figure 4.3 shows
that the maximum absolute value of correlation between network metrics and Martin’s metrics is 0.73.
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Figure 4.13: Correlation heat­map of weighted network metrics with the first four principal
components of Martin’s metrics
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4.4. Poorly Correlated Metrics with Previously Defined Metrics
In this section, the aim is to probe what distinctly the poorly correlated weighted network metrics im­
ply for the cloud organization. Firstly, Figure 4.13 represents the correlation heat­map between the
weighted network metrics and the first four principal components of Martin’s metrics. The degree of
assortativity and betweenness centrality are tightly correlated with the first and second principal compo­
nents, respectively. On the other hand, Figure 4.13 reports relatively low values of correlation between
the principal components and other weighted network metrics.

Furthermore, we are led to answer the question of whether a linear combination of Martin’s metrics can
capture the variation in each network metric. To this end, a multiple linear regression analysis is done
as:

𝑦𝑗 =
20

∑
𝑖=0
𝑎𝑖𝑥𝑖 + 𝜖

where 𝑥𝑖 (each regressor) is one of the principal components of Martin’s metrics, 𝑎𝑖 are the coefficients
of the model, and 𝑦𝑗(𝑗 = 0, 1, ..., 9) is one of the network metrics. Thus, there are 10 models in total.
Correspondingly, Figure 4.14 indicates that the associated model cannot notably capture the variation
of degree standard deviation, mean of clustering coefficient, the standard deviation of the average de­
gree of neighbors, and the maximum betweenness centrality. Meaning that the aforementioned metrics
can explain a variation in cumulus cloud organization which is not explained by the previously defined
metrics.
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Figure 4.14: The figure shows the R­squared values of each multiple linear regression model. In each
model, the target feature is one of the network metrics and the regressors are all 21 principal

components of Martin’s metrics. To recall, the name of weighted network metrics can be found under
section 4.1.
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Before starting to see how strikingly the aforementioned metrics explain a variation in cloud fields,
the author wants to not further analyze the average degree of neighbors’ standard deviation and the
maximum betweenness centrality. As Figure 4.15 shows, the average degree of neighbors is approxi­
mately the same value for each node. This exactly matches with Equation 3.12 implying that the effect
of weight is somehow removed from the calculation of neighbors’ degree mean. Also, Figure 4.16 il­
lustrates that the maximum betweenness centrality is not an appropriate proxy of each field, since the
maximum value of each distribution can be extremely out of the bulk of the corresponding data­set.
subsection 4.4.1 and subsection 4.4.2 investigate the metrics degree standard deviation and clustering
coefficient mean in detail.

(a) cloud

(b) Network; the circle sizes are scaled by the average degree of neighbors’ node.

Figure 4.15: The average degree of neighbors gets larger from left to right.
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(a) cloud

(b) Network; the circle sizes are scaled by the nodes’ betweenness centrality.

Figure 4.16: The maximum betweenness centrality becomes larger from left to right.
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To address the goal of this section which is to explore why and how differently a network metric im­
plies for the cloud organization, it is attempted to limit the first four principal components of Martin’s
metrics in central bins i.e., −0.5 < 𝑃𝐶𝑖 < 0.5, 𝑖 = 1, 2, 3, 4 (see Figure 4.17). By limiting the princi­
pal components in central bins (red squares in Figure 4.17), they are somewhat prohibited to change
considerably. Hence, it makes the analysis possible to see how tangible a network metric explains
a variation in cumulus cloud scenes. To this end, in subsection 4.4.1 and subsection 4.4.2 the cloud
scenes are ordered from low to high in central bins.

Figure 4.17: The figure shows the cloud fields scattered on a plane spanned by the first four principal
components (PCs) of Martin’s metrics. The figure is originated from the code and data of Janssens

et al. (2021). The red squares represent the central bins approximately. In central bins, there are only
19 out of 5000 cloud scenes.
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4.4.1. Degree Standard Deviation
The lower the degree standard deviation, the more homogeneously distributed clouds on the scene
i.e., clouds are homogeneously positioned concerning each other, and simultaneously the cloud size
distribution is homogeneous (see Figure 4.18). Accordingly, a cloud field with a smaller degree standard
deviation potentially contains one organization mode. In contrast, a field with a larger degree standard
deviation has a higher potential to be made up of different organization modes. For instance, a field
covered by the sugar clouds has a considerably lower degree standard deviation compared to a field
that is covered by fish clouds and gravel clouds.

(a) cloud

(b) Network; the circle sizes are scaled by the nodes’ degree.

Figure 4.18: The cloud scenes are ordered by the degree standard deviation from left to right in
central bins.
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4.4.2. Clustering Coefficient Mean
Figure 4.19 demonstrates that clustering coefficient mean notably changes in central bins. In a Delau­
nay graph without weighted links, all nodes have relatively the same clustering coefficient. Thus, in the
weighted Delaunay network, weights play an indispensable role. Therefore, a cloud field with a large
average clustering coefficient is constructed of triangles with high­weighted sides. This can be three
cases:

• Relatively larger clouds as a node of each triangle

• Relatively smaller clouds but smaller distances between them

• It can be the combination of the first two cases

(a) Cloud; With increasing the weight of each edge the associated color changes from yellow to blue. Also, the thickness of
each link is scaled by the related weight. Besides, It is tried to put a red color for triangles with high­weighted sides (links). It can

be seen that the number of strong (red) triangles is notably more in the right plot compared to the left one.

(b) Network; the circle sizes are scaled by the nodes’ clustering coefficient.

Figure 4.19: The cloud scenes are ordered by the clustering coefficient mean from left to right in
central bins.
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4.5. Sensitivity Analyses
4.5.1. Sensitivity to the Distance Term
Recalling the weight function equation in subsection 3.2.1, the 𝑑 term in Equation 3.1 is the distance
between the centroids of cloud objects 𝑖 and 𝑗 (center­spacing distance). One could claim that when
one cloud object is considerably large, the 𝑑 term is inevitably large and consequently the weight of the
incident link to the associated node is small. This led us to change the 𝑑 parameter in Equation 3.1 from
a center­spacing distance to the edge­spacing distance. In a PhD thesis Laar (2019), Thirza van Laar
defined the edge­spacing distance as 𝑑−𝑅𝑖−𝑅𝑗, where 𝑑 is the center­spacing distance and 𝑅𝑖 , 𝑅𝑗 are
the radii of the circles with the same area and centroid of clouds 𝑖, 𝑗. Since the cumulus clouds are not
perfect circles, this definition may result in negative values of edge­spacing distance. Therefore, in this
sensitivity analysis, the definition of edge­spacing distance is slightly different compared to what Thirza
van Laar has proposed in Laar (2019). To compute the edge­spacing distance, these steps should be
performed:

1. Consider the line that connects the centroids of clouds 𝑖, 𝑗

2. Compute the pixel distance between the centroids

3. Subtract the cloudy pixels from the total pixel distance

In other words, the edge­spacing distance is the cloudless part of centre­spacing distance.
We re­performed the analysis over the whole data­set to compare the results of both perspectives,
center­spacing, and edge­spacing networks. Figure 4.20 illustrates an identical cloud filed with differ­
ent derived networks. The weight of the incidents links to the larger clouds is remarkably larger in the
edge­spacing scheme compared to the center­spacing scheme. Nevertheless, Figure 4.21 demon­
strates that the network metrics of these two different schemes are mostly correlated. The metrics that
have correlations lower than 0.7 are degree standard deviation (𝑅 = 0.38), clustering coefficient mean
(𝑅 = 0.5), and maximum betweenness centrality (𝑅 = 0.19). Compared to Figure 4.13, Figure 4.22
and Figure 4.23 indicate that the degree’s mean and standard deviation of the edge­spacing network
scheme are considerably more correlated with the first principal component of Martin’s metrics. Be­
sides, the metrics algebraic connectivity, degree of assortativity, betweenness centrality mean, and the
average shortest path are similarly correlated with the principal components of Martin’s metrics in both
center and edge­spacing network schemes.
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Figure 4.20: Left: The center­spacing network, Right: the edge­spacing network
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Figure 4.21: The two­dimensional histograms for the important network metrics. x­axis:
center­spacing scheme, y­axis: edge­spacing scheme



34 4. Results and Discussions

G
w

_d
eg

re
e_

m
ea

n

G
w

_d
eg

re
e_

st
d

G
w

_c
c_

m
ea

n

G
w

_a
vd

eg
ne

i_
m

ea
n

G
w

_a
vd

eg
ne

i_
st

d

G
w

_a
lg

_c
on

G
w

_d
eg

_a
ss

or

G
w

_b
tw

_m
ea

n

G
w

_b
tw

_m
ax

G
w

_a
ve

_s
h_

p

pc
_1

pc
_2

pc
_3

pc
_4

PC
A

0.71 0.59 0.46 0.34 0.4 0.67 0.65 0.37 0.092 0.65

0.16 0.13 0.31 0.49 0.098 0.12 0.18 0.65 0.34 0.3

0.023 0.15 0.23 0.0041 0.1 0.24 0.16 0.062 0.14 0.038

0.089 0.044 0.0045 0.012 0.0065 0.032 0.022 0.038 0.0071 0.0085

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pe
ar

so
n`

s 
co

rre
la

tio
n 

(R
)

Figure 4.22: Correlation heat­map of weighted network metrics (edge­spacing scheme) with the first
four principal components of Martin’s metrics
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Figure 4.23: The element­wise difference between two correlation heat­maps Figure 4.22 and
Figure 4.13
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4.5.2. Sensitivity to the Nodes on Boundaries
In this study, when a network is derived from a cloud field, it is inevitably assumed that the clouds located
on the boundaries of the field do not have any relationship with the clouds located out of the image
provided by the remotely sensed instrument. To investigate how this assumption affects the results
of this research, we re­performed the analysis by removing the boundary nodes from the statistical
analysis. In other words, the derived networks are the same as the original analysis, but the network
metrics are calculated excluding the nodes located on boundaries. In this regard, Figure 4.25 illustrates
that the network metrics are not sensitive to either including or excluding the boundary nodes. Because
of the high correlation between the metrics with and without boundary nodes the correlation analysis
of this sensitivity analysis is presented under section A.3.
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Figure 4.24: Painted cloud field with derived center­spacing network. The pink square encloses the
area without the boundary nodes. The size of square is 90 percent of the cloud field domain size.
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Figure 4.25: The two­dimensional histograms for the important network metrics. x­axis: network
metric with the nodes located on boundaries, y­axis: network metric without the nodes located on

boundaries
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4.6. Discussion Points
In this study, different network schemes are proposed to characterize the interaction between the cloud
objects that are present in cumulus cloud fields. As it is demonstrated, how the network is defined
remarkably affects all of the associated results. Accordingly, in the weighted network schemes, the
weight function is the most indispensable part of the analysis, and therefore the more logical the weight
function the more reliable the results. In this regard, the author wants to imply some important points
regarding this issue:

• Process­related Links
Active clouds are associated with strong upward motions related to notable physical and thermo­
dynamic processes occurring within the boundary layer. In contrast, the passive clouds are not
directly associated with the upward motions, and they may not actively interact with their nearest
neighbor. This led the author to mention that defining the weight function based on the physical
and thermodynamic processes coupled with clouds may lead to a network that more faithfully
characterize the interaction between cumulus cloud objects.

• Satellite or Large­Eddy Simulation Data
To define a process­related weight function, satellite images may not be useful, because it might
not be possible to deduce the wind speed and related updraft motions from the satellite data.
However, with the help of detailed cloud models such as Dutch Atmospheric Large­Eddy Simu­
lation (DALES) Heus et al. (2010) model, it is possible to obtain the characteristics of the updraft
motions and the other related processes.

• Temporal Analysis of Networks
Employing the models like DALES can be fruitful to investigate the evolution of clouds organi­
zation and its relationship with the associated meteorological conditions Janssens et al. (2021).
Analyzing the derived networks in time would be tremendously worthwhile in capturing the dy­
namics of the networks and that of cloud fields. Therefore, the next step of this research would
be devoted to analyzing the cloud fields in not only space but also time. The simplest idea to
start the analysis of derived networks from the cloud fields in time is to plot the time series of net­
work metrics to see how a network metric changes in a diurnal cycle. Besides, auto­correlation
analysis of LES data would help us to check the randomness of a network metric.





5
Conclusion

Clouds, in particular, shallow clouds over subtropical oceans are the most prominent source of uncer­
tainty in climate projections (Schneider et al., 2017). Scientists in atmospheric and climate sciences
have not yet concluded whether shallow clouds contribute to a lower ECS (cooling effect) or a higher
ECS (warming effect) (Schneider et al., 2017;Nuijens and Siebesma, 2019). Besides, shallow cumulus
clouds show diverse spatial patterns over subtropical oceans, and the occurrence probability of these
patterns can impact the global radiation budget of the Earth and consequently the climate feedback of
subtropical marine clouds (Janssens et al., 2021).

In this regard, numerous metrics have been proposed to quantitatively characterize the patterns and
organizations of clouds. Most of the proposed organization metrics are the bulk parameters of the
cloud fields. Correspondingly, the motivation of this research is to find a metric that can characterize
the mutual arrangement between cloud objects. To this end, network theory as a worthwhile tool is
employed for proposing metrics to quantify how cloud objects interact with and coordinate concerning
each other. We derive weighted networks from 5000 cloud fields from the NASA worldview website
from 2002 to 2020 within December to May. For each cloud field, different network metrics are cal­
culated. To understand how distinctly the proposed network metrics imply for cloud organization, we
compare them with the previously defined organization metrics that were collected by Janssens et al.
(2021).

Compared to the previously defined metrics, most of the network metrics are correlated with the non­
network metrics. The reason for the large values of correlation between the network and non­network
metrics may be the fact that our weighed network scheme is defined based on the area of and the dis­
tance between the cloud objects. Among the tightly correlated network metrics with the existing metrics,
two pairs of metrics have correlation values larger than 0.7 including mean betweenness centrality and
fractal dimension (𝑅 = −0.73) and degree of assortativity and size exponent (𝑅 = −0.72). Besides, it
is found that none of the network metrics can replace one of the first four principal components of the
existing metrics. Conversely, the linear combination of the principal components of previously defined
metrics cannot adequately capture the variation in two network metrics, mean of clustering coefficient
and degree standard deviation. Thus, the aforementioned metrics can uniquely capture variations that
have not been captured by previously defined metrics in cumulus cloud organization. Accordingly, a
large value of the average clustering coefficient is associated with the presence of a large number of
triangles with high­weighted sides (links) in the derived networks from cloud scenes. This is associ­
ated with the presence of either large clouds located on corners of triangles or relatively small clouds
closely coagulated. Besides, degree standard deviation simultaneously measures the homogeneity of
the cloud size distribution and the distance between nearest neighboring clouds distribution. Addition­
ally, the first sensitivity analysis reveals that our main results are not sensitive if the distance term is
either center­spacing or edge­spacing. Similarly, the second sensitivity analysis implies that our net­
work metrics are not susceptible to removing the nodes located on the boundaries of the cloud field
from the statistical analyses.
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Moreover, one should note that the most vital part of this research is how to define the network and
related weight function. In consequence, this issue notably controls all of the outputs of this study. In
this research, the weighted networks are defined based on only geometric properties of the cloud field,
clouds’ area, and the distance between the nearest neighbors. Therefore, it could be a difficult task
to deduce direct physical process­related conclusions from the geometric­based results. Hence, this
study can be improved by utilizing the network theory to define the process­related weight function. On
the other hand, instead of using satellite snapshots, the LES results are comparably fruitful to distinguish
active clouds from the passive clouds in the cloud scene. Eventually, the future work of this research
will be devoted to analyzing the dynamics of the networks in time to encapsulate the evolution of clouds
and their interaction not only in the spatial domain but also in the temporal domain. To this end, one
can start the temporal analysis with auto­correlation analysis of LES data to check the randomness of
the network metrics.
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Appendices

A.1. Sort Plots of Network Metrics
A.1.1. Weighted Network Metrics

Figure A.1: The cloud scenes are ordered by the degree mean value from left to right.
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Figure A.2: The cloud scenes are ordered by the degree standard deviation value from left to right.

Figure A.3: The cloud scenes are ordered by the clustering coefficient mean value from left to right.
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Figure A.4: The cloud scenes are ordered by the average degree of neighbors mean value from left to
right.

Figure A.5: The cloud scenes are ordered by the average degree of neighbors standard deviation
value from left to right.
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Figure A.6: The cloud scenes are ordered by the algebraic connectivity value from left to right.

Figure A.7: The cloud scenes are ordered by the betweenness centrality mean value from left to right.
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Figure A.8: The cloud scenes are ordered by the betweenness centrality max value from left to right.

Figure A.9: The cloud scenes are ordered by the average shortest path value from left to right.
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A.1.2. Removed­Edge Network Metrics

Figure A.10: The cloud scenes are ordered by the degree mean value from left to right.

Figure A.11: The cloud scenes are ordered by the degree standard deviation value from left to right.
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Figure A.12: The cloud scenes are ordered by the degree skewness value from left to right.

Figure A.13: The cloud scenes are ordered by the maximum degree value from left to right.
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Figure A.14: The cloud scenes are ordered by the clustering coefficient mean value from left to right.

Figure A.15: The cloud scenes are ordered by the clustering coefficient standard deviation value from
left to right.
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Figure A.16: The cloud scenes are ordered by the clustering coefficient skewness value from left to
right.

Figure A.17: The cloud scenes are ordered by the average degree of neighbors mean value from left
to right.
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Figure A.18: The cloud scenes are ordered by the average degree of neighbors standard deviation
value from left to right.

Figure A.19: The cloud scenes are ordered by the average degree of neighbors skewness value from
left to right.
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Figure A.20: The cloud scenes are ordered by the maximum average degree of neighbors value from
left to right.

Figure A.21: The cloud scenes are ordered by the betweenness centrality mean value from left to
right.
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Figure A.22: The cloud scenes are ordered by the betweenness centrality standard deviation value
from left to right.

Figure A.23: The cloud scenes are ordered by the betweenness centrality skewness value from left to
right.
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Figure A.24: The cloud scenes are ordered by the maximum betweenness centrality value from left to
right.

Figure A.25: The cloud scenes are ordered by the degree of assortativity value from left to right.



58 A. Appendices

A.2. Sensitivity to the Distance Term
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Figure A.26: Correlation heat­map of all edge­spacing network metrics
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Figure A.27: Correlation heat­map of reduced metrics for the edge­spacing network scheme
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Figure A.28: Correlation heat­map of edge­spacing network metrics with Martin’s metrics
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Figure A.29: The figure shows the R­squared values of each multiple linear regression model. In
each model, the target feature is one of the edge­spacing network metrics and the regressors are

principal components of Martin’s metrics.
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Figure A.30: The two­dimensional histograms for the 4th quartile of the important network metrics.
x­axis: network metric with the nodes located on boundaries, y­axis: network metric without the

nodes located on boundaries
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Figure A.31: Correlation heat­map of network metrics (without the nodes located on boundaries) with
the first four principal components of Martin’s metrics.
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Figure A.32: The element­wise difference between two correlation heat­maps Figure A.31 and
Figure 4.13
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Figure A.33: The figure shows the R­squared values of each multiple linear regression model. In
each model, the target feature is one of the network metrics (without the nodes located on

boundaries) and the regressors are principal components of Martin’s metrics.
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