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ABSTRACT ARTICLE HISTORY

The paper presents measurements of the lateral force and self- Received 30 July 2023
aligning torque from cargo and city bicycle tyres. Based on the exper- ~ Revised 26 February 2024
imental data, we have determined the parameters for the Magic Accepted 20 March 2024
Formula model, for lateral force and self-aligning torque. We per- KEYWORDS

formed tests with VeTyT, an indoor test rig specific for bicycle tyres, Lateral characteristics;
under different vertical loads (ranging from 343 N to 526 N), camber inflation pressure; test rig;

angles (=5, 0, 5) deg and inflation pressure (from 300 kPa to 500 kPa). dynamics; cargo bicycle
For each condition, we evaluated the cornering stiffness and found

that it generally decreases with the increase in inflation pressure for

the tour/city bicycle tyres. However, the cargo tyre tested showed

an opposite trend, with an increase in the cornering stiffness as the

inflation pressure increased from 300 kPa to 400 kPa.

1. Introduction

Tyres play a large role in vehicle dynamics [1,2]. Therefore, a lot of effort is devoted to
tyre development and modelling for cars [3,4] and motorcycles [5,6]. By way of analogy,
we expect that the tyres are also relevant in bicycle dynamics. As indicated in refs [7-9],
understanding the tyre characteristics may be essential for investigating the wobble (or
shimmy) phenomenon [10,11]. However, tyres” contribution has often been neglected in
bicycle models due to implementation complexities and lack of data on bicycle tyres [12].
The measurements are usually challenging and feature a low signal-to-noise ratio. In the
last decade, proper methods and testing machines have been developed to characterise
bicycle tyres with reasonable accuracy [13,14]. Even if outdoor tests can be performed in
a real environment, test rigs for indoor testing seem to provide repeatable and accurate
tests [15].

There is an increase in the use of bicycles, particularly after the Covid-19 pandemic
[16]. Also, cargo bikes are growing in use. Leading delivery companies are updating their
fleets with cargo bicycles for ‘last mile’ deliveries [17,18] as environment-friendly and effi-
cient means of transportation in urban areas. The cargo bicycles are mostly two-wheeled
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vehicles with an extended wheelbase to carry loads in front of the rider (known as ‘“front-
loader’ bicycles), or behind the rider (models known as ‘longtail’) [19]. There are also
three-wheeled cargo bicycles, with a large basket for goods or children usually in front of
the rider. These vehicles are usually designed so that they cannot tilt in a curve (with a few
exceptions, as [20]). These peculiarities require the development of specific tyres, capable
of handling high vertical loads and high accelerations (usually conceived for pedal-assisted
bicycles).

In this context, we tested both cargo and tour/city bicycle tyres. The data have been
measured with the indoor test rig VeTyT (acronym of Velo Tyre Testing), located in the
facilities of the Department of Mechanical Engineering of Politecnico di Milano [15,21].
To the best of the authors” knowledge, the VeTyT is currently the only bicycle tyre test rig
which has been certified ISO 9001-2015. The results have been then compared and dis-
cussed (Section 3). After that, we fitted our experimental data to the ‘Magic Tyre Formula’
(MF) [22] for modelling the tyres (Section 4). Data, code and results are made publicly
available [23].

The paper tries to close a still-existing gap in the availability of bicycle tyre data. These
results may be of great interest for enhancing the understanding of bicycle dynamics,
updating existing models with tyre contributions or providing a dataset of measurements
on bicycle tyres.

2. Methods

The experimental tests were performed with the VeTyT, a test rig specifically designed for
bicycle tyres [21] (Figure 1(A)). An aluminium frame carries the wheel on top of a flat track
while measuring lateral force and self-aligning torque. The VeTyT is laterally constrained
by a universal joint (acting as a hinge) and a Watt’s linkage (Figure 1(B)). This combination
allows a pure vertical motion at the tyre/ground contact point. The vertical displacement
occurs without any longitudinal component if the displacement is limited. The vertical dis-
placement must be allowed to filter out the effect of possible wheel or flat track unevenness.
Using two instrumented bars (two bars, one load cell per bar), we can measure the lateral
force at the contact patch between the tyre and the ground. First, we need to calculate the
force Fyy measured on the Watt’s linkage (Figure 1(B)), as follows (1).

Fw = Fw_s, — Fw_p, (1)

where Fy_g, and Fyw_p, are the forces from the load cells (we define S, and Dy to dis-
tinguish the load cells). The sign of the forces Fyy_g, and Fy_p, will be always different.
When the load cell S, is under traction, the correspondent D, is under compression. This
is due to the kinematic properties of the system. The lateral force F) can be evaluated as
follows (2).

Fy = (FwLy — M;)/(Licosa) (2)

The distances L; and L, are known (Figure 2(A)), M; is the self-aligning torque (mea-
sured), a is the slip angle.

The vertical load acting on the tyre can be varied by simply adding masses to the frame.
We measure the actual vertical force with a load cell on top of the steering shaft. The latter
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Figure 1. Test-rig VEeTyT. In (A), you can see the main subsystems of the testing device. It carries a bicycle
tyre running on a flat track. In this picture, the tyre is mounted on a high-stiffness laboratory rim (adapted
from [21,43]). In (B), the Watt's linkage. It constrains the lateral motion, while it allows a limited vertical
motion.

is mounted so that its axis corresponds to the vertical axis of the testing machine. Such an
axis crosses the longitudinal axis of the VeTyT in the contact patch (Figure 2(B)).

The forces acting on the VeTyT were recorded at a 1612 Hz sample rate. Raw data were
filtered using a 4th-order low-pass band Butterworth filter, implemented in the commercial
software MATLAB® R2021a (MathWorks, Natick, USA) [24]. To avoid detrimental high-
frequency components, the cut-off frequency of the filter was set to 2 Hz. Signals with high-
frequency components coming from Watt’s linkage load cells and from the load cell for the
self-aligning torque are depicted in Figure 2(C). The results come from averaging multiple
tests. However, before averaging, different test runs need to be realigned for time (the x-axis
in Figure 2(D)) using an appropriately implemented algorithm.

Tests were performed on the flat track [25]. The flat track consists of a poly-V belt sup-
ported by a specifically manufactured aluminium plate. To minimise friction and wear of
the belt, an air system inflates a mixture of pressurised air and silicone oil between the belt
and the aluminium plate.

During this experimental campaign, we tested bicycle tyres under different vertical
loads, camber angles and inflation pressures. An overview of the tyres we tested is depicted
in Table 1. In Section 3, we present all the tests performed, clarifying the test conditions.
For better clarity, we assign three-digit codes to the tyres alongside the full name of the tyre
model.

3. Tyre testing

In this section, we present the measurement results referring to the tyres listed in Table 1.
Each tyre is discussed in a subsection, providing details on the configuration and the
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Figure 2. Some VeTyT features: (A) is a top view of the VeTyT, with the indications of lateral force Fy,
the force measured by the Watt's linkage Fy and the distances Ly and L;, useful for the evaluation of
equilibrium of momentum for the centre of the universal joint. The latter can be assumed as the kine-
matic hinge. Picture adapted from [44]. (B) VeTyT frame and construction axes. The vertical axis crosses
the longitudinal one in the contact point tyre ground. Here you can see a schematic lateral view of VeTyT
mounted on top of a drum. (C) Signals from VeTyT: raw data from load cells in Watt’s linkage as a function
of acquisition time, before the filtering procedure (first plot). In the plot below, the non-filtered force for
the evaluation of self-aligning torque is depicted as a function of acquisition time. (tyre CST Brooklyn
(T02), camber 0°, vertical load 411 N, inflation pressure 300 kPa). (D) Data from three repeated tests (tyre
CST Brooklyn, camber —5°, vertical load 449 N, inflation pressure 400 kPa). In the first plot, we can see
the force measured by Watt's linkage as a function of acquisition time. In the plot below, the slip angle
o. is depicted as a function of acquisition time, for three repeated tests.

peculiarities of the test. To collect the test results, tables are largely used. The data linked
to the results presented hereafter are publicly available [23].

We limited the tested camber angle to =5° to avoid detrimental resonance of the test
rig, which may affect the measurements. In addition, it is worth noticing that this paper
presents the results of a batch of bicycle tyres commonly used on tour/city bicycles, pri-
marily conceived for work, commuting or leisure activities. Therefore, we do not expect
significant variations in camber angle.
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Table 1. Tyres tested with VeTyT. Tyre brand, commercial series label, dimensions and ETRTO standards
(European Tyre and Rim Technical Organisation) are reported alongisde the rim used for each tyre we
tested. In the last column, you can find the three-digit codes used to identify the tyres in the paper.

Brand Series Dimensions ETRTO Rim ID code
Schwalbe Balloon, Big Ben 2017 x 2,15 55-406 Mach?1 Kargo (Disc) 207/ (406-25c) T01
Plus
CST Brooklyn 2077 x 2,15 55-406 Mach1 Kargo (Disc) 207/ (406-25c¢) T02
Schwalbe 50km  Energizer, 2817 x 1,75 47-622 Shimano Deore (HB-M525A), 28/ (622) T03
Plus G-Guard
5/Addix-E
Schwalbe 50km  Energizer, 2817 x 1,75 47-622 Shimano Deore (HB-M525A), 28/ (622) T04
Active Plus P-Guard
5
Scalato Mondano 28717 x 2,15 55-622 Shimano Deore (HB-M525A), 28/ (622) TO5

All the tests were performed at a rolling speed of 9.3 km/h, to ensure result repeatability
while avoiding detrimental increase in the temperature of the rolling surface [26]. The latter
was constantly monitored with a thermal camera and/or pyrometer, to be in the admissible
range for tests (22-30°C) [27]. We measured both the lateral force and the self-aligning
torque, varying working parameters (vertical force, inflation pressure and camber angle).
The cornering stiffness can be evaluated from the lateral force as a function of the slip angle,
according to (3)

SF,

Cr, = 5 "la=0 3)

The cornering stiffness estimates have a 1.5% uncertainty and a self-aligning torque of 2.5%
based on the procedure described in [21].

3.1. Cargo bicycle tyres

We tested two cargo bicycle tyres, with the same overall dimensions but manufactured by
different companies. Due to the smaller size of the tyres (20”), it was necessary to design a
special steel fork to carry the wheel on top of the flat track (Figure 3(A)). In addition, we
manufactured steel plates to attach the wheel to the fork, with tight tolerances to ensure
proper alignment of the tyre for the rolling surface (Figure 3(B)).

3.1.1. Schwalbe Balloon (Big Ben Plus) - TO1
The Schwalbe Balloon tyre (labelled as T01), series ‘Big Ben Plus’, has been specifically
designed for e-bikes and cargo bikes. It features by 3 mm puncture protection layer and
reinforced sidewalls, enabling it to carry heavy loads (according to the Schwalbe website
[28]). We tested the 20" x 2,15 tyre, applying vertical loads of 411 and 526 N, inflation
pressure of 400 kPa, camber angle (=5, 0, 5) deg. With thisload configuration, we simulated
the scenarios of a cargo bicycle without any additional load and a medium load case with
a package in the front basket. Testing at higher vertical loads is still not possible due to the
technical limitations of the test rig and the existing set-up [19].

The results for the vertical load of 411 N, varying the camber angle, are shown in
Figure 4(A,B), for lateral force and self-aligning torque, respectively. As for the camber
angle equal to 0°, with variations in vertical load, the results are depicted in Figure 4(C,D).
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(A) B

Figure 3. Test-rig VeTyT with the cargo bicycle tyre mounted. You can notice the long steel fork used to
accommodate the cargo bicycle tyre. In (B), the steel plates are used to mount the wheel on the steel
fork. Pictures adapted from [19].

Given the large number of figures, we decided to provide an overview of the most
significant plots and collect all the relevant findings into tables.

As the vertical load increases, both the lateral force and the self-aligning torque increase
in magnitude (Figure 4(C,D)). The tyre can generate higher forces with a higher vertical
load. The peak value of the lateral force will be reached for very large slip angles (> 6]
degrees, the maximum value tested in this study), as shown in Figure 4(A,C). Tyres for
cargo bicycles are designed to carry large loads; therefore, we expect to reach saturation
conditions for higher vertical forces. Cornering stiffness values evaluated according to (3)
are collected in Table 2, for different vertical loads and camber angles. Then, the variation
of cornering stiffness Cp, due to vertical load is expressed in % in the last column, for the
same camber angle. Cornering stiffness values C, for the same vertical load but different
camber angles are expected to be similar [29], as shown in Table 2. Conversely, remarkable
variations in Cp, are reported due to vertical load increase. With an additional vertical load
of 115N or so, we found a variation of 24% in cornering stiffness for a camber angle equal
to 0°, which could result in different bicycle handling.

3.1.2. CST Brooklyn-T02

Similar to what is described for the Schwalbe Balloon, the CST Brooklyn (T02) features a

carcass designed to handle heavy loads, stiff sidewalls and an anti-puncture layer [30].
The results of lateral force and self-aligning torque for different working conditions are

depicted in Figure 5 (inflation pressure 400 kPa, F, = 411 N, camber angle (-5, 0, 5) deg

in (A) and (B); inflation pressure 300 kPa, F; (411, 449, 526) N, camber angle 0° in (C) and

(D).
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Lateral force vs slip angle Self-aligning torque vs slip angle
P = 400kPa, Fz=411N F'=400kPa,FZ=411N
400 T T T T 3 T T T T

3 g
w” -~
=
-3 L
-4 3 2 -1 0 1 2 3 4
a [deg] « [deg]
(A) (8)
Lateral force vs slip angle Self-aligning torque vs slip angle
P = 400kPa, ~ = 0° P = 400kPa v = 0°
500 ! : : 3 : - - -
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Figure 4. Lateral force Fy [N] and self-aligning torque M, [Nm] (B) as a function of slip angle « [deg],
tyre Schwalbe Balloon (T01). In (A) and (B), results for inflation pressure of 400 kPa, vertical load of 411 N,
camber angle equal (=5, 0, 5) deg. In (C) and (D), results for inflation pressure of 400 kPa and camber
angle equal to 0° (pictures adapted from [19]).

Table 2. Cornering stiffness under different vertical loads (third and fourth columns), for the same infla-
tion pressure (400 kPa), tyre Schwalbe Balloon (T01). In the last column, the variation (in percentage)
of cornering stiffness due to increasing vertical load, referring to the lowest vertical load tested (here
411N).

% Variation

Inflation Camber CFy [N/deg] CFy [N/deg] CFyFZ[N]:
pressure angle (F; = 411N) (F; = 526N) 526 vs 411
400 kPa —5° 83,5 107,3 +28%
0° 85,1 105,5 +24%
5° 84,2 103,8 +23%

The cornering stiffness increases with the vertical load while keeping the pressure con-
stant (Table 3). Similar observations may be drawn for inflation pressure. C F, has a limited
increase as the inflation pressure increases from 300 to 400 kPa. However, we cannot clearly
define a trend as we only have data for two different pressures.

The self-aligning torque as a function of the slip angle (Figure 5(B,D)) is asymmetrical
for the origin of the axis, leading to unexpected results. To ensure the accuracy of the data
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Lateral force vs slip angle Self-aligning torque vs slip angle
P = 400kPa, Fz=411N P=400kPa,FZ=411N
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Figure 5. Lateral force F, [N] and self-aligning torque M, [Nm] as a function of slip angle o [deg], tyre
CST Brooklyn (T02). In (A) and (B), results for inflation pressure of 400 kPa, vertical load 411 N, camber
angle equal to (—5, 0, 5) deg. In © and (D), results for inflation pressure of 300 kPa, camber angle 0°, a
vertical load of (411, 449, 526) N.

acquisition process, we repeated multiple tests on different days, coming to similar outputs.
We analysed the contact patches using a pressure-sensitive film and we found a remarkable
asymmetry in the contact pressure distribution (Figure 6. Blue dash-dot line represents the
median plane line). The varying intensity of the colour in the film corresponds to a different
pressure level, where a more intense colour means higher pressure. A visual inspection of
the tyre’s external surface also revealed a ‘step” between the left and right side of the tyre, for
the median plane line. This may account for some unexpected results. The misalignment
left-right sides is not constant over the entire tyre (Figure 6(B)). Furthermore, this feature
only affects self-aligning torque as we do not find any specific peculiarities in lateral force
measurement (Figure 5(A,C)).

In Figure 7, the cornering stiffness values are depicted as a function of the vertical
force F,. The values of Cf, are higher for the highest tested inflation pressure (in this case
400 kPa). This peculiar trend was not found for the other tyres we tested. This behaviour
may be due to the specific properties of the carcass of cargo bicycle tyres, which may
account for these unexpected results. Also, consider that cargo tyres are conceived to
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Table 3. Cornering stiffness [N/deg] under different vertical loads, inflation pressures (300 and 400 kPa),
tyre CST Brooklyn (T02). In the last column, the variation (in percentage) of cornering stiffness due to
increasing vertical load, referring to the lowest vertical load tested (here 411 N).

% Variation
Cr, F;IN]: 449 vs

Inflation Camber CFy [N/deg] CFy [N/deg] CFy [N/deg] 411 (F;[N]: 526

pressure angle (F, = 411N) (F, = 449N) (F, = 526N) vs411)

300 kPa —5° 110,7 1229 139,8 +11% (4+26%)
0° 117,2 1274 140,7 +8% (420%)
5° 121,9 136,1 148,5 +11% (4+22%)

400 kPa —5° 121,0 132,2 140,7 +9% (416%)
0° 124,0 136,3 143,1 +10% (4+15%)
5° 130,0 144,0 148,2 +10% (+14%)

(A) (B)

Figure 6. Contact patch on pressure-sensitive film for inflation pressure 400 kPa, vertical load 449N
(contrast set to —40% to increase readability), tyre CST Brooklyn (T02). Dash-dot lines represent the
median plane lines. In (A) and (B) we can see the results from the same tyre, but different locations on
the tyre itself.

carry high vertical loads. Therefore, an increase in inflation pressure may lead to a fur-
ther increase in the tyre’s lateral characteristics as we are still far from the saturation limit.
Unfortunately, we could not test under higher vertical loads, due to the technical limitations
of the test rig.

3.2. Tour/city bicycle tyres

We tested four tyres commonly used on bicycles for commuting and/or leisure. Cornering
stiffness values Cp, are collected in tables. We set the inflation pressure to (300, 400 and
500) kPa, camber angle (—5, 0 and 5) deg, vertical load (343, 404 and 488) N. The Scalato
Mondano tyre was tested only for inflation pressures (300, 400) kPa.

3.2.1. Schwalbe 50 km Energizer (Plus G-Guard 5/Addix-E) - T03

According to the manufacturer’s specs, this tyre was specifically designed for e-bikes. It is
certified ECE-R75, making it suitable for fast e-bikes (over 25 km/h motor assist bicycles)
(information available on Schwalbe website [28]).

Lateral force and self-aligning torque are presented for different working conditions
(Figure 8).

The variation of camber angle for constant inflation pressure and vertical load causes a
shift in the curve of lateral force relative to the reference camber angle of 0°. The shift is
downward for negative camber angles and upward for positive camber angles (according
to standard ISO 8855 [31]).
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Cornering stiffness (v = 0°) vs FZ - CST Brooklyn (T02)
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Figure 7. Cornering stiffness CFy [N/deg] as a function of vertical force F, [N], tyre CST Brooklyn (T02).
Results for inflation pressure of 300 and 400 kPa, camber angle equal to 0°.

As for the self-aligning torque, a non-linear behaviour is observed for slip angles > |1,5|
deg. Furthermore, an increase in the vertical load results in an increase in the self-aligning
torque as the lateral force also increases. The influence of camber angle on the self-aligning
torque is similar to its effect on the lateral force, however, with a reduced impact at lower
slip angles. It is difficult to notice a clear trend for twisting torque, which is defined as
the self-aligning torque for slip angles equal to 0° at different camber angles [13,32]. The
cornering stiffness values are collected in Table 4.

Figure 9 presents a comparison of Cp, for different inflation pressures. The lowest infla-
tion pressure tested (300 kPa) provided the largest cornering stiffness. As the inflation
pressure increases, the cornering stiffness decreases. Cp, also increases along with the
vertical load, for all the pressures tested.

3.2.2. Schwalbe 50 km Energizer (Active Plus P-Guard 5) - T04
Similar to the tyre presented in 3.2.1, this tyre shares the same tread patterns and layers,
but it is featured by a different compound.

The results for different camber angles and vertical loads are presented in Figure 10.
Although the lateral force does not show any unexpected behaviour, the self-aligning
torque does not have a clear peak when the inflation pressure is equal to 500 kPa. It is hard
to observe a defined curve trend, for all the camber angles we tested. Excessive inflation
pressure may elicit unpredictable results.

The results for cornering stiffness Cg, obtained for different tests are collected in Table 5.
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Self-aligning torque vs slip angle
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Figure 8. Lateral force F, [N] and self-aligning torque M, [Nm] as a function of slip angle o [deg], tyre
Schwalbe Plus (T03). In (A) and (B), results for inflation pressure of 300 kPa, vertical load 488 N, camber
angle equal to(—5, 0, 5) deg. In (C) and (D), results for inflation pressure of 300 kPa, camber angle 0°, a

vertical load of (343, 404, 488) N.

Table 4. Cornering stiffness for different vertical loads and inflation pressures (300, 400 and 500 kPa).
In the last column, the variation (in percentage) of cornering stiffness due to increasing vertical load,
referring to the lowest vertical load tested (here 343 N).

% Variation
CFsz[N]: 404 vs

Inflation Camber CFy [N/deg] CFy [N/deg] pr [N/deg] 343 (F,[N]: 488

pressure angle (F; = 343N) (F; = 404N) (F, = 488N) vs 343)

300 kPa —5° 107,9 11,7 113,2 +3% (+5%)
0° 105,2 113,6 1235 +8% (+17%)
5° 102,0 112,5 124,5 +10% (422%)

400 kPa —5° 92,6 112,0 120,2 +21% (430%)
0° 98,2 108,1 1244 +10% (426%)
5° 99,3 107,8 119,7 +8% (4+20%)

500 kPa —5° 87,7 97,0 109,6 +10,6% (+25%)
0° 86,6 90,1 11,6 +4% (+28%)
5° 83,7 85,3 1153 +2% (+38%)
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Cornering stiffness (v = 0°) vs Fz - Schwalbe Plus (T03)
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Figure 9. Cornering stiffness Cr, [N/deg] as a function of vertical force F; [N], tyre Schwalbe (T03).
Results for inflation pressure of (300, 400, 500) kPa, camber angle equal to 0°.

Both the lateral force and the cornering stiffness increase with the vertical load, at con-
stant inflation pressure (Figure 11). However, a peculiar behaviour was observed at infla-
tion pressure equal to 500 kPa. Similar to the self-aligning torque, the unexpected trend
could be attributed to very high inflation pressure, overtaking the values the manufacturer’s
recommended values.

3.2.3. Scalato Mondano - T05

The tyre ‘Scalato Mondano’ is designed for city bikes, especially for e-bikes (usually heav-
ier than muscular bicycles). As mentioned before, this tyre was tested only for inflation
pressures of (300, 400) kPa.

The results from tests are depicted in Figure 12, for different camber angles (in (A) and
(B)), and different vertical loads (in (C) and (D)).

While maintaining a constant inflation pressure, the camber angle is responsible for the
increase in the lateral force (Figure 12(A)). The same can be stated for the self-aligning
torque, for high-side slip angles (Figure 12(B)). The cornering stiffness increases with the
vertical load, keeping the inflation pressure constant (Figure 12(C)). Conversely, the cor-
nering stiffness decreases with the increase of the inflation pressure when the vertical load
is kept constant (Table 6).

Regarding the self-aligning torque, the peak values increase in magnitude as the vertical
load increases. This is particularly visible for high slip angles ( > [1,5| deg) (Figure 12(D)).

Numerical results from tests are summarised in Table 6.
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Lateral force vs slip angle Self-aligning torque vs slip angle
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Figure 10. Lateral force f, [N] and self-aligning torque M, [Nm] as a function of slip angle a [deg]. In
(A) and (B), results for inflation pressure of 500 kPa, vertical load 404 N, camber angle equal to (-5, 0, 5)
deg. In (C) and (D), results for inflation pressure of 400 kPa, camber angle 0°, a vertical load of 343, 404,
488 N.

Table 5. Cornering stiffness for different vertical loads and inflation pressures (300, 400 and 500 kPa).
In the last column, the variation (in percentage) of cornering stiffness due to increasing vertical load,
referring to the lowest vertical load tested (here 343 N).

% Variation
CFsz[N]: 404 vs

Inflation Camber pr [N/deg] pr [N/deg] pr [N/deg] 343 (F,[N]: 488

pressure angle (F, = 343N) (F, = 404N) (F, = 488N) vs 343)

300 kPa —5° 96,9 102,9 1158 +6% (+19%)
0° 100,1 107,0 1234 +7% (4+23%)
5° 89,8 104,8 121,2 +16% (435%)

400 kPa —5° 758 89,7 97,8 +18% (429%)
0° 81,7 89,6 101,7 +9% (+24%)
5° 79,5 87,3 104,2 +10% (4+31%)

500 kPa —5° 76,5 108,4 124,6 +41% (+62%)
0° 791 114,4 120,3 +44% (4+52%)

5° 81,7 108,5 132,7 +32% (4+62%)
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Cornering stiffness (v = 0°) vs Fz - Schwalbe Active (T04)
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Figure 11. Cornering stiffness Cr, [N/deg] as a function of vertical force F; [N], tyre Schwalbe Active
(T04). Results for inflation pressure of (300, 400, 500) kPa, camber angle equal to 0°.

When the pressure increases the cornering stiffness Cp, decreases (Figure 13). The trend
exhibits an increase with vertical load, and the curves appear to be shifted by a magnitude
of approximately 10 N/deg.

3.3. Comparisons

Comparing the results obtained for the Schwalbe Balloon (Big Ben Plus — T01) and the
CST Brooklyn T02 (same wide tyres), we notice that the cornering stiffness Cp, of the CST
tyre TO02 is remarkably higher than that of Schwalbe Balloon T01, for the same inflation
pressure (400 kPa) and vertical load (411 and 526 N) (Figure 15(A)). Specifically, C F, ison
average +47% for a vertical load of 411 N, and +36% for F, = 526 N. We guess that this
may be due to differences in sidewall stiffness, hard compound and tread pattern geometry.
While the Schwalbe Balloon T01 features 2.3 mm tread pattern depth, the CST Brooklyn
T02 tread pattern is smoother and just 1.9 mm depth (—17%) (see Figure 14), therefore, to
some extent closer to a slick tyre. These features may justify the remarkable difference in
cornering stiffness. Note that the tyres were mounted on the same rim (Mach1 Kargo) for
the tests.

The CST Brooklyn (T02) Cr, results are similar to the ones of the Scalato Mondano
(T05) (Figure 15(C)), under the same working conditions (inflation pressure 400 kPa, cam-
ber angle 0°). Among the tested tyres, the Schwalbe Balloon (T01) has the lowest value of
cornering stiffness.

In [33], a Schwalbe cargo bicycle tyre was tested employing a truck for outdoor testing.
Unfortunately, a direct comparison of the results cannot be carried out since they tested
under higher vertical loads (for 625 N to 765 N, camber angle equal to 0°). They pointed out
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Figure 12. Lateral force F, [N] and self-aligning torque [Nm] as a function of slip angle a [deg], tyre
Scalato Mondano (T05). In (A) and (B), results for inflation pressure of 400 kPa, vertical load 404 N, camber
angle equal to (—5, 0, 5) deg. In (C) and (D), results for inflation pressure of 300 kPa, camber angle 0°, a
vertical load of 343, 404, 488 N.

Table 6. Cornering stiffness for different vertical loads, inflation pressures (300, 400 kPa), tyre Scalato
Mondano (T05). In the last column, the variation (in percentage) of cornering stiffness due to increasing
vertical load, referring to the lowest vertical load tested (here 343 N).

% Variation CFY F,[NI:

Inflation Camber Cr, [N/deg] Cr, [N/deg] Cr, [N/deg] 404 vs 343 (F,[NI:

pressure angle (F, = 343N) (F, = 404N) (F, = 488N) 488 vs 343)

300 kPa —5° 140,9 144,3 163,2 +2% (4+15%)
0° 132,0 145,0 158,5 +10% (4+20%)
5° 129,4 139,6 147,5 +8% (+14%)

400 kPa —5° 1251 140,6 153,0 +12% (+22%)
0° 121,1 136,8 149,8 +13% (423%)
5° 120,6 132,5 148,2 +10% (423%)

a decrease in cornering stiffness as the inflation pressure increases (from 300 to 400 kPa),
contrariry to what was observed for the CST Brooklyn (T02) we tested. This may be due
to the differences in vertical loads (100 N higher in [33]). Regarding the vertical load of
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Cornering stiffness (v = 0°) vs Fz - Scalato Mondano (T05)
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Figure 13. Cornering stiffness C, [N/deg] as a function of vertical force F; [N], tyre Scalato Mondano
(TO5). Results for inflation pressure of (300, 400) kPa, camber angle equal to 0°.

(A) (B)

Figure 14. Detail of tread pattern. In (A), Schwalbe Balloon (Big Ben Plus — T01) 207/ x 2,15.In (B), CST
Brooklyn (T02) 20/ x 2,15.
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Cornering stiffness (v =0°) vs Fz - 300 kPa
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Figure 15. Cornering stiffness comparison for different tyres. (A) cargo bicycle tyres T0O1 and T02, for
camber angle equal to 0° and inflation pressure 400 kPa. (B) tour/city bicycle tyres, for a camber angle
equal to 0° and inflation pressure of 300 kPa. (C) tour/city bicycle tyres, for camber angle equal to 0°
and inflation pressure of 400 kPa. (D) tour/city bicycle tyres, for camber angle equal to 0° and inflation
pressure of 500 kPa. We do not have data for inflation pressure of 500 kPa for the Scalato Mondano (T05)
tyre, so we can only compare results from two tyres (respectively, T03 and T04). (E) shows the cornering
stiffness as a function of the inflation pressure, depicted for different vertical loads (411, 449, 526 N), for
CST Brooklyn (T02). (F) is equivalent to (E), but reports the results for the tyres T03, T04 and T05.
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625N, the cornering stiffness found in [33] was about 180-190 N/deg, resulting in 35%
higher than the value measured for CST Brooklyn (T02) at 526 N.

As for tour/city bicycle tyres, the Scalato Mondano (T05) exhibits the highest corner-
ing stiffness, both for inflation pressure 300 and 400 kPa. The tyre T05 indeed shows a
stiffer and smoother tread pattern. As stated before for CST Brooklyn T02, this may jus-
tify larger cornering stiffness. The Schwalbe tyres (T03 and T04) feature very similar tread
patterns and Cr, an inflation pressure of 300 kPa (Figure 15(B)), with an average differ-
ence of 4% (Table 7). Then, the C F, of the Schwalbe Plus (T03) is higher than the Schwalbe
Active (T04) at an inflation pressure of 400 kPa (maximum pressure recommended by the
manufacturer). Surprisingly, the T03 Cp, at an inflation pressure of 500 kPa is higher than
Schwalbe Plus (T03) as the vertical load increases (Figure 15(D)). Schwalbe Plus (T03)
features an additional anti-puncture layer. This may partially justify the differences in the
measured pr.

As already stated, road racing bicycle tyres feature the superimposition of different layers
(as anti-puncture protection) [34] which may cause a remarkable deviation in tyre charac-
teristics as a function of working parameters. The interaction between different compound
layers is hard to predict, resulting in unclear trends. On the contrary, for tyres with a few
layers (without specific anti-puncture protection,) it seems to be easier to find a specific
trend [27].

The inflation pressure also plays a relevant role in tyre cornering stiffness, as depicted
in Figure 15(E,F). In (E), we report the Cp, as a function of the inflation pressure, for the
cargo bike tyre CST Brooklyn T02. We have no data for different inflation pressures for
tyre Schwalbe Balloon T01, indeed. As we only have results for two different inflation pres-
sures (300 and 400 kPa), we can see the increase in Cr, for all the tested vertical loads.
Whether we focus only on pressure 300 and 400 kPa, this is exactly the contrary of what
happens for the tour/city bicycle tyres T03, T04 and T05. This may be explained by consid-
ering that the cargo tyre T02 can carry vertical loads higher than the tested ones; therefore,
we are still far from the saturation limit. An increase in the inflation pressure may still
allow carrying higher vertical loads without impacting negatively the lateral characteris-
tics. Contrarily for the tyres T03, T04 and T05 (Figure 15(F)), higher inflation pressure
mean a decrease in the Cr, (from 300 to 400 kPa). They are conceived to carry lower
vertical loads than cargo bike tyres, thus justifying the decreasing trend. Although this
applies for inflation pressure up to 400 kPa, the tyre T04 increases in Cp, for higher pres-
sures (we cannot state anything for pressure higher than 500 kPa as we constrained the
research to the range of pressures recommended by the manufacturer - 300-500 kPa). The
T04 mainly differs from the T03 in the presence of an anti-puncture protection layer. As
mentioned before referring to (D), the addition of multiple layers during the manufac-
turing process may affect the tyres’ characteristics. To some extent, in [34] we also found
that the cornering stiffness of racing bicycle tyres obtained from multiple layers of differ-
ent compounds is more sensitive to pressure variation, sometimes leading to unexpected
results.

CF, of tour/city tyres is collected in Table 7, and the percentage variation between tyres
Cp, is reported in the last column.

As expected, all the tyres show an increase in cornering stiffness as the vertical load F,
increased, with all the inflation pressures tested [27,35].
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Table 7. Comparison of cornering stiffness for different tour/city tyres Schwalbe Plus (T03), Schwalbe
Active (T04) and Scalato Mondano (T05). In the last column, the variation (in percentage) for different
tyres, with the same working conditions (same inflation pressure and vertical load).

Cr, [N/deg] Cr, [N/deg] Cr, [N/deg] % Variation Cf,
Inflation Vertical Schwalbe Plus Schwalbe Scalato T04 vs TO3 (TO5
pressure load F, -T03 Active - T04 Mondano - T05 vs T03)
300 kPa 343N 105,2 100,1 132,0 5% (25%)
404N 113,6 107,0 145,0 6% (27%)
488N 123,5 123,4 158,5 0% (28%)
400 kPa 343N 98,2 81,7 121,1 16,5% (23%)
404N 108,1 89,6 136,8 17% (26%)
488N 124,4 101,7 149,8 18% (20%)
500 kPa 343N 86,6 791 / 8%
404N 90,1 114,4 / 27%
488N 111,6 120,3 / 7%

4. Modelling

After collecting the experimental data, we fit the Pacejka Magic Formula [36,37] to the
data. The current study refers to steady-state working conditions, neglecting the transient
effects [38]. We investigate the use of a simplified semi-empirical Magic Formula (4) [39],
which is easy to manage and still suitable for our purposes. It requires the identification of
14 parameters for lateral force and 18 parameters for self-aligning torque, using an iterative
optimisation process. More complex Magic Formula models can also take into account the
effect of pressure variation; nonetheless, they need to be integrated with more parameters,
which are currently hard to measure with our experimental set-up. The literature on bicy-
cle tyre modelling is still poor, and technological limitations of the experimental apparatus
used for testing do not allow the measurement of a large part of parameters needed for more
complex tyre modelling (for example, acceleration/braking situations, real-time inflation
pressure measurement). Furthermore, as for simulations, we are mostly interested in a lin-
ear range of curves (slip angles in the range + —4°), for which simplified Magic Formula
models still work well.

The lateral force F, and the self-aligning torque M, can be predicted according to the
following model (y is a generic term to be replaced with F), or M) (4)

y = Dsin{Carctan[Ba — E(Ba. — arctan(Ba))]} + S, (4)

An iterative best-fitting method was implemented in MATLAB" R2021a (MathWorks, Nat-
ick, USA) [24] to find the best set of parameters. S, locates the centre point of the curve for
the origin. B is the stiffness factor while D is estimated from the maximum peak value of
the curve. C is known as a shape factor, E determines the curvature at the peak.

We identified all the optimal parameters, for each tyre we tested. Optimal parameters
and scripts for processing are made publicly available [40,41]. The set of coefficients B, C,
D, E are shown in Table 8, for each tested tyre and inflation pressure.

Magic Formula was initially conceived for car/truck tyres, designed to carry much
higher vertical loads than bicycle tyres. This made somehow challenging the identification
of the optimal parameters for our batch of bicycle tyres, especially the strategy to identify
the initial parameters. To cope with it, at the very beginning, we used a set of initial param-
eters from ADAMS/Tire [37] to fit a single set of bicycle tyre data. Afterwards, we deployed
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Table 8. Coefficients of fitting for all the tested tyres under different inflation pressures and vertical
loads.

Inflation
Tyre pressure F, [N] B [q)) D E
Schwalbe 400 kPa 411 0.0035 4372 272.2 —8424
Balloon
(TO1)
526 0.0035 4372 349.01 —8791
CST Brook- 300 kPa 343 0.0018 9580 372.8 —16,577
lyn (T02)
404 0.0018 9580 403.1 —16,819
488 0.0018 9580 462.1 —17,309
400 kPa 343 24.96 0.0086 31,489 —2.140
404 24.95 0.0086 34,409 —1.741
488 24.92 0.0086 40,328 —0.9316
Schwalbe 300 kPa 343 0.0032 4802 308.2 499.2
Plus (T03)
404 0.0032 4802 3529 511.1
488 0.0031 4802 409.4 527.5
400 kPa 343 0.0031 4802 3129 499.2
404 0.0031 4802 358.5 511.1
488 0.0031 4802 416.5 527.6
500 kPa 343 0.0030 4802 3013 499.2
404 0.0030 4802 3445 511.1
488 0.0030 4802 398.9 5276
Schwalbe 300 kPa 343 0.0034 4802 3133 499.3
Active
(TO4)
404 0.0034 4802 3553 511.2
488 0.0033 4802 406.6 527.6
400 kPa 343 0.0032 4802 299.5 499.2
404 0.0032 4802 3414 511.2
488 0.0032 4802 3935 527.6
500 kPa 343 0.0034 4802 304.4 499.4
404 0.0033 4802 3559 511.4
488 0.0031 4802 425.6 527.8
Scalato 300 kPa 343 0.0035 4802 381.9 499.4
Mondano
(TO5)
404 0.0032 4802 449.2 511.4
488 0.0029 4802 541.6 527.8
400 kPa 343 0.0039 4802 381.9 499.4
404 0.0035 4802 449.2 5114
488 0.0030 4802 541.6 527.8

the optimal parameters for the first tyre we processed as initial parameters for the next set
of data. We repeated the procedure for all the tyres. This strategy might explain the reason
why we have strong consistency among the C values found for the tour/city bicycle tyres
T03, T04 and T05. C parameters deviate for the cargo tyres T01 and T02 instead, which is
expected due to their different sizes and features.

The order of magnitude of the coefficients for the same tyre is consistent throughout
the different inflation pressures and vertical loads, with only a few exceptions. The latter
are mainly because we did not reach the saturation limit, or a clear trend of experimental
data close to the saturation limit was not clear as in the case of cargo tyres (this may justify
the plus and minus sign of the coeflicient E — curvature at the peak). The results for tyre
Schwalbe Active, tested at an inflation pressure of 300 kPa, under different vertical loads
and camber angles are shown in Figure 16. Experimental data (blue circles) have been
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Figure 16. Lateral force [N] and self-aligning torque [Nm] for Schwalbe Active, inflation pressure of
300 kPa. Experimental data from VeTyT are depicted as blue circles. Lines are the fitting curves from Magic
Formula (4). In (A) and (B), results for camber angle 0°. In (C) and (D), results for camber angle —5°. In (E)

and (F),

results for camber angle 5°.

down-sampled only for enhanced plot visualisation. Then, the fitting lines are the results
of the Magic Formula model (4). Optimal parameters have been calculated for each tyre,
one set per each inflation pressure [40].
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Visual inspection of the results gave positive feedback for the majority of the tested tyres.
However, some difficulties were found for the self-aligning torque of the CST Brooklyn
tyre (Section 3.1.2, Figure 6(B,D)). The unexpected trend observed in M, may result from
misalignments in the tyre itself, supposed to come from the manufacturing process (as
discussed in Section 3.3). Despite our attempts to address the issue, theMagic Formula
model could not fit well the experimental results. We think that this discrepancy was mainly
due to the unique features of the tyre we tested.

5. Conclusion

The paper presents the measurements of the lateral characteristics for cargo and tour/city
bicycles. The tests were performed with the VeTyT, a test rig specifically designed for bicycle
tyres. Then, based on experimental data, we found the optimal parameters for the Magic
Formula model, both for the lateral force and the self-aligning torque. A strong relationship
between the cornering stiffness and the vertical load was observed, with the latter being
the main parameter affecting the results. Also, inflation pressure played a large role, as it
changed the tyre stiffness both in the radial and lateral directions.
The main findings are as follows.

- Cargo bicycle tyres usually reach saturation conditions for high vertical loads
and/or large slip angles. However, due to the limitations of our experimental set-up,
we could test up to F, 526 N, and the saturation limit was not yet pointed out.

- Significant variations in both cornering stiffness and self-aligning torque were
observed among cargo bicycletyres of different brands. The cornering stiffness of
the CST Brooklyn was on average 40% higher than the Schwalbe Balloon. We
supposed that this difference may be due to compound, sidewall stiffness and
tread pattern (smother and less depth for the CST Brooklyn). Concerning the self-
aligning torque, unexpected results were measured for the CST Brooklyn, without
a symmetric trend for a slip angle of 0°. We also found a biased contact patch, with
a step left/right side of the tyre, for the median plane line. This might result from
the manufacturing process.

- As for tour/city bicycle tyres, Scalato Mondano had higher values of cornering stift-
ness than the Schwalbe tyres (on average 25% larger than the Schwalbe tour/city
tyres) at the tested inflation pressures (300 and 400 kPa).

- The CST Brooklyn (cargo bicycle tyres) had an increase in cornering stiffness as the
inflation pressure increased. On the contrary, the other tested tyres displayed the
opposite trend. Regarding tour/city bicycle tyres, an increase in inflation pressure
usually means a decrease in cornering stiffness. We may explain this unexpected
result considering the strong and hard carcass of cargo tyres, specifically designed
to carry high loads.

- Tests were constrained to £5° of camber angle, to minimise excessive tread pat-
tern wear. In this way, it was possible to test different vertical loads and inflation
pressures.

- Simpler Magic Formula models can still provide valuable results for bicycle tyres.
However, advanced models should be considered for modelling inflation pressure
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variations. They are required to implement a proper set-up to measure a lot of
parameters, but nowadays still hard to do due to technical and cost limitations.

- The data and the code used in this publication have been made publicly available to
enhance advancements in the research fields of bicycle tyres and bicycle dynamics.

In the future, we will try to test different tyres, with a special focus on cargo bicycle tyres,
under different vertical loads and camber angles. Then, the use of more complex Magic
Formula models will be investigated. In the meantime, we will continue the improvement
of the VeTyT test rig, to ensure accuracy and efficiency in the testing procedure. Then, it
will be of interest to further investigate the contact patch, to find insights and relationships
between contact patch features and the lateral characteristics of bicycle tyres.
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