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 A B S T R A C T

Deteriorated measurements due to the saturation of current transformers (CTs) are a major challenge in 
digital power system protection schemes. Failing to resolve this issue effectively can have serious consequences 
for the accuracy of measured components in phasor-based digital relaying algorithms. Potentially, this may 
compromise the secure and reliable operation of the protection system and, hence, the entire power system. 
Accurate fault detection or classification can be achieved by applying an algorithm that can deal with the 
CT saturation effects. In this paper, a method is presented that can accurately estimate the fundamental 
current phasor during CT saturation. Reconstruction of the deteriorated measured waveform is accomplished 
by applying a supervised machine learning algorithm, namely the support vector machine (SVM). The least 
squares (LS) method is integrated with the SVM-based algorithm to reduce the complexities of waveform 
reconstruction regressions. A modified discrete Fourier transform (DFT), robust to decaying DC components, is 
then applied to the reconstructed waveform to extract the required phasor components. The proposed approach 
is validated by evaluating its classification and phasor estimation performance using standard metrics over 
numerous simulated cases and field measurements. The results demonstrate the high accuracy of the proposed 
method to classify different levels of CT saturation and ensure precise estimation of the fundamental phasor 
component.
1. Introduction

Power system protection against short-circuit (SC) faults profoundly 
relies on current signal measurements using current transformers (CTs). 
For ideal operating conditions, a CT is expected to deliver a scaled-
down replica of the current passing through its loophole on the sec-
ondary side. This is crucial for the reliable operation of protective 
algorithms applied in digital relays based on intelligent electronic 
devices (IEDs). Nevertheless, CTs are prone to magnetic core satura-
tion, leading to nonlinear operation and deteriorated measurements, 
which threaten the protection of the power system. The severity of CT 
saturation is affected by the asymmetrical fault current level, remanent 
core flux, and CT burden.

Typically, the phasor measurement algorithms are applied to cal-
culate and estimate the fundamental frequency component from the 
current delivered on the secondary of the CT. The estimated phasor 
is an input for the protection and control functions in IEDs. However, 
according to the aforementioned, CT saturation can cause severe dis-
tortions in the secondary current and thus lead to reduced accuracy 
in estimating the fundamental component. As a result, the issue of 
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CT saturation in digital relays can result in the malfunction of over-
current protection, distance protection, busbar protection, differential 
protection, and electric arc detection algorithms for overhead lines [1–
10].

The CT saturation detection and waveform reconstruction
approaches discussed in the literature can be categorized into three 
main groups:

G1. Model-Based Methods [5–8]: The methods within this cate-
gory focus on the reconstruction of the CT saturated current 
by developing a proper CT model. According to [6,7], the CT 
saturation onset is determined by analyzing the magnetic flux at 
the saturation inception onset. However, these approaches often 
struggle with the determination of the saturation starting point 
and are prone to inaccuracies under noisy conditions.

G2. Artificial Intelligence-Based Methods [9–12]: These methods 
are capable of accurately extracting features in a supervised/un-
supervised manner, enabling them to effectively reconstruct and 
classify varying levels of CT saturation with high precision. 
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Table 1
Evaluation of present CT waveform reconstruction methods.
 Method PoV1 PoV2 PoV3 PoV4 
 
G1

[5] 3 7 7 3  
 [6] 3 3 7 3  
 [7] 3 7 7 3  
 [8] 3 7 7 3  
 
G2

[9] 7 7 7 3  
 [10] 3 7 7 3  
 [11] 3 7 7 7  
 [12] 3 7 7 3  
 

G3

[13] 7 7 7 7  
 [14] 7 7 7 3  
 [15] 3 7 3 3  
 [16] 3 7 3 3  
 [17] 3 7 3 3  
 [18] 3 7 7 3  
 [19] 3 7 7 7  
 [20] 3 7 7 3  

Although these algorithms show strong classification results by 
employing hierarchical learning to extract high-level features, 
they face challenges related to training, feature selection, and 
problem dimensionality.

G3. Signal Processing Based Methods [13–20]: This group of 
methods deals with defining mathematical relations to extract 
particular parameters and features from the unsaturated part 
of the fault current. However, these methods depend on the 
current waveform and may exhibit inaccuracies due to rapid CT 
saturation.

In this paper, CT saturation detection and waveform reconstruction 
are investigated from several points of view (PoV), as follows: PoV1–
waveform reconstruction capability, PoV2– ability to distinguish fault 
currents from inrush currents, PoV3– consideration of CT’s dynamic 
behavior in waveform reconstruction, PoV4– sub-cycle response time 
feasibility. Table  1 provides a summary of the most prominent pub-
lished studies on CT saturation and waveform reconstruction evaluated 
according to these PoVs.

As it is stated in Table  1, apart from the methods in [9,13,14], 
all other methods are capable of CT waveform reconstruction. In ad-
dition, the methods in [15–17] perform the waveform reconstruction 
by taking into account CT’s dynamic behavior. Nonetheless, it is worth 
mentioning that the method in [17] employs a high-order derivative 
to eliminate the DC component of the fault current signal. The method 
in [6] can also detect CT saturation and reconstruct the current signal, 
not only in the case of a fault but also in the case of power transformer 
inrush currents. As seen in the last column of Table  2, nearly all 
methods respond within a sub-cycle interval. However, in this case, 
it is important to consider other PoVs as well. For instance, although 
the method proposed in [10] performs rapidly, it lacks accuracy due 
to the absence of capabilities related to PoV2 and PoV3. Furthermore, 
even though the approach in [20] introduces a one-cycle delay, it 
demonstrates good accuracy. Hence, maintaining a trade-off between 
a detailed analysis and operational speed is a key challenge for these 
methods. The method proposed in [6] performs well and meets the 
requested trade-off by providing a fast response while maintaining high 
accuracy. However, this method is limited in application generality due 
to having a model-based framework.

So far, several artificial intelligence (AI)-based methods have been 
proposed to serve as classifiers for detecting CT saturation. In [21], 
saturated and unsaturated CT operation was detected by training an al-
gorithm based on Gaussian Mixture Models (GMMs) using CT secondary 
current signals under various conditions. However, GMMs are effective 
2 
only with low-dimensional data and exhibit poor performance with 
high-dimensional and complex datasets. Furthermore, these models are 
prone to overfitting because they depend on the supervised classifi-
cation techniques using manually designed features. A more refined 
method based on genetic algorithm (GA) application was proposed 
in [22]. Despite their good performance in optimization problems, the 
GA-based approaches have often been shown to settle on local optima 
instead of reaching the global optimum. Moreover, because of their 
low convergence speed, these algorithms are usually not applicable in 
real-world situations. The method in [23] employs the particle swarm 
optimization (PSO) technique for detecting CT saturation in power 
transformers. In comparison with GAs, PSOs provide more compu-
tational efficiency and simplicity in implementation. However, since 
their global convergence is not secured, and they are susceptible to 
overfitting, they are not ideal options for classification tasks. In [24], 
an intelligent algorithm was presented, focusing on the waveform 
correction distorted by CT saturation. This method, however, does not 
account for the different levels of saturation (heavy, light, normal). 
Besides, this algorithm suffers from reliance on manually crafted fea-
ture extraction and limited generalization capability. A technique based 
on decision trees and wavelet transform (WT) was proposed in [25]. 
The feature extraction in this method is achieved by applying signal 
processing methods based on wavelet decomposition to the measured 
differential and restraining currents. With this in mind, it can be 
indicated that this approach demands considerable signal-processing 
expertise to ensure meaningful feature extraction.

Driven by the challenges discussed above, this research introduces 
a hybrid learning-based method to estimate the fundamental phasor 
component of the fault current under CT saturation. This learning-
based technique can reconstruct saturated fault currents and enhance 
the accuracy of phasor estimation in the case of CT saturation. The main 
contributions of this paper are summarized as follows:

1. Supervised learning is applied to reconstruct the saturated fault 
current waveform by considering this task as a time-series pre-
diction problem. This approach combines least squares, sup-
port vector machines (LSSVM), and performs the time-series 
prediction by solving a system of linear equations.

2. Despite its enhanced computation speed, LSSVM still operates as 
a batch-learning algorithm. In such a framework, for every new 
data arrival, all the past and current data are retrained. This 
procedure requires inversion of a larger matrix at each phase, 
making it computationally expensive and time-consuming. This 
issue is overcome through an online learning LSSVM using a 
recursive approach to enable fast current signal prediction.

3. Once the current signal is reconstructed, it is processed through 
a modified Discrete Fourier Transform (DFT) to eliminate the 
decaying DC component, ensuring stability and accuracy of esti-
mation. Integrated with LSSVM, this approach achieves accurate 
phasor estimation within one cycle for any CT saturation level.

This paper is structured as follows: Section 2 elaborates on the 
proposed approach. Section 3 explains the data collection and necessary 
preprocessing steps. In Section 4, the performance of the proposed 
approach is evaluated using simulation and field-recorded data, and 
comparisons are made with existing methods. Finally, the conclusions 
are discussed in Section 5.

2. The proposed method

This section provides a detailed description of the proposed CT 
waveform reconstruction method. The presented analysis comprises 
three main parts, as illustrated in Fig.  1. As can be seen, the first 
part is related to data preparation for the proposed algorithm. To this 
aim, data is first generated by performing simulations on a test power 
system model in the MATLAB/SIMULINK environment. The results of 
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Fig. 1. Structure of the proposed method.

the simulated CT saturation cases are stored in an output file and 
organized in a preprocessing stage before being fed to the LSSVM 
algorithm. In the second part, training is performed on the data by 
applying the LSSVM method as a supervised learning algorithm. The 
details of the learning method will be explained in the next sections. 
After the training stage, the built model will be utilized within the pha-
sor calculation algorithm to extract the fundamental phase component 
of the fault current from the measured data. It is worth mentioning 
that, since the statistical properties of CT saturation do not change 
frequently, the LSSVM algorithm is required to be trained only once. 
Retraining is almost never needed and is only considered in the event of 
major changes, such as CT replacement or significant system upgrades. 
In the following, the proposed details of the algorithm are presented.

2.1. The LSSVM algorithm

In the first stage of the proposed CT waveform reconstruction pro-
cess, the LSSVM algorithm is applied. This algorithm combines the least 
squares method with the support vector machine. To understand this 
technique, the training sample set {𝑥k , 𝑦k

}𝑛
𝑘=1 is assumed where 𝑥 ∈ Rd

and 𝑦k ∈ R, with 𝑑 being the number of input variables. Therefore, the 
LSSVM regression model is defined as: 
𝑓 (𝑥) = 𝐰T𝜓

(

𝑥k
)

+ 𝑐 , (1)

where 𝐰 denotes the weighting factor, the nonlinear 𝜓 function maps 
the input variables to a high feature space, and 𝑐 is the bias factor.

The training data error minimization is carried out with the struc-
tural risk minimization (SRM) principle by using the squared errors. As 
a result, the LSSVM model can be formulated as follows: 

min 𝐽 (𝐰, 𝑒) = 𝐰T𝐰 +
𝜂
2

𝑛
∑

𝑘=1
𝑒2k

s.t. 𝑓 (𝑥) = 𝐰T𝜓
(

𝑥k
)

+ 𝑐 + 𝑒k ,

(2)

where 𝑒k denotes the 𝑘− error variable and 𝜂 is a penalty factor, defined 
to provide balance between the model complexity and approximation 
precision. The optimization problem can be transformed into a system 
of linear equations by applying the Lagrangian method: 

𝐿 (𝐰, 𝜂, 𝑒, 𝛼, 𝑐) = 1
2
𝐰T𝐰 +

𝜂
2

𝑛
∑

𝑘=1
𝑒2k

+
𝑛
∑

𝛼k
(

𝑟k − 𝐰T𝜓
(

𝑥k
))

+ 𝑐 + 𝑒k ,

(3)
𝑘=1

3 
where 𝑘 is an integer and 𝛼k denotes the Lagrangian multiplier vector. 
The optimization of the Lagrangian multiplier method is performed 
based on the Karush-Kuhn–Tucker (KKT) conditions by setting the 
kernel function 𝐾 (

𝑥, 𝑥i
)

= 𝜓 (𝑥)T 𝜓
(

𝑥i
)

.
Therefore, the LSSVM regression model is obtained as: 

𝑦 (𝑥) =
𝑛
∑

𝑘=1
𝛼k𝐾

(

𝑥, 𝑥i
)

+ 𝑐 . (4)

2.2. Iterative LSSVM algorithm

Upon training, the LSSVM algorithm can predict the new samples. 
Method accuracy is proportional to the weighing factors optimally 
obtained from the performed training. This can slow down the com-
putations of the proposed method, considering that the training stage 
consumes considerable time. To resolve this issue, instead of retraining, 
the weighing factors are corrected by the arrival of new samples based 
on the last prediction error in an iterative manner. By applying this 
technique, the predictions are obtained based on updated weighing 
factors.

To implement this iterative approach, the regression model in (4) is 
modified as: 

𝑦 (𝑥) =
𝑛
∑

𝑘=1
𝛼k𝐾

(

𝑥, 𝑥i
)

+ 𝑐

=
𝑛
∑

𝑘=1
𝜑k𝐾

(

𝑥, 𝑥i
)

= 𝐊𝝋 ,

(5)

where 𝐊+ denotes the generalized inverse of 𝐊, and 𝝋 = 𝐊+ (𝐊𝛼 + 𝑐). 
It is worth mentioning that while 𝝋 can get different values, it does not 
affect the generality of the approach, as expressed in the following.

The kernel function 𝐾 is considered Gaussian with the standard 
deviation of 𝜎 as: 
𝐾

(

𝑥, 𝑥i
)

= exp
(

−‖𝑥 − 𝑥k‖2
/

𝜎2
)

. (6)

Now, the value of 𝝋 can be considered at the initial condition: 
𝝋0 = 𝐊−1

0 𝑦0 =
(

𝐊T
0𝐊0

)−1 𝐊T
0𝑦0 , (7)

where 𝐊0 is the value of the kernel function given by the initial training 
samples. A regularization parameter is applied to avoid 𝐊T

0𝐊0 becoming 
singular. Therefore, for transforming 𝐊T

0𝐊0, the following is enforced: 

𝐐0 = 𝐊T
0𝐊0 +

1
𝑅

s.t.min

{

‖𝐊0𝝋0 − 𝑦0 +
‖𝝋2

0‖

𝑅
‖

}

𝝋0

. (8)

Hence, the following yields: 

𝝋0 = 𝐐−1
0 𝐊T

0𝑦0 . (9)

By the arrival of a new sample data, in the first step 𝐊1 is calculated 
as: 

𝝋1 = 𝐐−1
1

[

𝐊0
𝐊1

]T [𝑦0
𝑦1

]

, (10)

𝐐1 =
1
𝑅

+
[

𝐊0
𝐊1

]T [𝐊0
𝐊1

]

= 𝐐0 +𝐊T
1𝐊1 . (11)

Therefore, the transformation can be written as: 
[

𝐊0
𝐊1

]T [𝑦0
𝑦1

]

= 𝐊T
0𝑦0 +𝐊T

1𝑦1 = 𝐐0𝐐−1
0 𝐊T

0𝑦0 +𝐊T
1𝑦1

= 𝐐0𝝋0 +𝐊T
1𝑦1 =

(

𝐐1 −𝐊T
1𝐊1

)

𝝋0 +𝐊T
1𝑦1

= 𝐐1𝝋0 −𝐊T
1𝐊1𝝋0 +𝐊T

1𝑦1 ,

(12)

and 
𝝋1 = 𝝋0 +𝐐−1

1 𝐊T
1
(

𝑦1 −𝐊1𝝋0
)

. (13)
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Accordingly, for sample 𝑘, the following can be calculated: 

𝐐−1
k+1 =

(

𝐐k +𝐊T
k+1𝐊k+1

)−1 , (14)

𝝋k+1 = 𝝋k +𝐐−1
k+1𝐊

T
k+1

(

𝑦k+1 −𝐊k+1𝝋k
)

. (15)

The value of 𝐐−1
k+1 is obtained by the following approximation as: 

𝐐−1
k+1 =

(

𝐐k +𝐊T
k+1𝐊k+1

)−1 = 𝐐−1
k −

𝐐−1
k 𝐊T

k+1𝐊k+1𝐐−1
k

1 +𝐊k+1𝐐−1
k 𝐊T

k+1

. (16)

By introducing a variable change of 𝐙k = 𝐐−1
k , (15) and (16) can be 

rewritten as: 

𝐙k+1 = 𝐙k −
𝐙k𝐊T

k+1𝐊k+1𝐙k

1 +𝐊k+1𝐙k𝐊T
k+1

, (17)

𝝋k+1 = 𝝋k + 𝐙k+1𝐊T
k+1

(

𝑦k+1 −𝐊k+1𝝋k
)

. (18)

In a time-variant system, the operating condition dynamically
changes, thus, the output is prone to significant variations. As a result, 
the prediction model’s weighing factors are to be adjusted in proportion 
to these changes. This can be resolved by introducing forgetting factors
to the weights in the algorithm. By updating the forgetting factors based 
on the prediction error, the weights are corrected according to the new 
arriving data samples [26], as: 

𝝋k+1 = 𝝋k +
𝐙k+1𝐊T

k+1
1 + 𝛾k+1

𝑒k+1 , (19)

where 𝑒k+1 =
(

𝑦k+1 −𝐊k+1𝝋k
) is the error of new sample from 𝝋k+1. 

𝛾k+1 is the update flag, defined as: 

𝛾k+1 = 𝐊k+1𝐙k𝐊T
k+1 , (20)

where 𝛾k+1 = 0 will result in 𝐙k+1 = 𝐙k , and in case 𝛾k+1 > 0, Eq. (17) 
will be changed as: 

𝐙k+1 = 𝐙k −
𝐙k𝐊T

k+1𝐊k+1𝐙k

𝜉−1k+1 + 𝛾k+1
. (21)

In (21), 𝜉k+1 is defined as: 

𝜉k+1 = 𝛿k −
1 − 𝛿k
𝛾k+1

, (22)

where 0 < 𝛾k ≤ 1 denotes the forgetting factor, and 𝛿k+1 is calculated 
as: 

𝛿k+1 =

{

1 + (1 + 𝜀)
[

ln
(

1 + 𝛾k+1
)

+

(
(

𝜏k+1 + 1
)

𝜇k+1
1 + 𝛾k+1 + 𝜇k+1

− 1

)

𝛾k+1
1 + 𝛾k+1

]

}−1

,

(23)

where 

𝜇k+1 =
𝑒2k+1
𝜆k+1

,

𝜆k+1 = 𝛿k+1

(

𝜆k+1 +
𝑒2k+1

1 + 𝛾k+1

)

,

𝜏k+1 = 𝛿k+1
(

𝜏k + 1
)

.

(24)

Here, the value of 𝜀 is fixed, and the initial values of 𝜆 and 𝜏 are 
between 0 and 1.
4 
According to the presented relationships, the iterated LSSVM
method is given by: 

𝑦̂k+1 = 𝝋k+1𝐊k+1 , (25)

where 𝑦̂k+1 corresponds to the calculated prediction. The processing of 
the LSSVM method is shown in 1.

Algorithm 1 Iterative LSSVM Method
Input: 𝛿0, 𝜆0, 𝜏0, 𝜀, 𝜎, initial dataset 𝐒init , and following dataset 𝐒follow.
Output: Predicted value 𝐲
Initialize: Train the standard LSSVM model by 𝐒init and calculate 𝜑 in 
(5);
Calculate 𝐊0, 𝜑0, and 𝐙0 using 𝐃init
𝑘 ← 0
while 𝑘 < length(𝐒follow) do
 Calculate 𝐊k+1𝜑k+1, 𝛾k+1, 𝜉k+1 from (𝑘 + 1)-th 𝐒follow;
 if 𝛾k+1 = 0 then
 𝐙k+1 ← 𝐙k
 else
 𝐙k+1 ← 𝐙k −

𝐙k𝐊T
k+1𝐊k+1𝐙k

𝜉−1k+1+𝛾k+1
 end if
 Calculate 𝜇k+1, 𝜆k+1 and 𝜏k+1;
 𝑘 ← 𝑘 + 1;
 𝐲k+1 ← 𝐊k+1𝜑k+1
end while

2.3. Proposed phasor estimation technique

When a fault occurs in the power grid, voltages and currents no 
longer preserve their standard sinusoidal form. They are affected by 
waveform distortion and may contain a decaying DC component [27,
28]. The occurred asymmetrical fault current can be expressed by: 

𝑖 (𝑡) = 𝐼dc𝑒
−𝑡∕𝜏dc +

𝐻
∑

ℎ=1
𝐼h sin

(

2𝜋𝑓0ℎ𝑡 + 𝜃h
)

, (26)

where 𝑓0 = 50Hz is the power frequency, 𝐼h and 𝜃h respectively denote 
the magnitude and phase angle of the ℎth harmonic component, while 
𝐼dc and 𝜃dc represent the magnitude and decay time constant of the DC 
component, respectively.

Typically, the discrete Fourier transform (DFT) is applied in power 
system protection algorithms to estimate the magnitude and angle of 
the fundamental phasor component of the fault current, i.e., 𝐼1 and 𝜃1, 
by calculating the real and imaginary parts as follows: 

𝐼Re =
𝑀
∑

𝑚=1
𝑖 (𝑚) sin

(

2𝜋𝑓0𝑚𝑇s
𝑀

)

, (27a)

𝐼Im =
𝑀
∑

𝑚=1
𝑖 (𝑚) cos

(

2𝜋𝑓0𝑚𝑇s
𝑀

)

, (27b)

where 𝑚 = 1,… ,𝑀 denote the samples taken within one cycle with the 
sampling time of 𝑇s, while 𝐼1 =

√

𝐼2Re + 𝐼
2
Im and 𝜃1 = tan−1

(

𝐼Im
𝐼Re

)

.
Although the DFT algorithm performs well in estimating the desired 

component and rejecting high-order harmonics, its performance can be 
significantly degraded by the presence of a decaying DC component. 
This effect is better understood through Eqs. (28a) and (28b) obtained 
by substituting (26) in (27a) and (27b).
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𝐼Re =
𝑀
∑

𝑚=1

(

𝐼dc𝑒
−𝑚𝑇s∕𝜏dc + 𝐼1 sin

(

2𝜋𝑓0𝑚𝑇s + 𝜃1
)

+
𝐻
∑

ℎ=2
𝐼h sin

(

2𝜋𝑓0ℎ𝑡 + 𝜃h
)

)

× sin
(

2𝜋𝑓0𝑚𝑇s
𝑀

)

=
𝑀
∑

𝑚=1
𝐼dc𝑒

−𝑚𝑇s∕𝜏dc sin
(

2𝜋𝑓0𝑚𝑇s
𝑀

)

+
𝑀
∑

𝑚=1
𝐼1 sin

(

2𝜋𝑓0𝑚𝑇s + 𝜃1
)

× sin
(

2𝜋𝑓0𝑚𝑇s
𝑀

)

+
𝑀
∑

𝑚=1

𝐻
∑

ℎ=2
𝐼h sin

(

2𝜋𝑓0ℎ𝑡 + 𝜃h
)

sin
(

2𝜋𝑓0𝑚𝑇s
𝑀

)

=
𝑀
∑

𝑚=1
𝐼dc𝑒

−𝑚𝑇s∕𝜏dc sin
(

2𝜋𝑓0𝑚𝑇s
𝑀

)

+
𝑀
∑

𝑚=1

𝐼1
2

cos
(

𝜃1
)

sin
(

2𝜋𝑓0𝑚𝑇s
𝑀

)

= 𝐼DCRe + 𝐼SymRe ,

(28a)

𝐼Im =
𝑀
∑

𝑚=1

(

𝐼dc𝑒
−𝑚𝑇s∕𝜏dc + 𝐼1 sin

(

2𝜋𝑓0𝑚𝑇s + 𝜃1
)

+
𝐻
∑

ℎ=2
𝐼h sin

(

2𝜋𝑓0ℎ𝑡 + 𝜃h
)

)

× cos
(

2𝜋𝑓0𝑚𝑇s
𝑀

)

=
𝑀
∑

𝑚=1
𝐼dc𝑒

−𝑚𝑇s∕𝜏dc cos
(

2𝜋𝑓0𝑚𝑇s
𝑀

)

+
𝑀
∑

𝑚=1
𝐼1 sin

(

2𝜋𝑓0𝑚𝑇s + 𝜃1
)

× cos
(

2𝜋𝑓0𝑚𝑇s
𝑀

)

+
𝑀
∑

𝑚=1

𝐻
∑

ℎ=2
𝐼h sin

(

2𝜋𝑓0ℎ𝑡 + 𝜃h
)

cos
(

2𝜋𝑓0𝑚𝑇s
𝑀

)

=
𝑀
∑

𝑚=1
𝐼dc𝑒

−𝑚𝑇s∕𝜏dc cos
(

2𝜋𝑓0𝑚𝑇s
𝑀

)

+
𝑀
∑

𝑚=1

𝐼1
2

sin
(

𝜃1
)

cos
(

2𝜋𝑓0𝑚𝑇s
𝑀

)

= 𝐼DCIm + 𝐼SymIm .

(28b)

Expressions (28a) and (28b) indicate that the real and imaginary 
parts of DFT are influenced by the decaying DC component. To elimi-
nate the influence of the decaying DC component on phasor estimation, 
the following procedure is applied. First, the discrete sum of (26) over 
one cycle is expressed as: 

𝐼 (𝑚) = 1
𝑀
𝐼dc𝑒

−𝑚𝑇s∕𝜏dc + 1
𝑀

𝑀
∑

𝑚=1

𝐻
∑

ℎ=1
𝐼h sin

(

2𝜋𝑓0ℎ𝑚𝑇s + 𝜃h
)

. (29)

Since the sum of the sinusoidal components over the fundamental 
period is zero, expression (29) can be simplified as follows: 

𝐼 (𝑚) = 1
𝑀
𝐼dc𝑒

−𝑚𝑇s∕𝜏dc
(

1 − 𝑒−𝑀𝑇s∕𝜏dc
)

. (30)

The magnitude of the decaying dc component 𝐼dc and decay time 
constant 𝜏dc can be obtained by considering two consecutive samples 𝑚
and 𝑚 + 1 as follows: 
𝜏dc =

−𝑇s

ln
(

𝐼(𝑚+1)
𝐼(𝑚)

) , (31)

𝐼dc =
𝑀𝐼 (𝑚)

𝑒−𝑚𝑇s∕𝜏dc
(

1 − 𝑒−𝑀𝑇s∕𝜏dc
) . (32)

Once the parameters of the decaying DC component are calcu-
lated, the fundamental phasor component of the fault current can be 
estimated as: 

𝐼1 =
√

(

𝐼Re − 𝐼DCRe
)2 +

(

𝐼Im − 𝐼DCIm
)2 , (33)

𝜃1 = tan−1
(

𝐼Im − 𝐼DCIm
DC

)

. (34)

𝐼Re − 𝐼Re

5 
Fig. 2. The test system under study.

Table 2
Specifications of the system under study.
 Component Parameter Value  
 
AC Source 1

Voltage 138 kV  
 Frequency 50Hz  
 Impedance 𝑅th,1 = 0.3Ω  
 𝑋th,1 = 3.39Ω  
 
AC Source 2

Voltage 138 kV  
 Frequency 50Hz  
 Impedance 𝑅th,1 = 0.5Ω  
 𝑋th,1 = 4.75Ω  
 

Transmission Line

Length 50 km  
 Sequence 𝑅L1 = 6.18 × 10−3 Ω∕km  
 Resistance 𝑅0,L1 = 5.447 × 10−2 Ω∕km 
 Sequence 𝑋L1 = 6.24 × 10−3 Ω∕km  
 Reactance 𝑋0,L1 = 0.168Ω∕km  
 Sequence 𝐶L1 = 0.0179 μF∕km  
 Capacitance 𝐶0,L1 = 0.0109 μF∕km  

3. Simulation results and discussion

In this section, the performance of the proposed CT waveform 
reconstruction method is evaluated through simulations using a power 
system test model, as shown in Fig.  2. In this regard, the test system is 
simulated by the MATLAB/SIMULINK software package [29], and the 
simulation results are stored in an output file for further processing. 
The test system under study includes a 138 kV transmission line, with its 
terminals connected to Thevenin equivalents of the rest of the network, 
modeled as AC voltage sources behind impedances. In addition, the 
standard CT model introduced in [30] is adopted to analyze CT satu-
ration. As implemented in [31], the model provides a balance between 
simplicity and accuracy. The details of the test system are listed in Table 
2.

To generate a comprehensive dataset, numerous simulations are 
performed by changing parameters such as CT burden, fault type, fault 
resistance, and CT core remnant flux. The obtained data from the sim-
ulations are stored and further analyzed in MATLAB. The sampling fre-
quency is set to 5 kHz considering a sampling rate of 100 samples∕cycle
under the 50Hz power frequency. The generated dataset constitutes 
4000 cases with various CT saturation levels, i.e., light, normal, and 
deep. The different CT saturation levels are defined based on the degree 
of distortion observed in the secondary current waveform [32]. Light 
saturation refers to conditions where distortion affects less than 10% of 
the cycle, normal saturation corresponds to distortion lasting between 
10%–30% of the cycle, and deep saturation occurs when more than 
30%–50% of the cycle is affected.

Therefore, the dataset is divided into two parts: 75% for training 
and 25% for testing, resulting in 3000 training cases and 1000 test 
cases. The cases are randomly allocated within the two subsets. The 
developed LSSVM algorithm is implemented to receive CT saturation 
cases as input and provide a reconstructed waveform as output.

The initial step in training the proposed LSSVM-based CT waveform 
reconstructor is to adjust the tuning parameters, namely the regulariza-
tion parameter 𝜂 in (2) and the kernel parameter 𝜎 in (6). The initial 
training dataset is obtained from a 42-millisecond window comprising 
one cycle of pre-fault data, 0.1 cycle considered for fault detection 
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Table 3
Summary of CT saturation cases considered for evaluation.
 Case Level Cause Origin  
 1 light low decaying DC magnitude single-phase-to-ground fault (Ag) at 𝑡 = 104ms  
 2 normal moderate decaying DC magnitude double-phase-to-ground fault (ABg) at 𝑡 = 102ms 
 3 deep high decaying DC magnitude + 50Ω additional resistive burden three-phase-to-ground fault (ABCg) at 𝑡 = 100ms 
 4 deep high decaying DC magnitude + 100Ω additional resistive burden double-phase-to-ground fault (ABg) at 𝑡 = 100ms 
(to account for the deep CT saturation), and one cycle of post-fault 
data. The LSSVM parameters (𝜂 and 𝜎) are determined using 4-fold 
cross-validation. Once the optimal values for 𝜂 and 𝜎 are determined, 
they remain constant throughout the prediction process, and the online 
rolling prediction of the saturated current is initiated. The prediction 
starts with a 22ms window. As new data arrive, the training window 
is expanded, however, its size is constrained so that the training-to-
prediction ratio does not exceed 2:1. Once the prediction window 
reaches 42ms, it is fixed at 20ms. It is essential to note that the ratio 
and the maximum prediction time window are selected based on a 
tradeoff between accuracy and the timeliness of the prediction. Here, 
the algorithm was implemented on a general-purpose workstation-class 
CPU, and it was observed that the classification and reconstruction of 
a waveform segment corresponding to a half-cycle (10ms) required less 
than 0.8ms, confirming its real-time feasibility.

3.1. Performance evaluation

As thoroughly discussed in earlier sections, CT saturation can distort 
the measured current signal, even resulting in a significant deviation 
from the standard sinusoidal form. To demonstrate the performance 
of the proposed LSSVM-based CT waveform reconstruction and phasor 
estimation algorithm, the evaluation is carried out using waveforms 
from four CT saturation scenarios involving light, normal, and deep 
saturation conditions. The four considered cases are presented in Table 
3, and the performance results of the proposed algorithm, correspond-
ing to the cases in the table, are shown in Figs.  3 to 6. In these 
figures, the black dashed curves correspond to the actual current at the 
primary of the CT, the red dashed curves correspond to the measured 
current transferred to the secondary side of the CT, and the blue curves 
correspond to the reconstructed waveform obtained from the proposed 
LSSVM-based algorithm.

The measurement waveforms from Case 1 in Table  3, corresponding 
to a single-phase-to-ground fault event, are shown in Fig.  3, where 
the calculated phasor magnitude and angle of the current signal in 
Fig.  3a are represented in Figs.  3b and c, respectively. As can be 
seen, the DFT-based algorithm is prone to errors in phasor estimation 
because of its vulnerability to the decaying DC component caused by 
CT saturation. Taking the primary signal as a reference, the waveform, 
magnitude, and phase angle estimated from the uncompensated current 
exhibit oscillations and a delay of nearly two cycles. In contrast, the 
proposed algorithm, despite exhibiting a slight initial estimation error 
due to its dynamic behavior, reconstructs the waveform within one and 
a half cycles, and achieves a faster and more accurate estimation of 
magnitude and phase angle compared to the DFT-based method, while 
maintaining robustness against CT saturation and decaying DC effects.

In Fig.  4, Case 2 from Table  3 is presented, corresponding to a 
double-phase-to-ground fault that causes normal saturation in the A-
phase CT current. Similar to the previous case, the results in Fig.  4 show 
the vulnerability of the DFT-based algorithm to CT saturation and the 
decaying DC component. Taking the primary signal as a reference, the 
waveform, magnitude, and phase angle derived from the uncompen-
sated current exhibit oscillations and a delay of nearly three cycles. 
In contrast, although an initial estimation error is observed due to 
the algorithm’s dynamic response, the proposed algorithm reconstructs 
the waveform more accurately within one and a half cycles, and the 
6 
Fig. 3. Simulation results for Case 1 in Table  3: (a) current signal, (b) 
magnitude, (c) phase angle.

estimated magnitude and phase angle are significantly less affected by 
CT saturation and the decaying DC component.

Moving to Case 3, as detailed in Table  3 and illustrated in Fig.  5, 
this scenario involves a three-phase-to-ground fault combined with an 
additional burden on the CT secondary, resulting in deep saturation 
in the A-phase current. Fig.  5 shows that the DFT-based algorithm is 
significantly affected by CT saturation and the decaying DC component. 
Using the primary signal as a reference, the waveform, magnitude, 
and the phase angle obtained from the uncompensated current display 
oscillations and an approximate delay of four cycles. In contrast, the 
proposed algorithm effectively reconstructs the waveform within one 
and a half cycles, and the estimated magnitude and phase angle are 
much less affected by CT saturation and the decaying DC component.

Finally, Fig.  6 illustrates Case 4 from Table  3, where a two-phase-to-
ground fault combined with additional burden in the CT secondary has 
resulted in deep saturation of the A-phase current. As shown in Fig.  6, 
the DFT-based algorithm exhibits considerable sensitivity to CT satura-
tion and the decaying DC component. When the primary signal is used 
as a reference, the waveform, magnitude, and phase angle derived from 
the uncompensated current waveform show oscillations and nearly four 
cycles of delay. In contrast, the proposed algorithm reconstructs the 
waveform within one and a half cycles, and the estimated magnitude 
and phase angle are less disturbed by CT saturation and the decaying 
DC component.
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Fig. 4. Simulation results for Case 2 in Table  3: (a) current signal, (b) 
magnitude, (c) phase angle.

Fig. 5. Simulation results for Case 3 in Table  3: (a) current signal, (b) 
magnitude, (c) phase angle.
7 
Fig. 6. Simulation results for Case 4 in Table  3: (a) current signal, (b) 
magnitude, (c) phase angle.

3.2. Execution time and effect of sampling rate

As stated earlier, the timeliness of the prediction is inversely related 
to the prediction sample rate. While achieving higher accuracy requires 
a greater number of data points within the prediction window (that is, 
a higher sampling rate), it is important to reach a tradeoff that ensures 
satisfactory accuracy while maintaining fast execution time.

To process each window of length 𝑊 , the proposed method ex-
ecutes three main stages: (i) SVM inference using 𝑆 support vectors 
in a 𝑑-dimensional feature space, (ii) updating the LS algorithm with 
𝑘 coefficients, and (iii) applying the modified DFT, which is robust 
against the decaying DC component. In the proposed method, the SVM 
stage is executed considering 𝑑 = 𝑊 , and the LS algorithm is updated 
using a precomputed pseudo-inverse. The SVM inference cost scales as 
the order of (𝑆 ⋅𝑑), plus 𝑆 scalar exponential evaluations for the kernel 
computations; the LS update requires (𝑘 ⋅ 𝑊 ) operations; and the 
modified DFT stage operates with a complexity of (𝑊 ). Considering a 
window length of 𝑊 = 20 samples (corresponding to a 1 kHz sampling 
rate), a total of 𝑆 = 80 support vectors, and 𝑘 = 6 LS coefficients, 
the dominant computational cost is associated with the 𝑆 exponential 
evaluations in the SVM stage. This leads to a conservative analytical 
execution time estimate of approximately 0.6 to 1.0ms per window.

To practically examine the execution time of the proposed method, 
the LSSVM-based algorithm was implemented on a workstation
equipped with a general-purpose CPU (an Intel Core i7 technology 
here), with 16GB of RAM. The proposed algorithm is implemented 
using a pre-allocated, single-thread MATLAB code, intentionally config-
ured in this way to avoid performance optimization, thereby providing 
a conservative, upper-bound estimate of execution time. The execution 
time is quantified by processing a number of 20,000 measurement 
windows and measuring the end-to-end latency in the total runtime. 
For the chosen sampling rate of 1 kHz, it was observed that processing 
a window length of 20 samples takes 0.77ms with a 95% confidence 
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Table 4
Effect of sampling rate on execution time of the proposed method.
 Sampling rate Window length – 𝑊 No. of support vectors – 𝑆 Execution time 
 1 kHz 20 80 0.77ms  
 2 kHz 40 80 1.12ms  
 3 kHz 80 100 1.95ms  
 4 kHz 100 120 3.42ms  

Table 5
Conditions of Case Studies.
 Parameter Range Number 
 FT LLLG, LLL, LLG, LL, LG

2000

 
 RF −60 to 60%  
 SBI 0.5–100Ω  
 FIA 0–360◦  
 SR 20, 100, 200  
 Gaussian Noise 40 to 60 dB  

interval of 0.73–0.81ms. This comfortably fits within the 10ms half-cycle 
decision window required at 50Hz.

In order to characterize the scalability, the execution time of the 
proposed algorithm is quantified under different sampling rates by 
processing 20,000 measurement windows for each considered rate. 
Table  4 summarizes the results obtained for the effect of sampling rate 
on execution time. As observed in Table  4, even at higher sampling 
rates, the total execution time remains well below real-time protection 
constraints.

3.3. Comparison with other methods

The performance of the proposed method (PM) is compared with 
previously published algorithms. The comparison is conducted for over 
2000 fault scenarios for various CT saturation conditions. These con-
ditions are generated by varying the secondary burden impedance 
(SBI), remnant flux (RF), fault type (FT), and fault inception angle 
(FIA). Besides, three different sampling rates (SR) are used to evaluate 
performance under varying resolutions. Gaussian noise corresponding 
to an SNR range of 40–60 dB is added to the signals during the 
training and testing stages to reflect realistic CT secondary signal noise. 
The parameters of the studied cases are summarized in Table  5. The 
algorithms used for comparison are briefly described below:

• Method 1 (M1): The first algorithm is a modified version of 
the approach presented in [32], which is based on deep learning 
and fine-tuning optimization. However, this algorithm is designed 
for the classification of CT saturation rather than compensation. 
It can detect the saturated interval, and the output serves as a 
flag indicating the duration of saturation. Then, this flag is com-
bined with a Rogowski coil-based CT saturation compensation 
method, also introduced in [15]. The platform is implemented in 
a simulation environment, allowing the secondary current to be 
extracted using the output from the Rogowski coil during the sat-
urated interval and from the iron-core CT during the unsaturated 
interval.

• Method 2 (M2): The second algorithm is based on a multilayer 
perceptron (MLP) and is designed to reconstruct the saturated 
waveform of the CT [33]. The network architecture consists of 
two hidden layers and one output layer. A data vector with 𝑁
samples of the saturated current, along with the corresponding 
primary signal, is used for training.

To evaluate the performance of the considered algorithms, the root 
mean square error (RMSE) metric is used. The RMSE is calculated over 
a full cycle of the reconstructed waveform, as defined below: 

𝑅𝑀𝑆𝐸 =
𝐾
∑ 𝑖act

(

𝑡𝑘
)

− 𝑖est
(

𝑡𝑘
)

, (35)

𝑘=1 𝐾
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Fig. 7. Performance comparison in terms of RMSE considering different satu-
ration levels.

Fig. 8. Performance comparison based on response time delay considering 
different saturation levels.

where 𝑖act and 𝑖est denote the actual and the estimated currents at the 
𝑘th time sample 𝑡𝑘, with 𝐾 being the total number of samples in the 
considered window.

As a first comparison, Fig.  7 shows the average value of the RMSE 
for each saturation level. It is worth mentioning that for each level of 
saturation (i.e., light, normal, and deep), 1000 scenarios are considered. 
As one can see in Fig.  7, the proposed method performs similarly 
for different levels of saturation, while the performance of the other 
methods becomes less efficient when they are fed with more dis-
torted waveforms. Moreover, for each class of saturation, the proposed 
method demonstrates superior performance in terms of RMSE value.

To assess the response time of the PM compared to other methods, 
the output of each algorithm is applied to the phasor estimation process 
given in (33) and (34), and the time interval until the phasor reaches 
a total vector error of less than 2% is taken as the evaluation metric, 
i.e. the delay. Fig.  8 shows the average delay for each saturation class. 
As one can see in Fig.  8, the delay in the proposed method increases 
by less than 4ms from light to deep saturation level. The delay increase 
for Methods 1 and 2 is 4ms and 20ms, respectively, indicating that the 
performance of Method 2 is significantly influenced by the level of CT 
saturation. Furthermore, as illustrated in Fig.  8, the proposed algorithm 
exhibits the fastest time response for phasor estimation among all 
methods.
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Fig. 9. Performance comparison in terms of response time delay considering 
different 𝑋∕𝑅 ratios.

The ratio of reactance to resistance (𝑋∕𝑅) is a factor that influ-
ences the presence of decaying DC components in power system fault 
currents. A higher 𝑋∕𝑅 ratio not only increases the likelihood of deep 
CT saturation by producing stronger decaying DC components but also 
introduces potential challenges for phasor estimation. To demonstrate 
the impact on the algorithms, Fig.  9 shows the phasor estimation time 
delay for reconstructed waveforms from different algorithms based 
on 1000 deep CT saturation fault current signals generated for three 
different 𝑋∕𝑅 ratios.

4. Field recorded data

To demonstrate the effectiveness of the proposed method for real-
world conditions, its performance is evaluated using field-recorded 
data. For this purpose, the proposed algorithm is tested with actual 
measurement data from the distribution grid of a natural gas liquids 
refinery plant that processes light hydrocarbons into other compounds, 
shown in Fig.  10. As shown in Fig.  10, T#1 indicates the incoming 
transformers rated 33∕11 kV, and T#2 marks the low-voltage transform-
ers rated 11∕0.4 kV. Most of the connected loads in this network are 
induction motors. The data is measured from one of the multifunc-
tion differential relays protecting the incoming 33∕11 kV transformers. 
This relay measures instantaneous values of fault current and voltage 
signals at 1ms intervals (sampling rate of 1 kHz), which corresponds 
to 20 samples per cycle for the 50Hz power frequency. The proposed 
method was implemented on a general-purpose workstation-class CPU. 
It was observed that the SVM classification and LS-based regression 
required approximately 0.65ms to reconstruct a waveform segment of 
one full cycle, while the modified DFT phasor extraction took around 
0.12ms. Consequently, the total time required for waveform reconstruc-
tion and phasor extraction over one cycle is approximately 0.77ms. This 
confirms that the proposed method operates an order of magnitude 
faster than real-time processing requirements.

The performance of the proposed algorithm with field-recorded data 
is presented in Fig.  11. The results indicate that the DFT-based method 
is highly sensitive to CT saturation and the presence of decaying 
DC. When the primary signal is taken as reference, the waveform, 
magnitude, and phase angle estimated from the uncompensated current 
show clear oscillations and a delay of nearly two cycles. Furthermore, 
the proposed method can reconstruct the waveform within one and a 
half cycles, and the corresponding magnitude and phase angle are less 
affected by CT saturation and decaying DC components.
9 
Fig. 10. Single-line schematic of an actual distribution grid with integrated 
distributed generation (DG) unit.

Fig. 11. Simulation results for field-recorded data: (a) current signal, (b) 
magnitude, (c) phase angle.

5. Conclusions

Distorted waveforms due to CT saturation present a significant 
challenge to protective relay measurement units and can compromise 
the overall reliability and security of protection systems. To mitigate 
this issue, a supervised learning-assisted phasor estimation algorithm 
was proposed in this study. The proposed framework first utilizes the 
LSSVM as a regression tool to reconstruct the fault current from the 
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saturated waveform. Compared to the state-of-the-art methods, the 
proposed algorithm can reconstruct signals under varying levels of CT 
saturation, considering different sampling rates, noise levels, fault in-
ception angles, and fault types. For all test scenarios, the reconstruction 
error was limited to 1.5%, with the response time confined to one cycle.

Subsequently, a DC-immune DFT was used to extract the phasor 
component from the reconstructed waveform. The phasor estimation 
error remained below 1.2%, with a response time from 20 to 30ms, 
excluding the time required for fault detection. Field-recorded data 
was also used for further validation of the practical applicability of 
the proposed approach. Among the compared algorithms, the proposed 
method achieved the best response time for waveform reconstruction 
and phasor estimation. As the method outperforms existing techniques, 
future work should focus on integrating classification capabilities to 
facilitate autonomous identification of CT saturation and fault events. 
Furthermore, the real-time performance of the proposed algorithm 
should be evaluated using real-time simulator hardware.
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