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ARTICLE INFO ABSTRACT

Keywords: Deteriorated measurements due to the saturation of current transformers (CTs) are a major challenge in
Current transformer saturation digital power system protection schemes. Failing to resolve this issue effectively can have serious consequences
Least squares for the accuracy of measured components in phasor-based digital relaying algorithms. Potentially, this may

Phasor estimation
Supervised machine learning
Support vector machine (SVM)

compromise the secure and reliable operation of the protection system and, hence, the entire power system.
Accurate fault detection or classification can be achieved by applying an algorithm that can deal with the
CT saturation effects. In this paper, a method is presented that can accurately estimate the fundamental
current phasor during CT saturation. Reconstruction of the deteriorated measured waveform is accomplished
by applying a supervised machine learning algorithm, namely the support vector machine (SVM). The least
squares (LS) method is integrated with the SVM-based algorithm to reduce the complexities of waveform
reconstruction regressions. A modified discrete Fourier transform (DFT), robust to decaying DC components, is
then applied to the reconstructed waveform to extract the required phasor components. The proposed approach
is validated by evaluating its classification and phasor estimation performance using standard metrics over
numerous simulated cases and field measurements. The results demonstrate the high accuracy of the proposed
method to classify different levels of CT saturation and ensure precise estimation of the fundamental phasor

component.
1. Introduction CT saturation in digital relays can result in the malfunction of over-
current protection, distance protection, busbar protection, differential
Power system protection against short-circuit (SC) faults profoundly protection, and electric arc detection algorithms for overhead lines [1-
relies on current signal measurements using current transformers (CTs). 10].
For ideal operating conditions, a CT is expected to deliver a scaled- The CT saturation detection and waveform reconstruction
down replica of the current passing through its loophole on the sec- approaches discussed in the literature can be categorized into three

ondary side. This is crucial for the reliable operation of protective
algorithms applied in digital relays based on intelligent electronic
devices (IEDs). Nevertheless, CTs are prone to magnetic core satura- G1. Model-Based Methods [5-8]: The methods within this cate-
tion, leading to nonlinear operation and deteriorated measurements, gory focus on the reconstruction of the CT saturated current
which threaten the protection of the power system. The severity of CT
saturation is affected by the asymmetrical fault current level, remanent
core flux, and CT burden.

Typically, the phasor measurement algorithms are applied to cal-
culate and estimate the fundamental frequency component from the
current delivered on the secondary of the CT. The estimated phasor
is an input for the protection and control functions in IEDs. However,
according to the aforementioned, CT saturation can cause severe dis-
tortions in the secondary current and thus lead to reduced accuracy
in estimating the fundamental component. As a result, the issue of

main groups:

by developing a proper CT model. According to [6,7], the CT
saturation onset is determined by analyzing the magnetic flux at
the saturation inception onset. However, these approaches often
struggle with the determination of the saturation starting point
and are prone to inaccuracies under noisy conditions.

G2. Artificial Intelligence-Based Methods [9-12]: These methods
are capable of accurately extracting features in a supervised/un-
supervised manner, enabling them to effectively reconstruct and
classify varying levels of CT saturation with high precision.
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Table 1
Evaluation of present CT waveform reconstruction methods.

Method PoV1 PoV2 PoV3 PoV4
[51 v X X v
6

Gl [6] 4 v X v
[71 v X X v
[8] 4 X X v
[9] X X X v
10

G2 [10] 4 X X v
[11] 4 X X X
[12] v X X 4
[13] X X X X
[14] X X X v
[15] v X v v
16

63 [16] v X v v
[17] v X v v/
[18] v X X 4
[19] 4 X X X
[20] 4 X X v

Although these algorithms show strong classification results by
employing hierarchical learning to extract high-level features,
they face challenges related to training, feature selection, and
problem dimensionality.

G3. Signal Processing Based Methods [13-20]: This group of
methods deals with defining mathematical relations to extract
particular parameters and features from the unsaturated part
of the fault current. However, these methods depend on the
current waveform and may exhibit inaccuracies due to rapid CT
saturation.

In this paper, CT saturation detection and waveform reconstruction
are investigated from several points of view (PoV), as follows: PoV1-
waveform reconstruction capability, PoV2- ability to distinguish fault
currents from inrush currents, PoV3- consideration of CT’s dynamic
behavior in waveform reconstruction, PoV4- sub-cycle response time
feasibility. Table 1 provides a summary of the most prominent pub-
lished studies on CT saturation and waveform reconstruction evaluated
according to these PoVs.

As it is stated in Table 1, apart from the methods in [9,13,14],
all other methods are capable of CT waveform reconstruction. In ad-
dition, the methods in [15-17] perform the waveform reconstruction
by taking into account CT’s dynamic behavior. Nonetheless, it is worth
mentioning that the method in [17] employs a high-order derivative
to eliminate the DC component of the fault current signal. The method
in [6] can also detect CT saturation and reconstruct the current signal,
not only in the case of a fault but also in the case of power transformer
inrush currents. As seen in the last column of Table 2, nearly all
methods respond within a sub-cycle interval. However, in this case,
it is important to consider other PoVs as well. For instance, although
the method proposed in [10] performs rapidly, it lacks accuracy due
to the absence of capabilities related to PoV2 and PoV3. Furthermore,
even though the approach in [20] introduces a one-cycle delay, it
demonstrates good accuracy. Hence, maintaining a trade-off between
a detailed analysis and operational speed is a key challenge for these
methods. The method proposed in [6] performs well and meets the
requested trade-off by providing a fast response while maintaining high
accuracy. However, this method is limited in application generality due
to having a model-based framework.

So far, several artificial intelligence (AI)-based methods have been
proposed to serve as classifiers for detecting CT saturation. In [21],
saturated and unsaturated CT operation was detected by training an al-
gorithm based on Gaussian Mixture Models (GMMs) using CT secondary
current signals under various conditions. However, GMMs are effective

International Journal of Electrical Power and Energy Systems 173 (2025) 111436

only with low-dimensional data and exhibit poor performance with
high-dimensional and complex datasets. Furthermore, these models are
prone to overfitting because they depend on the supervised classifi-
cation techniques using manually designed features. A more refined
method based on genetic algorithm (GA) application was proposed
in [22]. Despite their good performance in optimization problems, the
GA-based approaches have often been shown to settle on local optima
instead of reaching the global optimum. Moreover, because of their
low convergence speed, these algorithms are usually not applicable in
real-world situations. The method in [23] employs the particle swarm
optimization (PSO) technique for detecting CT saturation in power
transformers. In comparison with GAs, PSOs provide more compu-
tational efficiency and simplicity in implementation. However, since
their global convergence is not secured, and they are susceptible to
overfitting, they are not ideal options for classification tasks. In [24],
an intelligent algorithm was presented, focusing on the waveform
correction distorted by CT saturation. This method, however, does not
account for the different levels of saturation (heavy, light, normal).
Besides, this algorithm suffers from reliance on manually crafted fea-
ture extraction and limited generalization capability. A technique based
on decision trees and wavelet transform (WT) was proposed in [25].
The feature extraction in this method is achieved by applying signal
processing methods based on wavelet decomposition to the measured
differential and restraining currents. With this in mind, it can be
indicated that this approach demands considerable signal-processing
expertise to ensure meaningful feature extraction.

Driven by the challenges discussed above, this research introduces
a hybrid learning-based method to estimate the fundamental phasor
component of the fault current under CT saturation. This learning-
based technique can reconstruct saturated fault currents and enhance
the accuracy of phasor estimation in the case of CT saturation. The main
contributions of this paper are summarized as follows:

1. Supervised learning is applied to reconstruct the saturated fault
current waveform by considering this task as a time-series pre-
diction problem. This approach combines least squares, sup-
port vector machines (LSSVM), and performs the time-series
prediction by solving a system of linear equations.

2. Despite its enhanced computation speed, LSSVM still operates as
a batch-learning algorithm. In such a framework, for every new
data arrival, all the past and current data are retrained. This
procedure requires inversion of a larger matrix at each phase,
making it computationally expensive and time-consuming. This
issue is overcome through an online learning LSSVM using a
recursive approach to enable fast current signal prediction.

3. Once the current signal is reconstructed, it is processed through
a modified Discrete Fourier Transform (DFT) to eliminate the
decaying DC component, ensuring stability and accuracy of esti-
mation. Integrated with LSSVM, this approach achieves accurate
phasor estimation within one cycle for any CT saturation level.

This paper is structured as follows: Section 2 elaborates on the
proposed approach. Section 3 explains the data collection and necessary
preprocessing steps. In Section 4, the performance of the proposed
approach is evaluated using simulation and field-recorded data, and
comparisons are made with existing methods. Finally, the conclusions
are discussed in Section 5.

2. The proposed method

This section provides a detailed description of the proposed CT
waveform reconstruction method. The presented analysis comprises
three main parts, as illustrated in Fig. 1. As can be seen, the first
part is related to data preparation for the proposed algorithm. To this
aim, data is first generated by performing simulations on a test power
system model in the MATLAB/SIMULINK environment. The results of
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Fig. 1. Structure of the proposed method.

the simulated CT saturation cases are stored in an output file and
organized in a preprocessing stage before being fed to the LSSVM
algorithm. In the second part, training is performed on the data by
applying the LSSVM method as a supervised learning algorithm. The
details of the learning method will be explained in the next sections.
After the training stage, the built model will be utilized within the pha-
sor calculation algorithm to extract the fundamental phase component
of the fault current from the measured data. It is worth mentioning
that, since the statistical properties of CT saturation do not change
frequently, the LSSVM algorithm is required to be trained only once.
Retraining is almost never needed and is only considered in the event of
major changes, such as CT replacement or significant system upgrades.
In the following, the proposed details of the algorithm are presented.

2.1. The LSSVM algorithm

In the first stage of the proposed CT waveform reconstruction pro-
cess, the LSSVM algorithm is applied. This algorithm combines the least
squares method with the support vector machine. To understand this
technique, the training sample set {x,, y; }Z=1 is assumed where x € R¢
and y, € R, with d being the number of input variables. Therefore, the
LSSVM regression model is defined as:

f(x)=wTu/ (xk) +c, 1)

where w denotes the weighting factor, the nonlinear y function maps
the input variables to a high feature space, and c is the bias factor.

The training data error minimization is carried out with the struc-
tural risk minimization (SRM) principle by using the squared errors. As
a result, the LSSVM model can be formulated as follows:

n
: _wT n 2
min J (w,e) ww+2l§1ek @

st. f()=wly (x) +c+e,

where ¢, denotes the k— error variable and # is a penalty factor, defined
to provide balance between the model complexity and approximation
precision. The optimization problem can be transformed into a system
of linear equations by applying the Lagrangian method:

n
L(w,n,e,a,c)= %WTW+ g Zei
\ = 3)
+ Zak (re=wly (x)) +c+e,
k=1
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where k is an integer and ¢, denotes the Lagrangian multiplier vector.
The optimization of the Lagrangian multiplier method is performed
based on the Karush-Kuhn-Tucker (KKT) conditions by setting the
kernel function K (x,x;) = w ()T w (x;).

Therefore, the LSSVM regression model is obtained as:
n
y(x) = ZakK (x,xi)+c. (©)]

k=1
2.2. Iterative LSSVM algorithm

Upon training, the LSSVM algorithm can predict the new samples.
Method accuracy is proportional to the weighing factors optimally
obtained from the performed training. This can slow down the com-
putations of the proposed method, considering that the training stage
consumes considerable time. To resolve this issue, instead of retraining,
the weighing factors are corrected by the arrival of new samples based
on the last prediction error in an iterative manner. By applying this
technique, the predictions are obtained based on updated weighing
factors.

To implement this iterative approach, the regression model in (4) is
modified as:

y(x) = ZakK (x,xi) +c
o ®)
= Y oK (xx;) =Ko,
k=1

where Kt denotes the generalized inverse of K, and ¢ = K* (Ka + ¢).
It is worth mentioning that while ¢ can get different values, it does not
affect the generality of the approach, as expressed in the following.

The kernel function K is considered Gaussian with the standard
deviation of ¢ as:

K (x,x;) = exp (=llx — x[1*/?) . (6)
Now, the value of ¢ can be considered at the initial condition:
_ -1
9o =Kj lyy = (K(T)Ko) KgY() s (@]

where K, is the value of the kernel function given by the initial training
samples. A regularization parameter is applied to avoid KgKO becoming
singular. Therefore, for transforming KgKO, the following is enforced:

2
1 . llogll
Q = KJK, + g St-min { IKo@o — 0 + RO I . (8)
@0
Hence, the following yields:
@0 =Q;'Kyp - ©)
By the arrival of a new sample data, in the first step K, is calculated
as:
T
1 |K Y
1 {Bo 0
= , 10
= [KI] [yl]
1K) [K
-1 0 of _ T
Q =% K, [Kl] Q +K'K, . an

Therefore, the transformation can be written as:

T
K 37 _
[ O] [yo] = Ky + Ky = QuQ; 'Ky, + Ky
1

K,

12)
=Qu9y + Ky = (Q, -K[K|) ¢ + Ky,
=Q,9)-K'K,9,+K]y, ,

and
[ =(P0+Q]_]K1T (y1 —Kio) - 13)
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Accordingly, for sample k, the following can be calculated:

_ -1
Qi = (Qu+K[, Kiyy) 14

P+l = @i+ QELKEH (Mt — Kip101) - (15)

The value of Qﬁl is obtained by the following approximation as:

Q 'K, Kiyi Q!

1+Kk+]Q]:'KE+]

Q! = (Q+KI, Kiyy) ' = Q' - a6)

By introducing a variable change of Z, = Q;l, (15) and (16) can be
rewritten as:

Z K[, K Zy

Ly =% ———————— 17)
1+ Ky, ZKT

i1 = Ok + L KL (v — Kiq194) - 18

In a time-variant system, the operating condition dynamically
changes, thus, the output is prone to significant variations. As a result,
the prediction model’s weighing factors are to be adjusted in proportion
to these changes. This can be resolved by introducing forgetting factors
to the weights in the algorithm. By updating the forgetting factors based
on the prediction error, the weights are corrected according to the new
arriving data samples [26], as:

7, K]

K+1 Gt » 19)

Pl =Pt T/
* I+ 7t

where 6, = (¥4, — Kiy 1@y ) is the error of new sample from @, .
7141 is the update flag, defined as:

Yk+l = l<k+1Zkl< (20)

T
k+1
where ., = 0 will result in Z;,; = Z,, and in case y,; > 0, Eq. (17)
will be changed as:

Z,K' K. ,Z,
Ly =2y - _l](H—Jr : 2D
S T ka1

In (21), &, is defined as:

1-4
Skt = 6k — k > (22)
Yk+1

where 0 < y, < 1 denotes the forgetting factor, and §,,; is calculated
as:

Sers :{ 1+ +¢) [1n(l+yk+1)

1 (23)
+ (k1 +1) et _q Yi+1 ]
L+ Vg1 + i L+ 741 '
where
22
_ %1
Hi+1 = Tenr s
4
2
¢ 24
k+1
Al = O <)‘k+1 + 1+;k 1> ,
.

Tept = Gt (e +1)

Here, the value of ¢ is fixed, and the initial values of A and r are
between 0 and 1.
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According to the presented relationships, the iterated LSSVM
method is given by:

Va1 = P Kiyr (25)

where §,,; corresponds to the calculated prediction. The processing of
the LSSVM method is shown in 1.

Algorithm 1 Iterative LSSVM Method

Input: &, Ay, 7, €, o, initial dataset S,,;, and following dataset S¢ o -
Output: Predicted value y
Initialize: Train the standard LSSVM model by S,;, and calculate ¢ in
(5
Calculate K, ¢, and Z, using D, ;
k<0
while & < length(S,jj0,) do
Calculate Ky @y11, Y15 Eipr from (k+ 1)-th gy
if y,; =0 then
Zyyy < I
else

Zi KT, Ky 2

Zy,, <7 -
+ fk_:_l+Yk+l

end if
Calculate 1, 4,1 and 75
k—k+1,

Yir1r < Kip19cq
end while

2.3. Proposed phasor estimation technique

When a fault occurs in the power grid, voltages and currents no
longer preserve their standard sinusoidal form. They are affected by
waveform distortion and may contain a decaying DC component [27,
28]. The occurred asymmetrical fault current can be expressed by:

H

i) = Igee™/™e + Y I sin (27 foht +6y) , (26)
h=1

where f, = 50Hz is the power frequency, I}, and 6, respectively denote

the magnitude and phase angle of the Ath harmonic component, while

I4. and 6, represent the magnitude and decay time constant of the DC

component, respectively.

Typically, the discrete Fourier transform (DFT) is applied in power
system protection algorithms to estimate the magnitude and angle of
the fundamental phasor component of the fault current, i.e., I, and 6,
by calculating the real and imaginary parts as follows:

M

Iy, = Z i (m)sin <M> s (27a)
m=1 M
M

Iy, = Z i (m)cos <%> s (27b)
m=1

where m = 1, ..., M denote the samples taken within one cycle with the
V12 + 12, and 0 = tan™! (4 ).

Although the DFT algorithm performs well in estimating the desired
component and rejecting high-order harmonics, its performance can be
significantly degraded by the presence of a decaying DC component.
This effect is better understood through Egs. (28a) and (28b) obtained

by substituting (26) in (27a) and (27b).

sampling time of T, while I, =
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m=1 h=2

2
X sin <—ﬂf0mTS >
M

M H
Iy. = Z <[dcem1;/rd« + 1, sin 2z fomT, +0,) + Z I, sin (27 foht + Bh))

M 27 fym. M
=Y I, e /7 sin <#> + ¥ 1, sin (2x fymT, + 0
,,,z:“] dc M mz::l 1 ( fO s ])

. ( 27 fomT, >
X smn | ———
M

- 27 fomT,
+ I, sin (27 fyht + 6 sin(#)
mzzhé h ( 0 h) M
M
2 T,
= 2 [dce—mTS/mc Sin< zfom 5) i
M

m=1

_ gDbC Sym
- IRe + IRe ’

M

2 ﬁcos (6,) sin <M>
2 M

m=1

(28a)

M H
Im=Y, <1dce—’"T\/% + I, sin (27 fymT, +6,) + Y I sin (27 foht + eh))

m=1 h=2

<2”f0st>
x cos [ ———
M

M 27 fymT, M
—m Tde 0 o1
= E Ty e~/ e c0s<—5> +mE:111 sin (27 fomT, + 6,)

m=1

(2”fost )
x cos [ ———
M

H
2 T.
Z I, sin (27 foht + 6,) cos <—ﬁf0m S)
h=2 M

M
2 ﬁsin (6,) cos <M>
2 M

m=1

Mz

+

3
N

M
27 fomT,

=Y I/ cos [ 221 ) 4

”; dc® M

_ 7DC Sym
=1+ .

Im

(28b)

Expressions (28a) and (28b) indicate that the real and imaginary
parts of DFT are influenced by the decaying DC component. To elimi-
nate the influence of the decaying DC component on phasor estimation,
the following procedure is applied. First, the discrete sum of (26) over
one cycle is expressed as:

1 | Mo
I(m)= Mldce—st/Tdc + i m;] hgl I sin (27 fohmT, + 6y) . (29)
Since the sum of the sinusoidal components over the fundamental
period is zero, expression (29) can be simplified as follows:

T(m) = ﬁzdce-”s/fdc (1— e MT/me) (30)

The magnitude of the decaying dc component 7, and decay time
constant 7,4, can be obtained by considering two consecutive samples m
and m + 1 as follows:

— (31
e = ln<i<m+1)> ’
I(m)
MI(m
I = ) . (32)

e—MTs/7qc ( 1 — e—MTy/74c )

Once the parameters of the decaying DC component are calcu-
lated, the fundamental phasor component of the fault current can be
estimated as:

1y =\ (I = 1)+ (I — 126)°. 33)

Iy, — IPC
6, = tan”! (“"—I;C) : 34
Iy - IRe
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Fig. 2. The test system under study.

Bus 2

) i @

Table 2
Specifications of the system under study.
Component Parameter Value
Voltage 138kV
AC Source 1 Frequency 50Hz
Impedance Ry =03Q
Xy =3.39Q
Voltage 138kV
AC Source 2 Frequency 50Hz
Impedance Ry =05Q
Xy =475Q
Length 50km
Sequence R, =6.18x 1073 Q/km
L . Resistance Ry = 5447 x 1072 Q/km
Transmission Line -
Sequence X, =624x 1072 Q/km
Reactance Xor1 =0.168Q/km
Sequence Cp; =0.0179 pF/km
Capacitance Cor1 = 0.0109 pF/km

3. Simulation results and discussion

In this section, the performance of the proposed CT waveform
reconstruction method is evaluated through simulations using a power
system test model, as shown in Fig. 2. In this regard, the test system is
simulated by the MATLAB/SIMULINK software package [29], and the
simulation results are stored in an output file for further processing.
The test system under study includes a 138 kV transmission line, with its
terminals connected to Thevenin equivalents of the rest of the network,
modeled as AC voltage sources behind impedances. In addition, the
standard CT model introduced in [30] is adopted to analyze CT satu-
ration. As implemented in [31], the model provides a balance between
simplicity and accuracy. The details of the test system are listed in Table
2.

To generate a comprehensive dataset, numerous simulations are
performed by changing parameters such as CT burden, fault type, fault
resistance, and CT core remnant flux. The obtained data from the sim-
ulations are stored and further analyzed in MATLAB. The sampling fre-
quency is set to 5kHz considering a sampling rate of 100 samples/cycle
under the 50Hz power frequency. The generated dataset constitutes
4000 cases with various CT saturation levels, i.e., light, normal, and
deep. The different CT saturation levels are defined based on the degree
of distortion observed in the secondary current waveform [32]. Light
saturation refers to conditions where distortion affects less than 10% of
the cycle, normal saturation corresponds to distortion lasting between
10%-30% of the cycle, and deep saturation occurs when more than
30%-50% of the cycle is affected.

Therefore, the dataset is divided into two parts: 75 % for training
and 25% for testing, resulting in 3000 training cases and 1000 test
cases. The cases are randomly allocated within the two subsets. The
developed LSSVM algorithm is implemented to receive CT saturation
cases as input and provide a reconstructed waveform as output.

The initial step in training the proposed LSSVM-based CT waveform
reconstructor is to adjust the tuning parameters, namely the regulariza-
tion parameter # in (2) and the kernel parameter ¢ in (6). The initial
training dataset is obtained from a 42-millisecond window comprising
one cycle of pre-fault data, 0.1 cycle considered for fault detection
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Table 3

Summary of CT saturation cases considered for evaluation.
Case Level Cause Origin
1 light low decaying DC magnitude single-phase-to-ground fault (Ag) at + = 104 ms
2 normal moderate decaying DC magnitude double-phase-to-ground fault (ABg) at ¢ = 102ms
3 deep high decaying DC magnitude + 50Q additional resistive burden three-phase-to-ground fault (ABCg) at ¢+ = 100 ms
4 deep high decaying DC magnitude + 100Q additional resistive burden double-phase-to-ground fault (ABg) at + = 100 ms

(to account for the deep CT saturation), and one cycle of post-fault
data. The LSSVM parameters (n and o) are determined using 4-fold
cross-validation. Once the optimal values for n and ¢ are determined,
they remain constant throughout the prediction process, and the online
rolling prediction of the saturated current is initiated. The prediction
starts with a 22 ms window. As new data arrive, the training window
is expanded, however, its size is constrained so that the training-to-
prediction ratio does not exceed 2:1. Once the prediction window
reaches 42 ms, it is fixed at 20 ms. It is essential to note that the ratio
and the maximum prediction time window are selected based on a
tradeoff between accuracy and the timeliness of the prediction. Here,
the algorithm was implemented on a general-purpose workstation-class
CPU, and it was observed that the classification and reconstruction of
a waveform segment corresponding to a half-cycle (10 ms) required less
than 0.8 ms, confirming its real-time feasibility.

3.1. Performance evaluation

As thoroughly discussed in earlier sections, CT saturation can distort
the measured current signal, even resulting in a significant deviation
from the standard sinusoidal form. To demonstrate the performance
of the proposed LSSVM-based CT waveform reconstruction and phasor
estimation algorithm, the evaluation is carried out using waveforms
from four CT saturation scenarios involving light, normal, and deep
saturation conditions. The four considered cases are presented in Table
3, and the performance results of the proposed algorithm, correspond-
ing to the cases in the table, are shown in Figs. 3 to 6. In these
figures, the black dashed curves correspond to the actual current at the
primary of the CT, the red dashed curves correspond to the measured
current transferred to the secondary side of the CT, and the blue curves
correspond to the reconstructed waveform obtained from the proposed
LSSVM-based algorithm.

The measurement waveforms from Case 1 in Table 3, corresponding
to a single-phase-to-ground fault event, are shown in Fig. 3, where
the calculated phasor magnitude and angle of the current signal in
Fig. 3a are represented in Figs. 3b and c, respectively. As can be
seen, the DFT-based algorithm is prone to errors in phasor estimation
because of its vulnerability to the decaying DC component caused by
CT saturation. Taking the primary signal as a reference, the waveform,
magnitude, and phase angle estimated from the uncompensated current
exhibit oscillations and a delay of nearly two cycles. In contrast, the
proposed algorithm, despite exhibiting a slight initial estimation error
due to its dynamic behavior, reconstructs the waveform within one and
a half cycles, and achieves a faster and more accurate estimation of
magnitude and phase angle compared to the DFT-based method, while
maintaining robustness against CT saturation and decaying DC effects.

In Fig. 4, Case 2 from Table 3 is presented, corresponding to a
double-phase-to-ground fault that causes normal saturation in the A-
phase CT current. Similar to the previous case, the results in Fig. 4 show
the vulnerability of the DFT-based algorithm to CT saturation and the
decaying DC component. Taking the primary signal as a reference, the
waveform, magnitude, and phase angle derived from the uncompen-
sated current exhibit oscillations and a delay of nearly three cycles.
In contrast, although an initial estimation error is observed due to
the algorithm’s dynamic response, the proposed algorithm reconstructs
the waveform more accurately within one and a half cycles, and the
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Fig. 3. Simulation results for Case 1 in Table 3: (a) current signal, (b)
magnitude, (c) phase angle.

estimated magnitude and phase angle are significantly less affected by
CT saturation and the decaying DC component.

Moving to Case 3, as detailed in Table 3 and illustrated in Fig. 5,
this scenario involves a three-phase-to-ground fault combined with an
additional burden on the CT secondary, resulting in deep saturation
in the A-phase current. Fig. 5 shows that the DFT-based algorithm is
significantly affected by CT saturation and the decaying DC component.
Using the primary signal as a reference, the waveform, magnitude,
and the phase angle obtained from the uncompensated current display
oscillations and an approximate delay of four cycles. In contrast, the
proposed algorithm effectively reconstructs the waveform within one
and a half cycles, and the estimated magnitude and phase angle are
much less affected by CT saturation and the decaying DC component.

Finally, Fig. 6 illustrates Case 4 from Table 3, where a two-phase-to-
ground fault combined with additional burden in the CT secondary has
resulted in deep saturation of the A-phase current. As shown in Fig. 6,
the DFT-based algorithm exhibits considerable sensitivity to CT satura-
tion and the decaying DC component. When the primary signal is used
as a reference, the waveform, magnitude, and phase angle derived from
the uncompensated current waveform show oscillations and nearly four
cycles of delay. In contrast, the proposed algorithm reconstructs the
waveform within one and a half cycles, and the estimated magnitude
and phase angle are less disturbed by CT saturation and the decaying
DC component.
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3.2. Execution time and effect of sampling rate

As stated earlier, the timeliness of the prediction is inversely related
to the prediction sample rate. While achieving higher accuracy requires
a greater number of data points within the prediction window (that is,
a higher sampling rate), it is important to reach a tradeoff that ensures
satisfactory accuracy while maintaining fast execution time.

To process each window of length W, the proposed method ex-
ecutes three main stages: (i) SVM inference using S support vectors
in a d-dimensional feature space, (ii) updating the LS algorithm with
k coefficients, and (iii) applying the modified DFT, which is robust
against the decaying DC component. In the proposed method, the SVM
stage is executed considering d = W, and the LS algorithm is updated
using a precomputed pseudo-inverse. The SVM inference cost scales as
the order of O(S-d), plus S scalar exponential evaluations for the kernel
computations; the LS update requires O(k - W) operations; and the
modified DFT stage operates with a complexity of O(W). Considering a
window length of W = 20 samples (corresponding to a 1 kHz sampling
rate), a total of .S = 80 support vectors, and k = 6 LS coefficients,
the dominant computational cost is associated with the S exponential
evaluations in the SVM stage. This leads to a conservative analytical
execution time estimate of approximately 0.6 to 1.0 ms per window.

To practically examine the execution time of the proposed method,
the LSSVM-based algorithm was implemented on a workstation
equipped with a general-purpose CPU (an Intel Core i7 technology
here), with 16GB of RAM. The proposed algorithm is implemented
using a pre-allocated, single-thread MATLAB code, intentionally config-
ured in this way to avoid performance optimization, thereby providing
a conservative, upper-bound estimate of execution time. The execution
time is quantified by processing a number of 20,000 measurement
windows and measuring the end-to-end latency in the total runtime.
For the chosen sampling rate of 1kHz, it was observed that processing
a window length of 20 samples takes 0.77 ms with a 95% confidence
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Table 4
Effect of sampling rate on execution time of the proposed method.

Sampling rate Window length - W No. of support vectors — S Execution time

1kHz 20 80 0.77 ms
2kHz 40 80 1.12ms
3kHz 80 100 1.95ms
4kHz 100 120 3.42ms
Table 5
Conditions of Case Studies.
Parameter Range Number
FT LLLG, LLL, LLG, LL, LG
RF —60 to 60 %
SBI 0.5-100Q 2000
FIA 0-360°
SR 20, 100, 200
Gaussian Noise 40 to 60dB

interval of 0.73-0.81 ms. This comfortably fits within the 10 ms half-cycle
decision window required at 50 Hz.

In order to characterize the scalability, the execution time of the
proposed algorithm is quantified under different sampling rates by
processing 20,000 measurement windows for each considered rate.
Table 4 summarizes the results obtained for the effect of sampling rate
on execution time. As observed in Table 4, even at higher sampling
rates, the total execution time remains well below real-time protection
constraints.

3.3. Comparison with other methods

The performance of the proposed method (PM) is compared with
previously published algorithms. The comparison is conducted for over
2000 fault scenarios for various CT saturation conditions. These con-
ditions are generated by varying the secondary burden impedance
(SBI), remnant flux (RF), fault type (FT), and fault inception angle
(FIA). Besides, three different sampling rates (SR) are used to evaluate
performance under varying resolutions. Gaussian noise corresponding
to an SNR range of 40-60 dB is added to the signals during the
training and testing stages to reflect realistic CT secondary signal noise.
The parameters of the studied cases are summarized in Table 5. The
algorithms used for comparison are briefly described below:

» Method 1 (M1): The first algorithm is a modified version of
the approach presented in [32], which is based on deep learning
and fine-tuning optimization. However, this algorithm is designed
for the classification of CT saturation rather than compensation.
It can detect the saturated interval, and the output serves as a
flag indicating the duration of saturation. Then, this flag is com-
bined with a Rogowski coil-based CT saturation compensation
method, also introduced in [15]. The platform is implemented in
a simulation environment, allowing the secondary current to be
extracted using the output from the Rogowski coil during the sat-
urated interval and from the iron-core CT during the unsaturated
interval.

Method 2 (M2): The second algorithm is based on a multilayer
perceptron (MLP) and is designed to reconstruct the saturated
waveform of the CT [33]. The network architecture consists of
two hidden layers and one output layer. A data vector with N
samples of the saturated current, along with the corresponding
primary signal, is used for training.

To evaluate the performance of the considered algorithms, the root
mean square error (RMSE) metric is used. The RMSE is calculated over
a full cycle of the reconstructed waveform, as defined below:

iact (tk) - icsl (tk)

K
RMSE = , (35)
27k
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Fig. 8. Performance comparison based on response time delay considering
different saturation levels.

where i, and i,y denote the actual and the estimated currents at the
kth time sample 7,, with K being the total number of samples in the
considered window.

As a first comparison, Fig. 7 shows the average value of the RMSE
for each saturation level. It is worth mentioning that for each level of
saturation (i.e., light, normal, and deep), 1000 scenarios are considered.
As one can see in Fig. 7, the proposed method performs similarly
for different levels of saturation, while the performance of the other
methods becomes less efficient when they are fed with more dis-
torted waveforms. Moreover, for each class of saturation, the proposed
method demonstrates superior performance in terms of RMSE value.

To assess the response time of the PM compared to other methods,
the output of each algorithm is applied to the phasor estimation process
given in (33) and (34), and the time interval until the phasor reaches
a total vector error of less than 2% is taken as the evaluation metric,
i.e. the delay. Fig. 8 shows the average delay for each saturation class.
As one can see in Fig. 8, the delay in the proposed method increases
by less than 4 ms from light to deep saturation level. The delay increase
for Methods 1 and 2 is 4 ms and 20 ms, respectively, indicating that the
performance of Method 2 is significantly influenced by the level of CT
saturation. Furthermore, as illustrated in Fig. 8, the proposed algorithm
exhibits the fastest time response for phasor estimation among all
methods.
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The ratio of reactance to resistance (X/R) is a factor that influ-
ences the presence of decaying DC components in power system fault
currents. A higher X /R ratio not only increases the likelihood of deep
CT saturation by producing stronger decaying DC components but also
introduces potential challenges for phasor estimation. To demonstrate
the impact on the algorithms, Fig. 9 shows the phasor estimation time
delay for reconstructed waveforms from different algorithms based
on 1000 deep CT saturation fault current signals generated for three
different X /R ratios.

4. Field recorded data

To demonstrate the effectiveness of the proposed method for real-
world conditions, its performance is evaluated using field-recorded
data. For this purpose, the proposed algorithm is tested with actual
measurement data from the distribution grid of a natural gas liquids
refinery plant that processes light hydrocarbons into other compounds,
shown in Fig. 10. As shown in Fig. 10, T#1 indicates the incoming
transformers rated 33/11kV, and T#2 marks the low-voltage transform-
ers rated 11/0.4kV. Most of the connected loads in this network are
induction motors. The data is measured from one of the multifunc-
tion differential relays protecting the incoming 33/11kV transformers.
This relay measures instantaneous values of fault current and voltage
signals at 1 ms intervals (sampling rate of 1kHz), which corresponds
to 20samples per cycle for the 50 Hz power frequency. The proposed
method was implemented on a general-purpose workstation-class CPU.
It was observed that the SVM classification and LS-based regression
required approximately 0.65ms to reconstruct a waveform segment of
one full cycle, while the modified DFT phasor extraction took around
0.12 ms. Consequently, the total time required for waveform reconstruc-
tion and phasor extraction over one cycle is approximately 0.77 ms. This
confirms that the proposed method operates an order of magnitude
faster than real-time processing requirements.

The performance of the proposed algorithm with field-recorded data
is presented in Fig. 11. The results indicate that the DFT-based method
is highly sensitive to CT saturation and the presence of decaying
DC. When the primary signal is taken as reference, the waveform,
magnitude, and phase angle estimated from the uncompensated current
show clear oscillations and a delay of nearly two cycles. Furthermore,
the proposed method can reconstruct the waveform within one and a
half cycles, and the corresponding magnitude and phase angle are less
affected by CT saturation and decaying DC components.
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Fig. 10. Single-line schematic of an actual distribution grid with integrated
distributed generation (DG) unit.
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Fig. 11. Simulation results for field-recorded data: (a) current signal, (b)
magnitude, (c) phase angle.

5. Conclusions

Distorted waveforms due to CT saturation present a significant
challenge to protective relay measurement units and can compromise
the overall reliability and security of protection systems. To mitigate
this issue, a supervised learning-assisted phasor estimation algorithm
was proposed in this study. The proposed framework first utilizes the
LSSVM as a regression tool to reconstruct the fault current from the
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saturated waveform. Compared to the state-of-the-art methods, the
proposed algorithm can reconstruct signals under varying levels of CT
saturation, considering different sampling rates, noise levels, fault in-
ception angles, and fault types. For all test scenarios, the reconstruction
error was limited to 1.5 %, with the response time confined to one cycle.

Subsequently, a DC-immune DFT was used to extract the phasor
component from the reconstructed waveform. The phasor estimation
error remained below 1.2%, with a response time from 20 to 30ms,
excluding the time required for fault detection. Field-recorded data
was also used for further validation of the practical applicability of
the proposed approach. Among the compared algorithms, the proposed
method achieved the best response time for waveform reconstruction
and phasor estimation. As the method outperforms existing techniques,
future work should focus on integrating classification capabilities to
facilitate autonomous identification of CT saturation and fault events.
Furthermore, the real-time performance of the proposed algorithm
should be evaluated using real-time simulator hardware.
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