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Abstract The Routing Protocol for Low-Power and Lossy
Networks (RPL) has gained in popularity since the increased
connectivity of everyday items to the Internet. One of the
discovered attacks on RPL is the rank attack, which opens
up possibilities for attackers to control traffic in the RPL
network by spoofing their priority. Many solutions have been
proposed to mitigate this attack over the past few years.
There is no perfect solution yet, partly because the success
of a mitigation is dependent on the network configuration in
which it is implemented. In some network configurations,
as this paper will show, common mitigation solutions are
less effective. By selecting and analyzing four well-cited
mitigation and detection solutions, the effectiveness of these
proposals is reviewed when the network is configured to use
nonlinear objective functions (NOFs). After this, a proposal
is given to defend against a rank attack when using NOFs.
TRAIL was proposed as a solution for preventing decreased
rank attacks and uses a challenge-response mechanism to
verify the path from a node to the root. This paper proposes
T-TRAIL; an extended version of TRAIL that allows the
measurement of downwards-trip-time to detect outliers in
the network. By doing this, the rank attack can be prevented
when the network uses a NOF. Finally, an estimation of the
performance impact of T-TRAIL on the network is given
based on the performance measurements of TRAIL.

Index Terms—RPL, 6LowPAN, IoT, LLN, Rank Attack,
TRAIL, Mitigation

I. Introduction

With the increasing amount of everyday objects being con-
nected to the Internet, a need arises for efficient and secure
communication for this new generation of devices. Many of
these new devices are resource-constrained, meaning they
have limited battery, processing, and networking capabilities.

A breach in the security of Internet of Things (IoT) could
create serious threats in the physical world (e.g. a connected
cardiac device malfunctioning), which is why it is important
to study and improve the security of the protocols used
by these networks. An attacker can target a network to
disrupt, eavesdrop, or modify the data flowing through it, and
depending on the network scenario that could have drastic
consequences.

To allow resource-constrained devices to communicate
over IPv6, 6LowPAN was created to reduce the minimum
packet size by fragmenting IPv6 datagrams [1]. To better
suit the routing requirements for Low-Power and Lossy
Networks (LLNs), the IPv6 Routing Protocol for Low-Power
and Lossy Networks (RPL) was proposed. RPL is a distance
vector routing protocol within 6LowPAN and is specifically
designed for multipoint-to-point (MP2P) traffic, but also sup-
ports point-to-point (P2P) and point-to-multipoint (P2MP)
traffic [2]. RPL is more basic than standard routing protocols
such as the network layer in the Internet Protocol (IP)
stack. This works well for resource-constrained devices, but
because of this and the varying availability of the nodes in
an RPL network, security and privacy is not easy to achieve
and remains an active area of research.

Since the RFC on RPL was released in 2012, much
research has been done on the security and usability of
this protocol. The paper by Mayzaud et al. (2016) [3] gives
a good overview of possible attacks and proposes various
ways to avoid and prevent them. The paper concludes that
there is no end-all solution and that there will always be
a trade-off between the level of security and the overhead
added by countermeasures. It is thus relevant to look for
countermeasures that add minimum overhead whilst still
being effective against attacks. In a survey done by Kim et al.
(2017), 97 studies on RPL security were evaluated [4]. One
of the conclusions was that many optional functionalities
in RPL were not supported or needed in common scenarios.
Furthermore, RPL is still not widely adopted by the industry
and this might have to do with the complexity, amount, and
ambiguity of the optional features. Many intrusion detection
systems (IDS) and mitigation solutions have been proposed,
each with its advantages and drawbacks. In literature, some
of the well-cited solutions are Secure-RPL [5], SVELTE [6],
VeRA [7] and TRAIL [8].

The contribution of this paper is twofold; first, the four
mitigation and detection proposals above are analyzed by
giving the disadvantages and advantages each method has.
In this analysis, a possible exploit is introduced by showing
that a decreased rank attack is still possible when using
nonlinear objective functions (NOFs). Secondly, a modifi-
cation to TRAIL is proposed that allows nodes to calculate
the downward-trip-time (DTT) to nodes in the parent set to
overcome this exploit.
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The scope of this paper is limited to defining the core
idea and motivation behind this without simulating the
actual modification to TRAIL, which could be performed
in further research. Besides DTT being useful for spotting
incorrect usage of the NOFs, it could potentially be used in
more advanced IDS that make use of link quality to detect
intruders. The research question that this paper will try to
answer is;

“What effect does the use of a nonlinear objective
function have on existing mitigation solutions for
the rank attack on RPL and how can possible
exploits be defended against?”

The structure of this paper is as follows. Section II gives
an overview of how RPL currently operates. Section III ex-
plains the difference between nonlinear and linear objective
functions (NOFs and LOFs). Section IV explains the rank
attack and how current state-of-the-art mitigation solutions
try to mitigate this by summarizing the advantages and
disadvantages each solution has. In section V, an exploit on
some of these mitigation solutions is introduced when NOFs
are used. Part VI then proposes a method to prevent this
exploit by measuring downwards-trip-time (DTT). Part VII
looks at the performance drawback that T-TRAIL imposes.
Finally, the work is concluded and a short discussion is given
about the effectiveness of this paper.

II. Overview of RPL
This part introduces the core concepts of RPL that are
needed to understand the behavior of an attack and its
implications to the performance of the network. The full
documentation on RPL can be found in RFC-6550 [2]. In
this study, multiple figures illustrate the topology and node
types of RPL networks. Fig. 1 explains the different elements
that these figures use.

Figure 1. Overview of elements used in figures

Topology: RPL is a distance vector-based routing pro-
tocol that constructs a directed acyclic graph (DAG) to
make routing decisions. Within a DAG, RPL constructs
destination-oriented acyclic graphs (DODAG) with the root
being one or more IPv6 Border Routers (6BR) that translates
full IPv6 datagrams to and from fragmented 6LowPAN
datagrams [4]. Fig. 2 illustrates the message flow for when

a new node joins the RPL network. The new node starts
by broadcasting a DIS message (A), waits for nodes to
respond with DIO messages (B) after which the node selects
a preferred parent. In (C), DAO messages are transmitted to
make parents aware of the sub-DODAG. In the following
paragraph, these different messages will be explained fur-
ther.

Order in the DODAG: The rank of a node indicates the
order in which nodes appear in the DODAG. The higher the
rank, the further away it is to the root node, also called the
monotonic increase of rank. A node learns information about
its neighbors by reading DIO messages that can be requested
by multicasting a DODAG information solicitation (DIS)
message. When nodes in the network receive a multicast DIS
message they, in turn, will also multicast a DIO message (see
fig. 2 B). Another option is to unicast a DIS message, which
will reduce traffic in some scenarios as receiving nodes will
only unicast DIO messages to the sender. A node selects the
parent set P based on all neighbors that have a rank lower
than its rank. The Objective Function (OF) decides how the
preferred parent (PP) should be chosen from the parent set
P. When a node has to forward a message, it will first try to
do so through the PP and if that does not work it will try
the other members in PP.

Downwards routing: Once every node has established a
path to the root node in the DODAG, nodes will transmit
destination advertisement object (DAO) messages to their
parents, which contain routing information for downwards
routing. A parent will acknowledge a DAO message by
sending a DAO-ACK message to the sending child. The
DAO-Ack message contains a DAOSequence number that
corresponds to the DAOSequence number in the DAO mes-
sage. The mode of operation (MOP) indicates the routing
mode that the RPL instance is in. In storing mode, a parent
aggregates DAO messages from its children and sends that
information to its parents. In this mode, nodes maintain their
routing tables such that nodes can efficiently route messages
directly to the target. In non-storing mode, parents do not
store DAO information but insert their address and unicast
to the DODAG root [3]. In this mode, every message is
forwarded to the root before sent to the target.

Graph repair: RPL supports dynamically repairing the
graph in case of a broken topology. A global repair is
initiated when the root node increments the DODAG version
number. This allows all nodes to reposition themselves in
the network by recalculating their rank. Note that a global
repair is quite an expensive operation. A local repair is less
expensive and works by either routing through a close sibling
of the same rank or selecting a different parent. It is initiated
by either changing its rank to infinity and broadcasting this,
or changing the DODAG ID value of the node [9]. Local
repairs are needed for example when a loop is detected or
when a node disappears from the network.

Security Modes: In the RFC [2] three security modes are
defined. Note that RPLs goal is to remain lightweight and
is not focused on security, hence why most implementations



Figure 2. RPL Message Flow. A) New node joins the network and multicasts DIS. B) Neighbors respond by multicasting DIO. C) Nodes
select preferred parent and unicast DAO on parent change.

only use unsecured mode and rely on other layers in the IP
stack to provide confidentiality, integrity, and availability.
• Unsecured: RPL does not add any security to commu-

nication.
• Preinstalled: every node comes with a preinstalled key

that is used to communicate over the network.
• Authenticated: every node comes with a preinstalled

key, but now also needs a second key that can be ob-
tained through a specified authentication authority. The
RFC does not specify how this should be implemented.

III. Linear and Nonlinear Objective Functions
In this paper, a distinction is made between linear and
nonlinear increasing rank sequences as it impacts the effec-
tiveness of mitigation and detection solutions for the rank
attack, described later on. The terms linear and nonlinear
are based on the increased rank between each hop. Fig. 3
illustrates an example of the rank increase based on hop-
count of a nonlinear objective function (NOF) and a linear
objective function (LOF).

Linear Objective Functions
A well-documented LOF is defined in RFC6552 [10] called
OF0 that calculates the rank of a node based on the number
of hops to the root. In this paper, this OF is defined as linear
since the rank sequence of a path from the root to any node
is steadily monotonically increasing, whilst NOFs have more
freedom in deciding the next rank of a node.

Nonlinear Objective Functions
A common NOF is the Minimum Rank increase with Hys-
teresis OF (MRHOF) [11], which bases the rank of a
node on more complex metrics that indicate link quality
to each parent in the parent set. One of these metrics is

the Expected Transmission Count (ETX) which is given by
1

DfDr
, where {Df , Dr} denote the forwarding and receive

success rate respectively. Other metrics included are hop-
count and latency, but any metric can be configured as long
it can be minimized. MRHOF uses hysteresis to prevent
rapid switching between parents when the link metrics are
jittering. According to the RFC, a node sets its rank to the
maximum of the following three values:

• The rank of the preferred parent + the rank increase
associated with the link to the PP.

• The rank of the parent Rp from the parent set with the
highest rank rounded up based on the minimum rank
increase Rmin: R = Rmin ∗ (1 + Rp/Rmin).

• The rank associated with the worst path through the
parent set, minus maximum rank increase.

Choosing the Right Objective Function

In Pradeska et al. [12], OF0 and MRHOF are simulated
in various scenarios; “From the simulation, we conclude
that MRHOF gives better performance than OF0 in the
aspect of network reliability while OF0 is faster in network
convergence and consumes less power than MRHOF during
the DODAG convergence time interval”. Capone et al. [13]
claims that using hop count as a metric (meaning the use of
LOF), compared to using MRHOF, leads to a stable topology
but poor network lifetime, as nodes close to the root become
a traffic bottleneck that consumes more power and thus run
out of energy faster. Based on these two papers, MRHOF
seems to be more energy-efficient once the initial DODAG
is constructed, although it consumes more energy during the
convergence phase. Even though using NOFs is not standard,
the results from the study above tell us that NOFs have the
potential to save on energy consumption in certain scenarios.



Figure 3. Linear versus nonlinear rank increase.

IV. The Rank Attack and Current Mitigation
Solutions
Standard RPL is exposed to various kinds of attacks, which
are properly introduced by Mayzoud et al. (2015) [3]. The
rank attack is considered as being the strongest threat to
routing performance and energy consumption of the network
[14]. It also serves as a basis for many other attacks, since
it attracts or repels traffic. Note how the rank of a node
is essential for determining its place and priority in the
network. Any node can change its rank at any moment,
which opens up possibilities for exploits.

A node can advertise a false rank at any time by creating
a false DIO message containing the desired rank. Besides
falsifying its rank, a node can also pick a suboptimal parent.
The three main types of rank attacks are as follows.
• The decreased rank attack decreases a node’s rank such

that its neighbors will pick it as their preferred parent,
which allows the node to start other attacks.

• The increased rank attack increases a nodes’ rank such
that its children will have to start looking for a different
parent, which will consume resources and could create
loops in the network.

• The worst-parent attack is performed by letting the
malicious node pick the worst parent, which will neg-
atively impact the end-to-end delay and ETX.

The adversary must be able to control a node inside the
network that preferably has a large neighbor set since it will
try to trick as many nodes as possible into believing it has
a specific rank. The goal of the adversary is to manipulate
traffic flow by either promoting itself as a low-rank node or
degrading itself to disrupt the topology. Once the adversary
has placed itself in the network, it can initiate other attacks
such as the Blackhole attack.

The decreased rank attack (Fig. 4) can have the largest
impact, since this is the only type of rank attack that attracts

more traffic than it should, thereby opening up possibilities
to manipulate, inspect or drop most traffic. Many intrusion
detection systems (IDS) and mitigation solutions have been
proposed against this type of attack. In this paper, SVELTE
[6], Secure-RPL [5], VeRA [7] and TRAIL [8] are expanded
on as they all offer a unique approach to preventing rank
attacks. VeRA is a well-cited mitigation solution against the
rank attack and TRAIL was written as a response to it, as
it exposes security risks that VeRA still has and proposes a
solution to this problem.

Figure 4. Decreased rank attack. Dotted connections are replaced
by solid connections.

Secure-RPL
Secure-RPL was introduced in 2017 and has a unique take
on preventing rank attacks. In essence, the writers argue that
the closer a node is to the root, the more power it has to
control or drop traffic from its sub-DODAG. Furthermore, a
node with a large parent set could have a big impact on the
topology if he were to falsely lower his rank. Also, a node
with a large descendant set could have a large impact in the
same way by falsely increasing its rank. Because of this, the
authors propose the use of a threshold D and I , where D
gets smaller as the rank gets lower and the size of the parent
set increases. I gets smaller as the size of the descendant
set increases. When a node wants to change its rank, the
new parent checks if the rank change is within the limits
of D and I . Secure-RPL also makes use of hash-chains to
validate a node’s proximity to a lower rank node, similar
to VeRA (will be explained in-depth later). The simulation
results from Secure-RPL are promising, but it is unclear
what effect this proposal would have in mobile scenarios.
Secure-RPL works best in large, dense networks with a big
DODAG since the thresholds D and I have more effect in
these situations.

Advantages: Secure-RPL has a unique approach using
thresholds that could work for NOF as well. Secure-RPL
seems to be conservative with resources based on simulation
results. Glissa et al. (2016) [5] shows simulation results from
Cooja [15] that indicate the effectiveness of Secure-RPL.



Disadvantages: Does not protect against slow rank at-
tacks, where an attacker slowly decreases or increases its
rank. Restricts freedom of node movement as nodes will
have to adhere to the maximum rank difference D and I .
Because of the hash chain verification and limit calculation,
Secure-RPL could be computationally complex for resource-
constrained devices.

SVELTE
SVELTE is an IDS that was introduced in 2013 and is made
up out of three systems. The first system is hosted at the
root node and reconstructs the entire DODAG in memory
by sending mapping requests to every node in the DODAG.
Each node then appends its rank, parent ID, and all neighbor
ranks with ID’s. The second system makes use of the
reconstructed DODAG and tries to detect anomalies, such
as the rank attack. The third module is a distributed firewall
that defends against unwanted traffic from the Internet.
SVELTE detects decreased rank attacks in similarly to VeRA
and TRAIL, namely by checking if the rank is decreasing
towards the root. Since SVELTE is an IDS, it only raises an
alarm when an attack is discovered but does not talk about
mitigation techniques for rank attacks.

Advantages: SVELTE provides a framework that is easy
to extend, as the actual detection of attacks is not mathemati-
cally restricted (as is the case with VeRA for example). It can
be used to possibly detect new attacks and be implemented
in most network scenarios.

Disadvantages: SVELTE raises alarms but does not take
action against rank attacks, which could be implemented in
a future version. Due to the three systems, SVELTE can be
complex to implement in an existing network. The root sends
mapping requests to every node in the network, which will
increase traffic based on the number of nodes in the network.

VeRA
Dvir et al. (2011) [7] propose a unique method called Version
number and Rank Authentication (VeRA) that uses hash
chains from the root to verify the validity of the version
number and rank of a parent. VeRA enforces the requirement
from [2] that the rank of all nodes in the path from a leaf
to root should be monotonically decreasing, as malicious
nodes will often advertise a lower rank than their real parent,
illustrated in Fig. 4.

The root precalculates a version number hash chain of size
n based on a random number r. Since the root is the only
node that knows the entire hash chain, it can prove that it is
the root by giving a prior version hash Vi−1, after which a
node can verify that h(Vi−1) = Vi. This results in the entire
DODAG being able to agree on the latest version number.
For every Vi ∈ V a Rank hash chain of size l is calculated
by the root with a unique random number xi for every Vi.
For every rank hash chain, the maximum rank hash value
(Rmrh) is defined as the final element in the chain. DIO
messages must now contain Rsender which is the rank chain
hash element belonging to the rank of the sender. Using
Rsender and Rmrh, the rank of the sender can be verified by
calculating Rcheck = hl−Ranksender (Rsender) which should

be equal to Rmrh. The receiving node then calculates its
own Rsender = hRankincrease(Rsender) and uses this when
broadcasting its own DIO message. For a more in-depth
explanation of the exact method and encryption schemes
used, see [7].

Using VeRA, it can be proven that a parent of rank Ri is
in range of a node that has a rank Ri−1 such that Ri > Ri−1.
This, however, is not enough to prevent all decreased rank
attacks. Landsmann et al. (2014) describe the two types of
rank attacks that are still possible when using VeRA [16]:

1) If a malicious node can prevent the propagation of
a version number update, it can forge a new hash
chain after receiving a second version number update.
Because the attacker now has all knowledge of the
hash chain, it can choose to advertise any rank it
wants.

2) By copying the Rsender from their parents, malicious
nodes can decrease their rank to the rank of their
parents.

Advantages: Nodes can prove the rank of their parent
using verifiable hash chains. VeRA is clearly described,
making it easy to implement. VeRA protects against the
version attack as well, which is another infamous attack on
RPL.

Disadvantages: Computationally complex for resource-
constrained devices. It is still possible to decrease rank in the
two situations described above. In the original paper, VeRA
was not implemented in a real system or simulation, so
numbers about the effectiveness and efficiency are lacking.

TRAIL
TRAIL (Perrey et al., 2016) was published as an alternative
to VeRA and exposes the same security risks as mentioned
above. Landsmann et al. (2014) proposed a challenge-
response mechanism to prevent the second attack, which
inspired the invention of TRAIL.

TRAIL also uses a challenge-response mechanism (see
Fig. 5) to verify the parents’ rank from a node by sending
a nonce upwards. The parent of the challenger then adds
their rank to the message, which is then compared by the
grandparent to the advertised rank of the parent. If an
inconsistency is detected by the grandparent, it will not
forward the message and thus the challenging node will not
receive a response, thereby marking the parent as suspicious.
If the rank is valid, the message will be forwarded to
the root. Based on the assumption that the root can be
trusted (called the trust anchor), it then signs the nonce
and sends it back down to the challenging node. Note that
the parent cannot include a different rank than advertised,
as the grandparent will be aware of the advertised rank as
well. This basic idea does not scale very well; if each node
in the DODAG initiates its separate challenge, the network
will be clogged with control messages, which depletes the
resource-constrained nodes quicker.

To overcome this large increase in traffic, a scalable
version of TRAIL is also explained in the same paper.
In essence, intermediate nodes aggregate nonces from all
children and efficiently forward this data to their parent in



a single message using Bloom filters, thereby reducing the
number of messages to 2n whilst adding some complexity
and length to the messaging. The root receives the full
Bloom filter array in which the nonces from every node
in the DODAG exist. After adding the version number,
the root signs it and multicasts this data to all children.
Upon receiving this message, a node can check if the nonce
from their preferred parent is present in the Bloom filter.
Furthermore, the node also checks if the entire Bloom filter
array it sent upwards is present in the received array. To
prevent malicious cooperating nodes from inserting their
nonce at a different spot, nodes must also verify that their
parents nonce is only present in one subarray.

Using TRAIL, nodes can be sure that the rank sequence in
the path from the root is monotonically increasing. However,
this does not fully prevent a decreased rank attack, as will
be explained in the next section.

Advantages: Protects against more rank attacks than
VeRA. The challenge-response mechanism validates the
round-trip message flow. Constructing and validating the
bloom filter is less complex for resource-constrained devices
compared to Secure-RPL and VeRA.

Disadvantages: Because a node must wait on all children
to send nonces, there is an increased routing convergence
time. When NOFs are used, decreased rank attacks are still
possible in specific network scenarios.

Figure 5. TRAIL message flow. Left: middle node correctly verifies
his rank. Right: malicious node is not able to convince the root to
sign the message.

V. Security Risks when using NOFs
The characteristics of NOFs compared to LOFs seem prob-
lematic for most mitigation and detection solutions such
as SVELTE, VeRA, and TRAIL, as these solutions only
check if the rank is decreasing towards the root. With NOFs,
malicious nodes will still be able to decrease their rank
without seeming suspicious, by performing the NOF Rank
Attack that is explained in Fig. 6. This only works when
the attacker is still in range of the parent but lies about the
link quality by advertising a better rank than it should. This
situation was not considered by Landsmann et al. (2014)

TABLE I
LIST OF DEFINITIONS

Symbol Description
pk Parent k in Pi

Pi Parent set of node ni

troot, tcurr, tk Timestamp of root node,
current node and DTT of node k

rk Rank ratio of parent pk
r̄i Mean rank ratio of Pi

SDi Standard deviation of rank ratio in Pi

[16], and can be seen as a third possible attack on VeRA
given that a NOF is used.

Figure 6. TRAIL exploit when using a NOF: Optimal path is A-
B-Root, but A-C-Root is chosen. Dotted arrow indicates weak link.
Dotted circle indicates range of center node.

Using LOFs would make sure that this exploit would
not be possible, as nodes can easily verify that their child
should have their rank plus a constant. With downward-trip-
time (DTT), the time between a message from the root to a
node in the network is indicated. This metric could provide
insight into link speed and consequently be used to detect a
decreased rank attack. Here, an adjustment to TRAIL, called
Time-TRAIL (T-TRAIL) is proposed that allows all nodes
in the network to measure their downward-trip-time from
the root without adding any significant overhead or control
messages. Note that T-TRAIL is currently only effective in
situations where a NOF is used.

VI. T-TRAIL: A Novel Method to Detect the
NOF Rank Attack
Assumptions
In this method, the following assumptions are made;
• All nodes in the network are homogeneous, meaning

that they have the same amount of resources and
transmitting/receiving power.

• The link quality between two nodes is the same for
forwarding and receiving.



• The DTT is directly correlated with the metrics used
by the OF. Meaning the higher the rank, the higher the
DTT should be.

Method
TRAIL introduces a method to validate a rank sequence to
the root, which can also be used to measure downward-trip-
time. For this, the scaled version of TRAIL is used with
slight modifications (see Tab. I for an overview of symbols
used). Note that TRAIL does not specify when or how the
challenge sequence should be initiated, which can be done in
different ways. Here, it is suggested that nodes broadcast a
special challenge initiation message containing the version
number, to which children should reply and broadcast the
same message. After this, all nodes in the DODAG should
be aware of a new challenge cycle and send their nonces
upwards. See Alg. 1 for when a node receives a response
message. This is merely a suggestion and it is out of the
scope of this paper to further specify and simulate this
behavior. The modifications to TRAIL are as follows:
• The root includes a timestamp troot in the set next to

the version vi, bloom filter bi and signature sign.
• Instead of multicasting the signed message down, nodes

broadcast this message. Nodes ni ∈ N should listen for
any signed message sent by a pk ∈ Pi where Pi denotes
the parent set of ni that contains all lower-rank nodes
in range of ni

• Upon receiving a signed message, a node can calculate
the downward-trip-time tk = tcurr− troot belonging to
parent pk from the parent set P.

Further changes to prevent new exploits:
• When a node ni wants to solicit to a new parent, it

must publicly announce its interest by broadcasting a
special soliciting message. This lets the sub-DODAG of
ni know that the path has changed and a new challenge
must be transmitted.

• Whenever a parent switch is observed, a child should
resend an individual challenge-response message and
remeasure the DTT.

Proof: In this section, it will be proven that the mea-
surement of DTT is resistant against spoofing in the long
term, meaning that nodes can temporarily be convinced of a
DTT but will detect an inconsistency quickly. This is done
by showing how malicious behavior is mitigated in the two
edge cases C1 and C2.

C1 Say a malicious node m rebroadcasts a challenge-
response that does not come from his preferred par-
ent (PP). In theory, this would allow it to advertise
a different DTT than is true, implying that the PP
has not yet sent his challenge-response. Because
m broadcasts the challenge-response earlier than
PP, PP will know that m is malicious and blacklist
this node. This will isolate m and his entire sub-
DODAG from the network, which will be easily
detected by the sub-DODAG by the lack of traffic.

C2 Say a malicious node m changes parent after
the challenging phase. As defined above, the new
PP will only allow m if he publicly announces

Algorithm 1: Calculating tk of all pk ∈ Pi

Result: DTT for every pk ∈ Pi

myRank;
myParent;
myChildren;
dttMap;
forwarded = False;
for every signed response m do

tcurr = now();
if rank(m) < myRank then

Verify signature;
dttMap[m] = tcurr −m.troot;
if m.sender == myParent then

Broadcast m ;
forwarded = True;

end
else if m.sender ∈ myChildren and not

forwarded then
Block m;

end

his change by broadcasting. This will notify the
children of m that a parent switch has occurred,
causing a new series of challenge-response mes-
sages and a remeasurement of the DTT.

Figure 7. Detecting outliers using DTT: node E advertises rank 1
whilst having a DTT compared to a rank 4 node.

Attack Detection Using Downward-Trip-Time
Measurement
Now that nodes ni ∈ N have an overview of the DTT from
all parents pk ∈ Pi, it can detect outliers by calculating the
DTT / Rank ratio using equation 1.

rk =
tk

Rank(k)
(1)

The bigger the size of P , the better it can be assumed that
an outlier in this factor is a malicious node. An outlier means



that a node has promoted a rank that is too low compared to
his measured DTT (see Fig. 7). An outlier can be detected
by calculating the standard deviation of all the rk ∈ Ri

(see equation 2 and 3), where Ri denotes the set of ratios
belonging to parent set Pi

r̄i =

∑
r∈Ri

r

|Ri|
(2)

SDi =

√∑
r∈Ri

|r − r̄i|2

|Ri|
(3)

Next, a threshold should be specified as a multiple of
SDi to detect an outlier. Further research must be done in
determining the right threshold value. Note that this would
work particularly well for decreased rank attacks depicted in
fig. 6 and 7, but would in general be a good way to enforce
correct usage of OF.

VII. Performance Impact of T-TRAIL
For any addition to standard RPL, it is important to know
the performance drawback imposed by it as security is only
one of the many factors that determine the usefulness of a
solution. Most mitigation solutions add complexity, traffic,
and energy consumption which must be kept to a minimum
in LLNs. As T-TRAIL builds upon TRAIL, this section will
give an overview of the added overhead caused by measuring
DTT. As simulating is out of the scope of this paper, metrics
are selected that are based on theory and reasoning only. As
it turns out, T-TRAIL has the worst effect on computational
overhead and potentially adds a significant increase to the
convergence time of the network.
• Message count Perrey et al. (2015) [8] explains that

two messages per node are sent for the challenge-
response protocol. Each node in the network will send
and receive one message for the challenge-response.
T-TRAIL does not increase this message count, as
the timestamp will be piggybacked on the response
message.

• Message size As nodes closer to the root will build
increasingly larger Bloom filter arrays, the message size
grows towards the root. The size of these messages
depends on the parameters used for the Bloom filter.
T-TRAIL adds a constant to the message size as a
timestamp would be added in the response, which is
usually 8 bytes.

• Computational overhead The largest performance
drawback of T-TRAIL compared to TRAIL is that
in normal TRAIL, a node only listens for the PP to
respond, compared to a node now having to listen to
all pk ∈ Pi. This means each node will have to listen
to and process messages from any node in its parent
set

• Convergence time The convergence time of TRAIL
was measured in a small experimental setup. The leaf
node furthest away suffered the maximum overhead
caused by TRAIL but remained under 20% in most
cases. Without simulations or real-world experiments,
there is no definite answer to what T-TRAIL will add to

the convergence time, but it is expected to be significant
as nodes will have to process information from all
parents in the parent set.

Picking the Right SDi Threshold

If the network is sparse (small parent sets) then nodes
will have a less accurate SDi, which makes T-TRAIL less
functional. Because of this, parse networks are potentially
better for resource efficiency but sub-optimal for effec-
tiveness. Further research is needed to discover this true
relationship. In this paper, no recommendation is given for
the SDi threshold that marks an outlier as malicious. By
experimenting with this value, a threshold should be looked
for that minimizes false positives and false negatives.

VIII. Discussion and Further Research

Every mitigation solution discussed in this paper has its
advantages and disadvantages. There is no perfect solution
yet, so choosing which one is right is up to the engineer to
decide. The goal of this paper is to inspire further research
on the use of DTT in OFs and mitigation/detection solutions.
T-TRAIL is proposed as an improvement to TRAIL when
NOFs are used. The effects of the decreased rank attack
on NOFs is currently purely theoretical and needs to be
quantified, for example by simulating it in Cooja [15]. If the
simulation turns out to be successful, the next step would
be to build a real-world experimental RPL network that
uses T-TRAIL to detect the discussed decreased rank attack.
Here, DTT is used only to detect this attack, but could
potentially be used for more advanced mitigation solutions.
Furthermore, a new OF could be designed that makes use
of the DTT to select the best path based on this challenge-
response mechanism.

Ethical considerations

This study bases its findings on the literature found through
various online sources. The four mitigation solutions that
are discussed in this paper were selected because they all
offer a different approach to preventing and mitigating the
rank attack. To the best of our knowledge, measuring and
using DTT for mitigation purposes has not been discussed
in previous papers.

As simulating and testing T-TRAIL is out of the scope
of this paper, there is nothing to be reproduced yet. We
hope that in further research, reproducible test cases will be
developed that demonstrate T-TRAILs effectiveness.

This paper potentially exposes a new way to perform a
decreased rank attack, with no intent to promote or assist
illegal activities to be performed. By writing about RPL
security, we hope to stimulate further research on this topic
such that protocols for IoT can become safer, stable, and
more scalable. This paper tries to refrain from making any
claims regarding the usability and efficiency of the proposal,
as there is more work to be done on simulating and testing
before any results and claims can be presented.



IX. Conclusion
In this paper, the rank attack was considered to be a critical
attack on RPL since it allows an attacker to take a strategic
position in the network. Moreover, standard RPL is ill-
equipped against this type of attack and thus mitigation is
required in networks where security is critical. The research
question that this paper tried to answer is: “What effect does
the use of a nonlinear objective function have on existing
mitigation solutions for the rank attack on RPL and how can
possible exploits be defended against?”. Four approaches to
mitigating the rank attack were analyzed. Secure-RPL has
a unique approach of limiting rank increase and decrease
to prevent rank attacks but thereby limits the freedom of
movement a node has. SVELTE is an IDS that can detect a
broad range of attacks, but only raises an alarm if an attack is
detected. VeRA adds complexity and does not fully prevent
the rank attack, which is why TRAIL was proposed. TRAIL
uses a challenge-response mechanism to validate a path from
any node to the root. In this paper, it is shown that even
with this mechanism in place, a decreased rank attack is
still possible in the case where NOFs are used. Here, an
addition to TRAIL is proposed that allows nodes to know
the DTT to each parent in the parent set. By measuring the
DTT, outliers can hopefully be detected by comparing the
rank increase with the link quality. More research must be
done on simulating and validating this proposal.
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