
Delft Center for Systems and Control

Analytic Interpolation and the
Non-linear Fourier Transform

Julián Uribe Jaramillo

M
as

te
ro

fS
cie

nc
e

Th
es

is

Analytic Interpolation and the
Non-linear Fourier Transform

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

Julián Uribe Jaramillo

May 25, 2018

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright c© Delft Center for Systems and Control (DCSC)
All rights reserved.

Abstract

The non-linear Fourier transform may be considered an extension of Fourier analysis to non-
linear problems. It has applications in many different scientific and engineering disciplines,
for instance as a solution to the non-linear Schrödinger equation which describes how electro-
magnetic waves travel through ideal non-linear media. Hence, the non-linear Fourier trans-
form is fundamental for communication schemes that take optical fiber non-linearities into
account.

Wahls et al. proposed an algorithm for a fast inverse non-linear Fourier transform based
around a discretization of the non-linear Schrödinger equation. But one of the steps in the
algorithm — known as synthesis — only had heuristic solutions. However, the problem closely
resembles a Nevanlinna-Pick interpolation with degree constraint, a problem known to have
a guaranteed solution. Indeed, synthesis is a limit case of Nevanlinna-Pick interpolation with
degree constraint on the boundary of the region of analyticity. Although there are solvers to
the boundary Nevanlinna-Pick interpolation with degree constraint available in the literature,
they do not scale to the numerical difficulty or size required, and are based around simplifying
assumptions that do not hold for synthesis.

In this thesis I propose two different numerical continuation solvers for synthesis. The meth-
ods have lower computational complexity than other guaranteed solvers by using fast linear
Fourier transforms to perform polynomial operations. Moreover, the convergence speed of the
algorithms is improved by approaching the solution in a novel trajectory. However, the solvers
only offer a quicker convergence rate than the heuristic methods for very difficult problems,
and may not be effective for real-time applications, as the high-demands in error precision
required means a very high computational cost. This seems to be a limitation of the theory,
as the high computational cost is a consequence of the large number of iterations required
even when the cost of each iteration is low.

Master of Science Thesis Julián Uribe Jaramillo

ii Abstract

Julián Uribe Jaramillo Master of Science Thesis

Table of Contents

Abstract i

1 Introduction 1

2 Background 5
2-1 Complex polynomials . 5
2-2 Analytic Interpolation . 7

2-2-1 Nevanlinna-Pick Interpolation with Degree Constraint 8
2-3 The Fast Non-linear Fourier Transform . 8

2-3-1 The Non-linear Schrödinger Equation 9
2-3-2 The Forward Discrete-time Non-linear Fourier Transform 10
2-3-3 Spatial Evolution . 11
2-3-4 The Fast Inverse Non-linear Fourier Transform 12

2-4 Synthesis as an Analytic Interpolation Problem 12

3 Solvers 15
3-1 The Defocusing Case . 15

3-1-1 Explicit Approximations . 16
3-1-2 Defocusing Iterative Solver . 17

3-2 The Focusing Case . 20
3-2-1 Explicit Approximations . 20
3-2-2 Iterative Focusing Solver . 21

3-3 Discussion and Proof of Convergence . 23
3-4 Algorithms . 24

Master of Science Thesis Julián Uribe Jaramillo

iv Table of Contents

4 Results and Discussion 29
4-1 Test Functions for Performance Analysis . 30

4-1-1 Defocusing Test Function: Hyperbolic Secant 30
4-1-2 Focusing Test Function: Eight Raised Cosines 32

4-2 Performance Metrics . 32
4-3 The Defocusing Case . 34

4-3-1 Comparison of Explicit Approximations 34
4-3-2 Comparison of Continuation Trajectories 34
4-3-3 Performance . 42
4-3-4 Comparison to Conventional Solvers . 44

4-4 The Focusing Case . 46
4-4-1 Comparison of Closed-Form Approximations 46
4-4-2 Comparison to Conventional Solvers . 48

5 Conclusions and Future Work 55
5-1 Conclusions . 55
5-2 Future Work . 56

5-2-1 Improvements to Explicit Approximations 56
5-2-2 Improvements to the Iterative Solvers 56
5-2-3 Extending the Solvers to Other Applications 56
5-2-4 Interaction with the non-linear Fourier transform 57

A Comparison of spectral factorization algorithms 59
A-1 Spectral factorization algorithms . 59

A-1-1 Kolmogorov . 59
A-1-2 Bauer . 59
A-1-3 Wilson-Burg . 60
A-1-4 Wiener-Hopf . 60

A-2 Numerical Comparison . 61
A-2-1 Two Bad Polynomials . 61
A-2-2 Spectral Factorization for Synthesis . 61

B Mathematical Proofs 65
B-1 Proof that the Magnitude Condition is Finite-Dimensional 65

C Matlab code 67
C-1 Defocusing Solver . 67
C-2 Focusing Solver . 77
C-3 Spectral Factorization . 85

Julián Uribe Jaramillo Master of Science Thesis

List of Figures

2-1 Example of discrete-time identification as interpolation 9

3-1 Continuation trajectories for the defocusing case 18

4-1 Magnitude of sampled hyperbolic secant . 31
4-2 Phase of sampled hyperbolic secant . 31
4-3 Magnitude of sampled eight raised cosines . 32
4-4 Phase of sampled hyperbolic secant . 33
4-5 Interpolation error of defocusing approximations w.r.t the number of points with

Q = 0.5 . 35
4-6 Interpolation error of defocusing approximations w.r.t the number of points with

Q = 3.5 . 35
4-7 Interpolation error of defocusing approximations w.r.t the number of points with

Q = 5.5 . 36
4-8 Interpolation error of defocusing approximations w.r.t the numerical difficulty with

28 points . 36
4-9 Interpolation error of defocusing approximations w.r.t the numerical difficulty with

220 points . 37
4-10 Magnitude error of defocusing approximations w.r.t number of points with Q = 0.5 37
4-11 Magnitude error of defocusing approximations w.r.t number of points with Q = 3.5 38
4-12 Magnitude error of defocusing approximations w.r.t number of points with Q = 5.5 38
4-13 Magnitude error of defocusing approximations w.r.t the numerical difficulty with

28 points . 39
4-14 Magnitude error of defocusing approximations w.r.t the numerical difficulty with

220 points . 39
4-15 Comparison of interpolation error for continuation trajectories 40
4-16 Comparison of magnitude error for continuation trajectories 40
4-17 Comparison of the magnitude of the frequency response for continuation trajectories 41

Master of Science Thesis Julián Uribe Jaramillo

vi List of Figures

4-18 Comparison of the phases of the frequency response for continuation trajectories 42
4-19 Interpolation error w.r.t the number of corrector iterations 43
4-20 Magnitude error w.r.t the number of corrector iterations 43
4-21 Magnitude error w.r.t interpolation error . 44
4-22 Statistical comparison of interpolation error to conventional solver 45
4-23 Statistical comparison of magnitude error to conventional solver 46
4-24 Statistical comparison of convergence time to conventional solver 47
4-25 Comparison of interpolation error to iterative synthesis 47
4-26 Comparison of magnitude error to iterative synthesis 48
4-27 Interpolation error of focusing approximations w.r.t the number of points for a

simple problem . 49
4-28 Interpolation error of focusing approximations w.r.t the number of points for a

difficult problem . 49
4-29 Interpolation error of focusing approximations w.r.t the numerical difficulty for a

problem with 28 interpolation points . 50
4-30 Interpolation error of focusing approximations w.r.t the numerical difficulty for a

problem with 220 interpolation points . 50
4-31 Magnitude error of focusing approximations w.r.t the number of points for a simple

problem . 51
4-32 Magnitude error of focusing approximations w.r.t the number of points for a difficult

problem . 51
4-33 Magnitude error of focusing approximations w.r.t the numerical difficulty for a

problem with 28 interpolation points . 52
4-34 Magnitude error of focusing approximations w.r.t the numerical difficulty for a

problem with 220 interpolation points . 52
4-35 Comparison of interpolation error to direct synthesis 53
4-36 Comparison of magnitude error to direct synthesis 54

A-1 Spectral factorization error w.r.t number of coefficients 62
A-2 Execution time w.r.t number of coefficients . 62
A-3 Magnitude error w.r.t maximum reflectivity . 63
A-4 Magnitude error w.r.t maximum reflectivity . 63
A-5 Magnitude error w.r.t maximum reflectivity . 64

Julián Uribe Jaramillo Master of Science Thesis

List of Tables

2-1 Complexity of naive implementation of polynomial operations of order n [13] . . 6

Master of Science Thesis Julián Uribe Jaramillo

viii List of Tables

Julián Uribe Jaramillo Master of Science Thesis

Chapter 1

Introduction

Perhaps the defining feature of the modern world is its increasing reliance on the Internet.
Ever since its invention, every aspect of society has grown ever more dependent on fast
and reliable communication networks. It was all made possible thanks to optical fibers, the
backbone of the world’s information systems. But, demand continues to grow and the growth
does not seem to be ending anytime soon: more and more devices now include a connection to
the Internet as a key feature — making them part of what has come to be called the Internet
of things — and many more will in the future. And as demand for communication continues
to grow, so does the pressure for capacity placed on our current networks. We may reach a
point when existing communication infrastructure might no longer be enough [1].

Optical fibers are the only known medium that can satisfy the world’s demands for fast and
efficient data transfers [1]. But they are a non-linear transmission medium and conventional
fiber optic communication assumes that the communication channel is linear and treat non-
linearities as noise, which works well at low energy levels, but fails at high power when the
non-linearities are excited. This presents a problem because capacity increases with power [1],
and hints at a limit — incorrectly but commonly known as the non-linear Shannon limit —
on the achievable information rate [2], although nobody has proven its existence [1]. Yet, even
assuming that the non-linear Shannon limit does not exist, non-linearities are not equivalent
to noise and thus conventional fiber-optic communication strategies are not optimal.

Understanding how signal and noise propagate through optical fibers is fundamental for de-
signing new communication schemes that take non-linearities into account. Luckily, it has long
been known that the non-linear Schrödinger equation describes how electro-magnetic waves
travel through ideal non-linear media [3]. Furthermore, it is also known that the non-linear
Fourier transform offers a solution to the non-linear Schrödinger equation [4].

The non-linear Fourier transform — also known as scattering transform [4] — may be con-
sidered an extension of Fourier analysis to non-linear problems. However, it only works for
certain partial differential equations and is equation specific in a nontrivial way [5]. Neverthe-
less, non-linear transmission schemes based on the non-linear Fourier transform have recently
received interest [6]. The transmission scheme uses the non-linear Fourier spectrum to encode

Master of Science Thesis Julián Uribe Jaramillo

2 Introduction

the information; then the inverse non-linear Fourier transform changes the spectrum to the
signal to be sent; and, finally, the forward non-linear Fourier transform recovers the spectrum
after it has traveled through the optical fiber. The basic insight behind this scheme is that
the non-linear Fourier spectrum evolves trivially along an ideal fiber [1].

Finding fast and efficient algorithms for the forward and inverse transform is essential for
real-time applications, where computing power is limited [7]. For this purpose, Wahls et
al. [8][7] proposed an algorithm for a fast inverse non-linear Fourier transform based around
a discretization of the non-linear Schrödinger equation [9]. However, one of the steps in the
algorithm — known as the synthesis step — only had heuristic solutions so exact methods
with theoretical guarantees were still missing. Progress towards a guaranteed solution began
in [8], where the problem is defined as an analytic interpolation with additional constraints to
guarantee that the next step in the fast inverse non-linear Fourier transform algorithm is well-
posed. It turns out that this interpolation closely resembles a Nevanlinna-Pick interpolation
with degree constraint, a problem known to have a guaranteed solution [10]. Indeed, synthesis
is a limit case of Nevanlinna-Pick interpolation with degree constraint on the boundary of the
region of analyticity.

Although there already are solvers to the boundary Nevanlinna-Pick interpolation with degree
constraint in the literature — by Baratchart et al. [11] and Nagamune et al. [12] — they do not
scale to the numerical difficulty or size required, and are based around simplifying assumptions
that do not hold for synthesis. So in this thesis I extend existing Nevanlinna-Pick interpolation
with degree constraint methods to find a guaranteed solution for synthesis.

Outline and Summary of Contributions

The thesis consist of three main parts:

Background

This chapter introduces the general knowledge required to understand the work and the
methods in this thesis. It starts with an introduction to polynomials and their numerical
representations, an important topic for efficient algorithms. After that, there is an explanation
on analytic interpolation, with an emphasis on boundary and Nevanlinna-Pick interpolation
with degree constraint. This is followed by an introduction to the fast non-linear Fourier
transform developed by Wahls et al. [8] giving a context for the problem this thesis solves.
Finally, I formalize the main problem — synthesis using analytic interpolation — and show
that it is equivalent to a finite system of non-linear equations.

Numerical Solvers

In this chapter I extend a guaranteed numerical continuation algorithm for boundary analytic
interpolation by Baratchart et al. to the synthesis interpolation problem. Moreover, I gen-
eralize another continuation algorithm by Nagamune et al. to non-self-congugated datasets.
The synthesis interpolation problem can be considered a continuous and smooth mapping
from a polynomial to the interpolation values, which is a composition of two functions. The

Julián Uribe Jaramillo Master of Science Thesis

3

solution is given by the inversion of the mapping, and the algorithms differ in the order
of composition. Furthermore, I show that the closed-form partial solution of the synthesis
interpolation problem that motivate the heuristics are good initial approximations for the
numerical continuation solvers. The new algorithms are used for different cases of synthesis,
defocusing and focusing. They can be extended to the other case, but are specially attuned
to theirs. Furthermore, I create efficient implementations of the algorithms — faster and able
to handle much larger and numerically difficult interpolation datasets — by using fast Fourier
transforms.

Results

In this chapter I compare the performance of different heuristics for the closed-form initial
approximations. Further, I benchmark three different trajectories for the defocusing case, and
one for the focusing case. Interestingly, for numerically difficult problems using Baratchart’s
approach, the best initial guess is assuming all the iterpolation values are zero. This inital
approximation is both closest to the solution in the complex plane and provides the most
numerically stable approach to the solution.

I also provide a comparison between the new algorithms and the existing heurisitc solvers.
The defocusing solver improves the solution when compared to iterative synthesis only for
very difficult problems. Furthermore, it is not possible to achieve arbitrary errors with finite
numerical accuracy, as there is a tradeoff between the two possible errors, interpolation and
magnitude. In the focusing case, the new solver improves on direct synthesis, but the rate of
improvement quickly levels off.

Master of Science Thesis Julián Uribe Jaramillo

4 Introduction

Julián Uribe Jaramillo Master of Science Thesis

Chapter 2

Background

This chapter introduces the general knowledge required to understand the work and the
methods in this thesis. It starts with an introduction to polynomials and the coefficient
and point-value numerical representations, an important topic for efficient algorithms. After
that, there is an explanation on analytic interpolation, with an emphasis on Nevanlinna-Pick
interpolation with degree constraint, a technique to compute bounded analytic polynomial
functions with low McMillan degree. This is followed by an introduction to the fast non-
linear Fourier transform developed by Wahls et al. [8] which gives the motivation for this
work, as one of the steps in the algorithm — known as synthesis — lacked a guaranteed
solution. Finally, I make the relationship between the topics explicit and formalize the main
problem: synthesis using analytic interpolation.

2-1 Complex polynomials

Complex polynomials of n degree are expressions of the form

p(z) :=
n∑
k=0

pkz
k,

where p and z are complex variables. They can be numerically represented in several ways
but there two representations that are important from a computational point of view: the
coefficient and point-value representations. These are equivalent, in the sense that every
polynomial has a unique point-value and a unique coefficient representation [13].
The coefficient representation is the vector (defined by bold lower-case letters) of n+1 complex
polynomial coefficients

p :=

p0
p1
...
pn

 ∈ Cn+1.

Master of Science Thesis Julián Uribe Jaramillo

6 Background

The point-value representation is the set of complex n+ 1 point-value pairs

{z,p(z)}, z :=

z1
z2
...

zn+1

 ∈ Cn+1 and p(z) :=

p(z1)
p(z2)
...

p(zn+1)

 ∈ Cn+1,

where z is a vector of distinct points. To keep the notation simple, the point-value represen-
tation will be indicated only by the vector of polynomials values p(z).

Table 2-1: Complexity of naive implementation of polynomial operations of order n [13]

Sum Multiplication Evaluation

Coefficient O(n) O(n2) O(n)
Point-value O(n) O(2n) O(n2)

Calculating the point-value p(z) from the coefficient representation p is a polynomial evalu-
ation on n+ 1 points — an operation with a naive implementation of complexity O(n2) [13].
However, by choosing the evaluation points as

zk := e−i2π
k

n+1 for k = 0, 1, . . . , n, (2-1)

the operation is the same as a fast Fourier transform (FFT):

p FFT−−−→ p(z)

which reduces the complexity to O(n logn) [13].

The inverse operation is polynomial interpolation. If the interpolation nodes z are given by
Eq. (2-1), then computing p from p(z) can be done with the inverse fast Fourier transform
(FFT−1):

p(z) FFT−1
−−−−→ p

also an operation of complexity O(n logn) [13].

These are useful because the computational complexity of the naive implementation of com-
mon polynomial operations, summarized on Table 2-1, is different for each representation.
Notice that every common operation can be computed with linear complexity in one of the
representations. An efficient algorithm would switch to that representation to perform the
operation reducing the total computational complexity to O(n logn+n) = O(n logn) for the
transformation and the operation in the new representation.

Another important concept for problems with complex variables is Laurent polynomials

Julián Uribe Jaramillo Master of Science Thesis

2-2 Analytic Interpolation 7

P (z) :=
n∑

k=−n
Pkz

k,

a generalization of polynomials to include positive and negative powers and share the same
numerical representions. Their importance to this thesis arises because the square absolute
value of a polynomial

|p(z)|2 = p(z)p(z) for |z| = 1,

is a Laurent polynomial. This will prove useful later.

2-2 Analytic Interpolation

A function is analytic — also known as holomorphic — over some domain if it can be locally
represented as a power series. This is equivalent to the function being infinitely differentiable
over the whole domain [14]. Analytic interpolation is the construction of an analytic function
f(·) — known as an interpolant — from a given set of m point-pairs {z,w}. This means
finding a function that at the interpolation nodes

z :=

z1
z2
...
zm

 ∈ Cm,

has an interpolation value of

w :=

w1
w2
...
wm

 ∈ Cm.

In other words, a function that satisfies f(z) = w, or a function whose graph passes through
all the pairs.

Many problems in engineering can be formulated as analytic interpolations. Examples include
robust control [15][16][17], circuit and system theory [18], and system identification [19]. In
engineering the interpolant f(·) often represents a transfer function [20]. In a discrete-time
setting f(·) is the quotient of two complex polynomials

f(z) = b(z)
a(z) ,

and system properties are related to analyticity: a causal and stable system must be proper
— the degree of b(z) is less or equal to the degree of a(z) — and all the roots of a(z) must
be inside the open unit disk

Master of Science Thesis Julián Uribe Jaramillo

8 Background

a(z) 6= 0 for |z| ≥ 1,

or, equivalently, the transfer function f(z) must be be analytic outside the closed unit disk [21].

2-2-1 Nevanlinna-Pick Interpolation with Degree Constraint

The classic solution to analytic interpolation is known as Nevanlinna-Pick interpolation in
honor of R. Nevanlinna and G. Pick, who independently solved the problem in the early 20th

century [22][23]. A major drawback of the classic theory is that it results in interpolants of
large McMillan degree (the largest between the degree of the numerator or denominator) [20],
which is related to the complexity of the applications — for instance, the degree of the
controller or filter in a control system. However, the Nevanlinna-Pick interpolation with degree
constraint theory was recently developed to compute analytic interpolants with bounded
degree, mainly in the context of robust control [10][20][24].

In this new theory, the interpolation problem is formulated as a constrained convex optimiza-
tion whose solution satisfies

|a(z)|2 − |b(z)|2 = |c(z)|2 for |z| = 1. (2-2)

where b(z) is the interpolant’s numerator, a(z) is its denominator, and c(z) is a parameterizing
polynomial [10].

Nevanlinna-Pick interpolation with degree constraint requires the interpolation nodes to be-
long to the open unit disk |z|< 1, since the gradient of the cost function is infinite at the
unit circle |z| = 1 [24]. This is problematic for some applications because they naturally lead
to interpolation nodes at the boundary of analyticity. For example, the frequency response
of a discrete-time dynamic system is the evaluation of its transfer function at |z| = 1, so
frequency-domain identification is equivalent to analytic interpolation at the boundary, as
shown in Figure 2-1. Other examples include loop shaping [24][20], impedance matching [11],
and the fast inverse non-linear Fourier transform [8][7].

2-3 The Fast Non-linear Fourier Transform

The non-linear Fourier transform may be considered an extension of Fourier analysis to non-
linear problems. However, unlike its linear counterpart, it only works for certain partial
differential equations and is equation specific in a nontrivial way [5]. But despite this lim-
itation, the non-linear Fourier transform is useful for many applications [3]. For instance,
non-linear transmission schemes based on the non-linear Fourier transform have recently re-
ceived interest [6]. The basic insight behind them is that the non-linear Fourier spectrum
of a signal evolves linearly and trivially along an ideal optical fiber, so encoding information
in the non-linear Fourier spectrum eliminates the disturbances caused by the non-linearity
of an ideal fiber [1] (other non-linear effects can be reduced to a certain extend [25]). The
transmission scheme uses the non-linear Fourier spectrum to encode the information; then the
inverse non-linear Fourier transform (NFT−1) changes the spectrum to the signal to be sent;

Julián Uribe Jaramillo Master of Science Thesis

2-3 The Fast Non-linear Fourier Transform 9

(a) Magnitude of the frequency response (b) Phase of the frequency response

Figure 2-1: Example of discrete-time identification as an interpolation problem, where the nodes
z are in the unit circle |z| = 1 and the frequency response of the system are its values w.

and, finally, the forward non-linear Fourier transform (NFT) recovers the spectrum after it
has traveled through the optical fiber:

Encoder →

Linearized channel︷ ︸︸ ︷
NFT−1 → Channel → NFT → Decoder

Fast and efficient algorithms for the forward and inverse transform are essential for real-
time applications, where computing power is limited. For this purpose, Wahls et al. [8][7]
propose an algorithm for a fast inverse non-linear Fourier transform. Analogous to its linear
counterpart, the fast inverse non-linear Fourier transform is an operation on a discrete-time
signal. This reflects the realities of digital communication better than a continuous-time
system — in digital systems only samples of signal are known — and makes it amenable to
computation.

2-3-1 The Non-linear Schrödinger Equation

The fundamental physical action in fiber-optic communication systems is the propagation of
a signal in the form of light, an electro-magnetic wave, through optical fibers, a non-linear
medium. The signal q(t, x) ∈ C evolves in 1+1 dimensions: a spatial dimension, the location
along the fiber x ≥ 0, and time t ∈ R [26]. It has long been known that the non-linear
Schrödinger equation [3]

i
∂q(t, x)
∂x

+ ∂2q(t, x)
∂t2

+ 2γ|q(t, x)|2q(t, x) = 0, γ = ±1, (2-3)

where γ defines the equation as focusing (γ = +1) or defocusing (γ = −1), is an accurate
ideal model of how electro-magnetic waves travel through non-linear media. It is an ideal
model because it only describes the continuous interaction between fiber dispersion and non-
linearity [27], but other non-linear effects can be taken into account to a certain extend [25].

Master of Science Thesis Julián Uribe Jaramillo

10 Background

In digital communication, only samples of the signal are known

q[k](x) := q(kε, x) for k = 0, 1, . . . ,

and the non-linear Schrödinger equation has to be discretized. There are several possible
discretizations of Eq. (2-3), but the Ablowitz-Ladik discretization [9]

i
∂q[k]
∂x

+ q[k + 1]− 2q[k] + q[k − 1] + γ|q[k]|2
(
q[k + 1] + q[k − 1]

)
= 0, γ = ±1, (2-4)

has the advantage that it is solvable by a discrete-time version of the non-linear Fourier
transform [8].

2-3-2 The Forward Discrete-time Non-linear Fourier Transform

To compute the spatial evolution of a signal evolving as Eq. (2-3), fix a location x = 0 and use
the forward transform to map a known envelope at the fixed location q(t, 0) to the non-linear
Fourier spectrum — also called scattering data [3]:

q(t, 0) NFT−−−→ {q̂(z, 0), {ξk, q̃k(z)}}

First, assume the fixed signal q(t, 0) vanishes outside of some interval

q(t, 0) = 0 for all t /∈ [t1, t2].

Then, sampling q(t, 0) on a grid of m+ 1 points

tk := t1 + kε, ε := t2 − t1
m

for k = 0, 1, . . . ,m,

results in the normalized semi-discrete signal — discrete in time, continuous in space —

q[k](0) := q

(
tn + tn+1

2 , 0
)
.

The discrete-time non-linear Fourier transform maps the known fixed semi-discrete signal
q[k](0) from a function of the sampling instant k to a function of a spectral variable z, by
using it as a variable in the associated eigenvalue problem [7]

[
ak(z)
bk(z)

]
= 1√

1 + γ|q[k](0)|2

[
1 q[k](0)z−1

−γq[k](0) z−1

] [
ak−1(z)
bk−1(z)

]
, (2-5)

with initial conditions

Julián Uribe Jaramillo Master of Science Thesis

2-3 The Fast Non-linear Fourier Transform 11

[
a0(z)
b0(z)

]
=
[
1
0

]
.

Eq. (2-5) is a normalized version of the Ablowitz-Ladik discretization of the associated eigen-
value problem for the continuous-time non-linear Schrödinger equation [7].

Iterating Eq. (2-5) m times — until the signal vanishes — results in the discrete-time non-
linear Fourier spectrum, which consist of [8]:

• The continuous spectrum

q̂(z) = bm(z)
am(z) , |z| = 1,

• The discrete spectrum

{ξk, q̃k(z)} for k = 1, 2, . . . , n,

where the eigenvalues ξk are solutions to

am(ξk) = 0 for |ξk| > 1,

and the norming constants are

q̃k = bm(ξk)
a′m(ξk)

, a′m(z) = dam(z)
dz ,

2-3-3 Spatial Evolution

The spatial evolution of the non-linear Fourier spectrum maps the spectrum of the initial
conditions to the spectrum at an arbitrary location:

{q̂(z, 0), {ξk, q̃k(z)}}
Spatial evolution−−−−−−−−−−→

via Eq. (2-4)
{q̂(z, x), {ξk, q̃k(z)}}

The evolution of the continuous spectrum is trivial to solve and given by [3]

am(z, x) = am(z, 0),

bm(z, x) = e−4iz2xbm(z, 0).

Recall that we are interested in signals with empty discrete spectrum so the evolution of
the eigenvalues and norming constants is outside the scope of this work, although it is also
trivial [3].

Master of Science Thesis Julián Uribe Jaramillo

12 Background

2-3-4 The Fast Inverse Non-linear Fourier Transform

The fast inverse non-linear Fourier transform by Wahls et al. [8][7] only considers signals with
empty discrete spectrum, that means that the signal q[k](x) can be fully recovered from the
continuous spectrum q̂(z, x). The algorithm has two steps, synthesis and fast layer peeling.

Synthesis starts with samples of the continuous spectrum on a frequency grid and reconstruct
the wave functions of the discrete spectrum bm(z) and am(z) using analytic interpolation.
Synthesis is the focus of this thesis, and is explained in more detail in Section 2-4.

The fast non-linear Fourier transform uses a complicated fast layer peeling step, which is
outside of the scope of this thesis [8][7]. Conventional layer peeling, on the other hand is
simple to understand. It uses bm(z) and am(z) to recover the sampled signal q[k](x) from an
inversion of Eq. (2-5)

[
ak−1(z)
bk−1(z)

]
= 1√

1 + γ|q[k]|2

[
1 −q[k]

γq[k]z z

] [
ak(z)
bk(z)

]
. (2-6)

Since bk(z) and ak(z) are polynomials of order k − 1, the first line of Eq. (2-6) is

√
1 + γ|q[k]|2

k−2∑
j=0

ak−1,jz
j =

k−1∑
j=0

ak,jz
j − q[k]

k−1∑
j=0

bk,jz
j .

Comparing the coefficients of zk−1 results in ak,k−1 = q[k]bk,k−1, so

q[k](x) = bk,k−1
ak,k−1

. (2-7)

The algorithm recovers the complete signal q[m](x), q[m−1](x), . . . , q[0](x) by iterating Eq. (2-
7) and Eq. (2-6). The polynomials bm(z) and am(z) found by synthesis are used as initial
conditions [8].

2-4 Synthesis as an Analytic Interpolation Problem

Synthesis is the recovery of the wave functions of the discrete non-linear Fourier spectrum

bm(z) :=
m−1∑
n=0

bm,nz
−n and am(z) :=

m−1∑
n=0

am,nz
−n,

from a set of interpolation node-value pairs {z,w}. The interpolation nodes

z :=

z1
z2
...
zm

 ∈ Cm, zk := ei2π
k−1

m for k = 1, 2, . . . ,m, (2-8)

Julián Uribe Jaramillo Master of Science Thesis

2-4 Synthesis as an Analytic Interpolation Problem 13

are a frequency grid of m points in the unit circle |z| = 1, and the interpolation values

w :=

w1
w2
...
wm

 ∈ Cm, wk = q̂(zk) for k = 1, 2, . . . ,m, (2-9)

are set to match the continuous Fourier spectrum on the frequency grid. However, bm(z) and
am(z) are the inputs to layer peeling and must be chosen such that it is well-posed [7] and
the complete signal is recoverable. This issue is called realizability and adds three additional
constraints

1. |am(z)|2 + γ|bm(z)|2 = 1,

2. am(z) 6= 0 for all |z| > 1,

3. am,0 ∈ R and am,0 ≥ 0.

Every am(z) and bm(z) constructed by the forward non-linear Fourier transform satisfies
these. Moreover if they are satisfied, there exist samples that lead to them.
Notice that defocusing synthesis is a boundary Nevanlinna-Pick interpolation with degree
constraint since the solution parameterized by c(z) = 1 in Eq. (2-2) meets Condition 1;
Conditions 2 is guaranteed by analytic interpolation; and Condition 3 is trivial to solve and
only requires multiplying am(z) by a unimodal constant.
The main problem in this thesis can be then formalized as:

Problem 1 (Synthesis via Analytic Interpolation). Given an ordered set ofm complex distinct
equidistant interpolation nodes on the unit circle

z :=

z1
z2
...
zm

 ∈ Cm, zk := ei2π
k−1

m for k = 1, 2, . . . ,m,

and an ordered set of m complex interpolation values

w :=

w1
w2
...
wm

 ∈ Cm.

Find two complex polynomials of order m− 1

b(z) :=
m−1∑
n=0

bnz
−n and a(z) :=

m−1∑
n=0

anz
−n,

satisfying the following conditions:

Master of Science Thesis Julián Uribe Jaramillo

14 Background

1. Interpolation

b(zk) = wka(zk) for k = 1, 2, . . . ,m. (2-10)

2. Magnitude

|a(z)|2 + γ|b(z)|2 = 1. (2-11)

3. Stability

a(z) 6= 0 for |z| > 1. (2-12)

Julián Uribe Jaramillo Master of Science Thesis

Chapter 3

Solvers

The defocusing and focusing synthesis interpolation have a few important differences, so it
is worth exploring them separately. Historically, problems similar to analytic interpolation
in the defocusing case have been more researched [17], hence they are better understood and
their solutions are more sophisticated. Indeed, synthesis in the defocusing case is a limit case
of Nevanlinna-Pick interpolation with degree constraint proposed by Byrnes et al. [10], where
the interpolation nodes z lie on |z| < 1 instead of |z| = 1.

The general idea behind the solver is known as numerical continuation [28] and is explained
in more detail in Section 3-1. I present two variations of the technique, one for each case.
Each have special implications and are specially suited for their case, even though both are
variations of the same basic idea. They still find a solution in the other case, but they are
impractical and run into numerical issues.

Numerical continuation is not guaranteed to converge for all problems, however it changes
the scope of the problem from one global to many local ones. This change of scope offers a
mathematical guarantee for analytic interpolation because the local problems have guaranteed
solutions even when directly solving the global problem does not [28].

3-1 The Defocusing Case

The sign of γ places some additional restrictions on the input data and solution. For de-
focusing interpolation, Eq. (2-11) implies that |a(z)| > |b(z)|, and hence |w| < 1. Another
implication of the defocusing case is that the problem requires higher numerical precision
(the number of bits used by the digital representations) as |w| → 1, since Eq. (2-10) means
that b(z) → a(z) as |w| → 1, but as b(z) and a(z) grow increasingly equal, only b(z) → ∞
and a(z)→∞+ 1 will satisfy both Eq. (2-11) and Eq. (2-10).

There are two stages to the solution of Problem 1: initial explicit approximations that satisfy
some of the realizability conditions fully and some only partially, and iterative solvers that
use the explicit approximation as a starting points and iterate towards a better solution.

Master of Science Thesis Julián Uribe Jaramillo

16 Solvers

3-1-1 Explicit Approximations

I propose three closed-form approximations. The first one, the zero approximation, is given
by

b(z) = 0 and a(z) = zm−1, (3-1)

which satisfies the magnitude and the stability conditions — Eq. (2-11) and Eq. (2-12),
respectively — and do not rely on the interpolation input data {z,w}. Although simple, this
approximations has numerical benefits for the iterative solver, explained in Chapter 4.

There are other explicit approximations that more closely satisfy the realizability conditions.
Using {z,w} to solve simplified versions of Problem 1 results in two sets: the defocusing
explicit approximations (Algorithm 1, pg. 25), which fully satisfy Eq. (2-11), but only match
the magnitude of the interpolation values |w|; and the focusing explicit approximations (Al-
gorithm 4, pg. 27), which satisfy the interpolation condition of Eq. (2-10) but only guarantee
Eq. (2-11) at z. Each set corresponds naturally to one of the solvers.

Computing the Magnitude of the Polynomials

The magnitude of the point-value representation of the polynomials, |b(z)| and |a(z)|, can be
computed explicitly [7], and is the first step in finding the explicit approximations. To do so,
we rewrite the interpolation condition from Eq. (2-10) in polar coordinates,

|b(zk)| = |wk||a(zk)| and ∠b(zk) = ∠wk + ∠a(zk) for k = 1, 2, . . . ,m. (3-2)

Then, by considering the magnitude condition of Eq. (2-11) only on the interpolation nodes

|a(zk)|2 + γ|b(zk)|2 = 1 for k = 1, 2, . . . ,m, (3-3)

we can compute the magnitude of the point-value representation of the polynomials by re-
placing Eq. (3-2) into Eq. (3-3) to find

|b(zk)| =
|wk|√

1 + γ|wk|2
and |a(zk)| =

1√
1 + γ|wk|2

for k = 1, 2, . . . ,m. (3-4)

Nothing is known about the phases ∠b(z) yet, so the point-value representation of the poly-
nomial is not complete. However, any two polynomial satisfying Eq. (3-4) will guarantee that
Eq. (2-10) holds up to |w|, and that Eq. (2-11) is satisfied at z. With this we can define the
two sets of approximations.

Julián Uribe Jaramillo Master of Science Thesis

3-1 The Defocusing Case 17

The Defocusing Explicit Approximations

The first set are closed-form approximations satisfying the magnitude condition of Eq. (2-11)
and the stability condition of Eq. (2-12), but the interpolation only up to the magnitude

∣∣∣∣ b(zk)a(zk)

∣∣∣∣ = |wk| for k = 1, 2, . . . ,m. (3-5)

For any given b(z), there is a unique a(z) that satisfies Eq. (3-4) and Eq. (2-12) [11], which
can be found via spectral factorization [29]

a(z) = σ(1− γ|b(z)|2) for |z| = 1, (3-6)

an operation that maps a polynomial (or Laurent polynomial) of degree 2n positive on the
unit circle, to a minimum phase polynomial (a polynomial with all its roots inside the unit
disk) and another with all its roots outside the unit disk — spectral factorization is the
inverse operation of multiplying a minimum phase polynomial with its conjugate [29]. So,
starting with a b(z) with magnitude given by Eq. (3-4) and computing a(z) from Eq. (3-6)
results in polynomials that satisfy Eq. (2-11), Eq. (2-12), and Eq. (3-5). The whole process
is summarized by Algorithm 1 (pg. 27).

The resulting polynomials, b(z) and a(z), form a set parameterized by the phases of the
point-value representation ∠b(z). They can be considered a generalization of the solution to
Problem 8. in [8] and to the initial conditions of iterative synthesis in [7] because the solution
to those problems — found by setting ∠b(z) = ∠w — is included in the set of defocusing
explicit approximations.

3-1-2 Defocusing Iterative Solver

Numerical continuation is an approach to solving a system of non-linear equations by turning
them into an ordinary differential equation. I will only provide an overview of numerical
continuation as it relates to the specifics of the solvers, for an in-depth and more rigorous
discussion of the topic see Allgower and Georg [28], and Sydel [30].

The defocusing iterative solver (Algorithm 3, pg. 26) is similar to an algorithm by Baratchart
et al. [11]. It starts by transforming the problem into a dynamic system by making the
polynomials into functions of a parameter t,

b(z, t) =
m−1∑
n=0

bn(t)z−n and a(z, t) =
m−1∑
n=0

an(t)z−n.

Then, it defines a(z, t) as the unique polynomial satisfying Eq. (2-11) and Eq. (2-12) for a
given b(z, t) by using Eq. (3-6). This leaves b(z, t) the only independent variable and the
problem becomes finding a b(z, t) that satisfies Eq. (2-10). To achieve this, the algorithm
travels a path from some known initial guess at t = 0 to the solution at t = 1. This path
is defined as a known curve w(t) between initial conditions w(0) that are known or easy to

Master of Science Thesis Julián Uribe Jaramillo

18 Solvers

(a) Linear (b) Circular (c) Radial

Figure 3-1: Graphical representation of the continuation trajectories for the defocusing solver.

compute, and the solution w(1) = w. The original non-linear problem becomes the homotopy
(a continuous function that deforms a function into another)

H
(
b(zk, t)

)
:= b(zk, t)− a(zk, t)wk(t) = 0 for all t and k = 1, 2, . . . ,m. (3-7)

The initial conditions are given by any arbitrary b(z, 0), but using the approximations of
Section 3-1-1 is preferable because they are closer to the solution or have benefits for numerical
implementations — the specific are discussed in Chapter 4.

Next, find a path w(t) between the initial conditions w(0) and the desired answer w(1) = w.
Any continuous smooth function with a known w(0) and w(1) = w can be used as a contin-
uation trajectory, but the problem leads naturally to three paths, represented graphically in
Figure 3-1. These trajectories are:

• A simple linear path, commonly used in continuation [28],

wk(t) := wk(0) + t(wk(1)− wk(0)) for k = 1, 2, . . . ,m, (3-8)

dw(t)
dt = w(1)−w(1). (3-9)

• A circular path, taking advantage of the magnitude information of (3-4),

wk(t) := |wk(1)|ei(∠wk(0)+t(∠wk(1)−∠wk(0))) for k = 1, 2, . . . ,m, (3-10)

dwk(t)
dt = wk(t)i(∠wk(1)− ∠wk(0)) for k = 1, 2, . . . ,m, (3-11)

• A radial path, following a linear path starting with the zero approximation,

wk(t) = twk(1), k = 1, 2, . . . ,m, (3-12)

dw(t)
dt = w(1). (3-13)

Julián Uribe Jaramillo Master of Science Thesis

3-1 The Defocusing Case 19

It is important to clarify that it is not possible to solve the continuation problem by only
approximating the phases since Eq. (2-11) gives no information about them, so the problem is
under-determined without the magnitude information. But the circular path does something
similar by approaching the phases linearly and interpolating the magnitudes exactly at every
point along the path.

In the following, I will only explain in the procedure for the linear path of Eq. (3-8), but using
the circular or radial paths is straight-forward.

Turning the Problem into an Ordinary Differential Equation

We can compute the ordinary differential equation from the derivative of Eq. (3-7)

db(zk, t)
dt = da(zk, t)

dt wk(t) + a(zk, t)
dwk(t)

dt for k = 1, 2, . . . ,m. (3-14)

To compute da(zk, t)/dt we use the derivative of Eq. (2-11)

a(z, t)da(z, t)
dt + a(z, t)da(z, t)

dt = b(z, t)db(z, t)
dt + b(z, t)db(z, t)

dt , (3-15)

and solve for

da(z, t)
dt = b(z, t)

a(z, t)
db(z, t)

dt (3-16)

Lastly, substituting Eq. (3-16) and Eq. (3-13) in Eq. (3-14) results in

db(zk, t)
dt = wk(t)

b(zk, t)
a(zk, t)

db(zk, t)
dt + dwk(t)

dt a(zk, t),

= (wk(1)− wk(0))a(zk, t)a(zk, t)
a(zk, t)− wk(t)b(zk, t)

for k = 1, 2, . . . ,m.
(3-17)

Traversing the Trajectory

To go from the initial known solution b(z, 0) to the answer b(z, 1) we use a predictor-corrector
iterative method. The method consist of two steps per iteration. The predictor step predicts
the direction of the trajectory based on its derivative, and follows the line tangent to the
curve by a specified step-length α, resulting in a new vector

b(z, t+ α) = b(z, t) + α
db(z, t)

dt .

However, this vector may deviate from the homotopy, that is, it may not satisfy Eq. (3-7).
So the corrector step pulls the vector back to the path.

Master of Science Thesis Julián Uribe Jaramillo

20 Solvers

The corrector step is a local version of Problem 1, with interpolation values w(t) instead of
w. Locality is important because Newton-Rhapson’s root finding algorithm

b(zk, t) = b(zk, t)−
H
(
b(zk, t)

)
H ′
(
b(zk, t)

) ,
H ′ := ∂H

∂b
= 1− w(zk, t)

b(zk, t)
a(zk, t)

for k = 1, 2, . . . ,m.

(3-18)

is guaranteed to find the roots of Eq. (3-7) for a sufficiently small α [12][11]. This means that
finding the roots of Eq. (3-7) is a convex problem around the trajectory. And since the roots
of Eq. (3-7) at t = 1 are the solution to Problem 1, the continuation method is guaranteed to
find a solution.

Additionally, the step-length α should be adapted at each iteration for efficient computation.
If the step-length is too large the correction step might need many iterations to push the
polynomials back into the path, or it might not converge at all. But if α is too small the
algorithm will need many prediction steps, which would take too long. Furthermore, since the
answer is given at t = 1, the step-length adaptation also stops the algorithm from overstepping
the solution. To achieve this, Algorithm 3 (pg. 25) uses the linear deformation

α := α0(1− t) + α1t,

because the problem gets numerically harder as w(t) → w so smaller steps are required at
the end.

3-2 The Focusing Case

In focusing interpolation Eq. (2-11) implies that |a(z)| ≤ 1 and |b(z)| ≤ 1, but the interpola-
tion values w are not bounded. This means that the focusing case requires greater numerical
precision as w→∞, since Eq. (2-10) implies that |a(z)| → 0 as w→∞.

3-2-1 Explicit Approximations

Just as in the defocusing case, the solver uses a closed-form approximation as a starting
point for the solver. But, as far as I can tell, there is no initial point that makes the solver
behave better numerically, so the starting point is the one that most closely approximates the
solution, which is ∠a(z) = 0 — the comparison is available in Chapter 4.

Explicit Focusing Approximations

The starting polynomials belong to the explicit focusing approximations (Algorithm 4 pg.
27) introduced in Section 3-1-1, which are closed-form solutions satisfying the interpolation

Julián Uribe Jaramillo Master of Science Thesis

3-2 The Focusing Case 21

of Eq. (2-10) perfectly, but only satisfy the magnitude condition of Eq. (2-11) at the inter-
polation nodes z. Similarly to the explicit defocusing approximations (Algorithm 1 pg. 25),
they start with a polynomial a(z) whose point-value magnitude is given by Eq. (3-4) and use
spectral factorization to compute an a(z) that meets the stability condition of Eq. (2-12).
Then, define b(z) as the polynomial satisfying Eq. (2-10) by establishing the map

b(zk) = wka(zk) for k = 1, 2, . . . ,m. (3-19)

The resulting a(z) and b(z) are parameterized by the phase of the point-value representation
∠a(z) before the spectral factorization. Hence, the explicit focusing approximations set is a
generalization of direct synthesis in [7], in the same way that the defocusing approximations
(Algorithm 1 pg. 25) generalizes the initial guess of iterative synthesis.

Comparing different heuristics shows that ∠a(z) = 0 is the closest closed-form approximation,
so it will be the starting point of the solver. This comparison is presented in Section 4-3-1.

3-2-2 Iterative Focusing Solver

Numerical continuation is used to iterate towards a better solution by a process resembling
Nagamune’s Nevanlinna-Pick interpolation with degree constraint solver [12], and summarized
by Algorithm 5 (pg. 28). The basic idea arises from the fact that the solutions to the
Nevanlinna-Pick interpolation with degree constraint problem are parameterized by a stable
polynomial of m− 1 degree [10]

c(z) :=
m−1∑
n=0

cnz
−n,

which satisfies

|a(z)|2 + |b(z)|2 = |c(z)|2.

So, the algorithm iterates towards a solution from an initial polynomial c(z, 0), computed
with the explicit focusing approximation, following a linear path

c(z, t) := c(z, 0) + t
(
1− c(z, 0)

)
.

∂c(z, t)
∂t

= 1− c(z, 0). (3-20)

The iteration is analogous to the defocusing interpolation (Algorithm 3, pg. 26), but now the
algorithm seeks to numerically solve Eq. (2-11), an infinite-dimensional problem. However,
Eq. (2-11) can be reformulated as a finite-dimensional system of equations — the proof is in
Chapter B — defined on an over-sampled vector

Master of Science Thesis Julián Uribe Jaramillo

22 Solvers

x :=

x1
x2
...

x2m−1

 ∈ C2m−1,

since it involves Laurent polynomials of order 2m− 1: |a(z)|2, |b(z)|2, and |c(z)|2.

The homotopy is defined as

H
(
a(xk, t)

)
:= |a(xk, t)|2 + |b(xk, t)|2 − |c(xk, t)|2 = 0 for k = 1, 2, . . . , 2m− 1. (3-21)

The predictor step is

a(z, t+ α) = a(z, t) + α
da(z, t)

dt , (3-22)

with da(z, t)/dt given by replacing Eq. (3-19) into the derivative of Eq. (3-21),

a(xk, t)
da(xk, t)

dt = c(xk, t)
dc(xk, t)

dt − b(xk, t)
db(xk, t)

dt for k = 1, 2, . . . , 2m− 1,

to find

da(xk, t)
dt = c(xk, t)

a(xk, t) + wkb(xk, t)
dc(xk, t)

dt for k = 1, 2, . . . , 2m− 1.

The corrector is a Newton-Rhapson root finding algorithm on Eq. (3-21) for a constant c(xk, t)

a(xk, t) = a(xk, t)−
H
(
a(xk, t)

)
H ′
(
a(xk, t)

) ,
H ′ := ∂H

∂a
= a(xk, t) + b(xk, t)

db(xk, t)
da for k = 1, 2, . . . , 2m− 1.

(3-23)

where H
(
a(xk, t)

)
is given by Eq. (3-21) and

db(xk, t)
da = wk = b(xk, t)

a(xk, t)
, k = 1, 2, . . . , 2m− 1, (3-24)

is a vector of over-sampled interpolation values.

Julián Uribe Jaramillo Master of Science Thesis

3-3 Discussion and Proof of Convergence 23

3-3 Discussion and Proof of Convergence

Algorithm 3 (pg. 26) and Algorithm 5 (pg. 28) are related to several methods in the lit-
erature. Problem 1 in the defocusing case is an extension of the boundary Nevanlinna-Pick
interpolation with degree constraint for impedance matching of Baratchart et al. [11] from in-
terpolation nodes in the real line to the unit circle. Baratchart’s impedance matching is itself
a generalization of Nevanlinna-Pick interpolation with degree constraint theory by Byrnes et
al. [10] to include nodes in the boundary of analyticity. The equivalence between impedance
matching and synthesis in the defocusing case is proven by the conformal transformation [31]

x = i(1− z)
z + 1 ,

where x belongs in the upper half-plane and |z| = 1.
There are several important results for synthesis in [11]. The First result is that spectral
factorization is continuous and smooth for Laurent polynomials with no roots on the unit
circle. The second one is given by Theorem 1, which states that the map

ψ
(
b(z)

)
=

b(z1)
a(z1)
...

b(zm)
a(zm)

 (3-25)

where b(z) satisfies Eq. (2-10) and Eq. (2-11) is continuous and smooth — and hence differ-
entiable — with a continuous and smooth inverse. The map in Eq. (3-25) is the composition
of a non-linear map

b(z)→ {b(z), a(z)}, (3-26)

where a(z) is the unique polynomial satisfying Eq. (2-11) for any given b(z), followed by the
evaluation map

{b(z), a(z)} → b(zk)
a(zk)

for k = 1, 2, . . . ,m. (3-27)

The solution to Problem 1 is given by

b(z) = ψ−1(w), (3-28)

which is the inversion of Eq. (3-25) evaluated at the desired interpolation values. The third
important result is given by Proposition 9, which states that for every ε > 0 there is a path
b(z, t) such that

sup
t∈[0,1]

∥∥∥ψ(b(z, t)
)
−w(t)

∥∥∥ ≤ ε.
Under these conditions, the continuation methods proposed in this chapter converge. In gen-
eral, numerical continuation is guaranteed to converge under the following assumptions [28]:

Master of Science Thesis Julián Uribe Jaramillo

24 Solvers

1. There is a smooth curve b(z, t) ∈ H−1(0) with b(z, 0) ∈ b(z, t). This condition is
equivalent to Eq. (3-30) being smooth.

2. If the curve exist, it reaches the target t = 1 in a finite length. This is assured by the
uniqueness and continuity of Eq. (3-30).

Notice that these are extendable to the focusing case of Algorithm 3 (pg. 26) on the condition
that |b(z)| < 1 for |z| = 1 — a sufficient condition for the existence of a(z) and b(z) satisfying
Eq. (2-11) in the focusing case. Baratchart method is then guaranteed to find a solution for
Problem 1. My contribution is creating Algorithm 3 (pg. 26), a fast and efficient algorithm
able to handle significantly larger and more difficult problems.

Algorithm 3 (pg. 26) is also related to Sander’s et al. iterative synthesis [7] as both algorithms
follow the same basic idea: define a(z) as the polynomial satisfying Eq. (2-11) for any given
b(z), and solve Eq. (2-10) numerically. Algorithm 3 (pg. 26) with a circular path is particularly
close, as both algorithms only correct the phase ∠b(z) and not the magnitude. The difference
is that iterative synthesis makes ∠b(z) = ∠a(z) + ∠w after each iteration — that is, it
makes ∠b(z) whatever solves Eq. (2-10) for the current a(z) — while Algorithm 3 (pg. 26)
approaches the solution from a predefined path.

On the other hand, Algorithm 5 (pg. 28) is related to Nagamune’s et al. solver for Nevanlinna-
Pick interpolation with degree constraint [24] (available at https://people.kth.se/~ryozo/
software.html). The solver reverts the order of composition for the homotopy and solves
the problem in terms of a(z). The mapping becomes

ψ̂
(
a(z)

)
:= a(z)→ {b(z), a(z)| b(zk)

a(zk)
= wk for k = 1, 2, . . . ,m} → c(z). (3-29)

where c(z) is a positive real Laurent polynomial. The solution to Problem 1 is

a(z) = ψ̂−1(1). (3-30)

Changing the order of composition does not change continuity or smoothness so Algorithm 5
(pg. 28) also fulfills the convergence conditions for numerical continuation. On a similar note,
Algorithm 5 (pg. 28) is a guaranteed way to iterate direct synthesis [7] to a better solution.

3-4 Algorithms

Julián Uribe Jaramillo Master of Science Thesis

https://people.kth.se/~ryozo/software.html
https://people.kth.se/~ryozo/software.html

3-4 Algorithms 25

Algorithm 1: Defocusing Explicit Approximation
Input: z, w, ∠b(z).
Output: b(z), a(z)

1 Find the magnitudes |b(z)|

|b(zk)| =
|wk|√

1− |wk|2
, for k = 1, 2, . . . ,m.

2 Compute the point-value representation

b(zk) := |b(zk)| expi∠b(zk), for k = 1, 2, . . . ,m.

3 Transform b(z) into the coefficient representation by using the inverse Fourier
transform (FFT−1)

b(z) = FFT−1(b(z),m).

4 Calculate the oversampled point-value representation by using fast Fourier transform
(FFT)

b(x) = FFT(b(z), 2m− 1).

5 Construct the Laurent polynomial

B(xk) := |b(xk)|2, for k = 1, 2, . . . , 2m− 1.

6 Find a(z) satisfying the magnitude condition of Eq. (2-11) and the stability condition
of Eq. (2-12) by spectral factorization of B(x) + 1

a(z) = σ
(
B(x) + 1

)
.

Master of Science Thesis Julián Uribe Jaramillo

26 Solvers

Algorithm 2: Iterative Synthesis
Input: z, w, a(z).
Output: b(z), a(z)

1 repeat
2 Compute b(z) satisfying the interpolation condition of Eq. (2-10)

b(zk) = a(zk)wk for k = 1, 2, . . . ,m.

3 Construct the Laurent polynomial

B(xk) := |b(xk)|2 for k = 1, 2, . . . , 2m− 1.

4 Find a(z) satisfying the magnitude condition of Eq. (2-11) and the stability
condition of Eq. (2-12) by spectral factorization of B(x) + 1

a(z) = σ
(
B(x) + 1

)
.

5 until until convergence;

Algorithm 3: Defocusing Iterative Solver
Input: z, w(t), b(z, 0), α.
Output: b(z), a(z)

1 Set the variables to the initial conditions

t = 0

2 Iterate towards a solution while t <= 1 do
3 Update the path

t = t+ α.

4 Predictor: predict the next point in the curve b(z, t) with Euler method

b(z, t) = b(z, t) + α
db(z, t)

dt .

5 Corrector: improve the magnitude error e2 with Newton-Rhapson root finding
repeat

6

b(zk, t) = b(zk, t)−
H
(
b(zk, t)

)
H ′
(
b(zk, t)

) ,
H ′ := ∂H

∂b
= 1− w(zk, t)

b(zk, t)
a(zk, t)

for k = 1, 2, . . . ,m.

7 until until convergence;
8 Update the step-length α.
9 end

Julián Uribe Jaramillo Master of Science Thesis

3-4 Algorithms 27

Algorithm 4: Focusing Explicit Approximation
Input: z, w, ∠a(z).
Output: b(z), a(z)

1 Find the magnitudes |a(z)|

|a(zk)| =
1√

1 + |wk|2
for k = 1, 2, . . . ,m.

2 Compute the point-value representation

a(zk) := |a(zk)| expi∠a(zk) for k = 1, 2, . . . ,m.

3 Transform a(z) into the coefficient representation by using the inverse Fourier
transform (FFT−1)

a(z) = FFT−1(a(z),m).

4 Calculate the oversampled point-value representation by using fast Fourier transform
(FFT)

a(x) = FFT(b(z), 2m− 1).

5 Construct the Laurent polynomial

A(xk) := |a(xk)|2 for k = 1, 2, . . . , 2m− 1.

6 Find a(z) satisfying the stability condition of Eq. (2-12) by spectral factorization of
A(x)

a(z) = σ
(
A(x)

)
.

7 Compute b(z) satisfying the interpolation condition of Eq. (2-10)

b(zk) = a(zk)wk for k = 1, 2, . . . ,m.

Master of Science Thesis Julián Uribe Jaramillo

28 Solvers

Algorithm 5: Focusing Iterative Solver
Input: z, w, a(z, 0), α.
Output: b(z), a(z)

1 Set the variables to the initial conditions

t = 0

2 Iterate towards a solution while t <= 1 do
3 Update the path

t = t+ α.

4 Predictor: predict the next point in the curve a(z, t) with Euler method

a(z, t) = a(z, t) + α
da(z, t)

dt .

5 Corrector: improve the magnitude error e2 with Newton-Rhapson root finding
repeat

6

a(xk, t) = a(xk, t)−
H
(
a(xk, t)

)
H ′
(
a(xk, t)

) ,
H ′ := ∂H

∂a
= a(xk, t) + b(xk, t)

db(xk, t)
da for k = 1, 2, . . . , 2m− 1.

7 until until convergence;
8 Update the step-length α.
9 end

Julián Uribe Jaramillo Master of Science Thesis

Chapter 4

Results and Discussion

In this chapter I analyze the performance of the algorithms with respect to the quantity
of interpolation points and the numerical difficulty of the problem, and compare them with
existing heuristic algorithms by Walhs and Vishal [7]. Comparing the solvers to conventional
guaranteed techniques is not possible for interpolation data similar to a real application of
non-linear Fourier transform, since the solvers available in the literature — a Nevanlinna-
Pick interpolation with degree constraint by Nagamune and Blomqvist [12], and a boundary
interpolation solver by Baratchart et al. [11] — cannot solve the problem. Nevertheless,
a comparison between Algorithm 3 (pg. 26) and Nagamune et al. solver is presented for
interpolation data suitable for computation by both algorithms. It was not possible to obtain
Baratchart’s et al. solver, but they confirmed by correspondence that their solver would not
be suitable for synthesis.

Interestingly, for the defocusing case the closest explicit approximation is not the best starting
point for the iterative solver, because it runs into numerical issues earlier. Instead the best
starting point is the zero approximation, since it approaches the solution radially so the local
solutions are always as far away from the unit circle as possible — the numerical issues of
the defocusing case are caused by the interpolation values being close to the unit circle. The
defocusing iterative algorithm satisfies the interpolation to an arbitrary value but there is a
trade-off between satisfying Eq. (2-10) and Eq. (2-11). This trade-off is caused by numerical
inaccuracies, as Eq. (2-11) should always hold by definition. Furthermore, the comparison to
heuristic methods show that only numerically difficult problems benefit from using defocusing
iterative solver (Algorithm 3, pg. 26) over iterative synthesis (Algorithm 2, pg. 26), but the
advantages are large.

The focusing iterative algorithm (Algorithm 5, pg. 28) starts with the closest explicit approx-
imation since there are no numerical issues in the iterations. Also, its difficult to develop an
intuition into a better continuation path — in contrast to the defocusing case — so only a
linear trajectory was evaluated. Although it should be possible to obtain an arbitrary magni-
tude error, the rate of change of the corrector step for numerically difficult problems becomes
too small to make the Newton-Rhapson root finding algorithm practical. As a consequence,

Master of Science Thesis Julián Uribe Jaramillo

30 Results and Discussion

the error in Eq. (2-11) for the focusing solution remains large, but the solution is still an
improvement over direct synthesis (Algorithm 4, pg. 27).

4-1 Test Functions for Performance Analysis

The test functions are the same as the those used by Walhs et al. in [7]. The data was
generated by setting the interpolation nodes z to be m equidistant points in the unit circle
given by Eq. (2-8), and the interpolation values w were set to match samples of the continuous-
time continuous spectrum q̂(λk) on a frequency grid

λk := i
m

2(t2 − t1) log zk,

wk := q̂[k] := eiλk(t2+t1)z
m+1

2 q̂(λk) for k = 1, 2, . . . ,m.

The algorithms were evaluated with respect to the number of interpolation points m and the
difficulty of solving the problem numerically, determined by the maximum reflectivity

ρ := 1−max|q̂[k]|,

in the defocusing case, and by the inverse maximum amplitude

ρ := 1
max|q̂[k]| ,

in the focusing case. A lower ρ means that the problem is numerically harder to solve [7].

4-1-1 Defocusing Test Function: Hyperbolic Secant

The hyperbolic test function will be used for the defocusing case. Its continuous spectrum
is [32],

q̂ (λk) = −2−2iFQ
Γ
(
dk
)
Γ
(
fk−

)
Γ
(
fk+

)
Γ
(
dk
)
Γ
(
g−
)
Γ
(
g+
) ,

where Γ (·) is the gamma function with arguments

dk = 0.5 + i (λkL − F)) ,

fk± = 0.5− i
(
λkL ±

√
F2 +Q2

)
,

g± = 1− i
(
F ±

√
F2 +Q2

)
, for k = 1, 2, . . . ,m.

where F = 1.5, L = 1/25, and Q is related to ρ, with larger values generating more difficult
problems — i.e. lower ρ. An example with m = 4096 interpolation points and maximum
reflectivity ρ = 0.0776 is shown in Figure 4-1 and Figure 4-2.

Julián Uribe Jaramillo Master of Science Thesis

4-1 Test Functions for Performance Analysis 31

Figure 4-1: Magnitude of interpolation values generated by a hyperbolic secant continuous
spectrum with m = 4096 points, maximum reflectivity ρ = 0.0776, and range from t1 = −2 to
t2 = 2.

Figure 4-2: Phase of interpolation values generated by a hyperbolic secant continuous spectrum
with m = 4096 points, maximum reflectivity ρ = 0.0776, and range from t1 = −2 to t2 = 2.

Master of Science Thesis Julián Uribe Jaramillo

32 Results and Discussion

Figure 4-3: Magnitude of interpolation values generated by an eight raised cosines continuous
spectrum with m = 4096 points, inverted maximum amplitude ρ = 1, and range from t1 = −512
to t2 = 512.

4-1-2 Focusing Test Function: Eight Raised Cosines

The eight raised cosines will be used for the focusing case. Its continuous spectrum is [7],

q̂ (λk) = 1
ρ

8∑
j=1

eiθjr (λk − cj) ,

with centers cj = j−4.5, phases θj chosen randomly from {±0.75π,±0.25π}, and a normalized
raised cosine filter

r(λk) =

1, |λk| ≤ 1−β

2W

0.5 + 0.5 cos
(
πW
β

(
|λk| − 1−β

2W

))
, 1−β

2W < |λk| ≤ 1+β
2W

0, Otherwise

with widthW = 2 and roll-off factor β = 0.5. A focusing example withm = 4096 interpolation
node-value pairs and ρ = 1 is shown in Figure 4-3 and Figure 4-4.

4-2 Performance Metrics

The performance of the interpolation condition of Eq. (2-10) is measured by the interpolation
error [7]

Julián Uribe Jaramillo Master of Science Thesis

4-2 Performance Metrics 33

Figure 4-4: Phase of interpolation values generated by an eight raised cosines continuous spec-
trum with m = 4096 points, inverted maximum amplitude ρ = 1, and range from t1 = −512 to
t2 = 512.

e1 := ‖wk − b(zk)/a(zk)‖
‖wk‖

for k = 1, 2, . . . ,m.

The infinite-dimensional magnitude condition of Eq. (2-11) can be reformulated as a finite
system of 2m− 1 equations — proof is given in Chapter B — and its satisfaction is measured
by the magnitude error

e2 := 1
2m− 1‖|a(xk)|2 + γ|b(xk)|2 − 1‖ for k = 1, 2, . . . , 2m− 1.

evaluated on an oversampled node vector

x :=

x1
x2
...

x2m−1

 ∈ C2m−1 for |xk| = 1 for all k,

where xk are distinct points in the unit circle.

Master of Science Thesis Julián Uribe Jaramillo

34 Results and Discussion

4-3 The Defocusing Case

4-3-1 Comparison of Explicit Approximations

Four different heuristics for the phase of the point-value representation ∠b(z) were evaluated
with respect to the number of interpolation node-value pairs m and maximum reflectivity ρ.
They are compared for the defocusing hyperbolic secant, with m = 28, . . . , 220 interpolation
node-value pairs and Q = 0.5, . . . , 5.5.
The theoretical magnitude error for these approximations is e2 = 0 since a(z) is computed to
satisfy Eq. (2-11). Polynomials that satisfy Eq. (3-5) are computed explicitly so the interpo-
lation error is completely determined by failure of the interpolant to match the phase of the
interpolation values ∠w. Assuming the magnitude of this error is uniformly distributed on
the range [0, π] gives an average phase error of π/2, which results in an expected interpolation
error of E(e1) =

√
2.

The test cases were:

• Matching the phase of the interpolation values: ∠b(z) = ∠w.

• Zero phase: ∠b(z) = 0.

• Constant shift in the phase of the interpolation values: ∠b(z) = ∠w + π/4.

• Random phase: ∠b(z) = uniform random variable in [0, 2π].

The closest approximation is to make ∠b(zk) = ∠wk. This is most noticeable in the interpo-
lation error e1 seen in Figure 4-5, as it has lower e1 for all m. However, it is only a better
approximation for simple problems — functions with large maximum reflectivity ρ — as Fig-
ure 4-7, Figure 4-8 and Figure 4-9 show that it performs no better that random in other cases.
The magnitude error graphs in Figure 4-13, Figure 4-14, Figure 4-10, and Figure 4-12 also
show that the approximation ∠b(zk) = ∠wk is better in general, since it has lower e1 and e2
for functions with large ρ and similar errors otherwise.
The number of interpolation pairs m has little influence compared to ρ. Specially on the
magnitude error e2, easily seen in Figure 4-13 and Figure 4-14, as e2 decreases considerably
— from over 1010 to less than 10−10 — for increasing ρ. Yet, e2 decreases much more slowly
for increasing m, as can be seen in Figure 4-10 and Figure 4-12. Furthermore, Figure 4-5 and
Figure 4-7 show that increasing m makes e1 grow very little for simple problems and change
randomly for difficult problems
Also, the very large e2 for problems with very small ρ hints at the importance of numerical
accuracy in the performance of the solution. In theory, there should not be any magnitude
error — because a(z) is defined as the polynomial satisfying the magnitude condition of
Eq. (2-11) — so any magnitude error is caused by an inaccurate computation of a(z).

4-3-2 Comparison of Continuation Trajectories

Numerical issues play a big role in the results. Specifically, the polynomials b(z) and a(z)
are increasingly equal as w → 1, which is equivalent to ρ → 0. At the limit, there is no

Julián Uribe Jaramillo Master of Science Thesis

4-3 The Defocusing Case 35

Figure 4-5: Comparison of the interpolation error e1 of defocusing explicit approximations (Al-
gorithm 1 pg. 25) with respect to the number of interpolation pairs m using a hyperbolic secant
with Q = 0.5 as the generating function. Matching the phase of the values, i.e. ∠b(z) = ∠w,
results in lower e1 for any m. Furthermore, there is no noticeable change in e1 with respect to
m.

Figure 4-6: Comparison of the interpolation error e1 of defocusing explicit approximations (Al-
gorithm 1 pg. 25) with respect to the number of interpolation pairs m using a hyperbolic secant
with Q = 3.5 as the generating function. There is no noticeable relationship between ∠b(z) and
e1.

Master of Science Thesis Julián Uribe Jaramillo

36 Results and Discussion

Figure 4-7: Comparison of the interpolation error e1 of defocusing explicit approximations (Al-
gorithm 1 pg. 25) with respect to the number of interpolation pairs m using a hyperbolic secant
with Q = 5.5 as the generating function. There is no noticeable relationship between e1 and m
as the changes are arbitrary, or very small.

Figure 4-8: Comparison of the interpolation error e1 of defocusing explicit approximations (Al-
gorithm 1 pg. 25) with respect to the maximum reflectivity ρ using a hyperbolic secant with
m = 28 interpolation points as the generating function. Matching the phase of the values, i.e.
∠b(z) = ∠w, results in lower e1 for problem with high ρ, but its performance is no better than
random otherwise.

Julián Uribe Jaramillo Master of Science Thesis

4-3 The Defocusing Case 37

Figure 4-9: Comparison of the interpolation error e1 of defocusing explicit approximations (Al-
gorithm 1 pg. 25) with respect to the maximum reflectivity ρ using a hyperbolic secant with
m = 220 interpolation points as the generating function. Matching the phase of the values, i.e.
∠b(z) = ∠w, results in lower e1 for problem with high ρ, but its performance is no better than
random otherwise.

Figure 4-10: Comparison of the magnitude error e2 of defocusing explicit approximations (Al-
gorithm 1 pg. 25) with respect to the number of interpolation pairs m using a hyperbolic secant
with Q = 0.5 as the generating function. The phase of the point-value representation ∠b(z) have
no effect on e2, but e2 is inversely proportional to m.

Master of Science Thesis Julián Uribe Jaramillo

38 Results and Discussion

Figure 4-11: Comparison of the magnitude error e2 of defocusing explicit approximations (Al-
gorithm 1 pg. 25) with respect to the number of interpolation pairs m using a hyperbolic secant
with Q = 3.5 as the generating function. Matching the phase ∠b(z) = ∠w and a constant phase
shift result in lower e2.

Figure 4-12: Comparison of the magnitude error e2 of defocusing explicit approximations (Al-
gorithm 1 pg. 25) with respect to the number of interpolation pairs m using a hyperbolic secant
with Q = 5.5 as the generating function. The phase of the point-value representation ∠b(z) have
no effect on e2, but e2 is inversely proportional to m, although only slightly.

Julián Uribe Jaramillo Master of Science Thesis

4-3 The Defocusing Case 39

Figure 4-13: Comparison of the magnitude error e2 of defocusing explicit approximations (Algo-
rithm 1 pg. 25) with respect to the maximum reflectivity ρ using a hyperbolic secant with m = 28

interpolation points as the generating function. The magnitude error e2 increases significantly for
decreasing ρ. Furthermore, the phase of the point-value representation of the polynomial b(z)
have no effect on e2.

Figure 4-14: Comparison of the magnitude error e2 of defocusing explicit approximations (Al-
gorithm 1 pg. 25) with respect to the maximum reflectivity ρ using a hyperbolic secant with
m = 220 interpolation points as the generating function. The magnitude error e2 increases sig-
nificantly for decreasing ρ. Furthermore, matching the phase of the values, i.e. ∠b(z) = ∠w,
results in lower e2.

Master of Science Thesis Julián Uribe Jaramillo

40 Results and Discussion

Figure 4-15: Comparison of the interpolation error e1 of three continuation paths w(t) with
respect to maximum reflectivity ρ for 100 iterations of the defocusing solver (Algorithm 3 pg.
26). The radial path achieves the lowest e1.

Figure 4-16: Comparison of the magnitude error e2 of three continuation paths w(t) with respect
to maximum reflectivity ρ. The large magnitude error e2 makes the circular path inviable, while
the radial and linear paths have comparable e2.

Julián Uribe Jaramillo Master of Science Thesis

4-3 The Defocusing Case 41

Figure 4-17: Comparison of the magnitude of the frequency response of the generating function
and interpolants found by different continuation trajectories with similar interpolation error e1.
The radial path results in an interpolant with the shape of the magnitude frequency response
closer to that of the generating function.

solution satisfying both Eq. (2-10) and Eq. (2-11), so the map of Eq. (3-6) grows increasingly
inaccurate when b(z) and a(z) satisfy Eq. (3-5).

This is the key problem for the circular path. In theory, we should expect better results since
we are making use of the magnitude information retrieved explicitly in Section 3-1-1, and only
need to approach the phases. However, the magnitude of some of the local interpolation values
remain close to unit circle at every iteration so Eq. (3-6) remains inaccurate, for the reasons
explained in the previous paragraph. Furthermore, the predictor step follows a line tangent
to the trajectory so the continuation path is not followed perfectly (this is the reason for the
corrector step), which risks pushing some w(t) outside the unit disk making |a(z, t)| > 1 —
an inviable initial state for the corrector step — causing the algorithm to stop working. We
can see this happening in Figure 4-16, where approaching the trajectory in a circular path
results in a large magnitude error e2 due to inaccurate computations.

A close visual inspection of Figure 4-17 and Figure 4-18, which shows the final shape of
solutions for a linear and radial paths with similar interpolation errors e1 — 3.2 × 10−3 for
radial and 9.7 × 10−3 for linear — reveals that the radial path is closer to the expected
magnitude shape in Figure 4-17, but it is farther away from the interpolation values closest
to one. However, the radial path interpolates the phase of Figure 4-18 very well so its e1 is
lower. The reason for this difference is that the local interpolation values along the radial
path, i.e. w(t) = tw, are scalar transformations of the desired interpolation values, hence
preserving the shape of the generating function; while the the linear path have different rates
of change. Furthermore, numerical issues on |z| = 1 reinforce why the zero approximation
is the best starting point: it is the closet to the solution in the complex plane for difficult
problems, with e1 = 1 by definition, and the most numerically stable path is to approach the

Master of Science Thesis Julián Uribe Jaramillo

42 Results and Discussion

Figure 4-18: Comparison of the phases of the frequency response of the generating function and
interpolants found by different continuation trajectories with similar interpolation error e1. The
radial path a solution that matches the phase of the generating function, while the linear path
deviates at some nodes.

solution radially since then w(t) will remain the furthest from |z| = 1.

Finally, Figure 4-15 and Figure 4-16 show that the interpolation error e1 of the radial path is
about two orders of magnitude lower than that of the linear path — 5.73×10−4 and 4.12×10−2

for ρ = 1.72× 10−12 — with only an order of magnitude increase in the magnitude error e2.

4-3-3 Performance

This section analyzes the performance of the defocusing iterative solver (Algorithm 3 pg. 26)
with a radial trajectory. The solver was evaluated for a hyperbolic secant generating function
with m = 4096 interpolation points, and ρ = 1.72× 10−12 maximum reflectivity.

The evolution of the interpolation error e1 and magnitude error e2 with respect to the iter-
ations n for Algorithm 3 (pg. 26), illustrated by Figure 4-19 and Figure 4-20 respectively,
approximates

10e1 = r12n and 10e2 = r22n for certain constants r1 and r2.

Interestingly, this suggest that it might possible to estimate the quality of the solution at
an arbitrary iteration after a few iterations. However, the amount of iterations required to
achieve a desired e1 might not be feasible for real-time applications.

Moreover, Figure 4-21 shows that there a trade-off between e1 and e2, as increasing the
number of iterations reduces e1 but increases e2. This trade-off is caused by finite numerical
precision since, in theory, e2 = 0. This means that Algorithm 3 (pg. 26) cannot reduce e1 to

Julián Uribe Jaramillo Master of Science Thesis

4-3 The Defocusing Case 43

Figure 4-19: Interpolation error e1 with respect to the number of corrector iterations of Algo-
rithm 3 (pg. 26). There are diminishing returns on e1 for increasing the number of iterations.

Figure 4-20: Magnitude error e2 with respect to the number of corrector iterations of Algorithm 3
(pg. 26). The magnitude error e2 increases with the number of iterations.

Master of Science Thesis Julián Uribe Jaramillo

44 Results and Discussion

Figure 4-21: Magnitude error e2 with respect to interpolation error e1 after n iterations of
Algorithm 3 (pg. 26). Reducing the interpolation error e1 increases the magnitude error e2, so
there is a trade-off between the performance metrics.

an arbitrarily small value, since the maximum viable e2 for layer peeling (largest e2 for which
layer peeling works as intended) place a bound on the achievable e1.

4-3-4 Comparison to Conventional Solvers

This section presents comparisons between the defocusing iterative solver (Algorithm 3 pg.
26) and conventional techniques.
Comparing the solvers to conventional guaranteed techniques is not possible for interpolation
data similar to a real application of non-linear Fourier transform, since the solvers available
in the literature — a Nevanlinna-Pick interpolation with degree constraint by Nagamune and
Blomqvist [12], and a boundary interpolation solver by Baratchart et al. [11] — assume the
interpolation data is self-conjugate (symmetric with respect to the real line). Assuming self-
conjugate data simplifies the problem significantly since the interpolant polynomials will have
real coefficients [12][11], which is not guaranteed for synthesis. Furthermore, conventional
solvers are designed for applications with few (< 100) interpolation points. Nevertheless,
a comparison between Algorithm 3 (pg. 26) and Nagamune et al. solver is presented for
interpolation data suitable for computation by both algorithms. The solvers where evaluated
with respect to the number of interpolation points m = 21, 22, . . . , 26. After this, Nagamune’s
solver stopped converging consistently. The solvers were evaluated for 1000 transfer functions
of McMillan degree n = 1 with random real coefficients for every m to get an adequate
understanding of the performance of the algorithms in a broad set of problems, and to avoid
data that benefits a solver over the other.
The interpolation error e1 increases with the number of interpolation points for both algo-
rithms, but Figure 4-22 shows that the rate of change of Nagamune’s solver is exponential,

Julián Uribe Jaramillo Master of Science Thesis

4-3 The Defocusing Case 45

Figure 4-22: Statistical comparison of the interpolation error e1 between a conventional
Nevanlinna-Pick interpolation with degree constraint solver by Nagamune and Blomqvist, and
the defocusing iterative solver (Algorithm 3 pg. 26). The test data was generated by sampling
m = 21, 22, . . . , 26 interpolation node-value pairs from 1000 transfer functions of McMillan degree
n = 1 with random real coefficients. The interpolation error for Nevanlinna-Pick interpolation
with degree constraint solver increases exponentially with respect to the quantity of interpolation
point m, while increasing only linearly for Algorithm 3 (pg. 26).

while the defocusing iterative algorithm increases linearly. On the other hand, the modulus
error e2 increases very little for both solvers until 26 points, when Nagamunes’s explodes.
The defocusing iterative algorithm (Algorithm 3 pg. 26) finds solutions with comparable
median e2, but lower variance, as seen in Figure 4-23. Furthermore, the improvement in eval-
uation metrics comes with a significant reduction in complexity of the algorithm, illustrated
by Figure 4-24, and the ability to handle a higher number of interpolation points.

The most interesting improvement is the reduction in interpolation error e1, since Nagamune’s
solver is similar to the focusing iterative solver (Algorithm 5 pg. 28) and, in theory, e1 = 0.
This highlights the importance of reducing complexity in analytic interpolation since it also
improves performance metrics by reducing the accumulation of errors from performing more
operations with limited numerical precision.

A comparison between the defocusing iterative solver (Algorithm 3 pg. 26) and iterative
synthesis (Algorithm 2 pg. 26) with respect to Q = 3, 3.5, . . . , 7 for a hyperbolic secant
continuous spectrum with m = 4096 interpolation points and a stopping criteria of 41000
iterations, shows that Algorithm 3 (pg. 26) outperforms Algorithm 2 (pg. 26) for numerically
difficult problems with ρ < 10−9, but that for simple problems Algorithm 2 (pg. 26) achieves
better e1, illustrated by Figure 4-25. However Figure 4-25 and Figure 4-26 show that for
comparable e1 (in the range 10−11 < ρ < 10−9), Algorithm 3 (pg. 26) achieves lower e2, and
that Algorithm 2 (pg. 26) does not work for very difficult problems (ρ < 10−11). This is due
to the radial path approaching the solution from a numerically beneficial trajectory, which

Master of Science Thesis Julián Uribe Jaramillo

46 Results and Discussion

Figure 4-23: Statistical comparison of the magnitude error e2 between a conventional
Nevanlinna-Pick interpolation with degree constraint solver by Nagamune and Blomqvist, and
the defocusing iterative solver (Algorithm 3 pg. 26). The test data was generated by sampling
m = 21, 22, . . . , 26 interpolation node-value pairs from 1000 transfer functions of McMillan de-
gree n = 1 with random real coefficients. The median e2 is comparable but the Nevanlinna-Pick
interpolation with degree constraint solver has a higher variance than Algorithm 3 (pg. 26).

the errors in the spectral factorization step for problems with high ρ. This issue is further
explored in Chapter A. A hybrid non-guaranteed technique that uses iterative synthesis as a
corrector steps improves on the improvement speed of the solver with Newton root finding
and has better performance for very difficult problems than iterative synthesis on its own, as
seen in Figure 4-25 and Figure 4-26.

4-4 The Focusing Case

4-4-1 Comparison of Closed-Form Approximations

Just as for the defocusing case, four different heuristics for the phase of the point-value
representation ∠a(z) were evaluated with respect to the number of interpolation node-value
pairs m and inverse maximum amplitude of the continuous spectrum ρ. The test cases were:

• Matching the phase of the interpolation values: ∠a(z) = ∠w.

• Constant shift in the phase of the interpolation values: ∠a(z) = ∠w + π/4.

• Zero phase: ∠a(z) = 0.

• Random phase: ∠a(z) = uniform random variable in [0, 2π].

Julián Uribe Jaramillo Master of Science Thesis

4-4 The Focusing Case 47

Figure 4-24: Statistical comparison of the convergence time between a conventional Nevanlinna-
Pick interpolation with degree constraint solver by Nagamune and Blomqvist, and the defocusing
iterative solver (Algorithm 3 pg. 26). The algorithm convergences when the interpolation error e1
stops improving by less than 10−8. The test data was generated by sampling m = 21, 22, . . . , 26

interpolation node-value pairs from 1000 transfer functions of McMillan degree n = 1 with random
real coefficients. The defocusing iterative has lower computational complexity.

Figure 4-25: Comparison of the interpolation error e1 between iterative synthesis (Algorithm 2
pg. 26) and the defocusing iterative solver (Algorithm 3 pg. 26). Algorithm 3 (pg. 26) achieves a
lower e1 for numerically difficult problems. The e1 errors for the solver become constant because
it reached the maximimum number of iterations allowed (41000)

Master of Science Thesis Julián Uribe Jaramillo

48 Results and Discussion

Figure 4-26: Comparison of the magnitude error e2 between iterative synthesis (Algorithm 2
pg. 26) and the defocusing iterative solver (Algorithm 3 pg. 26). Algorithm 3 (pg. 26) achieves
lower e2 for all maximum reflectivity ρ. Furthermore, Algorithm 2 (pg. 26) is not viable for very
difficult problems (ρ < 10−11).

The approximations were compared for the focusing raised cosines, with m = 28, 29, . . . , 220

interpolation node-value pairs and ρ = 22, 21, . . . , 2−8 maximum reflectivity.

The focusing explicit approximation (Algorithm 4 pg. 27) that better satisfies Eq. (2-11) is
making ∠a(zk) = 0, as it achieves a lower e2 for any m for both simple and difficult problems,
illustrated by Figure 4-31 and Figure 4-32 respectively. But Figure 4-33 and Figure 4-34
show that this advantage decreases as ρ → 0. This matches the results of the defocusing
experiments — where I found that the closest defocusing approximation is ∠b(zk) = ∠wk —
and implies that, at least for simple problems, b(z) is responsible for most of the interpolant’s
phase.

There is little evidence of the numerical inaccuracies experienced by the defocusing explicit
approximations (Algorithm 1 pg. 25) for increasing m, seen in Figure 4-27 and Figure 4-28,
or for lowering ρ, seen in Figure 4-29 and Figure 4-30. Although e1 changes with respect to
m and ρ, it remains in the order of 10−16 — the same as Matlab’s numerical precision.

Again, the maximum reflectivity ρ has a larger effect than the number of interpolation points
m on the quality of the approximation. However the increase of e2 for increasing m means
that the iterative solver requires more iterations to reach the same e2 for larger problems,
assuming the rate of change is independent of m.

4-4-2 Comparison to Conventional Solvers

This section compares the focusing iterative solver (Algorithm 5 pg. 28) and direct synthe-
sis [7] (∠a(z) = 0 in Algorithm 4 pg. 27) with respect ρ on an eight raised cosines generating

Julián Uribe Jaramillo Master of Science Thesis

4-4 The Focusing Case 49

Figure 4-27: Comparison of the interpolation error e1 of focusing explicit approximations (Al-
gorithm 4 pg. 27) with respect to the number of interpolation points m using an eight raised
cosines with inverted maximum amplitude ρ = 22 as the generating function. There is very little
relationship between the parameterizing phase ∠a(z) and e1. Furthermore, increasing m results
in higher e1, but the slope is small.

Figure 4-28: Comparison of the interpolation error e1 of focusing explicit approximations (Al-
gorithm 4 pg. 27) with respect to the number of interpolation points m using an eight raised
cosines with inverted maximum amplitude ρ = 2−8 as the generating function. There is very little
relationship between the parameterizing phase ∠a(z) and e1. Furthermore, increasing m results
in higher e1, but the slope is small.

Master of Science Thesis Julián Uribe Jaramillo

50 Results and Discussion

Figure 4-29: Comparison of the interpolation error e1 of focusing explicit approximations (Algo-
rithm 4 pg. 27) with respect to the inverse maximum amplitude ρ using an eight raised cosines
with m = 28 interpolation points as the generating function. The parameterizing phase ∠a(z) or
ρ have no noticeable effect on e1.

Figure 4-30: Comparison of the interpolation error e1 of focusing explicit approximations (Algo-
rithm 4 pg. 27) with respect to the inverse maximum amplitude ρ using an eight raised cosines
with m = 220 interpolation points as the generating function. The parameterizing phase ∠a(z)
or ρ have no noticeable effect on e1.

Julián Uribe Jaramillo Master of Science Thesis

4-4 The Focusing Case 51

Figure 4-31: Comparison of the magnitude error e2 of focusing explicit approximations (Algo-
rithm 4 pg. 27) with respect to the number of interpolation points m using an eight raised
cosines with inverted maximum amplitude ρ = 22 as the generating function. The magnitude
error e2 is inversely proportional to m. Furthermore, making the point-value representation real,
i.e. ∠a(z) = 0, results in lower e2 for any ρ.

Figure 4-32: Comparison of the magnitude error e2 of focusing explicit approximations (Algo-
rithm 4 pg. 27) with respect to the number of interpolation points m using an eight raised cosines
with inverted maximum amplitude ρ = 2−8 as the generating function. The magnitude error e2
is inversely proportional to m, and relatively high (> 1) for all the evaluated parameterizations.
Moreover, making the point-value representation real, i.e. ∠a(z) = 0, results in slightly lower e2
for any ρ.

Master of Science Thesis Julián Uribe Jaramillo

52 Results and Discussion

Figure 4-33: Comparison of the magnitude error e2 of focusing explicit approximations (Algo-
rithm 4 pg. 27) with respect to the inverse maximum amplitude ρ using an eight raised cosines
withm = 28 interpolation points as the generating function. The parameterizing phase ∠a(z) = 0
results in a lower e2 for all ρ, although the effect gets increasingly smaller until it plateaus at
ρ < 2−2.

Figure 4-34: Comparison of the magnitude error e2 of focusing explicit approximations (Algo-
rithm 4 pg. 27) with respect to the inverse maximum amplitude ρ using an eight raised cosines with
m = 220 interpolation points as the generating function. The parameterizing phase ∠a(z) = 0
results in a lower, but still relatively high, e2 for all ρ, although the effect gets increasingly smaller
until it plateaus at ρ < 2−2.

Julián Uribe Jaramillo Master of Science Thesis

4-4 The Focusing Case 53

Figure 4-35: Comparison of the interpolation error e1 between direct synthesis (∠a(z) = 0 in
Algorithm 4 pg. 27) and the focusing iterative solver (Algorithm 5 pg. 28). Both algorithms
achieve similar e1 — in the same order as Matlab’s numerical precision.

function with m = 212 interpolation node-value pairs. The corrector step was set to stop once
the rate of change in e2 became less than 10−8.

Figure 4-36 shows that the focusing iterative solver achieves (Algorithm 5 pg. 28) a significant
reduction in magnitude error e2 for simple problems (large ρ) but only improves more difficult
problems by about an order of magnitude: from 1.66 to 1.07× 10−5 for ρ = 22 and 34.93 to
3.07 for ρ = 2−8. This means that it is not practical to obtain an arbitrary e2 as the stopping
criteria — the rate of change in e2 is less than 10−8 — is reached relatively soon. However,
Algorithm 5 (pg. 28) solver still represents an improvement over direct synthesis.

Master of Science Thesis Julián Uribe Jaramillo

54 Results and Discussion

Figure 4-36: Comparison of the magnitude error e2 between direct synthesis (∠a(z) = 0 in
Algorithm 4 pg. 27) and the focusing iterative solver (Algorithm 5 pg. 28).Algorithm 5 (pg. 28)
achieves a lower e2 for all values of ρ, but the difference gets smaller for more difficult problems.

Julián Uribe Jaramillo Master of Science Thesis

Chapter 5

Conclusions and Future Work

5-1 Conclusions

Numerical continuation based on boundary Nevanlinna-Pick interpolation with degree con-
straint is a guaranteed solution to synthesis: it results in a solution with an arbitrary inter-
polation error e1 in the defocusing case, or a modulus error e2 that is better than current
heuristic methods in the focusing case. The numerical guarantee is given by the fact that the
corrector step is guaranteed to converge to a solution for a sufficiently small step-length in
the predictor step, so the problem is convex over the continuation trajectory. However, this
guarantee does not extend to finite-precision, as the numerical implementation has a trade-off
between e1 and e2 that does not exist for infinite-precision operations. This means that it is
not possible to achieve arbitrarily small e1 and e2 simultaneously.

Moreover, the solvers may not be effective for real-time applications, as the high-demands
in error precision required for layer peeling means that the algorithms must perform many
iterations, which translates into high computational cost, even if the cost of each iteration is
low. This seems to be a limitation of the theory as the achievable errors are proportional to
the number of iterations. Also, the solvers presented in this thesis have lower complexity than
other guaranteed Nevanlinna-Pick interpolation with degree constraint solvers even when they
result in solutions with lower e1 and e2.

The defocusing algorithms are generalizations of the boundary Nevanlinna-Pick interpolation
with degree constraint solvers by Nagamune et al. and Baratchart et al. to interpolation data
that is not necessarily self-conjugate. They are also less computationally complex and are able
to handle more difficult problems and more interpolation points. The focusing algorithms are
not generalization of conventional solvers because the interpolant is not bounded — a key
condition of Nevanlinna-Pick interpolation — but they are an extension of Nevanlinna-Pick
interpolation with degree constraint theory into a different type of analytic interpolation.

There are two key problems with the algorithms: first, when the local interpolation values
w(t) are very close to the region of analyticity the predictor step may overshoot and push the

Master of Science Thesis Julián Uribe Jaramillo

56 Conclusions and Future Work

polynomials outside this region which causes the algorithms to diverge; second, the corrector
step stops improving significantly very quickly for complex problems.
In the defocusing case, the algorithm gets around these problems by approaching the solution
in a radial path (from the origin of the complex plan). The radial path approaches the solution
from the trajectory farthest away from the boundary minimizing the risk of overshooting the
region of analyticity. Furthermore, the zero approximation (Eq. (3-1)), is the closest heuristic
approximation for difficult problems.
There is no apparent solution to the lack of quick convergence in the focusing case. On the
other hand, stopping the polynomials from moving away from the region of analyticity is done
by reducing the predictor step-length when the point value representation of the polynomials
a(z),b(z) > 1.

5-2 Future Work

5-2-1 Improvements to Explicit Approximations

The explicit approximations (Algorithm 1 and Algorithm 4) are perhaps the most interesting
solutions for real-time applications since they require no iterations. Algorithm 4, in particular,
may provide a way to compute an exact solution in closed-form. The main problem right now
is that this approximation only satisfies Eq. (2-11) for z ∈ Cm. The reason is that Eq. (2-
11) requires defining the polynomials over the over-sampled nodes x ∈ C2m−1 and we only
know the value of the interpolation values at z, so the full over-sampled representation is
undefined. However, assuming the interpolation values are given by a function f(z) := w,
then the over-sampled values are simply f(x). Now the problem is finding a function f(z)
such that computing a(z) from the over-sampled point-value representation a(x) ∈ C2m−1

results in polynomials of degree m.
A similar exact solution may exist for Algorithm 1. The explicit approximations are param-
eterized by the angles of the point-value representation ∠b(z), and one of these parameteri-
zations leads to the exact solution. Since Eq. (3-6) also has a closed-form solution [33] there
may be a explicit inversion. A first step would be finding out how spectral factorization maps
∠b(z)→ ∠a(z).

5-2-2 Improvements to the Iterative Solvers

Choosing the continuation trajectory wisely in the defocusing solver leads to considerable
improvement. It may be that there is a trajectory other than a radial path for the focusing
algorithm which yields better results. Furthermore, there might be a way to combine early
solutions of the defocusing iterative solver (Algorithm 3) using a radial path — which inter-
polates the phases very precisely — with the explicit algorithm to quickly find the solution.

5-2-3 Extending the Solvers to Other Applications

An interesting research direction would be to extend the algorithm to other applications.
The defocusing iterative solver in particular is intuitively simpler than the Nevanlinna-Pick

Julián Uribe Jaramillo Master of Science Thesis

5-2 Future Work 57

interpolation with degree constraint algorithms by Byrnes et al. [10] and offers the same
guarantees when the interpolation nodes are at the unit circle |z| = 1. It would be interesting
to extend the solvers to include interpolation nodes in the unit disk |z| ≤ 1, a requirement
for internal stability in control [21]. At the moment, the solver can be used in the impedance
matching problem by Baratchart et al. [11] by implementing an additional conformal map [14]
between the interpolation node-value pairs.

Furthermore, the algorithm compares very favorably with Nagamune and Blomqvist’s solver [12]
— the only freely available solver for boundary Nevanlinna-Pick interpolation with degree
constraint — despite being designed for a more general type of problems. It would be worth
it to extend some of the Nevanlinna-Pick interpolation with degree constraint features, like
derivative constraints for the interpolation values and interpolation of matrix polynomials.

Exploring minimum degree interpolants is outside the scope of this thesis — layer peeling
requires the degree to match the interpolation points — but it is useful for other applications.
The relationship to identification might provide a way forward, since exploring the accuracy
of the interpolant (model) with respect to its order is a common task [34]. Another idea is
to move away from exact to optimal interpolation, where the interpolant minimizes a cost
metric. This would mean that Eq. (2-10) does not define a linear map between polynomials of
degree m−1, but a linear least-squares problem [34] between polynomials of arbitrary degree.

5-2-4 Interaction with the non-linear Fourier transform

There might be a faster solution to synthesis by moving away from Problem 1, but keeping
the core idea intact. Instead of trying to interpolate the points perfectly the problem could
be to optimally match the signal. The idea here is to follow the procedure of the focusing
explicit algorithm (Algorithm 5, pg. 28) and compute the polynomials based on the over-
sampled point-value representations. The difficulty would be finding interpolation values that
result in polynomials of degree m− 1 and not 2m− 1, as would normally be the case for the
over-sampled representation. An optimal approach would allow the leeway to satisfy this
condition and still match the frequency response of the spectrum.

Master of Science Thesis Julián Uribe Jaramillo

58 Conclusions and Future Work

Julián Uribe Jaramillo Master of Science Thesis

Appendix A

Comparison of spectral factorization
algorithms

In this appendix I compare four spectral factorization algorithms. This is the largest source of
numerical error in the solver algorithms. The solver uses Kolmogorov algorithm for spectral
factorization [29] as it is the fastest algorithm for large problems [35]. The other evaluated
algorithms are Bauer [29], Weiner-Hopf [36], and Wilson-Burg [35].

A-1 Spectral factorization algorithms

A-1-1 Kolmogorov

Kolmogorov spectral factorization, sometimes known as Hilbert transform method [29], is
based around the idea that the magnitude of the frequency response determines the response
for a minimum phase system. The phase is

∠a(z) = −H
(

log|a(z)|
)
,

where H is the Hilbert transform [29]. The technique can be implemented using fast Fourier
transforms and requires no iterations, which makes it the fastest spectral factorization algo-
rithm.

A-1-2 Bauer

The idea behind Bauer’s method [37] is to approximate the coefficients of a(z) by computing
the Cholesky decomposition of a finite Toeplitz matrix of size k × k

Master of Science Thesis Julián Uribe Jaramillo

60 Comparison of spectral factorization algorithms

Tk =

S0 S−1 S−2 · · ·
S1 S0 S−1 · · ·
S2 S1 S0 · · ·
...

...
... . . .

 . (A-1)

First, compute the triangular decomposition Tk = LkDkLk
T with Lk a lower triangular

matrix with unit diagonal entries, and Dk a diagonal matrix. Then

dklk → a as k →∞,

where dk is the last value in Dk and lk is the last row of Lk.

For the numerical comparison, the matrix of Eq. (A-1) was of size 32 ∗m × 32 ∗m — with
m the number of coefficients of a(z) — up to a maximum size of 214 × 214, after which the
matrix became too large to store in RAM.

A-1-3 Wilson-Burg

Wilson-Burg algorithm solves the spectral factorization problem with Newton’s iterative
method

S(z) = at(z)at+1(z−1) + at(z−1)at+1(z)− at(z)at(z−1).

Diving by at(z)at(z) results in a convenient form where the terms can be separated into casual
and anti-casual

1 + S(z)
at(z)at(z−1)

= at+1(z)
at(z)

+ at+1(z−1)
at(z−1)

. (A-2)

Two initial guesses were used: a(z) = zm−1 as proposed by [35], and the result from Kol-
mogorov algorithm. The algorithm was limited to 100 iterations.

A-1-4 Wiener-Hopf

Wiener-Hopf algorithm [36] is based on solving a non-linear system arising from rewriting the
spectral factorization problem in terms of the polynomial coefficients,

S = Tâ, (A-3)

where

Julián Uribe Jaramillo Master of Science Thesis

A-2 Numerical Comparison 61

S =
[

S0
S1

]
=

S−n
S−n+1

...
S1

S0
...
Sn

, T =

[
T0
T1

]
=

a0
a1 a0
...
1 an−1 · · · a0

1 . . . a1
.

1

, â =

anan
anan−1

...
ana0

into non-linear equation

S0 −T0T−1
1 S1 = 0, (A-4)

and using Newton root finding to solve Eq. (A-4).

Just as with Wilson-Burg, two initial guesses were used: an approximated solution to Eq. (A-
4) proposed by [36], and the result from Kolmogorov algorithm. The algorithm was limited
to 100 iterations.

A-2 Numerical Comparison

A-2-1 Two Bad Polynomials

This test was proposed by [36] as an example of a difficult spectral factorization problem.
The numerical difficulty increases as the problem grows larger. The Laurent polynomial of
order n is given by

S(z) =
(1
n

(1 + z−1 + · · ·+ z−n+1) + z−n+1
)(
n+ z + z2 + · · ·+ zn

)
.

The error was measured as ‖â(z)− a(z)‖, where â(z) is the result of the algorithms and a(z)
is the known solution.

Wiener-Hopf algorithm with the initial guess proposed by [36] delivers the best results, spe-
cially for larger and more difficult problems, as seen in Figure A-1. However, it is considerably
more expensive than Kolmogorov’s method, as seen in Figure A-2, although any comparison
on timing should be taken with a grain of salt, as they may reflect differences in implemen-
tation, and circumstances, just as much as differences in the complexity of the underlying
algorithms.

A-2-2 Spectral Factorization for Synthesis

This test measures the suitability of each algorithm for synthesis. The problem is to find
a polynomial a(z) that satisfies Eq. (2-11) for a given b(z) and interpolation points from a

Master of Science Thesis Julián Uribe Jaramillo

62 Comparison of spectral factorization algorithms

Figure A-1: Error of spectral factorization with respect to the number of coefficients of the
minimum phase polynomial for several algorithms

Figure A-2: Execution time, in seconds, for spectral factorization with respect to the number of
coefficients of the minimum phase polynomial for several algorithms

Julián Uribe Jaramillo Master of Science Thesis

A-2 Numerical Comparison 63

Figure A-3: Magnitude error e2 with respect to maximum reflectivity ρ for a problem with m = 2
iteration points of several spectral factorization algorithms

Figure A-4: Magnitude error e2 with respect to maximum reflectivity ρ for a problem with
m = 256 iteration points of several spectral factorization algorithms

Master of Science Thesis Julián Uribe Jaramillo

64 Comparison of spectral factorization algorithms

Figure A-5: Magnitude error e2 with respect to maximum reflectivity ρ for a problem with
m = 4096 iteration points of several spectral factorization algorithms

hyperbolic secant. The iterative algorithm, Wilson-Burg and Wiener-Hopf, are forced to take
at least one iteration from its initial guess.

Wilson-Burg spectral factorization [35] is well suited for very ill-conditioned problems —
problems with ρ ≤ 10−12 — and reaches an equal or better solution in this case, as seen in
Figure A-3, Figure A-4, and Figure A-5. In any other case, it is preferable to use Kolmogorov
since it has similar errors but much lower execution time. Starting the iterative algorithms
with the result from Kolmogorov’s offers no advantage, and even makes the result worse in
some cases. This is caused by numerical innacuracies: Wiener-Hopf or Wilson-Burg iterate
on monic representations (coefficient of largest degree is normalized to one), and even if
they do not change the solution they perform operations on the polynomial, which generates
numerical errors and makes the solution worse.

Julián Uribe Jaramillo Master of Science Thesis

Appendix B

Mathematical Proofs

B-1 Proof that the Magnitude Condition is Finite-Dimensional

Define the Laurent polynomials

A(z) := |a(z)|2 and B(z) := |b(z)|2,

then for a(z) with fixed degree m, Eq. (2-11) is

A(z) + γB(z) = 1 for |z| = 1.

By comparing the coefficients with the same powers we get

A−m+1 + γB−m+1 = 0,
...

A−2 + γB−2 = 0,
A−1 + γB−1 = 0,
A0 + γB0 = 1,
A1 + γB1 = 0,
A2 + γB2 = 0,

...
Am−1 + γBm−1 = 0

which is a system of 2m− 1 equations.

Master of Science Thesis Julián Uribe Jaramillo

66 Mathematical Proofs

Julián Uribe Jaramillo Master of Science Thesis

Appendix C

Matlab code

C-1 Defocusing Solver

1 %% Load test data
2 fn = ’defocusing’ ;
3 load (fn) ;
4
5 %% Set hyper -parameters
6 dt0 = 0 . 2 ;
7 dt1 = 0 . 0 1 ;
8
9 nM = size (Z , 2) ;

10 for iM = 1 : nM
11 z = Z (: , iM) ;
12 w = W (: , iM) ;
13
14 [b , a , h] = solver (w , dt0 , dt1 , ’radial’ , fn) ;
15 [interpError (iM) , magError (iM)] = errors (b , a , w , fn) ;
16 end

1 function [b , a , historicalData] = solver (w , dt0 , dt1 , path , caseK)
2 % SOLVER Finds the solution of a boundary analytic interpolation problem.
3 %
4 % Synopsis
5 % [b, a, historicalData] = solver(w, dt0, dt1, path, caseK)
6 %
7 % Description
8 % solver computes the denominator a and the numerator b of a rational
9 % polynomial function that satisfies the modulus condition

10 % |a(x)|^2+k|b(x)|^2=1, for all |x|=1, and the interpolation condition
11 % b(z)/a(z) = w, where z are distinct equidistant nodes in the unit
12 % circle.
13 %
14 % Inputs ([] are optional)

Master of Science Thesis Julián Uribe Jaramillo

68 Matlab code

15 % (vector) w: [m 1] vector of interpolation values the function should
16 % take at m distinct equidistant nodes on the unit circle

.
17 % (scalar) dt0: initial steplength.
18 % (scalar) dt1: final steplength.
19 % (string) path: string indicating the trajectory from initial
20 % approximation w’ to the interpolation values w.
21 % Can be:
22 % - ’Linear ’: default path. The values follow a linear path,
23 % w(t) = w’+t(w-w’).
24 % - ’Circular ’: the magnitudes do not change and the phases
25 % follow a linear path,
26 % \angle w(t) = \angle w’+t(\angle w - \angle w’),
27 % w(t) = |w|e^(i \angle w(t)).
28 % - ’Linear ’: the values follow a linear path from zero,
29 % w(t) = t(w).
30 % (string) [caseK]: string indicating the case. Can be:
31 % - ’Defocusing ’: default case. k = -1.
32 % - ’Focusing ’: k = 1.
33 %
34 % Outputs
35 % (vector) b: [m 1] vector representing the coefficients of the

numerator
36 % of a rational polynomial function of order n = m-1,
37 % b = [b0, ..., bn]^T -> b0 + b1*z^(-1) + ... + bn*z^(n).
38 % (vector) a: [m 1] vector representing the coefficients of the
39 % denominator of a rational function of order n = m-1,
40 % a = [a0, ..., an]^T -> a0 + a1*z^(-1) + ... an*z^(-n).
41 % (struct) historicalData: data along the path. Contains:
42 % - (scalar) .iter: number of predictor -corrector iterations.
43 % - (vector) .interpolationError: [1 iter] vector of

normalized
44 % L2 interpolation errors at
45 % each iteration.
46 % - (vector) .magnitudeError: [1 iter] vector of L2 magnitude
47 % condition errors at each

iteration
48 % - (vector) .b: [m iter] vector of b at each iteration.
49 % - (vector) .a: [m iter] vector of a at each iteration.
50 %
51 % Examples
52 % [b, a, h] = solver([0.5 0.3], 0.1, 0.01, ’linear ’, ’defocusing ’)
53 %
54 % Author
55 % Julian Uribe Jaramillo
56
57 %% Organize inputs and set parameters
58 if (nargin < 5)
59 caseK = ’defocusing’ ; % Default case
60 end
61
62 w = w (:) ;
63 path = lower (path) ;

Julián Uribe Jaramillo Master of Science Thesis

C-1 Defocusing Solver 69

64 caseK = lower (caseK) ;
65
66 m = length (w) ; % Number of interpolation points
67 corIter = 0 ; % Number of corrector iterations
68
69 maxErrorPath = 1e−5; % Maximum interpolation error along the path
70 maxErrorFinal = 1e−5; % Maximum interpolation error at the end point
71
72 %% Compute number of iterations
73 i = 0 ;
74 t = 0 ;
75 while (t < 1)
76 i = i + 1 ;
77
78 %% Update arclength (t)
79 dt = dt0+t∗(dt1−dt0) ; % Steplength (\alpha)
80
81 if (t + dt > 1)
82 t = 1 ; % Arclength (t)
83 else
84 t = t+dt ;
85 end
86 end
87 iter = i ;
88
89 %% Initialization
90 [b , a , w0] = initialize (w , path , caseK) ; % Initial approximation
91
92 % Polar representation of the interpolation values (w)
93 magW = abs (w) ; % Magnitudes of interpolation values (|w|)
94 phaseW = mod (angle (w) , 2∗pi) ; % Phases of final w in [0, 2*pi] (\angle w)
95 phaseW0 = mod (angle (w0) , 2∗pi) ; % Phases of initial w (\angle w’)
96
97 % Set size of historical data
98 interpolationError = zeros (1 , iter) ; % Interpolation error (e1(t))
99 modulusError = zeros (1 , iter) ; % Modulus error (e2(t))

100 bH = zeros (m , iter) ; % Historical numerator coefficients (b(z,t))
101 aH = zeros (m , iter) ; % Historical denominator coefficients (a(z,t))
102
103 %% Compute data for initial approximation
104 [interpolationError (1) , modulusError (1)] = errors (b , a , w , caseK) ;
105 bH (: , 1) = b ;
106 aH (: , 1) = a ;
107
108 %% Iterate until end of arclength (t=1)
109 i = 0 ;
110 t = 0 ;
111 while (t < 1)
112 %% Update the trajectory and find the local interpolation values
113 [t , dt] = updateArclength (t , dt0 , dt1) ;
114 [wt , dw] = updatePath (w , w0 , t , path) ;
115
116 %% Predictor -corrector iteration

Master of Science Thesis Julián Uribe Jaramillo

70 Matlab code

117 [b , a] = predictor (b , a , wt , dw , dt , caseK) ;
118 [b , a] = corrector (b , a , wt , maxErrorPath , caseK) ;
119
120 %% Save historical data
121 i = i+1;
122 [interpolationError (i) , modulusError (i)] = errors (b , a , w) ;
123 bH (: , i) = b ;
124 aH (: , i) = a ;
125 end
126
127 [b , a] = corrector (b , a , w , maxErrorFinal , caseK) ;
128
129 %% Organize outputs
130 b = b (:) ;
131 a = a (:) ;
132 historicalData . iter = iter ;
133 historicalData . corIter = corIter ;
134 historicalData . interpolationError = interpolationError ;
135 historicalData . modulusError = modulusError ;
136 historicalData . b = bH ;
137 historicalData . a = aH ;
138
139 %% Subfuctions
140 function [b , a , w0] = initialize (w , path , caseK)
141 % INITIALIZE Finds an approximated solution to a boundary

analytic
142 % interpolation problem.
143
144 switch (caseK)
145 case ’focusing’
146 k = 1 ;
147 case ’defocusing’
148 k = −1;
149 end
150
151 % Compute the initial polynomials
152 if (strcmp (path , ’linear’) | | strcmp (path , ’circular’))
153 B = w . / (sqrt(1+k∗abs (w) . ^2)) ; % Point -value rep. of b(z)
154 b = ifft (B) ; % Coefficient representation of b(z)
155
156 a = b2a (b , caseK) ; % Coefficient representation of a(z)
157 A = fft (a) ; % Point -value representation of a(z)
158
159 w0 = B . / A ; % Initial interpolation values
160
161 elseif strcmp (path , ’radial’)
162 b = zeros (m , 1) ;
163 a = b2a (b , caseK) ;
164
165 w0 = zeros (m , 1) ;
166
167 else
168 error (’Path should be "Linear", "Circular" or "Radial"’)

Julián Uribe Jaramillo Master of Science Thesis

C-1 Defocusing Solver 71

169 end
170 end
171
172 function [t , dt] = updateArclength (t , dt0 , dt1)
173 % UPDATEARCLENGTH Updates the arclength t
174
175 %% Update the steplength
176 dt = dt0+t∗(dt1−dt0) ; % Steplength (\alpha)
177
178 %% Update the arclength and keep it in range [0, 1]
179 if (t + dt > 1)
180 t = 1 ; % Arclength (t)
181 else
182 t = t+dt ;
183 end
184 end
185
186 function [wt , dw] = updatePath (w , w0 , t , path)
187 % UPDATEPATH Computes the local interpolation values in the path
188
189 %% Update path
190 switch (path)
191 case ’linear’
192 wt = w0+t∗(w−w0) ; % Local interpolation values (w(t))
193 dw = w−w0 ; % Derivatives of wt wrt t (dw(t)/dt)
194
195 case ’circular’
196 phaseWt = phaseW0+t∗(phaseW−phaseW0) ;
197 phaseWt = mod (phaseWt , 2∗pi) ;
198 wt = magW .∗ exp (1i∗phaseWt) ;
199 dw = 1i∗wt . ∗ (phaseW−phaseW0) ;
200
201 case ’radial’
202 wt = t∗w ;
203 dw = w ;
204
205 otherwise
206 error (’Path should be "Linear", "Circular" or "Radial"’)
207 end
208 end
209
210 function [b , a] = predictor (b , a , wt , dw , dt , caseK)
211 % PREDICTOR Approximates the next solution
212
213 switch (caseK)
214 case ’focusing’
215 k = 1 ;
216 case ’defocusing’
217 k = −1;
218 end
219
220 %% Compute point -value representation
221 B = fft (b) ;

Master of Science Thesis Julián Uribe Jaramillo

72 Matlab code

222 A = fft (a) ;
223
224 %% Update polynomials
225 dB = (A .∗ dw) ./(1+k∗wt .∗ conj (B . / A)) ; % Derivative wrt to t (db(z,t

)/dt)
226 B = B + dt∗dB ; % Point -value representation
227
228 %% Compute the coefficient representations
229 b = ifft (B) ;
230 a = b2a (b , caseK) ;
231 end
232
233 function [b , a] = corrector (b , a , wt , maxError , caseK) % Newton
234 % CORRECTOR Finds the local solution closest to the current
235 % approximation
236
237 B = fft (b) ;
238 A = fft (a) ;
239 H = B − wt .∗ A ;
240 error = norm (H) ;
241
242 while (error > maxError)
243 % Exit algorithm if over 20000 iterations
244 if (corIter > 20000)
245 break ;
246 end
247
248 corIter = corIter + 1 ;
249 switch (caseK)
250 case ’focusing’
251 k = 1 ;
252 case ’defocusing’
253 k = −1;
254 end
255
256 %% Compute point -value representation
257 B = fft (b) ;
258 A = fft (a) ;
259
260 %% Update polynomials
261 H = B − wt .∗ A ;
262 dH = 1 − k∗wt .∗ conj (B . / A) ; % Derivative wrt to t (db(z,t)/dt)
263
264 oldB = B ;
265 B = B − H . / dH ; % Point -value representation
266
267 % Exit corrector if change is less than machine precision
268 if (norm (oldB − B) < eps)
269 break ;
270 end
271
272 %% Compute the coefficient representations
273 b = ifft (B) ;

Julián Uribe Jaramillo Master of Science Thesis

C-1 Defocusing Solver 73

274 a = b2a (b , caseK) ;
275
276 error = norm (H) ;
277 end
278 end
279 end

1 function a = b2a (b , method , w)
2 % B2A Computes the denominator of a rational polynomial function.
3 %
4 % Synopsis
5 % a = b2a(b, method , w)
6 %
7 % Description
8 % b2a computes the denominator a from the numerator b of a rational
9 % polynomial function. The polynomials satisfy either the modulus

10 % condition |a(z)|^2-|b(z)|^2=1 for all |z|=1; or the interpolation
11 % condition b(z_k)/a(z_k) = w_k.
12 %
13 % Inputs ([] are optional)
14 % (vector) b: [m 1] vector representing the coefficients of the

numerator
15 % of a rational polynomial function of order n = m-1,
16 % b = [b0, ..., bn]^T -> b0 + b1*z^(-1) + ... + bn*z^(n).
17 % (string) [method]: string indicating the condition the function
18 % satisfies , can be:
19 % - ’Modulus ’: default method. The polynomials satisfy
20 % |a(x)|^2-|b(x)|^2=1 for all |x|=1.
21 % - ’Interpolation ’: the polynomials satisfy b(z)/a(z) = w,
22 % where z are m distinct equidistant nodes in the unit

circle
23 % and w are given interpolation values.
24 % (vector) [w]: [m 1] vector of the values the function should take at

m
25 % distinct equidistant nodes on the unit circle.
26 %
27 % Outputs
28 % (vector) a: [m 1] vector representing the coefficients of the
29 % denominator of a rational function of order n = m-1,
30 % a = [a0, ..., an]^T -> a0 + a1*z^(-1) + ... an*z^(-n).
31 %
32 % Examples
33 % a = b2a([1 0.3].’, ’Interpolation ’, [0.4 0.3].’)
34 %
35 % Author
36 % Julian Uribe Jaramillo
37
38 %% Organize inputs and set parameters
39 if (nargin < 2)
40 method = ’defocusing’ ; % Default
41 end
42
43 b = b (:) ;

Master of Science Thesis Julián Uribe Jaramillo

74 Matlab code

44 method = lower (method) ;
45 m = length (b) ; % Number of interpolation points
46
47 switch (method)
48 case ’defocusing’
49 bb = xcorr (b) ;
50
51 aa = bb ;
52 aa (m) = aa (m) + 1 ;
53
54 a = spec (aa) ;
55 a = a (:) ;
56
57 case ’focusing’
58 bb = xcorr (b) ;
59
60 aa = −bb ;
61 aa (m) = 1 − aa (m) ;
62
63 a = spec (aa) ;
64 a = a (:) ;
65
66 case ’interpolation’
67 warning (’Might result in an unstable interpolant’)
68 if (nargin < 3)
69 error (’Interpolation values missing’)
70 else
71 B = fft (b) ;
72 A = B . / w ;
73 a = ifft (A) ;
74 end
75
76 otherwise
77 error (’Method should be "Defocusing", "Focusing" or "

Interpolation"’)
78 end
79 end

1 function s = spec (pp)
2 % Polynomial spectral factorization
3
4 pp = pp (:) . ’ ;
5 length_p = 0 .5∗ (length (pp)+1) ;
6
7 m = 32∗length_p ;
8 pp = pp (length_p : end) ;
9 R = fft ([pp zeros (1 , 2∗m−2∗length_p+1) conj (pp (length_p :−1:2))]) ;

10 R = real (R) ;
11
12 rho = min (R) ;
13
14 scl = sqrt (eps) ∗max (R) ;
15

Julián Uribe Jaramillo Master of Science Thesis

C-1 Defocusing Solver 75

16 if (rho <= −scl)
17 warning (’pp(z)=%g (<=0) on the unit circle’ , min (R)) ;
18 elseif (rho <= 0)
19 idx = (R <= 0) ;
20 R (idx) = R (idx) + scl ;
21 end
22
23 x = 0.5∗ log (R) ;
24
25 X = fft (x) ;
26 X (1) = 0 ;
27 X (m) = 0 ;
28 X (2 : m−1) = −1i∗X (2 : m−1) ;
29 X (m+1:end) = 1i∗X (m+1:end) ;
30
31 y = ifft (X) ;
32
33 H = exp (x−1i∗y) ;
34
35 h = ifft (H) ;
36
37 s = conj (h (length_p :−1:1)) ;
38 s = s (:) ;
39
40 end

1 function [interpolationError , modulusError] = errors (b , a , w , caseK)
2 % ERRORS Compute the interpolation and modulus errors.
3 %
4 % Synopsis
5 % [interpolationError , modulusError] = errors(b, a, w, caseK)
6 %
7 % Description
8 % errors compute the normalized L2 norm of the interpolation error
9 % w-b(z)/a(z) for m distinct equidistant nodes in the unit circle z,

and
10 % the L2 norm of th modulus condition error |a(x)|^2-|b(x)|^2-1 for 2m

-1
11 % distinct equidistant nodes in the unit circle x.
12 %
13 % Inputs ([] are optional)
14 % (vector) b: [m 1] vector representing the coefficients of the

numerator
15 % of a rational polynomial function of order n = m-1,
16 % b = [b0, ..., bn]^T -> b0 + b1*z^(-1) + ... + bn*z^(n).
17 % (vector) a: [m 1] vector representing the coefficients of the
18 % denominator of a rational function of order n = m-1,
19 % a = [a0, ..., an]^T -> a0 + a1*z^(-1) + ... an*z^(-n).
20 % (vector) [w]: [m 1] vector of interpolation values the function

should
21 % take at m distinct equidistant nodes on the unit circle

.
22 % (string) [caseK]: string indicating the condition the function

Master of Science Thesis Julián Uribe Jaramillo

76 Matlab code

23 % satisfies , can be:
24 % - ’Defocusing ’: default case. k = -1 for the modulus

condition
25 % error.
26 % - ’Focusing ’: k = 1 for the modulus condition error.
27 %
28 % Outputs
29 % (scalar) inteporlationError: normalized L2 norm of interpolation

error ,
30 % || w - b(z)/a(z) || / || w ||.
31 % (scalar) modulusError: L2 norm of mudulus condition error ,
32 % || |a(z)|^2 + k|b(z)|^2 - 1 ||.
33 %
34 % Examples
35 % [interpError , modError] = errors([1 0.3], [1 0.4], [0.4 0.3])
36 %
37 % Author
38 % Julian Uribe Jaramillo
39
40 %% Organize inputs and set parameters
41 if (nargin < 4)
42 caseK = ’defocusing’ ; % Default
43 end
44
45 b = b (:) ;
46 a = a (:) ;
47 w = w (:) ;
48 caseK = lower (caseK) ;
49 m = length (b) ; % Number of interpolation points
50
51 switch (caseK)
52 case ’focusing’
53 k = 1 ;
54
55 case ’defocusing’
56 k = −1;
57
58 otherwise
59 error (’caseK should be "Defocusing" or "Focusing"’)
60 end
61
62 %% Compute point -value representations
63 B = fft (b) ;
64 A = fft (a) ;
65
66 %% Compute oversampled point -value representations
67 B2m = fft (b , 2∗m−1) ;
68 A2m = fft (a , 2∗m−1) ;
69
70 %% Compute errors
71 interpolationError = norm (B−w .∗ A) /norm (w) ;
72 modulusError = norm (abs (A2m) .^2+k∗abs (B2m) .^2−1) ;
73

Julián Uribe Jaramillo Master of Science Thesis

C-2 Focusing Solver 77

74 end

C-2 Focusing Solver

1 %% Load test data
2 fn = ’focusing’ ;
3 load (fn) ;
4
5 %% Set hyper -parameters
6 dt0 = 0 . 2 ;
7 dt1 = 0 . 0 1 ;
8
9 nM = size (Z , 2) ;

10 for iM = 1 : nM
11 z = Z (: , iM) ;
12 w = W (: , iM) ;
13
14 [b , a , h] = solver (w , dt0 , dt1 , fn) ;
15 [interpError (iM) , magError (iM)] = errors (b , a , w , 1 , fn) ;
16 end

1 function [b , a , historicalData] = solver (w , dt0 , dt1 , caseK)
2 % SOLVER Finds the solution of a boundary analytic interpolation problem.
3 %
4 % Synopsis
5 % [b, a, historicalData] = solver(w, dt0, dt1, path)
6 %
7 % Description
8 % solver computes the denominator a and the numerator b of a rational
9 % polynomial function that satisfies the modulus condition

10 % |a(x)|^2+k|b(x)|^2=1, for all |x|=1, and the interpolation condition
11 % b(z)/a(z) = w, where z are distinct equidistant nodes in the unit
12 % circle.
13 %
14 % Inputs ([] are optional)
15 % (vector) [w]: [m 1] vector of interpolation values the function

should
16 % take at m distinct equidistant nodes on the unit circle

.
17 % (scalar) dt0: initial steplength.
18 % (scalar) dt1: final steplength.
19 % (string) [path]: string indicating the case. Can be:
20 % - ’Defocusing ’: k = -1.
21 % - ’Focusing ’: default case. k = 1.
22 %
23 % Outputs
24 % (vector) b: [m 1] vector representing the coefficients of the

numerator
25 % of a rational polynomial function of order n = m-1,
26 % b = [b0, ..., bn]^T -> b0 + b1*z^(-1) + ... + bn*z^(n).
27 % (vector) a: [m 1] vector representing the coefficients of the
28 % denominator of a rational function of order n = m-1,

Master of Science Thesis Julián Uribe Jaramillo

78 Matlab code

29 % a = [a0, ..., an]^T -> a0 + a1*z^(-1) + ... an*z^(-n).
30 % (struct) historicalData: data along the path. Contains:
31 % - (scalar) .iter: number of predictor -corrector iterations.
32 % - (vector) .interpolationError: [1 iter] vector of

normalized
33 % L2 interpolation errors at
34 % each iteration.
35 % - (vector) .modulusError: [1 iter] vector of L2 modulus
36 % condition errors at each iteration

.
37 % - (vector) .b: [m iter] vector of b at each iteration.
38 % - (vector) .a: [m iter] vector of a at each iteration.
39 %
40 % Examples
41 % [b, a, historicalData] = solver([0.5 0.3], 0.1, 0.01, ’focusing ’)
42 %
43 % Author
44 % Julian Uribe Jaramillo
45
46 %% Organize inputs and set parameters
47 if (nargin < 4)
48 caseK = ’focusing’ ;
49 end
50
51 w = w (:) ;
52 caseK = lower (caseK) ;
53 m = length (w) ; % Number of interpolation points
54 corIter = 0 ; % Number of corrector iterations
55
56 maxErrorPath = 1e−2; % Maximum interpolation error along the path
57
58 %% Compute number of iterations
59 i = 0 ;
60 t = 0 ;
61 while (t < 1)
62 i = i + 1 ;
63
64 %% Update arclength (t)
65 dt = dt0+t∗(dt1−dt0) ; % Steplength (\alpha)
66
67 if (t + dt > 1)
68 t = 1 ; % Arclength (t)
69 else
70 t = t+dt ;
71 end
72 end
73 iter = i ;
74
75 %% Initialization
76 [b , a , c0 , c1 , dC] = initialize (w , caseK) ; % Initial approximation
77
78 % Set size of historical data
79 interpolationError = zeros (1 , iter+1) ; % Interpolation error (e1(t))

Julián Uribe Jaramillo Master of Science Thesis

C-2 Focusing Solver 79

80 modulusError = zeros (1 , iter+1) ; % Modulus error (e2(t))
81 bH = zeros (m , iter+1) ; % Historical numerator coefficients (b(z,t))
82 aH = zeros (m , iter+1) ; % Historical denominator coefficients (a(z,t))
83
84 %% Compute historical data for initial approximation
85 [interpolationError (1) , modulusError (1)] = errors (b , a , w , 1 , caseK) ;
86 bH (: , 1) = b ;
87 aH (: , 1) = a ;
88
89 %% Iterate until end of arclength (t=1)
90 i = 1 ;
91 t = 0 ;
92 ct = c0 ;
93 while (t < 1)
94 i = i+1;
95 % t
96 %% Update the trajectory and find the local interpolation values
97 [t , dt] = updateArclength (t , dt0 , dt1) ;
98
99 %% Predictor

100 [b , a] = predictor (b , a , ct , dC , dt , caseK) ;
101 ct = updatePath (c0 , c1 , t) ;
102
103 %% Corrector
104 [b , a] = corrector (b , a , ct , maxErrorPath , caseK) ;
105
106 %% Save historical data
107 [interpolationError (i) , modulusError (i)] = errors (b , a , w , 1 , caseK) ;
108 bH (: , i) = b ;
109 aH (: , i) = a ;
110 end
111
112 %% Organize outputs
113 b = b (:) ;
114 a = a (:) ;
115 historicalData . iter = iter ;
116 historicalData . corIter = corIter ;
117 historicalData . interpolationError = interpolationError ;
118 historicalData . modulusError = modulusError ;
119 historicalData . b = bH ;
120 historicalData . a = aH ;
121
122 %% Subfuctions
123 function [b , a , c0 , c1 , dC] = initialize (w , caseK)
124 %INITIALIZE Finds the initial polynomials
125
126 switch (caseK)
127 case ’focusing’
128 k = 1 ;
129 case ’defocusing’
130 k = −1;
131 end
132

Master of Science Thesis Julián Uribe Jaramillo

80 Matlab code

133 A = 1 . / (sqrt(1+k∗abs (w) . ^2)) ;
134 a = ifft (A) ;
135
136 b = a2b (a , ’interpolation’ , w) ;
137
138 cc = xcorr (a)+k∗xcorr (b) ;
139
140 c0 = spec (cc) ;
141 c0 = conj (flipud (c0 (:))) ;
142
143 c1 = round (c0) ;
144 dC = c1−c0 ;
145
146 end
147
148 function [t , dt] = updateArclength (t , dt0 , dt1)
149 % UPDATEARCLENGTH Updates the arclength t
150
151 %% Update the steplength
152 dt = dt0+t∗(dt1−dt0) ; % Steplength (\alpha)
153
154 %% Update the arclength and keep it in range [0, 1]
155 if (t + dt > 1)
156 t = 1 ; % Arclength (t)
157 else
158 t = t+dt ;
159 end
160 end
161
162 function ct = updatePath (c0 , c1 , t)
163 % UPDATEPATH Computes the local interpolation values in the path
164
165 %% Update path
166 ct = c0+t∗(c1−c0) ; % Local interpolation values (w(t))
167
168 end
169
170 function [b , a] = predictor (b , a , ct , dC , dt , caseK)
171 % PREDICTOR Approximates the next solution
172
173 switch (caseK)
174 case ’focusing’
175 k = 1 ;
176 otherwise
177 k = −1;
178 end
179
180 A = fft (a) ;
181 B = fft (b) ;
182 C = fft (ct) ;
183 DC = fft (dC) ;
184
185 dA = (conj (C) .∗ DC) . / (conj (A) + k∗conj (B) .∗ w) ;

Julián Uribe Jaramillo Master of Science Thesis

C-2 Focusing Solver 81

186 A = A + dt∗dA ;
187
188 a = ifft (A) ;
189
190 b = a2b (a , ’interpolation’ , w) ;
191
192 end
193
194 function [b , a] = corrector (b , a , ct , maxError , caseK)
195 % CORRECTOR Finds polynomials in the path close to the current
196 % solution
197 switch (caseK)
198 case ’focusing’
199 k = 1 ;
200 otherwise
201 k = −1;
202 end
203
204 cc0Local = xcorr (a) + k∗xcorr (b) ;
205 c0Local = spec (cc0Local) ;
206 c0Local = conj (flipud (c0Local (:))) ;
207
208 c1Local = ct ;
209
210 dCLocal = c1Local − c0Local ;
211
212 A = fft (a) ;
213 B = fft (b) ;
214 C = fft (c0Local) ;
215 DCLocal = fft (dCLocal) ;
216
217 err = norm (DCLocal) ;
218 for K = 1:1000
219 corIter = corIter + 1 ;
220 aOld = a ;
221 bOld = b ;
222
223 dA = (conj (C) .∗ DCLocal) . / (conj (A) + conj (B) .∗ w) ;
224 A = A + dA ;
225
226 a = ifft (A) ;
227 b = a2b (a , ’interpolation’ , w) ;
228
229 cc0Local = xcorr (a) + k∗xcorr (b) ;
230 c0Local = spec (cc0Local) ;
231 c0Local = conj (flipud (c0Local (:))) ;
232
233 c1Local = ct ;
234
235 dCLocal = c1Local − c0Local ;
236
237 A = fft (a) ;
238 B = fft (b) ;

Master of Science Thesis Julián Uribe Jaramillo

82 Matlab code

239 C = fft (c0Local) ;
240 DCLocal = fft (dCLocal) ;
241
242 % Exit corrector if error improves less than machine

precision
243 if (norm (DCLocal) − err > eps)
244 a = aOld ;
245 b = bOld ;
246 break ;
247 else
248 err = norm (DCLocal) ;
249 end
250 end
251 end
252 end

1 function b = a2b (a , method , w)
2 % a2b Computes the numerator of a rational polynomial function.
3 %
4 % Synopsis
5 % b = a2b(a, method , w)
6 %
7 % Description
8 % a2b computes the numerator b from the denominator a of a rational
9 % polynomial function. The polynomials satisfy either the modulus

10 % condition |a(z)|^2-|b(z)|^2=1 for all |z|=1; or the interpolation
11 % condition b(z_k)/a(z_k) = w_k.
12 %
13 % Inputs ([] are optional)
14 % (vector) a [m 1] vector representing the coefficients of the
15 % denominator of a rational polynomial function ,
16 % a = [a0, ..., an]^T -> a0 + a1*z^(-1) + ... an*z^(-n)
17 % (string) [method] string indicating the condition the function
18 % satisfies , can be:
19 % - ’Modulus ’: the polynomials satisfy
20 % |a(z)|^2-|b(z)|^2=1 for all |z|=1.
21 % - ’Interpolation ’: the polynomials satisfy
22 % b(z)/a(z) = w, where z are m points in the unit
23 % circle and w are given interpolation values.
24 % (vector) [w] [m 1] vector representing the values the function
25 % should take at m points on the unit circle.
26 %
27 % Outputs
28 % (vector) b [m 1] vector representing the coefficients of the

numerator
29 % of a rational polynomial function ,
30 % b = [b0, ..., bn]^T -> b0 + b1*z^(-1) + ... bn*z^(-n)
31 %
32 % Examples
33 % b = a2b([1 0.3].’, ’Interpolation ’, [0.4 0.3].’)
34 %
35 % Author
36 % Julian Uribe Jaramillo

Julián Uribe Jaramillo Master of Science Thesis

C-2 Focusing Solver 83

37
38 a = a (:) ;
39
40 method = lower (method) ;
41 m = length (a) ;
42
43 if (nargin < 2)
44 method = ’modulus’ ; % Default
45 end
46
47 switch (method)
48 case ’defocusing’
49 aa = xcorr (a) ;
50
51 bb = aa ;
52 bb (m) = bb (m) − 1 ;
53
54 b = spec (bb) ;
55 b = b (:) ;
56
57 case ’focusing’
58 aa = xcorr (a) ;
59
60 bb = −aa ;
61 bb (m) = 1 − bb (m) ;
62
63 b = spec (bb) ;
64 b = b (:) ;
65
66 case ’interpolation’
67 if (nargin < 3)
68 error (’Interpolation values missing’)
69 else
70 A = fft (a) ;
71 B = w .∗ A ;
72 b = ifft (B) ;
73 end
74
75 otherwise
76 error (’Method should be "Modulus" or "Interpolation"’)
77 end
78 end

1 function [interpolationError , modulusError] = errors (b , a , w , c , caseK)
2 % ERRORS Compute the interpolation and modulus errors.
3 %
4 % Synopsis
5 % [interpolationError , modulusError] = errors(b, a, w)
6 %
7 % Description
8 % errors compute the normalized L2 norm of the interpolation error
9 % w-b(z)/a(z) for m distinct equidistant nodes in the unit circle z,

and

Master of Science Thesis Julián Uribe Jaramillo

84 Matlab code

10 % the L2 norm of th modulus condition error |a(x)|^2-|b(x)|^2-1 for 2m
-1

11 % distinct equidistant nodes in the unit circle x.
12 %
13 % Inputs ([] are optional)
14 % (vector) b: [m 1] vector representing the coefficients of the

numerator
15 % of a rational polynomial function of order n = m-1,
16 % b = [b0, ..., bn]^T -> b0 + b1*z^(-1) + ... + bn*z^(n).
17 % (vector) a: [m 1] vector representing the coefficients of the
18 % denominator of a rational function of order n = m-1,
19 % a = [a0, ..., an]^T -> a0 + a1*z^(-1) + ... an*z^(-n).
20 % (vector) [w]: [m 1] vector of interpolation values the function

should
21 % take at m distinct equidistant nodes on the unit circle

.
22 % (string) [caseK]: string indicating the condition the function
23 % satisfies , can be:
24 % - ’Defocusing ’: default case. k = -1 for the modulus

condition
25 % error.
26 % - ’Focusing ’: k = 1 for the modulus condition error.
27 %
28 % Outputs
29 % (scalar) inteporlationError: normalized L2 norm of interpolation

error ,
30 % || w - b(z)/a(z) || / || w ||.
31 % (scalar) modulusError: L2 norm of mudulus condition error ,
32 % || |a(z)|^2 + k|b(z)|^2 - 1 ||.
33 %
34 % Examples
35 % [interpError , modError] = errors([1 0.3], [1 0.4], [0.4 0.3])
36 %
37 % Author
38 % Julian Uribe Jaramillo
39
40 %% Organize inputs and set parameters
41 m = length (b) ; % Number of interpolation points
42
43 if (nargin < 5)
44 caseK = ’defocusing’ ; % Default
45 end
46
47 if (nargin < 4)
48 caseK = ’defocusing’ ; % Default
49 c = 1 ;
50 end
51
52 c = c (:) ;
53 b = b (:) ;
54 a = a (:) ;
55 w = w (:) ;
56 caseK = lower (caseK) ;

Julián Uribe Jaramillo Master of Science Thesis

C-3 Spectral Factorization 85

57
58 switch (caseK)
59 case ’focusing’
60 k = 1 ;
61
62 case ’defocusing’
63 k = −1;
64
65 otherwise
66 error (’caseK should be "Defocusing" or "Focusing"’)
67 end
68
69 %% Compute point -value representations
70 B = fft (b) ;
71 A = fft (a) ;
72
73 %% Compute oversampled point -value representations
74 B2m = fft (b , 2∗m−1) ;
75 A2m = fft (a , 2∗m−1) ;
76 C2m = fft (c , 2∗m−1) ;
77 C2m = C2m (:) ;
78
79 %% Compute errors
80 interpolationError = norm (w−B . / A) /norm (w) ;
81 modulusError = norm (abs (A2m) .^2+k∗abs (B2m) .^2−abs (C2m) . ^2) ;
82
83 end

C-3 Spectral Factorization

1 N = 1 : 1 2 ;
2 N = 2.^N−1;
3 nN = length (N) ;
4
5 m = 100 ;
6
7 for iN = 1 : nN
8 n = N (iN) ;
9

10 f0 = [(1 / 2) ∗ones (1 , n) 1] ;
11 f0 = f0 (:) ;
12 u0 = [2 ones (1 , n)] ;
13 u0 = u0 (:) ;
14
15 pp = conv (f0 , u0) ;
16
17 pp = pp (:) ;
18
19 s = wienerHopf (pp , m) ;
20
21 errWH (iN) = norm (s−f0) ;
22

Master of Science Thesis Julián Uribe Jaramillo

86 Matlab code

23 s = wilsonBurg (pp , m , f0) ;
24
25 errWB (iN) = norm (s−f0) ;
26
27 end

1 function s = wienerHopf (pp , m)
2 % WIENERHOPF Polynomial spectral factorization by Wiener -Hopf algorithm.
3 %
4 % Synopsis
5 % s = wienerHopf(pp, m)
6 %
7 % Description
8 % wilsonBurg computes the spectral factorization s of a Laurent
9 % polynomial pp.

10 %
11 % Inputs ([] are optional)
12 % (vector) pp: [2n-1 1] vector of coefficients of the Laurent

polynomial
13 % pp(z) = pp(1)*z^(-n)+...+pp(2*n+1)*z^n.
14 % (scalar) [m]: maximum number of iterations.
15 %
16 % Outputs
17 % (vector) s: [n 1] vector of coefficients of a polynomial
18 % s(z) = s(1)z^(-n)+...+s(n), with all the roots of s(z) >

1
19 % and pp(z) = s(z)*conj(s(z)).
20 %
21 % Examples
22 % s = wienerHopf([1 2.5 1], 100)
23 %
24 % Author
25 % Julian Uribe Jaramillo
26
27 pp = pp (:) ;
28
29 n = length (pp) ;
30
31 if isempty (m)
32 m = 32∗n ;
33 end
34
35 nP = floor ((n−1)/2) ;
36 nM = ceil ((n−1)/2) ;
37
38 pp0 = pp (1 : nP) ;
39 pp1 = pp ((nP+1) : end) ;
40
41 Tb = toeplitz (pp0 , [pp0 (1) zeros (1 , nP−1)]) ;
42 Ta = toeplitz (pp1 (1 : nP) , [pp1 (1) ; pp0 (end :−1:end−nP+2)]) ;
43
44 x = inv (Ta) ;
45 x = x (: , 1) ;

Julián Uribe Jaramillo Master of Science Thesis

C-3 Spectral Factorization 87

46
47 f = Tb∗x ;
48
49 for i = 1 : m
50 s = [f ; 1] ;
51
52 ss = xcorr (s) ;
53 s0 = pp (nM+1)/ss (nM+1) ;
54
55 s = sqrt (s0) ∗s ;
56 s = s (:) ;
57
58 F0 = toeplitz (f , [f (1) zeros (1 , nM)]) ;
59
60 F1 = toeplitz ([1 ; zeros (nM , 1)] , [1 fliplr (f . ’) zeros (1 , nM−nP)]) ;
61
62 u = F1\pp1 ;
63
64 e = pp0 − F0∗u ;
65
66 G0 = F0 (: , 1 : (nM−nP+1)) ;
67 G1 = F1 (1 : (nM−nP+1) , 1 : (nM−nP+1)) ;
68
69 u0 = u (1 : nP) ;
70 u1 = u (nP+1:end) ;
71
72 q = G1\u1 ;
73 r = u0 − G0∗q ;
74
75 de = zeros (length (r)) ;
76 de (: , 1) = r ;
77 for j = 1 : (nP−1)
78 v = de (: , j) ;
79 de (: , j+1) = [0 ; v (1 : end−1)] − v (end) ∗f ;
80 end
81 de = −de ;
82
83 fOld = f ;
84 f = f−de\e ;
85
86 if (norm (f−fOld) < eps)
87 f = fOld ;
88 break ;
89 end
90 end
91
92 s = [f ; 1] ;
93
94 % Uncomment to multiply polynomial by constant gain
95 % ss = xcorr(s);
96 % s0 = pp(nM+1)/ss(nM+1);
97 %
98 % s = sqrt(s0)*s;

Master of Science Thesis Julián Uribe Jaramillo

88 Matlab code

99 % s = s(:);
100
101 end

1 function s = wilsonBurg (pp , m)
2 % WILSONBURG Polynomial spectral factorization by Wilson -Burg algorithm.
3 %
4 % Synopsis
5 % s = wilsonBurg(pp, m)
6 %
7 % Description
8 % wilsonBurg computes the spectral factorization s of a Laurent
9 % polynomial pp.

10 %
11 % Inputs ([] are optional)
12 % (vector) pp: [2n-1 1] vector of coefficients of the Laurent

polynomial
13 % pp(z) = pp(1)*z^(-n)+...+pp(2*n+1)*z^n.
14 % (scalar) [m]: maximum number of iterations.
15 %
16 % Outputs
17 % (vector) s: [n 1] vector of coefficients of a polynomial
18 % s(z) = s(1)z^(-n)+...+s(n), with all the roots of s(z) >

1
19 % and pp(z) = s(z)*conj(s(z)).
20 %
21 % Examples
22 % s = wilsonBurg([1 2.5 1], 100)
23 %
24 % Author
25 % Julian Uribe Jaramillo
26
27 pp = pp (:) ;
28
29 n = length (pp) ;
30
31 if isempty (m)
32 m = 32∗n ;
33 end
34
35 n = ceil (length (pp) /2) ;
36
37 % Initialize polynomials
38 y = zeros (n , 1) ;
39 y (1) = 1 ;
40
41 s = zeros (n , 1) ;
42 s (1) = 1 ;
43
44 for i = 1 : m
45 % Generate convolution and deconvolution matrix
46 convMatrix = toeplitz (s , [s (1) zeros (1 , n−1)]) ;
47

Julián Uribe Jaramillo Master of Science Thesis

C-3 Spectral Factorization 89

48 % Generate convolution and deconvolution matrix
49 deconvMatrix = toeplitz ([s ; zeros (n−1, 1)] , [s (1) zeros (1 , 2∗n−2)]) ;
50
51 % Compute yy(z) = ss(z)/a(z) by forward deconvolution
52 yy = deconvMatrix\pp ;
53
54 % Compute yy(z) = ss(z)/(a*(1/z)a(z)) by adjoint deconvolution
55 yy = deconvMatrix ’ \ yy ;
56
57 % Compute y(z) = 1+yy(z), remove negative lags, and keep half zero

lag
58 y (2 : n) = (yy (n+1:end)+conj (yy (n−1:−1:1))) /(2∗yy (n)) ;
59
60 % Compute a(z) = y(z)*a(z);
61 sOld = s ;
62 s = convMatrix∗y ;
63
64 if (norm (s − sOld) < eps)
65 break ;
66 end
67
68 end
69
70 % Uncomment to multiply polynomial by constant gain
71 % s = sqrt(yy(n))*s;
72 % s = conj(flipud(s));
73
74 end

Master of Science Thesis Julián Uribe Jaramillo

90 Matlab code

Julián Uribe Jaramillo Master of Science Thesis

Bibliography

[1] E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer,
K. Roberts, J. K. Fischer, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers,
S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,”
Journal of optics, vol. 18, no. 6, p. 063 002, 2016.

[2] A. Splett, C. Kurtzke, and K. Petermann, “Ultimate transmission capacity of amplified
optical fiber communication systems taking into account fiber nonlinearities,” vol. 2,
1993, pp. 41–44.

[3] M. J. Ablowitz and A. D. Trubatch, “Integrable nonlinear Schrödinger systems and their
soliton dynamics,” Dynamics of Partial Differential Equations, vol. 1, no. 3, pp. 239–
299, 2004.

[4] M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Sugar, “The inverse scattering
transform-Fourier analysis for nonlinear problems,” Studies in Applied Mathematics,
vol. 53, no. 4, pp. 249–315, 1974.

[5] T. Trogdon and S. Olver, “Numerical inverse scattering for the focusing and defocusing
nonlinear Schrödinger equations,” 2149, vol. 469, 2013, p. 20 120 330.

[6] D. Lavery, R. Maher, D. S. Millar, B. C. Thomsen, P. Bayvel, and S. J. Savory, “Dig-
ital coherent receivers for long-reach optical access networks,” Journal of Lightwave
Technology, vol. 31, no. 4, pp. 609–620, 2013.

[7] S. Wahls and V. Vaibhav, “Fast inverse nonlinear Fourier transforms for continuous
spectra of Zakharov-Shabat type,” ArXiv e-prints, 2016. arXiv: 1607.01305. [Online].
Available: http://adsabs.harvard.edu/abs/2016arXiv160701305W.

[8] S. Wahls and H. V. Poor, “Inverse nonlinear Fourier transform via interpolation: The
Ablowitz-Ladik case,” 2014, pp. 1848–1855.

[9] M. J. Ablowitz and J. F. Ladik, “Nonlinear differential-difference equations and Fourier
analysis,” Journal of Mathematical Physics, vol. 17, no. 6, pp. 1011–1018, 1976.

[10] C. I. Byrnes, T. T. Georgiou, and A. Lindquist, “A generalized entropy criterion for
Nevanlinna-Pick interpolation with degree constraint,” IEEE Transactions on Auto-
matic Control, vol. 46, no. 6, pp. 822–839, 2001.

Master of Science Thesis Julián Uribe Jaramillo

http://arxiv.org/abs/1607.01305
http://adsabs.harvard.edu/abs/2016arXiv160701305W

92 BIBLIOGRAPHY

[11] L. Baratchart, M. Olivi, and F. Seyfert, “Boundary Nevanlinna-Pick interpolation with
prescribed peak points. application to impedance matching,” HAL e-prints, 2016. hal:
01377782. [Online]. Available: https://hal.inria.fr/hal-01377782.

[12] R. Nagamune, “A robust solver using a continuation method for Nevanlinna-Pick in-
terpolation with degree constraint,” IEEE Transactions on Automatic Control, vol. 48,
no. 1, pp. 113–117, 2003.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms.
MIT Press, 2009.

[14] S. G. Krantz, Handbook of complex variables. Birkhauser, 1999.
[15] A. Tannenbaum, “Feedback stabilization of linear dynamical plants with uncertain in

the gain factor,” International Journal of Control, vol. 32, no. 1, pp. 1–16, 1980.
[16] ——, “Modified Nevanlinna-Pick interpolation and feedback stabilization of linear plants

with uncertainty in the gain factor,” International Journal of Control, vol. 36, no. 2,
pp. 331–336, 1982.

[17] J. A. Ball and S. T. Host, “Robust control, multidimensional systems and multivari-
able Nevanlinna-Pick interpolation,” ArXiv e-prints, 2009. arXiv: 0906.3363. [Online].
Available: http://adsabs.harvard.edu/abs/2009arXiv0906.3363B.

[18] P. Delsarte, Y. Genin, and Y. Kamp, “On the role of the Nevanlinna-Pick problem in
circuit and system theory,” Circuit Theory and Applications, vol. 9, no. 2, pp. 177–187,
1981.

[19] C. I. Byrnes, T. T. Georgiou, and A. Lindquist, “A new approach to spectral estimation:
A tunable high-resolution spectral estimator,” IEEE Transactions on Signal Processing,
vol. 48, no. 11, pp. 3189–3205, 2000.

[20] J. Karlsson, “Inverse problems in analytic interpolation for robust control and spectral
estimation,” PhD thesis, Royal institute of technology (KTH), 2008.

[21] J. Doyle, B. Francis, and A. Tannenbaum, Feedback control theory. Macmillan Publish-
ers, 1990.

[22] R. Nevanlinna, “Über beschränkte analytische funktionen,” Annales Academiae Scien-
tiarum Fennicae Series A 32, 1929.

[23] G. Pick, “Über die beschränkungen analytischer funktionen, welche durch vorgegebene
funktionswerte bewirkt werden,” Mathematische Annalen, vol. 77, no. 1, pp. 7–23, 1915.

[24] R. Nagamune, “Robust control with complexity constraint: A nevanlinna-pick interpo-
lation approach,” PhD thesis, Royal institute of technology (KTH), 2002.

[25] S. T. Le, J. E. Prilepsky, P. Rosa, J. D. Ania-Castañón, and S. K. Turitsyn, “Nonlinear
inverse synthesis for optical links with distributed raman amplification,” Journal of
Lightwave Technology, vol. 34, no. 8, pp. 1778–1786, 2016.

[26] Karigiannis, “The inverse scattering transform and the integrability of nonlinear evolu-
tion equations,” Master’s thesis, Harvard University, 1998.

[27] S. T. Le, J. E. Prilepsky, and S. K. Turitsyn, “Nonlinear inverse synthesis technique for
optical links with lumped amplification,” Optics Express, vol. 23, no. 7, pp. 8317–8328,
2015.

Julián Uribe Jaramillo Master of Science Thesis

01377782
https://hal.inria.fr/hal-01377782
http://arxiv.org/abs/0906.3363
http://adsabs.harvard.edu/abs/2009arXiv0906.3363B

BIBLIOGRAPHY 93

[28] E. L. Allgower and K. Georg, Introduction to numerical continuation methods. Society
for Industrial and Applied Mathematics, 2003.

[29] B. Dumitrescu, Positive trigonometric polynomials and signal processing applications.
Springer, 2007.

[30] R. Seydel, Practical bifurcation and stability analysis. Springer, 2010.
[31] S. Ponnusamy and H. Silverman, Complex variables with applications. Birkhäuser, 2006.
[32] O. V. Belai, L. L. Frumin, E. V. Podivilov, and D. A. Shapiro, “Efficient numerical

method of the fiber bragg grating synthesis,” Journal of the Optical Society of America
B, vol. 24, no. 7, pp. 1451–1457, 2007.

[33] H. Boche and V. Pohl, “Spectral factorization, whitening- and estimation filter – sta-
bility, smoothness properties and fir approximation behavior,” ArXiv e-prints, 2005.
arXiv: cs/05080183. [Online]. Available: https://arxiv.org/abs/cs/0508018v1.

[34] M. Verhaegen and V. Verdult, Filtering and System Identification. Cambridge Univer-
sity Press, 2007.

[35] S. Fomel, P. Sava, J. Rickett, and J. F. Claerbout, “The Wilson-Burg method of spec-
tral factorization with application to helical filtering,” Geophysical Prospecting, vol. 51,
pp. 409–420, 2003.

[36] A. Böttcher and M. Halwass, “Wiener–Hopf and spectral factorization of real polynomi-
als by Newton’s method,” Linear Algebra and its Applications, vol. 438, pp. 4760–4805,
2013.

[37] A. H. Sayed and T. Kailath, “A survey of spectral factorization methods,” Numerical
Linear Algebra with Applications, vol. 8, pp. 177–187, 2001.

Master of Science Thesis Julián Uribe Jaramillo

http://arxiv.org/abs/cs/05080183
https://arxiv.org/abs/cs/0508018v1

94 BIBLIOGRAPHY

Julián Uribe Jaramillo Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables

	Main Matter
	Introduction
	Background
	Complex polynomials
	Analytic Interpolation
	Nevanlinna-Pick Interpolation with Degree Constraint

	The Fast Non-linear Fourier Transform
	The Non-linear Schrödinger Equation
	The Forward Discrete-time Non-linear Fourier Transform
	Spatial Evolution
	The Fast Inverse Non-linear Fourier Transform

	Synthesis as an Analytic Interpolation Problem
	Solvers
	The Defocusing Case
	Explicit Approximations
	Defocusing Iterative Solver

	The Focusing Case
	Explicit Approximations
	Iterative Focusing Solver

	Discussion and Proof of Convergence
	Algorithms
	Results and Discussion
	Test Functions for Performance Analysis
	Defocusing Test Function: Hyperbolic Secant
	Focusing Test Function: Eight Raised Cosines

	Performance Metrics
	The Defocusing Case
	Comparison of Explicit Approximations
	Comparison of Continuation Trajectories
	Performance
	Comparison to Conventional Solvers

	The Focusing Case
	Comparison of Closed-Form Approximations
	Comparison to Conventional Solvers

	Conclusions and Future Work
	Conclusions
	Future Work
	Improvements to Explicit Approximations
	Improvements to the Iterative Solvers
	Extending the Solvers to Other Applications
	Interaction with the non-linear Fourier transform

	Appendices
	Comparison of spectral factorization algorithms
	Spectral factorization algorithms
	Kolmogorov
	Bauer
	Wilson-Burg
	Wiener-Hopf

	Numerical Comparison
	Two Bad Polynomials
	Spectral Factorization for Synthesis

	Mathematical Proofs
	Proof that the Magnitude Condition is Finite-Dimensional
	Matlab code
	Defocusing Solver
	Focusing Solver
	Spectral Factorization
	Back Matter

