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Abstract

A Weak-Scatterer theoty for the calculation of motion responses of a ship traveling
with a mean velocity in a heavy sea state is developed. In contrast to the classi-
cal linear theory, the amplitude of the incoming wave and the body motion is not
restricted, while the ship-generated disturbances are assumed to be comparatively

small. A boundary-integral formulation, based on the Rankine source Green func- - -

tion, is studied with focus on the treatment of large ambient waves and ship motions.
A nonlinear equation of rigid body motion is derived.

A Rankine panel method, which has been developed for the frequency- and time-
domain solution of three-dimensional ship flows, is improved and implemented for the
study of nonlinear seakeeping problems. The enforcement of the exact body bound-
ary conditions and the evaluation of the partial time-derivatives in the free surface
conditions are examined. The free surface conditions are integrated with an Emplicit .
(Explicit-Implicit) Eulér scheme and the nonlinear equation of motion is solved by
a fourth-order predictor-corrector method. Founded upon a solid understanding of

"the numerical error propagation and stability properties, the numerical method has
proven to be convergent, stable and accurate. Schemes necessary to make the method
more efficient are also discussed.

Numerical computations of ship motions are performed for a variety of ships: a
Series60 hull for method validation, two conventional containerships for practical ap-
plications. The numerical solutions offer a clear improvement over the linear theory
and a quasi-nonlinear method, and are found to'agree well with experiment measure- ..
ments. The nonlinearities associated with steep ambient waves and ship hydrostatics
are shown to be important in accurate predictions of ship motion responses.
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Chapter 1

Introduction

1.1 Background

The iltimate criterion for a successful silip hull design is how economically and safely
the ship travels in an unpredictable, sometimes hostile, ocean environment 'since any
accident could mean a disaster for life, property and the environment. In practise,
however, the design process for ships still relies primarily on semi-empirical rules and
the designer’s experience. ’T'hese empirical designs do not always produce the most
efficient ships: Furthermore, a semi-empirical approach would fail for a new ship
concept since thereis not much design experience available for such a ship. Therefore,

a good naval architect should have a thorough understanding of ship motion responses.

Froude {14] and Krylov [31] were the first few scientists who studied hydrodynamic
aspects of ship motions. But the equation of motion they derived conéisted of only
mass, linearized restoring forces, and the Froude-Krylov excitation force. This exci-
tation force was obtained by igtegra.ti_ng just the incident wave pressure over the still-
water submerged ship surface. They did not or could not analyze the hydrodynamic
disturbances associated with the presence of the ship hull because the theoretical |
understanding and cémputa.tiona] capabilities available today did not exist at that
time. A century later with increasingly powerful computers and sophisticated linear

theory of ship motions (cf. Cummins (7], Wehausen [72], Ogilvie (53] and Newman
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[51]), this thesis approaches the complete nonlinear problem of ship motions in steep

ambient waves.

The complete problem of ship motions is fully nonlinear and strong nonlinearities

exist in almost every phase of the problem.

o Free Surface Nonlinearities

1. The free surface conditions are strongly nonlinear containing combination
of nonlinear terms of unknown quantities and are applied on an unknown

surface, which itself is a part of the solution.

2. There may be nonlinear interactions among different wave frequency com-
ponents in the form of energy inter-exchanges, that might result in the
amplification of the amplitude of existing waves and/or the creation of

new wave components.

3. Nonlinear free surface dynamics sometimes corrects an unphysical behavior
predicted by linear solutions. For instance, at the critical frequency 7., = ‘i,
linear theory predicts that there would be energy concentration near the

ship with disturbance waves possibly of infinite amplitude.
¢ Body Nonlinearities

1. Inhomogeneous body boundary conditions imposed upon an unknown body
surface introduce important nonlinear effects such as the interactions be-
tween the steady and unsteady wave flows. The leading order effects are

approximated in linear theory in the form of the so-called m-term.

2. Non-slender body shapes often induce non-negligible ship-generated dis-
turbances. Oil tankers are the obvious examples that have large ratio of
beam over length, which may cause large disturbances and sometimes flow

separations.

3. Abrupt geometric changes near the calm waterline such as prominently

flared bow and overhanging counter-top stern as shown in Figure 1-1 add

13




nonlinear effects that may not be adequately accounted for by linear theory.

Geometric Nonlinearity

||E<

Counter Stern

LN AN

(9]

Flared Bow

Figure 1-1: Counter Stern and Flared Bow Ship-

¢ Other Nonlinearities
1. Bernoulli’s equation used for calculating the hydrodynamic pressure con-
tains quadratic terms of the gradients of the velocity potential.

2. A ship traveling at speed of above 50 knots has long been the dream
of naval architects and its study has been proposed around the industry

14




recently. Designing such a fast vessel requires sufficient understanding of

the nonlinearities associated with high speed, slamming in particular.

3. The effect of viscosity on most water wave flows is negligible compared
to that of the fluid inertia and gravity, and is therefore neglected in most
hydrodynamics studies. But viscous damping could be very important in

certain cases such as roll motions, especially at resonance in beam seas.

4. Shallow water makes surface waves non-dispersive and consequently causes
a steep wave to steepen as it moves closer to sea shore. This introduces

strong nonlinearities.

Summarizing the above, it is concluded that nonlinearities are essential in studies and
designs of modern ships which often travel in heavy sea states and possess variety of |

geometric protrusions which cause linear theory to fail.

In occasions when a slender ship travels in a mild sea-state, linearization is

nonetheless justifiable and linear theory produces reasonably accurate and practical

predictions for ship motion responses, for example: the strip theory work by Korvin-

Kroukovsky & Jacobs [26], Salvesen, Tuck & Faltinsen [59] and the linear numerical
methods by Liapis [33], King; Beck & Magee [24], Bingham, Korsmeyer, Newman &
Osborne [4], Sclavounos, Nakos & Huang [63].

In the following sections, the history of linear theory will be briefly reviewed along
with the development of nonlinear ship wave theory. And finally, the structure of this

thesis is outlined.

1.1.1 Linear Theory

The study of the linear theory of ship motion is founded upon the brilliant hypothesis
of St. Denis and Pierson [11], namely the principle of superposition. They postulate
that, at least for a long crested sea, the ship response to a random sea state may
be represented by the summation of the ship response to each individual component

wave. This theory allows us to reduce the stochastic ship motion problem in an

15




irregular sea to the deterministic ship motion problem in regular waves and thus

greatly simplifies the problem.

Not satisfied with the simplistic approach of Froude [14] and Krylov [31], Michell
[40] took the first significant step towards an account for the hydrodynamic distur-
bance due to a steadily translating vessel in his steady-state wave resistance theory.

He drew his ihspiration from thin-wing aerodynamics and developed a thin ship

~ theory, where the ship is assumed to have vanishingly small beam compared to the

ship length, draft, and ambient wavelength (B < L,D,}). Peters and Stoker [57]
extended this theory to include unsteady motions only to find non-resonant behavior
of ship responses. Newman [47] adopted a more systematic perturbation scheme,
which was able to reconcile the unphysical motion response predicted by Peters and

Stoker’s thin ship theory.

A typical ship or an aircraft is usually elongated with a beam and draft of the
same order of magnitude and of one order smaller than the ship length (B, D < L).

With the same geometric characteristics, both sh.lp a.nd alrcra.ft may be considered

slender bodies. It is possible to simplify the problem further by ta,kmg advantage of

Assuming short waves (A < L), Lewis in 1929 [32] derived a strip theory to in-
tegrate the hydxodyﬁ_@mic forces longitudinally in terms of the two-diménsional quan-
tities of each transverse section. This is another way to include the ship-generated
disturbances that Froude and. Krylov had neglected. Kovin-Kroukovsky and Jacobs
[26] used numerical schemes to carry out the Lewis’ integration and studied the ship
motions for realistic shipé A systematic analysis of strip theory was cartied out by
Ogjlwe and Tuack [54] and a rational approximation provided for the effects of the
ship’s forward speed.

Inspired by the development of the slender body théory in aerodynamics, Utsell

[69], Newman & Tuck [48] and Maruo [37] studied the unsteady seakeeping problems




based on the assumption of long waves (A < L).

In order to bridge the gap between the short wave approximation (strip theory)
and long wave approximation (slender body theory), Newman [50] and Sclavounos
[60] developed a unified theory, which accounts for three dimensionality in a more

consistent manner than pure strip theory and slender-body theory.

Modern computer technology enables simulations of free surface flows around a .

realistic ship hull and greatly improves the accuracy of the predictions of linear ship
motions. With the schemes of finite difference, finite element, and boundary element
as the choices for the numerical algorithm, the boundary element method (panel
method) has been established as a popular approach for free surface wave compu-
tations owing to its efficiency, accuracy and ﬂe:ﬁbility. Potential-flow-based panel
methods are based on Green’s theorem which relates properties of flows within the
domain to domain boundary conditions. The pione.ering work of Hess and Smith 18]
broke the ground of panel methods in the numerical calculation and simulation of
potential flows for bodies of general sha.pés. There are normally two types of ap-
proaches towards the numerical solution of free surface flows. The first one is to
adopt linearized free surface wave Green function as the singularities distributed on
the submerged hull surface and the uniform stream as the basis flow (cf. Liapis [33],
King [23], Beck and Magee (2], Korsmeyer [25] and Bingham [5]). While this method
is elegant in enforcing free surface conditions and radiation conditions (the linearized
free surface conditions are satisfied automatically and there is no need to discretize
the free surface domain), it is computationally expensive and difficult to extend the
scheme to nonlinear solutions, due to the complexity of nonlinear free surface Green
function (cf. Sclavounos [62]). The other approach, the Rankine Panel Method, was
first introduced by Gadd [15] and Dawson {10], who employed the double-body flow
as the basis for linearization, chosen prirﬁa.rily through physical intuition. The free
surface i1s discretized into quadrilatefal panéls and covered by the Rankine sources
and dipoles. This so-called Rankine Panel Method (RPM) provides much flexibility

for different kinds of free surface formulations and naumerical algorithms, and enjoys
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great success in dealing with realistic ship hulls for the solution of both steady and
unsteady wave flows (cf. Nakos [42], Raven [58], Jensen, Bertram and Soding [20],
and Kring [27]). This thesié work is a continuation of tfh'e work by Nakos and Kring,
an endeavor started a decade ago with the objective to simulate free surface flows

around a realistic hill and produce accurate predictions for the steady and unsfea.dy

ship flow characteristics.

1.1.2 Nonlinear Theory

Despite the éuccess linear theory has ha;d,_the' Hnear dynamic-hydrodynamic analysis
is only suitable for the design of geometrically simple ship hulls which sail in mild
seas. If the concerned ships are équi_pped with prominent bow flares and overhang-
ing counter-top sterns moving in a severe sea state with large amplitude of motion,
neg'lecting"-nonlinea,rit'i;s might lead to la.rgc‘ errors, if not grossly wrong predictions.
Numerous authors have studied various nonlinear aspects of the problem with consid-

erable success even though there has not been yet an exact three-dimensional solution.

The theoretical solution of the nonlinear ship motion problem falls, as well, into
two categories: analytical ap‘broach and numerical method. The analytical approach
is mainly based on a systematic expansion of power series in wave gmplitude or other
re‘lativel& small quantities such as the beam/length ratio. The free surface conditions
are grouped in terms of the order of ¢, denoting the small quantity in the expan-
sion. By equating terms with the same order of magnitude on both sides of the
equations, the free sur‘fac;e conditions, that are valid up to that specific order of ¢,
are obtained. The classical linear theory is the first-order a.pproxjma,tioﬁ. Sclavounos
[62] used this approach and derived secopd;Ordef radiation and diffraction free surface
Green functions which are the fundamental quantities in the solution of boundary ele-
ment methods. Kim and Yue (21] [2-2] took the same path and rendered the complete
second-order diffraction. solution of axisymmetric body in monochromatic and bichro-
matic incident waves. For more detailed development on the second-order wave-body

interaction theory prior to these two papers, Ogilvie’s review in 1983 [55] is a good
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reference. This series expansion approach is mainly used in the investigations of the
interactions between waves and zero-speed or slow-_specd. translating bodies because
it is only possible to reduce the complexity of the second-order free surface conditions
that consist of quadratic terms of linear velocity potential and its gradients in the
slow-speed regime, and there are needs for the study of slow drift motion and drift

damping in the offshore industry. In problems with significant forward speed, a di-

rect numerical method seems to be a more promising scheme for both steady wave

resistance and unsteady seakeeping studies.

In their seminal work, Longuet-Higgins and Cokelet [36] carried out two-dimensional,

| fully nonlinear free surface wave simulations by use of the so-called Mixed-Eulerian-

Lagrangian (MEL) method. This tracks the fluid particles on the free surface with the
time evolution and solves an Eulerian boundary value problem for the ﬂpw quantities.
Vinje and Bi'evig' [71] {followed with fhe extension of the method to two-dimensional
wave-body nonlinear interactions. The two-dimensional nonlinear bow flows were
studied in the same spirit by Grosenbaugh and Yeung [17]. With the rapid advance
in computer capabilities and development in numerical algorithms, Xii and Yue [73] -
adopted a similar initial bpunda.ry element method (IBEM) and successfully con-

ducted a three-dimensional, fully overturning, breaking wave simulation. The scherne

~ was further developed to study the nonlinear three-dimensional interaction between

water waves and a surface-piercing body by Xue and Yue [74]. While the Mixed-
Eulerian-Lagrangian ‘method has enjoyed success in the simulations of detailed and
localized flows such as wave overtutning and breaking, it might be prohibitively ex-
pensive in terms of computational cost and difficult to deal with bodiés of general

shapes translating with forward speeds.

The Eulerian Rankine Panel Method however offers an alternative method for the
solution of nonlinear sea.keeping problems. It retains a large degree of computation ef-
ficiency and obtains accurate predictions of global fluid flows and force quantities with
the limitation that it is not able to simulate some extreme events such as slamming

and deck wetness. van Daalen [8] wrote a thesis about the numerical and theoretical
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studies of water waves and floating bodies. The study by Beck, Cao, and Lee [3]

pointed out the importance of working in the time domain for the nonlinear prob-

lems. Maskew [38] has obtained some interesting results in the time-domain nonlinear
simulations for ship motions. Lin and Yue [34] implemented a so-called body-exact
numerical method to simulate free surface flows with large-amplitude body motions.
They used LINEARIZED free surface Green function with the enforcement of the ex-
act body boundary conditions and produced some good results. But their approach

does not account for the nonlinear hydrodynamic effects.

High-order spectral method ha;s also been used by many researchers (cf. Dommer-
muth & Yue [12], Zakharov [75], Fornberg & Whitham [13], and Liu & Yue [35]), for
solving nonlinear free surface wave problems. The spectral method is very efficient
and accﬁrate, but it requires a periodical free surface conditions and relatively simple

geometries. -

Pawlowski [56] proposed a Weak-Scatterer hypothesis to treat the large amplitude

_ ship motions in heavy seas. In the hypothesis, only the ship-génerated disturbances

are assumed to be small and linearizable about the large amplitude SHIP MOTIONS
and INCOMING WAVES. This theory is practicé.l' and useful, because it allows us to
is'olafé and quantify the nonlinearities associated with steep ambient waves and large
bociy motions. The advantage of this approach is that it offers a more exact solution,
but one that is still Simpliﬁed enough to retain some degree of linearity in the free

surface conditions. In view of these, this thesis is going to adopt this hypothesis and

address primarily the nonlinearities associated with large body motions and steep

incoming waves while keeping some linear aspects of the formﬁla.tion, in order to im- _
prove motion response predictions. Even'though it does not include all nonlinearities
mentioned above and is not a fully nonlinear solution of the ship motion problem,
this model captures most significant non]inéarities affecting ship motions. Moreover,
it achieves a good solution with numerical efficiency and control. And also, most
ships are designed to be slender and therefore not to cause large wave disturbances

even for large motions. The computer program derived from this theory will be a
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valuable tool for computational analysis in contemporary conventional ship designs.
Evidently, this Weak-Scatterer hypothesis is violated in the vicinity of the ship wa-

terline where strong spray roots are often seen to form, caused by the ship forward

" motion or slamming. These effects are however not treated in this thesis.

1.2 Overview

The aim of this thesis is to study three-dimensional nonlinear ship waves based on
the Weak-Scatterer hypothesis and produce a numerical method that simulates time
domain nonlinear free surface flows for wide range of ships and predicts the ‘motions
in random sea state. Pract‘ica.l needs are emphasized, but with thorough investigation

of theoretical and numerical aspects of the problem.

Building upon the solid foundation of the lineat free surface flow simulation, and .
numerical error analysis, the solution of nonlinear hydrodynamic problems is sought
in this work, in order to compute the motion amplitude and the external force on
the ship, which is translating with a uniform speed and oscillating in six-degrees-of-
freedom. The sea state, unlike linear theory, is not limited to small incoming wave
amplitude and the ship motion is not necessarily small, as long as the disturbance
waves remain linearizable. This is the essence of the so-called Weak-Scatterer theory.
Under this interpretation of free surface flows, some degree of efficiency and simplicity
are retained, while the nonlinearities associated with steep ambient waves and large -

ship motions are included.

Chapter 2 covers the analytical formulation of the problem, beginning with the
exact (within the potential theory context) formulation for the free surface ship wave
problem. The r/a,tiona.le of the Weak-Scatterer theory is then described and the corre-
sponding approximate formulé.tions for the free surface ship wave problem are stated.
After carefully examinjng the boundary conditions, the boundary integral equation is
formulated along with the expression for the forces acting on the ship. The nonlinear

equation of motion is integrated numerically to obtain the motion responses of the
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ship in a sea state.

Chapter 3 discusses the numerical aspects of the solﬁtion. The comparison of two
different free surface discretizations: rectangular and oval-type, is investigated. Be-
cause of the discretization and truncation of the free surface, wave absorbing beaches
at all edges of the computational domain are implemented and related issues are ex-
amined. A special filtering device is designed to '.ta,ke out the spurious numerical wave
components in order to prevent those waves from polluting the real physical solution.
The temporal integration algorithms for the free surface conditions and the equation

of motion are analyzed. The criteria of stability and accuracy are considered.

Chapter 4 illustrates the results obtained by the aforementioned analytical for-
mulations and nu-rperica.l methods. Forced motion computations are first conducted
to validate the treatment of the body boundary conditions. Then free motion simu-
lations are carried out for three different hulls: a Series60 hull for method validation,
containerships SnowDrift and S7-175 for practical applications. Comparisons with

experimental measurements are shown.

‘Chapter 5 outlines the contributions of this thesis work and future topics of

research.
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Chapter 2

Mathematical Formulation

3 2.1 The Exact Boundary Value Problem

This thesis considers the solution of the problem of a freely‘ﬂoatiﬁg ship advancing

steadily in the presence of ambient waves.

Figure 2-1: Coordinate System
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- Two reference systems will be utilized in this study of ship wave flows, as illus-
trated in Figure 2-1. The Cartesian coordinate system &, = (%o, ¥, z;) is fixed in space
with the positive #,-axis pointing upstream and the positive z,-axis upwards. In this
frame, the ship is translating with a constant speed U, while undergoiné ;.)sc'i]la.tory
motions about its calm water mean position. The other Cartesian coordinate system
£ = (z,¥, z) has the same orientation as Z,, but is fixed on the ship. Hereinafter, the
physical problem will be described primarily in the coordinate system &, and limited

use of the system Z, will be made where appropriate.

The ﬂﬁjd is assumed to be ideal, so that it is inviscid and incompressible, and also
the flow to be irrotational, so that there are no fluid separation and lifting effects. A
total disturbance velocity potential ¥(Z,t) is hence introduced which is harfmlonjc in
the fluid domain. In accordance with the law of conservation of mass, the velocity

potential ¥ is governed by the Laplace equation within the fluid,
V¥ (Z,t) =0, in the fluid domain. (2:.1)

The disturbance flow velocity field V(i:',t) may be expressed as the gradient of the
potential ¥, |
V(&,t) =V¥(Et) = S—i+ -7+ —k
= V.i+V,j+ V. (2.2)
Here 7,7 and k are the unit vectors corresponding to the Ca;rtcs_ia;n coordinate system
Z. V.,V,, and V, are the velocity components in the i,7 and k directions, respectively.

Applying the principle of conservation of momentum, the pressure field p(Z,t)

may be related to the flow kiﬁema.tics. Bernoulli’s equation, takes the form,

ovr 1

where p is the dénsity of the fluid, g is the acceleration of gravity, and p, is the
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atmospheric pressure, which is taken as the reference pressure and assumed to be

equal to zero because any constant would vanish after integration.

On all solid boundaries, the no-flux boundary conditions will be imposed. Without
the fluid viscosity, the no-slip condition is not guaranteed. Thus on the submerged
part of the ship, the normal component of the flow velocity is equal to that of the

ship at the same location,

=3
L=

= V.q . 2.4
Yov (2.4)

>

where the normal vector 7 is defined by convention to point out of the fluid and into

the body, and V is the total ship velocity.

In add.itioﬁ to the body boundaries, there is a free surface boundary. The free
surface is considered as a ‘material’ surface, such that fluid particles, which are. orig-
inally on the free surface, will remain on the surface for all later times. The Eulerian
description of the flow is adopted in this thesis, so no overturning and breaking waves
are allowed to éxist. The total wave elevation 7(z,y,t), which defines the free surface
position, is therefore a single-valued function of the coordinates z, y and time t. With

this, a kinematic boundary condition is imposed on the free surface,
D ' ‘
E[z — (2o, Yo,t)] = 0, on the exact free surface. (2.5)

The dynamic condition on the free surface is that the fluid pressure is equal to the
atmospheric pressure, i.e. zero. Surface tension effects are neglected for the length
scale of interest in this study. By virtue of Bernoulli’s equation (2.3), the condition

-is stated in the form,

v 1
5 + .2_V\I: V¥ +gn=0, . on the exact free surface. (2.6)

Equations (2.5) and (2.6) need initially to be stated relative to the earth-fixed coor-
dinate system Z,, but in practise, the equations relative to the ship-fixed coordinate:

system Zz might be more useful. Thus via a Galilean transformation, the kinematic
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and dynamic conditions (2.5) and (2.6) are transformed to as follows, res‘pectively,\
ov ‘ , o
- — (U V¥)-V|n = 3 on the exact free surface. (2.7)
z’

[— - (U vy). V] = —;—V\I’ V¥ —gn, on the exact free surface, (28)

wherc U is the translational speed of the ship:

In the far field, appropriate radiation conditions are necessary to ensure that the
shi‘p-gcne:a,ted waves propagate outwards. There have been no rigorous mathematical
expression of the radiation conditions. Conventional hydrodynamics prescribes that

the fluid flow is quiescent for finite time.
V¥ — 0, . at spatial infinity. (2.9

The response 'of.thg physical system' governed by the equations derived above
should be causal and the solutions of these equati'oné require initial conditions (cf.
Wehausen & Laitone [72]). In this study, the initial state is defined so that the ship
and fluid are at rest at the 1mt1a.l t1me, t = 0, such that:

¥ = 0, z=0, (2:10)

ov ‘
5 =0 z=0. (2.11)

‘And, this completes the exact formulation of the physical problem of a ship start-
ing from rest and reachi'ng'a. uniform speed in the presence of ambient waves. A
more detailed dlSC'I.lSSlOIl of the exact initial bounda.ry value problem is presented in

Wehausen & La.ltone [72]

26




2.2 The Weak-Scatterer Formulation

The formulation derived in the previous section is exact within the scope of potential
theory. It is however difficult and expensive at this point to solve thi.s fully nonlinear
free surface flow problem, because the free surface conditions are highly nonlinear,
and worse yet, are imposed upon an unknown surface. So from the days of Michell in
the late 19th century, researchers have been trying to find a linearized scheme that
could produce the best simulation for realistic flows and be solvable. Many linear
models have been developed with varied degrees of sophistication and success. But as
described in the Introduction, pure linear theory often gives inadequate predictions
of wave resistance, ship motions, and ship global structural loads. This work adopts

the Weak-Scatterer hypothesis, as a balance between the exact and linear theories.

The s’o—calleci Weak-Scatterer hypothesis, in which the ship-generated disturbances
due to forward translation and the ship’s interactions with the ambient waves are
much smaller than the ambient waves and the ship motions, was first proposed by
Pawlowski [56] a.n_d has been inspired by numerous experimental observations. Most
ships are designed to be slender in order to reduce wave resistance, in the sense that
the longitudinal dimensions and their dcriw}atives are much larger than the transverse
omes, it is therefore physically justifiable to assume that the ship-generated distur-
bances are compa.ré.tively small, even.lwith large amplitude ambient waves and ship
motions. This is evident when looking at shib waves in a towing tank or in the ocean.

This weakly-nonlinear approach improves upon the classical linear theory in that the

- magnitudes of incident waves and ship motions are no longer prescﬁbed at the onset

of the solution. Incident waves are primarily driven by the environmental conditions.
The more severe the weather is, the larger the incident wave amplitude becomes.
Hence it is not very reasonable in linear theory to restrict the magnitude of incident
wave. For a slender ship, the disturbance caused by its movement could still be small
even when the ship is undergoing a large motion. And this is obvious if imagining a
knife-like ship moving up-down‘in the ocean. Those large disturbances that do exist,

spray for instance, do not contribute significantly to global forces. Founded upon
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this physical intuition, the Weak-Scatterer theory is therefore adopted in this thesis
to linearize the ship-generated disturbances over the steep incoming waves with the

‘ezact statement of the body boundary conditions.

2.2.1 Decompositions

Under the a.ssﬁm_ptions of Weak-Scatterer jhy.pbthesis, the following decompesitions.
for the total disturbance velocity potential ¥ and the total wave elevation 7 are
postulated,

U(Z,t) = B(Z,1) + 6(Z,1) + po(2:2) + p(5,8), (2:12)

TI“(-i_l:ayat) = (‘.,(:c,y,t) + C(:c,y,t)-- (213)

The double-body basis flow, &, is taken as the solution of the ship ﬁ;OVing through a.
wavy solid boundary (no-ﬂux on the surface), which is defined by the ifcoming inci-
dent wave. It i“sr more or less related to the steady translation of the ship, nevertheléss
it is an unsteady quantity. This is in contrast to linear theory. The time-local flow,
@, is the solution of a pressure release problem and is used to take out the impulsive
part of the problem. Its intrbduction is entirely motivated by the consideration of nu-
merical sta.blhty and will be addressed more carefully in later sections. This qua.ntlty
is inostly associated with the radiation part of the problem. ¢, denotes the 1nc1dent
wave potential and (o s th¢ incident wave elevation. ¢ and { stand for the remain-
ing part of the total disturbance qua.nfities: wave disturbance velocity potential and
wave elevation, respectively. And, they are closely related to the wave generation and

scattering due to t‘he‘body.‘

In a.ccordance W1th the Wea.k Sca.tterer hypothesis, the basis flow, @, the time-
local flow, ¢, and the incident wave (g, C.,) are assumed to be the dominant parts of

the solution and the correctmns (,¢) to be small.

B~0(1) #~OL); ¢~O01); ¢~ O(), (2.14)




G ~0(1); ¢ ~O0(e), : (2.15)

where ¢ <« 1, with ¢ denoting some form of small quantity, for example, the ratio of

the ship beam over the ship length.

2.2.2 Free Surface Conditions

Applying the above decompositions (2.12,2.13) to the free surface conditions (2.7,2.8)

and dropping the terms of O(e?), the free surface conditions become linearized over

E.
a — a = aD.
(o — (T = V& —Vé—V,) V] ¢ = —[5: — (T = V&V —V,)- V] G + 2
ot aat 0z
902 96 9y o .
+6z+3z+3z Ve VCD,

-on  z=1(z,y,t),
(2.16)
0 . , 0 -' :
[E_(U_v‘p._vqb_vsao)'vl = _[5_(U_VQ_V¢_VS"D)'V] Po
+%VS"0 : VS"D = QCD
0 — 1
—[g—(U—W)-V] $+5VE-VE
5~ (U-V2-V$)-V] ¢
+5V$- Voo,

on z=1(z,y,t).
(2.17)

Note that the conditions are applied on the surface of z = 7. Since the scattered waves
are assumed to be small and the boundary value problem is solved on an incident
wave free surface, another step is needed to transfer the conditions from z = 5(z,y,t)

to z = {(z,y,t), using Taylor expansion. Thus it reads,
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0 . _
(7~ (0= V&=V$=Vp) - VI( =

1
. +§V‘PO - Vi,

g~ (T~ VE-Vé= Vi) V] G+ 4o

a<1> 3¢ oy R

+%z + 3§+ 0z
2@ 2 o a@ a o
Ham + 52~ V(G + 5 Vel ¢,
on z = Co(:c,y?t),

(2.18)
_[% —(F =~ V& - Vé— V) V] g0
— 96

0 o i e 1o
[z~ (0 - V) V] 2+ V8. Ve

2 -E-V4)-] 4

+2V4-Vg— gt
o - ' -y 0P
_[E =(U-V® - Voé—Ve,)-V] EC

f‘[i_(ﬁ—VQ—vqb—vgoo)-V] a_

—[——(U V& - Vé— Vo) V]

| z = Co(za Y, t)-
- ‘ (2.19)

Lon

'Omitting all terms of O(e?), and transferring the conditions further from the free

surface of z = (, to the calm surface z = 0, it is easily seen that the above conditions

reduce to the linearized frée surface conditions based on the double-body linearization.

Note that setting & =

0 51mphﬁes the equations further to the Neumann-Kelvin

formulation, if also transferring the conditions from the surface of z = {; to z = 0.

 These free surface conditions are valid for any incoming waves, plane progressive

wave or Stokes wave. The kinematic free surface condition (2.18) could be further

simplified for plane progressive waves.
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2.2.3 Body Boundary Conditions

The body boundary conditions are applied on the instantaneous position of the sub-
merged body surface, determined by the intersection of incident wave profile and the
instantaneous position of body boundary. The boundary conditions are stated so
that the normal component of the fluid velpcity is equal to that of the body velocity,
‘which is composed of steady velocity U and oscillatory velocity 96/0t,

oy - , 06 , :
.—a—n——U-n-i-—t"n, on Sg, (2.20)

where § is the oscillatory displacement of the ship and is defined as follows,
§=br+ & x &, (2.21)

where £ is the translational displacement and £ is the rotational displacement. Z is
the position vectors of a point on the ship relative to the ship-fixed coordinate system
z.

Plugging in the V‘eloéity potential decomposition (2.12) leads to,

0% -~ _ |

a—n = U 'n, on SB7 (222)
o 98 .
F - TR on Sa, (2.23)
dp 9o

= on’ on S (224

From these equations, it is ciea.r that the basis flow ® mostly takes care of the “steady”
(not time-independent since the normal vector 7 is time-dependent) part of the flow,
the time-local flow ¢ deals with the radiation part and the disturbance flow ¢ accounts
for the scattering part. Please note that these categorizations are not as clear-cut as
in the classical linear theory because of the nonlinearity. In free motion simulations,

it is very important to have the time-local flow extract the impulsive part of the flow
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so that the numerical stability is ensured.

The so-called m-terms in t'he‘ linear theory, resulting from the linearization of the
body boundary conditions and accounting for the infera.ctions between the steady
and the osci]ia.torjf flows; do not explicitly appear in this formulation, because the
satisfaction of the exa.c.'t body boundary conditions automatically inéludes the m-terin
effects. In th,av.pter] 4, computations will be shown confirming that this statemép’t‘ is

indeed valid.

2.2.4 Boundary Value Problems

All velocity potentials should satisfy the Laplace equation and this will be enforced
through Green’s second identity, that leads to a boundary integral equation consisting
of the integration of unknowns. The Rankine source is chosen in this work as the

Green function,

(2.25)

'The nonlinear free surface Green function would satisfy the free surface conditions and
radiation conditions, and eliminate the need to discretize the free surface. Howevet,
this Gieen function would be complicated and the integral kernel would be too difficult
and éxpensive« to evaluate. Just lookirig at the second order free surface conditions
(cf. Sclavounos [62]) is more than enough to deter us from taking this route. In

contrast, the panel method based upon the Rankine soturce is much simpler and more

straightforward due to its flexibility in different free surface formulations and its ease
to evaluate the integral, albeit panels have to be distributed on the free surface and

numerical beaches implemented to enforce the radiation cqnditio‘ns.

The resulting integfal equation reads as follows,

v+ f],,, W02 ], "ospen, s

where Z denotés the coordmates of the field point and_ E the coofdinates of the source

point, Sy indicates the truncated free surface and S5 the submerged body surface.
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Note that ¥ is not just the total flow, rather it symbolizes all the velocity potentials

involved.

There are three separate boundary value problems, which must be solved for the
basis flow, &, the time-local flow, ¢, and the disturbance flow, . They are outlined

below.
Basis Flow

The double-body basis flow is actually a free-surface-no-flux basis flow. It is the
solution of the boundary value problem, which allows for no'norma.l velocity cross
the free surface. It is named as a double-body flow because it is historically related
to the flow associated with a body with its image above the free surface advancing

through an infinite fluid in linear theory. The free surface condition for this flow is,

0%
T = 0, on z={(, (2.27)

and the body boundary condition is shown as in (2.22).
Time-Local Flow

The time-local flow must be solved when free floating simulations are of inte,res1.;.
This flow takes care of the impulsive and accelerative nature of the entire ph)’rsic~a.l flow
and accounts for the radiated waves from the body due to body motions. It could be
included in the disturbance correction potential ¢, but the numerical stability analysis
by Kring [27] concludes that this impulsive nature of the fluid must be separated
from the entire flow to avoid numerical instability in the integration of the equation
of motion. For forced motion simulations, the separation of the time-local flow from
the total flow, albeit not necessary, improves the conditioning of the resulting matrix,

and in turn, the accuracy of solutions. Details will be discussed in the next chapter.

The boundary condition on the free surface is the pressure release condition —

zero velocity potential.

$=0, on z = (,, (2.28)

33




and the body boundary condition has been stated in the preceding section as shown
in (2.23).
Disturbance Flow

The disturbance flow ¢ is solved as a solution of a mixed boundary value problem.
The velocity potential on the free surface is obtained by the integration of the dynamic
free surface condition .(‘2.19) and the normal velocity on the submerged surface is
prescribed by the body boundary condition (2.24). Therefore the boundary value

problem is solved for the normal velocity on the free surface and the velocity pdtént’ia.l

on the submerged body surface.

2.2.5 The Resultant Forces

boundary conditions or from the solutions of the boundary value problems, outlined
in the preceding subsection. The tangential velocities can be obtained analytically
by a B-spline rjepfesenta.tion of the velocity potentials, whi¢h will be described in
Chapter 3. Then the pressure can be. easily derived from Bernoulli’s equation (2;3)',

assuming the atmospheric pressure p, to be zero,
or 1 : ,
=—p|l—+=VE.V¥4gz]}. 2.29
p=-p ( 7% "3 + gz) (2.29)
Substituting in the decomposition of the velocity potential (2.12), it becomes,

p = pl + pm + p:, ) . (2.30)

.with each component written separately as,

P = —p{[;% ~ (T -V -V~ 'Vsoo)-V] b~ 394 w}, (2.31)
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o
Pn = —p E—(U—V@—Vqﬁ—wo)-V]so

Y L
»—p{ 5~ (U-Ve-Vgp,)- V] o —5V0 Vsoo}
(6 = o 1
—p{ -é-i»—(U—Vcb)-v] ® —§V<I>-V<I>}, C(232)
P. = —pgz. - (2.33)

Pi, P and p. denote local flow pressure, memory flow pressure and hydrostatic pres-
sure, respectively. Again, the quadratic terms of ¢ and { have been dropped out in
accordance with the Weé.k—Sca.tterer spirit. Thus the resultant generalized forces F;,
which include the forcés F,, F,, F, along (z,y, z) respectively, and the moments F,
F,, F, about (z,y, z) respectively, can be obtained by integrating the preésure on the
submerged part of the body surfa.ce.. Of course, a momentum conservation analysis
could have been used to calculate the generalized forces, but it would be complicated
and inaccurate because of the use of numerical beaches in the far field. And it would
be unnecessary as well since we have the pressure integration performed over the ezact

submerged surface of the ship, that should give us accurate results.

F=// pn;dS, §i=12,...,6, T (234)
Sp
where n; is the generalized normal and defined as,

(nnnzans) = n,

(ny,mg,m6) = & X 7. (2.35)

The steady hydrostatic force, arising from part of the integration of p,, is balanced
by the propulsion force and the buoyancy force, and will not be used in the calcula-
tion. The unsteady hydrostatic force is known as the restoring force. The hydrody-
namic force, integration of p, and p.., include the excitation force, resulting from the
diffraction of incident waves, and the radiation force, originated from the free surface

memory effects.
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2.2.6 The Equation of Motion

Newton’s law must injtiaglly'be stated about the earth-fixed reference frame Z, and
later be transferred to the desired reference frame. The conservation of linear mo-

mentum takes the form
d - . - . .

where M is the mass matrix of the ship, C is the linearized restoring coefficient
matrix, and the nonlinear components will be included in the force calculation. Zg
is the coordinate of the center of gravity in the ship-fixed system & and F is the
generalized force. E;. = (&, &, ¢&) and fR = (&,&,¢s) are formed by the translation
and rotation of the body respectively. Sometimes f = are also called the Euler angles.
Then the nonlinear rotational matrix T is defined with the order of the Euler angles
- as (ﬁs,fs,fa_),

[ cos & cos &, . cos &, sinés + siné, sin s cos &  sin §, sin & + cos &, sin §; cos ¢,
- cos;sinds  cos,cosés + siné,siné;sing, —siné, cosé, + cos &, sin &, sin &,
—§in & sin £, cos &, cos ¢, cos &,
(2.37)

and this matrix T is normal, such that its inverse is equal to its transpose, or’
T = T7, _ (2.38)

and for linearized rotation, i.e. small E &, the matrix T is reduced to

1 =& & .
T=¢ & 1 —¢ 4. (2.39)
—fa 64 1
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the corresponding moment exerted by the fluid, the angular momentum conservation

principle states that . .
dH; 0H,

= g TIX He = M, (2.40)

where w is the angular velocity vector relative to the body-fixed axes and is defined

as

& = Ba, (2.41)

with & be the vector of the Euler angular velocities,
= & &  (242)

The matrix B is

~coséycosé; sing, 0
B =1 cos{sin¢; cos {el 0 ¢ (2.43)
—siné; 0 1

and for small rotation, the matrix B becomes the unit matrix I. The angular momen-

tum principle may therefore be cast in the form

I%‘;-’ +& %15+ CT?éy = T Mo, (2.44)

where C represents the linearized rotational restoring coefficients. (2.36) and (2.44)
thus complete the exact nonlinear statements of the linear and angular momentum
conservation principles and from which the equations of motion can be derived to

solve for the motion responses of the ship.

A displacement vector { = (ET,E r)T may be defined and the principle of conserva-

tion of momentum is restated in a more concise form,

.
=

n &)+ Cn &(t) = F(E EE1), (2.45)

where My and Cy indicate the nonlinear matrices for mass and restoring coefficients

respectively and are reduced to their linear counterpart when the ship motions are °
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small. The numerical stability analysis presented in the next chapter dicta,tes thg\,t the
impulsive forces ('t_he- forces. prjoportiona.l to the acceleration) must be separated from
the total force F (the right-hand-side of (2.45)). Consequently the velocity potential
is decomposed into the time-local part and memory part as carried out in the previous
formulation of the boundary value problems, and in turn, the total force is broken
into a time-local force and a ﬁemoxy force. The time-local force is associated with
the instantaneous fluid motion while the memory force results from the history of the

wave propagation. With these considerations the equation of motion becomes,

- =

(M + a0)i(8) + b6 + (Coy + eo)élt) = FulE,E10), (2.46)

where the matrix coeficients a,,b, and ¢, represent the nonlinear time-local forces

proportional to the acceleration E, the velocity E and the displacement E, respectively.

Some previous work states the memory-force ﬁm_in a canonical form (cf. King [23],
Bingham [5]), which uses the convolution integral to illustrate the wave propagation,

or the memory effects in wave flows.
F=X@) - / YK (t - n)E(r), C (247)

where X:(t) is the excitation force and K () is the velocity impulse response function.
The d,i_splacémcnt impulse response function or acceleration impulse response function
may alsé be used. In this non]iﬁea.r formula,tion., however, the force can not be
decomposed iii s‘ﬁch a form since the linear superposition is not valid. Therefore in
this work; the memory effect is retained directly through the solution of the Wwave

_patterns rather than a convolution of the response history.

In this thesis, studies of forced motion and free motion will be carried out. Forced
~ motion is to restrict the ship to movein a presér-ibed ‘mode, frequency and amplitude,
so there is no need to solve the equation of motion. This allows for the comparison
for ﬁhe force,_cg‘)éfﬁciclnts between the extensive cxperimental data and numerical cal-

culations so that the implementation of the method is validated. Free motion is to
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allow the ship to move freely in six-degrees-of-freedom, so it requires the solution of
the equation of motion. The ship motions in a steep wave are of course the ultimate

goal of this study.

2.2.7 Time Derivatives

It is necessary to calculate the partial time derivatives of the velocity potentials
throughout, i.e. in the dynamics of the free surface condition. This partial time
derivatives could be evaluated by a finite difference formula, but numerical tests

indicate that this often requires too small a time step to control the numerical error

because panels are moving from one instant to another. To make the scheme more

efficient, a boundary integral equation can be set up and solved for the partial time

derivatives directly. This will incur some additional computational burden, but since.

it is not necessary to recompute the inflience coeflicients, it will offset the computation
effort saved by the elimination of the need to decrease the time step if finite differences

are used.

The Eulerian time derivatives of the velocity potentials 8% /8t are, as a matter of

fact, harmonic functions, therefore,
VY, =0, (2.48)

where the subscript ¢ indicates the partial derivative of time and ¥ here is just a

symbol for ’velbcity potential. Green’s theorem is therefore directly applicable.

-

210, + //s ¥ (£, t)aG(”" 8 gs, = //s . ov (5 961 oz §as.. (2.49)

T

Numerica.l experiments show that the partial time derivative of the basis flow & is
actually the most crucial and needs special care, while the partial time derivative of
the wave flow 1 does not cause as much error. Thus the boundary integral equation
(2.49) is used only for the calculation of &, and a finite difference scheme is employed
for the evaluation of 1,. The reason is that even though there is no need to set up the
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left-hand side separately for the boundary integral equation (2.49), the calculation of .

the matfix still incurres some comput‘ationa.l cost.
Consider the equality,

@ aQ _ a =\ o — LN
51 om = ai(V@-n)—VQg i+ Ve 7, (2.50)

Note that the normal vector 7 is a function of time, i.e.

o 6% 6 0®

Bion 7 n ot (2.51)
From (2.50), it follows that
898 0% .
gndt ~oion o - @)

The normal velocity of the basis flow @, on the free surface equals zero because of

the instantaneous no-fluix condition, thus,

0 0%

gt — =-V%.1q, , (2.53)

where the partial time derivative of the normal vector fi, may be easily computed
since the free surface is prescribed by a known incoming wave. On the other hand,

the normal velocity of the basis flow on the body may as well be computed from the

0%, = |
—=(U-V®)-n, 2.54

e = (- V8)-, (254
" The instantaneous nbfma.l vector 7i, on the body surface is defined as,

7, = T(t) 7.. (2.55)

where 7, is the time-independent normal vector to the hull and T(t‘) i/s the nonlinear
rotational matrix defined in (2.37). With the knowledge of 8%,/0n, the solution of the
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boundary integral equations allows for the computation of the partial time derivative

of the basis flow on the free surface and on the body surface.

Experience also shows that the following approximation does greatly improve the
accurate evaluation of the partial time derivative. At each time step, the panels
adjust their positions according to the ship motions and incident wave elevation.

This displacement of panels is the most significant on the submerged body surface.

Define the so-called panel velocity [7,

X_Xo

U= 2.56
6t ? ( )
where X is the position of the ship at the present time and X, is the position of the

ship at the previous time step. Then, the Eulerian time derivative follows as:

0o 0 -
a - _a?/pauel - U : V? (2'57)

% / panes might be approximated by a finite difference scheme. This scheme improves

the accuracy of the results while not increasing the computational burden.
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Chapter 3
Numerical '_A‘lgorithms

3.1 Rankine Panel Method

The Rankine Panel Method (RPM), which will be outlinied in this chapter, was first
desigried for frequency domain linear solution for the interactions between a free
surface and a steadily translating vessel, as originally developed by Sclavounos and
Nakos [61], and, Nakos and Sclav_'ouﬁo’_s [43). it was later eg;tcgcfl;ed to time domain
linear solution of théi same problem by Nakos, Kring and Sclavounos [44]. The scheme
has proven robust and accurate for linear solution in the above work. This linear time-
domain method wﬂl,ig this thesis be improved and implemented for the solution of

the nonlinear time-domain simulations of free surface ship waves.

Panel Methods, in general, are a subset of the boundary element method. The
method takes advantage of Green’s theorem to enforce the Laplace equation and
tesults in the solution of a boundary integral equation, which governs the unknowns
over the domain boundaries. Therefore it is only necessary to subdivide the boundary
surfaces 'ra.fher than the whole volume of the fluid domain. After obtaining the
quantities of interest éuéh as velpcity potentials and normal velocities on the boundary
surfaces, the quantities in the fluid domain are readily computed by an additional

applica.tioh of Green’s identity.

On the discretized boundary surfaces, a distribution of singularities accounts for
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the influence of the physical boundary. There are many choices for the Green function.
Among the most commonly used are the free surface Green function and the Rankine
Green function. The free surface Green function satisfies exactly the free surface con-
ditions and the radiation conditions. One of the benefits is that only the subﬁerged
body surface boundafy needs discretization. But it is very difficult to extend its
success in linear problems to nonlinear problems because of the extreme complexity
of the nonlinear free surface Green functions. One alternative is to distribute the
so-called Ra.ﬁkine sources and dipoles on all Vboundar‘y surfa.ées. This allows flexibil-
ity in the formulation of the free surface conditions so that nonlinear effects can be
included efficiently. The disadvantage is that the free surface must be discretized as
well, which introduces questions about numerical dispersion and dissipation, and also
casts doubt on the enforcement of the radiation conditions. Because the goal in this
- work is to study the nonlinear free surface interactions with the translating body, the -
Rankine Panel Method, which is a panel method employing Rankine sources/ dipoles
as the Green function, is naturally chosen to be the numerical tool. The concerns
about numerical dispersion, dissipation and radiation conditions will be addressed in

later sections.

The time domain Rankine Panel Method ;:onsists also of a temporal integration
of the free surface conditions to advance the wave simulation. At each time step, the
so-called Emplicit scheme is used to integrate the free surface conditions (2.18)(2.19) .
to obtain the wave elevation and velocity potential over the free surface. The Emplicit
scheme applies an exiilicit integration to the kinematic and implicit integration to the
dynamic free surface condition. This combination of explicit and implicit schemes is
shown in Vada and Nakos [70] to be stable and accurate. For a free motion simulation
of a ship freely floating in six-degrees-of-freedom, the equation of motion is also
numerically integrated to obtain the ship motion responses, by using the fourth order
Adam-Bashford-Moulton (ABM) scheme with the fourth order Runge-Kutta scher\ne
for the first four time steps. Kring and Sclavounos [28] proved that the scheme was
stable and accurate as long as the ratio of time step and grid size is within a stability

criterion.
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-3.1.1 Geometric Approximation

The numerical solution of a continuous problem entails the discretization of the fluid
domam and proper representation of the unknqwn quantities on each 'ihdi'vidua.l gnd
point, or in this caéc, panel. As discussed above, only the fluid ‘boundary surfaces
need to be discretized by a collection of quadrilateral panels of mean spacings (k., A,).
The corner points of each panel are mapped to the plane that is determined by the
mid-points of the line segments connecting the corner points. The panel is therefore
a flat quadrilateral and geometrically constant. But the variation of the unknowns on
the panel is expressed by a B-Spline scheme which enjoys great success in the field of
Computer-Aided-Design (CAD). The unknown ¢(z,y) (just a symbol, not necessarily
the velocity potential) is approximated by a higher order polynomial in terms of basis

function B;(z,y) with a finite number of degrees of freedom a;:

t oo oo ) )
¢z, y) = Y, a;B™"(z,y) = Y a;b™(2)b"(y), (3.1)
_ j=+o j=—oé .

where the summation is carried over the vector index j = (j.,J,), and Bg."‘"'-’ is the
two-dimnensional basis function defined as the product of the basis functions in z=
and y—djfections. The lowest order of the basis function 5 (z) is defined as:

’b(D)(z) _ 1, |Z| S hz/27 v (32)

0, otherwise.

Higher order basis function b™)(z) may be obtained from the convolution property

(Trefethen [67]):
B™(z) = hl /_ : & B B2 —g),  for m21 (3.3)

Using this representation for the solution ¢(z,y), derivatives may be calculated ana-
lytically by djﬂ'e’/rent‘iatigg m times in the z—direction and n times in the y—direction.
This avoids the inaccurate and expensive finite difference approximation. In wave re-

sistance and sea,keeping problems, it is important to compute accurately the deriva- - -
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tives up to the second order. Therefore, the bi-quadratic basis function B¢®3)(z,y)
(m = 2,n = 2), which provides the lowest order of approximation needed in this

formulation, is chosen. The quadratic basis function b*)(z) is written out as follows:

._;%2;'(1: + %’-)2, | —3h./2 <z < —h./2,
B (z) =4 A(—z* + Le), ~h.)2 <z < h,/2, (3.4)
ar(—z+ 322, h/2<z <3h/2

It is important to note that the higher order approximation for the solution is being
carried out on the grid with only one unknown corresponding to each panel. This
is possible because the basis function is requi;ed to be a function of not only the
unknown on the panel but also those on the neighboring panels. The higher the
order of the basis function becomes, the more neighboring panels are needed. It is
interesting to see that employment of B!*)(z,y) as the basis function will reduce the
scheme to a piece’wise constant approximation of _the solution, which has been widely

used since the days of Hess and Smith [18]. More details about this Rankine Panel
Method can be found in the doctoral thesis of Nakos [42].

A typical computational grid is shown in Figure 3-1. It consists of panels oﬁ the
submerged body surface, which is determined by the incident wave profile and the
instantaneous position of the body, and the elevated free surface, which is prescribed
by the incident wave profile. The panels are mostly ﬂ;:.t' quadrilaterals, but could also
be triangular, especially near the ship ends. The original ship is shown with the boeld
line to demonstrate how much/little the ship might be wetted by water during the
course of its movement. There are three spline sheets for each of the three unknowns
on each panel, the velocity potential ¢, the normal velocity ¢, and the wave elevation

¢, and they are defined as:

¢<f,t)=;i<¢)(,-,<t)3;”’<f),. @)

ba(5t) = gw,.)(,-,(t)B,‘-“’(f), (3.6)
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Figure 3-1: Typical Rectangular Computational Grid
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where (¢);, (¢.), and (C ); are the time-dependent spline coeflicients for the unknowns
and are the solutions of the system of linear equations. The spline representation of
the unknowns may be stretched and twisted according to the panel shapes, so it is
applicable for general shapes of body geometry. One additional strip of panels is used
at each boundary edge to supply the necessary end conditions that close the spline

representation of the solution.

While the fluid domain is presumed to extend to infinity, in numerical computa-
tions, the computation domain obviously has to be .trunca.ted to a finite extent to
limit the computational cost. The truncation points are decided by riumerical exper-
imentations to account for the ship translation speed and the incoming wave length.
Nuﬁerical cooling beaches are used to ensure minimum reflection of the disturbance
waves at the truncated boundaries, and subsequently, the satisfaction of the radiation
conditions. The mechanism of the numerical beach will be discussed in more detail

later.

3.1.2 Oval-Type Grid Approximation

Previous versions of the SWAN program and the majority of other computer codes
in this field are written for rectangular free surface grids as shown in Figure 3-1.
The rectangular free surface grid is a most natural and popular selection because of
its ease of setup and its accuracy in representing the trailing wave behind the ship.
However according to numerical experience, the cluster of far-field panels near the
centerline do not have large effects on the pressure integration over the hull surface.
Hence, those fai-field panels are not strictly neces;a.ry if only the computation of the
forces on the ship is required, especially for short waves. This inspires. the use of the
so-called oval-type of free surface discretization, despite the fact that the system is
elliptic. Chapter 4 will show that the rectangular grid and the oval-type grid virtually

give the same predictions in terms of forces on the ship exerted by the flowing water |
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the ship, there is a lesser density of panels. The grid spacings for panels expand from
the ship. The whole free surface is divided into a constant panel inner region and
"varied-size panel outer region. The inner region is where the spacing of the panel is
kept constant, while the outer region is where the spacing of the panel is exponentially
varied according to an expansion ratio in a monotonic manner. A typical oval-type
grid representation of the free surface is shown in Figure 3-3. The generation of the
oval-type grid is discussed in Appendix B and more detail may be found in the book
by Thompson, Warsi and Mastin [65].

ANDEqunany
"{{\‘\‘{{&{{{{\'{{{{&&:553\
OO
N

Figure 3-3: Typical Oval-Type Computational Grid

3

D,

Table 3.1 demonstrates the benefit of the oval-type grid in tern_i‘s'of CPU cost
and memory requirement. To attain the same accuracy in the solufion, N = 1954
panels are needed on half of the computational domain if using the rectangular grid,
only N = 1504 panels are needed (about 30% less) if using the oval-type grid. The
saving in CPU usage is 93%, because the CPU requirement is in the order of between
O(N?) and O(N*). The oval:type grid requires less memory by about 50% as well.
Fof convergent results, more panels may be necessary and the savings of the oval-type

{
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grid would be even more impressive. Therefore the oval-type grid éhould. be adopted.

3.1.3 N umérical Issues

Discretization of tll'_le geomej;ric domain will introduce a variety of numerical difficulties
which call for c‘a,re:fu_.l treatment to prévent inaccurate solutions. The satisfaction of
radiation conditioﬁs and the prOpa.gvat,ilon of spurious wave components are among
the most impera.tiv"e. This section is going to address these two important numerical

issues.

|

TRUNCATED leMAIN AND RADIATION CONDITION

| .
The computationa.l'.doma.in has to be trincated some distance away from the wave-

making source in or!jdcr to keep the computational effort finite. As shown in Figures
3-1 and 3-3, the conﬁputat_ion domain is truncated upstream, downstream and to the
side. The extent'of‘{‘ the domain is decided by numerical experimentation to modei
the ship flow over lo"ng time simulations and at the same time to minimize the com-
putation cost. Any errors that might be introduced by this t'runc,a.tionv in the form of
wave reflections fronlf} the domain edges must be prevented from contaminating and

eventually des1;jrt,)yingl the solution.

Because of the trunca.tlon of the computational domain, the Rankine Panel Method
presents the dafﬁculty of 1mplement1ng radiation conditions, that require that distui-
bance waves be ra.dla.ted outwards from the wave-making source. There are several
ways to remedy the problem One of them is adopted by Lin and Yue [34] in their
body-exact solution of ship wave problems. The linearized free surface Green function
satisfies exactlj the. ]iEnea.r free surface conditions and radiation conditions. So there
is no need to distribufy;e ,pa,nels on the free surface z = 0. Consequently the radiation
conditions are enforced automatically. But as pointed out before, the nonlinear free
'surfa.cé Green.functioniz is extremely complicated and difficult to evaluate by numerical
means. It is therefore not suitable for the solution of nonlinear ship wave problems A
matching scheme could also be used by d.1v1d1ng the computa,tmna.l domain into two

\

l
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paits, an inner nonlinear domain near the ship and an outer linear domain far from
the ship. The reasoning for this scheme is that in the neighborhood of the ship the
nonlinear effects are prominent and non-negligible, while away from the ship the non-
linear effects are largely diminished because three-dimensional waves would dissipate
at the rate of @(v/R), where R is the radial distance between the field point and the
ship. Thus it is conceivable to use the known linear solution to enforce the radiation
conditions in the outer doma.iﬁ. Nevertheless, it is not easy at all to apply appropriate
‘ ﬁatching conditions at the matching boundaries and to deal with the reflection from
the matching boundaries. The computational effort associated with such a hybrid

scheme may be very significant. Hence numerical beaches will be adopted instead.

Numerical beaches were first proposed by Israeli and- Orsza.g [19]. They were
later successfully applied to the two-dimensional solution by Baker, Meiron & Orszag
[1] and Cointe, Geyer, King, Molin & Tramoni [6], and three-dimensional ship wave
problems by Nakos, Kring & Scla,jrounos [44]. A numerical beach functions exactly
like the damping beach in a towing tank and absorbs disturbance waves keeping
them from reflecting back. Numerically, a Newtonian cooling term is applied to the
kinematic free surface condition to damp out all waves of wavelengths less than a;bout
twice the extent of the numerical beach. The cooling term physically corresponds to
a mass sink over the free surface in order to minimize the waves near the edges of the
domain. A Rayleigh viscosity term is also applied to eliminate artificial dispersive

effects.

\

The scheme may be illustrated by considering only a linear solution. The linear
flow ¢ within the beach section of the truncated free surface domain is the sum of the
corresponding linear flow ¢ over the infinite free surface and a wave reflection error

flow x, of which ¢ satisfy the linearized free surface conditions,

p=¢+x (3.8)

and over the beach section of the truncated free surface space, it may be considered
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|
as covered by a horizontal rigid lid, such that, -

¢.=p.+x.=0. (3.9)

|
Apply the linearized free surface condition to ¢,
| .

‘P_tt. _ ¢gt '_“X;t'

: p (3.10)

{ Xz=_90z=

Then the linearized free surface condition for the reflection flow x within the beach

section of the trunchted free surface is derived as,

|
It is therefore clear that the wave reflection is present in the form of a pressure

distribution p(t): |
Consider the linearized kinematic and dynamic ﬁ'ec surface conditions, with arti-

ficial damping beingiadded,

¢ = —g¢, (3.12)
(e = ¢: — 20, | (3.13)

which results in the dispersion relationship relating wave frequency w with the wavenum- .
bers u and @ in the :c and y directions, respectively, |

| w = iv £ (gVu? + vz —1v*)'%, (3:14)

' where, v denotes the{NeW‘tonian cooling strength with uniform distribution. Com:

pared with the wave ﬁ'equency without the cooling term,

: w = gvu? + v?, B (3.15)
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it is evident that the cooling term v basically introduces a shift to the wave frequency
w off the real axis in the complex domain and subsequently adds the time oscillation
tetm iwt with an exponential decay behaviour (when v > 0), whereby the wave is
damped.

eiwt — e—vt . ei:i'(g\/u3+1:3—l'2)l./3¢‘. (3-16)

There is also a shift in the reai component of the wave frequency which causes a
(higher-order) change in wave dispersion. This can be remedied by the addition of

an artificial Rayleigh viscosity term and the free surface conditions finally read,

¢ =—9¢ } = w = iv & (gv? + 1) (3.17)
= =20 +2¢

The Newtonia.ﬁ cooling.term is physically interpreted via the modified kinematic free
surface condition as the mass flux through the free surface, directed outside the fluid
domain when ¢ > 0 and inside it when { < 0. In view of this formulation, » may now
be considered as the Rayleigh viscosity used in the frequency domain solution of the
problem for the enforcement of the radiation conditions. For free surface flows with
forward speed, the modified free surface condition directly follows by the substitution
of 8/0t with 8/0t + Ud/0z if using only the free stream as the basis flow. The

nonlinear free surface conditions fall out in the same fashion.

The variation of the cooling strength over the damping zone is quadratic, following
the recommendations of Israeli and Orszag [19], with zero value and slope along the

inside edges of the zone,

c, )
v(p) =35 (p—p)s  02p=p2Co, (3.18)

where p denotes the radial distance from the wave-making source, with the damping
zone beginning from p = p, and extending to p = p,+C., and C, is the overall cooling
strength. Even though there exists an optimal Newtonian cooling strength, numerical

experience dictates that any strength in the neighborhood of the optimal value will
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suffice for the‘pur.;;'iosek. The damping zone width C, plays a much more important role
in damping out the waves. For usual problems, waves of all frequencies are present
and .the damping {!device can only be tuned to damp out the wévgs of wavelength
A< 1..50’,,,. This Esﬁ’ggé,sts that large portion of the wave reflection ceases to exist
when C, = )}, 'w1'|1ere‘ A .is the typical wavelength. For zero speed and low speed
problems, djs}turba%nCe waves propagate slowly towards all directions. Consequently
it usually takes a lt!,)n'gcr,time and stronger damping to attain steady state. For high
forward speed problems, however, disturbance wave propagates out downstream so

rapidly that implerpentation of damping beaches is not necessary behind the ship.

3.1.4 Tempdral Integration

The free surface colpdjtions (2.18)(2.19) are integrated to update the wave elevation
_and the wave veloci1;:y potential at each time stci;. Also, the éqﬁation .of motion (.2.46) .
is integrated in tim*le to obtain the ship motion response. It is therefore crucial .to
acquire a stable, accurate and efficient time integration scheme. In what follows, the
time integration schl'gmes for the free surface evolution and ship motion response ate
discussed separateiy,f, .

!
|

TIME INTEGRATION OF FREE SURFACE CONDITIONS
v \ ‘ .

Time ,ir_it'e’gra.ti_oni of the free surface conditions is a crucial step towards the so-
lution. Vada and 1\:Ta.kos [70] expanded the error analysis, which Sclavounos and
Nakos [61] de?élbpél'fl for the frequency domain problem, to transient free surface
flows and discussed ?:hé merits of a variety of numerical integrati'on schemes. This
section summé.rizes 1:::heir key conclusions. The Empligi,t-'Euler' integration scheme,
which he rccommencied, will be adopted in this nonlinear solution of time-domain
free surface problem;i. Extensiye numerical tests have been carried out to valida.fe

the scheme. |

|

Consider the modél problcm of a fluid flow around a transient wave-making source,

1

I}i.
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with oscillating strength,

R 0, t<0,

Rz t) = { - (3.19)
cos!wt!
[£-Fo | ? t2 0»’

where &, is the location of the source and w is the frequency of its oscillation. The
linearized continuous formulation is restated for the problem with the uniform stream

as the basis flow that implies the Neumann-Kelvin formulation,

% LU = - .
{ a e ;C } on z=0, (3.20)
ot T Us =5

coupling with the boundary integration equation:

4@ - [[ FEVeEHE=RGY, (32

where R(Z,t) is the right-handed-side forcing term, obtained by integrating the source
term (3.19) over the free surface. The solution of the velécity potential over the
linearized free surface z = 0, subject to the Laplace equation, the linearized free
surface condition (3.20) and the proper radiation condition, acceptsin terms of Fourier
transformation,
' 1 + o0 +eo flu,v,0) oo

: t)= _/dw/ d / dy 1"~ gTivetrimey) 3.22

é(,9,t) (2r) e e Y Wy v,0) € ’ (3:22)
where f is the Fourier spectrum of the forcing, which is assumed to decay fast enough

to make the integral finite as (u,v,w) — oo. W denotes the dispersion relationship

as obtained from (3.20),
W(u,v,w) = —(w — Uu)’ + gV +v? = 0. (3.23)

In response to each wave component w, the dispersion relationship (3.23) has two

or four roots, which means that two or four waves are propagating in the system,
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depending upon w):lvhether the reduced frequency 7 = wU/g is smaller or larger than
the critical value 7., = ;- Each wave component is propagating in the direction
suggested by the group velocity,

l. W aw

'{ | R (3.24)
Bw

!

As the reduced fréz‘_quency 7 approaches. the critical value 'i—, the cofresponding group
velocity V, reduces‘ to zero, which signifies wave energy is not propagating outwards,
and eventually thé‘ wave disturbance may become singular. This demonstiates the
inadequacy of the linear solution and Liu and Yue [35] discussed this difficulty exten-

sively. !

Using the basis :fuilctions déﬁned in the previous section, the discrete formulation
for the problem (3.21) and (3.20) takes the form,

| o
! (8);Bi; — (¢;);85 = R, (3.25)
5 d
- g u)Ds = @B (3.26)
| ,d(¢),
{ dt

where R, is the right-handed-side forcing, D,; and S;; are deﬁned as,

BIJ+U(¢)J ij ;g(C)JB'J’ R (327)

IIx

| , (3.28)
o se= [T B@cE . (3.29)

The explicit Euler scheme integrates the kinematic free surface condition to obtain

the new wave elevation at each time step, according to the expression,

i n¥1
' ‘5———‘53.,+U(c>“ D, = (4.):B,, (3.30)
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the new velocity potential on the free _surfa,ce'.

P ¥ B, 4+ U8 Dy = ~a(O)" B, oy

where At is the time step. The discrete dispersion relationship is,
W = (8 —iBF,D)z* — (26 + F:D* — 8)z + (B +iBF.D) = W + O(k*, At). (3.32)

The whole scheme is referred to as the Emplicit-Euler integration scheme. Appendix
A presents other integration schemes, and, concludes on the basis of an error and

stability analysis [70] that this Emplicit scheme is the most efficient and stable.

TIME INTEGRATION OF THE EQUATION OF MOTION

A stable, accurate and efficient scheme is needed to integrate the equation of mo-
tion (2.46) in order to obtain the ship motion response to a particular sea state at
each time step. The global numerical error, which is the difference between the exact
solution and the approximate solution, must not be allowed to grow with time, oth-
erwise the solution will be contaminated by error and become untrustworthy. In the
early development of this numerical solution of time domain free surface problems,
the stability characteristics were not entirely understood and the produced solutions
were not physically resonable, until it was found that the problem has to be solved
in a natural way and the impulsive forces be separated from the total excitation
forces. Therefore it is absolutely essential to conduct a thorough error analysis for
the numerical integration scheme before embarking on any serious solution of the

problem.

Consider the homogeneous equation of motion,
(M + 0 )é{t) + b(t) + (C + o)) + [ drK(-r)f=0.  (3.33)

Note that a,,b, and ¢, are the added mass, damping and restoring coefficients, re-

spectively, which are derived from the time impulsive local forces. The convolution
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|

integral retains thl_e “memory” of the free surface flow and also' contains part of the
i o ,

added mass and wé\we damping. This kind of second order Ordinary Differential Equa-

' tion (ODE-) is us'u't?.lly dQCQmposed into a system of linear equations (t'W’eiVe équations

in this formulation) for numerical calculations:. .

| = f(t), | (3,34)

T 1 & |
; &)=4 " ={ = (3.35)
- {zfzm} {<t>} o

and l

where

) < { 10 } _ { ~[M + @l (B (6) + (O + e)ioe) + £ drK(E - 1)) |
£(#) ‘ #(t) f

, (3.36)
An error function is:'.‘ defined as,

| |
', £t) = §(t) = 9(t), (3.37)
‘.
W'hcré g’(t) is the eﬁca{g?:t solution and '_l:/'(t) is the numerical approximate solution. Then
a system of linea.rize? error equations fre,siifltsr in the solutions of the error functions
(3.37). In order to clllea.l with the convolution integral, the equations are examined
in the Laplace domali:.iﬁ. The application of the von-Neumann analysis scheme to
the error equation lee}:J,ds to a stability polynomial; while the boundary locus metliod
produces the regime "’,of' absolute stability. Combination of the stability polynomial
and the absolute stagiﬂity renders the restrictions (upper and lower bounds) for the

time step size. More E‘ldetajls for the analysis may be found in Kring and Sclavounos

28], ,
In this work, the fo"urth order Adam-Bashford-Moulton (ABM) predictor-corrector

‘method. is chosen for 'ithe solution of the equationr of motion, with the fourth order

Riunge-Kutta scheme for the first four time steps:. The schemes are defined below,

|
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Fourth-order Adam-Bashford-Moulton method:

h . . 5 :
predictor: Yo = Ya + 5(55“3]. - 59y, + 379, — 99:) + O(R*), (3.38)

h . . . 5
corrector: Yo = Yo+ £(9ys + 19y, — 53s + 9.) + O(h®). (3-39)

Fourth-order Runge-Kutta method:

L=ntetstste (3.40)
where /
ki =k f(t,m), (3.41)
. h
k. = h f(t, + §,y,), (3.42)
. h .
ks =h f(tl + 5;1/1 + %)1 : (3'43)
k, =k f(t, + hyyy + k), (3.44)

where h indicates the time. step size At.v B(;th schemes are standard integration
algorithms for ODEs. The stability regime of an optimal scheme must overlap with
the stability properties of the scheme used to evolve the free surface disturbance.
Therefore the scheme having the largest stability regime is not necessarily the most
efficient. The fourth order Runge-Kutta algorithm is one example. It is the mosf
stable, but is prohibitively expensive because it needs to evaluate the function, f,
four times at each time step. The fourth order ABM, on the othér hand, has a
large enough stability tegime for all practical problems studied and requires only
two evaluations of the .function,, f, at each time step. It is therefore the most ideal

integration scheme for this formulation.

The stability depends also upon the shape of the hull and its forward speed. So
whenever stability problems are encountered, this analysis can be revisited to isolate

the reasons for the instability. Thus it is extremely important to gain a thorough
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understanding on the numerical sta.Bility_ properties.

3.1.5 Numerical Filtering

Discretization of thé free surface not only presents difficulties in enforcing radiation
conditions, but also indﬁces spurious wave modcé, which could interfere with the
physical waves a.nd;! eventué.lly destroy the credibility of the solution completely. This
purely numerical p:henomenon was first revealed and discussed by Longuet-Higgins
and Cokelet [36] iIil their two-dimensional solution of nonlinear free surface waves.
They found that sa.%w’-tooth like waves were superimposed on the physical waves such
that the waves are z'iig'za,g alike if no preventive measure is taken. The 5-point Cheby-
shev smoothing (filtering) formula was used to remove the saw-tooth instability. The
general consensus oi; the causes of the problem is that there is high concentration of
fluid particles with i).ig’h speed in certain regions especially near the water crests. The
same problem was l;.ter encountered by the three-dimensional solution as well (Xi &
Yue {73]). Ii | |
’

In the present fo";mula.tion, there exists a spurious short-wavelength disturbance
pfopa.gé.ting in the séystem. These small spurious waves sometimes deviate from the
proPa.ga.tion of the pilYSical wave systems and even travel upstream, especially for the
"small waves of less t*ha._n five-panel-lengths. Without proper treatment, these small
waves could strongly impede the convergence of the numerical solutions. Nevertheless,
because of the size of the waves, it is believed that not much energy would be taken
out from the physical',ll system if a low-pass numerical filter over the .£ree surface is
applied to filter out E;thes’e small -eijroneou_s wave cgmponenfs, A general filtering
involves a series of of)era.tions: translation of the solution into the Fourier domain,
multiplication by the ﬁlter shape, inversion back to the physical space. Alternatively,
thc filtering may be pélerformed directly in tht_e physical space via discrete convolution,

!

as follows, !
+ oo

' | fi= Z W;Ji-j» (3.45)

- |
where f; is the filteted of the solution and w, is the weight function; which Fourier

60

|
}




transform is the desired filter shape. The energy taken out by the filtering process

should be kept at a minimum. In other words, the smart filter should retain the

physical wave, which are accurately presented by the numerical solution, and weed
out numerical noise, which is detrimental to the numerical solution. Longuet-Higgins
and Cokelet [36] introduced 5- and 7-point filters and demonstrated the superiority of

the former one. However even the 5-point filter is not ideal for the present formulation

* because it significantly alters the waves which are accurately resolved éspecia;lly in -

the neighborhood of uh. /27 = 0.2, where u is the z-component of wave numbers and
h, is the panel dimension in the z direction. So Nakos [45] devised a modified 7-point
filter:

w, = 0.701207, wy, = 0.230639, w,, = —0.100604, w,, = 0.019361.. (3.46)
And the corresponding Fourier transform is:
H(u) = w, + 2wy, cos 4 — 2w, cos 2u + 2w, cos 3u. (3.47)

These. three filter shapes are shown in Figure 3-4. The filtering scheme inevitably
removes some energy. Therefore the frequency of the application of filtering during
the simulation process should be minimized to prevent an excessive removel of energy.

Otherwise, it may be presented as smaller damping coefficients and consequently

larger body motions. Numerical results must eventually be shown to be insensitive to

the frequency of the application of the filtering process and some results in Chapter 4
" will demonstrate just that. Practically one application of the filter for every 20 time
steps has been found not to affect the body forces and yet to produce smooth wave

patterns for all cases tested.
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Chapter 4

Numerical Results |

4.1 Computer Implementation

The theory and the a.lgoﬁthms discussed in the previous two chapters are written
into a modular FORTRAN77 computer program, referred to as SWAN (Ship Wave
ANalysis). The SWAN program has been continuously developed for almost a decade. .
Past work includes the linear frequency domain version SWANI (progress documented
in Sclavounos & Nakos [61], Sclavounos, Nakos & Huang [63] and Nakos & Sclavounos
[46]) and the linear time domain version SWAN2 (first reported in Nakos, Kring &
Sclavounos [44] and recently in Kring, Huang, Sclavounos, Vada & Braathen [30]).
The Weak-Scatterer version of the code, which is a Jéna,jor contribution of this thesis,

represents the logical evolution of the SWAN project.

This version of the program is designed to efficiently simulate the nonlinear time -
domain ship motions of a steé,dily translating ship either oscillating at a prescribed
frequency (dubbed as forced motion) or freely floating in the presence of an incoming
wave (dﬁbbed as free motion). Because the basis flow is time-dependent, the Weak-
Scatterer version of SWAN carries out the setup and solution of the linear system of
equations at each time step, unlike the linear time domain SWAN2, which is divided
into setup and solve procedures in order to save computational time. The solution at

each time step mainly consists of:
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o regridding of the free surface and submerged hull surface.

e evaluation of influence coeflicients.
|

e solution of 4 mixed boundary value problem for basis flow quantities.
! .

e solution of a mixed boundary value problem for time-local flow quantities.

e evolution of "Ithe free surface conditions to obtain the updated values of wave

| . N
elevation and velocity potential on the free surface.
l

* solution of a'mixed boundary value problem for disturbance flow quantities.

|
e updating of t':he flow quantities.

Figure 4-1 shows t-Ille detail work flow of the code.

The execution (E)f the Weak-Scatterer program represents a significant computa-
tional effort. For al'l. computational domain consisting of 2000 total panels, it takes
about 48 hours to attain a steady state solution on a DEC Alpha 600 W’orksta.tion.
The majority of the cost is associated with the solution of the mixed boundary value
problems, es;pec’ia.ll)f the evaluation of the influence coefficients, which accounts for
about 50% of the ttl;)ta.l cost. The solution of the resulting full, dense linear system
of equations also re:gu.ires a significant computational expense. The solution of the

evolution equations ‘,constitﬁtes only relatively minor computational costs since the
equations are spa.rse'l and narrow-banded. An improved LU decomposition is used

in the solution of tlie linear system of equations and requires between O(N?) and

O(N?) floating point, operations, with N denoting as the total number of panels. The

Multipole; a O(N) ,s:‘lcheme,' and pre-corrected-FFT accelerated iterative methods, a-
O(Nlog N) séheh:le, (N abors, Phillips, Korsmeyer & White [41]), rhight in the futire

be used to reduce t‘heE computational time. At this stage, the oval-type grid described

in the previous gh_apt;er is used to improve the efficiencies of the computational algo-

rithm. ,

i

Between the forceci and the free motion simulation, the latter is twice as expensive

since two functional ew!lra.lua.tions for the hydrodyna,mic wave forces are required by the
|
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Figure 4-1: Work Flow Chart for the Weak-Scatterer Version of the SWAN2 Program.

65




ABM,prédictoI-cf‘lor,rector scheme which integrates the equations of motions for the
| ,
motion responses.

4.2 Feasibility Study

The nonlinea.r’ities-; associated with steep ambient waves and large a.mplii:ude body mo-
tions are essential :for the accurate solution of free surface ship flows. It is however very
expensive to solvé even a partially nonlinear solution based on the Weak-Scatterer
hyﬁothcsis. Hencel it is wise to assess the feasibility of the proposed Weak-Scatterer
solution. '
|
The linear versibn of the SWAN2 program provides an intermediate tool to achieve
this objective. F1rs|lt of all, the linear time domain solution from the computer code
SWAN2 renders a %nea.sur-ing stick for any meaningful -de-velopmenlt in the nonlinear
solutiop, while expﬁe:imenta._l results serve as another. Then, the linear me{;hod has
developed a va.ri,a.ti'g)n, referred to hereafter as qua.si:nonlinca.r SWAN2, to account
for some nonlinear (%ﬂ'ects of hydrostatic and Froude-Krylov forces, while keeping the
hydrodynamic probi‘em still solved by a purely linear approach. In other words, the
hydrodynamic solutii_on is achieved by solving a boundary value problém over the free
surface which is sti]l.vdeﬁned as a flat surface z = 0 and the weétted body surface which
is the suﬁfaCe.intercef)ted by calﬁn water. The nonliﬁea.f hydrostatic effects are however
included by adding 1%he difference in hydrostatic forces between what is obtained by
integrating the hydfpsta.tic pressure over an instantaneous submerged hull surface
and what is .obta.i>ne|“d by integrating the hydrostatic pressure over an calm-water
submerged hull Surfa.'{ce. And the nonlinear Froude-Krylov force is obtained by the
integré.iion of incidenillz Wwave pressure over thé instantaneous, instead of the calm-water
wetted hull surface. S%) the forces exerted on the body by the fluid are the sum of linear
hydrostatic forces, Hnl'lea.r hydrodynamic forces, and the forces the pure linear theory
does not account for st;lch as the nonlinear hydrostatic force components and honlinear
Froude-Krylov forces.:‘: The approach is of course not at all physically consistent and
scientifically rigorous, 'l'nevertheless it provides the evidence that nonlinearities of steep
|
l

| o S ) e
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incoming waves and large body motions are indeed crucial for accurate predictions of

motion responses for many practical applications.

4.2.1 Series60 (Block Coefficient 0.7)

The free motion tests on the Series 60 hull in head seas serve to validate this quasi-
nonlinear method. Because the Series60 hull does not have significant -waterline geo-
metric changes, and it can beé consideéred as a linear seakeeping hull. The nonlinearities
introduced by the nonlinear hydrostatié and Froude-.Kr,ylovl forces are expected not to
cause the quasi-nonlinear predictions to deviate much from the linear computational
results, and more importantly, the experimental J;-neasu,réments. Figures 4-2 and 4-3
display the results for a Series60 (C, = 0.7) hull for a wide range of incomninig waves at
a Froude number F = U/\/g:]_f= 0.2, where U is the ship speed in the z—direction, g
is the gravitational acceleration and L is t-he-ship length between its perpendiculars.
The comparisons of heave and pitch Response Amplitude Operators (RAO) between
the linear SWAN2 computational results, the linear SWAN2 with nonlinear hydro-
static and Froude-Krylov correction predictions and the experimental measurements
are satisfactory, as c#pected. The experiment was carried out by Gerritmma, Beukel-
man and Glansdorp [16]. Here, the RAOs calculated are actually the ﬁrst-ha,.lzmbnic

amplitude of the heave and pitch signals.
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Figure 4-3: Amphtude and phase of the pitch response amplitude operator (RAO)

for a Series60 (C, = 0.7) hull at F = 0.2 in head seas.
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4.2.2 Snowi)rift (Ballast)

|
The tests on the SnowDrift hull are carried out to demonstrate that the nonlinearities

on the motion res_'plIOnsesy, especia.lly at the resonance. The SnowDrift hull is a slender
body container vessel with moderate bow flare and stern counter. Figure 4-4 shows
its body plan. At the ballast condition '(8 meter draft), the counter stern is just
above the calm Wai;erline, and apparently it will be in and out of the water Whﬂe the
vessel actually tra.vf:els in ambient waves. Thus, the quasi-nonlinear approach is ex-
pected to be useful:!in this case. Figures 4-6 and 4-7 show comparisons of the motion
RAO’s betweén the linear and quasi-nonlinear calculations and experimental data.
The predictions of the quasi-nonlinear scheme based on the combination of the non-
linear hydrostatic and Froude-Krylov forces and linear hydrodynamic coefficients are
superior to those ofl‘-i the linear computational method, especially near the resonance.

This is not S‘urp'risixlllg since at resbna.nge, the larger miotion amplitude of the vessel

causes deeper Subm(‘]eggence of the counter stern and consequently alters significantly
the hydrostatic cha.r'_a.cteristics. It is also noteworthy that the nonlinearities are more
important on the pii:;C.h than on heave motion.
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4.2.3 Stead;y Sinkage/Trim and Wave Elevation

Although the quasi-nonlinear scheme gives a better prediction of the motion .resbonse
RAO’s’f, thgfe 1s st,‘i:]l considerable discfepancy between the calculations and the exper-
iménta.l' mca.suren;ents. It is believed that this partially stems from the interactions
befween the stea.dglf and unsteady flows. For ships with significant bow flares and stern
* counters, the s’tea.!'!dy sinkage and trim are sometimes proven to be very important,
(see for example tli}e work of Sclavounos, Nakos and Huang [63]). The extia wetness
of the bow flare a.Illlld stern. counter due to steady sinkage/trim and steady wave ele-
vation that is not accounted for in the pure linear theory, often alters markedly tﬂe
ship hydrostatic cﬂa.ra.cteristics and consequently influences the unsteady oscillatory
"fluid flows around éhe,vessel. Figu;e 4-8 and 4-9 display the importance of the steady
sinkage and trim. iThe inclusion of the stéady sinkage/trim and steady wave eleva-
tion, shows some improvement in the predictions of motion responses, particularly at

resonance and for tllhe, pitch motion.

|
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for the SnowDrift (D = 8(m)) hull at F = 0.325 in head seas. Demonstrates the
importance of the steady sinkage/trim and wave elevation.
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4.3 Weak-Scatterer Computation

4.3.1 Validation of Body Boundary Conditions

In the linear solution, the interactions between the steé.dy and unsteady disturbances
" are accounted for by the so-called m-term, that was first derived by Timman and New-
man [66]. its non-negligible leading order importance was later stressed by Ogilvie
and Tuck [54], who reduced it into a compact formula amenable to computation. The
Neumann-Kelvin model has been shown to be inadequate precisely because of its poor
treatment of m-terms. That is where double-body model really shows its strength

(cf. Nakos and Sclavounos [43])

In the Weak-Scatterer formulation, the exact body boundary conditions are en-
forced over the instantaneous body wetted surface. The m-term effects, directly result
from the linearization of body boundary conditions, should be automatically included
and the need for an explicit m-term in the body boundary conditions hence ceases
to exist. To ensure this is the case, forced motion tests are conducted using the

Weak-Scatterer SWAN program.

Forced motion simulations are performed for a Series60 (Block Coefficient 0.7) hall
in order to compute the force coefficients such as added mass and damping coefficients.
Extensive experimental data are available for both the force coefficients and motion
responses. Therefore it is a good test to validate the algorithms, and in particular the
» compa.i_:ibi.]ity of the linear SWAN2 predictions with those from the Weak-Scatterer
'a.lgorit'hm.

The ship is assumed to undergo forced osqi]lgﬁons at a variety of pfescribed fre-
quencies (w\/m = 2.0 — 5.0, where w is the osci]la.tory frequency nbndimensi_bna.l-
ized by the g_ra.vita.tiona] acceleration and Si:lip length), while steadily translating at
a Froude number F = 0.20. Because there are no incoming waves, only th¢ radia-
tion problem is being studied. From the recorded force history, the force coefficients
are extracted using a Fourier transform (FT). Figure 4-10 shows the comparison of

the experimental measurements and the predictions of linear SWAN2 and the Weak-

7




Scatterer SWAN2 for the diagonal heave é,ﬁd pitch added mass and damping coeffi-

cients, while Figure 4-11 illustrates the correlation for the cross-coupling added mass

and damping coefﬁcients. All computational results are convérgént with respect to

panel number and time step. The‘results i]lustratcd in the figures are calculated using
1800 panels over half of the computationa._l_— domain (240 panels on the body sutface)

and 0.06 seconds as the time step. The agreement is generally satisfactory. As ex-

pected, the linear and Weak-Scatterer calculations are in good agreement i__)e(-:ause the -

Series60 hull is considered a slendeér and “linear” ship. This exercise serves to demon-
strate that the m-term effects are adequately accounted for in the Weak-Scatterer

program via the enforcement of the nonlinear body boundary condition.
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Figure 4-10: Diagonal added mass and da.mping coeflicients for the Series60 (CB =
0.7) at F = 0.2.
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4.3.2 Convergence Studies

For a time domain numerical scheme to become credible, it has to achieve both
temporal and spatial convergence. Moreover, computations should not be sensitive
to changes in the other parameters of the numerical algorithin as well, such as the
filtering frequencies, the beach size and the cooling strength. This section sets out
to validate the convergence properties of the algorithms and recommend. values for

these parameters.

In the following studies, the ship is traveling é.t F = 0.325 in head seas at the
encounter frequency of wy/L /g = 3.408, or near the résonant peak. The incident wave
amplitude is A/L = 0.015.

Figure 4-12 illustrates the convergence of the motion with respect to the spatial
discretization. Using 30, 40 and 50 panels along the ship waterline with the total num-
ber of panels on half the body surface and free surface running from 1800, 3000; 4200
respectively, the spatial convergence is quite adequate with no obvious graphic dif-
ference between the two densest cases. Each discretization employs the same domain
extent, numerical beach and girth-wise panel number (10 panels). Also, a common
time-step of t\/g/_L = 0.01 was chosen that fa.]lé within the stability and éonvergence
conditions for all these cases. It ié interesting to note that the panel number required
for convergence (150 MB memory size) is well within the computational ca.pa.bkility' of

a personal engineering workstation.

The temporal convergence is demonstrated in Figure 4-13. With the same geo-
metric discretizations, nainely 30 panels along the ship waterline, tests are cbnducted
to compare results for time step sizes of At\/j/_L = 0.005,0.010 and 0.020 with one
spatial filtering at every twenty time steps.r Even though there would be actually
more filtering a,bp].ied for smaller time step size cases for the same period of time, the

convergence is still considered good.

. The panelization of the free surface introduces some astificial waves, which some-

times even travel upstream and could distort the numerical solution. In almost all
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nonlinear free surface wave simulations, this type of numerical instability has been en-

countered and commorily solved by the application of filtering or smoothing scheme.
The detailed ‘ﬁltéring scheme is discussed in the previous chapter and herein it proves
that the computation results are convergent with respect to the ﬁ_ltcring frequency.
Figure 4-14 shows seﬁsitivity to the spatial filtering. Various filtering ﬁe(iucncies‘ (one
application of filtering per 20, 40, 80 time step) »ha.vc been tested and the results are

shown no obvious sensitivity to the ﬁltering rate.

The discietization of the free surface presents another difﬁ_c‘ul_t‘y? namely the en-
forcement of the radiation condition or the wave reflection from the free surface
boundary. This wave reflection works in a similar manner as the wave reflection
from towing tank walls, Therefore a numerical beach similar to the physical beach
in a towing tank is designed to minimize the wave reflection. Hére' the convergence
of the algorithms for two major beach parameters: beach strength and beach size, is

studied, and shows good beach-independence.
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Figﬁre‘ 4-12: Spatial convergence of heave and pitch motions for the SnowDrift hull
(D=8m) at F = 0.325 in incident head seas, at an encounter frequency of w(L/g)'/* =
3.408.
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Figure 4-15: Convergence of heave and p1tch motions with respect to beach size for

S§7-175 at F = 0.275 in incident head seas, at an encounter frequency of w(L/g)* =
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Figure 4-16: Convergence of heave and pitch motions with respect to beach starting
point for S7-175 at F = 0.275 in incident head seas, at an encounter frequency of
w(L/g)"* = 3.628.
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4.3.3 Oval-Type Grid

As discussed in the prévious chiapter, the oval-type free surface grid may lead to
considerable savings in computational efforts in terms of both CPU hours and memory
storage, often by as much as four times. But be’fére any confidence is given in this type
of geometric disﬁcretiiati()n, it is necessary to carfy out careful tests on convergence and
stability. Since the field problem being solved is elliptic, the coarse grid in. the outer
domain may have some effects on the pr’essﬁre. integration over the body. However
the oval-type free suiface grid, developed in this thesis, is found not to induce a large

error.

As shown in Fi‘g'u‘i'e» 3-3, the oval-type grid is determined primarily by three pa-
rameters: the width of constant spacing inner region, R¢, the width of Ithe whole
region, R;, and the constant spacing in the inner regioh, A. Figures 4-17, 4-18 and
4-19 show that this oval type of geometric gridding is convergent with respect to all

these parameters.

In Figures 4-20 and 4-21, the computational results between the oval type and the
rectangular free surface grid are compared. The agreement for short waves is very
satisfhctory, but there are some discrepancies: for long waves. It is believed that the
differences come from the inadequate resolution in the far field which has far more
influence for long W‘éires. Another reason may be that the domain andlbeach are
not large enough to accommodate long waves. Therefore for long waves, use of the

rectangular frée sutface grid might be preferable.
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Figure 4-17: Constant domain width convergence of heave and pitch motions for the
SnowDrift hull (D=8m) at F = 0.325 in incident head seas, at an encounter frequency
of w(L/g)'* = 3.408.
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Figure 4-18: Whole dofna.in width convergence of heave and pitch motions for: the
SnowDrift hull (D=8m) at F = 0.325 in incident head seas, at an encounter frequency
of w(L/g)'* =3. 408
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Figure 4-19: Constant domain spacing convergence of heave and pitch motions for the
SnowDrift hull (D=8m) at = 0.325 in incident head seas at an encounter frequency
of w(L/g)'/* = 3.408.
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Figure 4-20: Comparison between rectangular and oval free surface grid:of heave
motions for the SnowDrift hull (D=8m) at F = 0.325 in 1nc1dent head séas at an
encounter frequency of w(L/g)'* = 3.408.
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Figure 4-21: Comparison between rectangular and oval free surface grid of pitch
motions for the SnowDrift hull (D=8m) at F = 0.325 in incident head seas at an
encounter frequency of w(L/g)'/* = 3.408.
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4.3.4 Series60 -(Block Coefficient 0.7)

Again, before testing the program for more practical cases, this numerical method is
tested for a Series60 (Cy = 0.7) hull. The nonlinear effects are expected not to be
important for this type of hull, and the linear and nonlinear predictions of motion
responses should be close. Figures 4-22 and 4-23 show comparisons between the linear,

nonlinear cpmput‘atiobn.a.l results and experimental meas

satisfactory, as expected.
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Figure 4-22: Amplitude and phase of the heave response amplitude operator (RAO)

for the Series60 (C, = 0.7) hull at F = 0.2 in head seas.
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Figure 4-23: Amplitude and phase of the pitch response amplitude operator (RAO)V
for the Series60 (C, = 0.7) hull at F = 0.2 in head seas.




4.3.5 SnowDrift (Ballast)

The usefulness of the Weak-Scatterer version of SWAN2 program is demonstrated in
Figures 4-24 and 4-25, which show the amplitude and phé,se of the head sea, motion re-
sponse amplitude operators over the range of incident wavelengths for a slender-body
containership: the SnowDrift hull in ballast condition. The computatioha.l results
shown in previous sections are included to illustrate the progressive improvement in
the numerical predictions relative to the experiment data by the gradual account
of nonlinear éffects. The predictions of the Weak-Scatterer SWAN2 are consistently
better than all other calculations for both heave and pitch motions, compared with

the experimental measurements.
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Figure 4-24: Amphtude and phase of the heave response amphtude operator (RAO)

for the SnowDrift (D = 8(m)) hull at F = 0.325 in head seas.
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Figure 4-25: Amplitude and phase of the pitch response amplitude operator (RAO)
for the SnowDrift (D = 8(m)) hull at F = 0.325 in head seas.
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4.3.6 S7-175 Containership

The Weak-Scatterer version of SWAN2 program is also tested for a more conventional
containership S7-175, for-vlvhiéh experimental data are available and trusted. Figﬁre
4-5 shows its body plan. The output of the heave and pitch motion RAOQ%% is shown
along with_rcsults ﬁom the linear SWAN2, the quasi-nonlinear SWAN2 and exper-
iment measurements, in Figures 4-26 and 4-27. The experiment was conducted by
Dalzell, Thomas and Lee in 1986 [9). The S7-175 hull is traveling at F = 0.275 in
head seas. Again, compared with those of the linear and quasi-nionlinear versions, the
predictions of the Weak-Scatterer version are consistently. better for both heave and
pitch motions in correlation to the experimental results. The improvement is clear, .
particularly at the resonant peak, and it shows the importance in the inclusion of
bow flares and stern counters in the calculations. The effects of the nonlinéar Froude-
- Krylov forces, oﬁgiﬁa.lly* thought to be dominant, turn out to be less significant than

the nonlinear hydrodynamiC‘ effects accounted for by the Weak-Scatterer formulation.
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Flgure 4-26: Amplitude and phase of the heave response amplitude opera.tor (RAO)
for the S7-175 Containership at F = 0.275 in head seas.
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Figure 4-27: Amplitude and phase of the pitch response amplitude operator (RAQ)

for the S7-175 chnta.inersh.ip at F = 0.275 in head seas.
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4.3.7 Nonlinearities and Wave Patterns

Figure 4-28 shows four snapshots of the hull positions relative to the ambient waves.
at different instants during the simulation. The S7-175 containership is translating
at F = 0.275 in head seas at the encounter wave frequency .w\/—g/—L = 3.629. The
classical linear theory presumes the ship stays in the calm-water position (the top
figure) at all times and consequently it misses the geometric nonlinear effects (bow
flares and stern counters) while the ship is actually moving in and out of water, as

demonstrated in the figure.

Figure 4-29 displays the sensitivities of the heave and pitch motion RAO to the
incoming wave slopes. The Weak-Scatterer version of SWAN is tested for the S7-175
containership traveling at F = 0.275 in head seas at the encounter wave frequency
wy/g/L = 3.629, and with increasing ambient wave amplitude. The heave and pitch
motion RAQ’s show evidént wave steepness depéndenc"y. The steeper the waves be-
come, the lower the RAQ’s. This is understandable because larger waves presumably
submerge more hull surface and therefore increase the hydrostatic restoring forces.
It is also interesting to note that for small wave slope, the Weak-Scatterer predic-
tion does converge to the linear resulf, thus demonstrating the consistency of the

Weak-Scatterer formulation.

Figures 4-31 and 4-32 show the disturbance wave profiles for the SnowDrift (bal-
last) hull, traveling at 7 = 0.325 in head seas with the ratio of the incoming wave
wavelength over the ship length between perpendiculars A/L = 1.50, at four in-
stances. The corresponding disturbance wave patterns calculated by the linear version
of SWAN2 are also included for comparison. The waves actually look quite similar,
but there exist distinct differences in pressure distributions over the hull surface. This
again shows the importance on the actual geometri¢ positions of the ship. A snapshot

of the disturbance wave pattern in the whole domain is provided as well.




Snapshots of Ship Position

Figure 4-28: Sn‘apshots of hull positions‘:for the S7-175 ¢ontainership at F = 0.275 in
head seas. ' o '
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Figure 4-29: Nonlinearities of motion RAQ’s for the §7-175 containership at F =
0.275 at different incoming wave slopes. In head seas with the ratio of the wavelength
over ship length at 1.25.




Distance Wave Pattern

Figure 4-30: Disturbance wave patterns for the SnowDrift (ballast) conta.inership at
F =0.325. In head seas with the ratio of the wavelength over ship length A/ L = 1.50.
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Chapter 5

Conclusions and Future Work

In this thesis, a robust humerical algorithm has been developed to simulate the non-

" linear free surface ship flows and compute the motion responses for a variety of ships

in steep ambient waves. It serves as a numerical tank to differentiate among all

kinds of nonlinearities embedded in the problem and eventua.llj provides gtﬁ_dance in

- studying the exact fully nenlinear ship wave problems.

The numerical method is based on a carefully examined theory — the Weak-
Scatterer hypothesis, which assumes a relatively small ship-generated disturbances
even in the presence of steep incoming incident waves and large body motions. This
represents a major step towards the complete solution of the exactly nonlinear prob-
lem. In classical linear theory, it is presumed that the incoming waves and wave-
induced body motions are so small that all distuibances are linearizable over the
forward speed effects. Although the linear theory has its applications and often pro-
duces reasonable results, it fails in many practical applications because it cannot
properly handle complex ship geometry and the nonlinearities associated with steep
ambient waves. The Weak-Scatterer theory, on the other hand, identifies accura,.tely _
and comnsistently the nonlinearities of the ship geometry and incoming waves since it
imposes the body boundary conditions over the exact instantaneous submerged body
surface and the free surface conditions upon the incoming wave profile, therefore being

a drastic departure from the linear théory. Classical linear theory enforces the body
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boundary c,onditi;ons' on the calm-water bddy position and the free surface conditions
on the calm watet free surface plane. Even though the Weak-Scatterer theory invokes
certain approxim%mt’ions,- in that it assumes that the ship-generated disturbances are
comparatively small and it is not capable of modeling “local” extreme events such as
wave breaking, slt'_a.mming and deck-wetness. This thesis however has demonstrated

that the theory is ‘able to capture “global” nonlinearities and improve the predictions

of motion 'responsé,s for ships traveling in rough water and moderate Froude numbers.

The. numer-ica.l"lmct',hod has evolved from a decade’s experience in developing the
ffeqﬁencyr atid time-domain Rankine panel methods, originating from a solid foun- -
dation of linear p{fograms — SWANI1 and SWAN2, and founded upon a thorough
understanding of 121umer—ica.l stability and etrér propagation over free surface panel
discretizations. The Rankine panel method discietizes both the free surface and the
submerged hull sur:’;face, and requires the distribution of Rankine sources /dipoles over
the djscretized'dor:l;ains. It is not the most elegant method in enforcing the fiee surface
conditions and the radiation conditions. It however has demonstrated a large degree
of flexibility in .adopting different kinds of free surface conditions (linear or nonlinear)
in the linear programs and again in the present nonlinear extension. A bi-quadratic
spline scheme is uséd for the spatial discretizations of all quantities of interest such
as the velocity potentials, the normal velocities and the wave elevations, coupled
~ with the temporal éj,sCretizations of the so-called Emplicit (Explicit-Implicit) Euler
scheme. The a.lgorit:hm has been developed through careful numerical error analysis
and ga.inéd from, the% development of the linear methods. Numerical etrors introduced
by the discret’iza,t'ion:: of the free surface are controlled by the modified 7-point spatial
filter. The truncatié)g of the free surface is made possible by the implementation
of numerical beache% which damp out the wave reflections frdm the boundaries. A
nonlinear equation ogf motion is derived and integratéd by the fourth-order Adams-
Bashford-Moulton. scheme with the fourth-order Runge-Kutta scheme for the first
four time steps. T‘hclitvime-ste__p is selected from the stability criterion deriyed from a
von-Neumann error a,l;na.lysi_s.- Anr extensive set of calculations of motion responses has

been carried out for realistic 'sh‘ip forms to demonstrate the accuracy and robustness
[
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of the Weak-Scatterer method.

The numerical method in this thesis has been validated against exhaustive nu-

~ merical experiments. First of all, the time_—dom’a.in linear program (SWA__N2)_ and its

quasi-nonlinear variation are used to demonstrate the feasibility of the proposed study.

Nonlinear hydrostatic forces and Froude-Krylov forces are included into the linear so-

“lution with the hydrodynamic problem treated linearly. This somewhat inconsistent -

extension proves the importance of the nonlinearities associated with the hydrostatics
and incoming waves since it improves the predictions of the motion response RAQ’s
over the classical linear theory. Secondly, forced motion tests have been conducted
to validate the enforcement of the body boundaty condjtibns over the exact instanta-
compared to those from the linear computations and experimental measurements.
Thirdly, free motion simulations have been carried out for a Series60 hull and two
practical ships. Motion response RAOs in head seas and disturbance wave patterns
are computed. All compiutational results from the Weak-Scatterer method demon-
strably improves over those from the linear versions and quasi-nonlinear version of the
SWAN program in comparison to experimental measurements. This new nonlinear
extension of the method is therefore expected to serve as a valuable computer analysis

and design tool for conventional ships.
Future developments are planned in the following directions.

e Global structural load computations: A safe design for a ship hinges upon
accurate predictions of the global structural loads. This nonlinear method needs
to be extended to compute the global forces.

e Oblique wave applications: At the present, the method can only simulate
free surface flows in head seas. An oblique sea extension should be developed
-and eventually simulations in stochastic sea states should be integrated into the

method.
o Transom-stern ships: Transom-stern ships progressively become more and
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more popul;';r. If would therefore be useful for the method to be able to handle
t;;a,nsgx::‘l+st_e!'|1'n ships. There has already been some experience with the use of
the linear n:!_let-hod in dealing with transom sterns. Conditions of continuity in
the wave elevations and pressures at the transom stern and the free surface have
been enforce"lid,-a,nd some promising results have been obtained. Extensions with’

the present 1i10nlinea.r method would therefore be forthcoming.

. Computatibna] efficiency: For a typical commeicial ship application, the
program curfently is running at a ratio of computational simulation time to real
time in the order of 1000:1, with the linear programs in the order of 10:1. It is
therefore important to improve the computational efficiency so that the program
could be useq in the actual designs of commercial ships. Previous chapters have
discussed canﬂidate schemes to increase the efficiency of the method, such as an
O(N) algorithm for solving the boundary value problems or a matching scheme.

Further reseaich in these directions is necessary.

o Six-degrees-of-freedom: It should not be hard to extend the code to solve
the fully nonﬁnéu equation of motion in six-degrees-of-freedom. The lingering

L . . ) B .
question would be whether the inclusion of the nonlinear terms in the equation

-of motion affec'ts the numerical stability properties of the integration algoritﬁi:hs

- o Slamming: Slammmg is a highly local nonlinear effect which evidently cannot
be handle by th.ls Weak-Scatterer approximation. Most studies to date trea,t
the two-dimensional problem (cf. Zhao, Faltinsen and Aarsnes [76]). The study

vof‘ a three-dimeénsional slamming model is needed. This could be derived from
|

the pfeSent-no#linear ship motion method combined with the development of
a localized thre‘le-dimensional_ trea;tment of the sIa.r’nmin_g region along the lines

suggested in the above reference.

In conclusion, this work produces a robust and accurate numerical tool for naval
architects at the a,na.liys'is stage of designing a variety of ships. And it also provides
the guidance in fﬁrthilef development for more complex problems encountered in con-

structing modern con:‘\lmerci‘a.l ships.

| |
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Appendix A

Discrete Integration Schemes and

their Dispersion Relations

Consider a linearized. free surface wave problem, that is governed by the linear free

surface conditions,

9% 4 8¢ —
{ :: + :? Qégc } , on z=0, (A.1)
a T UE’& = 5z '

and the Laplace equation, which is enforced by applying the Green’s theorem,

850 - [ FeE06EHE = R, (A2

where ¢ is the unknown and R(Z,t) is the right-handed forcing.

To solve these equations numerically, various schemes might be used. The discrete
integration schemes and their related numerical dispersion relations are derived, and

reproduced as follows,

e Fully Explicit Euler Scheme:

(¢);Bii_(¢z);si._i = R?, . (A-3)
W5 — @k g | ugyD, = —gm)B,, (A.4)

At
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i (71)%%3 + U("’)n (d’z):Bu (A.5)

i
I

|

W = g2 2(ﬂ’+zﬂF,,D)z+(ﬂ’+2zﬂFD FID*+8) = W+0(h*, At). (A.6)

o Fully Imp‘hc.q: Euler Scheme:

A . (9%Bs- (4.8 = B, (A7)
(¢) A— (4’); Bi;+ U(¢);*'Dy; = =g(n)*' By, (A.8)
\ ——(7’)"“ (7’)’ B.-,- + U(ﬂ):“D-, = (d’z);‘!“B'ij! (AQ)

W= (ﬂ*_zz{ﬂF,,p—F;D‘z+5)z=—2(ﬂ=+iﬁphb)z+ﬂ= = W+O(R, At). (A.10)
|
¢ Emplicit Euler Scheme:

|

L @B — (438, = B, (A1)
O g s upD, = B, (AL
| (n)ﬂlAJBﬁ‘*'U(ﬁ);D-‘j = (#:);B;. (A:13)

W = (8 — iBFD)s* — (26" + F*D" — §)z + (B +iBFD) = W + Ok, At).
|

(A.14)
o Trapezoidal Sc‘_heme:

'] (¢);Bi;— (¢.);S: = R, (A.15)
ol LN TS PN U 1 PN,

() + (n; M+, (¢,,);+*+(¢;,_);, |
TB +U—2—D,, = 2 B,-,-. (A17)

ll 2 272

W= (@ -ighp - B2 =8y BT S,

ED - S) = W+0(h’ At?). (A.18)

4

|

+ (8 +iBF,D ~
! .
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Appendix B

Generation of the Oval-Type Grid

The oval-type grid is a subset of the boundary-conforming grid system. The gen-
eration of such a system is accomplished by the determina_,tioh of the curvilinear
coordinates in the interior of a physica.l region from speciﬁed values. (and/or slopes
of the coordinates lines intersects the boundary) on the boundary of the physical
region. In this study, the physical region is the free surface and the boundary is the
ship waterline. |

The field values of a function from prescribed boundary values may be obtained
in a variety of ways, e.g., by interpolation between the boundaries. The solution of
such a boundary-value problem, however, is a classic example of partial diﬁ'ereﬁtia.l
equations. Therefore, it is logical to take the coordinates to be the solutions of a
system of partial differential equations. Since in this problem, the coordinates (and/or
slopes) are specified on the entire closed boundary of the waterline hull surface, the

equation must be elliptic.

The simplest elliptic partial differential system and one that does exhibit consid-

erable smoothness is the Laplace equation:

oo +&, =0, | (Bl)
Tes + My = 0, (B.2)
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where (z,y) is 'th‘.le grid point in the physical domain and (¢£,7) is the corresponding
grid, point in the éomputational doma.in; This Laplace system is essentially to control
the ma;pping between the physical and transformed domains. And this one-to-one
mapping is guaranteed bythe extreme principles, i.e., that extrema of solutions cannot
occur Within the %ield, which are exhibited by elliptic systems. The Laplace system,

ho’Wever‘,ilacks coﬁtrol on the coordinate line distribution in the field.
Another elliptic system, the Poisson equation:
l .
L &t &, = P), (B.3).

| Tee + M5y = Q(€,7); (B.4)

is able to exercise ils}ome degree of control on the spacing and orientation of the grid
lines by specifying'the control function (P, Q). Equations (B.3) and (B.4) are then -
transformed to 'thei computational domain by interchanging (z,y) and (¢,7): This

yields a system of tEWO elliptic equations in the form of,

| azy = 2620 + 12 = —T' (P2 + Qz,), - (B.3)
'! Yo — 2BYen + VY = —I(Pye + Qy,), (B.6)
where l" a=z 4y (B.7)
, B =z, + Yy, - (B.8)
| Y=ty | N (B.9)
N ) | (B.10)

| B(Em) — T

This system of equainnS' is solved on a uniformed-spaced grid (¢,7) in the computa-
. .

tional space for (:r:,y)I coordinates of each point in the physical space. The derivatives

are approximated by i5'ﬁn.i1;e difference schemes and the system of equations are solved

) |
by an iterative algorithm;
|
'|
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