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Abstract
A Weak-Scatterer theory for the calculation of motion responses of a ship traveling
with a mean velocity in a heavy sea state is developed In contrast to the classi-
cal linear theory, the amplitude of the incoming wave and the body motion is not
restricted, while the ship-generated disturbances are assumed to be comparatively
small. A boundary-integral forinúlatión, based on the Rankine source Green func-
tion, is studied with focus on the treatment of large ambient waves and ship motions
A nonlinear equation of rigid body motion is derived

A Rankine panel method, which has been developed for the frequency- and time-
domain solution of three-dimensional ship flows, is improved and implemented for the
study of nonlinear seakeeping problems The enforcement of the exact bo4y bound-
ary conditions and the evaluation of the partial time-derivatives in the free surface
conditions are examined The free surface conditions are integrated with an Emplicit
(Explicit-Implicit) Euler scheme and the nonlinear equation of motion is solved by
a fourth-order predictor-corrector method. Founded upon a solid understanding of
the numerical error propagation and stabthty properties, the numerical method has
proven to be convergent, stable and accurate. Schemes necessary to make the method
more efficient are also discussed.

Numerical computations of ship motions are performed for a variety of ships a
Senes6O hull for method validation, two conventional containerships for practical ap-
pliçations. The numèrical solütiöns Offer a clear improvement over the linear theory
and a quasi-nonlinear method, and are found to agree well with experiment measure-
ments The nonhneanties associated with steep ambient waves and ship hydrostatics
are shown to be important in accurate predictions of ship motion responses

Thesis Supevisor; Paul D Sclavounos
Title: Professor of Naval Architecture
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Chapter 1

Introduction

1.1 Backgröund

The tiltim3te criterion fôr a successful ship hull design is how economically and safely

the ship travels in an unpredictable, sometimes hostile, ocean environment Since any

accident could mean a disaster for life, property and the environment. In praçtise,

however, the. design process for ships still relies primarily on semi-empirical rules and

the designer's experience. These empirical designs do not a1way produce the most

efficient ships. Furthermore, a semi-empirical approach would fail for a new ship

concept siùce there is not much design experience available for such a ship. Therefore,

a good naval architect should have a thorough understanding of ship motion responses.

Froude [14] and Krylov [31] were the first few scientists who studied hydrodynamic

aspects of ship motions. But the equation of motion they derived consisted of only

mass, linearized restoring forces, and the. Froude-Krylov excitation force. This exci-

tation force was obtained by integrating just the incident wave pressure OVEr the still-

water submerged ship surface. They did not or cöuld not analyze the hydrodynamic

disturbances associated with the presence of the ship hull because the theoretical

understanding and computational capabilities available today did not exist at that

time. A century later with increasingly powerful computers and sophisticated linear

theory of ship motions (cf Cumxmns [7], Wehausen [72], Ogilvie [53] and Newman
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[51]), this thesis approaches the complete nonlinear problem of ship motions in steep

ambient waves.

The complete problem of ship motions is fully nonlinear and strong nonlinearities

exist in almost every phase of the problem.

Free Surface Nonlinearities

The free surface conditions are strongly nonlinear containing combination

of nonlinear terms of unknown quantities and are applied on an unknown

surface, which itself is a part of the solution.

There m3y be nonlinear interactions among different wave frequency com-

ponents in the form of energy inter-exchanges, that might result in the

amplification of the amplitude of existing waves and/or the creation of

new wave components.

Nonlinear free surface dynamics sometimes corrects an unphysical behavior

predicted by linear solutions. For instance, at the critical frequency re., =

linear theory predicts that there would be energy concentration near the

ship with disturbance waves possibly of infinite amplitude.

Body Nonlinearities

Inhomogeneous body boundary conditions imposed upon an unknown body

surface introduce important nonlinear effects such as the interactions be-

tween the steady and unsteady wave flows. The leading order effects are

approximated in linear theory in the form of the so-called rn-term.

Non-slender body shapes often induce non-negligible ship-generated dis-

turbances. Oil tankers are the obvious examples that have large ratio of

beam over length, which may cause large disturbances and sometimes flow

separations.

Abrupt geometric changes near the cairn waterline such as prominently

flared bow and overhanging counter-top stern as shown in Figure 1-1 add

13



nonJinear effects that may not be adequately accöunted for by linear theory.

Geometric Nonlinearity

Counter Stern

Flared Bow

Figure Li: Counter Stern and Flared Bow Ship

. Other Nonlinèarities

i. Bernotilli's equation used for calculating the hydrodynamic pressure con-

tains quadratic terms of the gradients of the velocity potential.

2. A ship traveling at speed of above 50 knots has long been the dream

of naul architects and its study has been proposed around the industry
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recently. Designing such a fast vessel requires sufficient understanding of

the nonlinearities associated with high speed, slamming in particular.

The effect of viscosity on most water wave flows is negligible compared

to that of the fluid inertia and gravity, and is therefore neglected in most

hydrodynamics studies. But viscous damping could be very important in

certain cases such as roll motions, especially at resonance in beam seas.

Shallow water makes surface waves non-dispersive and consequently causes

a steep wave to steepen as it moves closer to sea shore. This introduces

strong nojinearities.

Summarizing the above, it is concluded that nonlinearities are essential in studies and

designs of modern ships which often travel in heavy sea states and possess variety of

geometric protrusions which cause linear theory to fail.

In occasions when a slender ship travels in a mild sea-state, linearization is

nonetheless justifiable and linear theory produces reasonably accurate and practical

predictions for ship motion responses, for example: the strip theory work by Korvin-

Kroukovsky & Jacobs [26], Salvesen, Tuck & Faltinsen [59] and the linear numerical

methods by Liapis [33], King, Beck & Magee [24], Bingham, Korsmeyer, Newman &

Osborne [4], Sciavounos, Nakos & Huang [63].

In the following sections, the history of linear theory will be briefly reviewed along

with the development of nonlinear ship wave theory. And finally, the structure of this

thesis is outlined.

1.1.1 Linear Theory

The study of the linear theory of ship motion is founded upon the brilliant hypothesis

of St. Denis and, Pierson [11], namely the principle of superposition. They postulate

that, at least for a long crested sea, the ship response to a random sea state may

be represented by the summation of the ship response to each individual component

wave. This theory ailows us to reduce the stochastic ship motion problem in an

15



irregular sea to the deterministic ship motion problem in regular waves and thus

greatly simplifies the problem.

Not satisfied with the simplistic approach of Froude [14] and Krylov [31], Michell

[40] toOk the first significa.nt step towards an account for the hydrôdy rnic distur-

bance due to a stçadily translating vessel, in his steady-state wave resistance theory.

He. drew his inspiration from thin-wing aerodynamics and developed a thin ship

theory, where. he ship is assume4 to havç vanishingly small beam compared to the

ship length, draft, and ambient wavelength (B « L, D, ). Peters and Stoker [57]

extended this theory to include unsteady motions otily to find non-resonant behavior

of ship responses Newman [47] adopted a môre systematic perturbation scheme,

which was able to recondilethe unphysical motion response predicted by Peters and

Stoker's thin ship theory.

A typical ship or an aircraft is usually elongated with a beam and draft of the

same order of magnitude and of one order smaller than the ship length (B, D « t).

With the same geometric characterist{cs, both ship and aircraft may be consideted

slender bodies. It is possible tO simplify the prob]em u±ther, by taking advantage of

thi unique. shape.

Assuming short waves ( «L), Lewis in 1929 [32] derived a strip theory to' in

tegrte the hydrodynamic forces longitudinally in terms of the tivó-dimensional quan-

tities of each tra erse section. This is another way to include the ship-generated.

disturbances that Froude and. Krylov had neglected. Kovin-Kroukovsïcy and Jacobs

[26] used numerical schemes to carry out the Lewis' integration and studied the ship

motions for realistic ships. A systematic analysis of strip theory was cartied oit by

Ogilvie and Tuck f54] and a rational approdmation provided for the effects of the

ship's forward spee4.

Inspired by the development of the slender body theory in aerodynamics, Urséll

9J, Newman & Tuck [48] and Mania [37] studied the unsteady seakeeping problems

16



based on the assumption of long waves Ç)t < L).

In order to bridge the gap between the short wave approximation (strip theory)

and long wave approximatiOn (slender body theory), Newman [50] and Sciavounos

[60] developed a unified theory, which accounts for three dimensionality in a more

consistent manner than pure strip theory and slender-body theory.

Modern computer technology enables simulations of free surface flows around a

realistic ship hull and greatly improves the accuracy of the predictions of linear ship

motions. With the schemes of finite. difference, finite element, and boundary element

as the choices for the numerical algorithm, the boundary element method (panel

method) has been established as a popular. approach for free surface wave compu-

tations owing to its efficiency, accuracy and flexibility. Potential-flow-based panel

methods are based on Green's theorem which relates prçperties of flows within the

domain to domain boundary conditions. The pioneering work of Hess and Smith [18]

broke the ground of panel .methods in the numerical calculation and simulation of

potential flows for bodies of general shapes. There are normally two types of ap-

proaches towards the numerical solution of free surface flows. The first one is to

adopt linearized free surface wave Green function as the singularities distributed on

the submerged hùll surface and the uniform stream as the basis flow (cf. Liaps [33],

King [23], Beck and Magee [2], Korsmeyer [25] and Bingham [5]). While this method

is elegant in enforcing free surface conditions and radiation conditions (the linearized

free surface conditions are satisfied automatically and there is no need to discretize

the free surface domain), it is computationally expensive and difficult to extend the

scheme to noulinear solutions, due to the complexity of nonlinear free surface Green

function (cf. Sclavounos [62]). The other approach, the Rankine Panel Method, was

first introduced by Gadd [15] and Dawson [10], who employed the double-body flow

as the basis for linearization, chosen primarily through physical intuition. The free

surface is dliscretized into quadrilateral panels and covered by the Rankine sources

and dipoles. This so-called Rankine Panel Method (RPM) provides much flexibility

for different kinds of free surface formulatiOns and numerical algorithms, and enjoys
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great success in deaiing with reaiitic sbip hulls for the solution of loth steady and

unsteady wave flows (cl. Nakos [42], Raven [58], Jensen, Bertram and Söding [20],

and Kring [27]) This thesis work is a continuation of the work by Nakos and Kring,

an endeavor started a decade ago with the objective to simulate free surface flows

around a realistic hull an4 produce accurate pedictins for the steady and unsteady

ship flow characteristics.

1.1.2 Nonlinear Theory

Despite the success linear theory has had,the linear dyiiainjc-hydrodynamic analysis

is only suitable for the design of gçômetrka11y simple ship bulls which sail in mild

seas. If the concerned ships are equipped. with prominent bow fiares and overhang-

ing counter-top sterns moving in a severe sea state With large amplitude of motion,

neglecting.nonlinearitles might lead to large errors, if not grossly wrong predictions.

Numerous authors have studied various nonlinear aspects of the problem with consid-

erable success even though there has not been yet an:exact three-dimensional solutjon.

The. theoretical solution of the nonlinear ship motion problem falls, as well, into

two categories: analytical approach and numerical method. The analytical approach

is mainly based on a systematic expansion of power series in wave aiplitude or other

relatively small quantities such as the beam/length ratio. The free surface conditions

are grouped in termis of the order of e, denoting the small quantity in the expan-

sion. By equating' terms with the same order of magnitude on both sides f the

equations, the free surface cOnditions, that are valid up to that specific order of ,

are obtained. The classical, linear theory is the flrstordet approximation. Sciavounos

[62] used this approach and derived second'order radiation and diffraction free surface

Green functions which are the fundamental quantities, in the sø1utiön of boundary ele-

ment methods. Kim and Yue. [21] [22] took the saie path and rendered the complete

secondorder diffraction. solutiön f axisymmetric body in monothromatic and bichro-

matic incident waves. For more detailed developme.t on the second-order wave-body

interaction theory prior to these two papers, Ogilvie's review in 1983 [55] is a good
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reference. This series expansion approach is mainly used in the investigations of the

interactions between waves and zero-speed or slow-speed translating bodies because

it is only possible to reduce the complexity of the second-order free surface conditions

that consist of quadratic terms of linear velocity potential and its gradients in the

slow-speed regime, and there are needs for the study of slow drift motion and drift

damping in the offshore industry. In problems with significant forward speed, a di-

rect numerical method seems to be a more promising scheme for both steady wave

resistance and unsteady seakeeping studies.

In their seminal work, Longuet-Higgins and Cokelet [36] carried out two-dimensional,

fullr nonlinear free surface wave simulations by use of the so-called Mixed-Eulerian-

Lagrangian (MEL) method. This tracks the fluid particles on the free surface with the

time evolution and solves an Eulerian boundary value problem for the flow quantities.

Vinje and Brevig [71] followed with the extension of the method to two-dimensional

wave-body nonlinear interactions. The two-dimensional nonlinear bow flows were

studied in the same spirit by Grosenbaugh and Yeung [17]. With the rapid advance

in computer capabilities and development in numerical algorithms, Xii and Yue [73]

adopted a similar initial boundary element method (IBEM) and successfully con-

ducted a three-dimensional, fully overturning, breaking wave simulation. The scheme

was further developed to study the nonlinear three-dimensional interaction between

water waves and a surface-piercing body by Xue and Yue [74]. While the Mixed-

Eulerian-Lagrangian method has enjoyed success in the simulations of detailed and

localized flows such as wave overturning and breaking, it might be prohibitively ex-

pensive in terms of computational cost and difficult to deal with bodiés of general

shapes translating with forward speeds.

The Eulerian Rankine Panel Method however offers an alternative method for the

solution of nonlinear seakeeping problems. It retains a large degree of computation ef-

ficiency and Obtains accurate predictions of global fluid flows and force quantities with

the limitation that it is not able to simulate some extreme events such as slamming

and deck wetness. van Daalen [8] wrote a thesis about tie numerical and theoretical
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studies of water waves and floating bodies. The study by Beck, Cao, and Lee [3]

poÏnted out the importance of working in the time domaiii fot the nonlinear prob

lems. Maskew [38] has obtained some interesting results in the time-domain nonlinear

simulations for ship motions. Lin and Yue [34] implemented a so-called body-exact

numerical method to simulate free surface flows with large-amplitúde bOdy motions.

They used LINEARIZED free Surface Green function with the enforcement of the ex-

act body boundary conditions and produced some good results. But their approach

does not account for the nonlinear hydrodynarnic effects.

High-order spectral method has also been used by many researchers (cf. Dommer-

muth & Yùe [12], Zakharov [75], Fornberg & Whitham [13], and Liu & Yue [35]), for

solving nonlinear' free surfacé wave problems. The spectral methód is very efficient

and accurate, but it requires a periodical free surface conditions and relatively simple

geometries.

Pawlowski [56] proposed a Weak-Scatterer hypothesis to treat the large amplitude

ship motions in heavy seas. In the hypothesis, only the ship-génerated disturbances

are assumed to be small and linearizable about the large amplitude SHIP MOTIONS

and INCOMING WAVES. This theory is practical and useful, because it allows us to

isolate and quantify the nonlinearities associated with steep ambient waves and large

body motions. The advantage of this approach is that it offers a more exact sölutioù,

but one that is still simplified enough to retain some degree of linearity in the free

surface conditions. In view of these, this thesis is going to adopt this hypothesis and

address primarily the nonlinearities associated with largé body motions and steep

incoming wavés while keeping some linear aspects of the formulation, in order to im

prove motion response predictions. Even though it does not include all nonlinearities

mentioned above and is not a fully nonlinear solution of the ship motion problem,

this model captures most significant nonlinearities affecting ship motjons. Moreover,

it achieves a good solution with numerical efficiency and control. And also, most

ships are designed to be slender and therefore not to cause largé wave disturbances

even for large motions. The compúter program derived from this theory will be a
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valuable tool for computational analysis in contemporary conventional ship designs.

Evidently, this Weak-Scatterer hypothesis is violated in the vicinity of the ship wa-

terline where strong spray roots are often seen to form, caused by the ship orward

motion or slamming. These effects are however not treated in this thesis.

1.2 Overview

The aim of this thesis is to study three-dimensional nonlinear ship waves based on

the Weak-Scatterer hypothesis and produce a numerical method that simulates time

domain nonlinear free surface flows for wide range of ships and predicts the motions

in random sea state. Practical needs ate emphasized, but with thorough investigation

of theoretical and numerical aspects of the problem.

Building upon the solid foundation of the linear free surface flow simulation, and

numerical error analysis, the solution of nonlinear hydrodynamic problems is sought

in this work, in order to compute the motion amplitude and the external force on

the ship, which is translating with a uniform speed and oscillating in six-degrees-of-

freedom. The sea state, unlike linear theory, is not limited to small incoming wave

amplitude and the ship motion is not necessarily small, as long as the disturbance

waves remain linearizable. This is the essence of the so-called Weak-Scatterer theory.

Under this interpretation of free surface flows, some degree of efficiency and simplicity

are retained, while the nonliearitie associated with steep ambient waves and large

ship motions are included.

Chapter 2 covers the analytical formulation of the problem, beginning with the

exact (within the potential theory context) formulation for the free surface ship wave

problem. The rationale of the Weak-Scatterer theory is then described and the corre-

sponding approximate formulations for the free surface ship wave problem are stated.

After carefully examining the boundary conditions, the boundary integral equation is

formulated along with the expression for the forces acting on the ship. The nonlinear

equation of motion is integrated numerically to obtain the motion responses of the
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ship in a sea state.

Chapter 3 discusses the numerical aspects of the solution. The comparison of two

different free surface discretizations: rectangular and oval-type, is investigated. Be-

cause of the discretization and trunc3tiort of the free surface, wave absorbing beaches

at all edges of the computational domain are implemented and related issues are ex-

amined. A special filtering device is designed to take out the spurious numerical wave

components in order to prevent those waves from polluting the real physical solution.

The temporal integration algorithms for the free surface conditions and the equation

of mötion are analyzed. The criteria of stability and accuracy are considered.

Chapter 4 illustrates the results obtained by the aforementioned analytical for-

mulations and nuierical methods. Forced motion computations are first conducted

to vaiidate the treatment f the body boundary conditions. Then free motion Simu-

lations are carried out for three different hülls: a Series6O hull for method validation,

containerships SnowDrift and S7-175 for practical applications. Comparisons with

experimental measurenents are shown.

Chapter 5 outlines the contributions of this thesis work and future topics of

research.
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Chapter 2

Mathematical Formulation

2.1 The Exact Boundary Value Problem

This thesis considers. the solution of the problem óf a freely floating ship advancing

steadily in the presence of ambient waves.

Figure 2-1: Coordinate System
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Two reference systems will be utilized in this study of ship wave flows, as illus-

trated in Figure 2-I. The Cartesian coordinate system = (xe, y0, z) is fixed in space

with the positive x0-axis pointing upstream and the positive z0-axis upwards In this

frame, the ship is translating with a constant speed U, while undergoing oscillatory

motions about its calm water mean position. The other Cartesian coordiùate system

(x, y, z) has the same orientation as , but is fixed on the ship. eriafter, the
physical problem will be described primarily in the coordinate system , and limited

use of the system will be made where appropriate.

The fluid is assumed to be ideal, so that it is inviscid and inconpressible, and also

the flow to be irrotational, so that there are no fluid separation and lifting effects. A

total disturbance velocity potential 'P(, t) is hence itrqduced which is harmonic in

the fluid domain. In accordance with the law of conservation of mass, the velocity

potential ' is governed by the Laplace equation within the fluid,

V2l(,t) = O, in the fluid domain. (2.1)

The disturbance flow velocity field t) may be expressed as the gradient of the

potential IP,

= VW(,t
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= Vj+vj+Vi;. (2.2)

Here and i are the unit vectors corresponding to the Cartesian coordinate system

. V, Vi,, and V are the velocity components in the and directiOns, respectively.

Applying the principle of conservation of momentum, the pessure field p(, t)

may be related to the flow kinematics. Bernoulli's equation, takes the form,

PPa (2.3)

where p is the density of the fluid,, g is the acceleration of gravity, and p is the



atmospheric pressure, which is taken as tie reference pressure and assumed to be

equal to zero because any constant would vanish alter integration.

On all solid boundaries, the no-flux boundary conditions will be imposed. Without

the fluid viscosity, the no-slip condition is not guaranteed. Thus on the submerged

part of the ship, the normal component of the flow velocity is equal to that of the

ship at the same location,
5'I, -. -

V . n,
on

where the normal vector il is defined by convention to point out of the fluid and into

the body, and V is the total ship velocity.

In addition to the body boundaries, there is a free surface boundary. The free

surface is considered as a 'material' surface, such that fluid particles, which are orig-

inally on the free surface, will remain on the surface for all later times. The Eulerian

description of the flow is adopted in this thesis, so no overturning and breaking waves

are allowed to exist. The total wave elevation y, t), which defines the free surface

position, is therefore a single-valued function of the coordinates z, y and time t. With

this, a kinematic boundary condition is imposed on the free surface,

- i1(x0,yo,t)] = O, on the exact free surface. (2.5)

The dynamic condition on the free surface is that the fluid pressure is equal to the

atmospheric pressure, i.e. zero. Surface tension effects are neglected for the length

scale of interest in this study. By virtue of Bernoulli's equation (2.3), the condition

is stated in the form,

VWV'P + = O, on the exact free surface. (2.6)

Equations (2.5) and (2.6) need initially to be stated relative to the earthflxed coor-

dinate system , but in practise, the equations relative to the ship-fixed coordinate

system might be more useful. Thus via a Gaiilean transformation, the kinematic
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and dyíiamiç cönditións (25) and (2.6) are transformed to as fö1Ios, respectively,

o
at

o",
- Oz' on the exact free surface. (2.7)

y] ' V'I' . - gj, on the exact free surface, (28)

where Û is the translational speed of the ship

In the far field, appropriate radiation conditions are necessary to ensure that the

ship-generated waves propaga.te outwards. There have been no rigorous mathematical

expression of the radiation conditions. Conventional hydrodya.ics prescribes that

the fluid flow is uiescent for finite time.

at spatial infinity. (2!9)

The response óf the physical system govrnç4 by the equations derived above

shonid be causal and the solutions of these equations require initiai conditions (cf.

Wehausen & Laitone [72]) In this study, the initial state is defined so that the ship

and fluid are at rest at the initial time, t = O, such that:
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z=O.

(2.10)

(2.11)

And, this completes the exact formuiation of the physical problem of a ship start-

ing from rest and reaching a uniform speed in the presence of ambieflt waves. A

mOte detailed discussion of the exact initial boundary value problem is presented in

Wehausen k La.itóne [72].



2.2 The Weak-Scatterer Formulation

The formulation derived, in the previous section is exact within the scope of potential

theory. 1t js however difficult and expensive at this point to solve this fully nonlinear

free surface flow problem, because the free surface conditions are highly nonlinear,

and worse yet, are imposed upon an unknown sutface. SO from the days of Michell in

the late 19th century, researchers have been trying to find a linearized scheme that

could produce the best simulatiön for realistic flows and be solvable. Many linear

models have been developed with varied degrees of sophistication and success. But as

described in the Introduction, pure linear theory often gives inadequate predictions

of wa.ve resistance, ship motions, and ship global structural loads. This work adopts

the WeakScatterer hypothesis, as a balance between the exact and linear theories.

The so-called Weak.Scatterer hypothesis, in which the ship-generated disturbances

due to forward translation and the ship's interactions with the ambient waves are

much smaller than the ambient waves and the ship motions, was first proposed by

Pawlowski [56] and has been inspired by numerous experimental observations. Most

ships are designed to be slender in order to reduce wave resistance, in the sense that

the longituclinal dimensions and their dçrvatives ate much larger than the transverse

ones, it is therefore physically justifiable to assume that the ship-generated distur-

bances are comparatively small, even with large amplitude ambient waves and ship

motions. This is evident when looking at ship waves in a towing tank or in the ocean.

This weakly-nonlinear approach improves upon the classical linear theory in that the

magnitudes of incident waves and ship motions are no longer prescribed at the onset

of the 'solution. Incident waves are primarily driven by the environmental conditions.

The more severe the weather is, the larger the incident wave amplitude becomes.

Hence it is not very reasonable in linear theory to restrict the magnitude of incident

wave. For a slender ship, the disturbance caused by its movement could still be small

even when the ship is undergoing a large motion. And this is obvious if imagining a

knife-like ship moving up-down in the ocean. Those large disturbances that do exist,

spray for instance, do not contribute significantly to global forces. Founded upon
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this physical intuition, the Weak.Scatterer theory is therefore adopted in this thesis

to linearize the ship-generated disturbances over the steep incoming, waves with the

exact statement of the body boundary conditiofls.

2.21 Decompositions

Under the assumptions of Weak-Scatterer hypothesis, the following decompositiofls

for the total distiance velocity potential 'I' and the total wave elevation i are

postulated,

(t) + q5(,t) + o(,t) + (2.12)

ij(x,y,t) = Co(x,y,t) + C(x,y,t). (2.13)

The double-body basis flow, 4', is taken as the solütion of the ship rnoving through a

wavy sólid boundary (no-flux on the surface), which is defined by the incoming ilici-

dent wave. It is more or less related to the steady translation of the ship, nevertheless

it is an unsteady qufitit'y This is in contrast to linear theory. The time-local flow,

, is the solution of a pressure release probleti. and is used to take out the impulsive

part of the problem. Its introduction is entirely motivated by the cotiideration of nu-

merical stability and will be addressed more carefully in later sections. This quantity

is mostly associated, with the radiation part of the problem. denotes the incident

wave potential and ( is the incident wave elevation. p and stand for the remain-

ing part of the total disturbance quantities: wave disturbance velocity potential and

wave elevation, respectively. And, they are closely related tö the wave generatiOn and

scattering due to the body.

In accordance with the Weak-Scatterer hypothesis, the basis flow, 4', the time-

local flow, , and the incident 'wave (°, ) are assumed to be the dominant parts of

the solution and the corrections (, ) to be small.

4' '-' 0(1); cp - 0(1); «-' 0(1); '-.' O(e), (214)
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U-V4'-Vg5-V0).V]=
04' 0g5

CZ CZ CZ
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on z=i(x,y,t),

(2.16)

+VoVogo
-[--(Ü-V4').VJ4'+V4'.V4'

-[-(Ü-V4'-Vg5).V]g5

+Vg5.Vg5g,
on z='q(.x,y,t).

(2.17)

Note that the conditions are applied on the surface of z = . Since the scattered waves

are assumed to be small and the boundary value problem is solved on an incident

wave free surface, another step is needed to transfer the conditions from z = (x, y, t)

to z = Co(z, y, t), using Taylör expansion. Thus it reads,

' 0(1); C « O(e), (2.15)

where e « 1, with e denoting some form of small quantity, for example, the ratio of

the ship beam over the ship length.

2.2.2 Free Surface Conditions

Applying the above decompositions (2.12,2.13) to the free surface conditions (2.7,2.8)

and dropping the terms of O(e2), the free surface conditions become linearized over

e.



=

o 0q5 ô+++--Vo.VCo
9z Oz 9z+[+! V(±-) V0J,

on z=co(x,y,t),

(2.18)

V]o=

+Vcp0.V,0go

+Vq5.Vg

,on z = 0(a,y,t).

(2.19)

Omitting all terms of O(e2), and transferring the conditions further from the free

surface of z = to the calm surface z = O, it is easily seen that the above conditions

reduce to the linearized free surface conditions based on the double-body linearization.

Note that setting 4 = O simplifies the equations furtber. to the Neumann-Kelvin

formulation, if also transferring the conditions from the surface of z = to z = O.

These free surface conditions are valid for any 'incóming waves, plane progressive

wave or Stokes wave. The kinematic free surface condition (2.18) could be further

simplified fo plane progressive waves.
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2.2.3 Body
8

oundary Con4itions

The body boundary conditions are applied on the instantaneous position of the sub-

merged body surface, determined by the intersection of incident wave profile and the

instantaneous position of body boundary. The boundary conditions are stated so

that the normal component of the fluid velocity is equal to that of the body velocity,

which is composed of steady velocity U and oscillatory velocity OS/Ot,

oc, -.-. Oe_*=U.n+---n,
On at

U-n,
On

- n,
On at

On On

From these equations, it is clear that the basis flow mostly takes care of the "steady"

(not time-independent since the normal vector il is time-dependent) part of the flow,

the time-local flow deals with the radiation part and the disturbance flow cp accounts

for the scattering part. Please note that these categorizations 'are not as clear-cut as

in the classical linear theory because of the nonlinearity. In free motion simulations,,

it is very important to have the time-local flow extract the impulsive part of the flow
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on S,

on SB,

on

(2.22)

(2.23)

(2.24)

where g is the oscillatory displacement of the ship and is defined as follows,

Ï=+(RX , (2.21)

where is the translational displacement and is the ìotational displacement. i is

the position vectors of a point on the ship relative to the ship-fixed coordinate system

X.

Plugging in the vekcity potential decompOsition (2.12) leads to,

on 5B, (2.20)



so that the numerical stability is ensured.

The so-called rn-terms in the linear theory, resulting frOm the linearization öf the

body boundary conditions and accounting for the interactions between the steady

and the oscillatory fiow, do not explicitly appear in this for-mullatiön, because the

satisfaction of the exact body boundary conditions automaticallc includes thç rn-term

effects. Iii Chapter 4, computations will be shown confirming that this statemet is

indeed valid.

2.2.4 Boundary Value Problems

All velocity poteíitials shôul4 satisfy the Laplace equation and this will be enforced

through Green's second identity, that leads to a boundary iìitegra.l equation consisting

of e integration of unknowns. The Rankine source is chosen in this work as the

Green functiOn,

(2.25)

The nOnlinear free surface Green function would satisfy the free surface conditions and

radiation conditions, and eliminate the need to discretize the free surface. Howéver,

this Green function would be complicated and the integral kernel would be too difficult

and expensive to evaluate. Just looking at the seçond order free uface conditions

(cf. Sclavounos [62]) is more than enough to deter us from taking this route. In

cOntrast, the panel method based upon the Rankine source is uch simpler and more

straightforward due to its flexibility in different free surface formulatious and its ease

to evaluate the integrai, albeit panels have to be distributed on the free surface and

numerical be3ches implemented to enforce the radiation conditions.

The resulting integral equation reads as follows,

+¡J¡J 0, (2.26)
SPUSB ôfl( SFUSB

where L denotés the coordinates of the field point and (thé cootdinates of the source

point, S indicates the truncated free surface and SB the submerged body surface.
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Note that l' is not just the total flow, rather it symbolizes all the velocity potentials

involved.

There are three separate boundary value problems, which must be solved for the

basis flow, , the time-local flow, , and the disturbance flow, p. They are outlined

below.

Basis Flow

The double-body basis flow is actually a free-surface-no-flux basis flow. It is the

solution of the boundary value problem, which allows for no normal velocity cross

the free surface. It is named as a double-body flow because it is historically related

to the flow associated with a body with its image above the free surface advancing

through an infinite fluid in linear theory. The free surface condition for this flow is,

Un
o, °fl Z (2.27)

and the body boundary condition is shown as in (2.22).

Time-Local Flow

The time-local flow must be solved when free floating simulations are of interest.

This flow takes care of the impulsive and accelerative nature of the entire physical flow

and accounts for the radiated waves from the body due to body motions. It could be

included in the disturbance correction potential a, but the numerical stability analysis

by Kring [27] concludes that this impulsive nature of the fluid must be separated

from the entire flow to avoid numerical instability in the integration of the equation

of motion. For forced motion simulations, the separation of the time-local flow from

the total flow, albeit not necessary, improves the conditióning of the resulting, matrix,

and in turn, the accuracy of solutions. Details will be discussed in the next chapter.

The boundary condition on the free surface is the pressure release condition -

zero velocity potential.

on o, (2.28)
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and the body boundary condition has been stated in the preceding section.as shown

in (2.23).

Disturbance Flow

The disturbance flow is sOlved as a solution of a mixed boundary value problem.

The velocity potential on the free surface is obtained by the integration of the dynamic

free surface conditiOn (2.19) and the normai velocity on the submerged surface is

prescribed by the body boundary condition (2.24). Therefore the boundary value

problem is solved for the normal velocity on the free surface and the velocity potential

on the submerged body surface.

2.2.5 The Resultant Forces

The velocity potentials and the normal velocities can be obtained either from the

boundary conditions or from the solutions of the boundary value problems, outlined

in the preceding subsection. The tangential velocities can be obtained analytically

by a Bspline representation of the velocity potentials, whkh will be described in

Chapter 3. Then the pressurç can be easily derived from Bernoulli's equation (2.3),

assuming the atmospheric pressure p to be zero,
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(2.29)

Substituting in the decomposition

with each component

Pi = p {

of the velocity potential

PTh+Pm+Pc,

written separately as,

[ - (Û - - - 'çPo) y]

(2.12), it becomes,

- Vq5. V?5},

(2.30)

(2.31)
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pYn=p

V1.Vo}

(2.32)

p. = pgz (2.33)

Pi,Prn and p denote local flow pressure, memory flow pressure and hydrostatic pres-

sure, respectively. Again, the quadratic terms of cp and have been dropped out in

accordance with the Weak-Scatterer spiriL Thus the resultant generalized forces F,

which include the forces F1, F2, F3 along (x,y, z) respectively, and the moments F4,

F5, F6 about (z, y, z) respectively, can be obtained by integrating the pressure on the

submerged part of the body surface. Of course, a nomentum conservation analysis

could have been used to calculate the genera1ied forces, but it would be complicated

and inaccurate because of the use of numerical beaches in the far field. And it would

be unnecessary as well since we have the pressure integration performed over the exact

submerged surface of the ship, that should give us accurate results.

= JIS3
P na ¿S, j = l,2,...,6, (2.34)

where n is the generalized normal and defined as,

(n1,n2,n3) = il,

(n4,n5,n6) = x ñ. (2.35)

The steady hydrostatic force, arising from part of the integration of p, is balanced

by the propulsion force and the buoyancy force, and will not be used in the calcula-

tiön. The unsteady hydrostatic force is known as the restoring force. The hydrody-

namic force, integration of p and p, include the excitation force, resulting from the

diffraction of incident waves, and the radiation force, riginated from the free surface

memory effects.



2.2.6 The Equation of Motion

Newton's law müst initially be stated about the earth-fixed reference frame and

later be ttansferred to the desired reference frame. The conservation of linear mo-

mentum takes the form

+ TG) + C(& + T0) = P, (2.36)

where M is the mass matrix of the ship, C is the linearized restoring coefficiènt

matrix, and the nonlinear components will be included in the force lculation. G

is the coordinate of the center of gravity j the ship-fixed system and P is the
generalized force. . = and = (4,4,6) are formed y the translation

and rotation of the body respectively. Sometimes are asso called the Euler angles.

Then the nonlinear rotational matrix T is defined with the order of the Euler angles

as (e5)

COS ¿6 - cos ¿ sin ¿6 + sin ¿ sin ¿ COS ¿ sin ¿ sin ¿6 + cos ¿ Sifl ¿ cos ¿6

Denoting by 11G the angular momentum about the ship-fixed frame and by 2
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T=

and this

COS ¿ Sin ¿6 COS ¿ COS ¿6 + S ¿ sin ¿S, sin ¿6 Sill ¿ COS ¿6 + COS ¿ Slfl ¿ Sm

- Sifl ¿ sin ¿ COS COS ¿ COS

(2.37)

mátrix T is normal, such that its inverse is equal to its transpose, or

T' = TT, (2.38)

and for linearized rotation, i.e. small , the matrix T is reduced to

i ¿5

T= ¿ i
e4 i.

¿ i
(2.39)



the corresponding moment exerted by the fluid, the angular momentum conservation

principle states that

where w is the angular velocity vector relative to the body-fixed axes and is defined

as

Bd, (2.41)

with d be the vector of the Euler angular velocities,

d = ¿, ¿] (2.42)

The matrix B is

B

du0 oft0 -. -.-= +wxH0=M0,

and for small rotation, the matrix B becOmes the unit matrix I. The angular momen-

tum principle may therefore be cast in the form

I + c x L + CTT = TÑ0, (244)

where C represents the linearized rotational restoring coefficients. (2.36) and (2.44)

thus complete the exact nonlinear statements of the. linear and angular momentum

conservation principles and from which the equations of motion can be derived to

solve for the motion responses of the ship.

A displacement vector ¿ = (, ¿ may be defined and the principle of conserva-

tion of momentum is restated in a more concise form,

MN ¿(t) + CN t) (2.45)

where MN and CN indicate the nonlinear matrices for mass and restoring coefficients

respectively and are reduced to their. linear counterpart when the ship motions are
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(2.40)

{

cos cos ¿6 sin ¿6 0

cos ¿ sin ¿6 cos ¿6 0

sin5 O i },

(2.43)



small. The numerical stability analysis preseflted in the next chapter dictates th.t the

impulsive fOrces (the. forces proportional to the acceleration) must be separated from

the total force F (the right-hand-side of (2.45)). Conseqüently the velocity potential

is decomposed into the time-local part and memory part as carried out in the previous

formulation of the boiinda.ry value problems, and in turn, the total fOrce is broken

into a time-local force and a memory force. The time-local force is associated with

the instantaneous huid motion while the thethOry force results from. the history of the

wave propagation. With these considerations the equation of motion becomes,

(MN + ao)((t) + b0(+ (CN + co)((t) = Pm,(,t), (246)

where the matrix coefficients a0, b0 and e0 represent the nonlinear time-local forces

proportional to the acceleration , the velocity (and the. displacement respectively.

Some previous work states tie memoryforce Fm in a canonical form (cf. King [23],

Bingham [5]), which usesthe convolution integral to illustrate the wave propagation,

or the memory effects in wave flows.

Pm 1(t) - f drK(t - (247)

where (t) is the excitation force and K(t) is the velocity impulse response function.

The disp1acment impulse response function or accelç ration impulse response function

may alsO be used. In this nonlinear formulation, however, the force can not be.

decomposed iñ such a fprm since the linear superposition is not Valid. Therefore in

this work, the memory effect is retained directly through the solution of the wave

patterns rather than 'a convolution of the response listory,

In this thesis, studies of forced motion and free motion will be carried out. Forced

motion is to restrict the ship to move in a prescribed mode, frequency and amplitude,

so there is no need to solve the equation of motion. This llóvs for the copariso

for the force coefficients between the extensive experimental data and numerical cal-

culations so that the 'implementation of the method is alidated. Free motion is to
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allow the ship to move freely in six-.degrees-of-freedom, so it re4uires the solution öf

the equation of motion. The ship motions in a steep wave are of course the ultimate

goal of this study.

2.2.7 Time Derivatives

It is necessary to calculate the partial time derivatives of the velocity potentials

throughout, i.e. in the dynamics of the free surface condition. This partial time

derivatives could be evaluated by a finite difference formula, but numerical tests

indicate that this often requires too small a time step to control the numerical error

because panels are moving from one instant t anöther. To make the scheme more

efficient, a boundary integral equation can be set up and solved for the partial time

derivatives directly. This will incur some additional computational burden, but since

it is not necessary to recompute the influence coefficients, it 'will offset the computation

effort saved by the elimination of the need to decrease the time step if finite differences

are used.

The Eulerian time derivatives of the velocity potentials ôJ!/ôt are, as a matter of

fact, harmonic functions, therefore,

= 0, (2.48)

where the subscript t indicates the partial derivative of time and 'I' here is just a

symbol for velocity potential. Green's theorem is therefore directly applicable.

2ir'P + ¡J ¡J
ôt(t)G(.d5 (2.49)

SFUSB On SPUSB Ofl.

Numerical experiments show that the partial time derivative of the basis flow 4' is

actually the most crucial and needs special care, while the partial time derivative of

the wave flow b does not cause as much errori Thus the boundary integral equation

(2.49) is used oily for the calculation of 4 and a finite difference scheme is employed

for the eValuation of The reason is that even though there is no need to set up the
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left-hand side separately for the boundary integral. equation (.49), the calculation of

the matrix still incurres some computational cost.

Consider the equality,

(2.50)

Note that the normal vector is a function of time, i.e.

0o oo
O On ô

FrOm (2.50), t follows that

OO 00cl!-- - . nc.
OnOt OtOn

(2.51)

(252)

The normal velocity of the basis flow . on te free surfaçe equals zero because of

the instantaneous no-flux condition, thus,

00
On Ot

(2.53)

where the partial time derivative of the normal vector il may be easily computed

since the free surface is prescribed by a known incoming wave. On the other hand,

the normai velocity òf the basis flow on the body may as well be computed from the

body boundary condition (2.22),

Ot
On

(Ú-V).il.

The instantaneous nörmal vector on the body surface is defined as,

il = T(t) m. (2,55)

where il, is the time-independent normal vector to the hull and T(t) is the nonlinear

rotational matrix defined in (2.37). With the knOwledge of O/Oñ, thç sOlution of the
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boundary integral equations allows for the computation of the partial time derivatiie

of the basis flow on the free surface and on the body surface.

Experiènce also shows that the following approximation does greatly improve the

accurate evaluation of the partial time derivative. At each time step, the panels

adjust their positions according to the ship motions and incident wave elevation.

This displacement of panels is the most significant on the submerged body surface.

Define the so-called panel velocity U,

-. X - X0U-
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(2.56)

where is the position of the ship at the present time and Í is the position of the

ship at the previous time step Then, the Eulçrian time derivative follows as:

= panel - U . V, (2.57)

äi/pane1 might be approximated by a finite difference scheme. This scheme improves

the accuracy of the results while not increasing the computational burden.



Chapter 3

Numerical Algorithms

3.1 Rankine Panel Method

The Rankine Panel Method (RPM), which will be Outlined in this chapter, was first

designed for frequeçy domain linear solution for the interactions between a free

surfä.ce and a steadily vessel, as originally developed by Sciavounos and

Nakos [61], a.nd, Nakos and Sc1avouits [43]. It was er e ended to time domain

linear solution of the same problem by Nakos, Kring and Sclavounos 44I The scheme

has proven robust and accurate for linear solution in the above work. This linear time

domain method will in this thesis be improved and implemented or the :solution of

the nói1inear tjm doiain simiations of free surface ship waves.

Panel Methods, in general, are a subset of the boundary element method. The

methOd takes advantage of Green's theorem to enforce the Laplace equation and

results in the solution of a boundary integral equation, which governs the unknowns

over the domain bOundaries. Therefore it is only necessary to subdivide the bunda.ry

surfaces rather than the whole volume of the fluid domain. After obtaining the

quantities of interest such as velocity potentials and normal velocities on the boundary

surfaces, thç q tities in the fluid domain are readily computed by an additional

application of Green's identity.

On the diScretized boundary surfaces, a distribution of singularities accounts for.
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the influence of the physical boundary. There are many choices for the Green function.

Among the most commonly used are the free surface Green function and the Rnkine

Green function. The free surface Green function satisfies exactly the free surface con-

ditions and the radiation conditions. One of the benefits is that only the submerged

body surface boundary needs discretization. But it is very difficult to extend its

success in linear problems to nonlinear problems because of the extreme complexity

of the nonlinear free surface Green functions. One alternative is to distribute the

so-called Rankine sources and dipoles on all boundary surfaces. This allows flexibil-

ity in the formulation of the free surface conditions so that nonlinear effects can be

included efficiently. The disadvantage is that the free surfac must be discretized as

well, which introduces questions about numerical dispersion and dissipation, and also

casts doubt on .the enforcement of the radiation conditions. Because the goal in this

work is to study the nonlinear free surface interactions with the translating body, the

Rankine Panel Method, which is a panel method employing Rankine sources/dipoles

as the Green function, is naturally chosen to be the numerical tool. The concerns

about numerical dispersion, dissipation and radiation conditions will be addressed in

later sections.

The time domain Rankine Panel Method consists also of a temporal integration

of the free surface conditions to advance the wave simulation. At each time step, the

so-called Emplicit scheme is used to integrate the free surface conditions (2.18)(2.19)

to obtain the wave elevation and velocity potential over the free surface. The Emplicit

scheme applies an explicit integration to the kinematic and implicit integration to the

dynamic free surface condition. This combination of explicit and implicit schemes is

shown in Vada and Nakos [70] to be stable and accurate. For a free motion simulation

of a ship freely floating in six-degrees-of-freedom, the equation of motion is also

numerically integrated to obtain the ship motion responses, by using the fourth order

Adam-Bashford-Mouiton (ABM) scheme with the fourth order Runge-Kutta scheme

for the first four time steps. Kring and Sciavounos [28] proved that the scheme was

stable and accurate as long as the ratio of time step and gnd size is within a stability

criterion.
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3,L1. Geometric Approximation

The numerical solution of a continuous problem entails the cliscretization of the fluid

domain and proper representation of the unknown quantities on each individual grid

point, or in this case, panel. As discussed above, oniy the fluid boundary surfaçes

need to be cliscretized by a collection of quadrilateral panels of mean spacings (h, hr).

The corner points of each panel are mapped to the plane that is determined by the

mid-points of the line segments cormecting the corner points. The panel is therefore

a flat quadrilateral and geometrically constant. But the variation of the unknowns on

the panel is expressed by a B-Spline scheme which enjpys great success in the field of

ComputerAided-Design (CAD). The unk:nöwn «x, y) (just a symbol, not ecessariiy

the velocity potential) is approximated by a higher order polynomial i terms Ql basis

function B1(x, y) with a kite number of degrees of freedom a1:

qS(x,y) a1Bm(x,y) = (3.1)

where the summation is carried over the vector index j (j,j), and Bm'n) is the

two-dimensional basis function defined as the product òf the basis functions in x-

and ydirections. The lowest order of the basis function b°)(x) is defined as:

() 1 ' a h/2,b (x)=ç
to, otherwise.

ffigher order basis function b(")(x) may be obtained from the convolution property

(Trefethen [6711:

(3.2)

1b(m)(x) = j d b'(e) b°(x -

Using this representation for the solution «z, y), derivatives may be calculated atia-

lytically by &eentiaig m times in the xdirection and n ties in the ydirection.

This avoids the inaccurate and expensive finite difference approximation. In wave re-

sstance a.d. seakeeping problems, it is important t compute accurately the deriva-
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tives up to the second order. Therefore, the bi-quadratic basis function B2(x,y)

(m = 2, n 2), which provides the lowest order Of apprOximation needed in this

formulation, is chosen. The quadratic basis function b(2)(x) is written Out as follows:

-i-
2hl' 21'
i 3h2_(_x2 +

It is important to note that the higher order approximation for the solution is being

carried out on the grid with only one unknown corresponding to each panel. This

is possible becaùse the ba.is function is required to be a function of not only the

unknown on the panel but also those on the neighboring panels. The higher the

order of the basis function becomes, the more neighboring panels are needed. It is

interesting to see that employment of B(°)(x, y) as the basis function will reduce the

scheme to a piecewise constant approximation of the solution, which has been widely

used since the days of Hess and Smith [18]. More details about this Rankine Panel

Method can be fóund in the doctoral thesis of Nakos [42].

A typical computational grid is shown in Figure 3-1, It consists of panels on the

submerged body surface, which is determined by the incident wave profile and the

instantaneous position of the body, and the elevated free surface1 which is prescribed

by the incident wave profile. The panels are mostly flat quadrila.tera.is, but could also

be triangular, especially near the ship ends. The original ship is shown with the bold

line to demonstrate how much/little the ship might be wetted by water during the

course of its movement. There are three spline sheets for each of the three unknowns

on each panel, the velocity potential , the normal velocity q.47' and the wave elevation

, and they are defined as:

9

4(, t) = (3.5)
j=1

9

çb7'(, t) = (3.6)
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3hj2 <z < hj2,
h/2 <z < h/2, (3.4)

1J_ 13h\2 h/2 <z <3h,/2.
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Figure 3-1: Typical Rectangular Computational Grid
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C(' t) = (3.7)

where (, (ç) and (C)3 are the time-dependent spline coeffiçients for the unknowns

and are the solutions of the system of linear equations. The spline representation of

the unknowns may be stretched and twisted according to the panel shapes, so it is

applicable for general shapes of body geometry. One additional strip of panels is used

at each boundary edge to supply the necessary end conditions that close the spline

representation of the solution.

While the fluid domain is presumed to extend to infinity, in numerical comput a-

tions, the computation domain obviously has to be truncated to a finite extent to

limit the computational cost. The truncation points are decided by numerical exper-

imentations to account for the ship translation speed and the incoming wave length.

Ni merical cooling beaches are úsed to ensure minimum reflection of the disturbance

waves at the truncated boundaries, and subsequently, the satisfaction of the radiation

conditions. The mechanism of the numerical beach will be discussed in more detail

later.

3.1.2 Oval-Type Grid Approximation

Previous versions of the SWAN program and the majority of other computer codes

in this field are written for rectangular free surface grids as shown in Figure 3-l.

The rectangular free surface grid is a most natural and popular selection because of

its ease of setup and its accuracy in representing the trailing wave behind the ship.

However according to numerical experience, the cluster of far-field panels near the

centerline do not have large effects on the pressure integration over the hull surface.

Hence, those far-field panels axe not strictly necesary 1f only the computation of the

forces on the ship is required, especially for short waves. This inspires the use of the

so-called oval-type of free surface discretization, despite the fact that the system is

elliptic. Chapter 4 will show that the rectangular grid and the oval-type grid virtually

give the same predictions in terms of forces on the ship exerted by the flowing water



tó justify the use of the oval-type grid.

Table 3.1: Saving of CPU hours and Memory storage between óvaltype grid and

rectangular grid.

Figure 32: Oval and recta4giilar grid.

The idea of the oral-type grid is that i the vicinity of the ship there is a higher

density of panels to accurately simulate the fluid flow near the ship, while far from
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Saving Panel Ratio CPU (hrs) Ratio Memory (MB) Ratio

Rec Grid 1954 1 30 52 1 93 94 1 1 47

Oval Grid 1504 27 63 9



the ship, there is a lesser density of panels. The grid spacings for panels expand from

the ship. The whole free surface is divided into a constant panel inner region and

varied-size, panel outer region. The inner region is where the spacing of the panel is

kept constant, while the outer region is where the spacing of the panel is exponentially

varied according to an expansion ratio in a monotonic manner. A typicai oval-type

grid representation of the free surface is shown in Figure 3-3. The generation of the

oval-type grid is discussed in Appendix B and more detail may be found in the boók

by Thompson, Warsi and Mastin [65].

Undamped Region Vaned Spacing Region

Constant Spacing Region

Figure '3-3: Typical Oval-Type Computational Grid

Table 3.1 demonstrates the benefit of the oval-type grid in terris of CPU cost

and memory requirement. To atth.in the same accuracy in the solution, N = 1954

panels are needed on half of the computational domain if usii:ig thç rectangular grid,

only N 1504 panels are needed (about 30% less) if using the oval-type grid. The

saving in CPU usage is 93%, because the CPU requirement is in the order of between

0(N2) and 0(N3). The ova1typ,e grid requires less memory by about 50% as well.

For convergent results, more panels may be necessary and the savings of the oval-type
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grid would be even more impressive. Therefore the oval-type grid should be adopted.

3.1.3 Numerical Issues

Discretization of tIte geometric domain will introduce a variety of numerical difficulties

which call for carduil treatment to prevent inaccurate solutions. The satisfactión of

radiation conditions and the propagation of spurious wave components are among

the most imperative. This section is going to address these two important numerical

issues.

TRUNCATED DOMAIN AND RADIATION CONDITION

The computational domain has to be truncated some distance away from the wave-

making source in order to keep the computational effort fluite. As shown in Figures

3-1 and 3-3, the coputation domain is truncated upstream, downstream and to the

side. The cictent o the domain is decided by numerical experimentation to model

the ship flow over long time simulations and at the same time to minimize the com-

putation cost. Any errors that might be introduced by this truncation in the form of

wave reflections from the domain edges must be prevented from contaminating and

eventually destroying the solution.

Because of the truncation of the computational domain, the Rankine Panel Method

presents the &fficult of implementing radiation conditions, that require that distur-

bance, waves be radiated outwards from the wave-making source. There are several

ways to remedy the roblem. One of them is adopted by Lin and Yue [34] in their

body-exact solutiön of ship wave problems. The linearized free surface Green function

satisfies exactly the. liuiear free surface conditions and radiation conditions. So there

is no need to distribute panels on the free surface z = 0. ConequentJy the radiation

conditions are enforcel automatically. But as poiñted out before, the nonlinear free

sniace Green function is extremciy complicated and difficult tò e uate by numerical

means. It is therefore not suitable for the solution of nonlinear ship wave, problems. A

matching Scheni coul4 also be used by dividing the computationaï domain into two
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parts, an inner nonlinear domain near the ship and an outer linear domain far from

the ship. The reasoning for this scheine is that in the neighborhood of the ship the

nonlinear effects are prominent and non-negligible, while away from the ship the non-

linear effects are largely diminished because three-dimensional waves would dissipate

at the rate of O(/A), where R is the radial dlistancç between the field point and the

ship. Thus it is conceivable to use the known linear solution to enforce the radiation

conditions in the outer domain. Nevertheless, it is not easy at all to apply appropriate

matching conclitiöns at the rr atchitig boundaries and to deal with the reflection from

the matching boundaries. The computational effort associated with such a hybrid

scheme may be very significant. Hence numerical beaches will be adopted instead.

Numerical beaches were first proposed by Israeli and Orszag [19]. They were

later successfully applied to the two-dimensional solution by Baker, Meiron & Orszag

[1] and Comte, Geyer, King, Molin & Tramoni [6], and three-dimensional ship wave

problems by Nakos, Kring & Sclavounos [44]. A numerical beach functions exactly

like the damping beach in a towing tank and absorbs disturbance waves keeping

them from reflecting back. Numerically, a Newtonian cooling term is applied to the

kinematic free surface condition to damp out all waves of wavelengths less than about

twice the extent of the numerical beach. The cooling term physically corresponds to

a mass sink over the free surface in Order to minimize the waves near the edges of the

domain. A Rayleigh viscosity term is also applied to eliminate artificial dispersive

effects.

The scheme may be illustrated by considering only a linear solution. The linear

flow within the beach section of the truncated free surface domain is the sum of the

corresponding linear flow ça over the infinite free surface and a wave reflection error

flow x, of which ça satisfy the linearized free surface conditions,
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and over the beach section, of the truncated free surface space, it may be considered
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as covered by a horizontal rigid lid, such that,

& Pz + X = O. (3.9)

Apply the linearized free surface condition to ço,

xz= Çoz
g

- X» (3.10)

Then the linearized free sürface condition for the reflection flow x within the beach

section of the truncated free surface is derived as,

Xii ± gX2 = Pt, with p(t) = . (3.11)

It is therefore clea that the wave reflection is present in the form of a pressure

distribution p(t).

Consider the linearized kinematic and dynamic free surface conditions, with arti-

ficial damping beingadded,

= -gC, (3.12)

Ct = (3.13)

which results in the dispersion relationship relating wave frequency w with the wavenum-

bers u and y in the and y directions, respectively,

w = ii' ± (gVu2 + y2 (3.14)

where, ii denotes the Newtonian cooling strength with uniform distribution. Corn-

pared with the wave frequency without the cooling term,

w = g.4/u2 + V2, (3.15)



it is evident that the cooling term z.' basically introduces a shift to the wave frequency

w off the real axis in the complex domain and subsequently adds the time oscillation

term it with an exponential decay behaviour (when z.' > O), whereby the wave is

damped.

= et ±i(gVi2_v2)hhI2t
(3.16)

There is alsó a shift in the real component of the wave frequency which causes a

(higher-order) change in wave dispersion. This can be remedied by the addition of

an artificial Rayleigh viscosity term and the free surface conditions finally read,

{

= gC
Ct = ç5t - 2u +

v(p) =
2.

Po) ,

. 'J.' = iii .± (g.,/t2 + V2)2.
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(3.17)

The Newtonian cooling. term is physically interpreted via the modified kinematic free

surface condition as the mass flux through the free surface, directed outside the fluid

domain when > O and inside it when < O. In view of this formulation, z.' may now

be considered as the Rayleigh viscosity used in the frequency domaiii solution of the

problem for the enforcement of the radiation conditions. For free surface flows with

forward speed, the modified free surface condition directly follows by the substitution

of 0/Ot with ¿9/Ot + Uô/ôx if using only the free stream as the basis flow. The

nonlinear free surface conditions fall out in the same fashion.

The variation of the cooling strength over the damping zone is quadratic, following

the recommendations of Israeli and Orszag [19], with zero value and slope along the

inside edges of the zone,

O P Po C1,, (3.18)

where p denotes the radial distance from the wave-making source, with the damping

zone beginning from p = Po and extending to p = p, + C111, and C, is the overall cooling

strength. Even though there exists an optimal Newtonian cooling strength, numerical

experience dictates that any strength in the neighborhood of the optimal value will
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sufficefor the pur.ose. The damping zone width C, plays a much more irnportant role

in daniping ut the waves. For usual problems, waves of all frequencies are present

and the damping device can only be tuned to damp out the wavçS of wavelength

.\ < This snggsts that large portion of the wave reflection ceases to exist

when C = \, wi ere \ is the typical wavelength. Por zerd speed and low speed

problems, disturbance waves propagate slowly towards ail directions. Consequently

it usually takes a longer time and stronger damping to attain steady state. FOr high

forward speed problems, however, disturbance wave propagates out downstream so

rapidly that implementation of damping beaches is not necessary behind the ship.

3.1.4 Temporal Intgration

The free surface conditions (2.18)(2.19) are integrated to update. the wavé elevation

and the wave velociy potential at each time step. Alsó, the equation of motion (2.46)

is integrated in tie to obtain the ship motion respQn5e It is therelore ctucial to

acquire a stable, ac rate and efficient time integration scheme. In what folloWs, the

time integration schme for the free ifa.ce evolution and ship motion response are

discussed separately

TIME INTEGRATION OF FREE SURFACE CONDITIONS

Time integration of the free surface conditions is a crucial step towards the so-

litión Vada .d Iakos [70] expanded the error anaisiS, which Sciavóunos and

Nakos [61] developed for the frequency domain problem, to transient free surface

lows and discussed he merits of a variety of numerical integration scbtnes. This

section summarizes their key conclusions. The Emplicit-Euler integration scheme,

which he recommen4ed, will be adopted iii this nonlinear solution of tirne-domain

free surface problems. Extensive numerical tests have been carried out to validate

the scheme.

(Jonside± the model problem of a fluid flow around a transient wave-niaking source,
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with oscillating strength,

= J.
0,

Ì cos(wt)
I.. IîioI'

where is the location of the source and w is the frequency of its oscillation. The

linearized continuous formulation is restated for the problem with the uniform stream

as the basis flow that implies the Neumann-Kelvin formulation,

J +U=gcl)u- 1'I8t' 0m8z )

coupling with the boundary integration equation:

- ¡Jt)G(x;E)d= R(x,t), (3.21)
s7 0m

where R(, t) is the right-handed-side forcing term, oblained by intçgrating the source

term (3.19) over the free surface. The solution of the velocity potential over the

linearized free surface z = 0, subject to the Laplace equation, the linearized free

surface condition (3.20) and the proper radiation condition, accepts in terms of Fourier

transformation,

«z,y,t) = JdwJ du 1+d u,v') e_«_wt)
(2ir)3 - J W(u,v,w)

where J is the FOurier spectrum of the forcing, which is assumed to decay fast enough

to make the integral finite as (u,v,w) - 00. W denotes the dispersion relationship

as obtained from (3.20),

W(u,v,w) = (w - Uu)2 + gV'u2 + y2 = 0. (3.23)

In response to each wave component w, the dispersion relationship (3.23) has two

or four roots, which means that two or four waves are propagating in the system,
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t < 0,

t 0,
(3.19)

on z = 0, (3.20)

(3.22)



depending upon *hether the reduced frequency r = wU/g is srnai.ler or larger than

the critical value r, .. Each wave component is propagating in the direction

suggested by the roup vlocjty,

As the reduced fr ueny 'r approaches. the critical value , the corresponding group

velocity V, reduces to zero, which signifies wave energy is' not propagating outwards,

and eventually th wave disturbance may become singular. This demónsttates the

inadequacy Of the linear solution and Liu and Yúe [35] disçusse4 this difficulty exten-

sively.

Using the basis uctions defined in the previous section, the discrete formulation

for the problem (3.21) and (3.20) takes the form,

The explitht Euler scheme integrates the kineiatic free sutface condition to obtain

the' new wave elevation at each time step, according, 'to the expression,

-
B, ± U(C)1D11 = (q5),B1,

+ tJ()1D1

where R is the righ1-handed-side forcing, .D, and S., are defined as,

OB1 -.
D.1 xi),

S, ¡j B1()G(1;.)d.

cn+1 - Cn
At

(8W 8W
8u' '8U

'8W
6w

+ U(C);D1 =

.56

(3.24)

(3.25)

(3.26)

(3.27)

(3.30)

and the implicit uier scheme integrates the. dynamic free surface condition to acquire

(3.28)

(3.29)



the new velocity potential on the free surface.

+ U()r'D11 = g()B11, (3.31)

where t is the time step. The discrete dispersion relationship is,

W = (ß2 - ißFhV)z2 - (2ß2 + F2Y S)z + (ß2 + ißFhD) W + O(h3, ¿st). (3.32)

The whole scheme is referred to as the Emplicit-Euler integration scheme. Appendix

A presents other integration schemes, and, concludes on the basis of an error and

stabihty analysis [70] that this Emplicit scheme is the most efficient and stable

TIME INTEGRATION OF THE EQUATION OF MOTION

A stable, accurate and efficient scheme is needed to integrate the equation of mo-

tion (2.46) in order to obtain the ship motion response to a particular sea state at

each time step. The global numerical error, which is the difference between the exact

solution and the approximate solution, must not be allowed to grow with time, oth-

erwise the solution will bç contaminated by errOr and become untrustworthy. In the

early development of this numerical solutIon of time domain free surface problems,

the stability characteristics were not entirely understood and the produced solutions

were not physically resonable, until it was found that the problem has. to be solved

in a natural way and the impulsive forces be separated from the total excitation

forces. Therefore it is absolutely essential to conduct a thorough error analysis for

the numerical integration scheme before embarking on any serious solution of the

problem.

Consider the homogeneous equation of motion,

(M + a0)t) +b0(t) + (C + co)t) +
j

drK(t r)(= 0. (3.33)

Note that a0, b0 and c0 are the added mass, damping and restoring coefficients, re-

spectively, which are derived from the time impulsive local forces The convolution
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integral retains tle "memory" of the free surfa.ce flow and also contaiùs part of the

added mass and w.ve damping. This kind of second order Ordinary Differential Equa-

tiOn (ODE) is usuily decpmposed into a system of linear equations (twelve equations

in this formulation) for numerical calculations.

where

Í(t)Ì Ít)Ì'ì=s -.

@) J I ¿(t) J

and

¡(t) =
)(t) [M + ao]' (b0y(t) + (C ± co)y(tT) + f drK(t - r)(r))

f2(t.)
J (

(3.36)

An errOr function is defined as,

t) = ff(t) (t), (3.37)

where il(t) is the exact solution and (t) is the nunierical approximate solutiön. Then.

a system of linearize errOr equations results in the solutions of the. error functions

(3.37). In order to 4eal with the' convolution integrai, the equations are examined

in the Laplace. domàin. The application of the Vön-Neiiina.nn analysis scheme to

the error equation 1eds to a stability polynomial, while the boundary locus method

produces the regime of absolute stability. Combination of the stability polynomial

and the absolute staility renders' the restrictions (upper and loper bounds) for the

time step size. More letails for the analysis may be found in Kring and Sclavounos

[28].

In this work, the fourth orde± Adam-BashfordMöultQn (ABM) predictorcorrector

method s chosen' for 'the solution of the equation of motion, with the fourth order

Runge-Kutta scheme or the first four time steps The schemes are defled belów,
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Fourth-order Adam-Bashford-Moulton method:

where h indicates the time step size t. Both schçmes are standard integratiofl

algorithms for ODEs. The stability regime of an optimal scheme must overlap with

the stability properties of the scheme uSed to evolve the free surface disturbance.

Therefore the scheme having the largest stability regime is not necessarily the most

efficient. The fourth order Runge-Kutta algorithm is one example. It is the most

stable, but is prohibitively expensive because it needs to evaluate the function, f,

four times at each time step. Th. fourth order ABM, on the other hand, has a

large enough stability regime for ail practical problems studied and requires only

two evaluations of the function, f, at each time step. It is therefore the most ideal

integration scheme for thi formulation.

The stability depen4s also upon the shape of the hull and its forward speed. So

whenever stability problems are encountered, this analysis can be revisited to isolate

the reasons for the instability Thus it is extremely important to gain a thorough
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predictor: = 1/4 ± (554 - 59!?3 ±

corrector: 1/5 = Y + + 194 - 53

- 9) + 0(h5),

+ 1(2) + 0(h5).

(3.38)

(3.39)

Fourth-order Itunge-Kutta method:

k1 k2 k3 k4
1(2 =Yi ± T ± T + T + T'

where

k h J(t1,y1),
h

k2 = h f(t1 +

(3Á0)

(3.41)

(3.42)

h k2
k3 = (3.43)

k4 = h J(t1 ± h,y1 ± k3), (3.44)



understanding on the numerical stability properties.

3.1.5 Numrical Filtering

Discretization of the free surface not only presents difficulties in enforcing radiation

cônditions, but alio induces spurious wave, modes, which coud interfere with the

physical waves and eventually destroy the credibility of the solution completely. This

purely numerical phenomenon was first revealed and discussed by Longuet-Higgins

and Cokelet [36] in their two-dimensional solution of notilinear free surface waves.

They found that satw-tooth like waves were superimposed on the physical waves such

that the waves are zigzag alike if no preventive measure is taken. The 5-point Cheby-

shev smoothing (filtering) formula was used to remove the saw-tooth instability. The

general consenSus on the causes of the problem is that there is high concentration of

fluid particles with ligh speed in certain regions especially near the water crests. The

same problem was later encountered by the three-dimensional solution as well (Xü &

Yue [73J).

In the present formulation, there edsts a spurious short-wavelength disturbance

propagating in the system. These small spurious waves sometimes deviate from the

propagation of the pyskal wave systes and even travel upstream especially for the

Sm waves of less than five-panel-lengths. Without proper treatment, these small

waves could strongly impede the convergence Of the numerical solutions. Nevertheless,

because of the size of the waves, it is believed that not much energy would be taken

out from the physical system if a low-pass numerical filter over the free surface is

applied to filter out these small erroneous wave çor, ponents. A generai filtering

involves a series öf operations: translation of the solution into the Fourier domain,

multiplication by the filter shape, inversion back to the physical space. Alternatively,

the filtering may be performed directly in the physical space via discrete convolution,

as follows,

= wf1_1, (3.45)
= -

where j is the filtered of the solution and w is the weight function, which Fourier
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transform is the desired filter shape. The energy taken out by the filtering process

should be kept at a minimum. In other words, the smart filter shoul4 retain the

physical wave, which are accurately presented by the numerical solution, and weed

out numerical noise, which is detrimental to the numerical solution. Longuet-Higgins

and Cokelet [36] introduced 5- and 7-point filters and demonstated the superiority of

the former one. However even the 5-point filter is not ideal for the present formulation

because it significantly alters the waves which are accurately resolvéd especially in

the neighborhood of uhj27r = 0.2, where u is the x-component of wave numbers and

h is the panel dimension in the x direction. So Nakos [45] devised a modified 7-point

filter:

w0 = 0.701207, w1 = 0.230639, w2 0.100604, w = 0.019361. (3.46)

And the corresponding Fourier transform is:

H(u) = w0 + 2w1 cos u - 2w3 cos 2u + 2w3 cos 3u. (3.47)

These three ifiter shapes are shown in Figure 3-4. The. filtering scheme inevitably

removes some energy. Therefore the frequency of the application of ifitering during

the simujation process should be minimized to prevent an excessive removel of energy.

Otherwise, it may be presented as smaller damping coefficients and consequently

larger body motions. Numerical results must eventùally be shown to be insensitive to

the frequency of the application of the filtering process and some results in Chapter 4

will demonstrate just that. Practically one application of the filter for every 20 time

steps has been found not to affect the body forces and yet to produce smooth wave

patterns for all cases tested.

61



1 .00

0.75

0.50

0.25

0.00
bioo

.' z.t..-.
.

.. \ '..
t
t tt t

t
tt

t
t
t t.
t
t

t

t
t
t
t
t

I r

------- 5-point filter
7-point filter
1-point-modified filter

t
t
t

62

t
t

t

t

t

t
t,
t
t
t
t
t
t
t

t
t

.t.t 't t.t tt t t

t
t
t
t

t
t..

010 0.20 0.30 0.40 0.50

uh/2it

Figure 3-4: Low-pass filters for spatial smoothing. The 7-point-modifièd filter is used
in the present study



Chapter 4

Numerical Results

4.1 Computer Implementation

The theory and the algorithms discussed in the previous two chapters are written

into a modular FORTR.AN77 cOmputer program, referred to as SWAN (Ship Wave

ANalysis). The SWAN program has been cotinuòusly developed for almost a decade.

Past work includes the linear frequency domain version SWAN1 (progress documented

in Sciavounos & Nakos [61], Sclavounos, Nakos & Huang [63] and Nakos & Sciavounos

[46]) and the linear time domain version SWAN2 (first reported in Nakos, Kring &

Sclavounos [44] and recently in Kring, Huang, Sçlavounos, Vada & Braathen [30]).

The Weak-Scatterer version of the code, which is a major contribution of this thesis,

represents the logical evolution of the SWAN project.

This version of the program is designed to efficiently simulate the nonlinear time

domain ship motions of a steadily translating ship either oscillating at a prescribed

frequency (dubbed as forced motion) or freely floating in the presence of an incoming

wave (dul?bed as free motion). Because the basis flow is time-dependent, the Weak-

Scatterer. version of SWAN carries out the setup and solution of the linear system of

equations at each time step, unlike the linear time domain SWAN2, which is divided

into setup and solve procedures in order to save computational time. The solution at

each time step mainly consists of:
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. regridding óf the free surface and submerged hull surface.

evaluation of influence coefficients.

solution of a mixed boundary value problem for basis flow quantities.

solution of a; mixed boundary value problem for tithe-local flow quantities.

evolution ofthe free surface conditions to obtain the updated values of wave

ele ation an velocity potential on the free surface.

solution of amixed boundary value problem for disturbance flow quantities.

updating of the flow quantities.

Figure 4-1 shows the detail work flow of the code.

The execution of the WeLk-Scatterer program represents a significant computa-

tional effort. For 4 cOmputational domain consisting of 2000 total panels, it takes

about 48 hours to áttain a steady state solution on a DEC Alpha 600 Workstation.

The majority of th cost 'is associated with the sölution of the mixed boundary value

problems, especially the evaluation of' the influence coéfficients, which accounts for

about 50% of. the ttal cost. The solution of the resulting full, dense linear system

of equations also requires a significant computational expense. The solution of the

evolution equations constitutes only relatively minor computational costs since the

equations are spars and narrow-banded. An improved LU decomposition is used

in the solution of the linear system of equations and requires between 0(N2) and

0(N3) floating point operations, with N denoting as the total number of. panels. The

Multipole, a 0(N) sheme, and pre-corrected-FFT accelerated iterative methods,

O(Nlog N) scheme, (Nabors, Phillips, Korsmeyer & White [41]), might in the future

be used tó reduce the computational time. At this stage, the oval-type grid described

in the previous chapter is i sed to improve the efficiençies of the computational algo-

rithm.

Between the forced and the free motion simulation, the latter is twice as expensive

since two functional evaluations for, the bydrodynamic wave forces are required by the
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Figure 4-1: Work Flow Chart for the Weak-Scatterer Version of the SWAN2 Program.
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ÄBM predictor-corrector scheme Which integrates the equations of motions for the

motiOn responses

42 Feasibility Study

The nonilnearities associated with steep ambient waves and large amplitude body mo-

tions are essential for the accurate solution of free surface ship flows. It is however very

expensive to so1ve even a partially nonlinear solution based on the Wea.k-Scatterer

hypothesis. Hence it is wise to assess the feasibility of t proposed Weak-Scatterer

sölútion.

The linear veriti of the SWAN2 program. provides an intermediate tool to açhieve

this ôbjective. Firt of all, the linear time domain solution from the computer code

SWAN2 renders a measuring stiçk for any meaningful development in the nonlinear

solution, while expèrimental results Serve as another.. Then, the linear method has

developed a variatin, referred to hereafter as quasinonlinear SWAN2, to account

for some nonlinear effects of hydrostatic and FroudeKiylóv forces, while keeping the

hydrodynamic problem stifi solved by a purely linear approach. In other words, the

hydrodynamic solution is achieved by solving a boundary value problem over the free

surface which is stifi defined as a flat surface z O and the wtted body surface which

is the sui ace intercepted by calm water. The nonlihear hydrostatic effects arç. however

included by adding the difference in hydrostatic, forces between what is obtained by

integrating the hydrostatic pressure over an instantaneous submerged hull surface

and what is obtainei by integrating the hydrostatic pressure over au cairn-water

submerged hull surface. And the nonlinear Froude-Krylov force is obtained by the

integration of incident wave pressure over, the instantaneous, instead of the calmwater

wetted bull surface. the forces exerted on the body by the fluid are the sum oflinea.r

hydrostatic forces, linar hydrodynamic forces, and the forces the pure linear theory

does not account for such as thé nonlinear hydrostatic force components and nonlinear

Fronde-Krylov forces. The approach is of cOurse not at all physically consistent and

scientifically rigorous, nevertheless it provides the evidence that nonlinearities of steep
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incoming waves and large body motions are indeed crucial for accurate predictions of

motion responses for many practical applications.

4.2.1 Series60 (Block Coefficient 0.7)

The free motion tests on the Series 60 hull in head seas serve to validate this quasi-

ncnl ne r method. Because the Series60 hull does not have significant .waterline geo-

metricchanges, and it can be considered as a linear seakeeping hull, The nonlinearities

introduced by the nonlinear hydrostatic and Froude-Krylov forces are. expected not to

cause the quasi-nonlinear predictions to deviate much from the linear computational

results, and more importantly, the experimental measurements. Figures 4-2 and 4-3

display the results for a Sèries6ø (Cb = 0.7) hull for a wide range of incoming waves at

a Froude number F = U//7J = 0.2, where U is the ship speed in the zdirection, g

is the gravitational acceleration and L is the ship length between its perpendiculars.

The comparisons 01 heave and pitch Response Amplitude Operators (RAO) between

the linear SWAN2 computational results, the linear SWAN2 with nonlinear hydro-

static and Froude-Krylov correction predictions and the experimental measurements

are satisfactory, as expected. The experiment was carried out by Gerritmma, Beukel-

man and Glansdorp [16]. Here, the RAOs calculated are actually the first-harmonic

amplitude of. the heave and pitch signals.
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4,2.2 SnowDrift (BaUast)

The tests on the SiowDrift hull are carried out to demonstrate that the nonlinearities

associated with th hydrostatic and Froude-Krylov forces do have a stOng influence

on the motion reSônses, especially at the resonance. The SnowDrift is a. slender

body container vessel with moderate bow flare and stern counter. Figure 4-4 shows

its body plan. At the ballast condition (8 meter draft), the counter stern is just

aböve the calm waterline, and apparently it will bein and out f the water while the

vessel actually travels in ambient waves. Thus, the quasi-nonlinear approach is ex-

pected to be usefulin this case. Figures 4-6 and 4-7 show comparisons of the mOtiOn

RAO's between th linear and quasi-nonlinear calculations and experimental data.

The predictions of the quasi-nonlinear scheme based on the combination of the non-

linear hydrostatic and Froude-Krylov forces and linear hydrodynamic coefficients are

superior to those of the linear computational method, especially near the resonance.

This js not surprisig since, at resOnance, the larget È:ötion ai plitude of the vessel

causes deeper submergence of the counter stern and consequently alters significantly

the hydrostatic char.cteristics. It is also noteworthy that the nonlinearities are more

iportant on, the pic].. than. on heave motion.
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Figure 4-4: Body Plan for a Slender Container Vessel: SnowDrift.

LUN
Figure 4-5: Body Plan for. a Container Vessel: S7-175.
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4.23 Steady Sinkage/Trim and Wave Elevation

Although the quasi-nonlinear scheme gives a better predktion of the' mOtion response

RAO's, there is still considerable discrepacy between the calculations and the exper-

imental' measurenknts. It is believed that this partially stems from the interactions

between the steady and unsteady flows. Fops with significant bö: flares and stern

counters, the' steady sink.ge and trini are sometimes proven to be very important,

(see for example tue work of Sciavounos, Nakos and Huang [63]). The extra wetness

of the bow flare and stern couiiter due to steady sinkage/trim and steady wave ele-

vation that is not accounted for in the pure linear theory, often alters markedly the

ship hydrostatic cIaracteristics and consequently influences the unsteady oscillatory

fluid flöws around he. vessel. Pigure 4-8 and 4-9 display the ithportance of the steady

sinkage an4 trim. The inclusion o1 the steady sinkage/trim and steady wave eleva-

tion, shows sótne iprovement jn the predictiòns of motion respoflses, particularly at

resonance and for the pitch motiOn.
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4.3 Weak-Scatterer Computation

4.3.1 Validation of Body Boundary Conditions

In the mear solution, the interactions between the steady and unsteady disturbances

are accounted for by the soca1led m.term, that ws irst derived by Timman and New-

man [66]. Its nonnegligible leading order importance was later stressed by Ogilvie

and Tuck [54], who reduced it into a compact formula amenable to computation. The

Neumann-Kelvin model has been shown to be inadequate precisely because. of its poor

treatment of m-ternis. That is where double-body model really shows its strength

(cf. Nakos and Sciavounos [43]).

In the Weak-Scatterer formulation, the exact body boundary conditions are en-

forced over the instantaneous body wetted surface. The rn-term effects, directly result

from the linearization of body boundary conditions, should be automatically included

and the need for an explicit rn-term in the body boundary conditions hence ceases

to exist. To ensure this is the case, forced motion tests are conducted using the

Weak-Scatterer SWAN program.

Forced motion simulations are prformedfor a Series60 (Block Coefficient 0.7) hull

in order to compute the force coefficients such as added mass and damping coefficients.

Extensive experimental data are available for both the force coefficients and motion

responses. Therefore it is a good test to validate the algorithms, and in particular the

compatibility of the I near SWAN2 predictions with those from the Weak-Scatterer

algorit'hm.

The ship is assumed to undergo forced oscillations at a variety of prescribed fre-

quencies (w,/i7 2.0 -" 5.0, where w is the oscillatory frequency nondimensional-

ized by the gravitational acceleration and ship length), while steadily translating at

a Froude number f 0.20. Because there are no incoming waves, only the radia-

tion problem is being studied. From the recorded force history, the force coefficients

are extracted using a Fourier transform (FT). Figure 4-10 shows the comparison of

the experimental measurements and the predictions of linear SWAN2 and the Weak-
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Scatterer SWAN2 fOr the diagonal heave and pitch added mass and damping coeffi-

cients, while 'igure 4-11 illustrates the corrçlatiOn for the cross-coupling added mass

and damping coefficients. All computational results are çonvergnt with respect to

panel number and time step. The results illustrated in the fi res are ciculated using

1800 panels over hail of the computational domain (240 panels on the body sutface)

and 0.06 seconds as the time step. The agreement is generally satisfactory. As ex-

pected, t elineaz and Weak'Scatterer calculations are jn good agreement because the

Series6O hull is considered a slen4e and "linear" ship. This exercise serves to demon-

strate that the rn-term effects are adequa.tely accounted for in the Weak-Scatterer

prQgram via the enforcement of the nonlinear body boundary condition.
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4.3.2 Convergence Studies

For a time domain numerical scheme to become credible, it has to achieve both

temporal and spatial convergence. Moreover, computations should not be sensitive

to changes in the other paraniters of the numerical algorithm as well, such as the

filtering frequencies, the beach size and the cooling strength. This section sets out

to vaiidate the convergence properties of the algorithms and recommend values for

these parameters.

In the following studies, the ship is traveling at .F 0.325 in head seas at the

encounter frequency of J7 3.408, or near the résónaùt peak. The incident wave

amplitude is A/L = 0.015.

Figure 4-12 illustrates the convergence of the motion with respect to the spatial

discretization. Using 30, 40 and 50 panels along the ship waterline with thetotal num-

ber of panels on half the body surface and free surface running from 1800, 3000, 4200

respectively, the spatial convergence is quite adequate with no ObviOus graphic dif-

ference between the two densest cases. Each cliscretization employs the same domain

extent, numerical beach and girth-wise panel number (10 panels). Also, a common

time-step of tJ7 = 0.01 was chosen that falls within the stability and convergence

conditions for all these cases. It is interesting to note that the panel number required

for convergence (150 MB memory size) is well within the computational capability of,

a personal engineering workstation.

The temporal convergence is demonstrated in Figure 4-13. With the same geo-

metric discretizations, namely30 panels along the ship waterline, tests are conducted

to compare results for time step sizes of = 0.005,0.010 and 0.020 with one

spatial filtering at every twenty time steps. Even though there would be actually

more filtering applied for smaller time step size cases for the same period of time, the

convergence is still considered good.

The panelization of the free surface introduces some artificial waves, which some-

times even travel upstream and could distó*t the numerical solution. In almost all
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nonlinear free surface wave simulations, this type of numerical instability has been en-

countered and commomily solved by the application of filtering or smoothing chetne..

The detailed filtering scheme is discussed in the previous chapter and herein it proves

that the computation results are convergent with re$pect to the filtering frequency.

Figure 4-14 shows sensitivity to the spatial ifitering. Various filtering frequencies (one

application of filtering per 20, 40, 80 time step) have be. tested and the results are

shown no obvious sensitivity to the ifitering rate.

The disc±etization of the free surface presents another difficulty, namely the en-

forcement of the radiation condition or the wave reflection from the free surface

boundary. This wave reflection works in a similar anner as the wave reflection

from towing tank wai1s Therefore a numerical bêach sifnilar to the. physical beach

in a towing tank is designed to minimize the wave reflection, Here the conirergence
f the algorithms for two major beach pa.raweters: beach strength nd beach size, is

studied, and shows good beach-independence,
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4.3.3 Oval-Type Grid

As discussed in the previous chapter, the oval-type free surface grid nay lead to

considerable savings in computational efforts in terms of both CPU hours and memory

stora.ge, often by as as four times. But beföre any confidence is given in this type

of geometric discretizatión, it is necessary to carry out careful tests On convergence and

stability. Since the field problem being solved is elliptic, the coarse grid in. the outer

do.ahi may have some effects on the pressure integration over the body. However

the oval-type free su±face grid., developed in this thesis, is found not to induce a large

error.

As shown in Figure 3-3, the oval-type grid is determifled primarily by three pa-

rameters: the width of constant spacing inner region, R, the width of the whoJe

region,RT, and the constant spacing in:the inner region, L. Figures 4-17, 4-18 and

4=19 shw that this val type of geometric gridding is convergent with respect to all

these parameters.

In Figures 4-20 and 4-21, the computational results between the oval type and the

rectangular free surface grid are compared. The agreemeñt for short waves is very

satisfactory, but there are some discrepancies' for long waves. It is believed that the

differences come frOm the inadequate resolution in the far field which has far more

influence for long waves. Another reason may be that the domain and beach are

not large enough to accômmodate long waves. Therefore for long waves, use of the

rectangular free sutface gridj might be preferable.
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Figure 4-18: Whole dómain width convergence of heave and pitch motions for the
SnowDrift hull (D=8m) at .F = 0 325 in incident head seas, at an encounter frequency
of w(L/g)12 3.408.
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Figure 4-19: Constant domain spacing convergence of heave and pitch motions for the
SnowDrift hull (D=8m). at F = 0.325 in incident head seas at an encounter frequency
of w(L/g)"2 = 3.408.
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Figure 4-20: Comparison between rectangular and öval free surface grid of heave
motiOns for the SnowDrift hull (D=8m) at 0.325 in incident head séas at an
encouier frequency of w(L/g)"2 = 3.408.
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Figure 4-2 1: Comparison between rectangular and oval free surface grid of pitch
motions for the SnowDrift hull (D=8m) at .T = 0.325 in incident head seas at an
encounter frequency of w(L/g)"2 = 3.408.
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4.3.4 Series60 (Block Coefficient 0.7)

Again, before testing the program for more practical cases, this numerical method is

tested for a Series6ø (C6 = 0.7) hull. The nonlinear effects are expected not to be

important for this type of hull, and the linear and nonlinear predictions of motion

responses should be close. Figures 4-22 and 4-23 show comparisöns between the linear,

nonlinear computational results and experimental measurements The agreement is
sa.tisfactórr, as expected.
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Figure 4-22: Amplitude and phase of the heave response amplitude operator (RAO)
for the Series6O (C,, = 0.7) hull at .F = 0.2 in head seas.
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Figure 4-23: Amplitude and phase of the pitch response amplitude operator (BAO)
for the Series6Q (Cb 0.7) hull at .T = 02 in head seas.
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4.3.5 SnowDrift (Ballast)

The usefulness of the Weak-Scatterer version of SWAN2 program is demonstrated in

Figures 4-24 and 4-25, which show the amplitude and phase of the head sea, motion re-

sponse amplitude operators over the range of incident wavelengths for a slender-body

containership: the SnowDrift hull in ballast condition. The computational results

shown in previous sections are included to illustrate the progressive improvement in

the numerical predictions relative to the experiment data by the gradual account

of nonlinear effects. The predictions of the Weak-Scatterer SWAN2 are consistently

better than all other calculations for both heave and pitch motions, compared with

the experimental measurements.
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Figure 4-25: Amplitude and phase of the pitch response amplitude operator (RAO)
for the SnowDrift (D = 8(m)) hull at F = 0.325 in head seas.
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4.3.6 S7-75 Containership

The Weak-Scatterér version of SWAN2 program is also tested for a more conventional

containership S7-1Th, for which expérimental data are available and truste4. Figure

4-5 shows its body plan. The output of the heave and pitch motion RAQ's is shown

along with results from the linear SWAN2, the quasi-nonlinear SWAN2 and exper-

iment measurements, in Figures 4-26 and 427. The experiment was conducted by

Dalzell, Thomas and Lee in .1986 [9]. The S7-175 huilis traveling at F = 0.275 in

head seaS Again compared with those of the linear and quasi-noiilinar versions, the

predictions of the Weak-Scatterer version are consistently. better for both. .heave and

pitch motions in correlation to the experimental results. The improvement is clear,

particularly at the resonant peak, and it shows .the importance in the inclusion of

bow flares and stern counters in the calculations. The effects of the nonlinear Fróude-

Krylov forces, originally thought to be dominant, turn out to be less significant than

the nonlinear hydrodynamic effects accóunted for by the Weak-Scatterer formulation.
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4.3.7 Nonlinearities and Wave Patterns

Figure 4-28 shows four snapshots of the hull positions relative to the ambient waves.

at different instants during the simulation. The S 7-175 containership is translating

at 3 = 0.215 in head seas at the encounter wave frequency w/7 = 3.629. The

classical linear theory presumes the ship stays in the cairn-water position (the top

figure) at all times and consequently it misses the geometric nonlinear effects (bow

flares and stern counters) while the ship is actually mqving in and out of water, as

demonstrated in the figure.

Figure 4-29 displays the sensitivities of the heave and pitch motion RAO to the

incoming wave slopes. The Weak-.Scatterer version of SWAN is tested for, the S7-175

containership traveling at 2' = 0.275 in head seas at the encounter wave frequency

= 3.629, and with increasing ambient wave amplitude. The heave and pitch

motion RAO's show evident wave steepness dependency. The steeper the waves be-

come, the lower the RAO's. This is understandable because larger waves presumably

submerge more hull surface and therefore increase the hydrostatic restoring forces.

It is also interesting to note that for small wave slope, the Weak-Scatterer predic-

tion does converge, to the linear result, thus demonstrating the consistency of the

Weak-Scatterer formulation.

Figures 4-31 and 4-32 show the disturbance wave profiles for the SnowDrift (bal-

last) hull, traveling at .F = 0.325 in head seas with the ratio of the incoming wave

wavelength over the ship length between perpendiculars A/L = 1.50, at four in-

stances. The corresponding disturbance wave patterns calculated by the linear version

of SWAN2 are also included for comparison. The waves actually look quite similar,

but there exist distinct differences in pressurç distributions over the hull surface. This

again shows the importance on the actual geometric positions of the ship. A snapshot

of the disturbance wave pattern in the whole domain is provided as well.
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Figure 4-28: Snapshots of hull positions for the S7-175 containership at .T 0.275 in
head seas'.
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Figure 4-30: Disturbance wave patterns for the SnowDrift (ballast) containership at
= 0.325. In head seas with the ratio of the wavelength over ship length \/L = 1.50.
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Chapter 5

Conclusions and Future Work

In this thesis, a robust numerical algorithm has been developed to simulate the non-

linear free surface ship flows and compute the motion responses for a variety of ships

in steep ambient waves. It serves as a numerical tank to differentiate among all

kinds of nonlinearities embedded in the problem and eventually provides guidance in

studying the exact fully nonliñear ship wave problems.

The numerical method is based on a carefully examined theory - the Weak-

Scatterer hypothesis, which assumes a relatively small ship-generated disturbances

even in the presence Of steep incoming incident waves and large body motions. This

represents a major step towards the complete solution of the exactly nonlinear prob-

lem. In classical linear theory, t is presumed that the incoming waves and wave-

induced bòdy motions are so small that ail disturbances are linearizable over the

forward speed effects. Although the linear theory has its applications and often pro-

duces reasonable results, it fails in many practical applications because it cannot

properly handle complex ship geometry and the nonlinearities associated with steep

ambient waves. The Weak-Scatterer theory, on the other hand, identifies accurately

and consistently the nonlinearities of the ship geOmetry and incoming waves sincê it

imposes the body boundary conditions over the exact instantaneous submerged body

surface and the free surface conditions upon the incoming wave proffle, therefore being

a drastic departure from the linear theory. Classical linear theory enforces the body

109



boundary çôn4itins on the caini -water body position and the free surface conditions

on the cairn water. free surface plane. Even though the Weak-Scatterer theory invökes

certain approximatións, in that it assumes that the ship-generated disturbances are

cmparatively small and it is not capable of modeling 'locaI" extreme events such as

wave breaking, slamming and deck-wetness. This thesis however has demonstrated

that the theory is able to capture "global" nonliearitiès and improve the predictions

of motion responses for ships traveling in rough water and moderate Froude numbers.

The. numerical1 method has evolved from a dec3de's experience in developing the

frequency- and titiie-dómain Rankine panel methods, originating fröm a solid foun-

dation of linear pkograms - SWAN 1 and SWAN2, and foundçd upon a thorough

understanding of iumerical stability and error propagation over free surface panel

discretizations. The Rankine panel method diEcretizes both the free surface and the

submerged hull surface, and requires the distribution of Rankine sources/dipoles over

the discretized doniains. It is not the most elegant method in enforcing the ftee surface

conditions and the radiation conclitións. It however has demonstrated a large degree

of flexibility in adopting different lçinds of free surface conditions (linear or nonlinear)

in the linear programs and again in the present nonlinear extension. A bi=quadratic

spline scheme is used for the spatial discretizations of, all quantities of interest such

as the velocity potentials, the normai velocities and the wave elevations, coupled

with the temporal iscretizatiqns of the sq-called Enaplicit (Expliçitdmplicit) Euler

scheme. The algorithm has been developed through careful numerical error analysis

and gained from. the development of the linear methods. Numerical, errors introdiwed

by the discretization of the free surface are controlled by the modified 7point spatial

ifiter. The truncation of, the free surface is. made possible by the implementation

of numerical beache which damp out the wave reflections from the boundaries. A

nonlinear equation oT mçtion is derived and integrated by the fourth-order Adams-

Bashford-Moulton. scheme with the fourth-order Runge-Kutta scheme fôr the first

four time steps. T].e1time-stçp is selected from the stability criterion derived from a

von-Neumann error aalysis. An extensive set of calculations of motion responses has

been carried out for realistic ship forms to demonstrate the accuracy and robustness
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of the Weak-Scatterer method.

The numerical method in this thesis has been validated against exhaustive nu-

merical experiments. First of all, the time-domain linear program (SWAN2) and its

quasi-nötilinear variation are used to demonstrate the feasibility Of the proposed study.

Nonlinear hydrostatic forces and Froude-Krylov forces are included bito the linear so-

lution with the hydrodynamic problem treated linearly. This somewhat inconsistent

extension proves the importance of the nonlinearities associated with the hydrostatics

and incoming waves since it improves the predictions of the motion response RAO's

over the classical linear theory. Secondly, forced motion tests have been conducted

to validaté the enforcement of the body boujidary conditions over the exact instanta-

neOuS submerged hull surface. Force coefficients of a Series6O hull are calculated and

compared to those from the linear computations and experimental measurements.

Thirdly, free motion simulations have been carried out for a Series6O hull and two

practical ships. Motion response RAOs in head seas and disturbance wave patterns

are cOrnputed All cOmputational results from the Weak-Scatterer method demon-

strably improves over those from the linear versions and quasi-nonlinear version of the

SWAN program in comparison to experimental measurements. This new nonlinear

extension of the method is therefore expected to serve as a valuabie computer analysis

and design tool for conventional ships.

Future developuents are planned in the following directions.

Global structural load computations: A safe design for a ship hinges upon

accurate predictions of the global structural loads. This nonlinear method needs

to be extended to compute the global forces.

Oblique wave applications: At the present, the method can only simulate

free surfa.ce flows in head seas. An oblique sea extension should be developed

and eventually simulations in stochastic sea states should be integrated into the

method.

Transom-stern ships: Transom-stern ships progressively become more ai4
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more popular. It would therefore be useful for the method to be able to handle

ta.ns9rn-stern ships. There has already been some experience with the use of

the linear rrethod in dealing with transom sterns. Conditions of continuity in

the wave eleations and pressures at the transom stern and the free surface have

been enforcd,.and some promising results have been obtained. Extensions with

the present nonlinear method would therefore be 1orthon1ng.

Computatinai efficiency: For a typical commercial ship application, the

program cur±ently is runthng at a ratio of computational simulation time to real

time in the order of 1000:1, with the linear programs in the order of bd. It is

therefore imortant to improve the computational efficiency sè that the program

could be used in the actual designs of commercial ships. Previous chapters have

discussed candidate schemes to increase the efficiency of the method, stich as an

0(N) algorit$m for solving the boundary value problems or a matching scheme.

Further resea.±ch in these directións is necessary.

Six-degrees.of-freedom: It should not be hard to extend the code to solve

the fully nonlinear equation of motion in six-degrees-of-freedom. The lingering

question would be whether thç inclusión of the nonlinear terms in the equation

of motion affects the numerical stability properties of the integration algorithms.

Slamming: Slamming is a highly local nonlinear effect which evidently canAot

be handle by this Weak-Scatterer approximation. Most studies to çlate treat

the two-dimensional problem (cf. Zhao, Faltinsen and Aarsnes [76]) The study

of a three-dimensional slamming model is needed. This could be derived from

the present nonlinear ship motion method combined with the development of

a localized thre-&mensional treatment of the slamming región along the lines

suggested in th above reference.

In: conclusion, 'this work produces a robust and accurate numerical tool for naval

architects at the analysis stage of designing a variety of ships. And it also provides

the guidance in ftirthét development for more complex problems encountered in con-

structing modern commercial ships.
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Appendix A

Discrete Integration Schemes and

their Dispersion Relations

Consider a linearized free surfa.ce wave problem, that is governed by the linear free

surface conditions,

where is the unknown and R(, t) is the right-handed forcing.

To solve these equations numerically, various schemes might be used. The discrete

integration schemes and their related numerical dispersion relatjons are derived, and

reproduced as follows,

Fully Explicit Euler Scheme:

(q5)B5 - (ç)S1 R,
(5)n+1

- 'B1J + U(q»Li1 = g(r)B11,
lxt
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on z = O, (A.1)U=8z Ox J

¡'

and the Laplace equation, whith is enforced by applying the Green's theorem,

R(,t), (A.2)ç5(,t) - ¡j (t)C(;j)d(=



Fully mpliçi Euler Sci me:

(ç»B1 - ()1S = R,
()n+1_

+ U();1P11 =Lt
()n+1

-
(7/)YI

+ U(77);'D, ()B
W (ß2-2ißFhVF,'L+S)z2-2(ß2+ißFhD)z+ß2 = W+O(h3,zt). (A.1O)

Emplicit Eulef Scheme:

(4);$, - (&);S
()n+1

+ U(q5)D1
()n+l_

+ U();V11 = (&);B1t,t

1Ï4

W (ß2 - i/3FhD)z2 - (2/32 + F,1Y - S)z + (/32+ .ißF,1V) W + O(h3, ¿1t).

(A.14)

TrapezoidJ Scheme:

(q5)B11. - ();S = (A.15)
()n+1 + (); + 1''D (7)r' +IJ +

2 - « -.

()n+i (,)n+i
+ _

2 -" 2

W (ß-ißF,D- FiS).2(2Ø2F2Y-
($2 + ißFhD

_.FV)
= W + O(h3,1Xt2) (A.18)

Lt + U(,);D = (&);B1. (A.5)

W = ß2z2- 2(ß2+ißFhP)z+(ß2+2ißFDF,JY+S) W±O(h3 , st). (A.6)



Appendix B

Generation of the Oval-Type Grid

The oval-type grid is a subset of the boundary-conforming grid system. The gen-

eration of such a system is accomplished by the determination of the curvilinear

coordinates in the interior of a physical region from specified values (and/or slopes

of the cOordinates lines intersects the boundary) on the boundary of the physical

region. In this study, the physical region is the free surface and the boundary is the

ship waterline.

The field values of a function from prescribed boundary values may be obtained

in a variety of ways, e.g., by interpolation between the boundaries. The solution of

such a boundary-value problem, however, is a classic example of partial differential

equations. Therefore, it is logical to take the coordinates to be the solutIons of a

system of partial differential equations. Since in this problem, the coordinates (and/or

slopes) are specified on the entire closed boundary of the waterline hull surface, the

equation must be effiptic.

The simplest effiptie partial differential system and one that does exhibit consid-

erable smoothness is the Laplace equation:

¿zz + ¿ps, = (B.1)

- o, (B.2)

115



where (x, y) is the grid point jn the physical domain and (, ) is the corréspondjng

grid point jn the computational domain. This Laplace system is essentially to cOntrol

the mapping between the physical and transformed dçmains. And tM one-to-one

mapping is guaranteed bythe extreme principles, Le,, that extrema of solutions cannot

occur within the field, which are exhibited by elliptic systems. The Laplace Sstèm,

however, lacks control on the coordinate line distribution in the field

Another elliptic system, the .Poisson equation:

= (B.3).

= Q(e,iì), (B.4)

is able to exercise ome degree of control on the. spacing and orientation f the grid

lines by specifying the control function (P, Q). Equations .(B.3) and (B.4) are then

transformed to the cömputational dómain by interchanging (z, y) and (, ). This

yields a system of t'wo elliptic equations in the form of,

where

ax - 2ßx,1 +

ay - 2ßy,, +7y,,,,

¡3 = XeZ,, ± Yd/,

-y = z + y
ô(z,y)

= J2(Pxe + Qx,j,

J2(Py+Qy17),

¿y,, -

This system Of equations' is solved on a uthformed.spaced grid (, ) i the computa-

tional space for (z, y) coordinates' of each point in the physical space. The derivatives

are approximated by finite difference schemes and the systhni Of equations are' solved

by an 'iterative aJgihm.
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