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Leveraging Related Datasets to Improve Model Performance on an

Underrepresented Target Population

Maxmillan Ries, David M.J. Tax

Abstract

Training deep learning models for time-series prediction of

a target population often requires a substantial amount of

training data, which may not be readily available. This work

addresses the challenge of leveraging multiple related sources

of time series data in the same feature space to improve the

prediction performance of a deep learning model for a target

population. Specifically, we focus on a scenario where the

target dataset, representing the desired target population, is

underrepresented, while the source datasets consist of mis-

matched populations that are sufficiently representative for

training a deep learning model. In this study, we explore state-

of-the-art techniques, including transfer learning, ensemble

learning, and domain adaptation to leverage source datasets

towards a target population using real-world medical data.

Additionally, we investigate the use of model performance-

derived baselines as a heuristic to quantify the magnitude of

the distribution mismatch between a source(s) and a target.

Our results demonstrate that a set of well-defined baselines

can effectively quantify the distribution mismatch and pro-

vide insights into the choice of leveraging technique for a

given mismatch scenario. Furthermore, our results show that

all state-of-the-art techniques can be employed to leverage

related source datasets towards the target, though the perfor-

mance of these techniques varies depending on the charac-

teristics of the distribution mismatch. Eventually, we discuss

the applicability of this research to new scenarios, along with

avenues for future research.

1 Introduction

Modern machine learning methods, particularly deep learning
methods, often require a large volume of training data due
to the difficulty of the model’s task, the high dimensionality
of the input data, and/or the complexity of the model [4].
Furthermore, large datasets for a specific task, such as
predictive maintenance or medical diagnostics may not be
readily available [53], or it may be desirable to tailor model

performance towards a subpopulation with a low sample
size. In the medical field for instance, it is important for
models used in each hospital to be tailored to the hospital’s
patient population [28, 50, 52]. Very similar cases can also be
found in the industrial field [43, 56]. As training accurate and
reliable models can be difficult when specific data is required,
it can be useful to employ additional data from related sources.

The process of leveraging data from related sources
requires tackling two core challenges, feature mismatch, and
distribution mismatch. A feature mismatch occurs when two
or more datasets contain different features. This challenge
can notably be observed in the medical field, where hospitals
often uphold different practices towards the same goal [52],
or in the industrial field, where each company creates its
features using different customized sensors [43, 56]. A
distribution mismatch occurs when two or more sources of
data contain differences between populations [53]. In the
medical field, such a mismatch can be seen by comparing two
hospitals at different geographical locations. In this scenario,
there exist multiple distribution mismatches, where the
medical equipment used is different, the ethnicity distribution
across the populations is different, and the hospital standard
of treatment and patient standard of living may be different.

In any field, to utilize data from several sources to
construct subpopulation-specific models, possible distribu-
tion mismatches must be addressed and resolved [53]. When
ignored, the trained model may be biased towards the most
represented populations, resulting in poor model performance
towards underrepresented populations. This paper investi-
gates the following question: How can related sources of

time-series data be leveraged to improve the performance

of a Long Short-Term Memory deep learning model (LSTM)

towards a target population with underrepresentative data?

The scope of this work is to tackle the challenge of
leveraging multiple sources of time-series data in the same
feature space to improve the predictive performance of an



LSTM deep learning model towards a target population. For
simplicity, we consider each population of interest to be
represented by a single dataset, with all populations differing
by a distribution mismatch. We investigate the specific
scenario where the target dataset (containing only the target
population) is underrepresentative, and the source datasets

(each containing a mismatched population to the target) are
sufficiently representative to train a deep learning model.
An alternative approach using Generative Adversarial
Networks (GANs) has shown good results [53], but GANs are
notorious to train well and need large training sets. Although
the source dataset may be sufficiently large, the target dataset
certainly is not, therefore the use of GANs is not considered
further.

2 Related Works

Transfer Learning

In machine learning, transfer learning methods focus on
transferring knowledge across domains as a means of
resolving the lack of abundant training instances [57]. The
technique is inspired by the capability of the human mind
to transfer knowledge across domains [57]. Specifically,
transfer learning aims to leverage knowledge from related
source domains to improve model performance on a target
domain [26]. This technique is frequently employed in
cases when insufficient data for a population is available
to train a machine learning model, but sufficient data is
available from similar populations to be used as an additional
source of information [26]. Within the image-processing
domain, it has become increasingly common to pre-train deep
Convolutional Neural Networks (CNN) on the ImageNet
dataset [42], to learn good general-purpose features [21].
The use of transfer learning on such a dataset has over time
become a de facto standard for solving many computer
vision problems [21], with impressive results having been
presented in image classification [37], action recognition [54],
and image segmentation [25]. Similarly, transfer learning
was found to apply to time-series forecasting via the use
of LSTM-CNNs or deep CNNs [11]. In such scenarios,
transfer learning was found to improve regression and
classification model performance across most deep learning
architectures [11, 17, 45, 49].

However, while transfer learning has the potential to
help machine learning models pre-learn robust features
using larger related domain datasets, it can also occur that
the target learner is negatively affected by the transferred
knowledge, known as a negative transfer [57]. There exist
many possible reasons why a negative transfer can occur,
such as the relevance between the source and target domain or
the relevance of the transferable knowledge [26, 57]. Several
works in the field of image and time-series prediction show

that such a phenomenon is common when the technique is
poorly applied in unfavourable circumstances [11, 17, 45, 49].

Reweighting

Reweighting is a bias correction technique, which can be
used to help leverage data from several source domains, by
addressing different imbalances in the data, such as dispar-
ities between population sizes. When aggregating several
related datasets, reweighting can be used to assign impor-
tance weights to each population in the training data, ensuring
that the minority populations have a sufficient impact on the
training of the model [5]. An example of this can be found in
the medical domain, where reweighting was found to mitigate
disparities introduced by data underrepresentation [2].
Furthermore, reweighting can also be applied to the combi-
nation of several model outcomes, as a form of Ensemble
Learning [1]. This form of ensemble learning can be used
for leveraging related datasets, by aggregating the outcome
of models trained towards different populations, rather than
aggregating the data of each dataset. Several works in this
field have shown that weighting the predictions of multiple
models can significantly decrease the forecasting error over
time-series data, increasing the reliability and usability of
models within critical fields, such as medicine [1, 10, 38].

Domain Adaptation

Domain adaptation is a sub-field within machine learning that
aims to address the challenge of training a model on a source
domain and generalizing it to a target domain differing by a
distribution mismatch.
For instance, Jin et al. proposed an attention-sharing adver-
sarial domain adaptation forecaster for both synthetic and
real-world time-series data, which demonstrated superior per-
formance over existing state-of-the-art baselines [24]. Wilson
et al. also explored domain adaptation techniques for time-
series data and proposed a novel convolutional deep domain
adaptation model. Their method achieved significant improve-
ments in accuracy and training times on real-world sensor
data benchmarks [51].
In the healthcare industry, domain adaptation is particularly
important for improving the generalization of machine learn-
ing models across different patient populations that exhibit
distribution mismatches. McDermott et al. found that Multi-
Task Learning (MTL) significantly improved single-task per-
formance on time-series forecasting tasks [33]. Their study
also demonstrated the benefits of MTL applied to both tradi-
tional and few-shot learning scenarios [33].
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Bayesian Hierarchical Models and Hierarchical

Markov Models

When combining multiple datasets, it is frequently the
case that the datasets are not completely independent [29].
Hierarchical models are frequently applied when the
generating mechanism behind the data is thought of as
having a hierarchical structure [13]. For example, Bayesian
Hierarchical Models (BHMs) have been shown to adjust for
inter-study differences, incorporating multi-scaled spatial
and temporal data, and provide less biased estimations than
traditional methods [13, 32].
Hidden Markov Models (HMMs), are a tool for rep-
resenting probability distributions over sequences of
observations [18, 47]. Hierarchical HMMs (HHMMs), are
an extended form of HMMs that include a hierarchy within
the hidden states [7]. Both HMMs and HHMMs have shown
promising results when applied in fields such as natural
language processing and bio-molecular imaging [27, 44],
notably when applied to temporal data [9, 16].

HMMs, though applicable to our data, are difficult to
use with other leveraging techniques, such as Transfer
Learning. Furthermore, incorporating HMMs would require
architectural changes which prevent a direct comparison
of methods. Hierarchical models show promise in leverag-
ing multiple related datasets. Unfortunately, due to time
constraints, they will not be further investigated.

Generative Adversarial Networks

Generative Adversarial Networks are a group of deep neu-
ral networks that have gained much popularity over the last
decade with the affordability of computation and accessibility
of data. Recent works in leveraging multiple datasets have
made use of this unique deep neural architecture, as a tool to
solve multiple distribution and feature mismatches simultane-
ously [35, 43, 53, 56]. While GANs are a powerful tool, they
are not addressed in this paper, as they require large volumes
of data and training time, and the use of a unique adversarial
architecture.

3 Methodology

This section describes the scope of the problem, the data,
the relevant definitions and assumptions made, as well as the
methods employed for experimentation.

Scope, Data, Definitions, and Assumptions

In this paper, we consider the problem of leveraging a set
of source time-series datasets M = {D1,D2, ...,DN} to im-
prove the classification performance of a supervised model
towards a target population, represented by the dataset Dtarget.

Specifically, we assume that both the source and target
datasets have the same feature space, and are of the form
D = {(X1,y1),(X2,y2), . . . ,(XJ ,yJ)}, where j is the size of
dataset D (differs per dataset), XJ is a sequence of T feature
vectors,

XJ =










x1,1 x1,2 x1,3 · · · x1,T

x2,1 x2,2 x2,3 · · · x2,T

x3,1 x3,2 x3,3 · · · x3,T
...

...
...

. . .
...

xk,1 xk,2 xk,3 · · · xk,T










︸ ︷︷ ︸

time







features

and yJ a corresponding outcome label.

Additionally, we assume that the target dataset Dtarget

is underrepresentative of the target population, and that the
data in our set of sources M differ by a known distribution
mismatch, but are related to the target population.
To leverage data from our set of sources M, we employ a
variety of state-of-the-art techniques, detailed below.

Concatenation

Basic Approach: A simple method of merging multiple
datasets consists of concatenating them. As our setting as-
sumes that the source and target datasets have the same feature
space, we can simply concatenate the different datasets into a
single dataset Dconcat = {D1 ∪D2 ∪ . . .DN ∪Dtarget}, and use
this mixture as the training data for the model, resulting in
the following loss function:

L(y, ŷ) =
N+1

∑
i=1

L(yDi
, ŷDi

)

where y is the true label, ŷ is the predicted outcome, and the
sum of i is over N source datasets and Dtarget.

Weighted Concatenation: In the basic approach, it is
assumed that every sample holds equal importance during
training. In reality, due to the size differences between source
and target datasets, any trained model will be biased towards
the larger sources. An extension to the basic approach, which
aims to address this imbalance bias between datasets, is to
use dataset weights {wi; i = 1 . . .N + 1}. There exist many
ways to set the weights per dataset, and in this paper, we
chose to employ an algebraic solution, where the weight of
each dataset is set inversely proportional to its size, artificially
equating the importance of all datasets during training. The
weighing term can be seen in the loss function below:

L(y, ŷ) =
N+1

∑
i=1

wi L(yDi
, ŷDi

)

wi | Di |=
1

N +1
;∀i
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where y is the true label, ŷ is the predicted outcome, the sum
of i is over N source datasets and Dtarget, and | Di | is the cardi-
nality of Di. As the source and target datasets differ by a distri-
bution mismatch, we additionally experiment with biasing the
model towards the target population. Though these weighing
solutions offer a consistent and less time-consuming weight
selection, it is also possible to employ other optimization
strategies, such as trainable weights or grid-search methods
to find a balance of weights.

Transfer Learning

Transfer Learning can also be used to leverage knowledge
from source domains to improve model performance towards
a target domain [57]. Typically, transfer learning is applied
by first training a model on a source dataset(s) (known as
pre-training) before fine-tuning it to the target dataset (e.g.,
training with a lower learning weight). The rationale is that
using the source datasets initially allows the model to extract
relevant patterns from the input data that may apply to the
target dataset. Moreover, in pre-training the network with a
set of sources similar to the target dataset, fewer samples
from the target domain may be necessary [57].

Some factors must be considered when using transfer
learning, such as the possibility of a negative transfer and
the numerous hyper-parameters requiring optimization. We
explore a simple, but representative use of transfer learning
by fine-tuning the model with a lower learning rate than
the pre-training phase. While this specific solution is not
optimized towards the dataset-specific task, it serves as an
example of how transfer learning can be used to leverage
source datasets.

Ensemble Learning

Ensemble learning involves combining multiple models
trained on different datasets to make a prediction [10]. This
can be achieved using techniques such as boosting, bagging
or stacking. This paper explores a form of boosting, where
a model is trained per dataset, and the independent model
outcomes are averaged into a final prediction. Given the set
of source datasets M, the target dataset Dtarget, and a function
ŷ j = fi(X j) where a model trained on Di predicts sample X j,
the final ensemble prediction ŷ j is given by:

ŷ j =
N+1

∑
i=1

βi fi(X j)

N+1

∑
i=1

βi = 1

where βi is the per-model prediction weight and can be se-
lected by hyper-parameter estimation, or manual tuning.
The use of a weighted combination of models ensures that the

performance on Dtarget is maximized, and the models with a
less robust prediction are given a lower weight. We investigate
this methodology using both a grid search optimization over
the training set and a heuristic-based solution derived from
the baselines representing the distribution mismatch.

Domain Adaptation

In the case where the source and target datasets are collected
from different domains, domain adaptation techniques can be
used to merge the datasets.

Domain Separation: One method consists of adjusting
the feature representation of the data in such a way as to
learn a hidden representation where the source and target
populations are distinguishable by the model. This can
be achieved with a method such as Multi-Task Learning
over the concatenated datasets, where there exist two target
labels, the task label Y = {y1,y2, . . .y j}, and a dataset label
Z = {z1,z2, . . .z j}, which represents the dataset each sample
is drawn from. Using these two labels, a composite loss
Ly,z,ŷ,ẑ is used to train the model:

Ly,z,ŷ,ẑ = α Lpred(y, ŷ)+(1−α) Ldata(z, ẑ)

0 ≤ α ≤ 1

where α is a weight factor that influences the importance of
each respective task, Lpred is the loss function of the predictive
task, and Ldata is the loss function of the dataset classification.
In the ideal situation, both tasks complement each other, and
help the model better estimate the task-specific prediction by
learning how to separate the source(s) from the target. In this
paper, we use a grid-search optimization to find an ideal α
parameter using the training set.

4 Experiments and Results

Using a real-world dataset as an example, we investigate how
each method defined in Section 3 can be used to leverage
source datasets to improve model performance on a target
dataset. This section outlines the data used and the experi-
ments conducted.

Dataset

The experiments conducted in the following sections are all
performed on a scenario created using a real-world dataset.
We used the 2019 PhysioNet/Computing in Cardiology Chal-
lenge dataset [19, 40, 41], which contains patient data from
two distinct hospitals in the United States (the Beth Israel
Deaconess Boston Medical Center and the Emory University
Hospital Atlanta). The 40,336 total patient files each contain
hourly time-series records of a patient’s admission to the In-
tensive Care Unit (ICU) and consist of 41 features; 8 vital
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signs (such as Heart Rate, Temperature, Pulse Oximetry, etc.),
26 laboratory values (such as Measure of Excess Bicarbonate,
Fraction of Inspired Oxygen, etc) and 6 demographic vari-
ables (such as Age, Gender, Length-of-stay, etc). The final
feature is a binary value, which indicates whether or not a
patient has met the gold standard of sepsis, according to the
modern Sepsis-3 guidelines [39], and is used as the target
label described in Section 31.

Model

The focus of this paper is primarily to showcase the poten-
tial improvement in the predictive performance of an insuffi-
ciently sampled target dataset using a source dataset(s), rather
than optimally solving the prediction of Sepsis. The method-
ology employed in this study is deliberately kept similar to the
approach used by Congxing Zhu [55], to ensure reasonable
performance from the source data. The specifics of the data
processing can be found in Appendix A, with the final model
described in Figure 1 below.

Figure 1: Diagram displaying the architecture of the model. The boxes

marked D have a dropout layer for regularization.

Each experiment will be consistently trained using Binary
Cross-Entropy for Sepsis prediction (Lpred(y, ŷ)) and Categor-
ical Cross-Entropy for domain adaptation (Ldata(z, ẑ)) over
10-fold cross-validation on patients. As the goal of the paper
is not to optimally solve the PhysioNet Challenge, alternative
loss functions will not be investigated.

Single Distribution Mismatch

In Section 3, several aggregation techniques were described
to combine multiple source datasets towards a target popula-
tion. This experiment investigates how each method leverages
a single source dataset. To generate the source and target
datasets from the PhysioNet database, we identified three
distinct real-world distribution mismatches, described below:

1While there exists an additional dataset, which was used by the PhysioNet
Challenge to evaluate participants’ models, it was not made publicly available.
Consequently, we have developed and evaluated our algorithms exclusively
using the publicly available data (from Hospital A and B, according to the
challenge labels).

• Gender: Eachempati et al. [14] found that gender is an in-
dependent predictor of Sepsis. As the PhysioNet datasets
contain anonymized gender labels, they can be used to
create two distinct populations. The gender labelled 0
(23931 patients) will be used as the source, and the gen-
der labelled 1 as the target population (18675 patients)2.

• Hospital: There exist several distribution mismatches be-
tween hospitals in different geographical locations, such
as racial distribution, quality of healthcare and medical
equipment [53]. As the two hospitals used in the Phys-
ioNet challenge lie in different states of the USA (Mas-
sachusetts and Georgia), hospital location is a variable
which can create two mismatched populations. Hospital
B will be used as the source dataset (20815 patients),
and Hospital A will be used as the target set (21790 pa-
tients)2.

• Age: Martin, Greg S et al. [31] found a correlation be-
tween patient mortality to Sepsis and age. Although age
is provided for each patient of the PhysioNet dataset, it
is not a binary label. Consequently, to create two popula-
tion, we will use patients younger than 30 and older than
45 (2050 vs 35354 patients). The age distribution across
patients can be found in Appendix B. Patients between
the age of 30 and 45 were removed from the data to
create a gap between the young and older populations,
to increase the effect of the distribution mismatch.

This paper aims to address the specific scenario where
the target data is underrepresentative and insufficient. As
the gender and hospital features split the data into two
equally-sized datasets, the target training data was randomly
undersampled to 5% of the fold data. In the case of age, the
age thresholds were chosen such that the target population
does not require further undersampling. We will test each of
the methods described in Table 2 to leverage data from the
larger source to the smaller target dataset. The performance
of each method will be compared to a set of baselines,
described in Table 1.

Table 1: Summary of the baselines, the training and testing combinations,

along with the matching observations expected.

2The source and target selection was made at random. Switching the
source and target datasets is not expected to cause large changes in the
observed outcome.
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(a) Gender Distribution Mismatch (b) Hospital Distribution Mismatch (c) Age Distribution Mismatch

Figure 2: Overview of the three selected distribution mismatches in the PhysioNet Sepsis dataset. (a) shows the gender distribution mismatch, where the source

and target distributions largely overlap. (b) shows the hospital distribution mismatch, where a small overlap is present between source and target distributions.

(c) shows the age distribution mismatch, where the target distribution is a subset of the source distribution. These distribution mismatches were identified using

the baseline results of Table 3.

S-Weighted

Concatena-

tion

Basic concatenation with no weights introduced.
The model is biased towards the larger source
dataset.

Equal-

Weighted

Concatena-

tion

Weighted concatenation, with the source and
target datasets equally contributing to model
training, wsource =

1
|Dsource|

and wtarget =
1

|Dtarget |
.

T-Weighted

Concatena-

tion

Weighted concatenation, with the source and
target datasets being weighed inversely pro-
portional to the square of their size, wsource =

1
|Dsource|2

and wtarget =
1

|Dtarget |2
. This weighting

biases the model towards the target population
during training.

Transfer

Learning

Pre-training on the source dataset (learning rate
= 0.001), before fine-tuning on the target dataset
(learning rate = 10−5).

Boosting

(Grid)

Ensemble Learning using a source-trained and
target-trained model, with the weight βi found
using a grid-search over the target training set.

Boosting

(Heuristic)

Ensemble Learning using a source-trained and
target-trained model, with the weight βi set
using the baselines as a heuristic, βsource =

BS−T

BS−T+BT−T
and βtarget =

BT−S

BS−T+BT−T

S-Weighted

Domain

Adaptation

(DA)

Multi-task learning over the source-weighted
concatenation of source and targets to predict
both Sepsis label and dataset of origin per sam-
ple, with α set using grid search over the training
set.

Equal-

Weighted

Domain

Adaptation

(DA)

Multi-task learning using the equal-weighted
concatenation of source and target to predict
both Sepsis label and dataset of origin per sam-
ple, with α set using grid search over the training
set.

Table 2: Summary of methods for leveraging single-source data. On the left-

hand-side, is the name of the experiment conducted. On the right-hand-side,

is the description of the experiment and all relevant parameter choices.

AUROC (in %)

Gender Hospital Age

Source to Source 79.3 ± 1.4 80.4 ± 2.4 80.0 ± 1.8
Source to Target 78.1 ± 3.3 68.3 ± 2.6 77.4 ± 6.1
Target to Target 68.0 ± 4.8 65.6 ± 2.4 72.8 ± 8.0
Target to Source 65.2 ± 3.9 54.1 ± 10.8 63.8 ± 4.9

Table 3: Baseline mean AUROC results for Sepsis prediction with a single

distribution mismatch across the 10-fold cross-validation over patients. The

value following the ± sign is the standard deviation across the folds.

Results

Data Representativeness

The source-to-source and target-to-target baselines assess the
representativeness of the source and target datasets on the
respective populations. The source-to-source performance
across all distribution mismatches is reliable, and comparable
to the AUROC performance obtained by Congxing Zhu [55].
The source-trained model performance across each validation
fold is consistent for each distribution mismatch, indicated by
the low standard deviations. The target-to-target results show
that, while not critically insufficient, the target datasets are less
representative than the respective sources, with each target-to-
target baseline achieving a 7.2-14.8% lower mean AUROC
performance. Moreover, the target-to-target baselines have a
higher standard deviation than the source-to-source baselines,
indicating large fluctuations across the validation folds. These
fluctuations further highlight the underrepresentativeness of
the target training data.

Distribution Mismatch

The source-to-target and target-to-source baselines both
provide a quantitative assessment of the distribution mis-
match between source and target populations. However, the
target-to-source baseline is frequently less reliable as an
indicator of mismatch, due to the underrepresentativeness of

6



the target training data.
The gender source-trained and target-trained models
demonstrate insignificant changes in model performance
when applied to the mismatched population (p = 0.3038
and p = 0.1694, respectively). This indicates, contrary
to the findings of Eachempati et al. [14], that the gender
mismatch is minimal. Similarly, the baseline results show a
comparable mismatch pattern for age. The source-trained
model performance insignificantly decreases by 2.6% when
tested on the target data, indicating a small distribution
mismatch (p = 0.2124). However, the target-trained model
performance significantly decreases when tested on the
source data (p = 0.0077). Taken together, these results
indicate that the target distribution is likely a subset of
the source distribution, and the smaller target dataset is
insufficient to capture the whole population.
Lastly, the hospital baselines indicate that the patients
from both hospitals differ by a larger distribution mis-
match. Both the source-trained and target-trained models
significantly decrease in performance when tested on the
mismatched population. Notably, the target-to-source dataset
indicates that the target-trained model is unable to gener-
alize to the source population, with a mean AUROC of 54.1%.

The baseline results offer insights into the reliability
of the source data, the representativeness of the target
data, and provide a quantitative measure of the extent
of the distribution mismatch. When examining gender
and age as mismatch variables, the results show that the
observed mismatches do not have a significant impact on the
performance of the model. This suggests that there are no
notable biases in the predictions from source to target data.
In contrast, a distinct distribution mismatch can be observed
between source and target populations when considering the
hospital variable. Both the source-trained and target-trained
models experience a decline in performance when tested on
populations mismatched from their training data.
The remainder of this section delves into a detailed analysis
of the outcomes obtained by employing state-of-the-art
techniques for leveraging the source dataset towards the
target, the result of which can be found in Table 4.

Experimental Results

Collectively, the experimental results show that all state-of-
the-art techniques demonstrated comparable or superior per-
formance to the target-to-target baseline, with the best per-
forming experiments providing an increase of 11.2%, 11.8%
and 8.3% for Gender, Hospital and Age respectively. For the
gender distribution mismatch, the source-weighted concate-
nation, boosting and domain adaptation techniques provided
the highest increase in performance, with grid-search boost-
ing doing so with a much lower standard deviation. For the
hospital mismatch, transfer learning outperformed all other

AUROC (in %)

Gender Hospital Age

S-weighted Concat. 79.1 ± 2.6 76.0 ± 2.3 81.1 ± 5.6
Equal-weight Concat. 76.6 ± 2.4 73.5 ± 2.7 80.0 ± 6.3
T-weighted Concat. 67.4 ± 3.5 70.0 ± 3.1 75.2 ± 4.4
Transfer Learning 78.6 ± 2.9 77.4 ± 1.9 76.0 ± 7.1

Boosting (Grid) 79.0 ± 1.3 69.9 ± 2.5 80.3 ± 2.8
Boosting (Heuristic) 77.6 ± 2.3 72.7 ± 2.3 77.3 ± 2.5

S-weighted DA. 79.2 ± 2.4 74.9 ± 2.5 80.5 ± 5.5
Equal-weighted DA. 77.8 ± 2.1 74.7 ± 2.7 79.8 ± 6.6

Table 4: Mean AUROC results of leveraging techniques for a single distribu-

tion mismatch across the 10-fold cross-validation over patients. The value

following the ± sign is the standard deviation across the folds.

methods, with source-weighted concatenation providing a
similar, albeit slightly lower improvement. For age, source-
weighted concatenation outperformed all other methods, with
equal-weighted concatenation, grid-search boosting and do-
main adaptation returning similar improvements. Similarly
to the gender mismatch, boosting also returned the lowest
standard deviation across the folds.

Concatenation

The three concatenation experiments, in conjunction with the
source-to-target and target-to-source baselines, aim to inves-
tigate the influence of both source and target datasets on the
model performance. Overall, the source-weighted concatena-
tion approach demonstrated superior performance compared
to other weighted concatenation methods and baselines across
all distribution mismatches. While the combination of source
and target datasets improved model performance on the target
population, increasing the importance of the target dataset
during training resulted in negative returns. This outcome can
be attributed to the underrepresentativeness of the target popu-
lation, which introduces bias and noise during training. In the
case of gender and hospital mismatches, as the importance of
the target dataset increased during training, the standard devi-
ation also increased. A similar trend was observed for the age
distribution mismatch, although the target-weighted concate-
nation yielded the lowest standard deviation. This behavior is
unusual and no explanation for it was found, notably as the
target-to-target baseline has a very high standard deviation.
For the three distribution mismatches, the optimal weights
between the source and the target lies close to those of the
source-weighted concatenation approach. The optimal bal-
ance is anticipated to vary from dataset to dataset, particularly
depending on factors such as the sample size or noisiness of
the source and target datasets.

Transfer Learning

The results of Table 4 demonstrate that transfer learning did
not yield significant improvements over the source-to-target
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baseline for gender and age (p = 0.7231 and p = 0.6419, re-
spectively). However, in the case of the hospital mismatch,
transfer learning outperformed other techniques, with an in-
crease of 9.1% in model performance over the source-to-target
baseline. The smaller mismatches observed with gender and
age suggest that the initial pre-training of the model on the
source dataset, followed by fine-tuning with the target data,
may have led to a loss of representative information. Conse-
quently, the performance gain achieved to transfer learning
was comparatively lower than concatenation-based methods.
However, in scenarios involving a larger distribution mis-
match such as hospital, transfer learning proved to be effec-
tive in leveraging information from the source dataset and
improving the performance towards the target population.

Boosting

Figure 3: Figure showing the boosting performance with different β param-

eter values for the gender distribution mismatch. The green (short dash)

vertical line shows the optimal β found during training. The red (solid) verti-

cal line shows the optimal β for the test set, and the blue (dash/dot) vertical

line shows the baseline derived β value. β = 1 indicates only source model

usage.

Figure 3 and 4 show the boosting mean AUROC for different
β values over the target training, testing and source testing
set. For all distribution mismatches, the predicted parameter
values using the training set differ from the optimal value
found on the test set. With the gender mismatch, the boosting
performance minimally decreases, with a similar difference
being observable for the age variable (see Appendix C). With
the hospital mismatch, the performance difference between
train and test-optimized models is 4.8%. Moreover, with all
three mismatches, the absence of the target-trained model
reduces overall performance across both source and target
test data. This performance difference is likely due to the
design behind the boosting method, where the source data
is not adapted, but instead used as-is, thereby presenting a
strong bias towards the incorrect population.

The baseline-derived weights aim to find an optimum
without the need to re-train the model repeatedly. With the

Figure 4: Figure showing the boosting performance with different β param-

eter values for the hospital distribution mismatch. The green (short dash)

vertical line shows the optimal β found during training. The red (solid) verti-

cal line shows the optimal β for the test set, and the blue (dash/dot) vertical

line shows the baseline derived β value. β = 1 indicates only source model

usage.

gender and age distribution mismatches, as the differences
between the source-to-target and target-to-target baselines
are low, the optimal weight calculated hovers around
0.5 between source and target models. In this situation,
the baseline-derived weight offers no benefit over a grid
search optimization. However, with the hospital distribution
mismatch, due to the underrepresentative and mismatched
training data, a grid search is unable to find a set of
performing weights. The heuristic, by weighting the source
dataset more than the target, due to the baseline performance
differences towards the target set, can better approximate the
test-set optimum. It is hence expected that in cases where the
target population is even less representative, the heuristic will
perform better than most data-driven optimization strategies.

Domain Adaptation

Figure 5: Source-weighted Domain Adaptation performance on the target

training and testing set for different α values. The domain adaptation tech-

nique hinders the training process, with α = 1.0 (S-weighted concatenation)

resulting in the highest AUROC performance.
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Figure 6: Source-weighted Domain Adaptation performance on the target

training and testing set for different α values. The domain adaptation tech-

nique hinders the training process, with α = 1.0 (S-weighted concatenation)

resulting in the highest AUROC performance.

Figure 5 and 6 show the domain adaptation performance
for different α parameter values for the hospital distribution
mismatch. Figure 5, the source-weighted domain adaptation
experiment, indicates that the use of multi-task learning for
domain separation hinders the model performance towards
both the training and testing target data. Conversely, Figure
6, the equal-weighted domain adaptation, indicates that
multi-task learning benefits Sepsis prediction over both the
training and testing target data.

The concatenation experiments indicated that increas-
ing the importance of the target dataset resulted in negative
returns. With source-weighted domain adaptation, the
introduction of the dataset loss Ldata(z, ẑ) either increases
the importance of the target or decreases the importance of
the source during training, resulting in lower performance.
With equal-weighted concatenation, the source and the target
populations both contribute equally to the model training. The
introduction of Ldata(z, ẑ) results in a 1.2% mean AUROC in-
crease for both the gender and hospital distribution mismatch.
For all three distribution mismatches, equal-weighted domain
adaptation outperformed equal-weighted concatenation, but
performed on par or worse than source-weighted domain
adaptation. Hence, while the addition of a dataset loss may
improve model performance towards the target population
when the source and target hold equal importance during
training, this technique is not suitable for the designed
scenario due to the underrepresentative target training data.

Multiple Distribution Mismatches

The previous experiment investigated how the state-of-the-art
techniques described in Section 3 leveraged a single source
dataset towards a target population. This experiment investi-
gates the performance of each method when used in a multi-
source scenario. To create such a scenario, the single distri-
bution mismatches from the previous experiment were com-

bined, as shown in Figure 7.

Figure 7: Design of the multiple distribution mismatch datasets. The green

box represents the target dataset, with the yellow boxes representing the

source populations. With gender resulting in a small distribution mismatch,

it was combined with age and hospital variables to create a larger mismatch.

Though gender alone did not cause a strong mismatch, it is possible that

combined with other mismatch variables, a bigger effect is observed. The

bold values show the number of patients per dataset.

In this scenario, the three source datasets contain a combina-
tion of distribution mismatches with respect to the target pop-
ulation. Specifically, gender was combined with age and/or
hospital variables to further undersample each dataset and
increase the increase the magnitude of the distribution gap
between sources and target. Through the baselines of Table
3, we expect that the distribution mismatch between S1 and
the target is the smallest among all three sources, with the
hospital variable providing the largest mismatch among the
three variables. We additionally expect the performance of
S2 to be less consistent across the validation folds, due to the
low cardinality of the dataset. Similarly to the single distri-
bution mismatch, the baselines will be used to evaluate the
performance of the methods in Table 5.

Results

Across all baseline results of Table 6, the standard deviation
has increased in comparison to the single distribution
mismatch baselines of Table 3. This increase in the standard
deviation is likely due to the decrease in dataset size from the
filtering per mismatch variable. However, despite the higher
standard deviations, the baseline results present similar
observations to the single distribution mismatch experiment.

The target-to-target baseline indicates that the target-
trained model still has sufficient data to learn a predictive
pattern towards the target population. The S2 dataset has
a comparable cardinality to the target population, and the
S2-to-S2 baseline performs similarly to the target-to-target
baseline, with a comparably higher standard deviation. In
contrast, the S1 and S3 datasets have more training data,
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S-Weighted

Concatena-

tion

Basic concatenation with no weights introduced.
The model is biased towards the larger source
datasets.

Equal-

Weighted

Concatena-

tion

Weighted concatenation, with the sources and
target datasets equally contributing to model
training, wsource =

1
|Dsource|

and wtarget =
1

|Dtarget |
.

Transfer

Learning

(Concatena-

tion)

Pre-training on the concatenation of all source
datasets (learning rate = 0.001), before fine-
tuning on the target dataset (learning rate =
1 ·10−5).

Transfer

Learning

(Sequential)

Sequential pre-training on S3 (learning rate =
0.001), before fine-tuning on S2, S1 and the tar-
get dataset (learning rate = 1 ·10−5).

Boosting

(Grid)

Ensemble Learning using a source-trained
model per source and target-trained model, with
the weight βi found using a grid-search over the
target training set.

Boosting

(Heuristic)

Ensemble Learning using a source-trained and
target-trained model, with the weight βi set
using the baselines as a heuristic, βsource =

BS−T

∑N+1
i=1 Bi−T

and βtarget =
BT−S

∑N+1
i=1 Bi−T

, where the sum

over N +1 sums the performance of each base-
line from i to target (both sources and target).

S-Weighted

Domain

Adaptation

(DA)

Multi-task learning over the source-weighted
concatenation of source and targets to predict
both Sepsis label and dataset of origin per sam-
ple, with α set using grid search over the training
set.

Equal-

Weighted

Domain

Adaptation

(DA)

Multi-task learning using the equal-weighted
concatenation of source and target to predict
both Sepsis label and dataset of origin per sam-
ple, with α set using grid search over the training
set.

Table 5: Summary of methods for leveraging multi-source data.

Test - AUROC (in %)

S1 S2 S3 Target

S1 76.1 ± 3.1 62.6 ± 22.1 58.1 ± 12.0 74.5 ± 9.3
S2 51.0 ± 6.2 73.1 ± 8.8 49.6 ± 10.8 57.9 ± 6.9
S3 64.5 ± 4.8 75.4 ± 14.5 78.8 ± 4.0 65.2 ± 7.6

Target 57.5 ± 6.0 47.8 ± 14.7 53.01 ± 10.2 70.3 ± 6.8

Table 6: Baseline mean AUROC results for Sepsis prediction with multiple

distribution mismatches across the 10-fold cross-validation over patients.

The value following the ± sign is the standard deviation across the folds.

Sn represents a model trained on dataset Dn. The grey squares show model

performance across only different sources and do not look at the target

population.

resulting in a higher more consistent baseline performance
across the validation folds.

Furthermore, the performance of the three source datasets to
the target population confirms the expectations held prior. A
model trained on S1 generalizes well to the target population,
as they both contain data from the same hospital. S2 and S3

have a poor performance when tested on the target population,
with the lower cardinality of S2 resulting in performance
closer to guessing.

The individual distribution mismatches results can
also be found in the baseline results. For the age distribution
mismatch, a model trained on S2 is unable to generalize
to S3, while a model trained on S3 generalizes well to S2.
A similar pattern can be seen between S1 and the target
population. For the hospital distribution mismatch, the mean
AUROC of a model trained on the S1 dataset decreases when
tested on both S2 and S3. Similarly, the mean AUROC of a
model trained on S3 decreases when tested on datasets from
Hospital A.
Overall, as the baselines offer consistent results within
expectations, the remainder of this section will focus on the
experimental results described in Table 7.

Target AUROC (%)

S-weighted Concatenation 83.2 ± 6.3

Equal-weight Concatenation 80.0 ± 7.3
Transfer Learning (Concat.) 79.0 ± 7.5

Transfer Learning (Sequential) 81.0 ± 6.5
Boosting (Grid) 76.0 ± 8.3

Boosting (Heuristic) 75.1 ± 9.2
Source-weighted DA 84.0 ± 6.7

Equal-weighted DA 80.6 ± 6.6

Table 7: Mean AUROC results of leveraging techniques for multiple distribu-

tion mismatches across the 10-fold cross-validation over patients. The value

following the ± sign is the standard deviation across the folds.

Generally, all methods outperformed the target-to-target
and source-to-target baselines. However, with the exception
of boosting, all methods performed very similarly, with
S-weighted concatenation and domain adaptation obtaining
the highest AUROC results. While both boosting methods
outperformed the source-to-target baselines, they performed
significantly worse than the S-weighted concatenation
(pgrid = 0.0338 and pheuristic = 0.0424), with a decrease of up
to 8.1% mean AUROC. In comparison to concatenation-based
transfer learning, though not significantly (pheuristic = 0.3126),
the boosting methods under-performed by 3-4%.

The concatenation results show a similar pattern found in
the single distribution mismatch experiment. S-weighted
concatenation outperforms all other concatenation methods,
with the performance decreasing as the target importance
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increases. More interestingly, for boosting, the performance
difference between the grid search and the heuristic-derived
weights is insignificant (p = 0.5320). The heuristic weighting
approach gives higher importance to S1 and the target dataset
while lowering the importance of the datasets from Hospital
B. Moreover, due to the low cardinality of S2, its performance
on the target set is very low, with the heuristic giving it a
lower weight. This indicates that the baseline-derived weights
for boosting can work as a reliable substitute for a full-search
optimization.

Though statistically insignificant (p = 0.5320), sequential
transfer learning outperformed concatenation-based transfer
learning with a mean AUROC increase of 2%. Figure 8 shows
the sequential transfer learning performance improvement
across the source datasets through the fine-tuning process.
Across all validation folds, the model performance increases
as it continues to fine-tune to new source datasets. In two of
the ten folds, S3 provides an optimum AUROC across all
datasets (including the target), indicating that the transfer
learning technique can directly leverage the pattern across
the hospital and age distribution mismatches. Appendix
E provides an in-depth analysis of the sequential transfer
learning process, notably regarding the fine-tuning dataset
order.

Figure 8: Sequential Transfer Learning performance overview per fold. In

red, is the mean performance across all folds. Across the folds the per-

formance increases as the LSTM model is fine-tuned using each dataset,

indicating no signs of a negative transfer.

5 Discussion and Conclusion

In this study, we explored the applicability of several methods,
namely Transfer Learning, Concatenation, Ensemble Learn-
ing and Domain Adaptation, for leveraging source datasets to-
wards a target dataset in a time-series context. We specifically
explored both the single-source and multi-source situations
using a real-world medical dataset.

Applicability to other datasets

All methods explored in this study show potential applicabil-
ity to other datasets beyond the scope of this study. However,
it is important to understand that each method has a different
set of data-specific requirements.

Transfer learning builds on the assumption that there
exists shared features or patterns across all related popula-
tions, which allows for the pre-learning from a source domain
to a target domain to be effectively utilized. The results
demonstrate that transfer learning is most applicable when
the source and target populations differ by a distribution
mismatch (identifiable via the baselines). When employed
in a situation where the source and target populations are
drawn from very similar distributions, transfer learning was
found less effective than concatenation or boosting. In such
cases, we theorize that transfer learning risks un-learning
predictors during the fine-tuning stage, resulting in a decrease
in performance.

The concatenation techniques employed in this study
combined the source and target datasets by concatenat-
ing their features and investigated how the presence of
both source and target during training affected model
performance towards the target population. The scope of
this paper investigated the specific situation where the
target dataset was underrepresentative. Within this scope,
the concatenation experiments found that the presence
of the target dataset was essential in improving model
performance, but increasing its importance during training
resulted in negative returns. However, across all distribution
mismatches, concatenation consistently performed as one
of the best-performing methods, making it a reliable tech-
nique to try on new uncertain distribution mismatch scenarios.

Ensemble learning aimed to utilize a similar theory to
weighted concatenation, by weighting the combination
of source and target models trained separately on each
respective dataset. In doing so, ensemble learning aimed to
combine the reliability of the source models and the noisy,
but non-mismatched target-trained model. In situations with
a small distribution mismatch, the weighted combination
of model predictions yielded top-performing results with
the additional benefit of a very stable performance across
each cross-validation fold. However, as the magnitude of the
distribution mismatch increased, ensemble learning failed to
perform on par with other tested methods. Contrary to other
investigated techniques, ensemble learning only combines
the prediction outputs of models trained on a single dataset.
By only combining model outputs, each model does not learn
to adapt the source to the target well. Consequently, in situa-
tions with a noisy target, ensemble learning prioritizes the
source-trained models, resulting in poorer target performance.
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Multi-task learning, as a domain adaptation technique,
assumes that learning the difference between source and tar-
get datasets aids the model in better capturing target-specific
predictions. This approach allows for a more implicit con-
sideration of the relevance and characteristics of the source
dataset(s). Our results show that the use of an additional
dataset separation loss improved model performance in cases
where the source and the target equally contributed to model
training. However, the benefits of the additional dataset loss
fail to out-way the performance cost of increasing the target
data importance during training. Consequently, it is difficult
to evaluate if this technique is beneficial in cases where the
training data is heavily underrepresentative.
The work of Yoon et al. [53] successfully made use of domain
separation to learn the differences between several datasets
using adversarial learning. As such, further research is needed
to explore the specific applications of this technique and
variations of it, such as domain confusion, for its applicability
to leveraging source datasets.

The techniques investigated in this paper were unfor-
tunately limitedly applied to a single real-world dataset in
the medical field. Consequently, it is essential to exercise
caution when considering the observed results to draw
definitive conclusions. Though the exact performance
differences observed are dataset specific, we expect very
similar performances for each method in similar contexts
(underrepresented target set, large source datasets) on differ-
ent datasets. The disadvantages of transfer learning on two
identical distributions have previously been observed [57], as
have different aspects of both concatenation and ensemble
learning, allowing us to more comfortably draw conclusions
based on the observed results.

Baselines

The baselines used in this paper served as a measure of
the distribution mismatch. These measurements were then
applied as a heuristic to weigh the combination of source and
target-trained models for both single and multiple distribution
mismatches. In both mismatch scenarios, the baselines
consistently served as a clear indication of the presence and
magnitude of the distribution mismatch. Specifically, the
baselines observed the three scenarios present in the data;
no distribution mismatch, large distribution mismatch and
partial distribution mismatch. It is important to note that the
distribution mismatch observed by the baselines does not nec-
essarily correspond to the real-world distribution mismatch.
Though related and likely similar, the baselines specifically
observe the difference between a model’s performance on
the train and the target set. It is likely the case that some
data-specific model performance differences contribute to the
observed mismatch, though not to the real-world expectation.

This is illustrated by the gender distribution mismatch
which is known to affect Sepsis prediction [14] but was
not considered a mismatch based on the baseline observations.

Taken as a whole, the results show a promising direc-
tion for quantifying distribution mismatches and refining
the hyper-parameter search space using the baselines as
a heuristic. More research is needed to investigate the
reliability of the baselines in different scenarios and datasets,
notably cases of underrepresentative source datasets or
feature mismatches. In the latter case, it is expected that the
baselines may perform less reliably, as the feature mismatch
correction may influence model performance along with
existing real-world distribution mismatches. Unfortunately,
addressing the feature mismatch is a complex task, frequently
requiring domain expert knowledge or using complex
feature-extracting methods (e.g. GANs), and as such, our
work did not investigate this effect.

Distribution Mismatch and Time Complexity

Addressing multiple distribution mismatches is a more
complex and time-consuming task than addressing a single
mismatch. For all methods investigated, apart from domain
adaptation, the minimal number of parameters required for
optimization corresponds to the number of total datasets
(source(s) and target). Hence, as the number of source
datasets increases, the number of parameters requiring
joint optimization increases. With ensemble learning, the
process is less time-consuming, as each model is trained on
a single respective dataset. However, for methods such as
sequential transfer learning or concatenation, optimization
of the hyper-parameters requires the repeated re-training of
the models, a time-consuming process. The exception to this
time-consuming process is domain adaptation, which relies
on implicitly learning the separability between the source(s)
and target during the training process. The downside of this
implicit assumption is the lack of understanding of the mod-
els decision, making it difficult to interpret unexpected results.

In many cases, it may be too difficult or time-consuming to
fully optimize each parameter. Furthermore, with methods
such as transfer learning, the hyper-parameters heavily
affect the final model performance. With sequential transfer
learning, for instance, a too high learning rate during
the fine-tuning stages can cause much previously learnt
information to be lost, resulting in an incomplete leveraging
of source datasets. In the case of ensemble learning in a
multi-mismatch context, the grid search optimization is
too time-consuming. Our work showcases the potential of
using baselines as a heuristic to set the weighting parameters
between the models. Though not tested on all methods, we
expect a similar application of the baseline on concatenation
weights to also perform well, notably in cases where the
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target dataset is increasingly severely underrepresentative.

Time-series vs Cross-sectional Data

Leveraging or transferring knowledge with time-series
data poses a unique challenge compared to cross-sectional
data, due to the temporal dependencies in the data, and
the frequent predictive nature of the task [17]. Though
there exist network architectures which can facilitate the
processing of time-series data (eg. LSTMs or CNNs),
aligning sequential patterns across different datasets is a
complex task. Within our investigated methods, transfer
learning and concatenation are prone to suffering from
source and target sequential pattern differences, with a risk
of a negative transfer. Ensemble learning or MTL domain
adaptation, due to the design of the approaches, is likely more
robust against such differences. With ensemble learning, due
to the reliance on model outputs, the target model can be
prioritized, preventing negative influence. Similarly with
MTL domain adaptation, by learning to identify each dataset,
the model could implicitly learn not to consider sources of
negative influence.

While our study focused on time-series data, previous
works have explored the applicability of some of these
techniques to cross-sectional data [43] and found them to
be efficient for leveraging cross-sectional source datasets.
As described in Section 2, for example, transfer learning
is frequently employed in the image processing domain,
where the similarity in the images is a lesser constraint in
comparison to temporal sequences. Though this work did not
investigate the application of these techniques in a similar
context of target underrepresentativeness on cross-sectional
data, it stands as an interesting topic for future investigation.
We do however expect that the baselines can still identify
existing distribution mismatches between source(s) and
target, and allow for a refined optimization search space as a
heuristic.

Future Work

The scope of this paper was limited to using an LSTM deep
learning model, in the situation where the source dataset(s)
contain sufficient training samples, and the target dataset
is underrepresentative. Within this scope, many methods
relying on unique architectures could not be investigated.
Consequently, an interesting and required future work
would be to investigate these additional techniques within a
similar context and determine how these techniques can be
compared despite the architectural differences (advantages
and disadvantages). Works in this field using GANs, such as
RadialGAN [53], have been explored in both a cross-sectional
and time-series data context, but little work has been done
on situations with small datasets, due to the notorious GANs

data requirements.

Hierarchical Modelling is an approach which was not
considered for this paper due to external circumstances. Nev-
ertheless, it is a powerful technique for leveraging multiple
datasets, notably where the mismatches are known. Similarly,
recent works with Hidden Markov Models make use of
LSTMs to provide "memoryful" state transitions to focus
on past state realizations that best predict future states [3].
Investigating these techniques would be an interesting avenue
for future research. With both HMM+LSTM and Hierarchical
models, most investigated leveraging techniques remain
applicable, though some model architecture changes may be
required.

Investigating leveraging techniques towards an unseen
target population also falls within the future work stemming
from this paper. In such cases, active or semi-supervised
learning can be interesting methods to begin the research, to
restrict the leveraging process to work within very stringent
real-world practical conditions. Similarly, meta learning
is also an interesting avenue of research in finding model
optimizations that allow for a swift adaptation to new
domains, both observed and new.

A final future work of interest would be the investiga-
tion of interpretable machine learning. While all of the
techniques tested successfully leveraged the source dataset to-
wards the target population, it is unclear how most techniques
achieved this. Notably for domain adaptation, it is unclear
under what conditions the addition of a dataset-specific loss
aids the model in separating the source from the target, or
if the opposite loss (aiming for domain confusion) would
benefit the task-specific goal. While some ideas can be
theorized, such as for transfer learning, it is still difficult to
understand the underlying decisions made by a deep learning
model. Providing insights into the underlying distribution
differences through the leveraging process is a very exciting
avenue for future research.

Conclusion

In this study, we successfully employed state-of-the-art tech-
niques to leverage related sources of time-series data to im-
prove the performance of an LSTM model towards a target
population with underrepresentative data. To do so, we de-
fined baselines to quantify the magnitude of distribution mis-
matches present between the source and target populations
within the same feature space. In addition, we conducted a
comprehensive evaluation of several techniques, assessing
their suitability towards leveraging related datasets across dif-
ferent distribution mismatch scenarios.
When concatenating the source(s) and target data, we found
that the presence of the target data was crucial in improving
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model performance. However, contrary to expectations, elevat-
ing the target importance during training resulted in negative
returns. Additionally, we found transfer learning to be one
of the most effective approaches to use in situations where a
larger distribution mismatch is present. Conversely, ensem-
ble learning demonstrated advantages when dealing with mi-
nor distribution mismatches, but failed to leverage sources
differing from the target population by a larger mismatch.
Finally, our results highlighted the use of baseline-derived
model parameters as a superior alternative to search-based
parameter optimization in the instance of underrepresentative
target training data.
Our findings contribute to understanding how the transfer of
knowledge in the time-series domain can be achieved, and
help further research specialized approaches for successful
knowledge transfer in real-world applications.
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Appendix A - Data Preprocessing

Sliding Window vs Expanding Window

The goal of the PhysioNet Challenge is to predict the
occurrence of Sepsis in new patients. Within this setting,
a difficulty to address is the difference between patients’
lengths of stay at the ICU. Due to the large differences
ranging from 10-330h, it is not feasible to pass the entire
EHR of a patient into a machine learning model, requiring
the data to be sequenced.
On state-of-the-art solution is to use a sliding window over
the data. This approach extracts local segments of fixed
length out of the time-series hourly EHR data, allowing for a
consistent input length. A diagram of the approach is shown
in Figure 9.

Figure 9: Diagram demonstrating the windows created using a sliding

window. Each window has an identical length and dimensions, with the

number of dimensions corresponding to the number of selected EHR features.

The predicted label consists of the binary sepsis label. The blocks in the input

sequence represent patient EHR samples taken after pre-processing.

An alternative approach for processing the data into usable
sequences is to use varying-length sequences. While sliding
windows are easier to create and interpret, varying-length
sequences allow for longer-term dependencies to be captured
by a machine learning model, and for deep learning models to
learn the appropriate window sizes to observe for a prediction.
There exists several methods by which one can construct
varying-length sequences, such as random window lengths,
or several fixed window sizes. However, Congxing Zhu et
al. [55] showed that using expanding windows starting from
the point of admission to the ICU allowed an LSTM model
to extract sepsis-predictive patterns in the data. A diagram of
the approach is shown in Figure 10.

A surprising performance difference was observed when com-
paring both sequencing approaches. As not the focus of this
paper, no thorough experiments were conducted, though it
is important to note that our experiments were conducted us-
ing varying-length sequences. Switching to a sliding-window
approach may result in alternative conclusions, and require
further investigation.

Figure 10: Diagram demonstrating the varying length windows created from

the point of admission to the ICU. The predicted label consists of the binary

sepsis label. The blocks in the input sequence represent patient EHR samples

taken after pre-processing.

Data Cleaning

The cleaning of the data was kept minimal, loosely based on
the pre-processing steps of both [55] and [39]. As the goal of
this work was to investigate the leveraging of related datasets,
less of a focus was placed on the specific processing of the
data to maximize model performance.
All EHR components, outside of demographic information,
were kept to create a high-dimensional input into the model.
No normalization or standardization was performed on the
data, with all missing values being first forward, then back-
ward filled. This specific choice was influenced by Zhu et al.’s
experiments [55].
To analyze the performance of the model and the improve-
ments brought by the different leveraging techniques, the
dataset was split into training and validation sets. To this
end, all experiments were validated using a 10-fold Cross-
Validation across the patients, with each fold containing
data from a unique set of patients. Due to the large imbal-
ance between positive and negative class samples, the cross-
validation was stratified, allowing for sufficiently stable per-
formance estimates across each fold.
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Appendix B - Age Histogram

Figure 11 contains the age distribution of patients across
hospitals A and B. As can be observed, the age distribution is
skewed towards the older population, making it a better fit for
a source dataset.

Figure 11: Age distribution across both hospitals A and B. The final chosen

thresholds for the scenario were to take patients younger than 30 years old

as the smaller dataset, and patients older than 45 years old as the source

dataset.

Appendix C - Age Boosting Grid Search

Figure 12: Figure showing the boosting performance with different β param-

eter values for the hospital distribution mismatch. The green (short dash)

vertical line shows the optimal β found during training. The red (solid) verti-

cal line shows the optimal β for the test set, and the blue (dash/dot) vertical

line shows the baseline derived β value. β = 1 indicates only source model

usage.

Figure 12 shows the ensemble learning results for different
β parameter values. The green curve, indicating the perfor-
mance of the final model on the target training data, finds an
optimal balance of model around 0.5, where both the source
and target-trained models have equal importance to the final
predictions (indicated via the green/dashed vertical line).
The blue vertical line (dash/dotted) indicates the heuristi-
cally derived β value using the baseline performances. As the
source-trained and target-trained models performed similarly
on the target dataset in the baseline results, the weight of both
models also balances around 0.5-0.55. The true test-set op-
timum (red/straight line) lies around 0.9, indicating that the
target training set is too underrepresentative to allow for a
proper adjustment of hyper-parameters. The heuristic weight,
while similar, lies closer to the true optimum and does not
rely on the undersampled training data, making it suitable in
cases where the target dataset is more severely undersampled.
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Appendix D - Metric Selection

We considered two commonly used performance metrics,
Area Under the Receiver Operated Characteristic Curve
(AUROC), and Area Under the Precision-Recall Curve
(AUPRC) for our study. Our experiments showed that both
metrics yielded similar results, allowing us to draw the same
conclusions. Although AUPRC has advantages over the
AUROC metric for imbalanced datasets or skewed class
distributions, we chose to use the metric that provided better
readability and connections to prior works. Nevertheless,
we acknowledge the importance of the AUPRC metric in
specific scenarios and encourage further research to explore
its applicability to our problem. Table 8 and Table 9 show the
baseline and experimental results for the single distribution
mismatches of the AUPRC values.

AUPRC (in %)

Gender Hospital Age

Source to Source 10.8 ± 2.2 8.8 ± 1.7 11.0 ± 2.0
Source to Target 9.0 ± 2.2 7.0 ± 1.4 11.0 ± 4.1
Target to Target 3.7 ± 0.9 4.9 ± 1.1 6.3 ± 3.3
Target to Source 3.7 ± 0.9 2.1 ± 0.8 3.6 ± 0.7

Table 8: Baseline mean AUPRC results for Sepsis prediction with a single

distribution mismatch across the 10-fold cross-validation over patients. The

value following the ± sign is the standard deviation across the folds.

The AUPRC baselines allow us to draw similar conclusions to
the AUROC baselines of Table 3. For the gender distribution
mismatch, the source-trained model decreases by 0.018 in
mean AUPRC performance when tested on the target dataset,
in comparison to the testing on the source dataset. How-
ever, the target-trained model performs identically on both the
source and target dataset, indicating that both distributions
are very similar.
For the hospital distribution mismatch, the AUPRC baselines
show an identical pattern to the AUROC baselines. Both the
source-trained and target-trained models decrease in perfor-
mance when tested on the respective mismatched population.
Finally, for the age distribution mismatch, the source-to-
source and source-to-target baselines hold the same AUPRC,
indicating no distribution mismatch. Moreover, with the poor
target performance on the source set, the baselines indicate
the same underrepresentativeness previously observed.
The experimental results for the single distribution mismatch
allow us to draw comparable conclusions to the results of Ta-
ble 4, with one notable difference. Though the relative differ-
ence between most techniques is similar between the AUPRC
and AUROC results, the transfer learning experiments show
better performance results with the AUPRC metric. For all
three distribution mismatches, the transfer learning technique
performed on par or better than all leveraging techniques.
The AUROC metric tends to give more weight to the major-

AUPRC (in %)

Gender Hospital Age

S-weighted Concat. 10.0 ± 2.3 9.6 ± 2.0 10.6 ± 4.4
Equal-weight Concat. 7.7 ± 11.0 8.7 ± 2.4 13.2 ± 8.6
T-weighted Concat. 3.7 ± 0.8 6.0 ± 1.3 7.1 ± 4.9
Transfer Learning 10.4 ± 2.4 11.1 ± 2.5 13.1 ± 5.2

Boosting (Grid) 9.2 ± 0.9 7.4 ± 1.4 11.0 ± 3.2
Boosting (Heuristic) 9.2 ± 1.0 7.1 ± 1.3 11.0 ± 3.2
Domain Adaptation 9.3 ± 1.1 9.4 ± 1.8 11.7 ± 3.9

Table 9: Mean AUPRC results of leveraging techniques for a single distribu-

tion mismatch across the 10-fold cross-validation over patients. The value

following the ± sign is the standard deviation across the folds.

ity class in cases where the datasets are highly imbalanced.
In contrast, the AUPRC metric disregards the True Nega-
tive samples, giving more importance to the minority class.
Though the AUROC results indicated a loss of information
when transfer learning is used in cases with a small distri-
bution mismatch, the AUPRC results indicate that transfer
learning is still one of the highest-performing techniques.
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Appendix E - Sequential Transfer Learning

Figure 8 showed the sequential transfer learning process us-
ing an order from largest to smallest combined mismatches.
Figure 13 and 14 present a similar experiment with different
orders between the training datasets.

Figure 13: Sequential Transfer Learning performance overview per fold.

In red, the mean performance across all folds. Across the folds the model

performance increases as each dataset is used for fine-tuning, indicating no

signs of a negative transfer.

Figure 13 inverts the order of the source datasets, such that
the smallest mismatched dataset is trained on first, with
the more distant sources used in the fine-tuning process.
Similarly to Figure 8, the target is the final dataset used for
fine-tuning, to ensure that the model is best fit to the target
dataset.
In comparison to Figure 8, inverting the order of the source
datasets resulted in different trends across the sequential
fine-tuning stages. While eight of the ten validation folds of
Figure 8 showed a continuous increase as the increasingly
similar dataset to the target was used, Figure 13 shows that
seven of the validation folds do not increase in when a
model trained on S1 is fine-tuned on S2 and S3. Moreover,
in four of these seven examples, the optimum AUROC is
found following the basic training on S1, indicating that S1

contains sufficiently related data to fully train a performing
target-specific model.

Figure 14 first trains on the target dataset, before attempting
to sequentially transfer information from the source datasets.
This approach was expected to underperform, as the "furthest"
source dataset is trained on during the last step. As a conse-
quence, while information is leveraged across all datasets, the
focus of the final model is the population of S3. The results
show such a scenario, where the mean AUROC (red) perfor-
mance across the validation folds is lower than that of Figure
8 and 13.
Unexpectedly, across five of the ten folds, the fine-tuning on
S3 produces the largest increase in AUROC of all datasets.

Figure 14: Sequential Transfer Learning performance overview per fold. In

red, the mean performance across all folds. Across the folds the performance

remains increases as each dataset is fine-tuned upon, indicating no signs of

a negative transfer.

These results further indicate that the transfer learning tech-
nique can leverage the learnings across the hospital and age
distribution mismatches.
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Appendix F - Further Underrepresented Target

Data

This experiment further halved the previously undersampled
the target training data, to investigate the situation where the
target training data provides insufficient information for the
LSTM model to learn any usable pattern.

AUROC (in %)

Gender Hospital Age

Source to Source 78.9 ± 1.2 80.2 ± 2.3 80.1 ± 1.3
Source to Target 78.6 ± 1.7 68.3 ± 3.1 79.7 ± 4.8
Target to Target 61.6 ± 6.8 60.2 ± 2.2 58.5 ± 8.6
Target to Source 60.0 ± 6.4 53.0 ± 1.1 55.6 ± 4.5

Table 10: Baseline mean AUROC results for Sepsis prediction with a single

distribution mismatch across the 10-fold cross-validation over patients using

a heavily undersampled training set. The value following the ± sign is the

standard deviation across the folds.

Table 10 shows a similar set of baselines to Table 3, where
the target training data is further undersampled to 2.5% of
the original training fold. Across all target-trained models,
the baseline performance decreased when predicting both the
source and the target datasets. The source-trained baselines
perform similarly to Table 3, as the models and training data
were kept identical.
Though the baselines offer no new insights about dataset
representativeness or distribution mismatches, this further
undersampling of the target training data provides a clearer
justification for the use of heuristic-derived parameters.
With the prior baselines of Table 3, the performance of the
source-trained and target-trained models on the target testing
set were comparable within a ±10 mean AUROC difference.
Consequently, baseline-derived parameters broadly weighed
the source and target equally, with the source being slightly
favored. With the following baselines, the source-trained mod-
els substantially outperform the target-trained model for all
distribution mismatches. The baseline-derived weights hence
weigh the source more than the target dataset, providing pa-
rameter estimation closer to the test set-derived optimum than
a search strategy over the training data.
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General Background on Deep Learning

This chapter provides a background of the theoretical informa-
tion on deep learning for clear insight. We start with a basic
overview of what neural networks are and how they work. We
then provide a detailed explanation into the workings of Long
Short-Term Memory neural networks (LSTMs) and Gener-
ative Adversarial Networks (GANs). We then look into the
different techniques used in this paper, namely Concatena-
tion, Weighted Concatenation, Transfer Learning, Ensemble
Learning and Domain Adaptation. These background sec-
tions provide complementary information for the techniques
utilized in this paper.

Neural Networks

Neural networks are mathematical computational models in-
spired by the structure of function of biological systems [34].
They are designed to learn from data, and are usually used to
model complex relationships between inputs and outputs or
to find patterns in the data based on that learning. A neural
network consists of an interconnected group of computational
units called neurons. Each neuron receives input data, per-
forms a computation, and produces an output. The computa-
tion performed by a neuron involves a weighted combination
of its inputs, followed by the application of an activation
function [12]. Figure 15 shows the mathematical model of a
neuron.

Figure 15: Annotated diagram of a Neuron by Arnx [6]. The input data

is combined with a set of weights and biases, before being passed into an

activation function. The resulting output is then used in the later stages of a

complex network made of many neurons.

Given a neuron with n inputs {x1,x2 . . .xn}, a set of weights
{w1,w2 . . .wn} and a bias term b, the output of the neuron to
the activation function consists of a weighted sum, described
below:

z =
n

∑
i=1

wixi +b

While every input is multiplied by a unique learnt weight, the
neuron has a separate bias term that is shared across all inputs
of the neuron. This means that the bias term is not specific to

any particular input-to-output connection, but influences the
overall output of the neuron. The activation function f (z),
introduces a non-linearity to the neuron’s output y, allowing
it to represent intricate and complex patterns in the data.

A neural network consists of many layers of intercon-
nected neurons, shown in Figure 16. The input layer receives
the data, and subsequent hidden layers perform computations
based on the output f (z) of the previous layer. The output
layer produces a network’s decision using a loss function.

Figure 16: Diagram of a neural network by Lelli et al. [30]. This diagram

represents a three-layer fully connected network with 2 hidden layers. Fully

connected is defined by every input having a mapping (arrow) to every output.

To make accurate predictions or learn patterns of interest, the
neural network is trained on labelled data, a process called su-
pervised learning. This process involves adjusting the weights
and biases of each neuron to minimize the difference between
a predicted output and the ground truth. The most common
method for training a neural network is called backpropaga-
tion [34], which uses the chain rule of calculus to calculate
the gradient of the network’s weight with respect to the out-
put loss function. The calculated gradients are then used to
update the weights and biases of the network iteratively using
an optimization algorithm such as stochastic gradient descent.
The following sections delve briefly into specific details of
activation and loss functions, as well as normalization and
regularization techniques.

Activation functions

Activation functions transform the weighted sum of inputs
into the final output of a neuron, allowing the neural network
to model complex non-linear relationships in the data [12].
Different activation functions have unique properties which
make them suited for different types of problems. The choice
of activation function is very task and network-specific. Below
we describe the four most common activation functions, with
each example shown in Figure 17.

• ReLU: Rectified Linear Units (ReLU), defined as f (z) =
max(0,z) sets all negative values of the weighted sum z
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Figure 17: Diagram of the Sigmoid, tanh and ReLU activation functions [23]. The sigmoid activation function collapses real numbers into a range [0,1],

whereas tanh maps the real numbers to a range between [-1,1]. ReLU sets all negative numbers to 0, and has a linear slope for positive values.

to zero, while leaving positive values unchanged. ReLU
is computationally efficient and addresses the vanishing
gradient problem, making it one of the most commonly
used activation functions.

• Sigmoid: The sigmoid activation function f (z) = 1
1+e−z

squashes the weighted sum z to a range between 0 and 1,
providing a probability-like value. This property of the
sigmoid activation function makes it very suitable for
binary classification or probability estimation problems.
However, a downside of the sigmoid activation function,
is that it suffers from the vanishing gradient problem,
which limits its effectiveness and applicability [12].

• Tanh: The hyperbolic tangent function (tanh), f (z) =
ez−e−z

ez+e−z , similarly to the sigmoid activation function, maps
the weighted sum z of the neuron to a range between -1
and 1. The tanh activation function creates a centered
output, allowing for better backpropagation. Similarly
to the sigmoid function, it suffers from the vanishing
gradient problem [12].

• Softmax: The softmax activation function f (z) = ezi

∑K
j e

z j ,

where K is the number of classes, ensures that the output
probabilities all sum to 1. Effectively, the softmax activa-
tion function normalizes the input values and transforms
them into probabilities. In a classification scenario, the
probabilities indicate the network’s belief for each class,
making it suitable for many classification tasks. In cases
of binary classification, the softmax activation simplifies
to the sigmoid.

Loss Functions

Loss functions play a pivotal role in the training process of
deep learning networks, as a tool to quantitatively evaluate
the disparity between predicted output labels and their cor-
responding ground truth labels. Two commonly employed

loss functions in classification tasks are Cross-Entropy (CE)
and Binary Cross-Entropy (BCE). CE is most frequently used
in multi-class classification scenarios, where each sample is
assigned to a single class from a set of classes. IT specifically
quantifies the dissimilarity between the predicted class proba-
bilities and the true class labels. BCE, on the other hand, is a
particular use-case of CE, restricted to binary classification
tasks where the sample is assigned to one of two classes. By
optimizing these loss functions, deep learning models can
leverage large datasets to improve their performance across a
wide range of tasks, such as time-series prediction, computer
vision or natural language processing.

Batch Normalization

Batch Normalization is a technique in deep learning that
aims to address the internal covariate shift problem during
training, a problem occurs when the distribution of the input
to each layer changes as the network is training [36]. Batch
Normalization normalizes the intermediate activations of a
neural network layer across a mini-batch of samples. This
normalization standardizes the distribution of layer inputs,
stabilizing the optimization process. This process, as a result,
helps alleviate the vanishing gradient problem, allowing
for more complex deep learning architectures to be trained
effectively [22].

Dropout Layers

Dropout is a regularization technique used in deep learning to
mitigate overfitting [46]. Dropout layers are inserted into the
network architecture, randomly dropping out a fraction of the
neuron activations during training. By disabling random frac-
tions of neurons, dropout layers introduce noise and force the
network to learn more generalizable features. This prevents
individual neurons from overfitting to a specific input.
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Figure 18: On the left, a diagram showing the LSTM network architecture with the computational flow [8]. On the right, the formulas used for calculating each

set in the computation flow [55]. The σ symbol represents the sigmoid activation function.

Seen differently, dropout layers create an ensemble of multi-
ple sub-networks with shared weights, each contributing to the
final output prediction. During the testing/inference process,
dropout layers are not used, with all neurons participating in
the final inference. Dropout layers have shown success in a
variety of deep learning contexts, such as image classification
or natural language processing, and continue to be frequently
employed today [46].

Training a Neural Network

Training a neural network involves the optimization of its
training parameters (weights and biases), which are initial-
ized with random values. This optimization process aims to
minimize the output predictions towards the ground truth us-
ing a loss function. Traditional optimization methods, such
as gradient descent, are commonly used to minimize the loss
function, by adjusting the parameters based on the gradients
of the loss function with respect to the parameters of each
layer. To render the training process efficient, backpropaga-
tion is utilized, which makes of the chain rule to calculate the
gradients by propagating the errors from the output layer back
to the input layer. Techniques such as Stochastic Gradient
Descent (SGD) or Adam are commonly used optimization al-
gorithms in deep learning which leverage the backpropagation
calculations to modify the trainable network parameters.

Long Short-Term Memory Neural Networks

Long Short-Term Memory neural networks (LSTMs) are a
type of Recurrent Neural Networks (RNNs) capable of learn-
ing long-term dependencies in sequential data [20]. LSTMs
have shown to be particularly effective in process and mod-
elling sequences, such as natural language processing [48]
and time-series forecasting [15].

The key innovation of the LSTM architecture lies in the mem-
ory cell [20], which allows the network to selectively retain or
forget information over time. Figure 18 shows the architecture
of an LSTM network. The LSTM network consists of three
gates, the input gate It , the forget gate Ft and the output gate
Ot . The network additionally uses a memory cell input Ct to
store previous information for sequential data. The forget gate
determines how much information is kept from the previous
output. The input gate controls how much new information
should be added to the memory cell. It specifically determines
the extent to which the candidate memory cell C̃t should be
integrated with the previous memory cell. Finally, the output
gate determines how much information from the memory cell
should be passed as the current hidden layer output of the
model.
Generally, the memory cell serves as a memory bank which
retains information across an entire sequence, while the out-
put gate derives a final output using the memory cell, allowing
the network to preserve and use long-term dependency infor-
mation.
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