
Scheduling with release times and
deadlines

Jan Elffers

Scheduling with release times and
deadlines

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Jan Elffers
born in Haarlem, the Netherlands

Algorithmics Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl

c© 2014 Jan Elffers.

Scheduling with release times and
deadlines

Author: Jan Elffers
Student id: 4014340
Email: elffersj@gmail.com

Abstract

We study the single machine version of the task scheduling problem with
release times and deadlines. This problem is too simple to be of practical im-
portance in itself, but it is also used as a relaxation in algorithms for the Job
Shop scheduling problem, which is a more practical task scheduling problem.
We study exact algorithms for solving the single machine problem. We pro-
pose a new lower bound for the single machine problem, which we call the half-
preemptive lower bound, and analyze its practical performance when used in a
branch and bound algorithm. We also study the theoretical hardness of the single
machine problem with a fixed set of task lengths. For the set {1,P}, the problem
is known to be solvable in polynomial time. We present an argument that the
problem with two non-unit task lengths is NP-complete.

Thesis Committee:

Chair: Prof. Dr. C. Witteveen, Faculty EEMCS, TU Delft
University supervisor: Dr. M. M. de Weerdt, Faculty EEMCS, TU Delft
Committee Member: Prof. Dr. Ir. K. I. Aardal, Faculty EEMCS, TU Delft

elffersj@gmail.com

Contents

Contents iii

1 Introduction 1
1.1 Contributions . 2
1.2 Outline . 2

2 Literature survey 3
2.1 Introduction . 3
2.2 Schrage’s heuristic . 4
2.3 Branch and bound algorithms . 7
2.4 Polynomial time algorithms for the equal-processing-times case . . . 9
2.5 Application: Job Shop Scheduling 18

3 Own contributions 21
3.1 Introduction . 21
3.2 A practical algorithm for the {1, p} case 21
3.3 A new lower bound and upper bound 25
3.4 Attempts to find improvements for the case with few different task

lengths . 26
3.5 NP-completeness of the scheduling problem with two non-unit task

lengths . 29

4 Empirical evaluation of the branch-and-bound algorithm 39
4.1 Introduction and test setup . 39
4.2 Benchmarks used . 39
4.3 Verification of the implementation 40
4.4 The relation between hardness and the correlation between release

times and deadlines . 45
4.5 Evaluation of the new lower and upper bound 45

5 Conclusion 53

Bibliography 55

iii

Chapter 1

Introduction

Task scheduling is a research area in Computer Science (CS) and Operations Research
(OR). Task scheduling has numerous applications. In e.g. smart grids, consumers have
jobs that have some kind of temporal flexibility that can be exploited by the scheduler
to decrease the load on the network. In a production process, task scheduling also
occurs; there could also be dependencies between tasks. Over the past 50 years, many
different formalisms for scheduling problems have been studied. Numerous books
covering many different contexts and solution methods have been published; see, for
example, the book by Pinedo (2008).

The subject of this thesis is perhaps one of the simplest possible scheduling prob-
lems: non-preemptive task scheduling with release times and deadlines on one ma-
chine. In our problem, one is given a set of tasks. Tasks have a release time r, a
deadline d and a processing time p; each task has to be scheduled for a length of p
units somewhere in its availability interval [r,d]. Only one task can execute at any
time (which corresponds to the fact that all tasks must be executed on one machine),
and task execution is non-preemptive, i.e. tasks cannot be interrupted. The goal in our
problem is to schedule the tasks such that no job finishes execution after its deadline; if
this is impossible, we want (informally) to find a schedule with no job finishing execu-
tion long after its deadline. This scheduling problem is intractable in theory (Pinedo,
2008); however, branch and bound algorithms have proved to work well in various
applications.

Although this problem is too simple to be directly useful in practice, it is still rel-
evant for a number of more practical problems. First, the single-machine scheduling
problem occurs as a subproblem in the Shifting Bottleneck method, a popular solu-
tion method for the Job Shop problem proposed by Adams et al. (1988). The Job
Shop problem is a more general scheduling problem. Second, new solution methods
for the single-machine problem could potentially be generalized to the case in which
a bounded number of tasks (possibly more than one) can execute concurrently at any
time, which is a problem similar to the Resource Constrained Project Scheduling Prob-
lem.

Algorithms for scheduling with both release times and deadlines are completely
different from algorithms for the case with a global release time or deadline. Few
results are known about the problem we consider; one positive result is that there is a
polynomial-time algorithm for the case of identical task lengths (Simons, 1978).

1

1. INTRODUCTION

In this thesis, we pursue two research directions. The first direction is to determine
the computational complexity of the scheduling problem with task lengths restricted
to a fixed set. Simons’ algorithm for identical task lengths can be generalized to task
lengths 1 and p together, but nothing is known for other sets of task lengths. The
second direction is to gain a better understanding of the existing branch and bound
algorithms for the scheduling problem (without restrictions on the task lengths). We
experimentally compare two existing branch and bound algorithms; we continue with
only one algorithm (Carlier’s algorithm (Carlier, 1982); see also Section 2.3.2) because
it clearly outperforms the other. We then compare an improved lower bound for use
within the branch and bound algorithm and also find classes of instances that are hard
to solve for this algorithm.

1.1 Contributions

The contributions of this thesis are the following. In our literature survey (Chapter 2)
we give an overview of algorithms for single machine scheduling, and in the exper-
imental analysis (Chapter 4) we analyze branch and bound algorithms. As a part of
this we compared our implementation to an existing implementation and we found
out that we missed some details that cause a great speedup. We also have theoretical
contributions, presented in Chapter 3:

• A practical algorithm for the {1, p} scheduling problem (Section 3.2);

• A new lower bound and upper bound for scheduling with release times and dead-
lines, both based on a polynomial-time algorithm for scheduling with two task
lengths {1, p}.

• An argument why the {p,q} scheduling problem is NP-complete for any pair of
non-unit task lengths.

1.2 Outline

This thesis is structured as follows. In Chapter 2 we present existing algorithms for
scheduling with release times and deadlines. We present both branch and bound al-
gorithms for the general (unrestricted) problem and polynomial-time algorithms for
the restricted problem with identical task lengths. In Chapter 3 we present our own
contributions to the single machine scheduling problem. In Chapter 4 we do an exper-
imental analysis of branch and bound algorithms: we compare the new lower bound
to the preemptive lower bound and find classes of hard instances and we test whether
some modifications to the branch and bound algorithm improve performance.

2

Chapter 2

Literature survey

2.1 Introduction

The problem we consider is non-preemptive single-machine scheduling with release
times and deadlines. In this problem, we are given a set of tasks that have a release
time, a deadline and a length, and the goal is to schedule the tasks on one machine
such that each task starts execution after its release time and completes execution be-
fore its deadline. Each task executes for an amount of time equal to its length; tasks
in our problem are non-preemptive, which means that execution of a task cannot be
interrupted. The machine can execute only one task at a time. Because it may not
be possible to finish all jobs before their deadlines, jobs are allowed to complete after
their deadline, in which case they are called late.

Formally, a task is specified as a tuple (r,d, p), where r is the release time, d the
deadline, and p the processing time of the task. A problem instance consists of a set
of tasks {(ri,di, pi) | i = 1, . . . ,n}. We define a feasible schedule as follows:

Definition 2.1 (Feasible schedule). Let {(ri,di, pi) | i = 1, . . . ,n} be an instance of
the single machine scheduling problem with release times and deadlines. A feasible
schedule is a function T : {1,2, . . . ,n}→R assigning start times to the tasks, such that
T (i)≥ ri for each task, and the execution intervals {[T (i),T (i)+ pi) | i = 1, . . . ,n} do
not overlap.

Feasible schedules form the set of possible solutions to the scheduling problem.
Two feasible schedules are displayed in Figure 2.1. Our goal is to find a feasible sched-
ule without jobs that complete much later than their deadlines. Formally, the lateness
Li of a task i with respect to a schedule T is defined as the difference between the task’s
completion time and its deadline: Li = T (i)+ pi−di. Late jobs have Li > 0. For a fea-
sible schedule T = T (1),T (2), . . . ,T (n), the maximum lateness of all tasks is defined
as Lmax = maxi=1,...,n Li. The problem we consider is the optimization problem to find
a feasible schedule that minimizes this maximum lateness. In the three-field notation
for scheduling problems (Graham et al., 1979), this problem is denoted 1|ri|Lmax. The
problem of minimizing Lmax is known to be strongly NP-hard (Pinedo, 2008).

Note that tasks have negative lateness if they complete before their deadlines, and
it may be possible to find a feasible schedule with Lmax < 0. Although it does not
seem to be useful to finish tasks long before their deadlines, the objective function

3

2. LITERATURE SURVEY

t : 0 1 2 3 4 5 6 7 8 9 10 t : 0 1 2 3 4 5 6 7 8 9 10

Figure 2.1: Two feasible schedules for the same problem. The thick vertical bars de-
note release time and deadline; the rectangles denote jobs scheduled at a time interval.
The schedule on the left has no late jobs; in the schedule on the right, there are two
jobs (marked red) that are late by one unit of time.

Lmax (which can be negative) is most often used in the literature for this problem. The
more intuitive definition of lateness of a task i, max(0,Li), is known as the tardiness
Ti. Minimizing Lmax or the maximum tardiness max(0,Lmax) is a matter of choice:
one can always stop the search when a schedule without late jobs is found or one can
continue to find a schedule minimizing Lmax.

This chapter is structured as follows. In Section 2.2, we present a greedy algorithm
known as Schrage’s heuristic which forms the basis of many of the more complicated
algorithms we present later. In Section 2.3, we present two branch and bound algo-
rithms: the one by McMahon and Florian (1975) and the one by Carlier (1982). In
Section 2.4, we present algorithms for the restricted case with identical task lengths.
The reason that we first discuss branch and bound algorithms is that the algorithms for
the case of identical task lengths are much more involved. Finally, in Section 2.5, we
present an application of our scheduling problem: the Shifting Bottleneck method for
the Job Shop scheduling problem.

2.2 Schrage’s heuristic

A greedy algorithm forms the basis of many more complicated algorithms we present
later. The dispatching rule used in this greedy algorithm is known as Jackson’s rule,
the Earliest Due Date (EDD) rule, or Schrage’s heuristic. What is most interesting
about this rule is not that it works exceptionally well in practice, but that its behaviour
can be analyzed mathematically and the kind of “mistakes” it makes can be recovered
by a simple procedure. Correcting these mistakes in general requires branching; very
roughly, this is what the branch and bound algorithms presented in Section 2.3 do.

The greedy algorithm constructs the schedule forwards in time; iteratively, jobs are
added to the back of the schedule at the earliest possible starting time. To describe the
dispatching rule used by the greedy algorithm, we say that a task i is ready at time t if
ri ≤ t and i is not yet scheduled. The rule can then be formulated as follows:

Schedule the job with the earliest deadline of all tasks that are ready at the
completion time of the last scheduled task (if no job is ready, wait until the
first release time t ′ of all not-yet-scheduled tasks, and from all jobs with

4

2.2. Schrage’s heuristic

release time t ′, schedule the one with the earliest deadline). If multiple
jobs have the earliest deadline, any job can be chosen.

The pseudocode for the greedy algorithm is given in Algorithm 1.

Algorithm 1: Schrage’s heuristic
Data: n tasks (ri,di, pi), i = 1, . . . ,n.
Result: schedule T = T (1),T (2), . . . ,T (n).

1 TODO←{1, . . . ,n}
2 t←mini=1,...,n ri

3 for iteration← 1 to n do
4 READY ←{i ∈ TODO | ri ≤ t}
5 if |READY |> 0 then
6 i← argmin{di | i ∈ READY}
7 else
8 t←min{ri | i ∈ TODO}
9 i← argmin{di | ri = t}

10 end
11 T (i)← t
12 TODO← TODO\{i}
13 t← t + pi

14 end

This algorithm is optimal if all tasks have length 1, or if release times and dead-
lines are similarly ordered,1 but not in general. For example, in Figure 2.1, Schrage’s
algorithm produces the schedule on the right with two late jobs, while the schedule on
the left has no late jobs.2 The mistake made by the greedy algorithm is that it sched-
ules the job of length 3 at time t = 0 which delays the other four jobs too much. More
precisely, if we schedule the first job at time t = 0, we can start processing the other
four jobs no earlier than time t = 3, and we can finish the last of these no earlier than
time 3+(2+1+1+1) = 8, one time unit later than the last deadline of the four jobs
(time t = 7). This is suboptimal because we could start with job 2 at time t = 2 and
finish all four jobs at time t = 7.

More generally, we have the following lower bound on Lmax, for any job set J:

Lmax ≥min
i∈J

ri +∑
i∈J

pi−max
i∈J

di

As it turns out, the greedy algorithm can be mathematically analyzed and a perfor-
mance guarantee can be given. In order to state the mathematical lemma, we first
need to introduce the following notation. For an instance of the scheduling problem
{(ri,di, pi) | i = 1, . . . ,n}, denote by T = T (1),T (2), . . . ,T (n) the schedule generated
by Schrage’s heuristic, and by σ(1),σ(2), . . . ,σ(n) the sequence of job numbers in the

1The release times and deadlines of a set of tasks are similarly ordered if the tasks can be ordered
such that r1 ≤ r2 ≤ . . .≤ rn and d1 ≤ d2 ≤ . . .≤ dn.

2There is a tie between jobs 3 and 5 and time 6 during the execution of Schrage’s algorithm, but in
both cases the job scheduled last is late.

5

2. LITERATURE SURVEY

order in which they are scheduled (so T (σ(1)) < T (σ(2)) < .. . < T (σ(n)). Denote
by σ[l, . . . ,r] the consecutive subsequence of σ {σ(i) | i = l, . . . ,r}. A chain of T is a
maximal sequence of consecutive jobs without idle time between two successive jobs.
We can now state the lemma.

Lemma 2.2 (Performance guarantee for Schrage’s heuristic (Potts, 1980; Carlier, 1982)).
Let σ(i) be a job with maximum lateness in T (if there is a tie, choose any job with
maximum lateness). Let σ(h) be the head of the chain of which job σ(i) is part. One
of the following is true:

1. For J = σ[h, . . . , i],
Lmax = min

j∈J
r j +∑

j∈J
p j−max

j∈J
d j

2. There exists a job c = σ(j) preceding σ(i) in its chain such that, for J = σ[j+
1, . . . , i],

Lmax < pc +min
j∈J

r j +∑
j∈J

p j−max
j∈J

d j

Proof. Because immediately before σ(h) no job is scheduled, the greedy algorithm
did not have any pending jobs with release times less than rσ(h) after job σ(h−1) was
scheduled (or at the beginning of the algorithm). Therefore, rσ(k) ≥ rσ(h) for k ≥ h.

If all jobs preceding σ(i) in its chain have lower deadlines, the greedy algorithm
is optimal. Formally, the execution of J = σ[h, . . . , i] can start no earlier than time
rσ(h) = min j∈J r j and the execution takes at least ∑ j∈J p j units of time, so the job of J
scheduled last has lateness at least min j∈J r j +∑ j∈J p j−max j∈J d j. Because σ[h, . . . , i]
are in the same chain and the job scheduled last has the highest deadline, we get

Lmax = Lσ(i) = min
j∈J

r j +∑
j∈J

p j−dσ(i) = min
j∈J

r j +∑
j∈J

p j−max
j∈J

d j

so we have the first case, and the greedy algorithm is optimal, because it meets the
lowerbound for job set J.

If some jobs preceding σ(i) in its chain have higher deadlines, we may have done
work on jobs with later deadlines during the time that we should have made progress
with completing all jobs before deadline dσ(i). Note, however, that the greedy algo-
rithm would schedule such a less urgent job only when all not-yet-scheduled jobs with
later deadlines were not yet available, so the mistake made is that, although no ur-
gent job was available at the time that the job is started, it keeps running for some
time when the more urgent jobs become available. Formally, let σ(j) be the last job
scheduled before σ(i) with a later deadline than σ(i). At the time σ(j) was sched-
uled, none of the jobs in σ[j + 1, . . . , i] was ready, because their deadlines are lower
and the greedy algorithm would instead have scheduled one of them. So the set of
jobs J = σ[j + 1, . . . , i] could have started at time mink∈J rk but were instead started
only at time T (σ(j))+ pσ(j), which is less than pσ(j) time units later. So we have the
second case for this set J and c = σ(j).

In the second case, job c is called the interference job, because it delays the ex-
ecution of jobs with earlier deadlines. In the schedule on the right in Figure 2.1, the

6

2.3. Branch and bound algorithms

job of length 3 is the interference job. A corollary of this lemma is that the lateness
of a schedule produced by the greedy algorithm is always less than maxi=1,...,n pi units
away from the optimal lateness.

2.3 Branch and bound algorithms

Greedy algorithms run quickly and often produce a reasonably good schedule (in the
case of Schrage’s heuristic, the greedy algorithm also has a performance guarantee),
but the schedules produced by these algorithms usually are not optimal. To find a
schedule minimizing the maximum lateness Lmax, we can use branch and bound algo-
rithms. In these algorithms, a search tree is explored, where each path in the search
tree corresponds to a sequence of decisions made that further constrain the problem in-
stance. Examples of such decisions are adding a precedence constraint between jobs,
or tightening a job’s availability interval. For each node in the search tree, a lower
bound and an upper bound on the maximum lateness of the modified problem associ-
ated with this node are calculated. In our case, the upper bound is simply a feasible
(but not necessarily optimal) schedule’s maximum lateness. The use of these bounds
is that nodes with lower bounds exceeding the least upper bound (in our case, the max-
imum lateness of the best schedule found so far) can be pruned, because we will not
find a better solution by further exploring these nodes.

A general purpose approach for planning and scheduling problems is to construct
a search tree of partial schedules, with branching corresponding to adding a job to
the back of the schedule each time. One of the first branch and bound algorithms for
scheduling with release times and deadlines (the algorithm by Baker and Su (1974))
indeed works this way; however, state-of-the-art algorithms use a different branching
scheme, based on tightening availability intervals. Nodes in the search tree of these
branch and bound algorithms represent a modified scheduling problem in which some
availability intervals of the tasks are tightened. We present two algorithms following
this approach: the one by McMahon and Florian (1975) and the one by Carlier (1982).
The difference between the two branch and bound algorithms lies in their branching
schemes. Both calculate lower and upper bounds the same way. The lower bound
used is the maximum lateness of an optimal schedule for the preemptive version of the
scheduling problem. For the preemptive version of the problem, Schrage’s heuristic
is optimal if we add only one time unit of a job per iteration. This can also be imple-
mented to run in O(n logn) time regardless of the task lengths. The upper bound used
is the maximum lateness of the schedule produced by Schrage’s heuristic.

2.3.1 The algorithm of McMahon and Florian (1975)

The branching scheme of McMahon and Florian (1975) is based on a somewhat sim-
pler analysis of Schrage’s heuristic than the analysis given in Lemma 2.2. Similarly, we
consider a job σ(i) with maximum lateness within the greedy schedule T (1),T (2), . . . ,T (n).
Let σ(h) be the head of the chain of σ(i). If all jobs in σ[h, . . . , i−1] in its chain have
earlier deadlines, this schedule is optimal; otherwise, some job in σ[h, . . . , i− 1] that
has a later deadline than job σ(i) should be delayed so that σ(i) finishes earlier. Indeed,
if all jobs in σ[h, . . . , i−1] with later deadlines than σ(i) remain scheduled before σ(i),

7

2. LITERATURE SURVEY

then either σ(i) or a job with earlier deadline has to finish at time T (σ(i))+ pσ(i) or
later, which does not improve the maximum lateness.

Formally, the set of jobs Gσ(i) = {σ(k) | h≤ k < i,dσ(k) > dσ(i)} are the candidate
jobs to be delayed. This set of jobs is called the generating set of job σ(i). The branch-
ing rule of McMahon and Florian creates a new branch for each of these candidate jobs
σ(k) ∈ Gσ(i) by delaying the release time of the candidate job: rσ(k) := rσ(i).

McMahon and Florian conducted experiments with instances distributed as fol-
lows. The release times are sampled uniformly at random from [0, . . . ,rmax], the dead-
lines from [0, . . . ,dmax], and the processing times from [1, . . . , pmax]. Release times,
deadlines and processing times are all sampled mutually independently. Note that be-
cause the signed maximum lateness is minimized, the difference between release times
and deadlines does not matter: the algorithm does not stop when a Lmax = 0 schedule
has been found. The authors were able to solve all instances with up to 50 jobs in under
one second, but they do not seem tho have run experiments with larger instances.

There also exists another branching scheme, based on a more complicated analysis
of the cause of job i having this lateness (Carlier, 1982). This will be explained next.

2.3.2 The algorithm of Carlier (1982)

Carlier’s branching scheme is more directly related to Lemma 2.2 than the one by
McMahon and Florian. Again, let σ(i) be a job with maximum lateness within the
greedy schedule T (1),T (2), . . . ,T (n). Assume there are jobs with later deadlines pre-
ceding σ(i) in its chain. As in Lemma 2.2, let c be the last job with later deadline
preceding σ(i). Instead of making a branch for every candidate job that could be
scheduled after σ(i), Carlier’s branching scheme only tightens the availability interval
of the interference job c. The new observation is that c has to be scheduled either before
or after all jobs in J. This is because if we schedule c in between of jobs in J, the job
of J scheduled last will have a completion time of at least min j∈J r j +∑ j∈J p j + pc,
which means that the current schedule is better (because, by Lemma 2.2, Lmax <
min j∈J r j +∑ j∈J p j + pc for the current schedule). Therefore, we create two branches,
corresponding to the interference job c being scheduled before or after J. For the
branch with job c to be scheduled before J, we bring forward the deadline of c to
dc := dσ(i)−∑ j∈J p j. In any feasible schedule with c being placed before J, the last
job in J has deadline d ≤ dσ(i) and finishes at least ∑ j∈J p j units after c, so it will have
lateness not less than the new value of dc; this implies that the new deadline of dc does
not change the objective function value for the schedules in which c is indeed placed
before J. For the branch with c to be scheduled after J, we delay the release time of
c to rc := min j∈J r j +∑ j∈J p j, which clearly is a lower bound on the release time in a
feasible schedule with c placed after J.

The new deadline and release time can sometimes be improved upon: if c is placed
before J, then for all i ∈ J, di−∑ j∈J:d j≤di p j is an upper bound on the deadline for task
c. Similarly, if c is placed after all jobs in J, ri +∑ j∈J:r j≥ri p j is a lower bound on the
release time for task c, for all i ∈ J.

Although these modified release times and deadlines “suggest” that job c must be
placed before or after J, they do not represent a hard constraint. Also, in subsequent
branches availability intervals of other jobs can be tightened which may decrease the
effect of previously tightened availability intervals. Because of this, the greedy al-

8

2.4. Polynomial time algorithms for the equal-processing-times case

gorithm may violate some precedence constraints that the branching steps represent.
Alternatively one could add the precedence constraints explicitly and use a modified
greedy algorithm, preemptive greedy algorithm and conflict analysis. We implemented
a version remembering the precedence constraints explicitly, but the performance did
not improve.

Carlier conducted experiments with instances distributed in the same way as in the
experiments of McMahon and Florian (see Section 2.3.1). He was able to solve almost
all instances with a number of jobs up to 1000, although he does not report the run
times of the algorithm. We compare the two branch and bound algorithms as a part of
the experimental analysis in Chapter 4.

2.4 Polynomial time algorithms for the
equal-processing-times case

If all processing times are equal, the scheduling problem can be solved in a smarter
way. All known algorithms reduce the optimization problem “minimize the maximum
lateness” to a sequence of decision problems of the form “decide whether there exists a
feasible schedule with maximum lateness≤ ∆t”, using binary search on the maximum
lateness. Because a schedule with maximum lateness ≤ ∆t exists if and only if a
feasible schedule without late jobs exists in the modified problem with ∆t added to
each task’s deadline, the decision version amounts to solving the problem: given a set
of jobs, does there exist a feasible schedule without late jobs?

The first polynomial time algorithm for the equal-processing-times case was pre-
sented by Simons (1978) with run time O(n2 logn). Although it may be the most direct
and intuitive approach, the algorithm seems to be quite involved. This opinion is con-
sistent with the literature, because all the papers that cite this paper we found only
mention that this case is solvable. A few years later, Carlier (1981) proposed a dif-
ferent solution based on dynamic programming, which is much easier to understand.
In the same year, Garey, Johnson, Simons, and Tarjan (1981) published a third algo-
rithm for the same problem. This algorithm is based on finding so-called “forbidden
regions”. It is easy to understand, although the proof of correctness is not that simple.

Finally, Dürr and Hurand (2011) presented a formulation of the scheduling prob-
lem as a Simple Temporal Problem (STP; a formalism for scheduling problems intro-
duced by Dechter et al. (1991)). There also is a more general dynamic programming
algorithm of Baptiste (2000) that directly solves the optimization problem for a large
class of objective functions, including Lmax, the weighted number of late jobs ∑wiUi,
and the weighted sum of completion times ∑wiCi.

We present here three algorithms for the decision version: we skip the algorithm
by Simons (1978). We present the algorithm by Garey et al. (1981) in Section 2.4.1,
the algorithm by Carlier (1981) in Section 2.4.2, and the Simple Temporal Problem
formulation by Dürr and Hurand (2011) in Section 2.4.3.

2.4.1 The forbidden regions algorithm of Garey et al. (1981)

The branch and bound algorithms resolve the conflict extracted by Lemma 2.2 by
adjusting release times and deadlines of the jobs. This results in multiple branches

9

2. LITERATURE SURVEY

that have to be explored separately. In the equal-processing-times case, we can adjust
the scheduling problem in a different way such that we do not need to branch: we can
make the greedy algorithm “somewhat less greedy” at some point in time by marking
an interval as a forbidden region.

t : 0 10 20 30 40 50 60 70 80

A

B

C

D

E

F

G

U

W

X

Z

Figure 2.2: The example scheduling problem used in (Garey et al., 1981).

t : 0 10 20 30 40 50 60 70 80

A

E

F

C

B

G

Z

W

D

U

X

Figure 2.3: The first run of the greedy algorithm. In this run, Job Z is late and the
forbidden region [24,25) (marked) is discovered.

We will now describe the improved conflict analysis. Suppose we have an instance
of n tasks {(ri,di, pi) | i = 1, . . . ,n}, where all job lengths are equal: pi = p. Using the
same notation as in Lemma 2.2, let T (1),T (2), . . . ,T (n) denote the sequence of start
times produced by Schrage’s heuristic, let σ(1),σ(2), . . . ,σ(n) denote the sequence
of jobs in the order they are scheduled, and let σ(i) be the first job in the sequence

10

2.4. Polynomial time algorithms for the equal-processing-times case

t : 0 10 20 30 40 50 60 70 80

A

E

F

C

Z

G

B

W

D

U

X

Figure 2.4: The second run of the greedy algorithm. In this run, job W is late and the
forbidden region [18,21) is discovered.

t : 0 10 20 30 40 50 60 70 80

C

E

F

B

G

Z

W

D

U

X

A

Figure 2.5: The final run of the greedy algorithm. All forbidden regions found are
marked.

that is late. If all jobs preceding σ(i) in its chain have lower deadlines, no feasible
schedule without late jobs exists; otherwise, let c = σ(j) be the last job before σ(i)
with a higher deadline. In a schedule without late jobs, the set of jobs σ[j+ 1, . . . , i]
should start earlier. The crucial observation is that no job should start at time T (c).
More precisely, no job should start in the interval [T (c),mink∈σ[j+1,...,i] rk).

We can then run a modified greedy algorithm that differs from the original one
only in that it skips the start times in [T (c),mink∈σ[j+1,...,i] rk). This interval is called a
forbidden region. Formally, forbidden regions are defined as follows.

Definition 2.3 (Forbidden region). Let S = {(ri,di, pi) | i = 1, . . . ,n} be an instance of

11

2. LITERATURE SURVEY

scheduling with release times and deadlines where all job lengths are equal: pi = p. A
forbidden region is a time interval [t, t ′) during which no task can start in any feasible
schedule for S.

Algorithm 2: The modification to Schrage’s heuristic that respects forbidden
regions.

Data: n tasks (ri,di, pi), i = 1, . . . ,n; set of forbidden regions
{[t j, t ′j) | j = 1, . . . ,k}.

Result: schedule T = T (1),T (2), . . . ,T (n).
1 TODO = {1, . . . ,n}
2 t←mini=1,...,n ri

3 for iteration← 1 to n do
4 t←max(t,min{ri | i ∈ TODO})
5 Increase t until t is not in a forbidden region [t j, t ′j) anymore.
6 S←{i ∈ TODO | ri ≤ t}
7 i← argmin{di | i ∈ S} /* choose ready task with the earliest

deadline */
8 T (i)← t
9 TODO← TODO\{i}

10 t← t + pi

11 end

The pseudocode of the modified greedy algorithm subject to forbidden regions is
given in Algorithm 2. So far, we argued that the first conflict can be represented by
introducing a forbidden region. For this approach to work we need to be able to do
something similar in the subsequent runs of the modified greedy algorithm. It turns
out that this is indeed possible: the modified greedy algorithm that already incorpo-
rates several forbidden regions allows for the same analysis. This is true because the
modified greedy algorithm still maximizes the throughput, over all possible schedules
that respect the forbidden regions found so far. The formal proof of this can be found
in Lemma 3 of the original paper by (Garey et al., 1981). The conflict analysis of
the modified greedy algorithm is similar, although the set of jobs J that is delayed too
much may no longer be scheduled without idle time in between, because of forbidden
regions the modified greedy algorithm already knows of. Again, after scheduling a late
job for the first time, we go backwards in time until we either find a job with a later
deadline that could potentially be postponed, or we determine that the jobs processed
so far start execution at the earliest possible time (subject to the forbidden regions
found so far). In the first case, we discover a new forbidden region; in the second
case, we have detected infeasibility. The pseudocode of this algorithm is given in Al-
gorithm 3. It is not necessary to reschedule the jobs before the interference job, but
this gives a longer pseudocode. The execution of the algorithm on a sample problem
is displayed in Figures 2.2– 2.5.

Algorithm 3 runs in time polynomial in only n: the first iteration, the greedy algo-
rithm makes chains of jobs starting at some job’s release time, so the set of possible
starting times is Sstart = {ri + k · p | i = 1, . . . ,n;k = 0, . . . ,n− 1}. Forbidden regions
always are of the form [t,rmin), where t ∈ S and rmin is a job release time. The modified
greedy algorithm also forms chains, starting at job release times and forbidden regions

12

2.4. Polynomial time algorithms for the equal-processing-times case

end times. Because the forbidden regions end at job release times, the starting times
are still in S. A new forbidden region [t,rmin) always invalidates at least one element of
Sstart , so at most n2 iterations are needed, so the total run time is O(n3 logn), because
the greedy algorithm can be implemented to run in O(n logn) time.

It is also possible to find forbidden regions systematically, backwards in time. This
is explained in the original paper (Garey et al., 1981). This approach can be imple-
mented straightforwardly in O(n2 logn) time and, with a very complicated optimiza-
tion step (also explained in the original paper), in O(n logn) time.

Algorithm 3: The forbidden regions algorithm for equal processing times.
Data: n tasks (ri,di, pi = p) with the same length pi = p, i = 1, . . . ,n
Result: schedule T = T (1),T (2), . . . ,T (n) or “impossible”.

1 REGIONS← /0

2 while true do
3 T (1),T (2), . . . ,T (n)← SCHRAGEMODIFIED({(ri,di, pi) | i =

1, . . . ,n},REGIONS)
4 if Lmax = 0 then
5 return T (1),T (2), . . . ,T (n)
6 else
7 Let σ(i) be the ID of the job scheduled in position i, for i = 1, . . . ,n
8 i←min{ j | Lσ(j) > 0}
9 rmin← rσ(i)

10 foundregion← FALSE

11 for j← i−1 to 1 do
12 if T (σ(j))≤ rmin− p then
13 return impossible
14 end
15 if T (σ(j))< rmin then
16 REGIONS← REGIONS∪ [T (σ(j)),rmin)
17 foundregion← TRUE

18 break
19 else
20 rmin←min(rmin,rσ(j))

21 end
22 end
23 if foundregion = FALSE then
24 return impossible
25 end
26 end
27 end

2.4.2 The dynamic programming algorithm of Carlier (1981)

Carlier (1981) proposed a dynamic programming algorithm that steps forwards in time.
For every deadline t, it computes an optimal partial schedule (a schedule of a subset
of the jobs) that can be completed before time t so that the tasks that could have been
completed by time t, but now have to be scheduled in [t,∞), induce the minimal pos-

13

2. LITERATURE SURVEY

sible load on [t,∞). The only candidate subsets of jobs for time t are those in which
all jobs with deadlines before time t are part of the subset. These schedules are called
t-active partial schedules. Formally, they are defined as follows.

Definition 2.4 (t-active partial schedule). Suppose we have an instance of n tasks
{(ri,di, pi) | i = 1, . . . ,n}. Consider a feasible partial schedule T : S→ R that assigns
starting times to a subset of the tasks S ⊆ {1, . . . ,n} such that none of the jobs in S is
late. T is called t-active if

• The partial schedule completes no later than time t: T (i)+ p≤ t for all i ∈ S.

• All jobs with deadlines less than t (di < t) are scheduled by T .

Although jobs with deadlines d < t+ p clearly also should be included in the partial
schedule, it does not seem to be necessary to detect this already at time t. For a t-active
partial schedule, we can consider the load vector, which captures exactly the load the
partial schedule induces on [t,∞).

Definition 2.5 (Load vector for t-active partial schedules). Suppose we have an in-
stance of n tasks {(ri,di, pi) | i = 1, . . . ,n}. For a t-active partial schedule that sched-
ules job set S, we define the load vector as the multi set of the “times remaining” for
all tasks that have release time < t:

load(S, t) = {di− t | i /∈ S,ri < t}

Two example t-active partial schedules with the corresponding load vectors are
displayed in Figures 2.6 and 2.7. Load vectors with fewer elements, or with larger
elements in it (which means the tasks remain available for longer) are the most flexible.
Formally, we can define a partial order ≺ on t-active partial schedules as follows.

Definition 2.6 (Dominance criterion for t-active partial schedules). A t-active partial
schedule scheduling job set S dominates another t-active partial schedule scheduling
job set S′ if | load(S, t)| ≤ | load(S′, t)| and, if the elements of load(S, t) and load(S′, t)
in increasing order are t1 ≤ t2 ≤ . . .≤ tn and t ′1 ≤ t ′2 ≤ . . .≤ t ′n′ , ti ≥ t ′i for i = 1,2, . . . ,n.

The approach followed so far is fairly standard. We can calculate the set of t-
active partial schedules for each time offset t using dynamic programming: each t-
active partial schedule is either one of the (t − 1)-active partial schedules, or one of
the (t − p)-active partial schedules with a new job added to the back. The problem
with this approach is that, even after using the dominance criterion for pruning, it is
not clear how many candidate subsets of jobs remain; there could be exponentially
many subsets, which might make the algorithm inefficient. However, as it turns out,
one subset of jobs induces a load vector that dominates all others.

It can be proven that either the best (t− p)-active partial schedule plus a new job is
the best t-active partial schedule, or no job can end at time t and the best (t−1)-active
partial schedule is also the best t-active partial schedule. If both possibilities do not
result in a t-active partial schedule, the instance is unsolvable. What is surprising is
that extending the candidate of time t− p, if this leads to a t-active partial schedule, is
always better than using the candidate of time t−1.

14

2.4. Polynomial time algorithms for the equal-processing-times case

t : 0 10 20 30 40 50 60 70 80

C

E

F

B

D

A

Figure 2.6: A t-active schedule for t = 14. The red bars indicate pending jobs.

t : 0 10 20 30 40 50 60 70 80

C

E

F

B

D

A

Figure 2.7: Another t-active schedule for t = 14. The load induced by this second
schedule on the remaining time is lower.

The construction of the best t-active partial schedule is related to forbidden regions
as follows: if the candidate from time t− p cannot be extended, then t must be a forbid-
den end time. So, this algorithm finds forbidden regions for the “reversed” scheduling
problem with release times and deadlines swapped.

2.4.3 The Simple Temporal Problem formulation

Finally, we present a formulation of the equal-processing-times feasibility problem as
a Simple Temporal Problem (STP), a formalism to encode simple scheduling prob-
lems introduced by Dechter et al. (1991). An STP instance is a linear program in
which all constraints are binary constraints. An STP instance consists of a set of real
variables X1,X2, . . . ,Xn and a set of difference constraints of the form X j−Xi ≤ wi, j.
The question is to decide whether there exists a solution x1,x2, . . . ,xn that satisfies
all constraints. The solution of the STP involves a graph representation: a weighted
directed graph that represents the constraints. In terms of this graph, the STP has a so-
lution if and only if the graph does not contain a negative cycle. If no negative cycles
exist, the solution can be found by calculating single-source shortest paths. The most
well-known algorithm for these tasks is the Bellman-Ford algorithm (Bellman, 1958).
A useful property is that, if the bounds wi, j in the constraints are all integers, then the
Bellman-Ford algorithm also produces an integer solution.

We will now describe the formulation of our scheduling problem. It is possible to

15

2. LITERATURE SURVEY

use a number of variables polynomial in n by a technique called discretization; how-
ever, we present the (simpler) formulation without discretization, which is polynomial
in n and the total time T between the earliest release time and latest deadline. Assume
all availability windows are in the range [0,T]. We create T +1 variables S0,S1, . . . ,ST .
Si denotes the number of tasks with starting time in the interval [0, i). The following
constraints guarantee that the variables S0,S1, . . . ,ST represent start times of n tasks
that execute in [0,T] and do not overlap:

S0 = 0 (2.1)

St+1 ≥ St (t = 0, . . . ,T −1) (2.2)

St+p ≤ St +1 (t = 0, . . . ,T − p) (2.3)

ST = n (2.4)

It remains to find constraints that guarantee that the start times encoded by the variables
S0,S1, . . . ,ST can be matched with the n tasks.

As it turns out, from a formulation as a bipartite matching problem of this subprob-
lem we can derive the necessary constraints. Suppose the n starting times are t1, t2, . . . , tn.
We construct a bipartite graph Gmatch = (J ∪ T,E) with the set of tasks (jobs) J =
{1,2, . . . ,n} on one side and the set of start times T = {t1, t2, . . . , tn} on the other side.
An edge from task i to start time t j exists if ri ≤ t j ≤ di− p. We want to derive a
criterion for a perfect matching from tasks to start times to exist in this graph. Hall’s
marriage theorem for the existence of perfect matchings in a bipartite graph can be
used here. Formally, the theorem is as follows.

Theorem 2.7 (Hall’s marriage theorem). Let G = (A∪B,E) be a bipartite graph with
bipartition (A,B). Define the neighbours N(x) of a vertex x as N(x) = {y | {x,y} ∈ E}
and the neighbourhood N(S) of a set of vertices S as N(S) =

⋃
x∈S N(x). A perfect

matching from A into B exists if and only if |N(S)| ≥ |S| for all subsets S⊆ A.

In our case, the neighborhood of each vertex in J is a “segment” (a consecutive
subsequence) of T if we order T in increasing order: t1≤ t2≤ . . .≤ tn. For such graphs,
only O(n2) constraints are necessary to encode the existence of a perfect matching:
only constraints with N(S) being a segment of [t1, t2, . . . , tn] are needed. The following
theorem states this observation formally.

Theorem 2.8 (Hall’s marriage theorem for “segment” neighborhoods). Let G = (A∪
B,E) be a bipartite graph with bipartition (A,B). Denote the vertices of B by b1,b2, . . . ,bn.
Assume that the neighborhood of each vertex x ∈ A is a “segment” of B, that is,
N(x) = {bi,bi+1, . . . ,b j}. A perfect matching from A into B exists if and only if, for
each “segment” S = {bi,bi+1, . . . ,b j} of B, the number of vertices of A that must be
matched to a vertex inside S does not exceed |S|: |{x ∈ A | N(x)⊆ S}| ≤ |S|.

In the case of our graph Gmatch, Theorem 2.8 says that the jobs can be matched
with the starting times if for each segment of starting times ti, ti+1, . . . , t j, the number
of jobs that must be matched to one of ti, ti+1, . . . , t j, does not exceed j− i+1. These
constraints can be encoded as difference constraints: SR−SL represent the number of
start times in [L,R), and task i must start in [L,R) if [ri,di− p]⊆ [L,R), so:

SR−SL ≥ |{i | [ri,di− p]⊆ [L,R)}| (for all 0≤ L≤ R≤ T) (2.5)

16

2.4. Polynomial time algorithms for the equal-processing-times case

These constraints together represent the scheduling problem as a system of dif-
ference constraints. Such systems can be decided quickly by running a shortest path
algorithm on the graph representation. In this graph representation vertices correspond
to the variables S0,S1, . . . ,ST and edges correspond to the difference constraints: for
each difference constraint S j−Si≤wi, j an edge from vertex Si to vertex S j with weight
wi, j is created. For constraints on one variable instead of two one can create an aux-
iliary variable representing a “zero” value and adding difference constraints between
the variables and this auxiliary variable.

The correctness of this approach and running time guarantee follow from results on
the Simple Temporal Problem; this approach however does not give much additional
insight in the problem.

2.4.4 Extension to the {1, p} case

The constraint system formulation can be extended to allow tasks of length 1 together
with the tasks of length p in the model. By Theorem 2.8, a set of unit length jobs
with integer release times and deadlines S1 = {(ri,di) | i = 1, . . . ,n} can be scheduled
without lateness if and only if, for all time intervals [L,R],

|{i | L≤ ri ≤ di ≤ R}| ≤ R−L

This can be incorporated in the constraint system formulation of Section 2.4.3 by mod-
eling that the jobs of length p should leave enough empty space within each time win-
dow [L,R]. However, the formula for the space used by length-p jobs in window [L,R]
is not simply equal to p · (SR−p+1−SL) because some length-p jobs may overlap par-
tially with [L,R]. Sgall (2012) observed that we can nevertheless use p · (SR−p+1−SL)
for the occupied space by length-p jobs in [L,R]. The added constraints are therefore

SR−p+1−SL ≤ b
R−L−{i | L≤ ri ≤ di ≤ R}|

p
c (2.6)

This formulation cannot be easily generalized to two task lengths larger than one,
because the “sufficiency” of the constraints for the feasibility of the schedule with
respect to the length-1 jobs only holds because length-1 jobs can be put in all re-
maining time units (which is not true for larger jobs: for example, if we have two
non-consecutive gaps of one time unit, we cannot add a length-2 job to the schedule).

2.4.5 Summary

We have presented three polynomial time algorithms for the equal-processing-times
case. The forbidden regions algorithm and Carlier’s algorithm are similar, because
Carlier’s algorithm uses the notion of forbidden regions implicitly in the construction
of the “best partial schedule” for each time offset.

The algorithm based on the Simple Temporal Problem (STP) formulation allows
for various ways to determine consistency. Forbidden regions can also be discovered
by propagation of the STP constraints so, in principle, the reasoning of the forbidden
regions algorithm can be simulated by combining STP inequalities. If we use the
Bellman-Ford algorithm to solve the STP, forbidden regions are not used. Instead, we
initially schedule all jobs immediately after each other starting at the earliest possible

17

2. LITERATURE SURVEY

release time, and resolve conflicts by increasing the lower bounds on the starting time
of the k’th earliest starting length-p task, for each k = 1, . . . ,n, until a feasible solution
is found or inconsistency is detected.

A very interesting question which we have not been able to answer is: does there
exist a generalization of forbidden regions for the {1, p} case?

2.5 Application: Job Shop Scheduling

Although the single machine scheduling problem in itself might be too simple to be
useful in practice, the problem also occurs as a relaxation of more practical scheduling
problems. Solving a relaxation optimally gives a lower bound on the optimal objective
function value for the original problem (this is also true if we compute a lower bound
on the optimal objective function value for the relaxation). The problem we discuss
here is the Job Shop Scheduling problem. The Job Shop problem is a multi-machine
scheduling problem in which, for every task, the machine on which it has to be sched-
uled is fixed. Tasks have precedence constraints between them but they do not have
release times and deadlines. A precedence constraint is a directed constraint that spec-
ifies that one task must finish before another task can start. The objective function we
consider is the makespan of a schedule, that is, the difference between the last comple-
tion time and the earliest starting time among all jobs in a schedule. The goal is to find
a schedule satisfying the precedence constraints with minimum makespan. Formally,
a Job Shop problem is defined as follows.

Definition 2.9 (Job Shop Scheduling problem). An instance of the Job Shop Schedul-
ing problem consists of a set of machines {1,2, . . . ,M}, a set of jobs J1,J2, . . . ,JN with
processing times p1, p2, . . . , pN and a fixed machine on which they have to be scheduled
m1,m2, . . . ,mN , and a set of precedence constraints between jobs. The goal is to find a
schedule for the jobs satisfying the precedence constraints with minimum makespan.

There exists a restriction in which the precedence constraints partition the jobs into
a set of chains. For this restriction, high quality benchmark are available.3 We will also
use this version in the experimental evaluation in Section 4.5.2. This version is defined
as follows.

Definition 2.10 (Chains Job Shop Scheduling problem). An instance of the Chains Job
Shop Scheduling problem consists of a set of machines {1,2, . . . ,M} and a set of chains
of jobs S1,S2, . . . ,SN (the problem dimensions are written N ×M in the literature).
Each chain Si has length M and consists of an ordered sequence of jobs Ji,1,Ji,2, . . . ,Ji,M.
These jobs have a processing time pi, j and a machine mi, j on which they have to be exe-
cuted. There are precedence constraints Ji,1→ Ji,2→ . . .→ Ji,M for i = 1, . . . ,N. Each
chain visits each machine exactly once: {mi,1,mi,2, . . . ,mi,M} = {1,2, . . . ,M} for all
i = 1, . . . ,N. The goal is to find a schedule for the jobs satisfying the chain precedence
constraints with minimum makespan.

3See, for example, the benchmark set of Taillard at http://www.emn.fr/z-auto/clahlou/mdl/
Benchmarks.html.

18

http://www.emn.fr/z-auto/clahlou/mdl/Benchmarks.html
http://www.emn.fr/z-auto/clahlou/mdl/Benchmarks.html

2.5. Application: Job Shop Scheduling

Job Shop problems are computationally hard to solve optimally. For example,
there exist 20× 15 benchmarks for which the problem of finding an optimal solution
has been unsolved for 20 years.4

Exact algorithms for the Job Shop problem have to prove that no schedule exists
with a makespan less than the best schedule found. As explained in Section 2.3, in
branch and bound algorithms one establishes that no better schedule exists when the
lower bounds of all nodes in the queue are not less than the current optimal solution
value. Branch and bound algorithms are also used for solving the Job Shop problem
exactly. One branch and bound algorithm (Applegate and Cook, 1991) adds prece-
dence constraints in the branching step. The lower bound computed at each node is
the relaxation of the Job Shop problem (with added precedence constraints) to a single
machine scheduling problem.

The one-machine relaxation for the Job Shop problem is as follows. Denote by
j the ID of the machine which the relaxation corresponds to. We can define a single
machine problem for machine j with heads and tails. For each job Ji that has to be
scheduled on machine j, we create a job with length pi and a head and a tail. The
head and the tail length are derived from the precedence constraints: they represent
the maximum length of a chain of jobs that must precede and succeed job i in any
schedule, respectively. Head and tail lengths can be computed as longest paths in a
directed acyclic graph with edges representing precedence constraints (for the details,
see the paper by Adams et al. (1988)). The lower bound is then equal to the minimum
makespan schedule of this single machine problem with heads and tails. The heads and
tails can be executed in parallel, but the “body” parts must be scheduled sequentially.

The problem with heads and tails is similar to our original problem with release
times and deadlines. The lengths of heads directly correspond to release times, and
longer tails correspond to earlier deadlines. Formally, if a task’s head, body and tail
length are ai, di and qi, respectively, then the problem instance {(ai,di,qi) | i= 1, . . . ,n}
is equivalent to the following instance of the problem with release times and deadlines:

{(r = ai,d =−qi, p = di) | i = 1, . . . ,n}

Therefore, the single machine scheduling problem with release times and deadlines
indeed occurs as a relaxation of the Job Shop Scheduling problem. Next, we discuss
the Shifting Bottleneck method, an approximation algorithm for the Job Shop problem
based on this single machine relaxation.

2.5.1 The Shifting Bottleneck method

The Shifting Bottleneck method (Adams et al., 1988) is an approximation algorithm
for Job Shop Scheduling. A high-level description is as follows. The algorithm it-
eratively fixes the ordering of jobs for a single machine, which it identified as the
bottleneck in this iteration. The identification of the bottleneck happens by solving the
single machine relaxation of the original problem as defined above. The “bottleneck
value” of each machine on which the ordering of jobs is not yet fixed is defined as
the minimum makespan of the associated single machine scheduling problem. Each
iteration, we fix the order of chains on a machine with highest bottleneck value.

4Taillard’s benchmark set contains such instances. See http://optimizizer.com/TA.php.

19

http://optimizizer.com/TA.php

2. LITERATURE SURVEY

The head and tail length are computed by calculating longest paths in a directed
acyclic graph, as explained above. When the order of jobs on a machine is fixed,
precedence constraints are added to this graph so that heads and tails become longer.

The high-level pseudocode of this method is shown in Algorithm 4. It is also
possible to re-optimize already fixed machines after each iteration, but we have not
studied this part in detail.

Algorithm 4: The shifting bottleneck method for the Job Shop Scheduling prob-
lem

Data: Number of chains N; number of machines M; N×M problem instance
S = {(mi, j, pi, j) | i = 1, . . . ,N, j = 1, . . . ,M}

Result: A possibly suboptimal schedule
1 TODO = {1, . . . ,M}
2 order[j]← /0 for j = 1, . . . ,M
3 for iteration← 1 to M do
4 tmporder[j]← /0 for j = 1, . . . ,M
5 bottleneck[j]← ∞ for j = 1, . . . ,M
6 foreach j ∈ TODO do
7 {(ai,di,qi) | i = 1, . . . ,N}← RELAXATION(j,S,

⋃
j′ /∈TODO order[j′])

8 tmporder[j]← SOLVERELAXATION({(ai,di,qi) | i = 1, . . . ,N})
9 bottleneck[j]←MAKESPAN(tmporder[j],{(ai,di,qi) | i = 1, . . . ,N})

10 end
11 j f ix← argmax{bottleneck[j] | j ∈ TODO}
12 order[j f ix]← tmporder[j f ix]
13 TODO← TODO\{ j f ix}
14 end
15 return

⋃
j=1,...,M order[j]

20

Chapter 3

Own contributions

3.1 Introduction

In this chapter, we present our own contributions for the single machine scheduling
problem. This chapter is divided into two parts. In the first part, we present a practi-
cal algorithm for the scheduling problem with task lengths {1, p} that is based on the
Bellman-Ford algorithm for the STP formulation presented in Sections 2.4.3 and 2.4.4.
We also present a new lower bound and upper bound for the unrestricted single ma-
chine scheduling problem that work by solving a {1, p} scheduling problem. The
practical algorithm for {1, p} is presented in Section 3.2; the new lower bound and
upper bound are presented in Section 3.3.

In the second part, we consider the generalization of the {1, p} problem to other
pairs of integers {p,q} and in general fixed sets of processing times. Not much is
known about the complexity of this problem: all polynomial time solvability results
are “dominated by” the solvability of {1, p}. Sgall (2012) states that the complexity
of the single machine problem for other bounded size sets of task lengths is unknown.
The only negative results we are aware of were presented by Simons and Warmuth
(1989), but the results are for the multi-machine variant of the scheduling problem.
One of their results is the NP-completeness of the multi-machine variant with task
lengths {1, p} if the number of machines and p are both part of the input. We started by
trying to solve special cases and generalizing the algorithms that work in those cases.
The results of this part are presented in Section 3.4. We did not get very far in this
direction. Because of this, we expected that the problem might be NP-complete. We
think that we indeed found a reduction from an NP-complete problem to the scheduling
problem for all p > q > 1. The proposed proof is presented in Section 3.5.

3.2 A practical algorithm for the {1, p} case

Looking at the execution of the Bellman-Ford algorithm on the STP formulation (see
Section 2.4.3), we can devise a practical algorithm for the {1, p}-problem. The version
of the Bellman-Ford algorithm we use initially sets each St at its highest possible value
and executes updates of the form S j ≤ Si +wi, j, This corresponds to each length-p job
being scheduled as early as possible initially. During the execution it maintains an
upper bound on St for t = 0, . . . ,T and the constraints are used to tighten the upper

21

3. OWN CONTRIBUTIONS

bounds. The update St ≤ k corresponds to the fact “the (k + 1)’th earliest starting
length-p job should start no earlier than time t”. Therefore we can maintain lower
bounds on the k’th earliest starting length-p job for k = 1, . . . ,n. Instead of iterating
over all constraints in Equations 2.5 and 2.6, we schedule the length-p jobs greedily
(subject to the lower bounds on the k’th earliest starting length-p job found so far), with
the length-1 jobs scheduled in the open spaces left by the length-p jobs. When a length-
p job is scheduled after its deadline (or a length-1 job remains pending until after
its deadline) the conflict is analyzed and a lower bound is tightened (or infeasibility
is detected). Next, we discuss these two cases in more detail. We use the notation
T (1), . . . ,T (n) for the starting times of the n length-p jobs, and σ(1), . . . ,σ(n) for the
order in which the length-p jobs are scheduled.

t : 0 1 2 3 4 5 6 7 8 9 10

A

B

C

D

t : 0 1 2 3 4 5 6 7 8 9 10

B

C

D

A

Figure 3.1: Visualization of resolving a late length-P job. The first figure shows the
result of running the greedy algorithm. The thick vertical bars at t = 1 and t = 7 denote
the time interval in which more jobs need to be scheduled than what is currently done;
this is resolved by delaying the first job (slot) to time t = 1. In the second figure, the
red rectangle at [0,1] denotes the new lowerbound and the result of running the greedy
algorithm subject to this new lowerbound.

t : 0 1 2 3 4 5 6 7 8 9 10

A

B

C

D

t : 0 1 2 3 4 5 6 7 8 9 10

A

B

D

C

Figure 3.2: Visualization of resolving a late length-1 job. The first figure shows the
result of running the greedy algorithm. There are three length-P jobs preceding the late
length-1 job, so we update the lower bound of the third length-P job to tat −P+ 1 =
6−2+1= 5 (tat denotes the time the conflict was discovered, which happened after the
third length-P job was scheduled at time 6). In the second figure, the red rectangle at
[0,5] denotes the new lowerbound for the job at the third position in a feasible schedule
and the result of running the greedy algorithm subject to this new lowerbound.

In the first case, a length-p job is scheduled after its deadline. Let σ(i) be the first
late length-p job. Similarly to the STP algorithm, we want to find a constraint of Equa-
tion 2.5 that is violated. We go back in time to jobs σ(i−1),σ(i−2), . . . ,σ(1) until we

22

3.2. A practical algorithm for the {1, p} case

encounter a job σ(j) ending before its successors could have started: T (σ(j))+ p ≤
rmin, where rmin = mink∈σ[j+1,...,i] rk. The number of jobs starting in [rmin,dσ(i)− p] is
one too few. Because the greedy algorithm schedules the job in the k’th position as
early as possible (subject to the lower bounds found so far) for all k = 1, . . . ,n, the
only way to fix the lack of tasks starting in [rmin,dσ(i)− p] is to shift the slot of job
σ(j) to time t = rmin. Therefore the the lower bound of position j is increased to rmin.
If we do not find such a job σ(j), then by the EDD rule of the greedy algorithm all jobs
σ(1), . . . ,σ(i−1) have earlier deadlines than σ(i) and there are too few slots starting in
[mink∈σ[1,...,i] rk,dσ(i)− p], and this cannot be fixed because the slots already pushed to
starting times after t = dσ(i)− p cannot be used anymore. This operation corresponds
to relaxing the constraint of Equation 2.5 for [L,R) = [mink∈σ[1,...,i] rk,dσ(i)− p+ 1).
The operation is visualized in Figure 3.1.

In the other case, a length-1 job remains in the queue until after the greedy algo-
rithm passes its deadline d. Assuming that the length-1 jobs together have a feasible
schedule (this can be determined easily at the start of the algorithm by a greedy al-
gorithm), the problem must be that length-p jobs leave too few space to this job and
some other length-1 jobs. Because each length-p slot is scheduled as early as possible
subject to the lower bounds, the only solution is to shift the last slot past the deadline
d by at least one time unit. Note that we do not have to determine the set of length-
1 jobs with corresponding [rmin,d] for which the length-p jobs leave too few space,
because we will shift the last length-p job to some time after dmax anyway. If σ(i)
denotes the last scheduled length-p job, we adjust the lower bound of the i’th starting
time to t− p+ 1, where t denotes the offset at the time the greedy algorithm passed
the deadline d. How to find the constraint corresponding to this operation is explained
by Sgall (2012). This operation is visualized in Figure 3.2.

The pseudocode is given in Algorithm 5. In the pseudocode, we use zero-based
indices everywhere (the lowerbound for the first job’s starting time is lowerbound[0]).

23

3. OWN CONTRIBUTIONS

Algorithm 5: Practical implementation of a solver for the STP formulation.

Data: Length-1 tasks S1 = {(r1
i ,d

1
i) | i = 0, . . . ,n1−1}; length-P tasks

SP = {(rP
i ,d

P
i) | i = 0, . . . ,nP−1}.

Result: A schedule of all tasks, or INFEASIBLE

1 if no feasible schedule for S1 exists then return INFEASIBLE

2 TODO1 = {0, . . . ,n1−1}; TODOP = {0, . . . ,nP−1}
3 lowerbound[i]←−∞ for i = 0, . . . ,nP−1
4 tat ←−∞

5 schedule← empty list
6 while |TODO1|+ |TODOP|> 0 do
7 if TODOP = /0 then tP← ∞

8 else tP←min(lowerbound[nP−|TODOP|],mini∈TODOP rP
i)

9 if TODO1 = /0 then t1← ∞

10 else t1←mini∈TODO1 r1
i

11 tat ←max(tat ,min(t1, tP))
12 if TODO1 6= /0 and mini∈TODO1 d1

i ≤ tat then
13 lowerbound[nP−|TODOP|−1]← tat −P+1
14 Backtrack until before the last added length-p job
15 else
16 if tP ≤ tat then
17 i← argmin{dP

i | i ∈ TODOP,rP
i ≤ tat}

18 if tat +P > dP
i then

19 rmin← rP
i ; #seen← 0

20 foreach P-entry JP(t, j) in schedule in reverse order do
21 if t < rmin then
22 lowerbound[nP−|TODOP|−1−#seen]← rmin
23 Backtrack until before the P-job with ID j
24 else
25 rmin←min(rmin,dP

j); increment #seen
26 end
27 end
28 if #seen = nP−|TODOP| then return INFEASIBLE

29 else
30 schedule← concatenate(schedule,JP(t = tat , i = i))
31 TODOP← TODOP \{i}
32 tat ← tat +P
33 end
34 else
35 i← argmin{d1

i | i ∈ TODO1,r1
i ≤ tat}

36 schedule← concatenate(schedule,J1(t = tat , i = i))
37 TODO1← TODO1 \{i}
38 tat ← tat +1
39 end
40 end
41 end
42 return schedule

24

3.3. A new lower bound and upper bound

3.2.1 Optimizations

We actually implemented only one optimization. This optimization processes the
length-1 tasks more efficiently in the case we have many tasks with the same avail-
ability interval [r,d]. In our experiments, the instances feeded to the {1, p}-algorithm
often have unit-length jobs with the same availability interval (because the {1, p}-
algorithm is called through the half-preemptive lower bound function, which cuts one
task into pieces of with the same availability intervals; see Section 3.3).

We can think of K unit length tasks with the same availability interval as a pre-
emptive job of length K of which we schedule parts over time. The precise “amount of
job” scheduled by the modified Algorithm 5 at time tat (if we decide that we schedule
a length-1 job), is the minimum of the total number of units remaining of the job, the
next time a job of length P becomes available (or we reach the lowerbound currently
delaying the next length-P job) (this is variable tP in the algorithm), and the first re-
lease time of another preemptive job that is not ready yet. As a formula, the number
of units taken equals:

min{unitsremaining(i), tP− tat ,min{r1
i | r1

i > tat}− tat}

In our instances there may also be many length-p tasks with the same availability
interval. However, the optimizations required to handle these length-p tasks as a big
task of which we can take multiple pieces of length p at once seem to be much harder
to implement; we did not implement this step.

3.3 A new lower bound and upper bound

In this section, we present an application of the {1, p} version for solving the general
case of scheduling with release times and deadlines. Recall that in Carlier’s branch
and bound algorithm (see Section 2.3; this is the algorithm of choice to solve the
unrestricted single machine scheduling problem), at each node we compute a lower
bound on the objective function value Lmax of any schedule that will be produced in
this subtree. The lower bound Carlier proposed is the preemptive relaxation of the
scheduling problem in this subtree. Using the {1, p} algorithm, we can calculate an
improved lower bound, based on a half-preemptive relaxation. For a fixed integer P,
we can relax each non-preemptive task (ri,di, pi) into bpi/Pc non-preemptive blocks
of length P, and a preemptive part of length pi mod P. This way of splitting a task
is visualized in Figure 3.3. The resulting scheduling problem can be solved with the
{1, p} algorithm and the calculated Lmax value is a valid lower bound. It is not clear
which values of P give the best lower bounds.

Original job:

Half-preemptive partition:

P -job P -job P -job preemptive part

Figure 3.3: The splitting of a task into non-preemptive parts of the same length and a
remaining (preemptive) part.

25

3. OWN CONTRIBUTIONS

We have also attempted to “round” the solution from this half-preemptive relax-
ation back to a non-preemptive schedule for the original problem. The general strategy
we followed is to extract smaller availability intervals from the relaxation (if possi-
ble) and then run Schrage’s greedy algorithm on the resulting instance. The length-P
tasks’ position in an optimal half-preemptive schedule can directly be used as input for
Schrage’s algorithm. All other tasks however may have parts of it spread over time.
We do not know whether something can still be done in this case. We did try a few
simple ideas such as restricting the [r,d]-interval to the time between the earliest start
time and latest finish time of the pieces, but the results actually were worse than just
using the original availability intervals for these tasks. Therefore, we create a mod-
ified instance in which the length-P jobs have a fixed position. Note that Schrage’s
algorithm does not respect the fixed positions completely (it may be that some other
task starts just before the start of the fixed interval) but because of the performance
guarantee (see Section 2.2), the fixed positions are more or less respected.

Formally, let S = {(ri,di, pi) | i = 1, . . . ,n} be the original scheduling problem.
Let ∆t = Lhal f preemptive

max be the optimal maximum lateness of the halfpreemptive relax-
ation. For all i with pi = P, let T (i) be the starting time in an optimal schedule of
task i. This is well-defined for these i because they are represented by only one block.
The modified instance is defined as

{(ri,di +∆t, pi) | i = 1, . . . ,n; pi 6= P}∪{(T (i),T (i)+P,P) | i = 1, . . . ,n; pi = P}

Observe that the optimal halfpreemptive schedule fits within these availability in-
tervals. Schrage’s algorithm may introduce additional lateness but it will be less than
max{pi | i = 1, . . . ,n; pi 6= P}. This is because the length-P job cannot become the
interference job anymore because their availability intervals do not contain any other
intervals. An interesting theoretical improvement over Schrage’s algorithm is that the
above rounding procedure with P = max{pi | i = 1, . . . ,n} gives a schedule with late-
ness error at most P−2, one unit less than Schrage’s algorithm.

In an attempt to make this approach more useful in the case almost all task lengths
are different, we tried to round up task lengths in order to be able to represent all tasks
with lengths in [P′,P] as big non-preemptive blocks. This however did not result in
improved performance of the branch and bound algorithm.

3.4 Attempts to find improvements for the case with few
different task lengths

The original motivation to consider the problem with a fixed set of task lengths was
that the bin packing problem can be reduced in a very simple way to the single ma-
chine scheduling problem, and the decision version of bin packing is NP-complete
with arbitrary item sizes, but it can be solved by dynamic programming if there is a
bounded number of item sizes. In the bin packing problem, we are given n items with
sizes a1,a2, . . . ,an, and a number of bins with capacities c1,c2, . . . ,c#bins. The task is
to pack the items in the bins such that each bin does not contain items with total size
exceeding the capacity of the bin. The reduction given by Pinedo (2008) from bin
packing to the single machine scheduling problem represents the bins as time intervals
separated by “separator” jobs that have only one possible starting time; for each item,

26

3.4. Attempts to find improvements for the case with few different task lengths

a job with task length equal to the item’s size is added with an availability window
ranging over all bins. It is clear how feasible schedules for this instance correspond to
valid packings of the bins.

For a bounded number K of item sizes, the bin packing problem is known to be
solvable in polynomial time using a dynamic programming algorithm. This algorithm
calculates all sets of items that fit in the first i bins, iteratively for i = 1, . . . ,#bins.
Because two items of the same size are indistinguishable, there are only O(nK) distinct
sets of items, and this calculation will take at most O(n2K) time per bin, which is
polynomial time for constant K.

An algorithm for our scheduling problem with a set of task lengths P must therefore
be able to solve the bin packing problem with item sizes from P. In the literature
search for bin packing algorithms with a bounded number of item sizes, we found
two useful results. First, for mutually divisible sets of item sizes, the problem can be
solved greedily using the First Fit Decreasing algorithm (Coffman et al., 1987). This
algorithm sorts the items in descending order of item size and then puts each item (in
this order) in the first bin (the one with the lowest index) that has enough capacity
left. So in the case of divisible item sizes, dynamic programming is not necessary.
We also found a rather complicated mathematical paper by Goemans and Rothvoß
(2013) that solves the special case with identical bin capacities very efficiently. In
the case all bin capacities are equal to a constant C, the input now consists of only K
integers: the K frequencies for each item size. The algorithm proposed by the authors
then works polynomial in the number of digits of the input (so polynomial in log(n)).
The algorithm involves complex mathematics from convex optimization; we have not
studied this algorithm in detail. The authors also discuss our scheduling problem as an
application: this scheduling problem can also be solved in time polynomial in log(n);
the catch however is that all jobs of the same length also need to have the same release
time and deadline (so in this restriction there are only K different release times and
deadlines, too).

3.4.1 Generalizations of Carlier’s dynamic programming algorithm

After the literature search we conclude that in the general case of non-divisibile item
sizes, the dynamic programming algorithm is the only known exact solution, and an
algorithm for the scheduling problem should incorporate it. We tried to modify the
dynamic programming algorithm for identical task lengths of Carlier (1981) (see Sec-
tion 2.4.2) to handle multiple task lengths. This algorithm calculates a representation
of the subsets of tasks that can be scheduled in the time window [rmin, t] iteratively for
t = rmin,rmin+1, . . . ,dmax (where rmin and dmax denote the earliest release time and the
last deadline of all tasks). For this approach to work efficiently, we need a compact
representation of the set of subsets of tasks that can be scheduled in [rmin, t]. Exponen-
tially many subsets can be possible, but we need to remember only a set of subsets that
always contains a candidate that extends to a feasible schedule, if a feasible schedule
exists. If such subsets still consist of exponentially many candidates, there might exist
a representation which describes the complete set of possibly optimal subsets of tasks
without needing to store each such subset. The original algorithm for identical task
lengths relies on the observation that only one subset of tasks has to be stored for each
time offset t. The main question is whether something similar can be done for multiple

27

3. OWN CONTRIBUTIONS

task lengths.
The following lemma can be used to reduce the number of states the dynamic

programming algorithm needs to remember.

Lemma 3.1. If for two tasks (ri,di, pi) and (r j,d j, p j) the release times and deadlines
are similarly ordered (ri < r j, di < d j) and the task lengths are identical (pi = p j), then
any feasible schedule without lateness T = T (1),T (2), . . . ,T (n) in which T (i)> T (j)
can be modified such that T (i)< T (j) without introducing lateness.

Proof. Because T (i)> T (j) both tasks are scheduled in [r j,di], which is still the case
if the tasks are swapped. If we swap the tasks, no lateness is introduced and all other
tasks remain at their original time interval.

If a set of equal-length tasks {i1, i2, . . . , ik} have similarly ordered release times
and deadlines (pi1 = pi2 = . . .= pik , ri1 ≤ ri2 ≤ . . .≤ rik and di1 ≤ di2 ≤ . . .≤ dik), then
by Lemma 3.1 for this set of tasks the subsets the dynamic programming algorithm
needs to consider can be restricted to {{i1, i2, . . . , i j} | j = 0, . . . ,k}. Therefore, if the
[r,d] intervals are similarly ordered for the tasks for each task length, the state space
has size O(nK), which is polynomial in n for constant K. More generally if we can
partition the tasks in a bounded number W of sets of tasks with similarly ordered
intervals for each task length, the state space has size O(nK·W) which is polynomial in
n for constant K and W . However, this does not extend to an efficient algorithm for the
general case, because there can be heavily nested availability intervals. For example,
if r1 < r2 < .. . < rn and dn < dn−1 < .. . < d1, no two tasks have similarly ordered
intervals so there are still 2n valid states. So it is clear that a hardness proof, if it exists,
must contain heavily nested availability intervals.

3.4.2 Special cases with heavily nested availability intervals

Next, we considered special cases with heavily nested availability intervals. The sim-
plest case is that of perfectly nested intervals: r1 < r2 < .. . < rn and dn < dn−1 <
.. . < d1. This case however can be solved by dynamic programming, because of the
following observation:

Lemma 3.2. Let T = T (1),T (2), . . . ,T (n) be a feasible schedule without lateness.
Assume tasks 1,2, . . . , i (i < n) are scheduled directly after each other in some order
(the time between the start of the first task of {1,2, . . . , i} and the end of the last one
is exactly ∑ j=1,...,i p j). It is optimal to schedule task i+1 either immediately before or
immediately after all tasks in {1,2, . . . , i}.

Proof. Without loss of generality, we can assume that there is no idleness at all be-
tween the task scheduled first and the task scheduled last in T , because all availability
intervals contain the current time interval occupied by job 1 (so moving jobs closer to
job 1 never introduces lateness). We can move task i+ 1 towards the block of tasks
{1,2, . . . , i} by iteratively swapping it with all tasks in between the block {1,2, . . . , i}
and task i+1. After each swap, the swapped task j is still scheduled within its avail-
ability interval, because it is scheduled in the availability interval of task i+ 1, and
j > i+1 so [r j,d j] contains [ri+1,di+1].

28

3.5. NP-completeness of the scheduling problem with two non-unit task lengths

So, using dynamic programming we can calculate all offsets at which the set of
tasks {1,2, . . . , i} can start, and solve the problem in polynomial time. Formally, the
run time of this algorithm is as follows. Because we can always shift the schedule
such that at least one task starts at its release time, the start times for the innermost
task we need to consider are of the form ri±∑ j∈S p j for some task i and some subset
of tasks S. So if we denote by W = ∑i=1,...,n pi the total length of all tasks, there are at
most n ·min(W,nK) start times to be considered. For a fixed starting time of task 1, the
dynamic programming algorithm runs in time O(W) or O(nK) per iteration (adding a
job), which is done n−1 times. Therefore, the total run time is O(min(n2 ·W 2,n2K+2)).

Figure 3.4: A counterexample for the dynamic programming algorithm with multiple
stacks: the jobs with the largest availability intervals in both stacks (A2 and B2) must
be placed closest to the center.

With this case being solvable, we considered the generalization to the case of two
perfect nested sequences (“two stacks”). The straightforward generalization of the
dynamic programming algorithm for one stack is to extend the block of jobs by placing
one of the innermost jobs immediately to the front or to the back. This however does
not work. Consider the instance in Figure 3.4. There are four tasks, A1, A2, B1 and B2,
and another “separator” task occupying a fixed time block. The tasks A1 and A2 have
length pA, and the tasks B1 and B2 have length pB < pA. The availability intervals are
chosen such that a feasible schedule must have an A-job and a B-job on both sides. It
is then easy to see that the only valid schedule has the two “outermost” jobs (A2 and
B2) closest to the center, and the two innermost jobs at the boundaries.

For the special case with all length-pA tasks belonging to one stack and all length-
pB tasks belonging to the other stack, there actually exists a polynomial time so-
lution because this case can be formulated as a Monotone Two Variables Per In-
equality constraint system (a linear program in which all constraints are of the form
a ·Xi−b ·X j ≤ w with a,b > 0), and finding an integer solution to such systems can be
done in pseudo-polynomial time (Hochbaum and Naor, 1994). However, this solution
does not seem to generalize to more than two stacks.

3.5 NP-completeness of the scheduling problem with two
non-unit task lengths

For a pair of positive integers p,q, we define the problem {p,q}-SCHEDULING as the
following decision problem: given a set of tasks with integer release times and dead-
lines and task lengths from the set {p,q}, decide whether a non-preemptive sched-
ule without late jobs (a schedule with Lmax ≤ 0) exists. It is known that {1, p}-

29

3. OWN CONTRIBUTIONS

SCHEDULING can be solved in polynomial time, for all integer task lengths p. In
this section, we prove that all other cases are NP-complete. Formally, we have the
following result.

Theorem 3.3. For every two integers p> q> 1, {p,q}-SCHEDULING is NP-complete.

We present a reduction from the Boolean Satisfiability (SAT) problem. The SAT
problem is well-known to be NP-complete. A SAT instance consists of a set of boolean
variables x1,x2, . . . ,xn, and a set of clauses C1,C2, . . . ,Cm over these variables. Each
clause C j is of the form l1 ∨ l2 ∨ . . .∨ l|C j|, where each literal lk is a variable xi or its
negation ¬xi. The problem is to decide whether there exists an assignment of truth
values (TRUE or FALSE) to the variables such that each clause is satisfied, that is, that
each clause contains a literal that evaluates to TRUE in this assignment.

The high-level idea is to build two large stacks of jobs that are centered around
t = 0, one for length-p jobs and one for length-q jobs. We add jobs occupying fixed
positions to the time before t = 0 that leave empty spaces of length p+q in between;
this restricts the combinations of p-jobs and q-jobs that can be scheduled before t =
0. In the time after t = 0, we add jobs with small availability intervals that impose
additional restrictions on the set of jobs that can be scheduled there.

3.5.1 Presentation of the construction

We construct the corresponding instance of {p,q}-scheduling as follows. Before time
t = 0, there are #bins bins of size p+q that are separated by so-called “separator” jobs
that have only one possible position in a feasible schedule. We use separators of size q
and number the bins i = 1, . . . ,#bins from t = 0 backwards in time. Bin i therefore has
time window [tG

i , t
G
i + p+q], where tG

i =−i · (p+q+q). With each bin we associate
4 jobs, two p-jobs and two q-jobs. These jobs are denoted pINNER

i , pOUTER
i , qINNER

i ,
qOUTER

i . The outer jobs have release time r(pOUTER
i) = r(qOUTER

i) = tG
i and the inner

jobs have release time r(pINNER
i) = r(qINNER

i) = tG
i +1. The deadlines of these jobs are

such that availability intervals for each task length form a perfect nested sequence, and
the p-jobs are relatively urgent:

d(pOUTER
i)≥ d(pINNER

i)> 0 for i = 1, . . . ,#bins (3.1)

d(qOUTER
i)≥ d(qINNER

i)> 0 for i = 1, . . . ,#bins (3.2)

d(pINNER
i)≥ d(pOUTER

i−1) for i = 2, . . . ,#bins (3.3)

d(qINNER
i)≥ d(qOUTER

i−1) for i = 2, . . . ,#bins (3.4)

d(qINNER
i)≥ d(pOUTER

i) for i = 1, . . . ,#bins (3.5)

In other words, if we draw a grid with the p-jobs in the top row and the q-jobs in
the next row (ordered by increasing release time within a row), then going up or right
increases urgency of the task. The purpose of these conditions 3.1–3.5 is the following.

Lemma 3.4. For each i = 1, . . . ,#bins, it is optimal to place either {pOUTER
i ,qINNER

i }
or {qOUTER

i , pINNER
i } in bin i.

Proof. We present an exchange argument that fills the bins as described in the lemma,
in the order i = 1, . . . ,#bins. Formally, we prove by induction that it is optimal to fill

30

3.5. NP-completeness of the scheduling problem with two non-unit task lengths

bins j = 1, . . . , i this way, for i = 1, . . . ,#bins. The base case i = 0 (for 0 bins) is clearly
true; for the induction step (i− 1→ i), assume we have a feasible schedule with bins
j = 1, . . . , i−1 filled as described in the lemma. First, suppose bin i does not contain
a p-job. Because of Equations 3.3, 3.4, 3.5, pOUTER

i is more urgent than all q-jobs in
J, so we can exchange pOUTER

i with a number of q-jobs currently scheduled in bin i.
If we cannot simply add pOUTER

i to the bin, the bin has Nq ≤ 1+ bp/qc length-q jobs;
we choose Nq− 1 of these and swap them with job pOUTER

i . This works, because the
p-job can be placed at the end of the bin together with at most one length-q job, and
the Nq−1 jobs use space q · (Nq−1)≤ q · bp/qc ≤ p so they fit in the original position
of the p-job. This does not change the contents of gaps 1, . . . , i−1, because these bins
are already completely filled with jobs from their own bins. Therefore, it is optimal to
place one p-job in bin i. We can then place qOUTER

i in bin i if there is no q-job in bin i.
It follows from the stack properties (Equations 3.1–3.4) that it is optimal to choose a
p-job and a q-job belonging to bin i, and because the inner jobs have earlier deadlines
than the outer jobs but cannot be placed together in the bin, it is optimal to choose
exactly one inner job and one outer job. This completes the induction step.

On the time space after t = 0, we add groups of jobs and separator jobs directly
after each other. This means that we maintain a time offset, representing the space
occupied so far. This offset equals the last deadline of the jobs in the last group (and
t = 0 for the first group), except when the last group was a “delayed literal” group; then,
the time offset is one less than the last deadline. The groups are added as follows.

Algorithm 6: Construction of the part after t = 0

1 Add S-groups followed by separators n times;
2 foreach clause C j do
3 Add 2n times an “ordinary literal” group;
4 Add a CL-p-group followed by a separator;
5 foreach literal l ∈C j do
6 Add “ordinary literal” groups for l′ = 1, . . . , l−1;
7 Add a “special literal” group for literal l;
8 Add “delayed literal” groups for l′ = l +1, . . . ,2n;
9 Add a CL-p-q-group followed by a separator;

10 end
11 Add 2n times an “ordinary literal” group;
12 Add a CL-q-group followed by a separator;
13 end
14 Add T -groups followed by separators n times;

Lemma 3.5. In a feasible schedule that is modified according to Lemma 3.4, each
decision job that is scheduled after t = 0 is scheduled between the two separators
between which the job’s deadline falls.

Proof. Let Jchosen be the set of decision jobs scheduled after t = 0; by Lemma 3.4,
Jchosen contains exactly one p-job and one q-job from each bin. Let Jdummy be the
set of all dummy jobs (two from each S-box, two from each T -box, and one from

31

3. OWN CONTRIBUTIONS

each literal-in-clause box). Observe that the space [tL, tR] between two consecutive
separators exceeds ∑{pi | (ri,di, pi) ∈ Jchosen ∪ Jdummy, tL ≤ di ≤ tR} by at most one,
because the only groups that occupy more space than their own need are S groups,
T groups and “special literal” groups, and there is never more than one such group
between two consecutive separators. Because all task lengths are ≥ 2, jobs with later
deadlines cannot be added.

Lemma 3.6. It is optimal to schedule each decision job either before t = 0 in its own
bin, or after t = 0, between the two separators between which the job’s deadline falls.

Proof. Follows from Lemma 3.4 and Lemma 3.5.

The next step is to argue that the polarities of a variable are consistent. Variable
xi (1 ≤ i ≤ n) occurs in the i’th S-group, the i’th T -group, and at positions 2i− 1 and
2i in the list of literal groups for each clause C j, |C j| times. The positive literal xi is
associated with the most urgent jobs: the first two jobs in the i’th S-group, the first two
jobs in the i’th T -group, and the four jobs in group at position 2i in the list of groups
for each clause. The negative literal ¬xi is associated with the other jobs of variable
xi: the last two jobs in the i’th S-group, the last two jobs in the i’th T -group, and the
four jobs in group at position 2i+1 in the list of groups for each clause. We say that
a literal is assigned TRUE within a group if the outermost p-job corresponding to it is
placed right, and we say that a literal is assigned FALSE within a group if the outermost
q-job corresponding to it is placed right. The following lemma states that the variables
are represented consistently.

Lemma 3.7. For each variable xi, either all positive occurences are assigned TRUE

and all negative occurences are assigned FALSE, or all positive occurences are as-
signed FALSE and all negative occurences are assigned TRUE.

Proof. By inspection, at least one of the outermost jobs in Si must be placed right. Sup-
pose we schedule the first outermost p-job right. Let G+

1 ,G
+
2 , . . . ,G

+
k be the ordered

list of groups inside the clause blocks associated with literal xi, and let G−1 ,G
−
2 , . . . ,G

−
k

be this ordered list for ¬xi. Observe that (Si,G+
1),(G

+
1 ,G

+
2), . . . ,(G

+
k−1,G

+
k),(G

+
k ,Ti)

are linked through the bins that have the p-jobs in one group and the q-jobs in the next.
Because we chose the outermost p-job in the Si group, we have to choose the inner-
most q-job in G+

1 , and therefore also the outermost p-job in G+
1 . Finally, we have the

outermost p-job chosen in G+
k , and therefore the innermost q-job must be chosen in

Ti. If we choose the innermost q-job for xi in group Ti, we must choose the outermost
q-job for ¬xi in Ti. Then we proceed backwards through the G−-list, from G−k to G−1 ,
and finally to Si where the innermost p-job for ¬xi must be chosen.

Otherwise, the second outermost p-job of Si must be scheduled right. The same
argument works but now we go forward along G− and backward along G+.

Finally we argue that, in a feasible schedule, all clauses are satisfied. Observe that
in a clause C j, the groups CL-p, CL-p-q[1], CL-p-q[2], . . . , CL-p-q[|C j|], CL-q are
linked through bins having a p-job in one group and a q-job in another. If no literal
satisfies C j, then each CL-p-q group demands that at least one job in its group placed
right is an outermost job, because the literal not satisfying the clause introduces an
empty space, which delays the CL-p-q group. The CL-p group and the CL-q group

32

3.5. NP-completeness of the scheduling problem with two non-unit task lengths

also demand the outermost job placed right, which amounts to a total need of |C j|+2
outermost jobs placed right while there are only |C j|+1 bins, which is impossible.

If instead literal l satisfies C j, then the “special group” for literal l does not intro-
duce an empty space, and it does not require an outermost job placed right; so, the
|C j|+1 bins can help the CL-p group, the CL-q group and the |C j|−1 CL-p-q groups
of the other literals of C j.

33

3. OWN CONTRIBUTIONS

t : 0 1 2 3 4 5 6 7 8 9 10 11

Dummy job 1:
Dummy job 2:
Inner job of xi:
Outer job of xi:

Inner job of ¬xi:
Outer job of ¬xi:

t : 0
1

2q
p+q+1

p+2q
p+2q+1

2p+2q
2p+2q+1

Dummy job 1:
Dummy job 2:
Inner job of xi:
Outer job of xi:

Inner job of ¬xi:
Outer job of ¬xi:

Figure 3.5: Layout of an S-group (for p = 3,q = 2 and the general case). Note that it
is impossible to schedule both inner jobs, but both combinations of one inner job and
one outer job are possible.

t : 0 1 2 3 4 5 6 7 8 9 10

Dummy job 1:
Dummy job 2:
Inner job of xi:
Outer job of xi:

Inner job of ¬xi:
Outer job of ¬xi:

t : 0
q

q+1
p+q

p+2q
p+2q+1

p+3q
p+3q+1

Dummy job 1:
Dummy job 2:
Inner job of xi:
Outer job of xi:

Inner job of ¬xi:
Outer job of ¬xi:

Figure 3.6: Layout of a T-group (for p = 3,q = 2 and the general case). Note that it
is impossible to schedule both inner jobs, but both combinations of one inner job and
one outer job are possible.

34

3.5. NP-completeness of the scheduling problem with two non-unit task lengths

t : 0 1 2 3 4 5 6 7 8 9

Dummy job:
Inner p-job:
Inner q-job:
Outer p-job:
Outer q-job:

t : 0
1

q
2q

p+q+1
2p+q

2p+q+1

Dummy job:
Inner p-job:
Inner q-job:
Outer p-job:
Outer q-job:

Figure 3.7: Layout of a “special literal” group (for p = 3,q = 2 and the general case).
Note that it is impossible to schedule both inner jobs, but both combinations of one
inner job and one outer job are possible. Note also that the group’s allocated space
ends before the last deadline.

t : 0 1 2 3 4 5

Inner p-job:
Inner q-job:
Outer p-job:
Outer q-job:

t : 0
q

p
p+q

Inner p-job:
Inner q-job:
Outer p-job:
Outer q-job:

Figure 3.8: Layout of an “ordinary literal” group (for p = 3,q = 2 and the general
case). Note that it is impossible to schedule both inner jobs, but both combinations of
one inner job and one outer job are possible.

35

3. OWN CONTRIBUTIONS

t : 0 1 2 3 4 5 6

Inner p-job:
Inner q-job:
Outer p-job:
Outer q-job:

t : 0
q+1

p+1
p+q

p+q+1

Inner p-job:
Inner q-job:
Outer p-job:
Outer q-job:

Figure 3.9: Layout of a “delayed literal” group (for p = 3,q = 2 and the general case).
Note that it is impossible to schedule both inner jobs, but both combinations of one
inner job and one outer job are possible. Note also that the group’s allocated space
ends before the last deadline.

t :−1 0 1 2 3

Inner p-job:
Outer p-job:

t : 0
p−1

p

Inner p-job:
Outer p-job:

Figure 3.10: Layout of a CL-p-group (for p = 3,q = 2 and the general case). We must
always choose the outermost job here (this group could be removed but then clauses
of size 1 become a special case).

36

3.5. NP-completeness of the scheduling problem with two non-unit task lengths

t : 0 1 2 3 4 5 6

Inner p-job:
Inner q-job:
Outer p-job:
Outer q-job:

t : 0
p+q

p+q+1

Inner p-job:
Inner q-job:
Outer p-job:
Outer q-job:

Figure 3.11: Layout of a CL-p-q-group (for p = 3,q = 2 and the general case). If the
literals before this group are not delayed, we can choose both inner jobs here so that
the outer jobs can increase flexibility elsewhere. If the literals before are delayed, then
we must choose one outermost job here.

t :−1 0 1 2

Inner q-job:
Outer q-job:

t : 0
q−1

q

Inner q-job:
Outer q-job:

Figure 3.12: Layout of a CL-q-group (for p = 3,q = 2 and the general case). We must
always choose the outermost job here (this group could be removed but then clauses
of size 1 become a special case).

37

3. OWN CONTRIBUTIONS

Figure
3.13:Instance

forform
ula

w
ith

1
clause

“(x
1)”.

38

Chapter 4

Empirical evaluation of the
branch-and-bound algorithm

4.1 Introduction and test setup

In this part we test the practical hardness of the single machine scheduling problem.
We implemented both branching schemes presented in Section 2.3: Carlier’s algorithm
and McMahon and Florian’s algorithm. We also implemented the original preemptive
lower bound function and the half-preemptive lower bound presented in Section 3.3.
We implemented the algorithm for the {1, p} problem as described in Section 3.2, with
the optimization that multiple unit length tasks with the same availability interval are
treated as one preemptive job.

We implemented the branch and bound algorithm and our algorithm for {1, p}-
scheduling in C++ and compiled the code with g++ using the -O3 optimization flag. We
ran all tests on Ubuntu 12.04 using an Intel Core 2 Duo T9600 2.8 GHz CPU with 4GB
memory. In all tests, we measure the run time of the solver and the number of nodes
processed by the branch and bound algorithm. A node is processed if the algorithm
actually calculates the greedy schedule with this node’s tightened availability intervals;
we do not count nodes that are never retrieved from the queue because they have a too
high lower bound to possibly contain a better solution than what is already found.

This experimental analysis is structured as follows. In Section 4.2, we explain
the benchmarks we used. In Section 4.3, we verify that our implementation is correct
and that we did not miss implementation details that make our solver much slower
than the branch and bound algorithms could be. Then, in Section 4.4 we test which
parameters of our benchmark model generate the hardest instances, and we do the
actual experimental evaluation in Section 4.5.

4.2 Benchmarks used

We have tested the branch and bound solver in two ways: as a standalone solver, and
as a subroutine in a solver for the Job Shop problem.

For the Job Shop problem, we used a solver (Applegate and Cook, 1996) that ex-
ecutes the Shifting Bottleneck algorithm (see Section 2.5; the actual implementation
uses a more complicated algorithm (with limited backtracking) than the basic version

39

4. EMPIRICAL EVALUATION OF THE BRANCH-AND-BOUND ALGORITHM

we presented). Numerous benchmarks sets for the Job Shop problem have been pro-
posed; we used the benchmark set of Taillard (1993), containing 80 problems with
sizes between 15×15 and 100×20.

For the benchmarks on which we tested the solver directly, we generalized the
benchmarks used in the literature by introducing correlation between release times and
deadlines. The benchmarks used in the literature, such as in Carlier’s paper (Carlier,
1982) in which he proposed his branch and bound algorithm, use the uniform distribu-
tion on a given interval for release times, deadlines and processing times: all variables
are sampled independently. This means that the model has two parameters: a range for
the release times and deadlines [0,T] and a range for the processing times [1, pmax].1

All release times, deadlines and processing times are then sampled independently and
uniformly at random from the corresponding ranges.

We generalize this distribution by introducing a parameter α ∈ [−1,1] to represent
correlation between release times and deadlines. For α ≥ 0, we generate the release
times and deadlines with the formulas

r = T · (|α| ·Xcommon +(1−|α|) ·Xr)

d = T · (|α| ·Xcommon +(1−|α|) ·Xd)

where Xcommon,Xr,Xd are sampled from the uniform distribution on [0,1] indepen-
dently from each other. Similarly, for α < 0 the formulas are

r = T · (|α| ·Xcommon +(1−|α|) ·Xr)

d = T · (|α| · (1−Xcommon)+(1−|α|) ·Xd)

The correlation between r and d equals ρ(α) = 2α2/((2α− 1)2 + 1) if α ≥ 0 and
ρ(α) =−ρ(−α) for α < 0. So for α =−1,0,1 we have ρ(α) = α, but this is not true
for other α.

4.3 Verification of the implementation

Before doing the actual experimental analysis, we tested our branch and bound algo-
rithm and also tested the lower bound and upper bound functions individually (this
was especially necessary for our algorithm for the {1, p} problem). Concretely, we
first tested our implementation of existing ideas of Carlier with a trivial dynamic pro-
gramming over subsets scheduling algorithm with run time O∗(2n) as the reference
implementation. In the second step, we tested our algorithm for the {1, p} problem us-
ing both the brute force implementation (for small instances) and the already verified
branch and bound algorithm (for larger instances) as the reference implementation.

Next to this verification of correctness, we also did a verification of the solver’s
performance by comparing it against the single machine solver part of the Job Shop
solver we use for our experiments on Job Shop problems. To our surprise, this solver
solved some of our most difficult instances within seconds, but as it turns out the
program contained a bug: the problem is that, in the branch that the interference job

1Because optimizing Lmax remains the same problem if one delays all deadlines by the same amount
of time, we can assume that release times and deadlines start from time 0. One could also use separate
ranges [0,rmax] and [0,dmax], but the case rmax = dmax = T seems to be general enough.

40

4.3. Verification of the implementation

has to be placed after the set of delayed jobs J, the new release time is set to maxi∈J ri+

∑i∈J pi, which is incorrect; this should be mini∈J ri +∑i∈J pi.2 Their implementation
also contained one optimization that we did not implement: when a node is processed,
they check whether Schrage’s schedule modified by moving the interference job to the
place immediately after the set of delayed jobs is better than the best schedule found
so far. This was also presented in Carlier’s original paper. We added this optimization
to our solver. Other implementation details in which the two solvers differ are: instead
of using a priority queue, their solver iterates over all elements of the queue to find the
most urgent one in Schrage’s algorithm, which means it takes O(n2) time worst case.
As the number of jobs is less than 100 in most benchmarks, this does not make a great
difference. It also does not recalculate the preemptive lower bound at each node, but
instead computes only the lowerbound min j∈J r j +∑ j∈J p j−max j∈J d j for the set of
delayed jobs J and for the set J with the interference job added to it. This was also
presented in Carlier’s paper, but we think that computing the whole preemptive lower
bound will not change much in performance because one has to compute the greedy
schedule using Schrage’s heuristic at each iteration, which also takes O(n logn) time.

We then compared the performance of both implementations. We compare three
implementations: our implementation with and without the optimization to “try” the
schedule with the interference job placed directly after the delayed jobs, and the imple-
mentation from the Job Shop solver. We first tested the configuration α = 0 (no corre-
lation between release times and deadlines), N = 100, pmax = 10 and T = N · pmax/2 =
500. We tested 1000 instances. The number of iterations the solvers required are dis-
played in Figure 4.1. These instances are very simple for all solvers; in 99% of the
cases, all solvers terminate within 100 iterations (and within 0.01 seconds in time).
Still, we can see that the optimization makes our solver faster, and that the Stony
Brook solver performs similarly to our solver on these instances. Because this distri-
bution is a bit too simple to really compare performance of the solvers, we compared
the solvers on a benchmark with α =−1 (so release times and deadlines are negatively
correlated). We use pmax = 10, N = 50 and T = N · pmax/2 = 250 and a time limit of
10 seconds per instance. The results are visualized in Figure 4.2. For instances on
which some solver was terminated at the time limit, we set the number of iterations to
infinity (109). We see that both the number of iterations and the run time of the solvers
are comparable, with our implementation doing slightly better in this case.

We conclude that the performance of the solvers is similar, both in terms of the
number of iterations and in terms of runtime.

Next, we compared Carlier’s and McMahon and Florian’s branching schemes. We
did two tests: α = 0, pmax = 10, N = 35, T = N · pmax/2 = 175 (1000 instances), and
α = −1, pmax = 10, N = 20 and T = N · pmax/2 = 100 (250 instances). The results
are given in Figure 4.3. We conclude that Carlier’s branching scheme works better:
while it is not much worse on the easy instances with α = 0, its performance on those
with α = −1 is clearly much worse than that of Carlier’s branching scheme. This is
consistent with earlier results such as the comparison by Sadykov and Lazarev (2005).
In the experiments that follow, we only use Carlier’s scheme.

2The smallest example we found that was solved incorrectly is:
heads: [3,1,2]; bodies: [2,3,3]; tails: [3,1,3]. The solver reports that 12 is the optimal makespan, while
the answer is 11, which is reached with the order of jobs [3, 1, 2].

41

4. EMPIRICAL EVALUATION OF THE BRANCH-AND-BOUND ALGORITHM

0 200 400 600 800 1000
instance number (sorted by difficulty)

100

101

102

103

104

105

106

#
ite

ra
tio

ns
Own implementation (with optimization)
Own implementation (without optimization)
Stony Brooks implementation

800 850 900 950 1000
instance number (sorted by difficulty)

100

101

102

103

104

105

106

#
ite

ra
tio

ns

Own implementation (with optimization)
Own implementation (without optimization)
Stony Brooks implementation

Figure 4.1: The number of iterations on 1000 instances with N = 100, pmax = 10,
T = 500 and α = 0 (no correlation between release times and deadlines). For each
solver, the sequence of number of iterations required is sorted. Above: all benchmarks;
below: the hardest 20% for each solver.

42

4.3. Verification of the implementation

800 850 900 950 1000
instance number (sorted by difficulty)

100

101

102

103

104

105

106

107

108

109

#
ite

ra
tio

ns
Own implementation (with optimization)
Own implementation (without optimization)
Stony Brooks implementation

800 850 900 950 1000
instance number (sorted by difficulty)

10-2

10-1

100

101

tim
e

[s
ec

on
ds

]

Own implementation (with optimization)
Own implementation (without optimization)
Stony Brooks implementation

Figure 4.2: The number of iterations on the hardest 20% from 1000 instances with
N = 50, pmax = 10, T = 250 and α =−1 (negative correlation between release times
and deadlines).

43

4. EMPIRICAL EVALUATION OF THE BRANCH-AND-BOUND ALGORITHM

800 850 900 950 1000
instance number (sorted by difficulty)

100

101

102

103

104

105

106

107

108

109

#
ite

ra
tio

ns
Carlier's branching scheme
McMahon-Florian's branching scheme

0 50 100 150 200 250
instance number (sorted by difficulty)

100

101

102

103

104

105

106

107

108

109

#
ite

ra
tio

ns

Carlier's branching scheme
McMahon-Florian's branching scheme

Figure 4.3: Above: the number of iterations on the hardest 20% from 1000 instances
with N = 35, pmax = 10, T = 175 and α = 0 (no correlation between release times
and deadlines); below: the number of instances with N = 20, pmax = 10, T = 100 and
α =−1 (negative correlation between release times and deadlines).

44

4.4. The relation between hardness and the correlation between release times and
deadlines

800 850 900 950 1000
instance number (sorted by difficulty)

100

101

102

103

104

105

106

107

108

109

#
ite

ra
tio

ns
α=−1

α=−0.9

α=−0.5

α=0

α=0.5

α=1

Figure 4.4: The number of iterations on the hardest 20% from 1000 instances with
N = 50, pmax = 10, T = 250 for various values of α.

4.4 The relation between hardness and the correlation
between release times and deadlines

From the tests in Section 4.3, we saw that instances from the distribution with α =
−1 for N = 50 are much harder than instances from the distribution with α = 0 for
N = 100. We expect that negatively correlated instances are the hardest and values
of α close to -1 give hard instances. We test this hypothesis for various other values
of α. We use the distribution with N = 50, pmax = 10 and T = N · pmax/2 = 250
for α ∈ {−1,−0.5,0,0.5,1}. We use a time limit of 10 seconds (a larger time limit
is not needed to distinguish between the hardness of these values of α). The result
is given in Figure 4.4 (again, if the time limit is reached, the number of iterations is
set to 109). It is surprising that the α = −0.5 instances are equally easy as the α = 0
instances. We then tested α=−0.9 and the result (also in Figure 4.4) indeed shows that
the instances become harder when release times and deadlines become increasingly
negatively correlated. We conclude that α = −1 generates the hardest instances and
other values close enough to -1 (such as -0.9) also give hard instances.

4.5 Evaluation of the new lower and upper bound

In this section we do the actual comparison between the original preemptive lower
bound and greedy upperbound and the half-preemptive lower bound and upper bound

45

4. EMPIRICAL EVALUATION OF THE BRANCH-AND-BOUND ALGORITHM

(see Section 3.3). The half-preemptive lower bound procedure takes as input a block
size P and divides each task with length pi in a preemptive part of length pi mod P
and bP/pic blocks. It then calls the {1,P}-solver to find a schedule with minimum
Lmax for the created problem; the Lmax value of this schedule is a lower bound on
the actual Lmax. The half-preemptive upper bound also takes as input a block size P
and computes the same decomposition into blocks and a preemptive task as the half-
preemptive lower bound. It also computes an optimal half-preemptive schedule and
then rounds the schedule by fixing the positions of the tasks represented by exactly
one block, and then feeding the instance to Schrage’s algorithm. The bottleneck for
these computations is obviously the {1,P}-solver. Because we need the same half-
preemptive schedule for both the lower and the upper bound, we decided to compute
the lower bound and upper bound for exactly the same values of P, remembering the
optimal half-preemptive schedule after the lower bound is computed.

We have tried a number of combinations of values of P. We report only on
the performance of two options that frequently worked well: P = 1, . . . , pmax and
P = dpmax/3e, . . . , pmax. Many other combinations of values of P are possible, but
one of these two options often performed best in our tests. One could also choose
the set of P dynamically, but we did not try this. Our experimental analysis consists
of three parts. In Section 4.5.1, we analyze performance on benchmarks generated
with the model defined in Section 4.2. In Section 4.5.2, we analyze performance of
our solver integrated in an existing Jobshop solver (Applegate and Cook, 1996) that
uses the Shifting Bottleneck algorithm (see Section 2.5). In Section 4.5.3, we analyze
performance of our new lowerbound function as a standalone function on benchmarks
generated with the model defined in Section 4.2.

4.5.1 Performance on randomly generated instances

We focus on two test distributions, α ∈ {−1,0}. The α = −1 distribution contains
hard instances and the α = 0 distribution contains easier instances. We always use
T = N · pmax/2 and pmax = 10. In all tests, we use a time limit of 60 seconds.

The results for α =−1, and pmax = 10 with 1000 instances are given in Figure 4.5
(for N = 50) and Figure 4.6 (for N = 100). The results show that on these instances,
the new lower bound and upper bound perform much better on the most difficult in-
stances. For N = 100, the preemptive+greedy version did not solve 91 out of 1000
instances (9%); the full half-preemptive lower bound version did not solve 5 out of
1000 instances (0.5%), and the half-preemptive lower bound version that tests only the
P≥ dpmax/3e failed to solve 10 instances (1.0%). So, on these instances, the improved
lower bound and upper bound allow the branch and bound solver to solve about 8%
more of the instances with N = 100 in one minute.

We think that the speedup is caused by the half-preemptive lower bound being able
to prove optimality of the best solution found so far in more cases than the preemptive
lower bound, but that the preemptive+greedy solver finds the optimal solution much
earlier than when it can prove that this solution is optimal. To test this hypothesis, we
precalculated the correct answer by the half-preemptive version (the version that com-
putes the lower bound for all P), and then ran the preemptive+greedy solver, counting
separately the number of iterations until the lower bound equals the answer and until

46

4.5. Evaluation of the new lower and upper bound

the upper bound equals the answer.3 The result is given in Figure 4.7. We see that
indeed, in almost all instances the solver versions using the half-preemptive bounds
can solve, the original algorithm also found the answer in under 100 iterations, but it
cannot prove that this is optimal.

The case of uncorrelated release times and deadlines (α = 0) can be solved effi-
ciently with the original solver. This can be seen in Figure 4.4. We ran additional tests
for larger instances: N ∈ {100,1000,10000} (1000 instances for each N). In all runs
we let pmax = 10 and T = N · pmax/2. For N = 50, the solver terminates within 100
iterations in 99% of the cases; for N = 100, N = 1000 and N = 10000 the solver ter-
minates within 100 iterations in 999 out of 1000 cases. Therefore, for this distribution
the new lowerbound will not give an improvement.

4.5.2 Performance when integrated in a Jobshop solver

For this part, we integrated our one machine solver in the Shifting Bottleneck solver
of Applegate and Cook (1996). We used the benchmark set by Taillard (1993). This set
contains 80 benchmarks with sizes from 15× 15 (15 chains of jobs on 15 machines)
to 100× 20 (100 chains of jobs on 20 machines). We do not use the backtracking
option of the solver. It turns out that the new lower bound does not at all improve
performance; instead, the solver becomes about 100 times slower. The results are
displayed in Table 4.1 (for 15× 15 instances) and Table 4.2 (for 20× 15 instances).
Clearly, the halfpreemptive bounds slow down the solver very much. An explanation
for this is that the resulting single machine instances are as easy as those from the
distribution with α = 0 so that the halfpreemptive lower bound does not reduce the
number of iterations, but it does cost much more computation time than the original
preemptive lower bound.

1 2 3 4 5 6 7 8 9 10
preemp. 0.06 0.05 0.06 0.05 0.05 0.06 0.04 0.07 0.05 0.04
all P 11.57 14.57 16.41 13.89 13.52 15.25 10.88 17.09 13.94 12.18
P≥ pmax/3 5.89 7.32 8.11 6.90 6.86 7.73 5.40 8.69 7.27 5.95

Table 4.1: Results for Taillard’s 15×15 instances.

1 2 3 4 5 6 7 8 9 10
preemp. 0.09 0.08 0.07 0.08 0.09 0.08 0.09 0.09 0.09 0.09
all P 33.92 28.99 22.32 25.45 28.67 31.10 28.64 28.94 29.56 25.36
P≥ pmax/3 15.79 14.19 10.43 11.96 13.92 14.51 13.28 13.63 14.35 12.17

Table 4.2: Results for Taillard’s 20×15 instances.

3The lowerbound equals the answer when all nodes in the queue have a lowerbound greater than or
equal to the answer.

47

4. EMPIRICAL EVALUATION OF THE BRANCH-AND-BOUND ALGORITHM

4.5.3 Runtime analysis of the lowerbound function

Finally we analyze the runtime of the half-preemptive lower bound on random in-
stances from the distribution with α = 0. We use as parameters for the distribution
pmax = 10 and T = N · pmax/2; we benchmark the half-preemptive lowerbound with
P = pmax/2 for N = 100,200,300, . . . ,1000 with 1000 instances for each N. One
run of the lowerbound means calculating the maximum lateness of a halfpreemptive
schedule, so we use binary search on the maximum lateness and repeatedly call the
{1,P}-solver. Before the computation starts, we call Schrage’s algorithm for the ini-
tial guess of Lmax (the instance to Schrage’s algorithm consists of blocks of length P
and preemptive parts) so that the interval on which binary search must be done has size
at most pmax. The results are displayed in Figure 4.8. More than half of the instances
are very easy and are solved very quickly; however for the average runtime and for the
75th percentile of the instances, the run time of the solver seems to be in the order of
O(n2).

48

4.5. Evaluation of the new lower and upper bound

800 850 900 950 1000
instance number (sorted by difficulty)

100

101

102

103

104

105

106

107

108

109

#
ite

ra
tio

ns

Preemptive LB / Greedy UB
Halfpreemptive P=1, ,pmax

Halfpreemptive P=dpmax/3e, ,pmax

800 850 900 950 1000
instance number (sorted by difficulty)

10-2

10-1

100

101

102

tim
e

[s
ec

on
ds

]

Preemptive LB / Greedy UB
Halfpreemptive P=1, ,pmax

Halfpreemptive P=dpmax/3e, ,pmax

Figure 4.5: The number of iterations and the runtime on the hardest 20% from 1000
instances with α =−1, N = 50, pmax = 10 and T = 250

49

4. EMPIRICAL EVALUATION OF THE BRANCH-AND-BOUND ALGORITHM

800 850 900 950 1000
instance number (sorted by difficulty)

100

101

102

103

104

105

106

107

108

109
#

ite
ra

tio
ns

Preemptive LB / Greedy UB
Halfpreemptive P=1, ,pmax

Halfpreemptive P=dpmax/3e, ,pmax

800 850 900 950 1000
instance number (sorted by difficulty)

10-2

10-1

100

101

102

tim
e

[s
ec

on
ds

]

Preemptive LB / Greedy UB
Halfpreemptive P=1, ,pmax

Halfpreemptive P=dpmax/3e, ,pmax

Figure 4.6: The number of iterations and the runtime on the hardest 20% from 1000
instances with α =−1, N = 100, pmax = 10 and T = 500

50

4.5. Evaluation of the new lower and upper bound

800 850 900 950 1000
instance number (sorted by difficulty)

100

101

102

103

104

105

106

107

108

109

#
ite

ra
tio

ns

Preemptive LB / Greedy UB
Preemptive (until LB correct)
Preemptive (until UB correct)
Halfpreemptive P=1, ,pmax

Halfpreemptive P=dpmax/3e, ,pmax

Figure 4.7: The number of iterations until the lower bound and upper bound equal
the optimal answer (for the preemptive+greedy version). Note that, for each graph,
the numbers of iterations are sorted, so the numbers of iterations of all graphs for one
specific instance number do not correspond to the same instance (this is also why the
run time of the preemptive solver is not the maximum of the time until the lower bound
is correct and the time until the upper bound is correct).

51

4. EMPIRICAL EVALUATION OF THE BRANCH-AND-BOUND ALGORITHM

100 200 300 400 500 600 700 800 900 1000
N

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

tim
e

[s
ec

on
ds

]

Average runtime
Runtime of 50th percentile
Runtime of 75th percentile
3 ·10−7 ·N2

Figure 4.8: Run time of the lowerbound function as a standalone function on bench-
marks with α = 0, pmax = 10, T = N · pmax/2.

52

Chapter 5

Conclusion

In this thesis, we have studied the single machine problem with release times and
deadlines. We have surveyed existing algorithms in Chapter 2. We studied polynomial
time algorithms for the equal processing times case and its generalization to the case
with task lengths from the set {1,P}, for some integer P. The latter case can also be
viewed as the problem in which all non-preemptive tasks have the same length, and
all other tasks are preemptive. We then studied branch and bound algorithms for the
unrestricted case. These branch and bound algorithms modify the availability intervals
of the tasks in the branching step.

We have presented a practical algorithm for the {1,P} problem in Section 3.2, and
we have presented a new lower bound (the half-preemptive lower bound) and a corre-
sponding upper bound in Section 3.3. We have done an experimental analysis of the
branch and bound algorithm and the new lower bound in Chapter 4. The conclusions
of this experiment are that the original branch and bound algorithm usually can find the
optimal solution, but with certain instances, the preemptive lower bound is not able to
prove optimality. This happens with instances with negatively correlated release times
and deadlines. On instances without this property, the original branch and bound algo-
rithm terminates within 100 iterations in 99% of the cases, and the new lower bound
only slows down these iteration, which leads to much worse performance.

We have also presented an NP-completeness result for the task scheduling problem
with two non-unit task lengths by a reduction from the Satisfiability (SAT) problem.
This is presented in Section 3.5. We understand that the formulation must still be
improved and that it is too difficult to determine whether the current construction is
correct. We did implement this reduction and test it on small formulas; for example, the
branch and bound algorithm is able to prove that the formula x1∧¬x1 is unsatisfiable.

The original motivation to study this single machine scheduling problem was to
learn new techniques for dealing with the combination of release times and deadlines
in a non-trivial way: techniques that are more problem specific than greedy algorithms
and general-purpose heuristic search algorithms. These techniques could then be ap-
plied to practical scheduling problems, such as the problem with a resource profile
instead of only one machine as the available capacity over time.

The forbidden regions algorithm for identical task lengths fits this description very
well: it solves a problem optimally that greedy algorithms cannot solve. However, the
practical applicability of the identical task lengths model is fairly limited. The same

53

5. CONCLUSION

holds for the generalization to task lengths {1,P}. The only use is that we can compute
a half-preemptive schedule, which should have less preemptions than the schedule
produced by the preemptive version of the EDD rule. We described a procedure to
round the {1,P}-schedule back to a non-preemptive schedule, but this procedure only
improves upon the greedy algorithm if many tasks have the same length.

The branch and bound algorithm of Carlier does not seem to be very different from
solution techniques for more general task scheduling problems such as Precedence
Constraint Posting.

To summarize, we have not been able to apply the algorithms we studied to cause
improved performance on practical problems, but we did learn new interesting tech-
niques by studying exact algorithms for the case with both release times and deadlines.

54

Bibliography

Joseph Adams, Egon Balas, and Daniel Zawack. The shifting bottleneck procedure
for job shop scheduling. Management Science, 34(3):pp. 391–401, 1988. ISSN
00251909. URL http://www.jstor.org/stable/2632051.

David Applegate and William Cook. A computational study of the job-shop scheduling
problem. ORSA Journal on Computing, 3(2):149–156, 1991. doi: 10.1287/ijoc.3.2.
149. URL http://dx.doi.org/10.1287/ijoc.3.2.149.

David Applegate and William Cook. Jobshop solver software. http://www.cs.
stonybrook.edu/˜algorith/implement/jobshop/implement.shtml, 1996.

Kenneth R. Baker and Zaw-Sing Su. Sequencing with due-dates and early start times
to minimize maximum tardiness. Naval Research Logistics Quarterly, 21(1):171–
176, 1974. ISSN 1931-9193. doi: 10.1002/nav.3800210112. URL http://dx.
doi.org/10.1002/nav.3800210112.

Philippe Baptiste. Scheduling equal-length jobs on identical parallel machines. Dis-
crete Applied Mathematics, 103(13):21 – 32, 2000. ISSN 0166-218X. doi: http://dx.
doi.org/10.1016/S0166-218X(99)00238-3. URL http://www.sciencedirect.
com/science/article/pii/S0166218X99002383.

R. E. Bellman. On a Routing Problem. Quarterly of Applied Mathematics, 16:87–90,
1958.

Jacques Carlier. Problemes d’ordonnancement à durées égales. QUESTIIO, 5(4):219–
228, 1981.

Jacques Carlier. The one-machine sequencing problem. European Journal of Op-
erational Research, 11(1):42 – 47, 1982. ISSN 0377-2217. doi: http://dx.doi.
org/10.1016/S0377-2217(82)80007-6. URL http://www.sciencedirect.com/
science/article/pii/S0377221782800076.

E.G Coffman, Jr., M.R Garey, and D.S Johnson. Bin packing with divisible item
sizes. Journal of Complexity, 3(4):406 – 428, 1987. ISSN 0885-064X. doi: http://
dx.doi.org/10.1016/0885-064X(87)90009-4. URL http://www.sciencedirect.
com/science/article/pii/0885064X87900094.

55

http://www.jstor.org/stable/2632051
http://dx.doi.org/10.1287/ijoc.3.2.149
http://www.cs.stonybrook.edu/~algorith/implement/jobshop/implement.shtml
http://www.cs.stonybrook.edu/~algorith/implement/jobshop/implement.shtml
http://dx.doi.org/10.1002/nav.3800210112
http://dx.doi.org/10.1002/nav.3800210112
http://www.sciencedirect.com/science/article/pii/S0166218X99002383
http://www.sciencedirect.com/science/article/pii/S0166218X99002383
http://www.sciencedirect.com/science/article/pii/S0377221782800076
http://www.sciencedirect.com/science/article/pii/S0377221782800076
http://www.sciencedirect.com/science/article/pii/0885064X87900094
http://www.sciencedirect.com/science/article/pii/0885064X87900094

BIBLIOGRAPHY

Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks. Artif. Intell.,
49(1-3):61–95, 1991.

Christoph Dürr and Mathilde Hurand. Finding total unimodularity in optimization
problems solved by linear programs. Algorithmica, 59(2):256–268, February 2011.
ISSN 0178-4617. doi: 10.1007/s00453-009-9310-7. URL http://dx.doi.org/
10.1007/s00453-009-9310-7.

M. R. Garey, David S. Johnson, Barbara B. Simons, and Robert Endre Tarjan. Schedul-
ing unit-time tasks with arbitrary release times and deadlines. SIAM J. Comput., 10
(2):256–269, 1981.

Michel X. Goemans and Thomas Rothvoß. Polynomiality for bin packing with a con-
stant number of item types. CoRR, abs/1307.5108, 2013.

R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G.Rinnooy Kan. Optimization and
approximation in deterministic sequencing and scheduling: a survey. volume 5 of
Annals of Discrete Mathematics, pages 287 – 326. Elsevier, 1979. doi: http://dx.doi.
org/10.1016/S0167-5060(08)70356-X. URL http://www.sciencedirect.com/
science/article/pii/S016750600870356X.

Dorit S. Hochbaum and Joseph Naor. Simple and fast algorithms for linear and integer
programs with two variables per inequality. SIAM J. Comput., 23(6):1179–1192,
1994.

Graham McMahon and Michael Florian. On scheduling with ready times and due
dates to minimize maximum lateness. Operations Research, 23(3):pp. 475–482,
1975. ISSN 0030364X. URL http://www.jstor.org/stable/169697.

Michael L. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer Publishing
Company, Incorporated, 3rd edition, 2008. ISBN 0387789340, 9780387789347.

C. N. Potts. Analysis of a heuristic for one machine sequencing with release dates and
delivery times. Operations Research, 28(6):pp. 1436–1441, 1980. ISSN 0030364X.
URL http://www.jstor.org/stable/170101.

Ruslan Sadykov and Alexander Lazarev. Experimental comparison of branch-and-
bound algorithms for the 1|r j|Lmax problem. In MAPSP, 2005. URL http://www.
math.u-bordeaux1.fr/˜rsadykov/papers/SadykovLazarev_MAPSP05.pdf.

Jiri Sgall. Open problems in throughput scheduling. In ESA, pages 2–11, 2012.

Barbara Simons. A fast algorithm for single processor scheduling. In FOCS, pages
246–252, 1978.

Barbara B. Simons and Manfred K. Warmuth. A fast algorithm for multiprocessor
scheduling of unit-length jobs. SIAM J. Comput., 18(4):690–710, 1989.

Éric Taillard. Jobshop benchmarks. http://mistic.heig-vd.ch/taillard/
problemes.dir/ordonnancement.dir/ordonnancement.html, 1993.

56

http://dx.doi.org/10.1007/s00453-009-9310-7
http://dx.doi.org/10.1007/s00453-009-9310-7
http://www.sciencedirect.com/science/article/pii/S016750600870356X
http://www.sciencedirect.com/science/article/pii/S016750600870356X
http://www.jstor.org/stable/169697
http://www.jstor.org/stable/170101
http://www.math.u-bordeaux1.fr/~rsadykov/papers/SadykovLazarev_MAPSP05.pdf
http://www.math.u-bordeaux1.fr/~rsadykov/papers/SadykovLazarev_MAPSP05.pdf
http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html
http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html

	Contents
	Introduction
	Contributions
	Outline

	Literature survey
	Introduction
	Schrage's heuristic
	Branch and bound algorithms
	Polynomial time algorithms for the equal-processing-times case
	Application: Job Shop Scheduling

	Own contributions
	Introduction
	A practical algorithm for the {1,p} case
	A new lower bound and upper bound
	Attempts to find improvements for the case with few different task lengths
	NP-completeness of the scheduling problem with two non-unit task lengths

	Empirical evaluation of the branch-and-bound algorithm
	Introduction and test setup
	Benchmarks used
	Verification of the implementation
	The relation between hardness and the correlation between release times and deadlines
	Evaluation of the new lower and upper bound

	Conclusion
	Bibliography

