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Abstract—Data is generated with unprecedented speed, due
to the flourishing of social media and open platforms. However,
due to the lack of scrutinizing, both clean and dirty data are
widely spreaded. For instance, there is a significant portion of
images tagged with corrupted dirty class labels. Such dirty data
sets are not only detrimental to the learning outcomes, e.g.,
misclassified images into the wrong classes, but also costly. It
is pointed out that bad data can cost the U.S. up to a daunting 3
trillion dollars per year. In this paper, we address the following
question: how prevailing (deep) machine learning models can
be robustly trained given a non-negligible presence of corrupted
labeled data. Dirty labels significantly increase the complexity
of existing learning problems, as the ground truth of label’s
quality are not easily assessed. Here, we advocate to rigorously
incorporate human experts into one learning framework where
both artificial and human intelligence collaborate. To such an
end, we combine three strategies to enhance the robustness for
deep and regular machine learning algorithms, namely, (i) data
filtering through additional quality model, (ii) data selection
via actively learning from expert, and (iii) imitating expert’s
correction process. We demonstrate three strategies sequentially
with examples and apply them on widely used benchmarks,
such as CIFAR10 and CIFAR100. Our initial results show the
effectiveness of the proposed strategies in combating dirty labels,
e.g., the resulting classification can be up to 50% higher than
the state-of-the-art AI-only solutions. Finally, we extend the
discussion of robust learning from the trusted data to the trusted
execution environment.

Index Terms—Deep neural networks, dirty labels, data filter-
ing, active learning, trusted execution, adversarial learning

I. INTRODUCTION

The ever-increasing self-generated contents on social media,

e.g., Instagram images, power up the deep neural networks,

but also aggravate the challenge of noisy and corrupted data.

Large portion of images accessible on the public domain

come with labels which are unfortunately dirty due to careless

annotations [1], [2], cheap data curation or even adversarial

strategies [3]–[5]. Consider Google Image Search to curate

training data set [6]. The image search can conveniently

return a large number of images whose auxiliary information,

e.g., semantic text, contains the searched terms. With non-

negligible probability, a large number of unrelated images

could be thus included, especially for less popular queries.

Deep neural network models have advanced greatly in

recent years due to ever increasing computational capacity,

e.g., GPU, algorithmic breakthroughs, e.g., generative adver-

sarial networks [6], in addition to the fuel of big data. Deep

models, such as convolutionary network, can solve complex

image classification tasks and reach remarkable accuracy, com-

pared to the standard machine learning models. Unfortunately,

there are several studies pointing out the weakness of deep

models against dirty data, from the corrupted images to the

labels [7]–[9]. The high learning capacity of deep networks can

memorize the images structures of clean and also corrupted

label labels [10] due to the memorization effect of networks.

Classification accuracy on standard image benchmarks unfor-

tunately degrades drastically in the presence of dirty labels. For

example [10], the accuracy of using trained AlexNet to classify

CIFAR10 images drops from 77% to 10% with random labels.

Indeed, dirty label is a long-standing challenge for statistical

methods whose model training process depends on the labels.

The limited availability of ground truth about the label quality

significantly hardens the learning problems. As a result, the

central theme of a large body of the related work is to distill

the influence of dirty labels in the model training process

without the ground truth knowledge of labels - unsupervisedly

learning the label qualities. To avoid being polluted by dirty

labels in the model training phase, auxiliary statistical filtering

mechanisms [11], [12] are applied to remove or replace the

suspicious data for the original model training. In other words,

multiple different learning models are applied and the clas-

sification outcomes are determined by their joint consensus.

Specifically, the recent trend to enhance robustness of deep

networks by designing novel network architecture, e.g., [12]

has two parallel networks cross training each other, or by

modifying the loss function that is aware of the presence of

dirty lables [13]. However, the promising results of robust

deep networks in countering the dirty labels are at the cost

much higher computational overhead.

Our vision to address the dirty data issue is through the

collaboration with human experts, designing a learning frame-

work where artificial intelligence and human experts co-teach

each other. Such learning framework consists of three key

components: (i) quality model, (ii) active learning with human

experts, and (iii) CopyNet, a system which imitates experts.

The quality model [14] is an additional classifier which filters

out the suspicious data that might have the corrupted labels
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without the ground truth of the label quality. The choice of

such classifier depends on the data sets as well as the actual

learning tasks. Those suspicious data can be cleansed through

the predictions of the quality model or human expert which can

provide the ground truth. The cleansing cost of human experts

is much higher than the model-based solution. The research

question here is to define and select suspicious data, given a

certain budget to acquire data, being from cheap crowd source

or expensive ground truth data provided by human experts.

Ultimately, the proposed learning framework imitates the

correction process of human experts and formulates a rig-

orous learning problem, termed CopyNet. Different from the

main stream of robust deep networks against the dirty labels,

CopyNet employs Amateur (a convolution neural network) to

first classify images based on the given (partially corrupted)

labels and Expert (another neural network) to correct the labels

based on the expert’s inputs. In other words, CopyNet uses a

small fraction of ground truth provided by human experts in

the training phase and leverages the given labels as auxiliary

information in the inference phase. Our preliminary results

show that such a collaboration learning framework of humane

and artificial intelligence can outperform the state of the art

robust deep networks which only relies on techniques of artifi-

cial intelligence. Finally, we conclude this study by extending

the discussion from the trusted data to the trusted execution

environment for robust machine learning frameworks.

II. QUALITY MODELS

A. System Model

We focus on the online-learning scenario, in which data

instances continuously arrive at the learning system over time

in batches. All the data instances arriving at system are

labelled. Labels can be correct (i.e. clean label) or incorrect

(i.e. noisy label). Di denotes the data batch comes to system at

time ti, it has labels Yi. To kick-start the learning process, we

assume batch D0 has only clean labels data. We also assume

that we have a small data set P for which we know its true

labels, and that we use to test the accuracy of our system at

the end of learning process of each epoch.

B. Framework

Inspired by RAD (Robust Anomaly Detection) framework

[14], we change RAD’s training strategy by only using the

data selected from the current batch to update models. We also

let classifier join the process to filter out cleansed data, that

makes a double selection system. The RAD Duo framework

is depicted in Fig. 1. The system comprises two components.

A label quality model L (label quality predictor) aims at

discerning clean labels from dirty labels and a classifier model

C (anomaly classification) targets the specific classification

task at hand.

Quality model is used to determine if the data instances are

correctly or incorrectly labelled, and to prevent the classifier

to be over-fitting to noise. Li−1 is the quality model which

is trained with previous data batches up to time ti−1. When

Di comes, Li−1 will do the prediction on it. Comparing the

Fig. 1: RAD Duo framework.

prediction and the given labels Yi, we could divide Di into

two parts: (1) D∗i : the data instances in Di whose prediction

and given label are identical, i.e., a trusted dataset; (2) Ui:

data whose prediction and given label are different, i.e., a

suspicious dataset. Quality model will keep D∗i locally, and

send D∗i and Ui to classifier.

Ci−1 is the classifier trained until time ti−1. Once it receives

D∗i and Ui from L, it keeps D∗i locally, and do the prediction

on Ui, then Ui will also be divided into two parts: (1) U∗: the

data instances in Ui whose predictions are same as their given

labels, this part of data is also called trusted dataset; (2) Si:

the data instances in Ui whose predicted labels are different

from their given labels. The classifier keeps the U∗i locally and

also send it back to quality model. Si will be discarded.

Now, there are data D∗i and U∗i in both quality model

and classifier, they will use these data to update their models

locally to get Li and Ci, then they could release D∗i and U∗i
from their buffers.

Practically, inference time of quality model should less than

classifier, because when a data batch Di comes, quality model

will make the predictions on the whole batch, and classifier

will only do the predictions on a small fraction of Di. In

general, we want to keep the data selection time as low as

possible.

C. Use-cases and Datasets

In order to demonstrate the broad applicability of RAD Duo,

we consider the following three use-cases: (i) CIFAR-10 [15],

(ii) CIFAR-100 [16] and (iii) FaceScrub [17].

CIFAR-10 and CIFAR-100 are two wildly used datasets for

image classification. CIFAR-10 contains 60’000 images evenly

distributed in 10 classes. There are 50’000 training images

and 10’000 test images. The test dataset contains exactly

1000 randomly-selected images from each class. CIFAR-100

is similar as CIFAR-10, except its 60,000 images are evenly

distributed in 100 classes. In test dataset of CIFAR-100, each

class contains 100 images, and the remaining images are

training dataset.

The FaceScrub dataset is used for face recognition. It

originally contains more than 100’000 face images of 530

celebrities, with about 200 images per person. Male and female

images are equally represented. After we manually check the
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dataset to filter out some repeated and unclear images, we

extract a representative subset of 3.3k images. This subset

covers 20 people with the highest number of images, e.g. 12

males and 8 females. As the original FaceScrub face images

are retrieved from internet, the image sizes are different, we

re-scale all images to the same 128×128 pixel format. The

only label we use afterwards is the name of the person.

D. Experimental Setup

The RAD Duo algorithm is implemented using Keras [18].

The setting of three datasets for experiments are summarized

in Table I.

We evaluate RAD Duo against CIFAR-100 [15], CIFAR-

10 [16] and FaceScrub [17]. All the code is implemented

leveraging Keras.

Noise. We inject the noise into the three datasets by

switching the true label to at random amongst the other ones.

The noise is symmetric, i.e., when we change a label, the

probabilities to any other labels are equal. We inject noise

only on training data, no noise on test data.

Quality and Classification model. For CIFAR-10 and

FaceScrub dataset, we use a ResNet [19] model for quality

model and a VGG [20]-like CNN (Convolutional Neural Net-

work) for classifier. Even though quality model has more lay-

ers than classifier, it uses fewer total parameters. For CIFAR-

100, as this dataset has more classes, we use ResNet as quality

model and a deeper ResNet as classifier. While we considered

other structures and CNN models, these combinations give

best balance between final accuracy and training time.

Baselines. The proposed RAD Duo is compared against

two baseline data selection schemes: (i) No-Sel, where all

data instances of arriving batches are used for training the

classification model; and, (ii) Full-Clean which emulates an

omniscient agent who can perfectly distinguish between clean

and noisy labels, and could recover all the noisy labels. The

two baselines are representative of the worst and best possible

data selection strategies. We expect RAD Duo to fall in

between these two extreme cases.

E. Evaluation of Result

Fig. 2a shows three curves extracted from our experiments

on CIFAR-10. From the No-Sel curve, we observe that is noisy

labels are indeed destructive to classifier. Secondly we could

see that under 30% noise, RAD Duo still follows the trend of

Full-Clean, despite strong deviations, at the end of each batch

training epochs, it could always recover to a higher or similar

level than the previous batch. We can observe the similar

situation in [21] with different on-line learning setting. The

reason that all the curves suffer a periodic up-down pattern, is

because our model is optimized on the current training data:

different batches provide different subviews of the data, and

the empirical distribution can be different. When a new data

batch comes, we will generate a gradient based on new data,

but applied on the remaining model, that could influence the

accuracy. Furthermore, we reset the time-decayed learning rate

when a new batch comes. Therefore, even if all the batches

TABLE I: Dataset description

Use case CIFAR-100 CIFAR-10 FaceScrub

#trainig data instances 50,000 50,000 2,639
#test data instances 10,000 10,000 665
#classes N 100 10 20
#features f 32*32 32*32 128*128
data batch size 10, 000 1, 000 200
initial batch D0 size 10,000 10,000 639
training epochs for D0 60 60 60
training epochs except D0 60 10 20

TABLE II: Evaluation of the RAD Duo on different datasets

under 30% noise

Dataset No-Sel Full-Clean RAD Duo Improve-
ment

Cifar-100 30.01% 53.61% 33.99% 3.98%
Cifar-10 55.63% 81.26% 73.89% 18.26%
FaceScrub 43.16% 67.07% 46.47% 3.31%

* All the results are averaged on 3 times experiments

follow the same distribution, the system could temporarily

wander off from the previous optimum.

Fig. 2b presents our results on CIFAR-100. The Full-Clean

and RAD Duo curves are continuously increasing even though

with the presences of oscillations. We observe how in the

No-Sel case, the arriving of a new batch leads to a drop

on accuracy, followed by an increase to a higher level, even

better than RAD Duo. This is because comparing to RAD

Duo, No-Sel could use more data to train. As the training

process continues, its accuracy will eventually decrease, this

is because the model begins to be over-fitting on the noisy

training data.

Final accuracy results for all experiments are summarized in

Table II, the column of improvement is from the comparison

between RAD Duo and No-Sel. It shows that for CIFAR-

10 dataset, the improvement is significant. While for CIFAR-

100 and FaceScrub, the improvements are weaker. From the

column Full-Clean, we can see that even without noisy label

data, the final accuracy of CIFAR-100 and FaceScrub are not

that good, that is because CIFAR-100 has more classes, and

the image size of FaceScrub are 16× than CIFAR-100 and

CIFAR-10, that makes them take longer time to converge. As

the whole system’s accuracy is low, two models of RAD Duo

will let too many noisy data pass or they will discard too many

training data, the selection could not work with the models

with that low accuracy. These two cases are all bad for RAD

Duo.

In summary, for CIFAR-100 and FaceScrub, our system

has still large margins of improvements. Toward the goal of

improving the structure so that even if accuracy is low, our

model could converge closer to Full-Clean within the same

training epochs. We describe these improvements in §II-F.
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(a) With CIFAR-10 dataset (b) With CIFAR-100 dataset

Fig. 2: Evolution of learning accuracy over time under 30% noise

F. Future work beyond RAD Duo Framework

Though RAD Duo improves final accuracy for datasets, we

report on the current limitations: (1) for quality model, it is

very useful to filter out uncertain data, but training an extra

CNN except of classifier is also expensive. If the computing

resources are limited, it may not be possible to train two CNN

between the interval of two on-line learning batches, typically

in the order of second/millisecond time unit; (2) according to

Fig. 2a, we could see that the classifier’s accuracy improves

over time (even though there are oscillations), if the computing

resources and time interval between batches are sufficient, we

can buffer the S, we know that there are some mis-discarded

data inside S due to the limited performance of former models.

We could set a limit size of buffer of accumulated S, once the

buffered S are over the limit, we attach these data to D of

next batch, re-do the selection process on buffered S together

with D and release local buffer.

III. ACTIVE LEARNING FROM EXPERTS

Discarding data instances that the quality model filters out

as noisy could result in a too high loss of information. Instead,

the idea is to try to make use of the noisy data instances by

cleansing them with the help of a human expert, i.e., an oracle.

However asking the oracle for the true labels of the whole is

too expensive and time consuming. Therefore, we leverage

active learning to identify the important and informative noisy

samples which have the highest impact on the performance of

the classifier if their true labels are available. Here we focus

on designing such a systems in the same online batch-arrival

setting as described in §II.

A. Framework

Similar to the RAD Duo framework described in Section II,

our model, termed QAL , consists of a label quality model and

a classifier model plus an active learner component. The active

learner decides which noisy samples to send to the oracle for

cleansing. Fig. 3 presents the architecture of QAL .

Similar to RAD Duo learning, D∗i is the subset of the current

batch that has the predicted label by the quality model equal to

the given label, and Ui is the subset of suspicious data where

the two labels differ. The role of the active learner is to choose

from Ui the samples for which the quality model is the least

certain on the predicted label and send these to the oracle to

be relabelled with their true label.

As quality model we use a multi-class SVM with the

decision function f : x → N × C in a one-vs-rest model

[22], where N is the number of samples in the batch and

C is the number of classes. The decision function represents

the distance of each sample from the classification decision

boundary. Therefore, we define our measure of uncertainty

based on this distance: the shorter the distance to any of the C
decision boundaries the higher the uncertainty. We choose the

most uncertain instance among Ui that has the lowest decision

function.

B. Experimental Setup

Datasets. We evaluate QAL on the following datasets:

pendigits (16 features, 10 classes), usps (256 features, 10
classes) and optdigits (64 features, 10 classes). The datasets

are from UCI repository [23] used for handwritten digit

recognition.

For all datasets we start with an initial clean set of 150
instances. To speed up training, we limit the data size to N =
1050 samples (including the initial set).

Noise. We use the same symmetric noise model as in §II-D

but with the following two noise ratios: 60% and 80%. The

noise is injected to the labels during training but the test set

is assumed to be clean.

Model Details. We use a SVM for both the quality and

classifier models since it is a well known model that has been

studied with active learning. Our prototype is implemented

in Python using the multi-class SVM in scikit-learn [24]. We

query the true label of the 5 most uncertain noisy samples per

batch via the oracle. We repeat each setting 100 times and

report the average test accuracy for the classifier.
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Fig. 3: QAL Architecture

Baselines. To better show the effectiveness of our proposed

QAL method we compare it with four other data selection

baselines:

No-Sel, same as in RAD Duo, using all sample to train

the classifier with no selection.

Q-only: without the active learner to query for relabelling

suspicious samples, i.e., only the clean data identified by

the label comparator are used to train the classifier.

AL-only: without the quality model where all data is

used to training the classifier except some informative

instances that are relabel by the oracle.

Opt-Sel: which assumes a perfect quality model able to

distinguish between clean and noisy labels and uses all

the clean samples for training.

For a fair comparison, in AL-only we also use five active

queries per batch.

C. Evaluation

Figure 4 and 5 shows the results for the different selec-

tion methods and their comparison with our proposed QAL

with uncertainty sampling. As the results show, our model

outperforms all the baselines except Opt-Sel where there is

only clean samples for training. As the noise increases, No-
Sel causes degradation in the performance of the system,

although in lower noise rate the performance of this method

is the lowest among all. Moreover, as shown in the figures,

in most cases except pendigits AL-only has the next lowest

performance which shows the effectiveness of the quality

model in filtering the noisy samples. This method achieves

better results in lower noise rate, i.e., 60% due to the absence

of quality filtering. Q-only has a better performance than AL-
only, however, compared to our proposed QAL does not have

much improvement from the initial batch specially in the 80%
noise. Furthermore, in the higher noise rate does not affect

the performance of our method. Although the quality model

is not strong enough to separate clean from noisy samples,

relabelling the informative suspicious instances using active

learning overcomes the noise effect.

To conclude, our results on several datasets show that by

leveraging the information in the noisy samples with the

help of a human expert we can improve the robustness of

the classification model to label noise and reach near the

performance of optimal selection where there is only clean

samples to train the classifier. This gain in accuracy is achieved

only by relabelling 10% of the data instances in each batch.

D. Future work beyond QAL

In this paper we focused on one measure of uncertainty

which chooses the data instances closer to the decision bound-

ary. However, this measure disregards the relation between the

classes and only focuses on the most uncertain class. Margin

sampling is another method for active query selection which

selects the data instance that its classification score between

two classes are very close to each other, i.e. the model is not

certain which of the two best classes to predict. Our prelimi-

nary results on this method show significant improvement over

the most uncertain method. Due to the space limit, we leave

the exploration of this uncertainty measurement for our future

work.

Querying the oracle is expensive, and typically the available

budget to relabel queries is limited. One of the biggest

challenges in online settings is to decide how much budget

to spend at each data batch. Most studies on active learning

in the online setting focus on a fixed number of active queries

per batch, however they fail to consider the dynamic of

the system’s performance caused by noise. The accuracy of

the quality model and the classification model can change

in each batch due to the existence of noise in the labels.

Therefore, a dynamic rate for query selection in each batch

which considers the total budget can be more effective to

improve the classification accuracy. We plan to further explore

dynamic active learning and methods to define the dynamic

query rate in our future work.

IV. IMITATING EXPERTS

According to active learning, the expert provides knowledge

about ground truth. Therefore each sample has an expert-

evaluated correct label in addition to its noisy label. The

presence of both a clean and noisy label for each data sample

leads to find the relation between them. In this model, we use

noisy labels as extra features to achieve a robust classifier.

Also, our network reduces the noise ratio in the dataset by

deriving the relation between noisy and clean data.

A. Framework

In contrast to prior learning methods, especially image

classification, the main idea implemented by CopyNet is to

employ dirty labels as part of the training beside ground truth.

As shown in Fig. 6, both the ground truth joins and noisy

labels are used as auxiliary input to directly learn the corrupted

240

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 13:19:03 UTC from IEEE Xplore.  Restrictions apply. 



(a) pendigits (b) optdigits (c) usps

Fig. 4: Results for 80% noise, comparison between the proposed QAL and the baselines.

(a) pendigits (b) optdigits (c) usps

Fig. 5: Results for 60% noise, comparison between the proposed QAL and the baselines.

label dynamics. Towards that end, the ground truth of labels is

provided by human experts as a part of the training input. The

neural networks are trained using ground truth and noisy labels

at the same time. Essentially, for the testing process, images

and limited noisy labels act together as input to classify the

images.

At its heart CopyNet comprises two cascaded neural net-

works with feedback, as highlighted in Fig. 6. The first neural

network acts as image classifier. It is trained using the images

as input and predicted labels from the second neural network.

The task of this second neural network is instead to find the

relation between noisy labels and ground truth and, hence,

correct the prediction of the image classifier. Via the feedback

it aims to avoid, during training, the detrimental effects of the

noisy labels on the performance of the image classifier. From

this point of view, we consider the second neural network as

a helper for the first network to improve the test accuracy and

recover the true labels from the noisy dataset. This is achieved

by learning the pattern of noise via some ground truth during

training.

B. Experiments Setup

Datasets. We conduct experiments on MNIST [25], as

well as the previously presented CIFAR-10 and CIFAR-100

datasets. MNIST comprises 60’000 examples plus 10’000

samples for testing of handwritten digits to be classified into

10 classes.

Fig. 6: Training process with noisy labels and ground truth

Noise. We use the same symmetric noise model as described

in §II-D with 20%, 30% and 40% noise ratios.

Model Details. We use a 12-layer CNN architecture with

ReLU activation functions as image classifier. The second

neural network is instead a simpler 4-layer feed-forward

network. All networks are implemented using Keras v2.2.4

and Tensorflow v1.13.

Baselines. We compare CopyNet against four baselines

from related work, which aim to find the influence of noisy
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labels on test accuracy.

D2L [13]: modifies the loss function based on the Local

Intrinsic Dimensionality (LID) score which detects points

of noisy data.

Co-teaching [12]: exchanges the more useful samples

between two neural networks. The instances with small-

loss are used to train networks. Therefore neural networks

teach each other.

Bootstrap [7]: predicts image labels based on a weighted

combination of the original label and the model predic-

tion.

Forward [26]: trains model with the labels which are

derived from a transition matrix between noisy and clean

labels.

C. Evaluation

Fig. 7 presents the classification accuracy on the CIFAR-10

dataset for different noise ratios and amounts of training data:

all and halved.

Using all training data CopyNet achieves 89%, 86% and

83% test accuracy for 20%, 30% and 40% of noise ratio,

respectively (see Fig. 7a). The accuracy decreases smoothly

when increasing the noise ratio. However, higher noise ratio

also decrease the convergence speed postponing the time at

which the model reaches the steady state accuracy. According

to the result, 60 epochs are sufficient to reach a stable accuracy

with 20% noise ratio, whereas 170 are needed for 40% noise

ratio.

Training with half the data is more difficult which results

in a loss in accuracy. Fig. 7b shows that the model achieves

accuracy 86%, 82% and 77% accuracy for 20%, 30% and 40%

of noise ratio, respectively. However the convergence speed is

faster. Here CopyNet is able to reach the steady state in 50

and 130 epochs for 20% and 40% of noise ratio, respectively.

This is a 16.7% and 23.5% decrease in convergence time.

Table III compares the accuracy of CopyNet against our

baselines and datasets under 30% noise ratio. Among all

three datasets, MNIST is the easiest due to the low image

complexity. Here our model achieved exceptional test accu-

racy, even with half of training data. For CIFAR-10 CopyNet

achieves 88.30% and 83.15% with 100% and 50% training

data, respectively, which is up to 31.83% better then the com-

peting baselines. Similarly, for CIFAR-100, the most complex

classification problem, our achieved accuracy are 79.92% and

74.35% with 100% and 50% training data, respectively. This

is up to 42.08% better than the rest. Overall we observe that

our model is both more data efficient and better at handling

more complex classification problems.

D. Future work beyond CopyNet

The core idea of CopyNet is to leverage a fraction of the

ground truth of noisy labels and imitate how experts correct

such noise data. However, in the real world scenarios, noisy

labels exhibit dynamic patterns, i.e., the noisy ratios fluctuate.

This presents a new challenge to CopyNet that how to select

representative noisy data in both training and testing phase,

TABLE III: Evaluation of CopyNet on different datasets with

30% noise

Dataset Training Data Our model D2L Co teaching Bootstrap Forward

MNIST
100% 99.38% 86.15% 95.72% 79.47% 95.33%
50% 99.07% 80.87% 95.36% 51.45% 57.21%

CIFAR-10
100% 88.30% 82.45% 80.29% 77.14% 81.68%
50% 83.15% 77.06% 76.76% 51.32% 58.39%

CIFAR-100
100% 79.92% 51.13% 45.68% 44.99% 54.18%
50% 74.35% 42.11% 35.68% 32.27% 48.34%

reflecting truthfully the reality. In other words, it becomes

critical to find the general representation of CopyNet for a

wide range of noise scenarios encountered in real life learning

problems.

To such an end, we will resort to the techniques of transfer

learning, which aims to find the general structure within differ-

ent noise patterns. Specifically, we plan train the CopyNet on a

large data set of one specific noise patterns and then generalize

it to different patterns through retraining weights. We believe

that the transferred learning techniques can facilitate CopyNet

to accommodate to dynamic noise patterns with an advantage

of computational efficiency. .

V. TRUSTED EXECUTION

When considering the robustness properties of ML systems,

one aspect often overseen is the actual execution environment

in which the training and inference occur. While cloud com-

puting becomes the standard platform de-facto, with major IT

providers offering built-in support for popular ML frameworks

(e.g., Azure Machine Learning [27], Google AI Platform [28],

or AWS Machine Learning [29]), in this section, we take the

stance that cloud computing can be fundamentally broken from

a trustworthiness standpoint. In fact, classical cloud computing

environments are ideal playground for both external or internal

attackers trying to ex-filtrate the sensitive models being built.

It is well known how pure-software solutions (e.g., fully or

partially homomorphic encryption schemes) are far from being

practical, and still achieves results in the orders of magnitude

weaker than non-encrypted results. While research prototypes

exist for confidential machine-learning systems [30], [31], the

practical applicability of such schemes remain to be proven

over large datasets such as those described earlier.

The recent introduction of trusted execution environments

(TEE) into mass-market processors, such as Intel Software

Guard Extensions (SGX) [32], [33] or Arm TrustZone [34]

in mobile or IoT devices, opens exciting new opportunities

to build secure yet efficient systems. Infact, TEEs allow near-

to-metal execution speed while offering several additional se-

curity guarantees, including local and remote attestation (e.g.,
the ability to verify the authenticity of the executable code as

well as the execution environment), integrity protection, etc.

Isolated enclaves protect the code and the data from mali-

cious users, operating systems, cloud providers and in general

from any privileged user with administrative or even physical

access to the processor. The trusted computing base (TCB) is

basically reduced to the CPU die and the CPU manufacturer.

Enclaves are limited to a subset of the available memory on

a machine (the enclave page cache), with the most recent
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(a) Training data = 100% (b) Training data = 50%

Fig. 7: Test accuracy of the proposed learning system on CIFAR-10
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Fig. 8: TEE workflow: a trusted SGX enclave shields the

learning system from malicious attackers.

server-grade processors offering up to 256 MB of encrypted

memory [35]. Figure 8 depicts the typical execution workflow

with Intel SGX.

Initial attempts started to emerge to exploit TEEs to ef-

ficiently execute complete machine-learning pipelines into

enclaves [36]. In the remainder, we describe our vision toward

new research challenges that TEEs offer in the development,

deployment, and execution of shielded learning networks

resilient.

Fig. 8 shows how the learning system must be designed to

execute inside an SGX enclave. While this sounds straightfor-

ward, it entails several challenges.

For instance, enclaves cannot execute system calls, dele-

gating their execution to the external, untrusted environment.

This becomes problematic for instance when dealing with a

distributed file-system (e.g., HDFS).

Another challenge is when dealing with the very limited

memory available inside the enclaves. One needs to carefully

design the learning system to move into the trusted environ-

ment only the portions of data used by the current processing

step.

Finally, there is a great diversity among the various TEE

currently available, for instance on mobile or server-grade

machines. One design for a trusted learning system might not

reflect in the best conditions across the different configurations

along several dimensions, e.g., security, computing or energy

efficiency. Since frameworks to transparently adapt a given

design to different TEEs are still in their infancy (i.e., Google

Asylo [37]), we believe that additional considerations are

required toward a truly secure cross-TEE learning framework.

VI. CONCLUSION

Motivated by the significant presence of dirty labels and

their detrimental impacts on machine learning based solu-

tions, we first propose a visionary learning framework that

can robustly filter and cleanse dirty labels for both regular

and deep machine learning models. The core of proposed

framework is to combine artificial and human intelligence

via three sequential strategies: (i) quality model to filter the

data, (ii) active learning strategies from human experts, and

(iii) imitating the process of experts’ label correction. Using

various of image benchmarks with different percentages of

corrupted labels, we show that such a collaborative learning

framework can not only ensure the learning accuracy but also

accelerate the learning efficiency by focusing on subset set

of informative data. Finally, we extend the robust perspective

from obtaining trusted data to leveraging trusted exeecution

for machine learning sytems.

While our initial results present promising directions in

combating the challenging problem of dirty labels, numerous

practical aspects are yet to be considered. First of all, the

robustness issues can arise from both data as well as the

execution environment. The security risk of computing plat-

forms increases by many folds in recent years. It becomes

imperatively important to use the trusted data as well as

trusted execution environment. Secondly, increasingly number

of machine learning models are trained distributively on data

that are continuously sensed and collected. This hence calls

for the distributed learning framework that can decentralizedly

cleanse and filter the data. Moreover, in addition to erroneous

annotation in the process of data collection, other sources of

label corruptions could arise from the poison attacks, meaning
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dirty labels are maliciously injected into the data. Such types

of dirty labels significantly increase the difficulty of training

robust machine learning models and invite novel and practical

solutions.
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