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Abstract

Recommender systems leverage user interactions
to predict their preferences and deliver personal-
ized recommendations. Recent years have seen
a great increase in their widespread usage in on-
line areas, such as social media, e-commerce and
even job applications. However, due to how these
systems collect and learn from data, they are vul-
nerable to various biases, such as popularity bias,
which also raises the question of their fairness for
both users and providers. Researchers in the area
have tried addressing the issue with various debi-
asing and fairness intervention methods, but these
are often studied in separate strands of research,
and the trade-off between fairness and accuracy is
rarely explicitly evaluated when it comes to debias-
ing methods.

In this project, we replicate three state-of-the-art
debiasing methods and analyze their impact on the
fairness and accuracy of recommender models, par-
ticularly the trade-off between the two and how
it can be controlled using hyper-parameters. We
find that while the impact heavily depends on the
method and dataset used, in many cases significant
improvements can be made to fairness with little to
no decrease in accuracy, using the right configura-
tion of hyper-parameters.

1 Introduction

In recent years, recommender systems have become an in-
tegral part of most people’s everyday lives - video/movie
recommendations, social media posts, e-shop listings, even
dating apps - whenever we interact with an interface which
serves us recommendations, chances are it uses some kind
of a recommender system. They leverage users’ past inter-
actions to predict their preferences and deliver personalized
recommendations, in an attempt to improve the user experi-
ence. However, due to how these systems collect and learn
from data, they often suffer from various kinds of biases,
such as popularity bias, which is one of the most pervasive
ones. It causes few items to get over-recommended, while
most other items suffer from under-exposure. Furthermore,
due to the feedback loop between the system’s recommenda-
tions and user interactions, biases can reinforce and amplify
themselves if left unchecked. The existence of these biases
also raises the question of fairness - whether different user or
item groups experience recommendations of similar quality
and whether all items are exposed equitably.

Researchers in the area have tried addressing these is-
sues with various debiasing methods and fairness intervention
techniques. Chen et al. (2020) offer a fairly extensive survey
of biases and debiasing techniques in the field in [3], while
Zhao et al. (2023) provide a similar survey for fairness in
[15]. However, debiasing methods are often studied in terms
of improving accuracy and performance, while fairness is of-
ten studied in a separate strand of research. This leaves the
effects of debiasing methods on the fairness of recommender

systems somewhat underexplored, which is what this project
aims to address.

In this project, we reproduce three state-of-the-art debias-
ing methods, and then look at how we can define and mea-
sure their accuracy, debiasing effectiveness, and most impor-
tantly their effect on fairness, using various metrics, so that
we can answer the research question: “Do debiasing meth-
ods contribute to mitigating the fairness issue, or do they
primarily improve accuracy without addressing fairness
directly?”” We will further investigate it in two sub-questions:

* RQ1: How do debiasing methods affect the trade-off be-
tween fairness and accuracy in recommender systems?

* RQ2: Can varying the hyper-parameters of debiasing
methods be used to control their effect on the perfor-
mance of recommender systems and the trade-off be-
tween fairness and accuracy in recommender systems?

The paper will be structured in the following way. Sec-
tion 2 offers a more detailed look into the background of the
field of recommender systems, their biases, and commonly
used debiasing methods. Section 3 details the methodology
used for the experiments, including the chosen datasets, al-
gorithms, metrics, and the experiment setup. Section 4 then
reports on the results of the experiments and analyzes them
to answer the two research questions. Section 5 reflects on
the ethical aspects of the research and its reproducibility. Fi-
nally, Section 7 draws conclusions based on all the previous
sections and proposes recommendations for further research
in the area.

2 Background

The field of recommender systems and algorithms has be-
come quite broad in the recent years, both in terms of the
domains where they are employed, as well as the specific un-
derlying methods used to perform recommendation. The idea
of learning from users’ past interactions to predict what they
might interact with next sounds relatively simple and simi-
lar to other branches of machine learning, but the specifics
can vary quite a bit based on the problem and the data avail-
able. For example, there might be data available for users
and items, such as their gender, age or genre, or there might
only be records of their interactions, with users and items be-
ing simply represented by their IDs. Similarly for interac-
tions, they might be explicit, such as a rating from 1 to 5, or
they might be implicit, such as clicking on a recommended
item. These differences give rise to a variety of algorithms
and models used to perform the recommendation task. As for
biases, there have also been multiple types of them identified,
but the terminology used in the field is not always consistent
[3]. This can result in confusion as to what exactly is being
addressed.

This section outlines the commonly used types of recom-
mender systems, along with some specific models, and also
defines the different types of biases we identified and some
debiasing methods used to address them.

2.1 Recommender models

Based on the data that is used and how it is used, we can group
recommender models into a few distinct general categories.



e Collaborative filtering-based models - These models
rely purely on the historical interaction data, such as
clicks, purchases, or ratings, to identify patterns of be-
havior shared among users or items. However, even
with this restriction, there are still a few different ap-
proaches. Arguably some of the most simple and tradi-
tional, but often still effective, are memory-based neigh-
borhood models, usually referred to as ItemKNN or
UserKNN. They calculate the similarity of users or items
based on their interactions to find the k neareast neigh-
bors and then recommend either items interacted with
by similar users, or items similar to the ones they in-
teracted with [1]. A somewhat more nuanced approach
is based on matrix factorization. These models calcu-
late lower-dimensional embeddings of latent features for
users and items based on their interactions and then gen-
erate recommendations by matching these embeddings
[5]. Regardless of the specific implementation, collab-
orative filtering-based models perform well when inter-
action data is abundant but struggle with the cold-start
problem - when new users or items have limited or no
interaction data.

* Content-based models - These systems make recom-
mendations based on additional features of the items
and users. For example, a user who has previously in-
teracted with a science-fiction book might be recom-
mended other items with similar content attributes, such
as genre, keywords, or metadata. Unlike collaborative
filtering, content-based models do not rely solely on the
preferences of other users, making them more resilient
to cold-start issues for users. However, they require ad-
ditional data about users and items, and they may also
suffer from overspecialization, repeatedly recommend-
ing similar items without exploring diverse options.

¢ Knowledge aware (hybrid) models - These combine
multiple sources of data, such as domain knowledge,
user-item interactions, and side information (e.g., de-
mographics or knowledge graphs), to enhance recom-
mendations [11]. Hybrid models are designed to over-
come the limitations of pure collaborative or content-
based methods. For instance, a system may incorporate
both user preference patterns and item content features.
Knowledge-aware models are particularly useful in do-
mains with rich semantic relationships or in areas where
explainability is important. However, they often require
extra domain-specific information, such as a knowledge
graph, and the quality of the recommendations can vary
based on this side information.

2.2 Biases

We can also define several types of biases, based on how and
why they arise and propagate themselves. This list is not ex-
haustive, but these are some of the most pervasive biases that
are also most often addressed by debiasing methods.

 Popularity bias - It is natural in most domains that some
items are more popular than others, and that is not nec-
essarily problematic. However, this usually results in
popular items having more interaction data, which in

many recommender systems makes these items over-
recommended even more than their popularity warrants.
This can lead to even more data for these items, amplify-
ing the popularity bias over time through this feedback
loop, also known as the Matthew effect [8]. This bias can
reduce the diversity of recommendations and limit expo-
sure to niche or long-tail items, which may be equally
relevant or of higher interest to some users.

* Selection bias - This bias arises from the users’ choice
when giving explicit interaction feedback, such as rat-
ings. In other words, users choose which items they
want to rate, instead of rating all items they interacted
with. This results in the data being Missing Not At Ran-
dom (MNAR), and not being fully representative of the
users’ real preferences.

 Position bias - Users are more likely to interact with
items that are displayed in more prominent positions, for
example, at the top of a list, regardless of their actual
relevance. This creates a confounding factor where in-
teraction data reflects not only user preferences but also
the item’s position in the interface, making it difficult to
learn true relevance.

* Exposure bias - Somewhat similar to selection bias, ex-
posure bias arises as users are often only exposed to
a small subset of all the items and most recommender
models do not distinguish between missing interactions
and negative interactions. This means that if a user was
exposed to an item but did not interact with it, it is usu-
ally treated the same as if the user did not see the item at
all.

* Conformity bias - Users often tend to behave similarly
to others in a group based, for example, based on current
social trends, and these interactions may not reflect the
user’s true preferences. In a way, this bias can be con-
sidered the user-side version of the popularity bias, as it
contributes to propagating it as well.

2.3 Debiasing methods

The most commonly addressed biases when it comes to debi-
asing methods seem to be popularity bias and selection bias,
possibly because they are the most easily observable. Since
these biases can distort both learning and evaluation, debias-
ing can be applied to increase accuracy in certain scenarios.

One of the earliest proposed methods is based on inverse
propensity weighting/scoring (IPS) [7]. The propensity of
an interaction is essentially its probability of being observed,
which, in a simple case, can be estimated by the item’s pop-
ularity. Using the inverse of this propensity, the impact of
each interaction during the training process can be weighed,
with unlikely interactions having increased impact and likely
interactions (i.e. interactions with popular items) having de-
creased impact. However, estimating propensity scores is
problematic and not always accurate [3]. Depending on the
specific implementation and the weighing process, propen-
sity scoring can be used to address both selection bias and
popularity bias, but it can also have a detrimental effect to the
accuracy of the model.



More recent debiasing methods seem to be increasingly us-
ing causal and counterfactual reasoning in order to address
popularity bias directly. Zhang et al. (2021) observe that item
popularity acts as a confounder between exposure and user
feedback: an item’s high popularity both makes it more likely
to be shown and more likely to be clicked, regardless of user
interest [12]. Their method, called Popularity-bias Decon-
founding and Adjusting (PDA), first deconfounds popularity
during training and then adjusts recommendations based on
popularity at inference. They claim that “’not all biases in the
data are bad — some items demonstrate higher popularity be-
cause of their better intrinsic quality” [12]. The idea behind
the method is that the model learns users’ genuine interests
without overfitting popular items, and then still promotes in-
herently good items when generating recommendations.

Wei et al. (2021) propose a model-agnostic counterfactual
reasoning (MACR) approach to eliminate popularity bias [8].
During training, MACR uses multi-task learning to simulta-
neously train a main recommender model, based on user-item
interactions (such as MF), and two supporting modules based
solely on users and items, respectively. It then calculates
a counterfactual score by subtracting the popularity-driven
supporting modules from the main one, addressing both the
popularity and conformity biases. This approach is model-
agnostic — it can be applied on top of any base recommender
— and has been shown to boost accuracy on long-tail items
while maintaining overall performance [8].

Other approaches have also been proposed, but they still
often use similar ideas of propensity and causal or counter-
factual reasoning.

3 Methodology

In order to evaluate the effects of debiasing methods on the
fairness and accuracy of recommender systems, we repro-
duce several state-of-the-art methods from papers described
in Section 2.3 and analyze them in terms of various perfor-
mance and fairness metrics. This section details the method-
ology used for the experiments, including the chosen datasets,
algorithms, metrics, and the experiment setup.

3.1 Datasets

For the training of the models, we chose two real-world
datasets from different domains.

* MovieLens 1M (ML) [4] - Contains around 1 million in-
teractions from the MovieLens platform, between users
and movies recommended to them, in the form of rat-
ings. The recency of the dataset may be questionable, as
it was released in 2003, however, it is a stable dataset
commonly used for benchmarking recommender sys-
tems.

e Book-Crossing (BX) [16] - A similar-sized dataset in
terms of interactions from the Book-Crossing commu-
nity, which contains data about books and users’ ratings
for them. However, the main difference from the Movie-
Lens dataset is the sparsity, as this dataset contains many
more users and items, resulting in a sparsity of around
99.997%, increasing the diversity and generalization of

our experiments, as real world data is often even more
sparse.

Tables 1 and 2 show the specifics of the datasets.

Property MovieLens 1M
Users 6,040
Items 3,706
User-item interactions 1,000,209
Sparsity 95.534%

User attributes
Item attributes
Interaction attributes

ID, gender, age, occupation
ID, title, release_year, genres
userID, movielD, rating, timestamp

Table 1: MovieLens 1M Dataset Statistics and Attributes

Property Book-Crossing
Users 105,283
Items 340,556
User-item interactions 1,149,780
Sparsity 99.997%

User attributes
Item attributes
Interaction attributes

ID, location, age
ID, title, author, pub_year, publisher
userID, itemID, rating

Table 2: Book-Crossing Dataset Statistics and Attributes

3.2 Data pre-processing

In order to increase consistency and reduce training times, we
employ a simple filtering strategy for the data - we only retain
users and items which have at least 5 interactions, also known
as 5-core filtering. We then split the interactions into training
(80%), validation (10%) and test (10%) sets, and with this
5-core filtering we can ensure that each user has some inter-
actions in each set. While this filtering does not have much
effect on the MovieLens 1M dataset due to its relatively low
sparsity and already filtered users, it does reduce the Book-
Crossing dataset roughly by half in terms of the interactions.

Additionally, we want to investigate user-side fairness for
advantaged and disadvantaged groups of users based on a
given sensitive attribute, which will be the gender attribute
in the ML dataset and the age attribute in BX. Therefore, we
also filter the BX dataset to only retain users with ages 1 to
100, as there are some users with null age and some outliers
with age > 200. We then split the users of Book-Crossing into
2 age groups - above (minority) and below 50 years old. Table
3 shows how the datasets change after filtering, while Figrue
1 shows the user demographics for the datasets in terms of the
mentioned groups.

Property MovieLens 1M | Book-Crossing
Users 6,040 10,288
Items 3,416 28,171
User-item interactions 999,611 399,240
Sparsity 95.157% 99.862%

Table 3: Dataset Statistics after Filtering
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Figure 1: User demographics for the MovieLens and Book-Crossing
datasets

3.3 Algorithms
We chose the following specific algorithms for evaluation:

* Baselines - these models do not have debiasing methods
applied to them

— Most Popular - A simple model that recommends
the most popular items (items most interacted
with), regardless of the user

— Random - A simple model that recommends ran-
dom items

— ItemKNN/UserKNN - A traditional k-nearest-
neighbors based approach. It calculates the simi-
larity between users/items based on their interac-
tions and recommends users either items interacted
with by similar users, or items similar to the ones
they interacted with. The specific implementation
is based on [1]

— MF (Matrix factorization) - A more nuanced ap-
proach that calculates lower-dimensional embed-
dings of latent features for users and items based on
their interactions and then generates recommenda-
tions by matching these embeddings. The specific
implementation is based on [5]

* Debiasing methods - applied on the MF model.

— IPS (Inverse Propensity Scoring) - A method that
weighs the effect of interactions on the training pro-
cess based on how likely they are to occur, with
unlikely interactions receiving a higher weight and
therefore affecting the model more. The specific
implementation is based on [7]

— PDA (Popularity-bias Decounfounding and Adjust-
ing) - A method that aims to decouple the effect
of item popularity during training and then inject it
back into the recommendations, in order to elimi-
nate the amplification of the bias, while still lever-
aging the popularity for better recommendations.
The implementation is based on [12]

- MACR (Model-Agnostic Counterfactual Reason-
ing) - A method that simultaneously trains a regular
MF model, and two supporting modules only based
on the items and users respectively, and then gener-
ates recommendations by using counterfactual in-

ference to essentially subtract the supporting mod-
ules from the main one. The implementation is
based on [8]

3.4 Metrics

The results will be evaluated in terms of the following met-
rics for accuracy and fairness. Here, @K refers to the metric
being evaluated on a list of the top K recommendations gen-
erated by the model, for example, in most of our experiments
K=10. Most of the metrics are standard, as defined and im-
plemented in RecBole [14] (see Section 3.5).

Accuracy
¢ Recall @K - fraction of relevant items recommended out
of all relevant items

¢ Precision@K - fraction of relevant items recommended
out of all recommended items

* nDCG@K (normalized discounted cumulative gain) -
measure of ranking quality that accounts for the posi-
tion of the hit by assigning higher scores to hits at top
ranks

¢ Hit@K - if there is at least one relevant item in the list,
it is a hit
Fairness
¢ Jtem-side fairness:

— Coverage@K - coverage of recommended items
over all items

— TailPercentage @K - percentage of long-tail items
(bottom 20% in terms of total interactions) in rec-
ommended items

— PopularPercentage @K - percentage of the most
popular items (top 10%) in recommended items

— Ginilndex@K - measures the diversity of recom-
mended items (1 = same items recommended to all
users, 0 = all items recommended equally)

e User-side fairness:

— NonParity Unfairness - the absolute difference be-
tween the overall average ratings of users of differ-
ent groups as described in [10]

- nDCG_Maj@K - the nDCG metric specifically
for the majority group (male for the ML dataset,
age < 50 for BX)

- nDCG_Min@K - the nDCG metric specifically for
the minority group (female for the ML dataset,
age > 50 for BX)

— nDCG_diff @K - disparity of the nDCG metrics be-

tween the 2 groups, computed as
(1 - nDCG_Min / nDCG _Maj)

3.5 Experimental setup

All of the experiments were conducted in Python through the
RecBole framework [14] [9] [13], which is a framework for
recommender systems based on PyTorch. Additionally the
Weights & Biases [2] framework was used to log and visual-
ize results, and to tune hyperparameters of the models. The



Method | MovieLens 1M

| Book-Crossing

\ Recall@10  Precision@10 nDCG@10 Hit@10 \ Recall@10  Precision@10 nDCG@10 Hit@10
ItemKNN 0.1612 0.1992 0.2549 0.7366 0.0611 0.0169 0.0486 0.1307
UserKNN 0.1807 0.2032 0.2682 0.7707 0.0664 0.0167 0.0493 0.1362
Random 0.0032 0.0056 0.0061 0.0520 0.0004 0.0002 0.0003 0.0017
Pop 0.0691 0.1020 0.1218 0.4949 0.0192 0.0058 0.0161 0.0519
MF 0.1579 0.1996 0.2520 0.7354 0.0328 0.0091 0.0230 0.0778
ME-IPS 0.1233 0.1596 0.1986 0.6591 0.0255 0.0076 0.0190 0.0663
ME-PDA 0.1678 0.2074 0.2673 0.7517 0.0264 0.0085 0.0200 0.0706
MFE-MACR 0.1560 0.1946 0.2466 0.7286 0.0347 0.0081 0.0226 0.0736

Table 4: Accuracy metrics for baseline and debiasing recommender methods on MovieLens 1M and Book-Crossing datasets.

Method | MovieLens 1M | Book-Crossing
‘ Gini@l0 ItemCov@10 Tail%@10 Pop% @10 ‘ Gini@10 ItemCov@10 Tail%@10 Pop% @10

ItemKNN 0.9097 0.3878 0.0002 0.8315 0.7023 0.7096 0.2551 0.3072
UserKNN 0.9548 0.2075 0.0000 0.9536 0.9729 0.2024 0.0040 0.9026
Random 0.1386 0.9997 0.2095 0.0831 0.2894 0.9743 0.2016 0.0989
Pop 0.9939 0.0293 0.0000 1.0000 0.9996 0.0012 0.0000 1.0000
MF 0.9051 0.4287 0.0001 0.8124 0.9900 0.1111 0.0004 0.9434
ME-IPS 0.8794 0.6043 0.0006 0.7733 0.9938 0.1116 0.0026 0.9271
MF-PDA 0.9279 0.2426 0.0000 0.8945 0.9982 0.0137 0.0000 0.9589
MEF-MACR 0.8821 0.5505 0.0059 0.7768 0.9661 0.2502 0.0105 0.8820

Table 5: Item-side fairness metrics for baseline and debiasing recommender methods on MovieLens 1M and Book-Crossing datasets.

Method | MovieLens 1M | Book-Crossing
| NonParity nDCG_Maj nDCGMin nDCG.Diff | NonParity nDCG_Maj nDCGMin nDCG_Diff

ItemKNN 0.0008 0.2712 0.2136 0.2124 0.0004 0.0509 0.0356 0.3006
UserKNN 0.0055 0.2854 0.2245 0.2134 0.0033 0.0506 0.0421 0.1680
Random 0.0008 0.0066 0.0050 0.2424 0.0046 0.0002 0.0009 -3.500
Pop 0.0077 0.1348 0.0891 0.3390 0.0073 0.0165 0.0140 0.1515
MF 0.0032 0.2668 0.2144 0.1964 0.0380 0.0240 0.0178 0.2583
ME-IPS 0.0045 0.2110 0.1673 0.2071 0.0377 0.0192 0.0182 0.0521
MF-PDA 0.0053 0.2826 0.2286 0.1911 0.0079 0.0207 0.0160 0.2270
MF-MACR 0.0008 0.2620 0.2075 0.2080 0.0019 0.0228 0.0211 0.0746

Table 6: User-side fairness metrics for baseline and debiasing recommender methods on MovieLens 1M and Book-Crossing datasets.

random seed used for all random generation was 42, to en-
sure reproducibility of results. All the configuration settings
are provided in the config directory of the repository provided
in Appendix A.

4 Results

This section contains the full results of the experiments in
terms of the metrics described in Section 3.4. The results are
evaluated on the test set part of the datasets, after the training
has finished using the training and validation sets, described
in Section 3.2

This section is split into two parts based on the two re-
search sub-questions.

4.1 RQ1: Accuracy and Fairness Trade-off

Tables 4, 5 and 6 show the full results on the MovieLens 1M
and Book-Crossing datasets for the accuracy, item-side fair-
ness and user-side fairness metrics respectively.

Discussion

Looking at the results in terms of the accuracy in Table 4,
there are various notable patterns. The traditional ItemKNN
and UserKNN models seem to be performing the best in
terms of all the accuracy metrics. However, these are
memory-based approaches which are not very efficient, es-
pecially for larger datasets. The random model is, as ex-
pected, the worst performing method, but it can still give us
some insight as a baseline, so that it is clear that our models
are at least working. We can also notice the relative differ-
ence in accuracy between the two datasets across all the mod-
els, due to the fact that the Book-Crossing dataset is much



sparser, making the recommendation task much more diffi-
cult. The Pop model, which always recommends the most
popular items to all users, is performing considerably better
than the random model, though still much worse than all the
more complicated methods, showing that the recommenda-
tion task is not as simple as just using the popularity. The
matrix factorization (MF) model is achieving more compara-
ble results to the neighborhood-based models, while learning
lower-dimensional embeddings for users and items, improv-
ing the efficiency of recommendations even for large datasets.

As for the debiasing methods, inverse propensity scoring
(IPS) seems to be underperforming, especially on the Movie-
Lens dataset, which might indicate problems with estimat-
ing the propensity solely based on item popularity. The
popularity-bias deconfounding and adjusting (PDA) model,
on the other hand, shows a small but still statistically signif-
icant improvement over the basic MF model on the Movie-
Lens dataset, showing that debiasing methods can indeed im-
prove accuracy in some scenarios. The counterfactual rea-
soning (MACR) model performs comparably to the standard
MF model in terms of accuracy on the ML dataset and even
better on the BX dataset, which is significant as it also offers
considerable improvements in terms of fairness.

That leads us to the item-side fairness metrics in Table 5.
Here, the Random model can serve as a baseline for a fully
fair model. In order to analyze the trade-off between fair-
ness and accuracy for the debiasing methods, we can choose
nDCG as the main accuracy metric and item coverage (Item-
Cov) as the main item-side fairness metric, since the others
seem to follow similar patterns. On the MovieLens dataset,
PDA offers a 6% increase in nDCG at the cost of a signifi-
cant 43% decrease in ItemCov, likely due to the fact that it
leverages item popularity during recommendation. IPS, on
the other hand, decreases nDCG by 21%, while increasing
ItemCov by 41%, since less popular items have greater im-
pact on the training. Lastly, MACR provides a nice middle
ground in the trade-off with only a 2% decrease in nDCG, but
a 28% increase in ItemCov. Furthermore, the results on the
Book-Crossing dataset are somewhat similar but also notably
different in some cases. Here, PDA decreases both nDCG and
ItemCov, showing that it is not necessarily always a trade-off
and in certain scenarios debiasing methods can be detrimental
for both fairness and accuracy. However, MACR again gives
a similar 2% decrease in accuracy, but a much more signifi-
cant 225% increase in ItemCov. As for the other metrics, the
TailPercentage metric is somewhat worrying, since the very
low results across most models in both datasets mean that
the bottom 20% of items in terms of the interaction amount
receive barely any exposure, even though they are likely rel-
evant at least to some users.

The user-side fairness of the debiasing methods is also
worth acknowledging. In both datasets, it appears that the
majority group of users (male for MovieLens, and age < 50
for Book-Crossing) receive significantly better recommenda-
tions than the minority group, regardless of the model used.
The fact that this is also true for the Pop model, which sim-
ply recommends the most popular items to all users, regard-
less of their gender or age, might seem counterintuitive at
first, but it highlights a possible caveat of the task. The prob-

lem is that the majority group, for example male users in the
ML dataset, seem to enjoy similar movies, which are to some
extent different than those preferred by female users. This
causes the male-preferred movies to become more popular in
general and increases the recommendation quality for male
users, while reducing the quality for female users. Addition-
ally, for the MovieLens dataset, it seems that none of the de-
biasing methods have much effect on the nDCG_Diff. How-
ever, in the Book-Crossing dataset it is clear that both the IPS
and MACR methods significantly reduce nDCG_Diff by in-
creasing the recommendation quality for the minority groups
(nDCG_Min).

RQ1 Answer: Overall, it is clear that debiasing methods
can have a significant impact on the trade-off between fair-
ness and accuracy of recommender models, but the specifics
heavily depend on the method as well as the dataset used.
Both accuracy and fairness can be increased, usually at the
cost of the other, although in some cases both can also be
increased or decreased together. Out of the three debiasing
methods evaluated, MACR performed the best in terms of the
trade-off, with minimal impact to accuracy and significant in-
creases in both item-side and user-side fairness.

4.2 RQ2: Debiasing method hyper-parameters

To analyze the effects of varying the hyper-parameters of de-
biasing methods on the fairness, accuracy and their trade-off,
we need to look at each method separately as they each have
different parameters controlling to what extent the debiasing
is applied.

IPS

For IPS we can introduce a parameter ’propensity_weight”
(between O and 1) that scales the extent to which the ef-
fect of a particular user-item interaction on the training of
the model is based on the item’s popularity. Here propen-
sity_weight = 0 means that the propensity is not considered
at all, resulting in the same model as the standard MF, while
propensity_weight = 1 means that an item with 1/10 of the
popularity of the most popular item will have a 10 times larger
effect than the most popular item.

Figure 2 shows the effect of propensity_weight on the item-
side fairness (ItemCov) and accuracy (nDCG) of the MF
model on the MovieLens dataset. We can see that increasing
the weight increases item coverage but decreases the nDCG,
as expected based on the previous results. The effect is most
noticable near propensity_weight = 1, as for example, propen-
sity_weight = 0.5 has almost no effect on the model. Ad-
ditionally, while not shown in the figure, propensity _weight
had no noticable effect on user-side fairness in this case, al-
though as shown in Section 4.1 this would not be the case for
the Book-Crossing dataset.

PDA

Part of the PDA debiasing method applies L2 regularization
on the user and item embeddings, which has the parameter
regularization_weight, which we can control. Figure 3 shows
the effect of regularization_weight on the fairness and accu-
racy of the MF model on the MovieLens dataset. It seems that
in our case, the default value of 0.001 has no significant effect
on the model, while increasing the value is only detrimental
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Figure 2: The effect of propensity_weight on the fairness and accu-
racy of the model
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Figure 3: The effect of regularization_weight on the fairness and
accuracy of the model

to both fairness and accuracy. However, this regularization
might be important for larger models or sparser datasets.

MACR

The MACR model has a few controllable hyper-parameters,
although the most important one for controlling the trade-off
between fairness and accuracy is the C parameter described
in [8]. Tt controls the degree to which the counterfactual in-
ference based on the user and item modules is applied to the
model during recommendation, with higher values resulting
in more score being subtracted by the submodules.

Figure 4 shows the effect of C on the fairness and accu-
racy of the MF model on the MovieLens dataset. The effect
is similar to propensity_weight of the IPS method, but with
a far more significant impact on item coverage. In this case,
however, the user-side fairness is also slightly negatively im-
pacted, contributing to the fairness and accuracy trade-off.

RQ2 Answer: The hyper-parameters of debiasing meth-
ods can be used to tune the trade-off between fairness and ac-
curacy based on the needs of the developer, with some meth-
ods being more flexible than others. Out of the three ana-
lyzed debiasing methods, MACR shows the highest flexibility
in terms of controlling the trade-off and increasing item-side
fairness.
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Figure 4: The effect of C on the fairness and accuracy of the model

5 Responsible Research

Since this is a project about fairness, ethics are at the core
of the project topic itself; however, they should also be at
the core of the research process. In general, we try to follow
the TU Delft Code of Conduct [6] while performing research.
All the sources and references used for the project are freely
accessible and cited appropriately, in the IEEE format. The
datasets used in the experiments (i.e. MovieLens 1M [4] and
Book-Crossing [16]) are cited, publicly available and, accord-
ing to their sources, obtained ethically as well. The code used
to run the experiments is based on the open-source RecBole
framework [14] [9] [13], however in most cases some adjust-
ments and additions had to be made, so the code along with
all the config files will be available through a GitHub repos-
itory in Appendix A, to enable reproducibility. Additionally,
all configuration needed to reproduce the results is described
in detail in Section 3 and any randomization (i.e. initializa-
tion or data splitting) was done using the set random seed 42,
as set in the config files. It should therefore be theoretically
possible to fully reproduce the exact same results without any
major code modification.

6 Conclusions and Future Work

The purpose of this project was to analyze the effects of debi-
asing methods on the fairness and accuracy of recommender
systems, particularly the trade-off between the two and how
it can be controlled using hyper-parameters. To do so, three
state-of-the-art debiasing methods were reproduced and eval-
uated: inverse propensity scoring (IPS), popularity-bias de-
confounding and adjusting (PDA) and model-agnostic coun-
terfactual reasoning (MACR), along with five baselines for
comparison, on two different datasets: MovieLens 1M (ML)
and Book-Crossing (BX).

Overall, we found that debiasing methods can have a sig-
nificant impact on the trade-off between fairness and accu-
racy of recommender models, although the specifics heavily
depend on the used method as well as dateset. As discussed
in Section 4.1, both accuracy and fairness can be increased,
though usually at the cost of the other, in certain cases, how-
ever, both can also be increased or decreased together. Of
the three debiasing methods evaluated, MACR performed the
best in terms of the trade-off, with minimal impact to accu-



racy (around 2% decrease) and significant increases in both
item-side and user-side fairness (up to 225% increase in item
coverage).

Additionally, in Section 4.2 we confirmed that hyper-
parameters of debiasing methods can be used to tune the
trade-off between fairness and accuracy based on the needs
of the developer, with some methods being more flexible than
others. Of the three methods, MACR once again showed the
most flexibility in terms of controlling the trade-off and in-
creasing item-side fairness, making it arguably the ideal de-
biasing method for our datasets.

However, this project only evaluated three debiasing meth-
ods, all applied to the same matrix factorization model, and
only on two datasets, which is a somewhat limited scope. Bal-
ancing the trade-off between fairness and accuracy is still a
rather underexplored area, and future work could focus on
analyzing other debiasing methods, using different datasets,
and even other recommender models, such as content-based
or knowledge-aware models. When doing so, we recom-
mend using similar metrics for fairness and accuracy, as they
showed a good overview of the performance and trade-offs of
the models.

A Appendix - Code

All the code and configuration settings used for the
project can be found in the GitHub repository at
https://github.com/fcajagi/TUD-CSE3000-RecBole

It is a modified version of the RecBole framework.
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