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SUMMARY

SUMMARY
In this study, research on productivity and land cover monitoring is presented, with a
focus on sugarcane, based on space-based remote sensing observations that were col-
lected by Synthetic Aperture Radar (SAR) and optical sensors. The study aims to provide
new insights into techniques and methodologies that allow for cost-efficient monitoring
of sugarcane productivity and the wide-scale expansion of sugarcane over long time se-
ries. It is part of a wider framework of research projects, sharing the overarching goal to
contribute to a biobased society, where the resources for the production of chemicals,
materials and energy are based on biomass, produced in a competitive and sustainable
manner. São Paulo state, Brazil, was selected as study area, primarily because it is one
of the most prominent regions worldwide that hosts sugarcane, which is one of the most
prominent crops for bio-energy production.

The study includes the following research.
First of all, results are presented that are based on a wide range of biophysical mea-

surements that were collected during a year-long ground measurement campaign in sev-
eral sugarcane fields. These results are accompanied by detailed quality assessments, il-
lustrating their reliability when collecting such measurements through such campaigns.
In addition, the methodology for setting up and carrying out the ground campaign is ex-
plained, which was designed to minimize biomass alterations in the field in light of the
use of the measurements for validation of space-based SAR and optical remote sensing
signals.

Secondly, remote sensing signals from various satellites are compared to the ground
reference measurements in order to develop space-based sugarcane productivity mon-
itoring techniques. It includes an analysis on the sensitivity of C-band and L-band SAR
and optical observations to sugarcane biomass growth, to precipitation events and to
SAR sensor configurations. In addition, the spatial features in satellite imagery from the
various sensors are analyzed for their temporal consistencies in order to deduce time
windows during which the satellite observations are most effective for productivity mon-
itoring. It was found that especially saturation, precipitation and sensor configurations
dictate the effectiveness, particularly for SAR. Furthermore, the highest spatial resolu-
tion optical imagery proved to perform best for mapping intra-field productivity differ-
ences that were measured in the field. In addition to this study, two related but smaller
studies are presented. The first focuses on a specific remote sensing technique to iden-
tify patterns in a sugarcane field that occur persistently in time. The second demon-
strates how plant gaps in a densely ground-measured sugarcane field affect signals from
various SAR and how this effect is influenced by spatial averaging windows, precipitation
events, sugarcane height and SAR sensor type.

Thirdly, the performance of a specific Bayesian land cover monitoring model that

vii
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combines SAR and optical observations is demonstrated. The model is an adaptation of
the Hidden Markov Model, which allows for the temporally-consistent tracking of vege-
tation states regardless of gaps in satellite observations. Attention is paid to the effect of
precipitation during SAR observations on the model’s performance and to certain veg-
etation conditions that cause classification confusion between land cover types. The
research finally provides detailed insights into when SAR-only observations outperform
optical-only observations and vice versa, in addition to the advantages when combining
them.

Finally, a technique is introduced that exploits SAR signal fluctuations caused by
varying (ground and plant) surface wetness conditions in order to improve the charac-
terization of vegetation. Three scenarios that define the selection of SAR observations
were investigated for their effect on the classification performance: (i) no distinction be-
tween wetness conditions, (ii) distinction between wetness conditions at the time of the
SAR acquisitions and (iii) distinction between wetness conditions between consecutive
SAR acquisitions. Particularly when the wetness conditions differ under the last sce-
nario, it was found that performances improve. When combining this information with
a-priori knowledge on soil types, the accuracy of the classification further increases. For
this, maps are used that are a result from applying the previously introduced Hidden
Markov Model over the entire state of São Paulo.

The datasets that are used in these studies were mainly acquired by the SAR satellites
Sentinel-1, Radarsat-2 and ALOS-2, and by the optical satellites Landsat-8 and Worldview-
2. For the studies that are related to land cover monitoring and vegetation characteriza-
tion, high performance computing was required due to the vast amount of observation
data and the complexity of the applied techniques. These facilities were mainly provided
by the Dutch national supercomputer of SURF and by Google Earth Engine.

SAMENVATTING
Deze studie bevat onderzoeken die zijn verricht naar het monitoren van productiviteit
en landbedekking, met name in relatie tot suikerriet, op basis van aardobservatie afkom-
stig uit de ruimte van Synthetic Aperture Radar (SAR) en optische sensoren. Het doel van
het onderzoek is om nieuwe inzichten in technieken en methodologieën te verkrijgen
die bijdragen aan het kosten-efficiënt monitoren van de productiviteit van suikerriet en
van grootschalige toename van suikerrietplantages over lange tijdreeksen. Het onder-
zoek is uitgevoerd in een breder verband van onderzoeken die gezamenlijk streven naar
het bijdragen aan een biobased society, een samenleving waar de grondstoffen voor de
productie van chemicaliën, materialen en energie afkomstig zijn van biomassa die ge-
wonnen wordt op een concurrerende en duurzame manier. De Braziliaanse staat São
Paulo is gekozen als onderzoeksgebied, voornamelijk omdat dit één van de meest pro-
minente gebieden op aarde is waar suikerriet wordt verbouwd en omdat suikerriet we-
reldwijd één van de belangrijkste gewassen is voor de productie van bio-energie.

De studie bevat de volgende onderzoeken.
Allereerst worden de resultaten beschreven die komen uit metingen die zijn verwor-

ven gedurende een jaarlange veldcampagne in verscheidene suikerrietvelden. Deze re-
sultaten gaan gepaard met gedetailleerde kwaliteitswaarderingen die een beeld geven
van de betrouwbaarheid van de metingen wanneer deze worden verworven middels
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soortgelijke veldcampagnes. Tevens wordt de methodologie voor het opzetten en uit-
voeren van de veldcampagne uitgelegd. Deze is zodanig ontworpen dat veranderingen
in de velden zo veel mogelijk worden beperkt, aangezien deze metingen voornamelijk
dienen ter referentie voor de metingen afkomstig uit SAR- en optische satellietsensoren.

In het tweede onderzoek worden de aardobservaties vergeleken met de grondvalida-
tiemetingen ten behoeve van het ontwikkelen van technieken voor het monitoren van
de productiviteit van suikerriet vanuit de ruimte. Het bevat een analyse van de gevoelig-
heid van C-band en L-band SAR- en optische observaties voor de biomassa-aangroei van
suikerriet, neerslag en configuratie van de SAR-sensoren. Daarnaast worden de spatiële
patronen in de satellietbeelden van de verschillende sensoren geanalyseerd op consis-
tentie in tijd, teneinde tijdscriteria af te leiden die aangeven wanneer satellietmetingen
het meest effectief kunnen worden ingezet voor het monitoren van de productie. Hieruit
blijkt dat voornamelijk de verzadiging van de signalen, neerslag en de sensorconfigura-
tie invloed hebben op de effectiviteit, in het bijzonder voor SAR, en dat optische beelden
met de hoogste spatiële resolutie het meest geschikt zijn voor het in kaart brengen van
de gemeten productiviteitsverschillen in de suikerrietvelden. Naast dit onderzoek wor-
den ook twee kleinere gerelateerde onderzoeken behandeld. Het eerste spitst zich toe
op het gebruik van satellietobservatie om spatiële patronen in een suikerrietveld te ont-
dekken die continue in tijd aanwezig zijn. Het tweede toont aan welk effect de uitsparin-
gen in een intensief gemeten suikerrietveld hebben op signalen uit SAR-sensoren en hoe
dit effect vervolgens wordt beïnvloed door morfologische verrichtingen op de beelden,
neerslag, hoogte van suikerriet en het type SAR-sensor.

Het derde hoofdonderzoek beschrijft de prestatie van een specifiek Bayesiaans mo-
del voor het monitoren van landbedekking dat SAR- en optische satellietmetingen com-
bineert. Het gebruikte model is een aangepaste versie van het Hidden Markov Model die
mogelijkheid biedt om het stadium waarin de vegetatie zich verkeert consistent in tijd te
volgen ongeacht de dekking van satellietmetingen. Aandacht is gegeven aan de invloed
van neerslag wanneer satellietmetingen worden verricht op de prestatie van het model
en aan condities van vegetatie waardoor verwarring in classificatie ontstaat tussen ver-
schillende typen landbedekking. Het onderzoek geeft ten slotte gedetailleerd inzicht in
wanneer SAR-satellietmetingen beter presteren dan optische satellietmetingen en vice
versa, en welke voordelen de combinatie van deze twee met zich meebrengt.

Het vierde en laatste hoofdonderzoek beschrijft een techniek die gebruik maakt van
fluctuaties in SAR-metingen wat wordt veroorzaakt door vochtigheid van het (grond- en
plant-)oppervlak om zodoende de classificatie van vegetatiecondities te verbeteren. On-
derzoek is gedaan naar de invloed op het presteren van de classificatietechniek op ba-
sis van drie scenarios die de selectiecriteria van SAR-metingen bepalen: (i) geen onder-
scheid tussen vochtigheidscondities van het oppervlak, (ii) onderscheid tussen de voch-
tigheidscondities op het moment dat SAR-metingen zijn verricht en (iii) onderscheid
tussen vochtigheidscondities tussen opeenvolgende SAR-metingen. Het onderzoek toont
aan dat de beste resultaten kunnen worden verkregen wanneer verschillen in vochtig-
heid onder het laatstgenoemde scenario optreden. Als deze informatie wordt gecom-
bineerd met a-priori kennis van grondtypen kunnen de resultaten verder worden verbe-
terd. Voor dit onderzoek is gebruik gemaakt van landbedekkingskaarten die zijn gemaakt
met behulp van het Hidden Markov Model over heel São Paulo staat (nagenoeg zes keer
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de oppervlakte van Nederland).
De datasets die zijn gebruikt voor deze onderzoeken zijn voornamelijk verworven

door de SAR-satellieten Sentinel-1, Radarsat-2 en ALOS-2, en door de optische satellie-
ten Landsat-8 en WorldView-2. Voor de onderzoeken die zijn uitgevoerd voor het moni-
toren van landbedekking en classificatie van vegetatie was high performance computing
vereist vanwege de aanzienlijke omvang van observatiedata en de complexiteit van de
toegepaste technieken. Hiervoor is voornamelijk gebruik gemaakt van de Nederlandse
supercomputer van SURF en Google Earth Engine.

RESUMO
Este estudo apresenta uma pesquisa sobre o monitoramento de produtividade agrícola
e do uso e cobertura da terra, com foco na cana de açúcar, utilizando dados de senso-
riamento remoto, que foram coletados a partir de dados de Synthetic Aperture Radar
(SAR) e sensores ópticos. A pesquisa tem por objetivo realizar uma discussão sobre no-
vas técnicas e metodologias que permitem um monitoramento de baixo custo da pro-
dutividade da cana de açúcar e também de uma ampla cobertura de expansão sucroen-
ergética por meio de séries temporais. Esta pesquisa é oriunda de grandes projetos de
pesquisa, que possuem objetivo comum de contribuir para uma sociedade baseada em
bioprodutos, onde os recursos para a produção de produtos químicos, materiais e ener-
gia são baseados em biomassa, produzida em sistemas competitivos e sustentáveis. O
estado de São Paulo, Brasil, foi selecionado como área de estudo, principalmente por ser
uma das principais regiões globais de produção de cana de açúcar, sendo uma das mais
proeminentes na produção de bioenergia.

Este estudo inclui os seguintes pesquisas.
Primeiramente, os resultados são baseados em uma ampla gama de medições de da-

dos biofísicos coletados ao longo de um ano, em sucessivos trabalhos de campo e em
diferentes ambientes de produção de cana de açúcar. Esses resultados são acompan-
hados por avaliações detalhadas de parâmetros de qualidade, ilustrando a confiabili-
dade de se coletar tais medidas em campo. Além disso, é detalhada toda metodologia
de execução dos trabalhos de campo, que foi planejada para minimizar as alterações de
biomassa no campo para que se pudesse validar os dados de SAR e de sensoriamento
remoto óptico. Em segundo lugar, os dados de sensoriamento remoto dos diferentes
satélites são comparados às medições de campo para desenvolver técnicas de moni-
toramento espacial da produtividade da cana-de-açúcar. Isso inclui uma análise sobre
a sensibilidade das bandas C e L do SAR e das bandas dos sensores ópticos, em relação
ao crescimento da biomassa de cana-de-açúcar, a precipitação e configurações do sen-
sor SAR. Além disso, as características dos diversos sensores utilizados são analisadas
quanto às suas consistências temporais, a fim de deduzir os melhores intervalos tempo-
rais para que as observações dos satélites fossem mais eficazes para o monitoramento
da produtividade. Descobriu-se especialmente que a saturação, precipitação e as con-
figurações do sensor determinam a eficácia, principalmente para SAR. Além disso, as
imagens sensores ópticos de maior resolução espacial provaram ter um melhor desem-
penho para mapear a variação da produtividade dentro dos talhões. Além deste estudo,
dois estudos relacionados, porém menores, são apresentados. O primeiro analisa uma
técnica especifica de sensoriamento remoto para identificar padrões em áreas de cana
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de açúcar que ocorrem persistentemente no tempo. Já o segundo, demonstra como as
falhas de plantio em áreas de cana densa afetam os sinais de diferentes SAR e como esse
efeito é influenciado por intervalos espaciais, precipitação, altura da cana-de-açúcar e
tipo de sensor SAR. Em terceiro lugar, o desempenho de um modelo específico de moni-
toramento da cobertura terrestre baseado em redes Bayesianas que combina dados SAR
e ópticos foram demonstrados. O modelo é uma adaptação do Modelo oculto de Markov,
que permite um consistente rastreamento temporal dos estágios da vegetação, indepen-
dentemente de lacunas nas observações dos satélites. Cabe ressaltar o efeito da precip-
itação durante observações de SAR no desempenho do modelo e em certas condições
vegetativas que ocasionam erros na classificação entre os tipos de cobertura da terra. Por
fim, o estudo promove uma detalhada discussão sobre quando as observações de SAR
superam as observações ópticas e vice-versa, com resultados melhores do que quando
combinadas. Por último, apresentamos uma técnica que explora as oscilações no sinal
do SAR causadas pelos diferentes níveis de umidade na planta e solo, com o intuito de
melhorar a caracterização da vegetação. Ao todo, três cenários que definem a seleção
das observações SAR foram investigados quanto ao seu efeito no desempenho da clas-
sificação: sem distinção entre condições de umidade; distinção entre as condições de
umidade no momento da aquisição dos dados SAR; e distinção entre as condições de
umidade entre aquisições consecutivas de SAR. Particularmente, foi considerado cru-
cial para melhorar os desempenhos na classificação quando as condições de umidade
se diferem no último cenário. Ao combinar esta informação com um conhecimento a
priori dos tipos de solo, a acurácia da classificação aumenta ainda mais. Para tanto, são
utilizados mapas resultantes da aplicação do já apresentado Modelo oculto de Markov
em todo o estado de São Paulo. Os conjuntos de dados utilizados nestes estudos foram
adquiridos principalmente pelos satélites SAR Sentinel-1, Radarsat-2 e ALOS-2 e pelos
satélites ópticos Landsat-8 e Worldview-2. Para os estudos relacionados ao monitora-
mento da cobertura da terra e à caracterização da vegetação, um alto desempenho com-
putacional foi necessário devido à grande quantidade de observações e da complexidade
das técnicas aplicadas. Para tanto, foi necessário utilizar as instalações fornecidas pelo
supercomputador nacional holandês de SURF e pelo Google Earth Engine.





PREFACE

This PhD track has offered a fantastic journey and I have never regretted the decision
to take on the challenge. Back in 2009, however, during my final stages of writing my
Masters thesis in Geomatics at Delft University of Technology, the sheer effort it took me
to finalize the report practically diminished the desire to ever take on a PhD position.
Even the cum laude classification of the MSc. track, the earlier taken study positions in
Australia and Texas, and the truly fascinating BSc. Aerospace engineering track I had fin-
ished, were, back then, not convincing to continue working in academics. I needed new
challenges. The subsequent traineeship at Fugro and Shell brought me a fancied cool
off period and gave sensational insights into the world of business. I acquired irreplace-
able operational experiences in a diverse environment with colleagues I admired greatly.
And even though the work brought exciting opportunities nationally and internationally,
it was not meant to be. It was not meant to be because it was too early to become a gener-
alist, because my passion remained with outer space and because my underlying desire
was to contribute to a greener world, not to contribute to oil and gas exploration. Also
a small sidestep to the financial world did not quench the thirst, despite the beauty of
witnessing the sensation that occurs when Japanese and Dutch business cultures meet.
I needed the academic depth again.

Then came December 2012, when Prof. dr. ir. Ramon Hanssen, who I already knew
from the studies Geomatics and Aerospace Engineering, turned up on my radar again
by posting two PhD positions on ’microwave and optical remote sensing for a biobased
society’. In short, the positions had everything I longed for: green, space, brains and
abroad1. I started in 2013, with a bare two-pager of the PhD project in one hand and
a laptop in the other. This was entrepreneurship and academics in one. For both the
Geoscience & Remote Sensing (GRS) department at the TU Delft and me, the research
on biomass and land cover monitoring through the integrative use of radar and optical
satellite imagery was new. It was uncharted territory for us. Fortunately, several inter-
national academic groups had published their work, allowing for literature reviews. And
there was my academic hero, Dr. Lorenzo Iannini, who (back then) had recently started
a postdoc position on the same subject, though he was also new to the subject. It was up
to us then.

The project arose from a cooperation between BE-Basic2, a public-private partner-
ship that aims at building a sustainable biobased economy, and the TU Delft and Uni-
camp. The biobased economy is based on the principle that the resources for the pro-
duction of chemicals, energy and materials come from biomass rather than conven-
tional (fossil) resources. Founded in 2010, the foundation BE-Basic is funded by the
Dutch Ministry of Economic Affairs, Agriculture and Innovation and by industrial part-

1There was already a partnership established with the University of Campinas (Unicamp) in Brazil.
2visit be-basic.org for more information

xiii
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ners and knowledge institutions. Within the BE-Basic framework, a dozen so-called Flag-
ships were defined, each focusing on specific aspects of the biobased economy, ranging
from R&D for production technology to societal embedding. One of these Flagships cov-
ers the socio-economic and sustainability impacts that are associated with the transition
to a biobased economy. Among other research areas, it fosters the research on efficient
and competitive biomass production in a sustainable manner, particularly focusing on
productivity increase and wide-scale implementation of crops that can be converted
into usable energy and the production of materials. In order to conduct cost-efficient
monitoring of crop productivity and monitoring of wide-scale crop expansion over long
time series, BE-Basic involved the GRS department of TU Delft, because of its knowl-
edge position on developing and deploying satellite-based monitoring techniques. In
addition, the foundation partnered with Unicamp’s Geoprocessing Department of the
Faculty of Agricultural Engineering (FEAGRI), because of its area of expertise on sustain-
able agriculture through the use of remote sensing data and geographic information sys-
tems in combination with agricultural modeling. Unicamp’s involvement brought spe-
cific research opportunities to this research due to its scientific vantage point within the
Brazilian state of São Paulo, a major international player in the production of bio-energy
through sugarcane.

Back to the PhD process, the next years were amazing. The work switched between
cracking data by endless programming and brute-force high performance computing,
understanding the signals from radar and optical satellite sensors, learning how an ex-
traordinary crop like sugarcane grows, setting up and maintaining international partner
relations, disseminating results to international audiences and political figures, writing
proposals and finally keeping the stakeholders satisfied. A quick glance at the scripts
I produced, reveals that the total number of lines easily exceeds 100,000 lines of code
(which may in fact be interpreted as a sign of hard labor as well as inefficient coding
by the way). In any case, the results never came easily and the publications even less
effortlessly. During the first year we explored the research framework, reviewed related
literature and identified the research opportunities. The second year I took the step to
move to Campinas, Brazil, to conduct collaborative research with fellow Brazilian PhD
students, and to set up and carry out extensive ground measurement campaigns. Ac-
quiring ground reference datasets over dozens of days, sometimes in 35°C while fully
clothed against the razor sharp leaves and for twelve hours on duty, is tough. Never-
theless, the stay was the cherry on the pie; academically, socially and emotionally. The
initial plan was to stay one year with two family members; it became 15 months and with
three family members.

Back in the Netherlands, papers needed to be produced. However, making the re-
mote sensing data work with the ground reference data was tedious and hard work. The
(post-)processing also took an incredible amount of time, let alone crafting and tweak-
ing the models, interpreting the results and writing down the matter. Inherent to many
PhD projects, loads of results have never made it to the finish. These range from quick
try-outs to scientifically sound outcomes; all were submissive to the wrath of time. After
four years, I worked on the PhD thesis and carried out additional activities, including
writing proposals for grants (of which one was granted). After five years I started work-
ing elsewhere and had to work on it in the evenings. In terms of academic output, the
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result is (as first author) three published journal articles, one submitted journal article,
four published conference proceedings and two published datasets.

The process of coming to this dissertation has been wonderful yet intense. Therefore
I bow my head in gratitude to all who have managed to remain patient and confident.
This holds particularly for Sanne, who I deeply admire for her acceptance to the obli-
gations that emerged during the journey. You’re the best. In addition, I am thankful to
family and friends who kept inquiring me on the status of my research and kept looking
forward to the big day. This holds particularly true for my late grandfather who missed
the defence by one month. I dedicate this dissertation to my family and especially to
him. He was fond of nuances that are made in science, particularly when introduced by
the term ’however’. I am sure this dissertation meets this criterion.

In terms of scientific contribution, I am most grateful to Lorenzo Iannini, who re-
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INTRODUCTION

Tout est vivant, tout est lié. L’eau, l’air, le sol, les arbres. Toute la magie du monde se
déroule sous nos yeux.

Les arbres respirent et renvoient l’eau du sol en brume légère dans l’atmosphère. Ils
forment un manteau qui atténue la violence des pluies. Ils apportent l’humidité

nécessaire à toute vie. Les forêts stockent le carbone. Elles en contiennent davantage que
toute l’atmosphère de la terre. Elles sont l’une des pierres angulaires de l’équilibre
climatique dont nous dépendons tous. Les arbres des forêts primaires abritent les

trois-quarts de la biodiversité de la planète. C’est-à-dire de tout ce qui vit sur terre.
Ces forêts apportent les remèdes qui nous guérissent. Les substances que secrètent ces
plantes, notre corps peut les reconnaître. Nos cellules parlent le même langage. Nous

sommes de la même famille.

Yann Arthus-Bertrand

BACKGROUND AND MOTIVATION

I N a biobased society, the resources for the production of chemicals, materials and en-
ergy are based on biobased renewable resources (i.e. biomass) instead of fossil fuels-

based resources [1–4]. Biomass can be defined as raw materials of vegetative origin and
generally includes all organic material coming from plants or plant-derived materials.
Biomass types that are used for biobased products typically comprise agricultural crops
(e.g. sugarcane, corn, grain), green biomass (grasses), wood biomass (e.g. pine, eucalyp-
tus), aquatic biomass (algae, sea weed) and leftover biomass released during harvesting
(e.g. hay, manure), during the production process (e.g. corn fiber, potato peels, wood
branches) and after product use (e.g. sewage sludge, textile) [3, 5, 6]. Biomass as feed-
stock for biobased products has advantages over fossil resources (principally renewable
and CO2 less intensive) but also disadvantages (e.g. competing with food sources, defor-
estation, loss of biodiversity and increased local water use) [1, 2, 7–10].

A wide range of studies that are related to the development of the biobased sector
have been published, from economic and technological feasibility analyses [5, 11–13]

1
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to social and sustainability impact assessments [1, 10, 14, 15]. Part of the sustainabil-
ity issues associated with biobased solutions relates to the environmental impacts from
feedstock production, for example for bio-energy and biochemicals, and focus on direct
or indirect land use change (LUC) [9, 11, 14]. As the need for certain crops increases and
their acreages expand over time, other land cover types are replaced and moved out to
other regions. As an example, the plantation of suitable crops as feedstock for biofuels
can displace grassland to other regions, indirectly leading to stress on natural vegetation
[9, 16, 17].

Bio-energy and biofuels form one of the most prominent sectors within a biobased
economy from a research and market perspective [1, 3, 5, 9, 18]. Worldwide, sugarcane is
the number one crop in terms of production quantity and one of the main crops used for
bio-energy production [19, 20] due to its highly competitive characteristics. Illustratively,
the ethanol production efficiency per unit area and fossil energy ratio (output biofuel
energy over fossil fuel input energy) are (indicatively) 8000 liter per hectare and 10 for
sugarcane, respectively, as compared to 4000 and 1.5 for maize [20, 21], which is another
major bio-energy crop in terms of worldwide biofuel production quantity [22]. Brazil
is the largest sugarcane-growing nation and a global leader in biofuel production [22].
São Paulo state, roughly six times larger than the Netherlands, is responsible for 60% of
Brazil’s sugarcane growth [17, 23–25], while only covering 3% of Brazil’s territory. During
the last decades, this crop expanded by more than 100% in this region and now approx-
imates 6 million hectares [23, 26], which is almost 1.5 times the area of the Netherlands.
Sugar and bio-ethanol are the most dominant products from sugarcane and the latter
allows Brazil to substitute roughly half of the automotive’s gasoline consumption [20].
Due to its dynamic land cover change over the last decades, mainly caused by a rapid
expansion of sugarcane acreage, and its position as bio-energy producer, São Paulo state
has been a subject of a myriad of studies [8, 9, 17, 25, 27, 28].

In relation to regular food crops, sugarcane is substantially different for several rea-
sons. First of all, sugarcane is a perennial crop, whereby the growth period is approx-
imately one year and the plant regrows after harvest from the remaining root systems.
After five to seven of these so-called ratoon cycles, the decrease in yield makes it more
economical to plant new shoots [29]. Furthermore, the crop is densely planted and grows
to approximately four meters high, making it a crop with one of the highest biomass val-
ues per hectare (>100 tons per hectare are not uncommon in Brazil [21]). In comparison,
annual crops, including most vegetables, grains and grasses, grow and die within several
months and produce tens of tons per hectare. To give an impression of the character-
istics of sugarcane, Figure 1.1 illustrates several growth stages, accompanied by photos
that were collected during the acquisition of field measurements for this research.



1

3

Figure 1.1: Visual representation of sugarcane growth and collection of ground measurements: (1) marking
measurement location and taking the geolocation for revisits; (2) and (3) state of sugarcane after two months
(approximately to 0.5 meter high) and typical row spacing; (4) state of sugarcane after four months (approx-
imately 1.5 meter high); (5) state of sugarcane after 7 months (approximately 2.5 meter high); (6) canopy of
sugarcane after 7 months; (7) state of sugarcane after 10 months (approximately 3.5 meter high); (8) measure-
ment of sugarcane stalk thickness (several centimeter); (9) weighing of sugarcane biomass; (10) collection of
sugarcane biomass from the field; (11) sugarcane before grinding; (12) sugarcane after grinding and before
drying in the oven.
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In order to monitor crops for their productivity and wide-scale expansion over long
periods of time, satellite-based techniques have proven to be effective and cost-efficient
[30–36]. The reasons for selecting such monitoring techniques are multifaceted. For
decades, various international space agencies and private companies have acquired ob-
servations of the Earth’s surface by using various kinds of space-borne sensors and plat-
forms, providing extensive sets of global observations over long time spans [37–44]. Con-
sequently, a mixture of datasets with satellite imagery is available, differentiated mainly
by acquisition technique, by their spatial and temporal resolution and by their accessi-
bility for public use. The type of acquisition technique depends mainly on the sensor
type and determines the physical principles of the remote sensing signals. As an apt ex-
ample, observations from optical and synthetic aperture radar (SAR) sensors differ fun-
damentally since their distinct wavelengths interact differently with the sensed objects
[31, 36, 45, 46]. Optical sensors passively record radiation in the (near-)visible spectrum,
whereby the signal’s sensitivity to atmospheric disturbances (like clouds and aerosols)
causes inconsistent temporal availability of observations of ground features. In addi-
tion, the short wavelength causes the signal to be mainly sensitive to the planar features
of objects, such as the upper canopy layer of plants [32, 36, 47–49]. In contrary, SAR
sensors emit radiation actively in the microwave spectrum, allowing the signals to pen-
etrate clouds and hence temporally consistent observations of ground features can be
acquired. In addition, the signal’s longer wavelength increases its sensitivity to the vol-
umetric and dielectric features of the sensed objects, such as the leaves, branches, stem
and water content of plants. Consequently, such characteristics influence the availabil-
ity and diversity of observations, allowing for a system-of-systems approach [50–53]. In
such a system, the characteristics of the available sensors can be exploited such that the
various remote sensing products can complement each other and can be integrated for
improving the final results.

In light of such a system, at the start of this study, one particular game-changing
satellite mission was introduced to the remote sensing community: Sentinel-1 [31, 54,
55]. Developed and funded by the European Space Agency (ESA), the first mission’s satel-
lite, Sentinel-1A, became operational in October 2014 (one and a half year after the start
of this study). It is a C-band SAR satellite that collects imagery practically continuously,
revisiting virtually each (land) location on Earth at least once every 12 days initially and
at least once every 6 days after its duplicate satellite, Sentinel-1B, became operational
two years later. The data products are made available based on a complete, open and
free-of-charge basis. This marked a turning point for the SAR community, since such
SAR data products were commonly limited in time and space (as was offered by ESA’s
ERS and Envisat missions until 2012 [54]) or limited in data availability, whereby users
either needed to pay or apply for research grants with quota on ordering scenery (as was
offered by the Canadian Space Agency’s Radarsat missions). Hence, for the first time in
history, a set of SAR remote sensing data emerged over large areas, based on consistent
and relatively high sampling frequency, and freely available. For space-borne observa-
tions from optical sensors, such availability was already provided for by NASA’s Landsat
missions, offering free global data products that were (and continue to be) acquired over
several decades [30, 56, 57]. Its most recent satellite, Landsat-8, observes virtually each
(land) location on Earth at least every 16 days, since 2013. Data from these two satellites
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(Sentinel-1 and Landsat-8) form the bulk of the observations that were used in this study.
Data from other satellites were analyzed as well, but to a lesser extent due to their more
limited temporal and spatial availability.

The availability and variety of space-based remote sensing platforms over the last
decades have resulted in a handful global (and regional) land cover maps featuring sev-
eral land cover types, including (generally) crops, natural vegetation, water and urban,
and featuring spatial resolutions ranging between tens of meters to a kilometer and up-
date frequencies between single stationary maps to near-real-time maps [26, 37–44].
These and crop productivity products were, at least at the commencement of this study,
usually based on optical-only remote sensing data rather than based on a combination
of optical-data and SAR-data [37, 58] and offered limited classification taxonomy. As will
be discussed in more detail in the next chapters, it is the recent increase in availability
of frequent SAR measurements, as provided by Sentinel-1, that was essential for the in-
vestigation into contribution of these measurements to the quality and features of land
cover and productivity maps, whereby aspects such as spatial and temporal resolution
(e.g. related to insensitivity to cloud coverage), classification accuracy and classification
taxonomy (e.g. related to the sugarcane class), and biophysical feature retrieval (e.g. re-
lated to biomass) are focused on.

The characteristics of sugarcane (in particular its long growth period and high biomass)
introduces opportunities as well as challenges when mapping and monitoring its growth
through SAR and optical remote sensing data. As will be outlined further in the follow-
ing chapters, the opportunities are mainly related to the availability of frequent remote
sensing observations and the distinct growth and harvest patterns. The challenges are
mainly related to the saturation of the remote sensing signals and the relatively high ho-
mogeneity of biomass in the field.

RESEARCH FRAMEWORK

RESEARCH OBJECTIVE
In this study, rather than focusing on the assessment of environmental impacts from
sugarcane expansion and rather than developing global land cover products, the em-
phasis was put on the design and application of techniques that combine imagery from
space-based SAR and optical sensors for monitoring the sugarcane production and ex-
pansion, whereby São Paulo state in Brazil is the main study and application area. Hence,
the study was narrowed down to the following research objective:

To advance the state-of-the-art on crop productivity monitoring and land cover
monitoring, with a focus on sugarcane in São Paulo state, Brazil, through the

integrative use of remote sensing data from space-based optical and SAR sensors,
acknowledging the underlying mission to contribute to competitive biomass production

in a sustainable manner for a biobased society.

RESEARCH APPROACH
In order to fulfill the objective, first of all, the state of current techniques and their appli-
cations were examined. Without going into detail on the literature reviews, as these are
presented in each of the following chapters, the use of SAR remote sensing data for pro-
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ductivity and land cover monitoring is particularly dominated by vegetation types such
as annual crops, grasslands and forests rather than sugarcane. This can be explained by
the limited availability of SAR data until the introduction of Sentinel-1 in combination
with the challenging characteristics of sugarcane, as were both touched upon in Section
Background and motivation. With the introduction of Sentinel-1 and the availability of
optical data opening up possibilities for intense monitoring of sugarcane and land cover
mapping over large areas based on dense time series, the processing and analyzing of
such extensive datasets required high performance computing (HPC) resources. In this
study, these were mostly facilitated by the Dutch supercomputer owned by the SURF co-
operative1 and by Google Earth Engine 2, which is a computing platform for geospatial
analysis on Google’s infrastructure.

Based on the literature reviews and the access to suitable remote sensing data and
to computing resources, we identified the techniques that needed to be developed. In
particular, the focus was put on analyzing the similarities and differences between opti-
cal and SAR remote sensing signals and on how these could be effectively combined for
the areas of applications. Without going into detail on the technique selection and ex-
planation, as these are presented in each of the following chapters, appropriate ground
reference datasets were required in order to train and validate the techniques. However,
when assessing the published datasets and datasets that were available at the involved
and partnering institutions, we concluded that none was sufficiently adequate for both
the growth monitoring and the land cover mapping studies we envisioned. This was
based on the main requirements the dataset would need to fulfill: (i) the dataset should
span the upcoming observations by Sentinel-1, (ii) the need for specific types of plant
biophysical measurements (for growth monitoring) and for specific types of land covers
(for land cover monitoring), and (iii) the presence of these measurements in São Paulo
state, Brazil. As a consequence, ground reference data needed to be collected, which
allowed us to shape the measurement campaigns in line with the remote sensing acqui-
sition schemes and to conduct quality assessments on the datasets. Finally, although the
study focuses primarily on the combination of both optical and SAR data, one chapter
is dedicated to a research on SAR-only data in order to provide a detailed analysis of the
potential of the spatially and temporally dense Sentinel-1 measurements for advanced
land cover mapping.

RESEARCH QUESTIONS AND OUTLINE
Based on the described background, motivation, research objective and research ap-
proach, the following research questions were formulated. Each of them is related to a
chapter in this study:

1. Chapter 2: How can ground reference measurements that describe the biophysical
state of sugarcane be acquired to support the analysis of space-based SAR and
optical measurements for productivity monitoring?

2. Chapter 3: How can measurements from space-based SAR and optical sensors be
exploited to effectively monitor sugarcane productivity?

1visit SURFsara
2visit earthengine.google.com

https://userinfo.surfsara.nl/systems/cartesius
https://earthengine.google.com
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3. Chapter 4: How can the combined use of space-based SAR and optical measure-
ments improve their singular use for land cover monitoring with a focus on sugar-
cane classification?

4. Chapter 5: How can a-priori knowledge on precipitation and soil type be used
advantageously for the characterization of vegetation states through space-based
SAR measurements?

Each of the following chapters consists of research analyses that were publicly dis-
closed by means of three published journal articles, one submitted journal article, two
published conference proceedings and two published datasets. In order to place each of
these publications into context within this study, each will be introduced at the begin-
ning of the respective chapter. Some articles that were published during this study are
not included in this study, see List of Publications.
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2
GROUND REFERENCE DATA FOR

SUGARCANE PRODUCTIVITY

MONITORING

The fear of appearances is the first symptom of impotence.

Fyodor Dostoyevsky through Rodion Raskolnikov

T HIS chapter has been published in Scientific Data, Nature Research Journal, in 2018
[1]. The dataset itself was published in 2015 [2]. The aim of the research was to

collect a ground reference dataset that allows for the detailed analysis of optical and
SAR satellite measurements for productivity monitoring. The article is a dataset descrip-
tor based on a set of ground reference measurements, consisting of various biophysical
measurements, that were collected over the growth of several sugarcane fields in São
Paulo state by TU Delft and Unicamp. The measurement acquisition plan introduces
a methodology that is aimed at estimating biomass of sugarcane plants through non-
destructive biophysical measurements in combination with allometric models. These
models were calibrated based on destructive measurements, which were collected at
locations that were excluded from detailed analyses of satellite measurements as pre-
sented in Chapter 3. The results are presented and explained in detail, together with
several uncertainty measures that are related to the acquisition campaign. Following
the publication, conversion errors in the final PDF document were observed for which
an author correction was published. This correction can be found immediately following
the original publication.
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Data Descriptor: Ground reference
data for sugarcane biomass
estimation in São Paulo
state, Brazil
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In order to make effective decisions on sustainable development, it is essential for sugarcane-producing
countries to take into account sugarcane acreage and sugarcane production dynamics. The availability of
sugarcane biophysical data along the growth season is key to an effective mapping of such dynamics,
especially to tune agronomic models and to cross-validate indirect satellite measurements. Here, we
introduce a dataset comprising 3,500 sugarcane observations collected from October 2014 until October
2015 at four fields in the São Paulo state (Brazil). The campaign included both non-destructive
measurements of plant biometrics and destructive biomass weighing procedures. The acquisition plan was
designed to maximize cost-effectiveness and minimize field-invasiveness, hence the non-destructive
measurements outnumber the destructive ones. To compensate for such imbalance, a method to convert
the measured biometrics into biomass estimates, based on the empirical adjustment of allometric models,
is proposed. In addition, the paper addresses the precisions associated to the ground measurements and
derived metrics. The presented growth dynamics and associated precisions can be adopted when designing
new sugarcane measurement campaigns.

Design Type(s) observation design • time series design

Measurement Type(s) plant structure • leaf area index • plant matter • water-based rainfall

Technology Type(s) data collection method
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Saccharum hybrid cultivar RB867515 • Piracicaba Mesoregion • cropland
biome • Saccharum hybrid cultivar SP80-3280
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Background & Summary
Sugarcane is the number one crop worldwide in terms of production quantity. It provides for more than
40% of the car fuel in the largest sugarcane producing nation, Brazil. São Paulo state is responsible for
more than half of the national bio-ethanol production from sugarcane, which expanded more than 100%,
2 million hectares, over the last 15 years. The crop is usually grown for five to seven years from the same
ratoon1, i.e. the plant sprouts from the same root system after each harvest event. The cycle of sugarcane
can vary from 8 to 24 months depending on the cultivars and planting date, with the 12 month and 18
month types dominating the Brazilian plantations2. The growth stages after planting consist of the
germination phase, when the first leafs and stems that are part of the root system emerge, the tillering and
canopy development phase, indicatively from the second to the fifth month when secondary stems arise
above ground, the grand growth phase, between the fifth and eighth month, and finally the maturing and
ripening phase until harvest, see the left part of Fig. 1. The sucrose content, from which the bio-ethanol
and sugar is produced, is concentrated in the stem, also referred to as stalk, of the sugarcane. Sugarcane
yield is commonly measured in tons cane per hectare (TCH)3–6 and ranges up to 160 TCH6,7.

In order to improve the understanding of the plant itself and of the related impacts, several sugarcane
measurement campaigns have been conducted in Brazil for a wide range of studies, most notably
including biological analysis of plant processes6,8–13, agronomic analysis on the effects of different
fertilization and soil practices4,5,14–16 and bio-physical parameter extraction from space-based remote
sensing signals7,10,17–22. Due to the plant morphology and its growing environment, sugarcane
measurements are labour-intensive and easily affected by significant errors. Quantifying uncertainty
metrics in the collected and processed measures is extremely valuable in data modeling and data
integration frameworks. However, so far, only a few contributions5,6,19,23 explicitly accounted for the
quality of their reference ground data.

With such premise, we planned a ground surveying and data elaboration strategy that could entail an
in-depth uncertainty analysis. The purpose for conducting the measurement campaign was to investigate
the sensitivity of optical and radar satellite imagery to sugarcane biophysical features along the whole
growth cycle. Nevertheless, the produced dataset can valuably fit a variety of other sugarcane studies. The
biophysical parameters of interest include: cane height, cane density, leaf area index (LAI), cane biomass
and leaves biomass. The measurements were carried out at four fields in the São Paulo state, selected for
their heterogenous conditions in terms of crop health and ratoon cycle. The fields were surveyed multiple
times at different development stages. The campaign addressed two additional needs: that of minimizing
the measurements' effects on the remote sensing signals and that of maximizing efficiency in terms of
costs. Both demands led to the limitation of the destructive biomass procedures. As a result, the majority
of the surveying locations, denominated Elementary Sampling Units (ESU), comprise only biometric
measurements. The biomass weighting operations were then added to a selected number of locations,
hence recalled Elementary Sampling Units with Biomass (ESUB). Consequently, a method to retrieve
biomass from non-destructive biometric measurements at ESUs was adopted. In this method, the
destructive measurements at ESUBs are used to calibrate the allometric models and to cross-validate their
outcome. The correlation coefficient between the directly measured and estimated biomass values is 0.89.
The selection of the surveying locations and the data collection and processing procedures will be
explained in the sec:Methods section.

The uncertainty analyses (expressed in precisions, see the sec:Technical-Validation section) are based
on spatially-intensive repetitive measurements and on the error propagation laws applied to the biomass
equations. For cane biomass, it was expected and shown that the instrument operation precision is

Figure 1. Sugarcane phenological development and data acquisition scheme. (a) sugarcane growth stages

with indicative heights and plant geometries, adapted and modified from ref. 27; (b) ground reference data

acquisition scheme, accompanied by a summary of the data collection.
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smaller than the precision associated to the local plant variations. The precision related to model fitting
and data interpolation procedures contributes significantly to the total precision, but it reduces over time.
The relative precision on indirect biomass measures is hence lower for mature cane. As expected, the leaf
biomass precisions dominate the total precision at an early stage but are quickly taken over by the stalk-
related precisions.

Finally, based on the findings, we like to make some recommendations on setting up novel ground
measurement campaigns. First of all, planning the ESU and ESUB locations for taking ground
measurements requires thorough preparation beforehand, predominantly counting for the costs of the
repetitive measurements needed to derive the associated precisions. Based on high-resolution optical
images one should select those ESU locations for which the difference in biophysical parameter is
expected to be statistically significant within the fields of interest. The proposed techniques as explained
in this paper can be used accordingly.

Methods
The relationships between the methods and the corresponding figures are schematized in Fig. 2. Details
on the practices and additional information on the linkages will be given in the following sections with
references to the numbers in the figure.

Selection of study area and fields
The sugarcane fields of interest were proposed by the fields' owner, one of the largest sugarcane producers
and energy companies in Brazil, based on their availability, accessibility and quality. The fields are located in
an area densely covered by sugarcane plantations, spread around the Bom Retiro sugarcane mill, twenty
kilometers from Piracicaba, São Paulo state, Brazil, see Fig. 3. They are mostly flat and contain inter-field
and intra-field roads of two to ten meters wide. The fields' characteristics, see Table 1, show that there are
differences in ratoon cycles, area and start and end of growth. All fields are situated on clay grounds.

In order to select the locations to measure, we visually analyzed optical images from Landsat-8 from
previous years and identified consistent anomalies in NDVI values, which are indicative for sugarcane
biomass differences7,24. Subsequently, we split the locations into elementary sampling units (ESUs) for
the regular biophysical parameter measurements and elementary sampling units for biomass (ESUBs).
Three to five ESUs and one or two ESUBs per field were selected, see Fig. 4. These ESUs and ESUBs were
visited multiple times during one growth season, see Fig. 1, using a GPS location device featuring
approximately five meters location accuracy.

Ground reference data acquisition
The measurements in each ESU were taken systematically following a strict procedure. Fig. 5 illustrates
schematically the methodology for taking the LAI, biometrics and biomass measurements, as explained in
the following subsections. Distinction is made between plant, cane, stalk and leafs, whereby the plant is
the collection of canes emerging from the same root system and cane is the integral of the stalk and leafs.
The temporal developments of the measured parameters are illustrated in Fig. 6. The different behaviors
in time, as indicated by the illustrative trend lines, are addressed at each parameter description.

Biometrics

At all four corner points the following biometric measurements were taken:

● stalk heights of highest canes. The stalk height is here defined as the length from the stalk at ground
level to the crown from which the upper leafs emerge,

● stalk thicknesses of the same canes, taken at the stalk on ground level,
● longest leaf lengths of the same canes,
● number of canes and plants per meter by counting the number of canes and plants over five meters

distance for two adjacent rows, as a measure for cane spatial density.

The highest canes were selected by eye. As will be explained in subsequent sections, the variations in
modeled intra-field biomass values are dictated by the measured cane spatial density at the ESUs. Hence,
the selection of the highest canes mainly serves to establish the general biomass curve and subsequently
the field-wide cane biomass interpolators (see Section subsec:Cane-biomass-interpolators). This addresses
the potential issue that the selection of the measured (highest) canes may not be representative for
estimating the cane biomass per unit area (expressed in tons cane per hectare-TCH) at the measurement
locations. The dataset also includes the measurements of smaller canes at each measurement location.
The smallest canes that are unrepresentative for the sugarcanes at the measurement location were not
taken into account, for example sprouting canes amongst mature canes. These, however, are not used in
any further modeling or estimation.

In addition to the biometrics, photos embedded with the geo-location were taken for location
verification, for checking the leaf angle distribution and for future referencing. The indicative trend lines
come from a fitted linear function for height and a logistic function, showing stabilization after a certain
moment in time, for stalk thickness (increasing in time). For cane spatial density, a logistic function as a
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function of time was fitted as well, which is used in a later stage to constrain the re-fitted functions at
ESU-level, see “4a” and “4b” in Fig. 2. This will be explained later in this section in more detail. The
shapes of the resulting curves are in line with the reported trends in11,13,19, although the cane spatial
density in these studies first shows a slight increase in the first 150 days before the decrease. For the cane
height and stalk thickness the functions are constrained to pass through the zero origin.

Leaf Area Index (LAI)
For LAI measurements, a LICOR LAI-2000 Plant Canopy Analyzer was used with the default calibration
values as reported in the LAI manual25. The manual and26 were consulted for setting up the following
procedure. During the first growth stages of the sugarcane, until approximately two meters stalk height,
the LAI measurements are taken from the middle of the ESU in four different directions with one above-
canopy measurement followed by three below-canopy measurements; two times in cross-row direction
and two times in along-row direction, see Fig. 5. After this point in time, the measurements showed

Figure 2. Workflow indicating the operations, relations between the methods and references to the

corresponding resulting figures.
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negligible differences between the directions and we assumed the canopy coverage became planar
isotropic; the coverage of the leafs is uniform in both horizontal directions. Consequently, the LAI
measurements are taken with one above-canopy measurement followed by nine below-canopy, all of
them within ten meters in row direction divided over three rows. As for the precise placement of the
sensor for all below-canopy measurements, the distance to the plants was taken into account, i.e. per set
of three measurements one measurement was taken adjacent to the cane, one at one third of the row
spacing and the last at two third of the row spacing. LAI measurements in the direction of the road were
avoided to minimize the possible road effects. Also the climatic conditions were taken into account by
retaking above canopy measurements when clouds were moving. The resulting measured LAI can also be
referred to as effective LAI since it is not corrected for the leaf clumping effect.

The correction from effective LAI to actual LAI was carried out as follows. Along two meters and for two
rows wide (1.5 + 0.9 meters) the LAI was measured in four different directions and three measurements per
direction with spacing of one meter (instead of three meters as for the ESU measurements). Within this
area, around the center point all plants were cut and the green leafs were stripped from the canes, which
were then placed on a white sheet. Through supervised classification with standard image analysis software,
the area of the green leafs was divided by the total area, i.e. 2.4 by 2 meters. The average of the differences
between the measured and observed LAI taken at two dates was subtracted from the LAI measurements.
The correction results in a few LAI values to become slightly below zero.

The trend line for actual LAI in Fig. 5 is a second order polynomial fit, which is supported by results
presented in ref. 11,13,19,23, and is forced through zero origin. The few LAI values smaller than zero are
plotted as zero.

Biomass
In order to minimize destructive measurements at the ESUâ€™s, which would bias the remote sensing
signals, biomass ESUâ€™s (ESUBâ€™s) were selected. Four whole plants (containing generally between ten
and twenty canes) were cut at ground level and the number of canes per plant was counted. The stalk
heights, stalk thicknesses and leaf lengths were measured per plant similarly as described above. The mass
of the entire plant was measured separately and by dividing by the number of canes its average and
variation in cane weight was obtained. This will be referred to in the sec:Technical-Validation section.
After the weighing, per plant two representative canes were selected and combined, creating a sample of
eight canes of the four plants. Leafs were then separated from the stalks and weighed separately, giving
the leaf biomass per cane. The mass of these stalks divided by the volume, approximated by the
cylindrical volume as a function of the measured stalk thickness and height (see Equation 1), gives the

Figure 3. Study area, indicating the four fields of interest with red polygons and the weather stations with

yellow stars.
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stalk (mass) density. Note that the minor compensation for the tapered geometry of the cylinder, referred
to the scaling factor C in the equation, is not yet taken into account in Fig. 6. The remaining canes of the
fours plants, the stripped leafs and stalks were separately ground into centimeter-sized pieces, a sample
was taken, weighed and dried in the oven at 65 C for 72 h. The complement of the ratio between the mass
of the dried and the mass of the wet samples gives the wet matter content, i.e. computed individually for
the leafs, stalks and four different plants.

Field name Ratoon Area [ha] Start of growth Harvest Center coordinate [latitude, longitude]

F1 1st cycle 58 30/10/2014 07/10/2015 − 22.9607, -47.4578

F2 1st cycle 115 14/10/2014 07/12/2015 − 22.8558, -47.4228

F3 2nd cycle 25 15/08/2014 26/07/2015 − 22.8738, -47.5230

F4 9th cycle 59 01/08/2014 21/07/2015 − 22.8895, −47.5108

Table 1. Sugarcane fields’ characteristics with growth and harvest dates, which are for F1 and F2 not
applicable to the entire field.

Figure 4. Delineation of the four studied sugarcane fields and ESU and ESUB (b) locations. The

background map shows the NDVI from WorldView-2 on January 25, 2015. The plus signs (+) and crosses (x)

show, respectively, the location of the elementary sampling units (ESUs) and elementary sampling units for

biomass (ESUBs). The white patches in field F2 are masked clouds.
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The cane wet content and leaf wet biomass show a decrease over time, see Fig. 6, which was assumed
to be linear over time (despite the time gap). The general observed tendency that cane and leafs become
drier is supported by11,19. The former shows similar water content values for stalks, though slightly higher
and more constant during the first 100 days. These fitted linear functions are included only for indicative
purposes.

The only measured parameters for which functions are fitted to be used in the biomass equation, see
Equation 1, are stalk (mass) density and leaf biomass. This operation is indicated in Fig. 2 by “Linear
model fitting (time)” with “BM.3” and “BM.4” as inputs. Stalk density shows a linear increasing trend,
which can be attributed to the increase in sucrose content as reported by6,8,24, which has higher mass
density than water (approximately 1.6 g/cm3 and 1.0 g/cm3, respectively).

Similar to LAI, a second order polynomial fit was selected as the trend line for leaf biomass per cane,
see Fig. 7. This is based on expected correlation with LAI and findings in the above mentioned LAI-
related literature, in particular11,19. Due to the low number of measurements, the precision of the function
fit is non-optimal. To put the importance of leaf biomass into perspective, we added the approximated
development of the ratio of leaf biomass over total cane biomass in Fig. 7. It shows that leaf biomass is
dominant to the cane biomass during the first 50 days, after which it rapidly drops to less than 20% of the
cane biomass after 200 days and decreases to 5% at the end of the cycle. Hence, the precision of the leaf
biomass function has more impact at early state than at later states. The validity of the function is
supported however by Fig. 8, showing an acceptable correlation of 0.89 between estimated cane biomass
(i.e. as a result from the biomass equation) and measured cane biomass. Acceptable agreement is also
found for individual estimations during early state.

Intensive measurements
In order to assess the reliability of the field measurements, three types of intensive measurements were
carried out at three different dates. The details on how these precisions were measured, what their values
are and how they are used for further analysis can be found in the sec:Technical-Validation section.

0 100 200 300 400

Time from start of growth [days]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

B
io

m
as

s 
[k

g
]

cane biomass
leaf biomass
ratio

0 100 200 300 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
atio

 leaf/can
e b

io
m

ass [-]

Cane and leaf biomass and their ratio

0 100 200 300 400

Time from start of growth [days]

0

0.05

0.1

0.15

0.2

0.25

L
ea

f 
b

io
m

as
s 

[k
g

/c
an

e]

Leaf biomass averaged per ESUB

trend line
measured

0 100 200 300 400

Time from start of growth [days]

250

300

350

400

450

500

550

600

650

700

S
ta

lk
 d

en
si

ty
 [

kg
/m

3
]

Stalk density averaged per ESUB

trend line
measured

0 100 200 300 400

Time from start of growth [days]

0

20

40

60

80

100

120

140

160

180

L
ea

f 
le

n
g

th
 [

cm
]

Leaf length averaged per ESU

fitted trend line
measured

Figure 7. Temporal developments of stalk (mass) density (ρS), leaf biomass per cane (BML), averaged per

ESUB, leaf length, averaged per ESU, and cane and leaf biomass and their ratio. The fitted trend lines for

BML and ρS are used in the biomass equation.

www.nature.com/sdata/

SCIENTIFIC DATA | 5:180150 | DOI: 10.1038/sdata.2018.150 8



Precipitation
Over the course of the sugarcane growth cycles, seven weather stations acquired the daily cumulative
precipitation, see Fig. 3. The rate of agreement between the weather stations of detecting precipitation was
0.96, which leads to our assumption that all fields are subject to the same condition of precipitation.

Cane biomass equation
In order to estimate the biomass at ESU we propose a biomass estimation equation, which is based on the
sum of stalk biomass (the biomass of the main stem itself) and leaf biomass:

BMC ¼ BMS þ BML

¼ πDð Þ2
4 UHUρSðtÞUF

� �
þ BML tð Þ ð1Þ

BMC and BMS are respectively the cane biomass and stalk biomass, BML is the biomass leaf per cane,
all in kilogram, D is the sugarcane stalk diameter in meter, H is the sugarcane stalk height in meter,
ρS is the stalk (mass) density in kg/m3 as a function of time, and F. The latter, equal to 0.977, is assumed
to be a scaling factor that is constant in time and compensates for the stalk as a tapered cylinder.
This operation is indicated as “Compare” in Fig. 2, it is computed by dividing the ESUB-measured stalk
biomass by the estimated stalk biomass from the biophysical parameters not corrected by the constant.

When applying Equation 1 with measured biophysical parameters at the ESUBs, the resulting
estimated cane biomass is (linearly) related to the measured biomass with a (Pearson's) correlation of
0.89, see the left part of Fig. 8. The biomass growth curve on the right shows the fitted logistic function in
time with the measured and estimated biomass. Since this curve is monotonic but not linear, we express
the goodness of fit between the function and the (measured and estimated) biomass through the
Spearman's correlation, equal to 0.95.

Cane biomass interpolators
Since the times of remote sensing image acquisitions rarely coincide with the times of ground
measurements, temporal interpolation between field measurements is required. However, the temporal
frequency of measurements for each individual field is not sufficient to do this directly for each individual
field due to extrapolation and measurement precisions. As such, we combine the biomass measurements
(from ESUBs) and biomass estimations (from ESUs) from all fields and create a biomass interpolator as a
function of time from start of growth. A logistic function is selected in order to force the sigmoid curve,
which is typical for the behavior of growth over time3–5,21,23 and was also applied to stalk thickness and
cane spatial density:

f tð Þ ¼ Δy

1þ e - k t - t0ð Þ ð2Þ
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The coefficients consist of Δy, the limiting value defining the horizontal asymptote, k, the growth rate of
the curve, and t0, the midpoint of the sigmoid. The model coefficients are estimated by the non-linear
least squares method, without a-priori confidence bounds, using the measured and estimated biomass
values, averaged per ESUB and ESU respectively, as input data and the function forced through zero
origin. This is indicated in Fig. 2 by operation “Logistic model fitting (time)” based on the dataset
containing all “ESU cane biomass estimates” and all “ESUB cane biomass estimates”, resulting in “4a”. The
result is considered as the general biomass growth curve, see the right part of Fig. 8.

Subsequently, for each individual field new logistic functions are re-fitted, see Fig. 9. This re-fitting is
constrained by using the estimated coefficients and their 95% confidence bounds from the general
biomass growth function, respectively as initial values for the coefficients and as lower and upper bounds
on the coefficients to be fitted. The latter bounds were expanded by 10% to allow more flexibility. This is
indicated in Fig. 2 as operation “Logistic model re-fitting (time)” based on the dataset containing “ESU
cane biomass estimates” per field and “ESUB cane biomass estimates” per field, resulting in “4b”. The
resulting Spearman's correlations are all equal to or higher than 0.95, which is an improvement with
respect to the general biomass growth curve of Fig. 7. The uncertainty bars (one s.d.) are computed with
the methodology as depicted in the sec:Technical-Validation section.

Cane spatial density interpolators
For the cane spatial density, we apply the same logic as for the cane biomass; utilizing the boundary
conditions of the general logistic fit, indicated as “5a. Cane spatial density interpolator (all)” in Fig. 2,
illustrated as the trend line in Fig. 6, to re-fit logistic functions per ESU (i.e. not per field), indicated as
“5b. Cane spatial density interpolator (per ESU)”.

TCH interpolators
Finally, in order to obtain the cane biomass per unit area we compute the tons cane per hectare (TCH):

TCH ¼ BMCUC tð ÞU10=S ð3Þ
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BMC is the cane biomass in kg, CðtÞ is the measured cane spatial density in canes/m2 as a function of
time and S is the correction factor for spacing between the rows of canes equal to 1.2 (i.e. the average of
0.9 and 1.5). The multiplication by 10 converts kg/m2 to tons/hectare. Multiplying the field-dependent
BMC with the ESU-dependent cane spatial density functions results in the TCH graph, see Fig. 10. Hence,
we assume that the sugarcane plant growth within each field is constant and the cane spatial density
varies per ESU, with the latter consequently dictating the intra-field differences from the ground reference
data. These steps are indicated in Fig. 2 by operation “Product” based on “Cane biomass interpolators (per
field)” and “Cane spatial density interpolators (per ESU)”. In the sec:Technical-Validation section the
methodology for computing the one s.d. uncertainty bars, as depicted in the figure, is described.

Code availability
For pre-processing, visualizing and analyzing the presented data, MATLAB scripts are written, which are
available upon request.

Data Records
The ground measurements, published for public use, can be found on the 4TU Centre for Research Data
repository, see (Data Citation 1). The dataset contains readme files, which can be consulted for
explanations on the location of the data records and supplementary material.

Technical Validation
For the technical validation of the measured and estimated parameters, three sets of uncertainty metrics
are presented. The first set contains the absolute precisions of the measured parameters in the fields. The
second set contains the precisions of the computed cane biomass parameter, based on error propagation
laws applied on the biomass equation. The third set contains the precisions of the computed TCH
parameter, which gives an enhanced view on the reliability of the TCH estimates and the significance of
the intra-field differences.

Figure 10. Estimated average TCH over time of start of growth per ESU, along with the associated

uncertainty bars (one standard deviation).
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Absolute precisions of field-acquired parameters

For this, we distinguish between three precision metrics:

● Instrument operation precision: dispersion of the measurement values when measuring the same
parameter with the same instrument of the same plant. This precision is estimated through repeatedly
measuring the same parameters of the same plant.

● Idealization precision: dispersion of the measurement values when measuring the same parameter with
the same instrument at the same intended location but by chance another (neighboring) plant or cane
was selected. The diameter of the area in which these plants were selected was five meters,
approximately the accuracy of the GPS receiver. As a result, it was simulated that the measurements
were taken at independent and uncorrelated visits at the same designated GPS location.

● Function fitting precision: dispersion of stalk (mass density), ρS and leaf biomass per cane, BML, fitted
functions, approximated by the overall root-mean-square-error (RMSE) based on the measured data
and estimations from these fitted functions.

The instrument operation precision is part of the idealization precision and hence the two cannot be
treated as independent. The idealization precision can also be interpreted as a small scale local variability.
For both types, the measurements were taken five times consecutively and conducted once at early state
(until 150 days of growth), once at mid state (between 150 and 300 days of growth) and once at late state
(more than 300 days of growth). It is assumed that the measurements at these single dates are
representative for the corresponding growth states. In case of cane spatial density, the instrument
operation precision is the dispersion of the number of canes when counting the same part of the row five
times. For cane spatial density idealization precision, neighboring rows were counted. The counting was
carried out over five meters, typically consisting of 60 to 100 canes, and subsequently converted the cane
density per meter. The instrument operation precision for leaf biomass per cane is approximated by the
average of the s.d.’s from repetitive weight measurements of cane biomass, and assumed to be constant
over growth states. The idealization precision of leaf biomass per cane is approximated by the average of
s.d.’s of the cane biomass measured per ESUB, per growth state, scaled by the ratio between leaf biomass
and cane biomass. Hence, for both cases, the assumption is made that variability in cane biomass is
representative for variability in leaf biomass. For stalk (mass) density, the instrument operation precision
and idealization precision are computed through error propagation of the biomass equation (Equation 1),
resulting in:

σρS ¼ ρS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σBMS=BMSð Þ2 þ 2σD=Dð Þ2 þ σH=Hð Þ2

q
ð4Þ

Here, σρS , σBMS , σD and σH are the precisions of stalk (mass) density (ρS), stalk biomass (BMS), cane
diameter (D) and cane height (H), respectively. The ratio σBMS=BMS is approximated by the equivalent of
cane biomass, because at the ESUB locations only the variation in cane biomass was measured (see the
subsec:Biomass section). The precisions of the parameters used in the biomass equation and LAI are
shown in Table 2, expressed as one s.d. and valid for single observations. The idealization precision for
cane spatial density at late stage is approximated by following the trend of precisions during the previous
stages.

The function fitting precisions of stalk (mass) density and leaf biomass are not completely
independent from the idealization precisions, because the functions are fitted through the measured
parameters that are affected by the idealization precision (and consequently also by the instrument
operation precision). The function fitting precisions of these parameters are shown in Table 3.

Instrument operation Idealization

Parameter Early Mid Late Early Mid Late

Stalk thickness [cm] 0.2 0.2 0.3 0.2 0.3 0.4

Stalk height [cm] 0.8 10.2 11.8 5.6 32.9 25.9

Cane spatial density [stalks/row/m] 0.8 0.7 0.5 6.3 4.0 2.1

LAI [m2/m2] 0.2 0.2 0.3 0.2 0.4 0.4

Stalk (mass) density [kg/m3] 73 60 84 84 121 143

Leaf biomass per cane [g] 6.1 6.1 6.1 14.6 31.2 15.3

Table 2. Absolute instrument operation and idealization precisions, mainly based on the three
intensive measurement campaigns in three growth stages.

www.nature.com/sdata/

SCIENTIFIC DATA | 5:180150 | DOI: 10.1038/sdata.2018.150 12



Relative precisions of cane biomass and cane spatial density
Since the precisions of cane biomass are not directly measured, we apply error propagation laws on
Equation 1, resulting in:

σBMC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϑBMS þ χBMS

q
U BMSj j

� �2
þ σBMLð Þ2

r
ð5Þ

ϑBMS ¼ 2σD
D

� �2 þ σH
H

� �2 þ σρS
ρS

� �2

χBMS
¼ σD

D

� �2 þ 2σDσH
DH

� �2 þ 2σDσρS
DρS

� �2
þ σHσρS

HρS

� �2 ð6Þ

Here, σBMC , σD, σH , σρS and σBML are the precisions associated to cane biomass (BMC), cane diameter (D),
cane height (H), stalk (mass) density (ρS) and biomass leaf per cane (BML), respectively, whereby
Equation 4 is used for σρS=ρS and χBMS

is the second order term for biomass stalk per cane (BMS). For this
error propagation, given the limited measurement data availability, it is assumed that the errors of the
variables are uncorrelated and normal distributed. These equations have been applied with the
instrument operation and idealization precisions from Table 2 for computing the corresponding
precisions of cane biomass, σBMC . These are expressed as percentages relative to the average BMC

estimates and shown in Table 4 for the corresponding stages. It shows that the instrument operation
precision, as may be expected, is always smaller than the idealization precision.

Also incorporated in Table 4 is the function fitting precision that is a combination of the function
fitting precisions of cane (mass) density and leaf biomass, both individually approximated by their
function's RMSE (see Table 3). Since the absolute function fitting precision is taken as constant over time,
the relative precision (expressed as percentages) decreases over increasing cane biomass. From the
idealization precisions of D and H and the function fitting precisions of ρS and BML, the total precision at
location is computed. The idealization precisions of ρS and BML are not taken into account for the total
precision at location, because these are not independent from the corresponding function fitting
precisions. Consequently, the total precision at location is not a simple summation of these two precisions
and results in smaller values than the idealization precisions for mid and late state. The difference
between idealization precision and total precision can hence be interpreted as the effect of applying
function fitting of ρS and BML.

In addition, from the measurements taken at each corner point of the ESUs and ESUBs, the ESU
precision per stage is computed and shown in Table 3. These precisions are based on the averaged s.d.
and the function fitting precisions, per stage. The table shows that the estimated variability within five
meters (i.e. total precision at location) is similar yet slightly smaller than the variability within the ESU
dimension of 20 by 20 meters (i.e. total precision within ESU).

The total precisions at location of Table 3 are used for perturbing the logistic fits of cane biomass of
each field, as shown in Fig. 9. Explained in more detail, the uncertainty bars in Fig. 9, represented as one
s.d. on either side of the logistic fit, were computed by taking the s.d. of hundred individual re-fitted
logistic functions fitted through the measurements that were perturbed (normal) randomly based on the
total precisions at location as input s.d.’s.

The same logic of precision estimation is applied to cane spatial density precisions (σC), see Table 5,
again expressed as percentages relative to average cane spatial density. Fitting precisions are absent since
no estimated parameters are involved. Although the absolute instrument operation precisions (i.e.
counting error) decrease over the stages, see Table 2, the corresponding relative precision remains
constant because of a similar decrease in cane spatial density. The relative idealization precisions decrease
significantly over the stages, demonstrating the decrease in local variability. The ESU-related precisions
are smaller than the location-related precisions, which could be explained by the apparent bias of the
observer towards selecting and counting more dense sugarcane rows rather than randomly selecting
sugarcane rows. Nevertheless, to remain consistent with the cane biomass case, for perturbing the logistic
fits of cane spatial density again the total precisions at location were used. This is explained in more detail
in the next section.

Relative precisions of TCH
As briefly explained before, the estimated average tons cane per hectare (TCH) profiles of Fig. 10 are
based on the multiplication of the logistic fits of cane biomass of each field with the logistic fits of cane

Parameter Fitting precision

Stalk (mass) density [kg/m3] 65

Leaf biomass per cane [g] 58

Table 3. Absolute fitting precisions, approximated by the RMSE of the fitted functions, which are
based on the measurements in the ESUBs. It is assumed these are constant over the growth states.

www.nature.com/sdata/

SCIENTIFIC DATA | 5:180150 | DOI: 10.1038/sdata.2018.150 13



spatial density of each ESU. For estimating the uncertainty of these profiles for each ESU, the field-
dependent perturbed cane biomass profile is multiplied with the ESU-dependent perturbed cane
spatial density profile. Both the perturbation of cane biomass measurements as well as the perturbation
of cane spatial density measurements were carried out one hundred times, which means that the
resulting uncertainty is based on ten thousand combinations of perturbed profiles. The uncertainty
bars in Fig. 10 consequently represent the s.d. of the perturbed profiles on each side of the mean profile.
Table 6 shows these precisions as percentages of the TCH per state averaged over all ESUs per field.

These relative TCH precisions show a significant reduction over time due to the increased TCH values
over time and due to fitting of the logistic function for BMC and C based on the perturbed measurements.
This yields a significant difference compared to what would be expected when directly propagating the
cane biomass precisions of Table 4 and the cane spatial precisions of Table 5. To quantify this difference
(i.e. between the precisions associated to TCH based on the fitted functions and the precisions when TCH
would be directly computed through the measurements), we the apply error propagation based on
Equation 1 in combination with Equation 3, resulting in:

σTCH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϑTSH þ χTSH

q
U TSHj j

�

1

0
BB@

1
CCA

2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϑTLH þ χTLH

q
U TLHj j

�

2

0
BB@

1
CCA

23
775
1=22

6664 ð7Þ

ϑTSH ¼ 2σD
D

� �2 þ σH
H

� �2 þ σρS
ρS

� �2
þ σC

C

� �2
ϑTLH ¼ σBML

BML

� �2
þ σC

C

� �2
χTSH ¼ σDð Þ2

D2

� �2
þ 2σDσH

DH

� �2 þ 2σDσρS
DρS

� �2
þ 2σDσC

DC

� �2 þ σHσρS
HρS

� �2
þ σHσC

HC
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In addition to the explained variables of Equation 5 and Equation 6, σTCH and σC are the precisions
associated to tons cane per hectare (TCH) and cane spatial density (C), respectively, and χTSH and
χTLH are the second order terms for tons stalk per hectare (TSH) and tons leaf per hectare (TLH).
Similarly to Equation 5, the same error propagation assumptions apply and the results of Table 7
are expressed in percentages of the precisions relative to the average TCH estimates for the corresponding
state. The precisions associated with the TSH and TLH are grouped separately (labeled group 1 and
group 2, respectively) in order to show their magnitude relative to the TCH estimate at that state.
The function fitting precisions again are approximated by the overall RMSE and in this case are based
on the measured data and the fitted functions of cane spatial density, ρS, for group 1 and leaf biomass,
BML, for group 2. Similarly to before, for these modeled parameters, only the fitting precisions are
taken into account and their corresponding idealization precisions are disregarded. Also, the ESU-related
precisions are again based on the averaged s.d. and the function fitting precisions, per stage. For group 1
+2, the idealization precision (averaged s.d. without ρS and BML function fitting precisions) is included as
well. This is used for comparison with the variogram at the end of this section.

Cane biomass (BMC) Early state Mid state Late state

Idealization precision 21% 30% 32%

(Instrument operation precision) (19%) (16%) (20%)

Function fitting precision 29% 14% 12%

Total precision at location 32% 23% 23%

Total precision within ESU 36% 24% 27%

Table 4. Relative precisions with respect to cane biomass (BMC).

Cane spatial density (C) Early state Mid state Late state

Idealization precision 45% 29% 19%

(Instrument operation precision) (5%) (5%) (5%)

Total precision at location 45% 29% 19%

Total precision within ESU 23% 16% 10%

Table 5. Relative precisions with respect to cane spatial density (C).
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The overall interpretation is that the leaf precision component, group 2, contributes less to the
total cane precision, group 1+2, than the stalk precision component, group 1, at mid and late stage,
which is logical given the overall weight dominance of stalk biomass to the cane biomass. The early
stage leaf precision component is indeed dominated by the function fitting precision, due to the
earlier mentioned relatively large fitting error and large weight portion of the plant during this state.
This group also shows that in the early state the precisions are always larger than the mid and late states,
which is due to the fact that the relative contribution of leaf biomass to the cane biomass decreases over
time. Also, similar to before and as expected, the instrument operation precisions are always lower than
the idealization precisions and the main contributor to the latter is the local variability in plant
parameters. In case of group 2, the effect of local variability is apparently almost entirely dominating the
idealization precision. The fact that the total precisions at location of group 2 is equal to the propagated
sum of the idealization precisions and function fitting precisions shows that the contribution of leaf
biomass to the idealization precision is small compared to the cane spatial density. This confirms the
finding in the previous section that the contribution of cane spatial density to the total precisions is
dominant.

A more detailed assessment of the results reveals that the instrument operation precisions of group 1
shows lower values for mid state than for the other stages, which is considered to be in the expected
margin of error. In other words, it could be assumed these precisions should be viewed as constant over
the stages. The total precision within ESU shows that these are comparable though slightly smaller (again
assumed to be within the expected margin of error) than the total precisions at location, which means
that the variability within an ESU is similar to the variability at the location. For all second order terms of
the previous equations it holds that they only marginally contribute, up to 2% point, to the corresponding
precisions, indicating that all higher order terms can be safely ignored.

The total precisions at location of Table 7 (based on error propagation) are generally larger than
the precisions of Table 6 (based on profile perturbations) and there is a clear difference in
temporal development of the precisions. For example, when TCH would be directly estimated

Field Early state Mid state Late state

F1 13% 9% 9%

F2 9% 8% 7%

F3 19% 7% 6%

F4 31% 7% 7%

Average 18% 8% 7%

Table 6. Relative precisions with respect to TCH as a result from perturbation of the measurements
in the logistic fits. The results per ESUs are averaged per field.
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Figure 11. Biomass estimates from intensive measurements. (a) biomass estimates in TCH versus distance

from intensive measurements at field F2; (b) corresponding variogram, where the variance (2γ) in (TCH)2 is

function of the lag distance h.
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from the measurements through Equation 3 and Equation 1, the precision is up to 45% of the TCH
value (Table 7). This is significantly less precise than when the logistic fitting method of cane biomass
and cane spatial density is used, where the precision is on average 18% in early state to 7% in late
state of the TCH value (Table 6). This significantly lower precision is a result from the assumption
that the boundary conditions of the general cane biomass growth curve can be used to constrain the
field-dependent cane biomass growth curves in combination with the assumption both these curves
and the ESU-dependent cane spatial density curves can be modeled by logistic functions. The advantage
of this approach is that at any point in time (e.g. at the time of remote sensing images) in the
growth period the TCH can be acquired, whereas with the direct measurements, interpolation and
extrapolation needs to be carried out which induces another uncertainty. Hence, the modeled TCH
curves per ESU are recommended for further use, e.g. for compare with remote sensing patterns in time
and space.

The final set of measurements for describing the TCH variability was taken on a single date, 19
December 2014 (66 days after start of growth), in field F2. These were taken along a profile, starting from
point F2-IM1 in Fig. 4 until 400 meters north from that point, every 5, 10 and 20 meters along that line,
resulting in 24 local measurement locations. At every location, leaf length, stalk height, stalk thickness,
cane spatial density, plant spatial density, LAI and soil moisture were measured. At each location,
biomass values were computed from the biomass re-fitted logfit functions per field of Fig. 9 multiplied by
the measured cane spatial densities. The results are shown as a profile along the measurement line and as
a variogram, see Fig. 11. The variance (2γ as function of lag distance h) in each bin was estimated from 36
to 61 sample pairs. The associated s.d. as percentage of the averaged estimated biomass (approximately 30
tons/ha) is 24% within the spatial dimension of an ESU (h= 20 meters) and ranges to nearly 33% at the
maximum calculated distance (h= 160 meters). The former value is lower than the early state idealization
precision of group 1+2 but similar to the idealization precision within ESU of group 1+2 in Table 7.

Usage Notes
In (Data Citation 1), the readme files explains the location of the files and folders. All raw measurements
records can be found in one Excel sheet, which is subsequently used in MATLAB for further processing
and analysis.
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Total precision within ESU 27% 27% 28%

Group 2: leaf component (TLH) Early state Mid state Late state

Idealization precision (Instrument
operation precision)

22% (4%) 6% (1%) 2% (1%)

Function fitting precision 26% 6% 5%

Total precision at location 34% 8% 5%

Total precision within ESU 28% 6% 5%

Group 1+2: total cane (TCH) Early state Mid state Late state

Idealization precision (Instrument
operation precision)
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SPACE-BASED SAR AND OPTICAL

REMOTE SENSING FOR SUGARCANE

PRODUCTIVITY MONITORING

O que me tranquiliza
é que tudo o que existe,

existe com uma precisão absoluta.
O que for do tamanho de uma cabeça de alfinete

não transborda nem uma fração de milímetro
além do tamanho de uma cabeça de alfinete.
Tudo o que existe é de uma grande exatidão.

Pena é que a maior parte do que existe
com essa exatidão

nos é tecnicamente invisível.
O bom é que a verdade chega a nós

como um sentido secreto das coisas.
Nós terminamos adivinhando, confusos,

a perfeição.

Clarice Lispector

T HIS chapter comprises one journal article and two conference proceedings. The arti-
cle has been published in Remote Sensing, Earth Observations and Crop Models for

Sustainable Agricultural Management, in 2019 [1]. The proceedings have been published
in Proceedings of IGARSS (IEEE International Geoscience and Remote Sensing Sympo-
sium), in 2016 [2], and in Proceedings of IGARSS (IEEE International Geoscience and
Remote Sensing Symposium), in 2018 [3]. The journal article demonstrates how C-band
and L-band SAR and optical observations can be used for the monitoring of sugarcane
productivity based on the ground measurements that were described in the previous

35
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chapter. It includes a sensitivity analysis of the SAR and optical signals to sugarcane
biomass development, precipitation events and sensor configurations. It also presents
the conditions during which these signals can be used effectively for growth monitoring
in terms of growth stages and precipitation conditions. Finally, the temporal consisten-
cies between the remote sensing images per sensor and between sensors are demon-
strated.

The first proceeding provides insights into the effectiveness of using satellite-based
SAR and optical imagery over sugarcane fields for the detection of persistent patterns
in time and space. The trends of growth as measured by the two sensors are compared
and the challenges for sugarcane growth monitoring are demonstrated. The ground ref-
erence measurements from the previous chapter were also used here to limit the time
span of observations for the analysis. The second proceeding demonstrates how spatial
gaps in a sugarcane field affect C-band and L-band SAR signals. The variability of these
effects with varying spatial averaging windows is addressed together with the impacts of
precipitation conditions and vegetation heights on the signal’s behavior. For this study,
a ground reference dataset was used that was collected during another measurement
campaign than described in the previous chapter.
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Abstract: Space-based remote sensing imagery can provide a valuable and cost-effective set of
observations for mapping crop-productivity differences. The effectiveness of such signals is dependent
on several conditions that are related to crop and sensor characteristics. In this paper, we present the
dynamic behavior of signals from five Synthetic Aperture Radar (SAR) sensors and optical sensors with
growing sugarcane, focusing on saturation effects and the influence of precipitation events. In addition,
we analyzed the level of agreement within and between these spaceborne datasets over space and
time. As a result, we produced a list of conditions during which the acquisition of satellite imagery
is most effective for sugarcane productivity monitoring. For this, we analyzed remote sensing data
from two C-band SAR (Sentinel-1 and Radarsat-2), one L-band SAR (ALOS-2), and two optical sensors
(Landsat-8 and WorldView-2), in conjunction with detailed ground-reference data acquired over several
sugarcane fields in the state of São Paulo, Brazil. We conclude that satellite imagery from L-band SAR and
optical sensors is preferred for monitoring sugarcane biomass growth in time and space. Additionally,
C-band SAR imagery offers the potential for mapping spatial variations during specific time windows
and may be further exploited for its precipitation sensitivity.

Keywords: sugarcane growth monitoring; SAR and optical remote sensing; precipitation effects;
saturation effects

1. Introduction

Sugarcane is the number one globally cultivated crop in terms of production quantity, more than the
second and third crops, maize and rice, combined. Brazil is the largest sugarcane producer, amounting to
almost 40% of total global production [1], while São Paulo state hosts more than 60% of Brazil’s sugarcane
acreage [2,3]. Over the last 15 years, this acreage more than doubled [4]. The main products are sugar and
bioethanol; the latter allows Brazil to reduce the national automotive’s gasoline consumption by more than
half [2]. This illustrates the importance of sugarcane production and research in São Paulo, which hosts
the area of study.

Sugarcane is a semiperennial crop; after each growth cycle, typically lasting for 12 to 18 months for
Brazilian plantations [5], new ratoons emerge from the same root system. Since the yield decreases over
time, the plants and the root system are generally removed after five to seven years, and new shoots are
planted. Indicatively, the growth cycle follows phenological phases as depicted in Figure 1. During the
last phase, the sucrose content in the stem accumulates and senescence of the leaves occurs [5–7].
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Figure 1. Phenological phases of sugarcane and their corresponding time frames, as well as indicative
heights and plant geometries. Adapted and modified from NaanDanJain [8].

The sensitivity of remote observations to crop conditions was largely investigated for crop-monitoring
uses [9–11] as well as to improve the understanding of the plant–microwave interaction [6,12].
Review works by McNairn and Brisco, Steele-Dunne et al. [13,14], and a study by Moran et al. [12]
give a general introduction on the factors that affect Synthetic Aperture Radar (SAR) signals over the
course of crop growth. The signal backscatter is mainly influenced by three mechanisms: the interaction of
the microwaves directly with the vegetation, directly with the soil, and the interaction between vegetation
and the underlying soil. Regarding the vegetation contribution, the backscatter coefficient is governed by
its dielectric properties and its geometrical aspects. Its dielectric properties are mainly dependent on the
vegetation water content and water droplets on the plant after precipitation events. The contribution from
the soil is similarly governed by its geometry (roughness and slope) and by its moisture. The backscatter
coefficient is further dependent on the configuration of the sensor, including viewing geometry, wavelength,
and polarization. The soil backscatter contribution for C-band SAR is small from the leaf-development
stage onward [12], while it is more significant for L-band SAR signals with standing vegetation [14].
In addition, the impact of the incidence angle on backscatter was found to be minimal compared to the
effects from soil and vegetation conditions for C-band SAR [12], but more apparent for L-band SAR [6].

The monitoring capabilities of sugarcane growth with optical signals was described by several
studies mainly focusing on biophysical-parameter extraction [3,9,15–17] and yield estimation [10,16,18,19].
Varying rates of success were reported, and the main limiting factors were attributed to the scarce
availability of optical images and the complex relation between observed signals and the estimated
parameter or feature. By integrating agrometeorological data with vegetation indices, better results
were achieved, though still not operationally applicable due to challenges in the agrometeorological
modelling [10]. Another solution was found in the use of optical data acquired by unmanned aerial
vehicles at the time of interest [9]. This study also showed that spatial patterns in height estimations from
optical signals were in agreement with observed heterogeneities in the ground-reference data. Furthermore,
a short study on the value of C-band SAR (Radarsat-2 and Sentinel-1) and optical imagery (Landsat-8),
acquired over sugarcane fields [20], found that SAR imagery contains fewer spatial features that are
statistically significant and persistent in time than optical imagery.
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Far fewer studies were published on the capabilities of SAR signals for the mapping and monitoring
of sugarcane than were published for other crops like wheat, barley, and maize. Commonly, the works
on sugarcane cover the use of SAR signals for retrieving sugarcane height and harvest events. Two of
the foremost publications [6,21] show that X-band signals from TerraSAR-X and C-band signals from
ASAR saturate at a lower sugarcane height than L-band signals from ALOS and NDVI signals from SPOT
sensors. It was observed that X-band signals experience saturation between 0.5 and 1 m, and C-band
signals after 1 m. L-band signal backscatter increased significantly until 1.5 m, moderately from 1.5 to 2 m,
and marginally from 3 m onward. In addition, a decrease in NDVI and C-band radar backscatter close to
harvest was demonstrated, which was linked to the severe drying of the sugarcane. This drop was found
to be on the same order for harvested fields where no (assumed) drying occurred before harvest, leading
to ambiguity on the detection of harvest events. For L-band signals, a clear relationship was observed
between HH backscatter and NDVI over the course of sugarcane growth. Here, the authors relate their
simultaneous declines to water stress of growing maturating sugarcane plants.

Other works, led by Unicamp in Brazil, focused on the behavior of ALOS signals with changing
sugarcane conditions [11,22,23]. It was found that signals can be used to discriminate between the first
phases of sugarcane growth until the grand growth phase commences, after which the signals saturate.
In addition, it was concluded that the backscatter acquired in HH increased significantly when rows
perpendicular to the look direction were viewed (in the order of 1.2 dB), similar to what was observed in
Baghdadi et al. [6], but only for the first eight months (until the last phenological phase). This phenomenon
is also named ’flashing field’ in the literature. No significant effect of the row direction was observed
for HV signals. Emphasis was placed on the need of including rain events when interpreting the signals
because of the significant signal increase, although this was not quantified.

In light of these literature findings, we identified a scarcity in published research on the
extraction of spatial patterns from remote sensing imagery acquired over crops, especially sugarcane,
their spatial consistency over time, and the effects from precipitation and varying beam-acquisition modes.
The temporal development of spatial patterns in relation to the ground-measured biophysical parameters
of sugarcane is also underexposed. Accordingly, in this manuscript, we first demonstrate the effects of
sugarcane conditions on optical and SAR signals, with specific focus on biomass growth and precipitation
events. Subsequently, we extracted the spatial patterns that are most consistent in time and compared
these patterns between the different sensors in order to discover their agreements and differences. Finally,
we related these patterns to intrafield sugarcane-biomass variations. The term consistency is commonly
used in this document as an abbreviated denotation for the temporal consistency of spatial features in
remote sensing imagery, which is further mathematically defined in Section 3.2.

Since the mentioned literature shares the finding that cross-polarization signals are generally more
effective in mapping and monitoring sugarcane than copolarization signals, emphasis is put on the analysis
of HV signals in this paper; HH signals are addressed, but not with the same level of detail.

2. Study Area and Data

2.1. Fields of Interest

The four sugarcane fields of interest are owned by one of the largest sugarcane producers and energy
companies in Brazil. They are located 20 km from Piracicaba in São Paulo state. All fields are within 15 km
from each other (see Figure 2), connected by interfield roads of two to ten meters wide. The agriculture
in this region is dominated by sugarcane plantations and is relatively flat. The fields vary in size, ratoon
cycle, and time of growth and harvest (see Table 1), but have the same soil type.
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Figure 2. Location of the four fields of interest, indicated by red polygons, and weather stations, indicated
by yellow stars.

Table 1. Characteristics of the four sugarcane fields; growth and harvest dates are not applicable to the
entire field for F1 and F2.

Field Name Ratoon Area (ha) Start of Growth Harvest Center Coordinate (Latitude, Longitude)

F1 1st cycle 58 30/10/2014 07/10/2015 −22.9607◦, −47.4578◦

F2 1st cycle 115 14/10/2014 07/12/2015 −22.8558◦, −47.4228◦

F3 2nd cycle 25 15/08/2014 26/07/2015 −22.8738◦, −47.5230◦

F4 9th cycle 59 01/08/2014 21/07/2015 −22.8895◦, −47.5108◦

2.2. Ground-Reference Data

From October 2014 to October 2015, an extensive set of ground-reference measurements were taken,
amounting to a total of more than 3500 individual measurements on LAI, biometrics (including stalk height
and thickness, leaf length, and cane spatial density), and biomass parameters (including cane water content
and cane mass density). In Molijn et al. [24] we present in detail the methodologies for acquiring the
measurements, the measured parameters, and the applied modelling and uncertainty analyses. The dataset
itself was published for public use [25]. To summarize, two types of measurement locations were selected,
spread over four fields (see Table 1 and Figure 3). The first type of locations consists of 15 Elementary
Sampling Units (ESUs) that were selected based on the intrafield variability seen in Landsat-8 (LS8) NDVI
images of previous years. The second type consists of six ESUs for biomass (ESUBs). Each location
covers approximately an area of 20 by 20 m and was, on average, revisited 15 times during the growth
period (see also Section 2.3). At the ESUBs, LAI and biometrics, consisting of sugarcane thickness, height,
and cane spatial density, were measured, as well as dry and wet biomass. At the ESUs, only biometric
measurements were taken and used as input parameters in a biomass-estimation equation, which was
calibrated and validated by the measured biomass samples. This methodology allows for estimating, in a
nondestructive manner, the sugarcane biomass in each ESU. Since only biometrics and LAI were measured
at these locations, ground conditions were not affected and could be used for the analysis of the remote
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sensing signals. The goodness of fit, expressed as the coefficient of determination, between estimated
and measured biomass was 0.90, which gave us sufficient confidence in the validity of the method for
estimating biomass at the required ESUs for this study. Biomass samples were also used for retrieving
cane mass density and leaf mass per cane.

It should be noted that, for Fields F2, F3, and F4, the start of growth dates apply for the entirety
of each field. For Field F2, sugarcane harvesting lasted for several weeks due to delays. Consequently,
we analyzed this field until its first harvest event. For Field F1, certain parts of the field were uniformly
grown over the course of the remote sensing observations. The parts that hosted ESUs and ESUBs were
extracted and individually incorporated in the analyses based on their start of growth dates.

Figure 3. Delineation of the four studied sugarcane fields. Background map shows NDVI from WorldView-2
on 25 January 2015. Plus signs (+) and crosses (×) show, respectively, the location of the elementary sampling
units (ESUs) and elementary sampling units for biomass (ESUBs). White patches in Field F2 are masked
clouds. North direction is up.

In this manuscript, sugarcane biomass is defined as cane biomass, which is the the biomass of a single
stalk (i.e., stem) together with the biomass of its leafs. The product of cane biomass with cane spatial
density gives the biomass per unit area, commonly expressed as tons cane per hectare (TCH) [26–29].
The TCH estimates of all four fields were used for backscatter analysis (Section 3.1). For subsequent
analyses, only the TCH estimates of Field F2 were used due to three reasons. First, the time series of the
satellite imagery covers the entire growth period of this field as opposed to Fields F3 and F4. Second, it is
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the only field with four ESUs (see Figure 3), and in this field the largest intrafield TCH differences were
measured (see the left part of Figure 4). Here, the figure’s uncertainty bars represent one standard deviation
on either side of the mean profile based on the computed uncertainties associated with the measurement
error and local variability; see Molijn et al. [24] for more detailed explanations. Third, on 19 December
2014 (66 days after start of growth, cane height up to one meter) in Field F2, 24 intensive measurements
were taken for an indication of intrafield biomass variability. In total, the locations were spread over 400 m
with spaces of 5, 10, or 20 m north of point F2-IM1 (see Figure 3). The resulting biomass estimates along
this profile (see the right part of Figure 4) showed gaps and peaks up to 50% higher than the field average
TCH (approximately 30 tons per hectare) and no evident spatial trend. These variations are a direct result
of variabilities in cane spatial density.

The development of a selection of the measured parameters during the ground campaign (see Figure 5)
shows a deflection point for leaf length and stalk thickness during the canopy-development phase and a
continuous increase of stalk height until harvest. The ratio of leaf biomass over cane biomass shows that
leaf biomass is dominant during, approximately, the first 50 days (i.e., establishment phase), after which
the stalk biomass dominates and the leaf biomass contribute rapidly declines. The main reason is the
decline in leaf wet content and increase in stalk mass density combined with stalk growth [24].

Finally, daily cumulative precipitation measurements were collected by seven weather stations.
At least one weather station was within 10 km distance of each field. In terms of detected rain, the stations
were in 96% agreement with each other, based on which we made the assumption that all fields were
subject to the same condition of being precipitated or not precipitated.
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Figure 4. Estimated tons cane per hectare (TCH) over growth time for each elementary sampling unit (ESU)
of Field F2, along with the associated uncertainties (left). F2-ESU1 and F2-ESU2 nearly overlap; similarly
for F2-ESU3 and F2-ESU4. Profile of biomass estimates 400 m along from the intensive measurement at
Field F2 (right).
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Figure 5. Temporal developments of measured leaf length, stalk thickness, and stalk height, averaged per
ESU and accompanied by fitted trend lines. The cane and leaf biomass (in kg) per cane and their ratio over
time are based on the trend lines of individual stalk- and leaf-biomass measurements.

2.3. Remote Sensing Data

2.3.1. Acquisitions and Preprocessing

Sensor characteristics vary in terms of wavelengths, polarizations, resolutions, and beam angles (see
Table 2). Radarsat-2 (RS2) and ALOS-2 data were multilooked to a 30 by 30 m resolution. Sentinel-1 (S1)
images were resampled to the same 30 by 30 m resolution grid. All radar images were radiometrically
calibrated, geometrically corrected, terrain-corrected, and thermal-noise-corrected. SAR images were
labelled as precipitation (or rain)-affected based on the time of acquisition and daily cumulative
precipitation measurements from the nearest weather station. No precipitation threshold was applied.

The acquisition schemes of ground-reference and remote sensing data (Figure 6) show that the entire
growth cycles are covered by ground and space measurements, except for SAR data during the first three
months of Fields F3 and F4. Of the 29 LS8 acquisitions available, 11 had clear-sky observations for all
fields. For all sensors, the number of acquisitions were counted between 1 July 2014 and 31 December 2015,
i.e., just before the first start of growth and after the last harvest event of the fields. WorldView imagery
consists of two WorldView-2 (WV2) images and one WorldView-3 (WV3) image. The WV2 images were
acquired on 25 January and 11 August 2015. The WV3 image was acquired after the harvest events on
21 March 2016, and was used for additional visual inspection of the fields.
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Table 2. Characteristics of available remote sensing data. 1 RS2 = Radarsat-2, S1 = Sentinel-1, LS8 = Landsat-8, WV = WorldView; 2 FQ: Fine Quad, W: Wide, S:
Standard, EW: Extra Wide mode, SM: Stripmap, ASC: ascending pass, DSC: descending pass; 3 incidence angles; 4 UTC and approximate times, local time -2 or -3
hours; 5 regridded by ESA to medium resolution GRD product of 93 m × 87 m resolution; 6 five images with HV + HH, and three images with only HH; 7 approximate
SLC product resolutions at field in meters; † rain label based on the daily cumulative previous to the day of acquisition; * rain label based on the daily cumulative on
the day of acquisition. Reported resolutions and angles are mainly based on sensor and product descriptions [30–36].

Sensor 1 Instrument Mode 2 Polarizations/
Bands Used

Nominal Resolution
(Slant Range × Azimuth) 7 Angle Fields 3 (◦) Acquisition Frequency/Time 4 Images

RS2 C-band
(5.5 cm)

FQ16W (ASC) HH + HV +
VH + VV 5.2 × 7.6 35.7–36.3 24 days/21:45 * 14

FQ21W (DSC) 40.9–41.4 24 days/08:32 † 8
S5 (ASC & DSC)

HH + HV 13.5 × 7.7
40.9-41.4 24 days /21:45 * & 08:32 † 2

S6 (ASC) 41.5–41.9 24 days/21:49 * 5
S7 (ASC) 48.4–48.9 24 days/20:55 * 9

S1 C-band (5.5 cm) EW (DSC) HH + HV 11.5 × 43 5 36.0–36.6 12 days/08:38 † 33

ALOS-2 L-band (24 cm) SM (ASC & DSC) HH + HV or HH 6.0 × 4.3 31.3–42.8 14 days /03:49 † & 14:43 † 8 6

LS8 Optical Reflectances RGB + NIR 30 × 30 NA 16 days/10:10 29

WV Optical Reflectances RGB + NIR1 <2 × <2 NA NA 3
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Figure 6. Temporal distribution of remote sensing images and ground-reference measurement dates.
(Right box) summary of acquisitions, including number of image acquisitions per sensor, counted over
growth duration. Landsat-8* symbols, LS8 acquisitions without cloud obstruction for all fields.

The remote sensing images of Field F2 taken by the different sensors, acquired approximately at the
same date (see Figure 7), illustrate the spatial variabilities of the signals per sensor and their differences
between sensors. Apart from the difference in backscatter magnitude between the C-band and L-band,
the images were typically noisy and show no clear pattern agreement between the sensors. The most
visually dominant field features included intrafield roads (low NDVI) versus the sugarcane plants (high
NDVI). Outside the field, the most important feature was the water-drainage channel along the upper
field border, as visible in the ALOS-2 image. This strip naturally contains more water, especially along the
upper-right border due to elevation differences (see Section 2.3.3).

As described in Section 1, one of the factors causing variability in SAR backscatter intensities over
vegetation is a changing incidence angle. This applies to the RS2 images as well due to the various
acquisition modes. Even though the effect of incidence angle was reported to be minimal compared to the
effects from varying soil and vegetation structure conditions, we applied an incidence-angle correction
on RS2 images in order to more accurately compare the signals from RS2 and S1. Overall, considering
the growth characteristics of sugarcane, we assumed high backscatter attenuation through the canopy
based on the described literature and the high volumetric density of sugarcane. Consequently, we applied
the following incidence-angle correction, based on the cosine dependency as proposed by Attema and
Ullaby [37]:

σ0
RS2∗ = σ0

RS2
cos θS1

cos θRS2

where σ0
RS2* is the beam-adjusted RS2 backscatter coefficient, σ0

RS2 is the original RS2 backscatter coefficient,
θRS2 is the RS2 incidence angle over the fields (which differs per mode), and θS1 is the S1 incidence angle
over the fields (taken as 36.3º). Notice that this angle correction is equivalent to using the Gamma nought
(γ0)-normalized backscatter. As an illustrative example of the effects of this equation, we applied the
correction on one S1 EW image (swath width 400 km) covering more than 40,000 sugarcane fields that were
delineated by the Canasat project [4,38]. Before correction, the median signal backscatter ranged between
−14.3 dB at a 29◦ and −16.1 dB at 47◦ incidence angle (see the left part of Figure 8). After correction,
the spread of the median signal backscatter ranged from −14.6 dB at a 29◦ to −15.3 dB at 47◦ incidence
angle; the median at 36.3º before and after correction remained −14.9 dB (see the right part of Figure 8).
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Since the RS2 signal radiometric stability was smaller than 1 dB [30], we accepted this method for reducing
the spread.

Figure 7. Sample images from available sensors, spatially averaged to 30 by 30 m pixel spacing,
at approximately the same date for Field F2, around 100 days after start of growth, with a sugarcane
height of 1 m. Plus signs (+) and crosses (×), location of ESUs and ESUs for biomass (ESUBs), respectively.
North direction is up and field spans approximately 1.4 km northward by 1.7 km eastward.
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Figure 8. S1 EW HV backscatter versus incidence angles, before incidence-angle correction (left) and after
incidence-angle correction (right).
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2.3.2. Signal-Noise Budgets and Accuracies

For computation of the temporal consistency of spatial patterns from remote sensing imagery (as is
further explained in Section 3.2), sensor-specific signal-noise budgets are quantified. For SAR sensors,
we considered radiometric stability (ςRAD), maximum Noise Equivalent Sigma Zero (ςNESZ) and speckle
noise (ςSPECKLE) as contributions to the total noise budgets. The first noise, ςRAD, acted as an multiplicative
factor, whereas the second, ςNESZ, had an additive nature. Both were taken from nominal sensor and
product specifications [30,32,33,39] (see Table 3). ςSPECKLE is dependent on the number of looks and, hence,
on the spatial averaging window. For intra- and intersensor imagery-consistency analysis, we resampled
the signals of all sensors over a spatial window of 90 by 90 m (the approximate S1-EW GRD product
resolution). Based on the original SLC ground resolutions, the resulting numbers of looks are 11 for
S1-EW, 128 for RS2-FQ, 55 for RS2-S, and 186 for ALOS-2. For ςSPECKLE, it was assumed that the scattering
medium in the averaging window was homogeneous. Total noise ςTOTAL is quantified for three reference
backscatter values that are indicative for the backscatter range found at the sugarcane fields (see Table 3).

As an explanatory example, the noise contributions of S1-EW were specified as follows. ςRAD

(expressed as 3σ) is a constant equivalent to 0.5 dB, ςNESZ is equivalent to −22 dB and needs to be treated
as relative to the signal [40], contributing 0.1, 0.3, and 1.4 dB to the three reference signals of −10, −15,
and −20 dB, respectively. ςSPECKLE is dependent on the number of looks (eleven in this case), but not
on the reference signal, and is equivalent to 1.4 dB. As a result, ςTOTAL is approximately 1.7 dB for a
backscatter coefficient of −15 dB, whereby ςSPECKLE is the major contributor to the noise for high-valued
signals and ςNESZ becomes increasingly important for the low-valued signals.

Table 3. Signal-noise budget associated with data from different sensors and modes for 90 by 90 m spatially
resampled SAR signals, with total noise computed for three backscatter intensity scenarios. Radiometric
stability and NESZ values were extracted from sensor and product descriptions [30,32,33,39].

Parameter S1 RS2-FQ RS2-S ALOS-2

ςRAD(3σ) 0.5 dB 1 dB 1 dB 1.2 dB
ςNESZ −22 dB −35 dB −29 dB −28 dB

ςSPECKLE 1.4 dB 0.4 dB 0.6 dB 0.3 dB
ςTOTAL@ −10 dB 1.5 dB 0.5 dB 0.7 dB 0.5 dB
ςTOTAL@ −15 dB 1.7 dB 0.5 dB 0.7 dB 0.5 dB
ςTOTAL@ −20 dB 2.7 dB 0.5 dB 0.8 dB 0.5 dB

With regard to the noise associated with NDVI from LS8, Akdim et al. [41] reported NDVI root
mean square error (RMSE) values of 0.047 and 0.033 through comparing simulated NDVI values of LS8
with SPOT-4 images and LS8 with RapidEye images, respectively. To verify and improve these values,
we assessed the temporal NDVI variation over stable vegetation, for which nearby native forest areas
were selected, and computed the RMSE based on consecutive images with a maximum time difference
of 32 days (i.e., maximum two revisits apart). We assumed that the differences of surface reflectances
caused by the vegetation itself within this time frame were insignificant with respect to sensor noise.
We also acknowledge that (illumination and sensor) geometry and topographic conditions affect NDVI
variations [42,43] and contribute to this noise. Computation resulted in an additional RMSE of 0.027 and,
through averaging the reported RMSEs (i.e., by taking the square root of the mean of the square of the
RMSEs), we concluded on a total NDVI noise budget of 0.037.

Geolocation accuracies, defined as the RMSE estimated from point target monitoring, were smaller
than 6 m for the relevant beam modes of S1, RS2, and ALOS-2 [44–47]. The geolocation products of the
optical sensors are commonly specified using circular error at the 90th percentile (CE90), which, for LS8 is
less than 20 m [48,49], and for the WorldView sensors this is less than 5 m [36,50,51].
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2.3.3. Elevation

The widely used Shuttle Radar Topography Mission (SRTM) data product provided by NASA was
used for the elevation information of the sugarcane fields. Acquired in 2000, the DEM is offered as
a 30 m resolution product. Since it was derived based on C-band and X-band interferometric SAR
(InSAR) techniques, several studies reported that errors in SRTM increase with increasing vegetation
cover, especially for forests, due to the limited penetration of the X-band and C-band signals to the
ground [52,53]. The methodologies these and similar works propose for correcting overestimations are
based on vegetation masks and coarse-resolution-estimated vegetation heights. Hence, for this study we
assumed these elevations could be used for interpreting relative in-field ground-elevation differences
at our time and area of interest. The variations in elevation of Field F2 (Figure 9) show that adjacent to
the boundaries of the upper part of the field, especially at the lowest-elevated places with the highest
slopes, native vegetation strips are situated, serving as drainage systems for excess water discharge and
water preservation.

Figure 9. Elevation of Field F2. North direction is up and field spans approximately 1.4 km northward by
1.7 km eastward.

3. Methods

3.1. Backscatter Analysis

In order to investigate the effect of increasing biomass on remote sensing signals, the average of the
modeled ESU biomass values was taken, expressed in TCH, per sugarcane field at each remote sensing
acquisition. It is assumed that these averages are representative for the biomass conditions of the entirety of
the corresponding field. Subsequently, the average of the remote sensing signals was taken per sugarcane
field and plotted against TCH values. For each TCH bin, the average and standard deviation were taken
for illustrating development and spread over time. Together with the TCH axis, the time of growth and
stalk-height axes is visualized as well, though only for approximate and indicative purposes since these
are not strictly linearly related to the TCH values. We defined the saturation point of the remote sensing
signal as the first point in time when it does not increase with increasing biomass. For visualizing the
effects of rain on SAR backscatter, box plots were produced based on SAR signals after saturation points.
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3.2. Intrasensor Imagery-Consistency Analysis

For each sensor, the temporal coherence of the spatial features in remote sensing imagery was
examined. For this, we introduce a spatiotemporal signal-consistency measure, based on which time
windows with maximum consistencies are deduced. Remote sensing images were first spatially averaged
over a 90 by 90 m window (approximately the S1 GRD product resolution, see Section 2.3). Subsequently,
in order to extract pattern dynamics, we applied z-score normalization (Zi,p) for each pixel (p) per image
(i), by subtracting the field average of the signals (µi) from the pixel value (Xi,p) and normalizing by the
field standard deviation of the signals (σi):

Zi,p =
Xi,p − µi

σi
(1)

For the temporal consistency of the images, we compared all Ni available images from the start of
growth until harvest with each other, i.e., for Ni(Ni−1)

2 possible combinations. Consistency metric C is
based on the ratio between log-likelihoods:

C = 1 − logL0

logL1
(2)

The first element, logL0, represents the log-likelihood of the null hypothesis that the two images
belong to the same spatial distribution, and hence share the same spatial pattern, and is expressed by:

logL0 = − 1
Np

Np

∑
p=1

(
Zi,p − Zj,p

)2

σ2
Zi,p

+ σ2
Zj,p

(3)

The second element, logL1, represents the log-likelihood of the alternative hypothesis that the two
images do not share the same spatial pattern, but instead a random permutation of image values:

logL1 = E


− 1

Np

Np

∑
p=1

(
Zi,p −SNr

(
Zj,p

))2

σ2
Zi,p

+ σ2
Zj,p


 (4)

Here, Np is the number of z-score values in the field and Nr is the number of iterations for which the
random permutations, SNp , of the z-score values of image j, Zj, is conducted. This Nr was heuristically
set to 100. In addition, σ2

Zi,p
and σ2

Zj,p
are the sensor and acquisition mode-specific variances per pixel p

in z-score-equivalent values, equal to pixel-specific
ς2

TOTAL,p
σi

and
ς2

TOTAL,p
σj

, respectively. The corresponding
total noise budgets were presented in Table 3. For LS8, noise is based on the RMSE value as reported in
Section 2.3, without taking into account noise reduction from spatial averaging. The resulting consistency
metric, with −1 ≤ C ≤ 1 defining the range, is equal to the upper limit (one) for two equal images, is equal
to zero for two perfectly random images, and is equal to the lower limit for two inversely correlated images.
The pixel variances give importance to the samples by weighing the differences between pixel values.
Since pixels with high backscatter are generally associated with low variances (see Table 3), more weight is
given to the outcome of the absolute differences between the pixels. Hence, comparisons between images
with distinct and similar patterns result in a higher consistency value as compared to images with similar
but less distinct patterns. All SAR images are labelled for rain events; for the optical images, the potential
effects of rain conditions on consistency were not analyzed and hence the images are not labelled.
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3.3. Intersensor Imagery-Consistency Analysis

From previously presented consistency matrices per sensor, we computed an average z-score image
from the z-score images present in the time windows with highest consistencies. The similarities of these
average z-score images between the SAR and optical sensors were measured by the (Pearson) correlation.

3.4. Intrafield Variability Analysis

In addition to the relationship of field-averaged remote sensing signals with sugarcane biomass
(Section 3.1), we also analyze the relation between spatial patterns in the averaged z-score images and the
intrafield sugarcane biomass estimates, quantified as TCH. This is examined by two approaches: based on
the TCH estimates at the ESU locations (varying in space and time), and based on the TCH estimates at
the intensive-measurement (IM) locations (varying only in space).

3.4.1. ESU locations

Since the ESUs cover approximately one LS8 resolution cell, the average z-score images are based
on remote sensing images that were resampled to a 30 by 30 m grid. For S1, given its coarse resolution,
this results in oversampling. For WV2, the original resolution z-score values were averaged that were
located within the ESU dimensions. The selections of the remote sensing images are based on the time
windows with maximum consistency, as were defined in Section 3.2. For each sensor, the z-score value
was extracted that was nearest to the corresponding ESU locations. In addition, per sensor and per ESU,
the range of TCH values was taken from the start until the end of the time window based on the modeled
TCH graphs (see Figure 4). For WV2, both images were analyzed.

3.4.2. IM locations

Biomass estimations along the spatial profile in Field F2 (see the right part of Figure 4) were correlated
to two sets of z-score values:

• Based on averaged z-scores within the window of maximum temporal consistencies.
• Based on the single image per sensor that was closest to the intensive-measurement acquisition

time. For the WV2 image (acquired 103 days after start of growth, on 25 January 2015),
the original-resolution z-score value was taken closest to the recorded GPS location.

4. Results

4.1. Backscatter Analysis

For C-band HV (and, similarly, for C-band HH, which is not visualized here) the saturation
point of the signal occurred at approximately 25 tons/ha (90 cm stalk height) for rain-affected signals
and approximately 35 tons/ha (120 cm stalk height) for signals not affected by rain (see Figure 10).
These saturation points coincided with the canopy-development phase, after which the increase in leaf
length stagnated and the grand growth phase of the stalk commenced, with increasing stalk biomass
dominance over leaf biomass (see Figures 1 and 5). Afterward, both signals that were affected by rain and
not affected by rain tended to converge. In addition, signals affected by rain showed backscatter values
for bare soil and marginal canopy that were close to those for fully mature sugarcane. This is contrary to
signals not affected by rain, which showed clear differences.
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Figure 10. RS2 and S1 combined HV (left) and LS8 NDVI (right) signals versus binned values of estimated
TCH, showing the effect of rain events on the signal. RS2 values were corrected for beam angles to the S1
angle. Additionally, the approximate and indicative axes of time from start of growth and stalk height are
added. Bars illustrate standard deviations of remote sensing signals within each each TCH bin.

For both HV and HH, the median of the signals affected by rain after the saturation point significantly
differed (with 95% confidence) from the median of the signals not affected by rain after the saturation point
(see Figure 11). In addition, the figure demonstrates that the magnitude of this difference is comparable
for both polarizations.
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Figure 11. Box plots of RS2 and S1 HV (left) and HH (right) signals combined over sugarcane fields after
their saturation points, showing the effect of rain events on the signal. Central (red) line indicates the
median, and bottom and top box edges represent the 25th and 75th percentiles, respectively. Whiskers
spanning to the most extreme data points were not considered outliers, and cover approximately 99% of
the values. Notches represent the 95% confidence intervals of the median.
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For NDVI, the saturation point occurred at 80 tons/ha (240 cm stalk height), which coincided with
the transition from the grand growth phase to the maturing and ripening phase.

For ALOS-2 signals in HV and HH, signals did not show evident saturation points with increasing
biomass (see Figure 12). Due to the limited number of available images, signals affected by rain and
not affected by rain were combined for the averaging per bin. Nevertheless, similarly to C-band SAR,
the L-band signals, especially in HH, showed sensitivity to surface wetness.
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Figure 12. ALOS-2 HV (left) and HH (right) signals versus TCH, with signal averages taken from combined
signals affected by rain and not affected by rain. Approximate and indicative axes of time from start of
growth and stalk height were added.

4.2. Intrasensor Imagery-Consistency Analysis

From the consistency matrices between images over time (see Figure 13), different dynamics can be
observed. First of all, the ranges of consistencies differ per sensor, whereby the consistency is highest for
LS8, followed by ALOS-2, RS2 and finally S1. Also the time frame during which highest consistencies are
observed differ.

For LS8 NDVI, images acquired during early crop growth showed relatively low consistency with
later images. The image pair taken 63 and 95 days after growth was more similar due to the relatively small
difference between the dates (two revisits’ difference). The time window with the most similar images
occurred from the late grand growth stage (approximately 210 days after growth) until harvest. The (not
visualized) consistency of the WV2 NDVI images taken 103 and 301 days after growth (on 25 January and
11 August 2015, respectively) was 0.4, which is equal to the LS8 consistency between images taken on 95
and 303 days after growth, and lower than those between later LS8 NDVI images.

For ALOS-2, the highest consistency was found between two consecutively acquired images during
the grand growth phase. The maximum value for ALOS-2 images was comparable to the highest
consistencies found for LS8.

For the C-band SAR sensors, especially S1, most consistency values ranged between zero and 0.4,
whereby the majority of the images showed a high degree of randomness in spatial patterns over time.
For RS2, a window with higher values was found between approximately 200 and 330 days after growth.
Before showing the details on this window and providing the corresponding explanation, we show a
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more clear view on the variation in consistencies over time by taking the average over time windows
for both sensors (see Figure 14). Each value in these matrices represents the average of the consistencies
in Figure 13 that fall in the (triangular) window from the image indicated on the horizontal axis until
the image indicated on the vertical axis. Through this representation, it could be found that images
until approximately 200 days after start of growth were generally not similar with each other and hence
showed a high degree of temporal randomness in spatial patterns. An exception is a minor time window
that coincides with the period around the saturation point. For both C-band SAR sensors, the highest
consistencies occurred for the images acquired during the second half of the grand growth phase until
the maturing phase (i.e., between approximately 200 and 320 days after start of growth), after which the
ripening phase commenced and images started to decorrelate. This time window commenced after the
signal-saturation point (see Figure 10) when the backscatter decreased and coincided with the decrease in
leaf biomass, though before severe leaf senescence occurred.

Figure 13. Consistencies of all image combinations for different sensors. Both axes show days from start of
growth and asterisks indicate which acquisitions were rain-affected. Diagonal values were omitted and
colored black. The harvest of this field was 419 days after start of growth.
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Figure 14. Consistencies for S1 HV (left) and RS2 HV (right) averaged over time windows based on the
elements in Figure 13 with the first image on the horizontal axis and the last image on the vertical axis.
Both axes present days from start of growth and asterisks indicate which acquisitions were rain-affected.
Diagonal values were omitted and colored black.

The subset with highest consistencies for RS2 from Figure 13 accompanied by beam-mode information
shows that the highest similarities were found between images taken in the FQ16W and S6 modes from
ascending passes (see the left matrix of Figure 15). This is confirmed by the averaged consistencies
for all beam-mode combinations within the window from 220 to 323 days after start of growth (see
the right matrix of Figure 15). Contrary to the relatively high consistencies between these two modes,
their consistencies with S7-ascending images are close to zero. This can be explained by the relative high
incidence angle for S7, approximately 49◦, with respect to the angles for FQ16W and S6, approximately
36◦ and 42◦. The hour of acquisition for these modes was approximately similar (all around 21:00 UTC).
The two images that were taken on the same day (287 days after growth) showed that changing beam
modes (FQ21-descending and S7-ascending) results in low image similarity. In addition to their difference
in incidence angle and look direction, low consistency may also be caused by the FQ21-ascending mode
acquiring in the morning (when potential dew causes more surface wetness) versus the S7-ascending
mode acquiring in the late evening (when the heat of the day causes lower moisture content).

Specifically regarding the effect of rain on similarities, the box plots of Figure 16 show that the median
of the consistencies of the no-rain-to-no-rain (NR2NR) image pairs was higher than the median of the
combined no-rain to rain (NR2R) and rain-to-no-rain (R2NR) image pairs, and the rain-to-rain (R2R) image
pairs. This can be ascribed to the saturation effects and smaller spread of percentiles (see Figures 10 and 11)
for the rain-affected images.
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Figure 15. Subset of the RS2 HV consistency matrix of Figure 13 accompanied by beam-mode information
(left). Both axes present days from start of growth and asterisks indicate which acquisitions were
rain-affected. Diagonal values were omitted and colored black. In addition, averages of the consistencies
between beams with the number of unique image pairs are displayed in each cell (right). White cells have
no value as no image pair exists for those specific modes.
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Figure 16. Box plots of all consistencies for S1 HV (left) and RS2 HV (right) per rain-condition pair,
representing no rain to no rain (NR2NR), no rain to rain and rain to no rain combined (NR2R and R2NR),
and rain to rain (R2R). Central (red) line indicates the median, and bottom and top box edges represent
the 25th and 75th percentiles, respectively. Whiskers span to the most extreme data points not considered
outliers and cover approximately 99% of the values. Notches represent the 95% confidence intervals of
the median.

Hence, it may be deduced that the most similar images acquired by the C-band sensors could be
found during the earlier-mentioned time window for images that were not affected by rain. In addition,
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specifically for RS2 images that were acquired with changing beam modes, images with a high incidence
angle and changing orbital passes (i.e., ascending and descending) should be avoided. Based on these
findings, the following sensor-specific criteria may be summarized for selecting images that showed
maximum temporal consistency:

• S1 HV: time window from 204 days until and including 336 days after start of growth, and only with
nonrain-affected images, resulting in nine images.

• RS2 HV: time window from 220 days until and including 323 days after start of growth, only with
nonrain-affected images and only for images acquired in the FQ16W and S6 modes, both ascending,
resulting in four images.

• ALOS-2 HV: time window from 150 days until and including 164 days after start of growth, only
with nonrain-affected images, resulting in two images.

• LS8 NDVI: time window from 207 days until and including 319 days after start of growth, regardless
of rain conditions, resulting in six images.

• WV2 NDVI: only the image taken 301 days after start of growth, because Field F2 qas partly masked
by clouds in the image taken 103 days after start of growth (see Figure 3).

These z-score images were averaged for each sensor and visualized in Figure 17.

Figure 17. Field F2 average z-scores from images specified by the selection criteria for the different sensors
(field plots), and corresponding correlations of these images between the different sensors (bottom right).
Correlation coefficients are displayed in each cell, and diagonal values were omitted and colored black.
The north direction is up, and the field spans approximately 1.4 km northward by 1.7 km eastward.

4.3. Intersensor Imagery-Consistency Analysis

The highest correlations between the averaged z-score images (see the lower right matrix in Figure 17)
occurred between the optical sensors, followed by correlations between the C-band sensors. The images
of both LS8 and WV2 showed agreement on the intrafield road features (see also the NDVI image of
Field F2 in Figures 3 and 7) and regional differences between the northern and southern part of the field.



Remote Sens. 2019, 11, 1109 21 of 27

For the C-band SAR sensors, the images showed locally contrary behavior in the northern part of the
field, i.e., the eastern part featured high values for S1 and low values for RS2, and conversely for the
western part. More corresponding behavior was found in the southern part of the field. On a coarser level,
the northern part of the field showed higher values than the southern part for both sensors.

For ALOS-2, the patterns with the highest z-score values occurred in the northeastern part of the field,
coinciding with the lowest field elevations. As was described in Section 1, soil backscatter contribution,
which is particularly dependent on soil-moisture content, is under standing vegetation conditions higher
for L-band SAR than for C-band SAR. Consequently, higher values in the field’s northeastern corner may
be associated to high soil and plant moisture. The patterns in the southern part are not evidently consistent
with image patterns of other sensors, and ground observations cannot give conclusive explanations
for this.

4.4. Intrafield Variability Analysis

4.4.1. ESU Locations

Table 4 shows that the differences in z-score values per sensor are not indicative of ESU biomass
differences, except for the WV2 image taken 103 days after growth. Due to this sensor’s fine resolution
and hence higher geolocation accuracy, in combination with the absence of speckle noise, the signals more
accurately present the state of vegetation at such small locations. The difference between the August
acquisitions is that these two images were taken before and after the saturation point.

Table 4. TCH ranges between the first and last image in window of images of estimated TCH and associated
z-score values per sensor for all ESUs of Field F2. 1 WV2 image taken 103 days after start of growth; 2 WV2
taken 301 days after start of growth.

Name ESU1 ESU2 ESU3 ESU4

TCH range S1 67 to 83 70 to 87 91 to 121 92 to 122
z-score S1 0.1 0.3 −0.5 −0.2

TCH range RS2 69 to 82 72 to 86 96 to 119 98 to 121
z-score RS2 1.4 −0.5 0.1 -0.9

TCH range ALOS-2 66 to 66 70 to 70 76 to 79 76 to 80
z-score ALOS-2 0.5 −0.4 −0.1 −0.6
TCH range LS8 68 to 82 70 to 86 92 to 119 93 to 120

z-score LS8 −0.2 0.1 0.3 −0.9
TCH range WV2 1 80 83 116 118

z-score WV2 1 1.1 1.1 1.2 1.2
TCH range WV2 2 80 83 116 118

z-score WV2 2 1.1 1.1 1.0 1.1

4.4.2. IM Locations

Based on the correlations (see Table 5), it may be deduced that none of the time window-averaged
z-score images was indicative for locating biomass differences along such a measurement profile. This can
be expected due to the low correlations between images close to the IM date, as shown in Figures 13 and 14,
as well as the high local variability within a 30 by 30 m resolution cell and geolocation accuracy. Regarding
the z-score images that were closest to the measurements, the first WV2 image (acquired 103 days after
start of growth) showed the highest potential for indicating these differences in the field.
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Table 5. Correlation coefficients between estimated TCH values at the intensive measurement locations
and z-scores of images per sensor.

Sensor Window Averaged Closest Date

S1 0.1 0
RS2 0 −0.1

ALOS-2 0.2 0.3
LS8 −0.1 0
WV −0.2 0.6

5. Discussion

The results presented the effects of sugarcane biomass growth, precipitation, and sensor characteristics
on remote sensing signals, in particular from C-band SAR, L-band SAR, and optical sensors. These effects
were first examined through the relationship between field-averaged remote sensing signals and sugarcane
biomass. Second, remote sensing imagery was analyzed for the statistical coherence of spatial features
in time. The identification of time windows per sensor allowed for the effective extraction of the most
consistent patterns. It was found that rain events have their effect on this as well, specifically for the
C-band SAR sensors. Subsequently, the patterns were extracted and compared between the various
sensors. Finally, the relationship between these patterns and measured intrafield sugarcane biomass was
investigated. Hereafter, these elements will be compared and discussed from an integrated perspective.

5.1. Backscatter Analysis

The first variant of sugarcane productivity monitoring was presented through the relationship
between field-averaged remote sensing signals and sugarcane biomass. The saturation points of the signals
differ per wavelength and, for SAR, are dependent on the wetness conditions of the surface. For C-band
signals, saturation occurs earlier when affected by rain conditions than when unaffected by rain conditions.
After saturation, backscatter values decrease, which can be ascribed to a combination of two effects. First,
the increasing dominance of stalk biomass over leaf biomass (see Figures 1 and 5) causes a reduction in
the depolarizing effect of volumetric scattering and an increase in the vertical copolarizing effect due
to higher microwave interaction with the vertical stalks, and thus an attenuation of the cross-polarized
signals. Second, there is a decreasing contribution of microwave interaction with water volume in the plant
due to a decline in wet stalk content and leaf senescence (see Molijn et al. [24]). Both interactions were
also (partly) reported by Baghdadi et al. [6,21] and further supported by the biophysical developments
observed in Simoes et al., and Vieira et al. [5,17,19]. Even though the signals after the saturation points
decreased and the two signal profiles at high biomass values tended to converge, the profile affected by
rain clearly differed from the profile unaffected by rain. Furthermore, the perceived converge of the two
profiles with increasing biomass values suggests that the contribution from microwave interaction with the
volumetric features dominates over the contribution from surface wetness. Hence, the response of C-band
SAR signals to surface wetness is a function of vegetation biomass. Additionally, the results showed
comparable C-band backscatter values for bare soil when affected by rain with respect to the values for
mature cane irrespective of rain conditions. Such confusion between signals acquired under wet-soil
conditions and under mature sugarcane conditions was also observed for X-band SAR, for example by
Baghdadi et al. [21]. Furthermore, Molijn et al. [54] showed that C-band backscatter fluctuations in time,
caused by precipitation events, could be used for improving the classification of vegetation conditions.
Inversely, when vegetation conditions are known, these signals may be used for detecting rain events
and, in combination with the relationship between temporal backscatter development and biomass water
content, may enhance sugarcane drought monitoring.
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NDVI signals saturate at a later stage (approximately at 80 tons/ha, 240 cm stalk height), and also
afterward show a signal decrease. This coincides with the decrease in leaf biomass (see Figure 5) and
ongoing senescence. ALOS-2 cross-polarized and copolarized signals did not reveal clear saturation points
and showed longer sensitivity to sugarcane growth, which can be ascribed to the longer wavelength [6].
Additionally, the copolarized signals (HH) suggest there was also an effect of rain on backscatter intensities.

5.2. Intrasensor Imagery-Consistency Analysis

The time windows during which image features were most consistent differ between the various
types of sensors. In addition, image consistencies were found to be generally lower for SAR sensors than
for the optical sensors, with lowest values for S1 imagery and a relatively high value for ALOS-2. For the
C-band SAR sensors, temporal averaging of the consistency metric allowed for the identification of these
time windows. These were, as may be expected, comparable between S1 and RS2 imagery. A minor
window that was identified coincided with the period around the saturation point. The general and
principal window spans from the late grand growth phase until the maturing phase, after which the
ripening phase commenced and images started to decorrelate. As was discussed in the previous section,
during this time frame the C-band SAR signals showed, on average, lower backscatter values than at
saturation point. For both sensors, images that were not affected by rain showed higher consistencies than
when affected by rain. Consequently, it may be deduced that rain induces fluctuations in signal backscatter
causing increased disorder in spatial patterns. For RS2 specifically, image pairs that were acquired under
different beam modes should be avoided. Furthermore, one should be aware of the time of acquisition,
as it may increase the chance of surface wetness (e.g., caused by morning dew).

For ALOS-2, it was found that the spatial patterns from two images taken consecutively within one
revisit, not affected by rain and during the grand growth phase, showed the highest temporal agreement,
comparable to values that were found for the optical sensors. Regarding LS8, the most effective time
window spanned from the late grand growth phase until harvest. Finally, consistency between the two
WV2 images was similar to what was observed for the LS8 images acquired during the same growth phase.

From a combined view on the time windows for the C-band and optical sensors, it may be noticed
that the highest consistencies generally occurred during the final growth stages. Based on the descriptive
and mathematical definition of the term consistency given in Section 3.2, specifically on the effect of pattern
distinctiveness, the higher values were likely caused by increased spatial-biomass differences over the
course of sugarcane growth, which is supported by the measurements in Figure 4 and by the observed
distinct patterns in the averaged z-score images (see Figure 17).

5.3. Intersensor Imagery-Consistency Analysis

The comparisons between the most consistent patterns extracted for each sensor showed that highest
agreements are found between the optical sensors. Local intrafield roads and the regional patterns in the
field are especially common. For C-band SAR, agreements were generally observed for regional patterns.
Spatial agreements and differences between the optical and SAR images should especially be further
investigated. Special attention should be paid to the suitability of comparing the averaged z-score patterns
when time windows differ between the sensors.

5.4. Intrafield Variability Analysis

Despite the limitations of the ground measurements, the results indicated that high-resolution
optical-satellite imagery has the most potential for mapping intrafield sugarcane productivity differences.

From an integrated perspective on previous findings, it is recommended to focus on the relationship
between the physical properties of the signals and the extracted patterns. Since patterns from optical
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imagery may be linked to canopy conditions, and patterns from SAR imagery may be linked to volume
and soil-moisture conditions, their integration may indicate fertility and moisture issues. The different
sensitivities may also be used for the detection of field anomalies, including gaps and plant substitution
(such as weed infestations). This should be supported by more detailed ground measurements, specifically
on soil moisture, plant moisture, and sugarcane biomass. It is recommended to focus on taking these
measurements during the overlap between the specified time windows, from the late grand growth phase
until the early maturing phase.

6. Conclusions

In conclusion, for sugarcane productivity mapping, satellite imagery offers several opportunities.
For monitoring field-averaged sugarcane-biomass growth, signals from both SAR and optical sensors
can be used effectively during certain growth stages. C-band SAR imagery generally offers smallest
time frames for growth monitoring, especially when the signals are affected by precipitation. Adversely,
for L-band SAR imagery, saturation effects were not observed; hence, it offers growth-monitoring potential
during the entire growth period. Nevertheless, L-band signals also appeared to have been affected by
precipitation events. It is recommended that the precipitation sensitivity of both cross-polarized and
copolarized signals from C-band and L-band sensors should be further explored for the detection of these
events and therefore for drought monitoring as well. Optical imagery offers effective time frames that
range between those from C-band and L-band imagery.

For monitoring intrafield sugarcane-biomass differences, the presented analyses gave an indication of
the selection of images to investigate. Local and regional patterns can be obtained through temporally
averaging spatial features within these windows. Especially for the SAR imagery, this reduces the noisy
appearances of features and facilitates analysis for physical interpretation. Outside of these time windows,
high variations of spatial-feature locations in time complicate this assessment. Comparing the resulting
patterns between sensors shows that the highest agreements were found between the C-band SAR sensors
and between the optical sensors. Furthermore, the intersensor comparison revealed that, in general,
pattern agreements are found on a regional scale and differences on a local scale. As such, integration
between sensors can be used for obtaining additional indications of regional productivity differences that
may be related to water and fertility concerns. The mapping of local differences may serve as indications
for local variations in field quality that may be related to plant failure and substitution (such as weed
infestations). The collected ground measurements were too limited for proper validation of these specific
potentials. Nevertheless, the distinctive interaction mechanisms between remote sensing signals and
observed features may be exploited. For example, the sensitivity of SAR signals to water content and
volumetric plant properties could be used for the detection of plant substitution where optical signals
could be less successful due to the limited sensitivity to plant geometry. Several limitations associated to
satellite imagery should be respected during these analyses, in particular, differences in time windows
between the sensors, signal noise (especially for SAR imagery), and spatial resolution.

Finally, through relating patterns to the collected ground measurements, it was found that
high-resolution optical images are most effective for providing indications on intrafield biomass variations.
When similar ground campaigns are henceforth undertaken, it is recommended to acquire spatially dense
plant and moisture measurements, including plant failure and plant substitution, on the scale of the SAR
sensors’ spatial resolutions from the late grand growth phase until the early maturing phase.
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ABSTRACT 
 
During the 2014-2015 sugarcane growth season in São 
Paulo, Brazil, a considerable dataset was acquired consisting 
of space-based remote sensing images from radar and 
optical sensors, together with intensive ground 
measurements. In this work, images from the Sentinel-1, 
Radarsat-2 and Landsat-8 satellites are used to test the 
effectiveness of satellite-based indicators in sugarcane 
growth monitoring. A two-fold hypothesis testing is applied, 
in order to find statistically significant emerging hot spots 
and cold spots, both in space and time. Especially the 
comparison of results from the radar and optical sensors 
gives an insight into the difference in capability of these 
sensors to detect spatial and temporal patterns and trends.  
 

Index Terms— Sugarcane, hypothesis testing, radar, 
optical, growth monitoring 
 

1. INTRODUCTION 
 
The purpose of the study is to observe the growth of the 
sugarcane through the interpretation of data from various 
space-based remote sensors. Sugarcane plays an important 
role in the world’s food and energy market place, being the 
number one crop in the world in terms of production 
quantity (FAOSTAT, 2014). Brazil is the world’s number 
one producer of sugarcane, which provides fuel for around 
40% of the national gasoline market. 
 
Several works were dedicated to growth analysis of 
sugarcane over time, mainly focusing on yield prediction 
using vegetation indices retrieved from optical imagery [1], 
[2],  and the effects of sugarcane growth on SAR signals 
with an emphasis their saturation in time [3], [4]. These last 
works conclude that the intensities in the HV polarization 
from C-band (ASAR) signals shows clearer trends with 
increasing sugarcane heights than intensities in co-
polarizations, saturating at one meter height (within three 
months after start of growth). 
 
For the sugarcane growth season 2014/2015, four fields 
have been intensively monitored through collecting ground 
reference data [5] and remote sensing data. Through local 

statistics analysis the similarities between observed clusters 
in remote sensing images and their temporal trends are 
statistically tested for significance and presented. The 
remote sensing data include Radarsat-2 Fine Quad, Sentinel-
1 Extra Wide and Landsat-8 images. 
 
The cluster analysis can yield an insight into the formation 
of hot and cold spots over time, which are in this stage of 
the study related to the optical retrieved NDVI and radar 
retrieved HV. Following the local statistics analysis of the 
remote sensing images, the evolution of the optical and 
radar signals with growing sugarcane is assessed. From the 
field reference data, the Leaf Area Index (LAI) is used to 
extract the vegetative part of the sugarcane growth season. 
Due to the height of the sugarcane (up to four meters when 
mature) and the short wavelength of C-band radar, 
saturation effects are expected. 
 

2. STUDY AREA AND DATA DESCRIPTION 
 
The map delineating the overview of the sugarcane fields 
study area is illustrated in Figure 1 including the fields’ 
positions and the Radarsat-2 image footprints. Table 1 
shows the characteristics of the fields. 
 

 
Figure 1: Overview of the study area with the Radarsat-2 (RS2) footprints 
used for the sugarcane analysis. The red polygons indicate the visited fields 
(denoted by F and the field number). 
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Field 
name 

Ratoon Area [ha] Start of growth Harvest 

F1 1st cycle 58 30/10/2014 07/10/2015 
F2 1st cycle 115 14/10/2014 07/12/2015 
F3 2nd cycle 25 15/08/2014 26/07/2015 
F4 9th cycle 59 01/08/2014 21/07/2015 
Table 1: Sugarcane fields’ characteristics with growth and harvest dates, 
which are for F1 and F2 not applicable to the entire field. 

Figure 2 shows the remote sensing acquisitions and the field 
campaigns, whereby a distinction is made between 
elementary sampling units (ESUs) of which only biometrics 
are taken and elementary sampling units biomass (ESUB) of 
which biometrics, soil moisture and plant moistures are 
taken. At all instances in time LAI was taken. 
 

 
Figure 2: Remote sensing and field campaigns acquisitions scheme for the 
sugarcane research. ‘F’ denotes field, ‘ESU’ the Elementary Sampling 
Unit, ‘B’ Biomass. 
 
Sensor Mode Bands Resolution Images 
Radarsat-2 FQ16 Quad-pol 5.2m x 7.6m 14 
Radarsat-2 FQ21 Quad-pol 5.2m x 7.6m 8 
Radarsat-2 FQ21 Quad-pol 5.2m x 7.6m 8 
Radarsat-2 S5 HH+HV 7.7m x 13.5m 2 
Radarsat-2 S6 HH+HV 7.7m x 13.5m 4 
Radarsat-2 S7 HH+HV 7.7m x 13.5m 5 
Sentinel-1 Extra-wide 

(EW) 
HH+HV 93m X 87m* 27 

Landsat-8 Surface 
Reflectances 

RGB+NIR
+SWIR1/2 

30m x 30m 12 

Table 2: Characteristics of available remote sensing data. *Re-gridded by 
ESA to medium resolution product, original spatial resolution 20m x 40m. 
 
The SAR observations, Table 2, have been averaged and 
gridded to the Landat-8 cells. Figure 3 shows the temporal 
profiles of NDVI and HV of two of the four fields (as 
indicative for the other two fields as well), whereby the data 
gaps in the NDVI are mostly present in the rain season.  
 

3. METHODOLOGY 
 
Before relating the features collected in the field to the 
remote sensing indicators, it is important to perform a 
quality check on the remote sensing images in order to 

determine whether the features in space and time are 
statistically significant or not. 
 

 
 
Figure 3: Time series of NDVI from Landat-8 (LS8) and HV from 
Radarsat-2 (RS2) and Sentinel-1 (S1) averaged over the sugarcane fields. 
 

 
 

Figure 4: Example images of NDVI and HV taken of the sugarcane fields. 
 

One of the techniques to test this significance is the Getis-
Ord (Gi*) statistic, or a weighted z-score, which is also used 
in several other studies that analyze remote sensing images 
of vegetation [6]–[8]: 
 

 
 
(1) 

Here  is the attribute value for feature ,  is the weight 
in space between features  and , which in this case is based 
in inverse distance weighting with power parameter equal to 
2, and  is the total number of features. In addition, 
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The resulting statistic is a weighted z-score, which can be 
tested against a user-defined significance level to accept or 
reject the two-tailed null hypothesis of each feature being a 
random pattern or representing a statistically significant 
cluster. Significantly high and significantly low values 
indicate so-called hot spots and cold spots. When applied 
over time, emerging hot spots can be discovered. For this, 
the Mann-Kendall test can be applied, which has been used 
in various recent works that focus on vegetation trend 
analysis (e.g. [9], [10]) and is described in mathematical 
detail in [11], [12]. This nonparametric technique tests 
whether the null-hypothesis,  no monotonic trend, should 
be rejected and the alternative hypothesis,  monotonic 
trend is present, should be accepted. When the observations 
are chronologically sorted (i.e. resulting in a three 
dimensional stack of spatial images in time), the observation 
vector at one point in space looks like: 
  (4) 

 
where  is the number of statistically significant 
observations. The following sign indicator function can be 
computed for   possible combinations: 
 

 
 
(5) 

where . 
Subsequently, the sum of the differences, , can be 
computed: 
 

 
 
(6) 

which is an integer and comes down to the number of 
positive difference minus the negative differences and is 
positive if observations tend to be larger later in time and is 
negative if observations tend to be smaller later in time. In 
order to test whether this sum of differences is indeed 
significant, if  the value of  can be directly used to 
calculate the Kendall tau statistic, , against the critical 
values for Kendall’s rank correlation coefficient: 

   
(7) 

If  the variance is [12]: 
 

 
 
(8) 

where  is the number of tied groups and  the number of 
ties in the pth group of ties. Ties, or more correctly denoted 
as tied data values, is a subset of the time series consisting 
of the values with more than one occurrence. For example, a 
time series with the measurements: {0.1, 0.2, 0.1, 0.3, 0.4, 
0.3, 0.5, 0.3, 0.7, 0.7} has three tied groups ( ), namely 

 for tied value 0.1,  for tied value 0.3 and  
for tied value 0.7. Since remote sensing values consist 

usually not of identical numbers, the number of tied groups 
is expected to be zero or close to zero. In any case, with the 
variance computed, the standard test statistic  can be 
applied: 
 

 

 
(9) 

A positive  means the data tends to increase, a negative  
means the data tends to decrease. Subsequently this statistic 
can be used in the hypothesis testing, whereby the null 
hypothesis (no trend) is rejected if  and  is the 
Type I error. 
 
Based on the number of available observations, the  or  
should be used to test the null hypothesis. For both the Gi* 
statistic (in space) and the Mann-Kendall statistic (in time) a 
significance level of 0.05 was applied. 
 
The sum of differences is carried out on the time span 
between the start of growth until maximum LAI (200 days 
after growth), which is taken from the ground observations 
(which is comparable to the NDVI time series in Figure 3) 
of each specific field. 
 

4. RESULTS AND DISCUSSION 
 
The just described methodologies are applied on the SAR 
data of fields F1 and F2 and on the optical data of all fields. 
The reason for the SAR selection is the temporal coverage 
of the sensors during the growth of the sugarcane until 200 
days, as can be viewed in Figure 3. 
 
Table 3 shows the resulting percentage of pixels that were 
labeled as spatial cluster and trend (i.e. emerging hot and 
cold spots), as well as the percentage of pixels labeled as 
trend-only (i.e. not considering the cluster analysis). 
 
Field name Indicator Statistically 

significant pixels: 
Cluster + trend 

Statistically 
significant pixels: 
Trend only 

F1 S1: HV 8% 5% 
F2 S1: HV 7% 1% 
F1 RS2: HV 8% 10% 
F2 RS2: HV 3% 3% 
F1 LS8: NDVI 0% 0% 
F2 LS8: NDVI 8% 94% 
F3 LS8: NDVI 15% 99% 
F4 LS8: NDVI 40% 99% 
Table 3: Results from the techniques per sensor and per field. 
 
Considering only the table, Radarsat-2 shows comparable 
results with the Sentinel-1 results, with low percentages of 
significant pixels in space and time. The reason that the 
trend-only results can be lower than the cluster and trend 
results is due to the lower number of statistically significant 
observations, and Equation (7) would be used instead of (8). 
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When solely applying the trend analysis on the optical data, 
almost all pixels of F2, F3 and F4 show a statistically 
significant increasing trend (though with only four images in 
time), which is indeed expected considering the clear 
increase in NDVI as shown in Figure 3. The reason F1 does 
not show trends in NDVI is because only three images were 
useful due to cloud coverage, which is too low for the 
temporal statistical analysis. When also incorporating the 
cluster information, it shows that emerging hot and cold 
spots occur for 8% to 40% of the field for F2, F3 and F4. 
 

  

 
Figure 5: Emerging hot spots (red) and cold spots (blue) for S1, RS2 and 
LS8 in the upper graphs and positive trend-only (red) and negative-trend-
only (blue) results in the lower graphs, all applied to field F2 (north is up). 
 
Figure 5 shows the spatial results from the emerging hot 
spot and trend analyses. From visual inspection, it seems 
that the clusters from S1 and RS2 are about at the same 
geographical places, whereby the higher percentage of S1 
could be due to its significantly lower resolution. In 
addition, the south parts experience in general more 
negative trends. The difference in saturation and interaction 
of optical and radar waves in vegetation are likely causes of 
the major differences in results, though in-depth comparison 
of the NDVI and HV graphs at this stage of research is too 
uncertain. The trend-only results of NDVI show clearly the 
field-wide significant increase, which is expected 
considering the graph in Figure 3. The positions with no 
trend coincide with intra-field roads (about 2 meters wide). 
 

5. CONCLUSIONS 
 
The results show that there are clear clusters and trends 
observable for the optical data, which is not the case for the 
SAR data. The most likely reason for this is the rapid 
saturation occurring in C-band SAR over tall and fast 
growing crops like sugarcane, in addition to the noisy 
character of the SAR data. 
 
There is an important point of attention with respect to the 
temporal availability, which holds especially to the optical 
time series. These results are hence dependent on the 
distribution of observations in time and could have turned 
out differently with other distributions. One could assume 
this effect would not make much difference when 

considering the steady increase in NDVI in Figure 3. This 
would be different for SAR time series with its faster 
saturation and noisier character, while also recognizing on 
the other hand that SAR in practice is temporally more 
equally distributed than optical. A point of consideration is 
that the method assigns the binary signs over time, which 
does not allow for gradations in the magnitude of trends. 
 
Foreseen next steps involve the validation of the trends with 
respect to the already collected ground reference data. 
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ABSTRACT

SAR as an active remote sensing technique is capable of
providing insights into the physical features of agricultural
vegetation. However, the noisy nature of SAR signals makes
the direct conversion to effective productivity metrics chal-
lenging. This study sheds light on the effect of gaps present
in a sugarcane field on L-band and C-band SAR signals and
demonstrates the variability of this effect with changing spa-
tial averaging windows, changing precipitation conditions
and changing vegetation height.

Index Terms— SAR signals, sugarcane gaps, precipita-
tion, crop monitoring, spatial analysis

1. INTRODUCTION

The use of SAR data for mapping and monitoring vegetation
dynamics has been widely researched during the last decades,
but after the launch of Sentinel-1 an uptake in research ac-
tivity can be observed. Especially for agricultural purposes,
several review works [1, 2] provide a state-of-the-art of the
techniques that utilize SAR signals to monitor crop devel-
opment, to estimate crop productivity, to classify crop types
and to model the interaction between the crop’s physical fea-
tures and the microwaves. The first review ([1]), and other
works like [3], describe how crop-related dynamics retrieved
by SAR data differ for different wavelengths (particularly C-
band and L-band). Specifically to the sugarcane crop, due to
their wavelength difference, saturation for L-band (e.g. from
ALOS-2) occurs after two to three meter and for C-band (e.g.
from Sentinel-1 and Radarsat-2) after 1 meter [3]. Since SAR
data are, next to the geometrical features of the plant, also
sensitive to the dielectric content of the illuminated medium
(e.g. soil and vegetation) [4, 1], the saturation height de-
creases when precipitation occurs.

Sugarcane is a semi-perennial crop; after each growth
cycle of 12 to 18 months, new stalks grow from the exist-
ing root system. These so-called ratoons usually last five
to seven years due to declining sucrose productivity as time
progresses. When new sugarcane is planted, shoots are in-
serted into the ground along pre-specified rows. During this

process, machine faults occur and over time sprouts default
due to soil, disease, climatic conditions and harvest opera-
tions [5]. The resulting gaps in the field directly affect the
yield and hence the profitability of the sugarcane field. When
mature, the height of the plant is three to four meter and the
leaves remain on the stalks but are subject to senescence.

2. STUDY AREA AND DATA

The study site is located in the west of São Paulo state, Brazil,
near Euclides da Cunha, and surrounded mostly by sugarcane
fields and pasture fields. It is 400 meter elevated above sea
level, moderately sloped (<12%) and the climate is subtrop-
ical with an average temperature of 22ºC and annual precip-
itation of 1200 mm [6]. The field of interest spans approxi-
mately 100 ha and contains sugarcane, variety RB-86-7515,
with 1.5 meter row spacing. The sugarcane was planted in
September 2014 and harvested in October 2015.

The gaps (Fig. 1) in the sugarcane field were estimated
from UAV imagery that was acquired on November 3, 2014.
At that time, the sugarcane was approximately 50 cm to one
meter high. The precise methodology of the gap estimation
can be found in [6]. The resulting (vectorized) gaps were
compared to 54 field collected samples using tape measure.
The relationship between the observed and estimated gap
lengths was found to be “highly satisfactory” with a R2 of
0.97 [6]. Based on the physical causes of gap manifestation
and [5] we assume the gaps are persistent in time and hence
are stationary over the considered growth period. In addi-
tion to the gap vector data, also the field boundaries were
available, allowing for minimizing the inclusion of signals
affected by intra-field and inter-field roads.

The SAR data consist of images acquired by three space-
borne radar sensors, all taken in cross-polarization mode, see
Table 1 and Fig. 2. All radar images were radiometric cali-
brated, geometrically corrected, terrain corrected and georef-
erenced. All ALOS-2 images were taken during ascending
passes with incidence angles at the field of 30º, except for the
image taken on January 21, 2015, with an angle of 39º. The
images of Radarsat-2 and Sentinel-1 were all acquired during
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Fig. 1. Sugarcane field of interest, enclosed by yellow field boundaries and illustrating the location of the estimated sugarcane
gaps. The background shows a true color, 2 meter spatial resolution WorldView-2 images taken in August 2015.

Sensor Mode1 Resolution2 Acquisition
time3

Images

ALOS-2 SM 6.0 x 4.3 m ˜04:00 7
Radarsat-2 UF 1.6 x 2.8 m 08:57 2
Sentinel-1 IW 5 x 20 m 08:54 11

Table 1. Characteristics of the available SAR data. 1SM:
Stripmap, UF: Ultra-Fine, IW: Interferometric Wide; 2 nomi-
nal resolution (slant range x azimuth); 3UTC, local time -2 or
-3 hours.
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Fig. 2. Remote sensing acquisition scheme and growth dates.
The asterisks denote precipitation-affected acquisitions.

descending passes and were taken at an incidence angle of
35.0º and 42.6º, respectively.

For the precipitation information, daily cumulatives of
two weather stations were used, named Euclides da Cunha
and Fazenda Ponte Branca, located 11 km and 7 km from the
field, respectively. For flagging the SAR images as affected
by precipitation or not affected by precipitation, the time of
SAR image acquisition and the amount of precipitation one
day before and on the day of acquisition were taken into
account.

3. METHODOLOGY

First of all, the vectorized gaps were rasterized to a 1 meter by
1 meter spatial grid. The width of the gaps (i.e. equal to the
row spacing of 1.5 m) is preserved by assigning gap ratios to
grid cells adjacent to the those that were intersected by the gap
vector. The SAR signals were nearest-neighbor interpolated
(over-sampled) to the same grid. Then, for each SAR image
and the gap map, spatial moving averaging with varying ker-
nel window sizes was applied. We used window 3 meter by
3 meter (W3) based on the Radarsat-2 resolution, window 7
meter by 7 meter (W7) based on the ALOS-2 resolution and
window 21 meter by 21 meter (W21) based on the Sentinel-1
resolution. For showing the effect of a larger window than the
resolution for Sentinel-1, we also added window 37 meter by
37 meter (W37) and 59 by 59 meter (W59).

With the spatially averaged SAR images and gap map,
we produce bivariate histograms by grouping the SAR sig-
nals and gap fractions into 2D bins. In addition, we group the
SAR signals into bins of gap fractions for showing the aver-
age and standard deviations of the SAR signals per binned gap
fraction. Since these statistics were computed on the signals
in powers and converted back to dB, the standard deviations
are not symmetric with respect to their corresponding aver-
age. The bin ranges of gap fraction for the histograms and
statistics were truncated to exclude bins with low number of
samples.

For each case, a linear regression was fitted and the regres-
sion coefficient, i.e. slope as backscatter change over unity
gap fraction, denoted as β is extracted. The comparison of
these coefficients is used show the effect of precipitation on
the sensitivity of the SAR signals from gaps and to show the
differences in sensitivity between sensors.
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(ALOS-2) Date
[yyyy-mm-dd]

DAS Height
[m]

W7 W21 W37

2014-09-26* 11 0-0.5 1.7 1.2 1.7
2015-01-21* 128 1-1.5 0.6 1.2 2.2
2015-02-13* 151 1-1.5 0.3 0.6 1.2
2015-03-14* 180 1.5-2.5 -1.6 -2.2 -3.4
2015-03-28* 194 1.5-2.5 -2.0 -2.5 -3.8
2015-07-17* 305 3-4 -1.1 -1.3 -1.9
2015-09-25* 375 3-4 -1.4 -2.1 -2.4

(RS2) Date
[yyyy-mm-dd]

DAS Height
[m]

W3 W7 W37

2015-09-20 370 3-4 -0.5 -1.0 -2.0
2015-10-14* 394 3-4 0.0 -0.1 -0.9

(S1) Date
[yyyy-mm-dd]

DAS Height
[m]

W21 W37 W59

2015-05-04* 231 2.5-3 -0.6 -0.4 0.1
2015-06-09 267 3-4 -0.3 -0.5 -0.4

2015-07-03* 291 3-4 -0.2 0.1 0.4
2015-07-15* 303 3-4 0.2 0.5 0.5
2015-07-27 315 3-4 -0.5 -0.7 -0.5
2015-08-08 327 3-4 -1.1 -1.5 -2.3

2015-08-20* 339 3-4 0.0 -0.1 -0.2
2015-09-01 351 3-4 -1.1 -1.4 -1.7
2015-09-13 363 3-4 -0.6 -0.8 -0.8

2015-09-25* 375 3-4 -0.3 -0.3 0.0
2015-10-07 387 3-4 -1.2 -0.9 -1.2

Table 2. ALOS-2 (top), Radarsat-2 (middle) and Sentinel-1
(bottom) regression coefficients, accompanied by the days af-
ter start of growth (DAS) and sugarcane height. The asterisks
indicate the acquisitions that were affected by precipitation.

4. RESULTS AND DISCUSSION

For each sensor, several typical histograms are presented to
demonstrate the difference in SAR signal sensitivity to gap
fraction with varying vegetation condition, with varying win-
dows and with varying precipitation condition. For the latter,
only consecutive acquisitions within one month are included
to minimize the effect of changing vegetation conditions. The
entirety of the results are summarized through their regression
coefficients per window and per sensor (Table 2).

Regarding changing vegetation condition, positive ALOS-
2 regression coefficients are found for young cane and neg-
ative coefficients for maturing cane (top and bottom ALOS-
2 plots of Fig. 3, respectively). This transition point for
precipitation-affected ALOS-2 images occurs around 2 meter
sugarcane height (Table 2), which can be explained by the
dominant sensitivity of L-band signals to soil moisture over
volume scattering until the transition point and vice versa
afterwards. In other words, before 2 meter plant height, the
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Fig. 3. ALOS-2 (top), Radarsat-2 (RS2, middle) and Sentinel-
1 (S1, bottom) bivariate histograms (colored), and average
and standard deviations per binned gap fraction (red mark-
ers) for different dates, windows and precipitation conditions.
The regression coefficients are denoted as β.
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soil moisture (which is in all cases relatively high due to
the precipitation conditions) results in higher backscatter at
the gaps than the soil moisture gives at the covered parts.
When the volume scattering-related signal component be-
comes dominant over the soil moisture-related component,
the backscatter is lower at the gaps than at the covered parts.

As for the effect of varying averaging windows, the
Radarsat-2 and ALOS-2 results show that larger windows
mainly result in smaller spread of backscatter and higher ab-
solute regression coefficients. This can be mainly attributed
to a reduction in SAR speckle noise and a smaller effect of
geolocation misalignment between the SAR pixels and the
gap map. In addition, the coefficients for the precipitation-
affected ALOS-2 images at a sugarcane height of 3-4 meter
are generally more negative than those for the precipitation-
affected C-band SAR images. The likely explanation is the
smaller wave penetrative depth for C-band SAR at these
sugarcane heights, and hence the saturation difference.

Regarding the precipitation conditions, the results from
Radarsat-2 and Sentinel-1 show that, in general, the regres-
sion coefficients of precipitation-affected images are signif-
icantly closer to zero than observed with non-precipitation-
affected images. Especially for Radarsat-2, the increase in
difference between coefficients over window size is apparent.
This difference can be explained by the smaller difference in
backscatter between the soil and the vegetation contributions
when both are wet as compared to the dry condition.

Some exceptions to the mentioned observations are found
for Sentinel-1 with respect to the varying windows. For ex-
ample, Fig. 3 shows that the regression coefficients do not
become more negative with larger averaging windows. This
can be explained by the higher speckle noise caused by the
sensor’s lower resolution in combination with the limited size
of the gap areas in the field.

5. CONCLUSIONS

The effect of gaps on SAR backscatter is mainly dependent
on (1) the size of the spatial averaging window, (2) precipita-
tion condition and (3) sugarcane height. Regarding the first,
larger windows increase the absolute values of the regression
coefficient and can be attributed to a reduction in the speckle
noise and a reduction of the effects of geolocation misalign-
ment between the SAR signals and the gaps. The second
refers to the smaller absolute values of the coefficients when
the vegetation and soil was moist due to precipitation, which
can be linked to the sensitivity of the microwaves to dielectric
properties. In particular, difference in backscatter between
the soil and the vegetation contributions is smaller when both
are wet as compared to the dry condition. The third, as was
demonstrated by the ALOS-2 results, refers to positive coef-
ficients for a sugarcane height up to two meter and negative
coefficients afterwards. Finally, the effect of gaps is greater
for ALOS-2 signals than for the C-band signals, which can

be ascribed to the penetrative depth of the two wavelengths.
Hence, as a recommendation for future work, we suggest to
study the potential of using the difference of the sign of the
coefficients with varying vegetation height for actual sugar-
cane productivity anomaly detection using ALOS-2 signals.
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4
SPACE-BASED SAR AND OPTICAL

REMOTE SENSING DATA FOR LAND

COVER MONITORING

Formulierung technischer Patente war ein wahrer Segen für mich. Sie zwang zu
vielseitigem Denken, bot auch wichtige Anregungen für das physikalische Denken.

Endlich ist ein praktischer Beruf für Menschen meiner Art überhaupt ein Segen. Denn die
akademische Laufbahn versetzt einen jungen Menschen in eine Art Zwangslage,

wissenschaftliche Schriften in impressiver Menge zu produzieren — eine Verführung zur
Oberflächlichkeit, der nur starke Charaktere zu widerstehen vermögen.

Albert Einstein

T HIS chapter is under review at IEEE Journal of Selected Topics in Applied Earth Ob-
servations and Remote Sensing, submitted in 2019 [1]. The article demonstrates the

performance improvement in land cover monitoring that can be achieved when inte-
grating optical and SAR signals in a model that is based on a dynamic Bayesian network,
in this case an adaptation of the Hidden Markov Model (HMM). The improvements are
demonstrated as a function of image availability and as a function of time. In addition,
the challenges are presented that arise when precipitation events and gaps in optical
imagery occur. The ground measurement dataset was published in 2015 [2].
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Integration of space-borne SAR and optical data
into a Hidden Markov Model-based approach for

land cover monitoring
Ramses A. Molijn, Lorenzo Iannini, Paco López Dekker, Jansle Vieira Rocha, Ramon F. Hanssen

Abstract—The timely and automated mapping of land cover
from satellite is continuously subject to advances, encouraged by
the increasingly dense time-series offered by radar and optical
imagers. A key role in such mapping is played by the effective
statistical handling of the temporal contextual information, es-
pecially in dynamic land scenarios with dominant agriculture
use. Land cover tracking in such areas raises in fact the issue
of heterogeneous crop timings and of their diverse cultivation
patterns. In this paper, we propose the use of the Hidden
Markov Model with regular sampling of the system state as an
effective response to these challenges. Leveraging on the recursive
nature of the model that links the up-to-date observations with
the long-archived ones, the model allows to jointly account for
the in-season crop growth patterns and for the inter-seasonal
changes in land cover. The designed technique assimilates SAR
cross-polarized backscatter and optical-derived NDVI, efficiently
handling their irregular temporal availability and their gaps.
We show that classification based on optical-only data generally
outperforms SAR-only data, and that their integration further
improves the performances. For this work, in particular, we used
imagery from Sentinel-1, Radarsat-2 and Landsat and ground
surveyed data over a study site in São Paulo state, Brazil.

Index Terms—SAR remote sensing, optical remote sensing,
remote sensing data integration, land cover monitoring, Hidden
Markov Model, sugarcane, crops, grasslands

I. INTRODUCTION

Accurate mapping of land cover and land cover changes
allow for the making of environmental impact assessments,
for example on biodiversity, greenhouse gas emissions, water
quality and soil erosion. These are especially important in
areas that experience a rapid expansion of certain land cover
types over large areas. One typical example includes the
mapping of land cover dynamics in São Paulo state, Brazil,
where the acreage of sugarcane (an important bio-energy crop)
has doubled over the last fifteen years [1], [2]. This expansion
occurred mainly over grassland areas that are used as pasture
fields for the grazing of cattle. The displacement of grassland
to other regions (as an example of indirect land cover change)
can put the preservation of natural vegetation under stress [3],
[4].

Over the last two decades, advances in space-based remote
sensors caused improvements in the quality of global land
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cover (GLC) products, especially with respect to the spatial
resolution (from tens of kilometers to tens of meters) and
frequency of updates (from one single stationary map based
on data over multiple years to almost near-real time maps).
Currently available products are based on optical remote
sensing data, featuring overall accuracies that generally range
between 70-80% [5]. However, the classification of dynamic
vegetation classes (in particular crops) typically performs sig-
nificantly worse than the classification of relatively stationary
land cover classes (e.g. natural vegetation and built-up) [6],
[5]. These works report differences between GLC products
up to 60%, mainly caused by confusions between crops
and natural vegetation that show similar growth behavior. It
was deduced that these disagreements are mainly caused by
differences in types of used satellite sensors, classification
methodologies, class taxonomies and ground reference data
and georeferencing errors. In addition, the sensitivity of optical
satellite sensors to cloud coverage in combination with the
adopted methodology to cope with such data gaps can have
an increasing polarizing effect on the performance differences,
especially in (sub)tropical climates. In fact, the mentioned
studies advocate that these criticalities make the majority of
the land cover products ineffective for land cover change
detection and cropland monitoring. In addition, these products
are further limited by their classification taxonomy, whereby
generally all crop types are grouped into one crop class. This
makes them inadequate for analyzing the (in)direct land cover
change that is caused by the expansion of a specific crop of
interest, such as sugarcane.

The use of SAR for land cover classification, and in par-
ticular crop classification, is only successful if time series are
taken into account [7]. However, the complexity of the signal
caused by the complex interaction of the microwaves with
the ground features make the implementation into conven-
tional classification techniques not straightforward. Especially
saturation effects, signal sensitivity to surface wetness (e.g.
caused by precipitation and dew) and random speckle make
the interpretation of the observations challenging. Although C-
band SAR is currently widely available through the operation
of Sentinel-1, in comparison to works based on optical-only
data, still few works are found that describe methodologies
and improvements to monitor of cropland based on SAR data.
Most of the available and relevant works [8], [9], [10] use
machine learning algorithms (commonly random forest) to
conduct monitoring based on Sentinel-1 SAR imagery. High
overall classification accuracies of more than 90% were found
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for single-crop mapping (rice), but substantially lower results
(on average 55%) for the classification of multi-crop and
natural vegetation. The work by [11] proposes a classification
technique that uses the patterns of phenological stages for
enhanced classification. For this, a probability based model
ingesting a dense stack of multi-temporal Sentinel-1 imagery
was implemented. The most probable sequence of crop stages
determines the classification of the land cover. It was found
that this technique on average yields a relatively high classifi-
cation accuracy (more than 80%) and specifically outperforms
the random forest approach for specific short-cycle crops.

When integrating optical and SAR data for land cover mon-
itoring should cope with the frequent absence of observations
(generally for optical) and a high degree of signal fluctuations
(generally for SAR). Such challenges demand more complex
model frameworks, capable of accommodating temporal con-
textual information. Among these, Hidden Markov Models
(HMM) stand as a particularly convenient solution, due to
their modeling flexibility and the availability of cost-effective
solvers, such as the Viterbi algorithm. Hidden Markov Models
became well known for their use in speech recognition [12],
because of its power to relate the sequence of recognized
words, instead of treating each recognized word individually,
captured in a sound mathematical framework. As such, a
logical sequence of words can be enforced, accepting that the
probability of a recognized word based on a single observation
is subordinate to the probability of that word in the context
of previous recognized words. This overcomes the (partial)
missing of recognized words and the corruption of the signal
by noise. Similarly, the HMM can be used for land monitoring
applications, where the land cover types and the phenological
stages take the place of words and utterances. The authors
of [13] implement for instance the HMM on optical time
series for the temporal mapping of phenological states of crops
(sugarcane, soybean and corn) and their discrimination from
grassland and forest.

The objective of this paper is to find the differences in clas-
sification performance when integrating optical-only and SAR-
only observations with respect to single-sensor observations,
based on the application of the HMM for the classification of
vegetation classes that commonly occur in São Paulo state.
This paper should be viewed as an example of how the
integration of optical and radar data can benefit classification
accuracies.

II. STUDY AREA AND DATA

A. Area and ground reference data

The area of interest is located adjacent to the metropole
Campinas in São Paulo state, Brazil, see Figure 1. The area
is commonly referred to Brazil’s heart of sugarcane due to
the dominance of sugarcane plantations and the existence of
sugarcane research centers and large sugar mills. The latter
produce, in addition to sugar, bio-ethanol as a replacement
fuel for cars.

Next to sugarcane, the area hosts agricultural crops, in-
cluding mostly corn and (soy)bean. These are collectively
grouped as annual crops, referring to the type of crops that

naturally complete their complete life cycle within one year.
In addition, the area hosts vast ranges of grassland, which are
commonly used as pasture fields for grazing cattle. The forest
includes both native forests, mainly situated close to the water
drainage streams, and production forests (mainly eucalyptus).
The region has a humid subtropical climate with a hot and
humid summer and a dry winter. This seasonality can cause
vegetation to show signs of drought (i.e. lower biomass and
greenness) during the winter months, especially for grasslands.

During several ground reference campaigns, conducted in
2015, more than 1000 sites were visited in this area and an-
other close by area north of Campinas (around Mogi Guaçu).
The ground reference dataset of the latter site is published
and available for public use [14]. From the interpretation of
Landsat and MODIS time series together with Google Earth
imagery, approximately 5000 segments were digitalized. These
were labeled as build-up, water, forest, grassland, sugarcane
and annual crop for the years 2015 and 2016.

In addition to the location of the fields, the start and end of
each crop cycle was time stamped. These dates (see Figure
2) show that the cycles are neither aligned synchronously
nor uniformly spread over time. The sugarcane harvest period
commences in the second half until the end of the year, before
the wettest and hottest months of the summer. Typically, a
sugarcane growth cycle lasts for 12 to 16 months [15]. After
the harvest of sugarcane, the plants continue to grow from the
same root system. After five to seven years of such ’ratoon’
cycles, the roots systems are removed and replaced by new
shoots. The annual crop fields host both single and double
cropping systems. Single croppings usually include only sum-
mer crops, which last four to six months and are harvested
around May. Afterwards, either the ground is abandoned and
natural weed and grasses growth until the new cycle of summer
crops, or winter crops are seeded. The latter crops are either
irrigated or drought-resistant and harvested in spring. It was
frequently observed in the field, that during the harvest of
corn fields, the stalks were cut off just below the corn cob
(roughly 0.5 meter height). The remaining (dead) stalks and
natural grasses are sometimes left until the tillage of the field
just before the next cropping cycle begins.

Finally, for labelling the SAR observations as affected by
precipitation or not affected by precipitation, daily cumulative
precipitation measurements were collected by seven weather
stations in the area. This dataset covers the remote sensing
observations from the beginning until June 2016.

B. Remote sensing data

The remote sensing data consist of SAR data from Radarsat-
2 and Sentinel-1 and optical data from Landsat-8, see Table
I and Figure 3. The Sentinel-1A and Sentinel-1B satellites
acquire images over the study area from October 2014 onwards
and from September 2016 onwards, respectively. To approxi-
mate the operational availability of Interferometric Wide SAR
data provided by Sentinel-1 satellites, data from Radarsat-
2 was incorporated into the classification procedure. Since
the SAR satellites commonly acquire in the cross-polarization
channel, only HV and VH are used. All SAR and optical
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Figure 1. Study area, delineating the polygons labeled as land cover (LC)
classes from ground reference data.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

10

20

30

40

P
e
rc

e
n

ta
g

e

Sugarcane

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

5

10

15

20

P
e
rc

e
n

ta
g

e

Annual Crop

Figure 2. Temporal distribution of the start of growth for sugarcane and
annual crop fields in the area of interest.

data were resampled to a common 30 by 30 meter spatial
grid after multi-looking. All radar images were radiometrically
calibrated, geometrically corrected, terrain corrected, thermal
noise corrected and georeferenced. The optical remote sensing
data consist of surface reflectances; based the near-infrared and
red bands, NDVI was computed. The number of optical images
in Table I and Figure 3 is based on a maximum image cloud
cover percentage of 40%. The number of useful observations
can differ per pixel due to remaining cloud coverage in each
image.

III. METHODOLOGY

A. Hidden Markov Model framework and implementation
The following nomenclature, equations, descriptions and

illustrations provide an excerpt of the essentials of the Hidden
Markov Model (HMM) and are based on fundamental and
applied works from [12], [13], [23], [24].

1) Framework: The essence of Hidden Markov Models
(HMMs) lies in the modeling of causality relations in discrete
data series and is based on two stochastic mechanisms (see
Figure 4). The first (layer 1) regulates the underlying sequence
of a pre-defined set of finite system states through transition
probabilities. The second (layer 2) describes the observation
output probabilities belonging to each state, also referred to as
emission probabilities. The actual (non-observable) sequence
of states is not known by the user, attributing to the ’hidden’
aspect of the model.

More formally, the model’s mathematical elements and rela-
tions can be denoted as follows. The set of N individual states
of the system is S = {S1, S2, S3, . . . , SN}, the state at time t
is recalled as qt, the observation output at epoch t is the M -
dimensional vector yt = [y1 (t) , y2 (t) , y3 (t) , . . . , yM (t)]

T .
The output of the two stochastic mechanisms for a number of
time steps, or epochs, T , is described by the sequences:

Y = y1 y2 y3 . . . yT

q = q1 q2 q3 qT
(1)

The HMM is characterized by the model λ as a function of
an element triplet, λ = (A,B, π), where:
• A = ai,j represents the state transition probabilities -
ai,j is the probability of the system to be in state Sj

given the state of the previous epoch Si, i.e. ai,j =
P [qt = Sj | qt−1 = Si], where 1 ≤ i, j ≤ N and∑N

j=1 ai,j = 1;
• B = bj represents the observation output (emission)

probabilities - bj,t is the probability at epoch t that obser-
vation vector yt is observed in state Sj , i.e. bqt (yt) =
P [yt | qt = Sj ], where 1 ≤ j ≤ N and 1 ≤ t ≤ T ;

• π = πi represents the initial state probabilities - πi is
the probability of the system to be in state Si at the first
epoch, i.e. πi = P [q1 = Si], where 1 ≤ i ≤ N .

The probability that one of the possible hidden sequence of
states occurs is essentially a product of the three elements:

P (Y,q | λ) = πq1bq1 (y1) · aq1q2bq2 (y2) ·
aq2q3bq3 (y3) · · · aqT−1qT bqT (yT)

(2)

The sequence that is most probable can be retrieved by
maximizing the likelihood of the whole vector space of
sequences, Q:

q̂ = arg max
q

{P (Y,q | λ)} (3)

For an efficient computation of this expression, the dynamic
programming-based Viterbi algorithm was adopted, which is
commonly used and well documented [12]. With every new
observation, the model is able to recursively alter the full
sequence of states when another path appears to be more
probable.
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Sensor1 Instrument Mode2 Polarizations/bands Nominal
resolution (slant

range x
azimuth)7

Revisit / acquisition time4 Images

RS2 C-band SAR

FQ16W (ASC) HH+HV+VH+VV 5.2 m x 7.6 m 24 days / 21:45 14
FQ21W (DSC) 24 days / 08:32 8

S5 (ASC & DSC)
HH+HV 13.5 m x 7.7 m

24 days / 21:45 & 08:32 2
S6 (ASC) 24 days / 21:49 5
S7 (ASC) 24 days / 20:55 9

S1 C-band SAR EW (DSC) HH+HV 11.5 m x 43 m5 12 days4 / 08:38 48
IW (DSC) VV+VH 3.1 m x 22 m6 12 days4 / 08:38 10

LS8 Optical Reflectances RGB+NIR+SWIR1/2 30 m x 30 m 17 days / 10:10 39
Table I

CHARACTERISTICS OF AVAILABLE REMOTE SENSING DATA. 1RS2 = RADARSAT-2, S1 = SENTINEL-1, LS8 = LANDSAT-8; 2FQ: FINE QUAD, W: WIDE,
S: STANDARD, EW: EXTRA WIDE, IW: INTERFEROMETRIC WIDE, ASC: ASCENDING PASS, DSC: DESCENDING PASS; 3 INCIDENCE ANGLES; 4 REVISIT

TIME IS BASED EACH SENTINEL-1 SATELLITE INDIVIDUALLY, ACQUISITION TIME IS APPROXIMATE AND IN UTC, LOCAL TIME -2/-3 HOURS;
5 RE-GRIDDED BY ESA TO MEDIUM RESOLUTION GRD PRODUCT OF 93 M X 87 M RESOLUTION; 6 RE-GRIDDED BY ESA TO HIGH RESOLUTION GRD

PRODUCT OF 20 M X 22 M RESOLUTION; 7 APPROXIMATE SLC PRODUCT RESOLUTIONS. REPORTED RESOLUTIONS ARE MAINLY BASED ON [16], [17],
[18], [19], [20], [21], [22].
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Figure 3. Remote sensing data availability, for Landsat (LS), Radarsat-2 (RS2) and Sentinel-1 satellites (S1A and S1B), separated by their interferometric
wide (IW) and extra wide (EW) modes.

La
ye

r 2
La

ye
r 1

a1,2

b1,1

S1

a2,1

S2

aN,1

bN,1 bN,2

bN,3
bN,T

SN

a1,1 a2,2 aN,N

y1 y2 y3 yT 

b1,2 b1,3

b1,T

b2,1
b2,2

b2,3

b2,T

Figure 4. Basic scheme of the Hidden Markov model, including states (Si),
transition probabilities (ai,j ), emission probabilities (bj,t) and observation
variables (yt). Adapted and modified from [13].

2) Implementation: The observation layer is tackled by
adopting a Continuous Density HMM, that establishes con-
tinuous probability density functions for the state emission
processes. The observable output of state i is modeled through
the monomodal normal distribution:

bj,t =
exp

(
− 1

2

(
yt − µj,t

)T
C−1j,t

(
yt − µj,t

))

√
(2π)

M |Cj,t|
(4)

with

yt =
[
yNDV I (t) , yHV (t)

]T

µj,t =
[
µNDV I
j (t) , µHV

j (t)
]T

(5)

Cj,t = diag
(
νNDV I
j (t) , νHV

j (t)
)

where µj (t) and Cj (t) are the mean vector and the
covariance matrix, respectively. Integer M is the dimension
of yt and equal to two, as the selected data features rep-
resenting the two sensors in this work are the NDVI index
for the optical sensing and the cross-polarized backscatter,
HV or VH, expressed in dB, for the radar sensing. The two
variables are assumed to be uncorrelated, due a well-known
difference in the sensors’ sensitivity to the plant geometric and
physical/dielectric configuration.

The set of N individual states of the system is the collection
of the nk states for each class with k = 1 . . .K. Two
state-chain class models are designed, based on the temporal
behavior of the classes:
• SD: state-dynamic (nk > 1), reserved for the classes

featuring temporally dynamic observation patterns and
for which the start of the state sequence is typically
asynchronous in the spatial domain

• SS: state-stationary (nk = 1), reserved for the classes
with regular observation patterns

The first configuration is particularly applicable to crops that
experience distinct phenological developments, i.e. the from
seeding and germination to ripening and harvest, which in
this case are sugarcane and annual crops. The fragmentation
of these crop classes into nk states is based on the minimum
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Figure 5. Scheme of an exemplary sequence, passing through all sugarcane
(SC) states, followed by all annual crop (AC) states, followed by the grassland
state (GL) and finally back to the first state of sugarcane. The sugarcane
and annual crop classes follow the state-dynamic configuration, grassland
follows the state-stationary configuration. The solid lines indicate the possible
transitions, the dashed lines indicate the impossible transitions.

duration of the crop cycle divided by the revisit time of
the Landsat satellites (16 days). With reference to the class
descriptions given in Section II, for sugarcane nk = 15 and
for annual crops nk = 7. The second configuration is used
for the classes for which their physical development in time is
simplified as a function of the day of year, hence modeling the
seasonality patterns. In this study, these classes include forest
and grassland.

Through the setting of the state transition probabilities, ai,j ,
limitations can be enforced to the transition between states and
the transition between classes. The between-states transition
is of particular interest for the crop classes, for which it is
biophysically impossible to go back in phenological stages as
time progresses. This is also referred to as a left-right model,
whereby the transitions can only go from one state to itself or
to the subsequent state. In addition, the model needs to pass
through all states for the observed to be labeled as that certain
class before transitioning to another class.

The above mentioned features of the HMM are illustrated
through an exemplary sequence in Figure 5. Here, a subset
of possible transitions and impossible transitions is indicated,
as well as the two types of state-chain configurations. The
transition probabilities are initially based on expert knowl-
edge and subsequently calibrated based on the sequences
as observed by the HMM. Resultantly, and in accordance
with the class descriptions given in Section II, the transition
probability for repeating sugarcane cycles is higher than the
transition probability from one sugarcane cycle to one annual
crop and from one annual crop cycle to pasture. Hence, the
sequence that is illustrated in Figure 5 is not likely, though
not impossible.

Since the sequence of states allows for the repetition of
states between epochs, flexibility is introduced in the form
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Figure 6. Flexibility in the model by accommodating the possibility of dilating
the crop cycle lengths and delaying the start of growth. The crop cycle view
on the left shows the order of annual crop states that are passed over the
coarse of time. On top the indicative NDVI profiles are visualized. The trellis
view on the right illustrates the Viterbi paths for these sequences.

of dilation of the crop cycle and delay in start of growth is
flexible, see Figure 6. Here, the first state is related to the soil
state and the last state is related to a harvest event. As was
indicated in Figure 5, the state that can be associated to harvest
should be passed only once for the sequence to be labeled as
a finished cycle of one of the two crop classes. When a crop
cycle lasts longer than the duration of the sequence of states,
dilation is allowed by repetition of the same state until the last
state. Since this is also allowed for the first state, a delay in
start of growth is accommodated for as well.

The frequency of state estimation coincides with the obser-
vation interval Landsat acquisition scheme, i.e. 16 days. As
a result, the SAR observations were resampled to the same
observation scheme, based on the minimum backscatter within
each interval. As such, we increase the probability that harvest
events are registered by the selected SAR observations, since
these are generally associated to low backscatter. In addition,
when Radarsat-2 is available, these observations have priority
over Sentinel-1 EW observations in order to simulate Sentinel-
1 IW observations.

B. Training procedures

The estimation of the model λ consists in the estima-
tion of its constitutive elements, i.e. the emission variables
{µj,t,Cj,t} and the transition coefficients ai,j . The training
data are based on visual inspections both from on-ground
observations as well as from medium and high resolution
optical satellite imagery, as was explained in Section II-A.
Basing on this information, the optical and radar data samples
are arranged into sequences with a one-year duration. Two
different criteria are adopted for SD and SS classes.

For SD classes (i.e. crop classes) the parameters of in-
terest θk =

{
(ak,soil, ak,veg) , (µj,t,Cj,t)j∈class k

}
must be

retrieved in presence of the hidden states q. Here, ak,soil and
ak,veg are the state transition probabilities, where ak,soil refers
to the first state of the class, whereas ak,veg refers to all the
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other nk − 1 class states. Model tying of the vegetation state
probabilities has been adopted because of the limited available
phenological reference data in the study area. For each class
the marginal log likelihood function

L (θk) = logP (Y |θk ) =
∑

q

logP (Y,q |θk ) (6)

should be obtained by integrating the joint distribution
over all possible hidden state combinations and maximized
in order to extract the best candidate set of parameters.
For this, we adopted a global search approach based on
the well known Simulated Annealing method. The technique
parameters, consisting in the initial temperature, reannealing
temperature and in the maximum number of iterations, have
been set heuristically by expert analysis.

In the case of SS classes, the continuous emission prob-
abilities are readily computed through the sample mean and
variance for each of the 16-days bins along the 1-year time-
frame. Notice that the number of samples can be different for
each bin and per sensor since the cloud gaps and the swath
coverage are time- and location-dependent.

Finally, the between-class transitions regulate the resilience
to class changes. In the case of SD classes, these coefficients
are linked to the harvest state, s = nk, when the transition
is outgoing, or to the soil state, s = 1, when the transition
is ingoing. For estimation of the transition probabilities, we
use once again the yearly state and observation sequences,
prepared for the training. Assume that at time t0, before the
start of sequence q, the true class is k0, and that the system
initialization is exact, i.e.

∑
Si∈classk0

πi = 1. In the one-year
time the HMM system is allowed to change to a new class
k 6= k0 if

LR (k0, k) =
P (Y |bestq ⊂ class k )

P (Y |bestq ⊂ class k0 )
>

1

ak0,k
. (7)

In case k is the true land cover class and Equation (7) is
satisfied, we have a correct detection. Vice versa the system
will register a missed detection if LR (k0, k) < 1

ak0,k
. A

similar analysis can be applied to the case in which no land
cover change is occurring in reality. We can readily infer that
Equation (7) would generate in such case a false alarm, or
false detection of change. The rate of false alarms and of
missed detection along a given time frame depends hence
on the distribution of the likelihood ratios, and hence by
the intrinsic class separability, in relation with their between-
class transition coefficients. These latter can be consequently
determined by setting a maximum accepted value for one of
the two metrics or by searching for their joint optimization.
For the problem in this work, a maximum false alarm rate of
5% on yearly sequences was selected as baseline criterion.

C. Performance assessment

The performance of the classification technique are pre-
sented based on two image availability schemes. The first is
based on the manipulation of the amount of optical images,
the second is based on the the real-world availability of
observations as a function of time.

1) As a function of optical image availability: Here, the
availability of optical images is simulated by introducing gaps.
We selected three scenarios with 5, 10 and 15 optical images
for the two years separately and averaged the results over these
years. For SAR, due to its consistent availability, we use all
available images and serves as a comparison for the optical
results.

2) As a function of time: Here, the observation sequence
of Figure 3 is followed. This means that in total, given
the resampling to the 16-day observation interval, 39 optical
images and 45 SAR images were used.

3) Classification accuracies: Of the ground reference
dataset, 80% was used to train the classification algorithm
and the complement 20% was used for validation. The per-
formance of the classification technique is presented through
confusion matrices and classification accuracies. Based on
the confusion matrix, per class the following classification
accuracy measures are deduced, and for the sake of clarity
explained as follows:
• Producer’s accuracy (PA): fraction of correctly classified

samples with respect to all samples of the truth, which
is directly related to the omission error, and can hence
be interpreted as the accuracy from the classification
map maker’s perspective. For example, if 700 of the all
actual 1000 sugarcane pixels are classified correctly as
sugarcane, the PA is 70%.

• User’s accuracy (UA): fraction of correctly classified
samples with respect to all samples classified as this
class, which is directly related to the commission error,
and can hence be interpreted as the accuracy from the
classification map user’s perspective. For example, if 700
of the 2000 pixels that were classified as sugarcane are
indeed sugarcane, the UA is 35%. Consequently, the
remaining 1300 pixels that were classified as sugarcane
are in fact other classes.

These accuracies are corrected for the differences in numbers
of classified samples per class. Consequently, the overall
accuracy is equal to the average of the producer’s accuracies.

The general performance of the classification is expressed as
the κ̂-accuracy, which compensates for the chance agreement
of a random classifier:

κ̂ =
Πo −Πe

1−Πe
=

1
C

∑C
i=1 rii − 1

C

1− 1
C

(8)

Here, Πo is overall accuracy and Πe is the overall accuracy
of correctly classifying a point purely by chance. These are
computed based on the ratios in the confusion matrix, where
rii is the ratio in row i and column i and the number of classes
C. Hence, the κ̂-accuracy is generally always lower than the
overall accuracy.

IV. RESULTS AND DISCUSSION

In this paper, two years of data were used, starting from the
approximate start of the operational phase of the Sentinel-1
mission (beginning of 2015) until the end of the validity of
the ground validation data (end 2016). However, since the per-
formance generally increases with the number of observations,
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these do not yet represent the maximum achievable accuracies
of the technique, i.e. the full potential of the technique
becomes apparent when taking into account several more years
of observations. To put the potential of our adaptation of the
HMM technique itself into perspective of other classifiers,
based on almost 10 years of Landsat-8 data, the κ̂-accuracy
reaches more than to 0.90 (overall accuracy 95%). Given the
classification performances of the global land cover products
mentioned in Section I, this is exceptionally high. With respect
to the the earlier mentioned study [13], which also adopted the
HMM for the classification of similar land cover types (overall
accuracy of 90%), our results are similar.

Before presenting the classification performance accuracies,
we illustrate some exemplary temporal profiles that can explain
some of the most frequently occurring confusions between
vegetation classes (Section IV-A). In Section IV-B and Section
IV-C, the classification results based on the entire study area
are presented in more detail. The first section shows the results
as a function of the number of optical images. The second
section shows the results that are achieved when incorporating
all available images over the course of two years.

A. Exemplary temporal profiles causing confusion

The presented profiles are accompanied by field pictures
that facilitate the explanation of specific behaviors of the
observations. Per profile, one optical remote sensing image
of the exact same field is added (in the lower left corner).
The in-situ pictures were taken from similar fields in the
study area and selected based on their association to the same
observed phenomenon. We include profiles of annual crops,
sugarcane and grassland, because between these classes the
main confusions occur.

1) Annual crop: Generally, due to the relatively short
duration of the growth cycle of annual crops and short time
spans between crop cycles, optical observations suffering from
cloud coverage can miss the registration of mature vegetation
and harvest. In addition, SAR observations can miss the regis-
tration of bare ground between crop cycles due to precipitation
events. The illustrative example of Figure 7 shows a corn field:
• A: the (approximate) harvest is not observed by optical

due to cloud coverage and clearly observed by SAR.
• B: the harvest is clearly observed by optical and not

clearly observed by SAR due to remaining stalks and
vegetation (as was explained in Section II-A).

• C: the crop growth is not clearly observed by optical due
to cloud coverage and clearly observed by SAR.

• D: the harvest is clearly observed by optical and not
clearly observed by SAR due to a precipitation event.

As a result, for optical-only, the classification technique labels
the pixel incorrectly as sugarcane when only taking into
account the observations until June 2016. For SAR-only and
for optical and SAR combined, the HMM classifies the pixel
correctly as annual crop during the entire time sequence.

2) Sugarcane: Generally, due to the relatively long duration
of the growth cycle of sugarcane, the presence of dry straw
after harvest and due to precipitation events, optical and
SAR observations can have difficulty with registering the

sugarcane growth trend and harvest events. With respect to
annual crops, it may be expected that sugarcane is more often
misclassified as grassland because sugarcane harvesting occurs
less frequently. The illustrative example of Figure 8 shows a
sugarcane field with severe heterogeneities in plant density,
which are caused by old root systems (late ratoon cycle):

• A: the growth profile of sugarcane is observed by optical,
including the senescence at the end of the cycle. The
SAR observations register the presence of vegetation, but
due to precipitation events and the sugarcane biomass
heterogeneity in the field, the time series can be confused
with a profile of grassland.

• B: the (approximate) harvest is observed by optical,
but not clearly due to the relative high NDVI values.
These are usually caused by weed infestation that remains
after harvest of such an old ratoon field. Likewise, SAR
observations do not register a harvest event, especially
when affected by precipitation.

• C: the (approximate) harvest is first observed by optical,
showing a clear renovation of the field with newly planted
sprouts. The SAR observation taken 16 days is able to
register this event.

For optical-only and for optical and SAR combined, the
classification technique classifies the pixel correctly as two
sugarcane cycles with the ’harvest’ state at point A and C.
For SAR-only, the technique classifies the pixel incorrectly as
grassland during the entire time sequence.

3) Grassland: Since grassland fields experience a yearly
cycle in plant greenness and biomass due to the climate condi-
tions (and possibly grazing), the optical and SAR observations
can lead to confusion with sugarcane. The illustrative example
of Figure 9 shows a pasture field with fluctuating grass cover
depending on the summer to winter conditions:

• A: the presence of healthy vegetation during summer
months is clearly observed by optical and not clearly
observed by SAR due to fluctuations caused by speckle
and precipitation events.

• B: the field degradation, caused by plant senescence
during winter months is clearly observed by optical and
not clearly observed by SAR.

• C: compared to A, the increase in greenness is again
clearly observed by optical, while SAR can give an
indication of biomass increase.

• D: compared to B, the degradation is more clearly ob-
served by optical and again not clearly observed by SAR.

For optical-only, the classification technique classifies the pixel
incorrectly as sugarcane when only taking into account the first
6 months of observations. Afterwards, when more observations
are digested, the entire sequence is correctly and continuously
classified as grassland. For SAR-only and for optical and
SAR combined, the entire sequence is correctly classified as
grassland over the entire sequence. Occasionally, the sequence
of SAR-only observations can also be confused with annual
crops when dry grassland resembles a crop harvest event and a
short time of wetness causes higher biomass and hence higher
backscatter.
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B. Performances as a function of optical image availability

In this section, we simulate different availabilities of optical
images, in order to show the sensitivity of the classifica-
tion performance with cloud presence. As for SAR, we do
continuously incorporate all available observations, as we
assume they are provided regularly by the Sentinel-1 mission.
The SAR-only classification performance remains constant.
Furthermore, for the presentation of the accuracies, we only
include the results of the two crop classes (annual crops
and sugarcane) and grassland. The forest class will only be
included in the confusion matrices afterwards.

The average accuracies of grassland and the two crop
classes combined (see Figure 10) show that the combination
of optical and SAR data always prevails over the single-sensor
classification results. In addition, the optical-only accuracies
are heavily dependent on the number of available images. This
dependency is still existent but smaller when combining opti-
cal and SAR. Only when including the maximum availability
of optical images, the optical-only kappa index approximates
the SAR-only classification performance.

A detailed view on the accuracies of the individual classes
(see Figure 11) reveals that the integration of both sensors
results in higher performances with respect to optical-only for
nearly all instances. This is a direct result from the SAR-only
classification performing better than the optical-only results.
Exceptions are particularly found for the PA of grassland
and the UA of annual crop. The first one can be explained
by the criticalities of SAR observations over grassland, see
Section IV-A3. For SAR-only, grassland is more frequently
classified as sugarcane and annual crop than for optical-only.
As a result, the PA of grassland for the sensor combination is
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Figure 10. User accuracies, producer accuracies and kappa index versus
number of available optical images, averaged over the grassland, sugarcane
and annual crop classes, for optical-only (OPT), SAR-only (SAR) and optical
and SAR combined (OPT + SAR). The overall accuracies are equal to the
producer’s accuracies. For SAR and OPT + SAR, all available SAR images
were used.

deteriorated. The second exception is a result from the distinct
temporal profile of annual crops (see Section IV-A1), leading
to clear NDVI dynamics during the crop cycle. When optical
observations are sufficiently available, the model classifies
annual crops correctly. This is in contrary to SAR, where time
series are more likely to be affected by fluctuations, leading
to misclassifications. This results in lower UA for SAR and
hence lower UA for the integration.

Additionally, the confusion matrices computed for the 5-
and 15-image configurations, shown in Figure 12, convey that:



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 10

5 10 15

Nr. optical images per year

0

10

20

30

40

50

60

70

80

90

100
UA: GRASSLAND

OPT

SAR

OPT + SAR

5 10 15

Nr. optical images per year

0

10

20

30

40

50

60

70

80

90

100
PA: GRASSLAND

OPT

SAR

OPT + SAR

5 10 15

Nr. optical images per year

0

10

20

30

40

50

60

70

80

90

100
UA: SUGARCANE

OPT

SAR

OPT + SAR

5 10 15

Nr. optical images per year

0

10

20

30

40

50

60

70

80

90

100
PA: SUGARCANE

OPT

SAR

OPT + SAR

5 10 15

Nr. optical images per year

0

10

20

30

40

50

60

70

80

90

100
UA: ANNUAL CROP

OPT

SAR

OPT + SAR

5 10 15

Nr. optical images per year

0

10

20

30

40

50

60

70

80

90

100
PA: ANNUAL CROP

OPT

SAR

OPT + SAR

Figure 11. User accuracies (UA) and producer accuracies (PA) versus number of available optical images for optical-only (OPT), SAR-only (SAR) and optical
and SAR combined (OPT + SAR). For SAR and OPT + SAR, all available SAR images were used.

• The main improvement for optical-only when incorpo-
rating 15 images instead of 5 images is the reduced
misclassification of the crops classes as as grassland. For
SAR-only, this confusion is smaller, while the confusion
between the crop classes is higher, which can be mainly
ascribed to the fluctuations of the SAR observations,
causing true harvest events to be missed and false harvest
events to be observed. The combination of optical and
SAR causes the crops-grassland confusion to be further
decreased. As a result, the accuracies are generally higher,
with smaller variation, despite the higher crop class
confusion induced by SAR-only.

• The confusion of sugarcane with grassland indeed occurs
more frequently than the confusion of annual crop with
grassland, for all sensor configurations. This was earlier
hypothesized in Section IV-A2 and related to the differ-
ence in harvest occurrence.

• The forest class generally performs best and most con-
stantly with varying image availability and sensor incor-
poration. The only exception occurs for the SAR-only
PA, where a large portion of forest pixels is classified as
grassland. This is caused by saturation effects of C-band
SAR, causing similar backscatter values over time.

C. Performances as a function of time

In this section, we incorporate all available optical and
SAR images over the full course of two years. The average
accuracies of grassland and the two crop classes (see Figure
13) show that:
• The combination of sensors performs better than the

single sensors. The difference with optical-only increases
over the timeframe, mainly due to the increase in SAR-
only performance and the approximate stable perfor-
mance of optical-only after six months.

• There are two periods during which the SAR-only accura-
cies, and hence the combination as well, increase rapidly;
between 6 months and 1 year and between 1.5 year and
2 years. These can be attributed to the observations that

Figure 12. Confusion matrices for optical using respectively five and fifteen
images (top), for SAR (bottom left) and for optical and SAR combined using
fifteen optical images (bottom right). The classes refer to forest (F), grassland
(GL), sugarcane (SC) and annual crop (AC). Per class combination, each
ratio represents the number of pixels classified as the corresponding class
(’classified’) over the total number of pixels belonging to the true class (truth).
In addition, the producer’s accuracies (PAs) and user’s accuracies (UAs) are
presented.

are acquired during the harvesting period of sugarcane,
which generally commences half-way the calendar year
(after June) and ends at the end of the year (December),
see Figure 3.

• The SAR-only accuracies reach the the optical-only ac-
curacies after approximately two years, illustrating the
superiority of optical-only observations over SAR-only
observations during this time frame and image availabil-
ity.

A detailed view on the confusion matrices after two years
(see Figure 14) shows that:
• For optical-only, the misclassification of sugarcane and

annual crop as grassland remains a challenge. As was
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Figure 13. User accuracies, producer’s accuracies and kappa index versus
absolute time averaged over the grassland, sugarcane and annual crop classes,
for optical-only (OPT), SAR-only (SAR) and optical and SAR combined (OPT
+ SAR). The overall accuracies are equal to the producer’s accuracies. All
available optical and SAR observations were used. The timeframe starts from
January 2015 until December 2016; the first six months were omitted due to
noisy behavior.

discussed in Section IV-A and Section IV-B, this is
mainly caused by the missing of the growth dynamics,
especially harvest events.

• For SAR-only, the main confusion occurs for sugarcane
with grassland, which was mainly caused by the sparse
occurrence of sugarcane harvest events and the remaining
straw in combination with precipitation events. Especially
during the early growth stage of sugarcane, the SAR
observations resemble the observations of grasslands.

• For the combination of the sensors, the accuracies are
more similar. The confusion of sugarcane with annual
crops and grassland remains the most significant chal-
lenge.

V. CONCLUSIONS

This manuscript introduces a statistical framework based on
Continuous Density Hidden Markov Models to assimilate the
temporally irregular series from the optical and radar sensors
over dynamic scenarios characterized by high crop pattern
diversities. The proposed HMM adaptation is implemented
with a 16-days sampling of the system state. Each 16-days
epoch is in fact associated to a hidden state, or land cover
state, and to its visible output, represented by the available
radar and optical observations. Based on the available and on
the historic observation, the whole hidden chain of states can
be retrieved and recursively altered.

The work shows that the integration of optical and SAR data
into the HMM classification technique introduces significant
performance benefits when compared to using a single sensor,
i.e. using optical-only and SAR-only observations. In addition,
it was found that optical-only classification gives higher accu-
racies than SAR-only classification during (approximately) the
first two years of mapping. However, the analysis also showed
that the optical-only accuracies are heavily dependent on cloud
coverage percentages. Only when 15 optical images per-year

Figure 14. Confusion matrices based on the classification with 2 years of data
for optical (top left), for SAR (top right) and for optical and SAR combined
(bottom). The classes refer to forest (F), grassland (GL), sugarcane (SC) and
annual crop (AC). Per class combination, each ratio represents the number
of pixels classified as the corresponding class (’classified’) over the total
number of pixels belonging to the true class (truth). In addition, the producer’s
accuracies (PAs) and user’s accuracies (UAs) are presented.

were incorporated, the optical-only system performs indeed
better than the SAR-only system. This was mainly ascribed
to the high confusion of annual crops and sugarcane with
grassland for optical-only, which is caused by the missing
of important crop cycle events (full vegetation cover and
harvest). As expected, such availability factor is mitigated by
the assimilation with SAR data. For SAR-only, the confusion
is higher between annual crops and sugarcane, which can be
related to the fluctuations of SAR observations caused by
precipitation, crop residues after harvest and speckle noise.
This leads to uncertainties in the registration of harvest events,
which plays a key role in the performance economy. When the
observations were ingested chronologically over the two year
time frame, it was indeed shown that during the harvesting
periods, the accuracies improve faster than outside of these
periods. In this scenario, the optical-only classification results
generally prevail over those from SAR-only observations, yet
again outperformed by the integration of the datasets from the
two sensors.

Finally, it should be noted that due to the relatively short
time frame of the observations (two years), further improve-
ments that can be achieved over longer time series has not
been presented yet. In addition, we expect higher accuracies
when the feature space is expanded, for example by ingesting
other polarimetric features and optical indices. Nevertheless,
the accuracies of the proposed integration of optical and SAR
data already challenges reported accuracies of existing global
land cover products. Hence, the proposed HMM technique
shows promising potential for accurate land cover monitoring.
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5
SPACE-BASED SAR REMOTE

SENSING SIGNALS AFFECTED BY

PRECIPITATION FOR VEGETATION

CHARACTERIZATION

It took nearly ten years to see my dream come true. It was indeed worth the effort and the
wait. [...] No longer in space and now an "earthling" once again, I feel that my good

fortune yet continues. I welcome the opportunity to express my heartfelt gratitude to
many people who have encouraged me to believe that if you can dream it, you can do it.

And I strongly believe that education enables us to envision and to pursue our dreams.

Chiaki Mukai

T HIS chapter has been published in Remote Sensing, Remote Sensing in Agriculture
and Vegetation, in 2018 [1]. The article demonstrates a technique that improves

vegetation classification based on changes in wetness condition of vegetation through
the use of SAR-only remote sensing signals. More specifically, it focuses on precipi-
tation conditions as a proxy for vegetation wetness and how the resulting SAR signal
fluctuations can be used advantageously for improved discrimination between vegeta-
tion stages. Additionally, the research includes the further improvement in classifica-
tion performance through incorporating soil type information. The findings provide
new insights into use of a-priori information on wetness and soil conditions for land
cover monitoring applications. The proposed techniques were not integrated with the
techniques that were analyzed in the previous chapters. For the study, both the sugar-
cane biophysical ground reference dataset [2] as well as the land cover ground reference
dataset [3] were used.
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Abstract: Current space-based SAR offers unique opportunities to classify vegetation types and to
monitor vegetation growth due to its frequent acquisitions and its sensitivity to vegetation geometry.
However, SAR signals also experience frequent temporal fluctuations caused by precipitation events,
complicating the mapping and monitoring of vegetation. In this paper, we show that the influence of
a priori known precipitation events on the signals can be used advantageously for the classification
of vegetation conditions. For this, we exploit the change in Sentinel-1 backscatter response between
consecutive acquisitions under varying wetness conditions, which we show is dependent on the state
of vegetation. The performance further improves when a priori information on the soil type is taken
into account.

Keywords: SAR signals; precipitation; vegetation classification; soil type; incidence angle

1. Introduction

Land cover classification offers baseline information for several land monitoring applications such
as food security monitoring and early warning, water use efficiency studies or fraud detection, to cite
a few. Over the last decade, the spatial and temporal resolution of land cover monitoring products
underwent significant enhancements, mainly due to advances in the provision of Analysis-Ready
Data (ARD) from existing satellite platforms and due to the increasing computational resources for
processing large amounts of remote sensing data. Global land cover maps such as Global Food
Security-Support Analysis Data at 30-m (GFSAD30) and GlobeLand30 at 30-m resolution [1–3] and
Global Land Cover Project 2000 (GLC 2000), MODIS and GlobCover at 300-m to one-kilometer
resolution [4–7] are available and are mainly based on optical imagery produced by the Landsat, SPOT,
MODIS and MERIS missions. These land cover products commonly feature broad land cover classes
and generally do not distinguish between crop types.

Although the information provided by these products can be valuable for generating regional
overviews, important shortcomings were identified, as well. A study comparing the maps of GLC
2000, MODIS and GlobCover produced until 2011 [8] focused specifically on the thematic accuracies
between these products. It was reported that the overall accuracies of these maps are 0.68, 0.75 and
0.67, respectively, and even higher disagreements are found for cropland and forest classes. This is
critical for studies where precise spatial and temporal discrimination of vegetation classes is required.
In the same study, it was stressed that the errors in the maps were higher than the detected changes,
making them ineffective for land cover change detection. Although maps produced since 2011 show
accuracy improvements, these were found not to be significant given the advances in satellite data
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acquisition and algorithms [9]. In addition, all of the mentioned land cover products provide the land
cover type, but usually lack phenological information.

The use of Synthetic Aperture Radar (SAR) for land cover classification, and in particular crop
classification, is only successful when time series are taken into account [10]. Since the backscatter
in a single SAR image can be practically identical for different crops, the focus must lie on the
temporal backscatter differences, when vegetation structure changes, especially during the seed
and development phase [10]. Recognizing that different wavelengths feature different interactions
with vegetation and hence give different classification performances, for C-band SAR specifically,
it was found that saturation effects, occurring generally from a vegetation height of 1–1.5 m [10–12],
cause classification to be most accurate for lower biomass crops (e.g., wheat, hay, pasture) [10].
Generally, in these studies, it is mentioned that signals in cross-polarization are favored over signals
in co-polarization for effective crop classification, since these are more sensitive to volume scattering,
as well as to soil moisture [13].

Even though the introduction of Sentinel-1, providing free and temporally-dense C-band SAR
imagery, yields a unique opportunity for incorporating these signals into the generation process of
land cover monitoring products, surprisingly few works were found that promote such efforts along
with descriptions on the SAR-related methodologies and consequential improvements. Limiting to
publications that describe the utilization of temporal Sentinel-1 backscatter (intensity) signals for
producing land cover products, the studies by [14–16] are illustrative, all applying machine learning
algorithms (random forest). None of the works mention the incorporation of contextual information
with daily precipitation events and incidence angle. Presumably, the applied models translate the
corresponding signal variations into uncertainty in the classification results. An exception is the study
by [16], which found that the effect of the incidence angle on the resulting classification performance
was minimal. A work that explicitly mentioned the removal of precipitation-affected SAR signals was
the study by [17], which evaluated the radiometric stability and quality of Sentinel-1. In addition,
the studies by [13,18] emphasized the importance of incorporating daily irrigation and precipitation
information when monitoring crop fields using SAR signals, and the latter showed that the signals
are most sensitive to soil moisture when taken over bare ground as compared to full vegetation cover.
However, none of the above-mentioned works proposed methods on how to treat precipitation-affected
signals for improved vegetation classification.

Based on these literature findings, we underline the importance of incorporating precipitation
information when performing temporal land cover classification, and in particular vegetation
classification, based on SAR signals. In this paper, we focus on the variations in SAR signals that arise
from precipitation events and how these could be used for advanced discrimination of vegetation
conditions. The objective is to manifest the effect of these variations on the classification performance
and the improvements that can be achieved when taking into account precipitation and backscatter
information with temporally-consecutive SAR observations. In addition, we quantify the effect on the
classification performance when taking into account information with SAR incidence angle and soil
type. The aim is to propose an approach on how to handle precipitation-affected SAR signals and the
advantages of incorporating such information, along with available knowledge on incidence angle
and soil type, regardless of the SAR-based land cover monitoring or classification model. As such,
it is not intended that the presented methodologies be used as stand-alone techniques for SAR-based
vegetation characterization.

2. Study Area and Data Description

2.1. Study Area

The study area is São Paulo state, which covers nearly 250,000 km2, 3% of Brazil. It is inhabited
by 46 million people, 20% of Brazil’s population, most of them living in the eastern part close to São
Paulo city. The state territory is located in the sub-tropics and covers various climatic types, mainly
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influenced by extratropical and tropical weather systems. The average monthly temperature generally
reaches close to 30 °C during summer and close to 20 °C during winter. Most of the precipitation
occurs during the rainy season in the summer months; from November until January, almost 40% of
the annual precipitation falls. The winter months are usually dry, occasionally with no precipitation
during several consecutive weeks. The state’s interior receives 1000–1600 mm annual rainfall, whereas
the forest strip along the coast receives more than 3000 mm annual rainfall. When precipitation occurs,
the average of daily cumulative rainfall is slightly more than 10 mm. The majority of the state is
elevated between 300 m and 900 m above sea level.

The forest strip along the coast consists of protected native (mainly Atlantic) forest and divides
the coastline areas from the state’s interior. The interior is covered by a mix of sugarcane, annual
crops including mainly corn, soybean and bean, as well as citrus trees and forest crops including
mainly eucalyptus and pine. The state also hosts numerous watersheds and three major river basins.
An indication of the coverage of the land cover types is provided in Table 1, and their spatial distribution
is illustrated by Figure 1. For more details on the origin of this dataset, see Section 2.2.3. Mid-vegetation
includes mainly shrubland and citrus; grassland includes mainly pasture; and forest includes high
bushes, native forests and production forests. There are two dominant soil types in São Paulo state,
which are different mainly in clay content, as will be further described in Section 2.2.4.

Table 1. Coverage of land cover types in São Paulo state based on the 2015 classification map produced
by Delft University of Technology (TU Delft) [19,20].

Land Cover Coverage

Sugarcane 19%
Annual crop 4%

Grassland 33%
Mid-vegetation 15%

Native forest 23%
Production forest 1%

Water 3%
Built-up 2%

Figure 1. São Paulo state land cover map for 2015 based on Landsat data, produced by TU Delft [19,20]
(left), the number of Sentinel-1 Interferometric-Wide acquisitions (top right) and the location of the two
soil types (bottom right).

The São Paulo state sugarcane sector is important to Brazil, producing more than half of
the national volume of bio-ethanol, which makes Brazil the largest sugarcane and second largest
bio-ethanol producer in the world. Sugarcane acreage more than doubled over the last fifteen
years [21,22]. This expansion, dominantly over grasslands, causes pasture fields to displace to areas
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outside of the state and may indirectly affect the preservation of natural vegetation [23,24]. Sugarcane
is a semi-perennial crop with a crop cycle of 12–18 months. After 5–7 cycles of growth from the same
root system, new shoots are planted due to decreased yield. Usually, the plants reach up to 4 m
high [25]. The annual crops in São Paulo state are usually rain-fed, but occasionally irrigated during
growth and usually have a growth cycle of between three and five months, depending on the season
and crop type. Different harvest practices are applied, especially in the case of corn, whereby the
plant is sometimes left for drying of the corn kernels, after which the stalks are cut at 0.5 m above
ground, and the field is tilled at a later stage, sometimes months later [26]. The grasslands are usually
used as pastures for cattle grazing and can differ considerably in the state of vegetation. Overgrazing
results in degraded pasture fields that are dry and with little or no grass cover, occasionally causing
severe soil erosion [27]. Healthy pastures usually contain more grass cover, with grass height usually
between 0.1 and 0.5 m [26]. When it grows beyond this point, the vegetation approaches shrubland,
which belongs to the mid-vegetation class together with citrus trees up to 4 m in height. The forest
crop class includes eucalyptus and pine trees, and both have a growth cycle of about seven and
eleven years, respectively, and are planted mainly for paper, pulp and timber production. The native
forest class mainly comprises Atlantic forest, a moist tropical forest with multiple tree canopies and
plants ranging up to 30 m. Native forest is mainly present at the coastal zone, but it can also be
found inland, usually covering water drainage channels between crop fields, which are protected
by governmental regulations to preserve water presence in the soil, as well as in national parks and
isolated patches scattered throughout the state. Built-up is defined as all man-made structures with
an impervious surface and covers a broad range of objects, from roads and railways to buildings and
industrial factories. Water is defined as any surface covered by a water layer, both natural and artificial
water bodies.

2.2. Study Data

2.2.1. Sentinel-1 SAR

São Paulo state is covered by Sentinel-1 SAR products in three different modes:
Interferometric-Wide (IW), Extra-Wide (EW) and StripMap (SM). The acquisitions in EW and SM
modes occur west of São Paulo city and over the city, respectively. Since these modes feature different
resolutions and since IW is the common mode, only the Sentinel-1 acquisitions in IW mode were used
in this study. Due to the presence of the three different modes, the availability of IW acquisitions
varies over São Paulo state. The upper right figure in Figure 1 illustrates the heterogeneous temporal
coverage of images over São Paulo state. The wide swath of the EW acquisitions, resulting in very few
IW acquisition, is clearly visible in the middle of the state.

The analysis is based on Ground Range-Detected (GRD) products, which were pre-processed
applying thermal noise removal, radiometric calibration and terrain correction using the SRTM 30-m
resolution Digital Elevation Model (DEM). The nominal IW resolution (range by azimuth) of 20 m by
22 m was spatially averaged to 30 by 30 m grid resolution. All acquisitions were taken during the
descending orbit and occurred between 08:20 and 09:02 UTC (−2–−3 h local time). The time frame
ranges from October 2014 until December 2016, resulting in 739 images and 13 billion pixels in time
and space. Together with the cross-polarization backscatter values, the corresponding incidence angles
(ranging from 29.1°–46.0°) were extracted, as well.

In this study, we have restricted the analyses to backscatter data from the cross-polarized
(VH) channel only, for two reasons. First of all, VH is known to be more sensitive to variations
of the vegetation cover than the co-polarized channels and is therefore typically used for vegetation
monitoring (see Section 1). Secondly, processing and storage capacities limited the data from one
channel only, considering the area of interest and time frame.



Remote Sens. 2018, 10, 1647 5 of 17

2.2.2. Precipitation Condition

The precipitation data were extracted from products provided by the Global Precipitation
Measurement (GPM) mission operated by NASA and JAXA. GPM offers three-hourly images gridded
over 0.1° by 0.1°, which corresponds to approximately 11 km by 11 km in São Paulo state. The specific
variable used, precipitationCal, is the multi-satellite precipitation estimate with gauge calibration.
It is produced through the assimilation of observations from the Core Observatory satellite, launched
in February 2014 and hosting a microwave imager and dual-frequency radar, with sensor data from
various other precipitation-relevant passive microwave satellites, and at a later, stage post-processed
with data from ground weather stations [28]. For this study, the daily cumulations were taken over the
same time frame as the Sentinel-1 data.

In order to assess the reliability of the GPM data, we compared the precipitation measurements
against in situ weather stations spread over São Paulo state (indicated by the pink stars in Figure 1).
The distance between weather stations ranges from several kilometers to more than 600 km. For each
site, at least two weather stations within 10 km were selected and cross-checked to ensure that each
station actually records precipitation and is in acceptable agreement with other weather stations on
short distances. It was concluded that the level of agreement of detecting precipitation between
weather stations themselves is more than 0.85 on short distances (smaller than 5 km), after which,
it rapidly drops below 0.75 (around 100 km), and over long distances, the rate reduces to approximately
0.6. Given the scattered positions of available weather stations in São Paulo state, this illustrates the
need for precipitation data that are regularly sampled over large areas, as offered by GPM.

When comparing the detected precipitation by GPM with the weather stations, the rate of
agreement is 0.70. This discrepancy can be explained by several reasons. First of all, there could be
precipitation detected by GPM that is not detected by weather stations, due to the coverage difference
of GPM pixels with respect to point measurements of weather stations and due to precipitation
evaporation before reaching the ground level. Vice versa, the weather stations may be dependent on
a minimum detectable amount of precipitation due to the instrument characteristics. Since accurate
precipitation flagging of Sentinel-1 is essential for this study, we analyzed the effects of varying the
threshold of measured precipitation on the agreement between the two data sources. From this,
it followed that increasing the threshold of the weather stations rapidly decreases the rate of agreement
to chance agreement (0.5). Conversely, when increasing the GPM threshold, the agreement increases
to a maximum of 0.78 at 10 mm, after which the agreement declines. Hence, in order to increase the
confidence in the GPM-derived rain-flagging, we adopted the following criteria for the labeling of
Sentinel-1 pixels:

• All Sentinel-1 pixels within a GPM resolution cell were labeled as ‘affected by precipitation’ if
GPM measured more than 10 mm of precipitation for that GPM cell and the eight adjacent GPM
cells. This should furthermore hold for the day preceding the Sentinel-1 acquisition, as well as for
the day of acquisition.

• All Sentinel-1 pixels within a GPM resolution cell were labeled as ‘not affected by precipitation’ if
GPM measured zero precipitation for that GPM cell and the eight adjacent GPM cells. This should
furthermore hold for all three days preceding the Sentinel-1 acquisition, as well as for the day
of acquisition.

It should be noted that this labeling approach is conservative and that, consequently, numerous
data-points were not rain-labeled and, therefore, not used in the analysis.

As an illustration of the effect of vegetation wetness on Sentinel-1 VH backscatter, Figure 2 shows
high backscatter gains from the dry condition to the wet condition for marginal vegetation (low
backscatter, colored as blue), approximating the backscatter from high vegetation (high backscatter,
colored as red) for both conditions.
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Figure 2. Three consecutively-acquired Sentinel-1 Interferometric-Wide (IW) images over the same
area illustrating the effects of precipitation on VH backscatter (in dB). The area spans approximately 5
by 10 km. The right and left images show the backscatter, average −15.8 dB and −15.5 dB, respectively,
when at least two days of dryness occurred. The middle image, average −13.0 dB, shows the same
location with 40 mm of precipitation on the day before the acquisition and 15 mm on the day of
acquisition. The blue patches in the dry images are most of all marginally vegetated (harvested fields
or early stage crops), and the yellow and red patches are vegetated (mature crops or forests).

2.2.3. State of Vegetation

Since the publicly available land cover products do not offer information on the state of vegetation
(such as phenology) or vegetation height on a similar time interval as the Sentinel-1 acquisitions
(see Section 1), we use land cover maps that were generated by the TU Delft [19,20] (see Figure 1 for
the map of 2015). In short, these maps are based on NDVI and NDWI derived from optical Landsat-5
and Landsat-8 data. Based on an adopted version of the Hidden Markov Model (HMM), the state
of the land cover is estimated with a regular interval of 16 days (i.e., the temporal revisit of the
Landsat satellites). For temporally-dynamic land cover types, specifically annual crops and sugarcane,
the growth cycles are divided into respectively seven and 14 states. These states can be roughly linked
to phenological stages, ranging from the first two states that can be regarded as bare ground or little
vegetation to the last states that can be regarded as senescent plants just before harvest. For grassland,
mid-vegetation and forest, no state distinctions are made throughout the season; hence, they are treated
as state-stationary in time. The overall accuracies of these maps for the considered years, 2015 and
2016, are between 85% and 90%. The training and validation datasets for accuracy assessments were
based on ground reference datasets acquired in São Paulo state, Brazil, including [25,26]. The most
notable confusions were found between grasslands and mid-vegetation (high grasslands classified
as mid-vegetation and young citrus orchards belonging to mid-vegetation classified as grasslands)
and between grasslands, sugarcane and annual crops when gaps in optical observations due to clouds
caused misregistration of harvest and early growth events.

The land cover maps, including the temporal states estimated on a 16-day interval, allow us to
group states together into discrete vegetation categories. The following acronyms are used throughout
this article for concise referencing to the states of vegetation:

• NV: No to marginal Vegetation (indicatively 0 m–0.1 m high): states of annual crop associated
with bare ground and the germination stage.

• LV: Low Vegetation (indicatively 0.1 m–1 m high): states of sugarcane associated with early
growth stages and grasslands.

• MV: Medium Vegetation (indicatively 2 m–4 m high): states of sugarcane associated with the
maturation and senescence stages.

• HV: High Vegetation (indicatively 5–30 m high): forest.
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The reason for taking only the first states of annual crops (and not sugarcane) for NV is because
these fields are usually cleared or tilled before the growth cycle commences, consequently generally
exposing bare ground. The first states of sugarcane on the other hand usually represent the land
cover condition where straw material produced during the past sugarcane harvest event covers
the remaining sugarcane sprouts for protection against plant dehydration. As such, in order to
minimize the plant material present on the ground in this category, these sugarcane states are excluded.
Conversely, LV does not include states of annual crop, predominantly because the annual crops may
be irrigated during their vegetative stage, which is not captured by the GPM observations. In addition,
the annual crops class can include corn and soybean, which differ in plant height and geometry. For MV,
the mid-vegetation class was not included in order to avoid the erroneous reported inclusion of low to
medium vegetation, such as high grasslands, and medium to high vegetation, such as citrus orchards.

2.2.4. Soil Type

For this study, two dominant soil types present in São Paulo state were taken into account,
latossolos and argissolos, according to the Brazilian taxonomy convention, and oxisols and ultisols,
respectively, according to the Soil Taxonomy of the USDA [29–31]. The location of these two soil types
is depicted in the lower right plot of Figure 1. Each of these soil types covers approximately 40% of the
state’s area and in total supports more than 95% of the state’s cultivated land.

Both soil types consist of mineral material, highly weathered by high temperatures and
precipitation, and are typical for tropical regions [30]. The main difference is that the oxisols generally
have higher clay content and are uniform in clay content, approximately 380 g/kg in the top one-meter
layer, whereas for ultisols, a gradual increase in clay content in deeper soil layers is observed (158 g/kg
from 0–0.2 m, 201 g/kg from 0.4–0.6 m and 334 g/kg from 0.8–1 m) [32].

This difference also has a direct effect on the SAR microwave interaction through the change in
the medium’s dielectric constant. As is explained in more detail in [33,34], the dielectric constant is a
major contributor to microwave backscatter and is directly related to the soil chemical and physical
properties. One of the main variables is soil moisture; the effect of water content on the medium’s
dielectric constant is dependent on the ability of the water molecule’s dipole moments to align along an
applied field. In soil, the first added water molecules are tightly bound to the soil particle’s surface due
to matric and osmotic forces, preventing the free movement of the dipole moments and hence causing
a small increase in the dielectric constant. When the water content surpasses the transition (moisture)
point, the water molecules become free particles, and the dielectric constant becomes much larger
than that of soil. The well-known semi-empirical mixing dielectric model (SMDM) proposed by [35]
allows for the computation of the permittivity of microwaves in soil as a function of its frequency,
soil moisture and soil texture properties. Specifically, for the two São Paulo soils of interest, from the
application of the model, it can be concluded that soil moisture has a major effect on the backscatter
magnitude (roughly 5 dB increase). The difference in backscatter magnitude between the two soils
themselves is negligible when both are dry and slightly higher backscatter for oxisols (higher clay
content) when both are wet (smaller than 1 dB).

Specifically regarding the dry state of these specific soils types, the oxisols are characterized by
the presence of deep, well-drained soils [32]. This leads to the additional assumption that the moisture
content in soils that are assumed dry under the criteria reported in Section 2.2.2 is lesser for oxisols
(i.e., resulting in lower backscatter) than for ultisols. Hence, from the SMDM and the characteristics of
the soils, we expect that, on average, the backscatter from oxisols with respect to ultisols is slightly
lower when both are dry and is slightly higher when both are wet. Finally, as a general note, C-band
microwaves penetrate in the order of a few centimeters for wet soil and a few tens of centimeters for
dry soil.
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3. Methodology

3.1. Feature Extraction

In order to label each Sentinel-1 gridded observation with the incidence angle, precipitation
condition, state of vegetation and soil type, these data sources were all projected onto the geographical
Sentinel-1 grid with a pixel spacing of approximately 30 by 30 m, for each acquisition. Subsequently,
only those samples were selected for which the precipitation condition of the consecutive acquisitions
were known. From these data, the combined training and validation subset was randomly sampled
per land cover type. For each of these samples, the backscatter and backscatter difference between
consecutive epochs were taken, referred to as σ0 and ∆σ0, respectively. Here, σ0 is taken from the first
of the two acquisitions, and ∆σ0 is the increase in σ0 of the first acquisition to the second acquisition,
i.e., ∆σ0 = σt+1

0 − σt
0.

3.2. Configurations and Precipitation Information Scenarios

We define seven scenarios with different precipitation conditions (Table 2). We introduce acronyms
for these scenarios that are referred to throughout this article. The table also shows the percentual
occurrences of the precipitation conditions with respect to the total amount of extracted samples.
This illustrates the effect of the strict precipitation detection criteria, as was delineated in Section 2.2.2.
It shows that less than 25% of the samples were labeled as precipitated or non-precipitated and that
less than 10% of the samples were labeled as condition pairs for consecutive acquisitions.

Table 2. Precipitation information scenarios, with acronyms used as references. The occurrences
show the percentages of detected precipitation condition with respect to the total number of extracted
samples. The occurrences between parentheses show the same, but normalized relative to their grouped
sum. The variate analysis indicates which variables are used for classification.

Scenario Precipitation Information Occurrence Variate Analysis

None None 100% (100%) Uni (σ0)
NP Non-Precipitated 18% (73%) Uni (σ0)
P Precipitated 6% (27%) Uni (σ0)

P2NP Precipitated to Non-Precipitated 0.9% (12%) Bi (∆σ0, σ0)
NP2P Non-Precipitated to Precipitated 0.8% (10%) Bi (∆σ0, σ0)
P2P Precipitated to Precipitated 0.7% (9%) Bi (∆σ0, σ0)

NP2NP Non-Precipitated to Non-Precipitated 5% (69%) Bi (∆σ0, σ0)

The resulting amount of training samples for each scenario (Table 3) shows that for NV and MV,
significantly lower amounts of samples are available than for LV and HV. The relative differences
between the precipitation scenarios do not necessarily correspond to those of Table 2 because of the
non-uniform occurrence of precipitation and land cover type in São Paulo state.

Finally, in order to evaluate the effect of incidence angle and soil type on the classification
performance, we consider five configurations. These differ in ranges of incidence angles and soil
types. The ranges of incidence angles were selected such that they were sufficiently disjoint, while
still containing enough samples. The configurations overview is given by Table 4, which is placed just
before the results and discussion (Section 4) for quick reference.
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Table 3. Number of training samples for each vegetation state and precipitation scenario. NV, No to
marginal Vegetation; LV, Low V; MV, Medium V; HV, High V.

Scenario NV LV MV HV

None 376,809 2,885,966 210,071 4,078,977
NP 352,150 2,177,407 180,758 3,260,595
P 24,659 708,559 29,313 818,382

P2NP 12,093 416,469 8469 489,782
NP2P 70,982 283,664 4452 284,219
P2P 12,566 292,090 20,844 328,600

NP2NP 281,168 1,893,743 176,306 2,976,376

3.3. Parametrization of Distributions and Classification

Based on the univariate and bivariate histograms for each configuration and each scenario,
the Probability Density Functions (PDFs) were fitted using maximum likelihood estimation. As an
illustrative example, Figure 3 shows the bivariate histogram of NV per precipitation condition.
The center location of the distribution (∆σ0, σ0) changes from (−15 dB, −13 dB) for P2NP to (+7 dB,
−21 dB) for NP2P. For the condition pairs with no precipitation condition change, P2P and NP2NP,
the center σ0 location is similar to the P2NP and NP2P, respectively, and the center ∆σ0 location is
approximately zero.

Figure 3. Bivariate histograms for NV per precipitation condition pair. The histograms are normalized
by the probability density function estimate, i.e., the sum of the bin volumes approximates one.

The estimated PDFs from the NV bivariate histograms are also visualized as the contour lines,
f75%, of the 75% Highest Density Region (HDR), defined as R( f75%) = {x : f (x) ≥ f75%}, such that
P (X ∈ R ( f75%)) ≥ 0.75 in Figure 4. The differences in location of the distributions for the four
precipitation condition pairs is now more clearly illustrated. In addition, the percentile plots of
HV illustrate that the ∆σ0 location of the distribution is centered around zero for all precipitation
condition pairs. In other words, the effect of precipitation on cross-polarized σ0 is not observed for high
vegetation, which can be explained by the dominant contribution of microwave volume scattering.
Finally, the σ0 location of HV is similar to the σ0 location of NV for the P2NP and P2P conditions.
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Figure 4. The 75% Highest Density Region (HDR) plots for NV and HV for all precipitation
condition pairs.

For classification, the log-likelihoods are computed based on the univariate and bivariate
distributions given the configuration and precipitation scenario. The vegetation state yielding the
maximum log-likelihood is consequently compared to the true state for validation. Resulting confusion
matrices are accompanied by the following:

• Overall accuracy: percentage of total number of correctly classified samples with respect to all
classified samples.

• Producer’s accuracy: fraction of correctly classified samples with respect to all samples of the
truth, which is directly related to the omission error and can hence be interpreted as the accuracy
from the classification map maker’s perspective.

• User’s accuracy: fraction of correctly classified samples with respect to all samples classified as
this class, which is directly related to the commission error and can hence be interpreted as the
accuracy from the classification map user’s perspective.

All accuracies are corrected for the differences in the numbers of classified samples per class.
Because of this, the overall accuracy is equal to the average of the producer’s accuracies. In addition,
the classification procedure was carried out ten times with randomly sampled sets of training data
(70%) and validation data (30%), allowing for the computation of the averages and standard deviations
of the accuracies. The differences between Configurations 2, 3, 4 and 5 with respect to Configuration 1
are presented as the corresponding accuracy improvements with a significance level of 0.05.

3.4. Hellinger Distances

To quantitatively describe the similarity of the PDFs for each precipitation scenario, we employ
the Hellinger distance statistic, which is used for various applications related to classification
techniques [36–40]. This metric H, which is closely related to the Bhattacharyya distance [41,42],
is dependent on two bivariate normal distributions, P ∼ N (µ1, Σ1) and Q ∼ N (µ2, Σ2),
where µ and Σ are the mean and covariance matrix of the distributions, respectively. Its generic
expression [36,41,43] is:

H (P, Q) =

√
1
2

∫ (√
p (x)−

√
q (x)

)2
dx

=
√

1−
∫ √

f (x) g (x) dx
(1)

Here, H (P, Q) ∈ [0, 1] and a value of H (P, Q) → 0 indicates high similarity, and H (P, Q) → 1
indicates low similarity between P and Q [36].
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Table 4. Configurations with varying incidence angle and soil type used for performance comparisons.

Configuration Incidence Angle Soil Types

1 All All
2 29.1°–35.9° All
3 39.2°–46.0° All
4 All Oxisols
5 All Ultisols

4. Results and Discussion

4.1. Hellinger Distances

Under Configuration 1, based on Hellinger distances as a metric for the differences between the
PDFs of the vegetation states per precipitation scenario (Figure 5), the following observations may
be listed:

1. Generally, the PDFs of P and P2P are less discriminative than the PDFs of the other scenarios.
When precipitation occurs, the backscatter of all vegetation states approximate the backscatter of
HV, as was also illustrated by Figure 4. For both P and P2P, the distance between NV and HV is
smaller than the distances between the other vegetation states and HV. This illustrates the severe
effect of precipitation on backscatter when the ground is practically bare, seriously complicating
accurate discrimination under such conditions. In addition, the distances between the vegetation
states is generally smaller for P than for P2P, implying that the incorporation of two consecutive
precipitation-affected acquisitions improves the discriminatory power as compared to a single
precipitation-affected acquisition.

2. The distances for the scenarios with no information (None) and NP are similar to each other due
to the relative underrepresentation of samples associated with scenario P (also see Table 3). As for
the precipitation condition pairs, NP2P and NP2NP are similar to each other, but differ from
P2NP. The latter mainly has larger differences between the PDF of NV and the PDFs of other
vegetated states (LV, MV and HV). These latter states also show smaller differences between each
other. This may be explained by P2NP causing higher remaining moisture content in vegetation
(i.e., for LV MV and HV) after the first precipitation event as compared to the remaining moisture
in soil when NV due to faster evaporation for bare ground.

3. Overall, there is relatively high confusion between LV and MV and to a lesser extent between LV
and NV. This can be ascribed to the broad range of grasslands in the LV class and the confusion
of higher grasslands with bushland; also see Section 2.2.3.

Figure 5. Hellinger distances between the PDFs of all vegetation states and for all precipitation scenarios.
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4.2. Classification Results with Precipitation Conditions

The overall accuracies from the classification under Configuration 1 (Figure 6) first of all show that
omitting P-related observations results in a marginal improvement of the classification performance
from None to NP. Conversely, only taking P-related data significantly deteriorates the performance.
This asymmetric behavior, which also applies to the producer’s and user’s accuracies, can be ascribed,
similarly to before, to the difference in the number of data samples, i.e., their corresponding occurrences.
The producer’s accuracies for NV for both P and P2P are relatively low with respect to the user’s
accuracy due to the classification confusion with the other vegetation states (as was described in
Discussion Point 1 in Section 4.1), particularly with HV for P2P.

Figure 6. The averages and standard deviations of the overall (top), producer’s (middle) and user’s
(bottom) accuracies for Configuration 1.

A greater classification improvement can be achieved when the bivariate information is taken
into account, firstly demonstrated by the NP2NP-related accuracies with respect to the None-related
accuracies. Hence, even though the center4σ0 location is close to zero (as indicated in Section 3.3),
the second observation still adds valuable information to the classifier. In addition, the absolute
difference in overall accuracies between NP2NP and P2P is similar to the difference between NP and P.

The best classification performances can be reached when changing precipitation conditions occur
for consecutive acquisitions, as demonstrated by the increase in overall accuracies for P2NP and NP2P.
With respect to NP2NP, the increases in the overall accuracies of P2NP and NP2P are approximately
equal. Nevertheless, the producer’s and user’s accuracies show differences, both commonly for NV.
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This is reflected by the larger Hellinger distances between NV and the other states for P2NP with
respect to NP2P, as was described and explained by Discussion Point 2 in Section 4.1.

Finally, the general confusion of LV with the other states, as was laid out by Discussion Point 3 in
Section 4.1, consequently results in relatively low producer’s accuracies for all precipitation scenarios.

4.3. Effect of Incidence Angle on Classification Results

Restricting the training and evaluation to a narrower range of incident angles (Configurations 2
and 3) has a marginal effect on the classification accuracy (Figure 7). The slight deterioration could be
ascribed to the non-uniform geographical distribution of the land cover classes and incidence angles,
causing lower number of samples per subset and potentially an over-representation of clusters within
one land cover type (especially for LV).

Figure 7. Overall accuracy improvements from Configuration 1 to Configuration 2 (top) and from
Configuration 1 to Configuration 3 (bottom). Only the improvements with a significance level of 0.05
are non-zero.

4.4. Effect of Soil Type Information on Classification Results

The soil-related differences, on the other hand, show significant improvements, particularly for
Configuration 5 (ultisols, lower clay content) for scenarios P, NP2P and P2P. These can be mainly
attributed to less confusion of NV with the other vegetation states. A comparison of the PDF of NV
with the PDF of MV for NP2P and the PDF of NV with the PDF of HV for P2P for Scenarios 4 and 5
with Scenario 1 (Figure 8) first of all indicates that the PDFs of Scenario 4 (oxisols, higher clay content)
closely resemble the PDFs of Scenario 1 (all soil types combined), which is evidently based on data
where the oxisols soil is over-represented.

Furthermore, as was earlier conveyed in Section 2.2.4, a slightly lower σ0 when dry and slightly
higher σ0 when wet for Configuration 4 (oxisols, higher clay content) with respect to Scenario 5 (ultisols,
lower clay content) was expected and is confirmed by the NP2P and P2P plots, respectively. For NP2P,
this consequently leads to a higher ∆σ0 for Scenario 4. The combination of the differences in σ0 and ∆σ0

between the two scenarios results in a smaller confusion with particularly MV for NP2P. For P2P the
smaller confusion can mostly be attributed to the difference in σ0 for NV with respect to HV. Both result
in the main accuracy improvements, as is shown in Figure 9.
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Figure 8. The 75% HDR plots for NV for NP2P and P2P for Scenarios 1, 4 and 5.

Figure 9. Overall accuracy improvements from Configuration 1 to Configuration 4 (top) and from
Configuration 1 to Configuration 5 (bottom). Only the improvements with a significance level of 0.05
are non-zero.

5. Conclusions

Incorporating information on surface wetness combined with the signal from the consecutive
SAR observation can significantly improve the characterization of vegetation. Moreover, a change in
wetness condition between acquisitions further increases the characterization accuracy. This is caused
by the non-uniform increase in SAR backscatter for the different vegetation states from dry to wet
condition and vice versa. In order to maximize the accuracy even further, the classification model may
be trained for different soil types as well, which, depending on their conductivity properties, increases
the difference between probability density functions and hence enhances the separability between NV
and other vegetation states.

Since the effect of precipitation on backscatter differences is dependent on the amount of
vegetation, other gradations in vegetation coverage than used in this article may be investigated.
As an example, improved discrimination may be possible between degraded grasslands and healthy
grasslands, due to their difference in soil contribution on the SAR signals. Furthermore, the potential
of co-polarized backscatter (VV in the case of Sentinel-1 IW in this area) for vegetation discrimination
based on precipitation information may be studied, as well.

The methodologies as laid out in this article are not recommended for utilization as stand-alone
classification techniques. Rather, we stress the concept that variations in surface wetness condition can
actually be used advantageously in SAR-based land cover monitoring or classification models.
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6
CONCLUSIONS AND

RECOMMENDATIONS

Je moet je afvragen: blijkt ergens uit dat leven een bedoeling heeft? Ik denk eerder dat het
tegenovergestelde het geval is. Darwin en Wallace hebben laten zien hoe belangrijk het

toeval is, dus juist het ontbreken van een doelstelling. Dat is het bepalende principe van
de evolutie. Later hebben biologen de vraag opgeworpen: als leven een doel heeft,

waarom zit het dan zo slordig in elkaar? Dat spreekt me zeer aan. Neem de blinde vlek in
het menselijk oog. De zenuwen die de signalen naar je hersenen overbrengen, gaan door

de retina heen. Dus is er een plekje in je oog dat niet gevoelig is voor licht, omdat die
zenuwbanen erdoorheen moeten. Welke sukkel heeft dat ontworpen? Dat had helemaal

niet gehoeven, het netvlies van de octopus bijvoorbeeld is onbelemmerd. Als God een
Delftenaar geweest zou zijn, zou hij hier nooit op zijn afgestudeerd.

Vincent Icke

I N this concluding chapter, the findings from the studies will be discussed in light of
the research questions that were introduced in Section 1, including a presentation of

preliminary results that demonstrates the potential of produced land cover maps. Sub-
sequently, a set of recommendations is provided.

CONCLUSIONS
The main goal of this study is to advance the state-of-the-art on sugarcane productivity
monitoring and land cover monitoring through SAR and optical remote sensing data.
Below, we address the four main research questions:

1. How can ground reference measurements that describe the biophysical state of sug-
arcane be acquired to support the analysis of space-based SAR and optical measure-
ments for productivity monitoring?
Chapter 2 presented a methodology that is based on a set of techniques and allo-
metric models that allows for estimating biomass based on non-destructive bio-
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physical field measurements. Combining the collected biomass and biophysical
parameters is important for the interpretation and analysis of SAR and optical re-
mote sensing signals due to their sensitivity to volume (change) and geometric
characteristics of the plants. Sound understanding of the growth developments,
based on the measured biophysical parameters and photographs, proved to be
indispensable to analyze the field situations in this study. Moreover, the non-
destructive collection of field measurements minimized the introduction of biases
to the remote sensing signals. The demanding conditions of such an endeavor
in terms of time and effort were adequate for the sugarcane growth development
analyses based on remote sensing, but limited the investigation of the signals’ full
potential with respect to the intra-field variability mapping, as will be discussed in
the following research question item.

In terms of quality of the measurements, the comparison between the directly
field-measured biomass and biomass values that were estimated based on field-
measured biophysical parameters (sugarcane stalk diameter, height, stalk mass
density and leaf mass) at the same locations overall brought satisfyingly high cor-
relations for further use of the models. The more detailed quality assessments also
demonstrated which uncertainties should be taken into account when estimating
biomass from biophysical measurements. These were signified as a function of the
instrument operation precision (dependent on instrument errors), idealization
precision (dependent on positioning errors) and modeling precision (dependent
on function fitting errors), whereby the idealization precision generally proved to
be the most dominant. The explanations on (i) the setup of the measurement cam-
paign, (ii) the methodologies for collecting and combining the measurements and
(iii) the outcomes of the quality assessments can help to adapt and optimize the
design of new sugarcane ground reference campaigns. Altogether, the collected
ground reference dataset offers useful knowledge for supporting the analysis of
SAR and optical satellite measurements for productivity monitoring, whereby the
collection of non-destructive biophysical field-measurements is a major asset. Yet,
the specific limitations of the dataset in terms of spatial coverage, temporal cover-
age and quality should be taken into account when using the dataset or setting up
similar acquisition campaigns.

2. How can measurements from space-based SAR and optical sensors be exploited to
effectively monitor sugarcane productivity?
We presented several insights into the techniques to monitor sugarcane growth
(Chapter 3). First of all, through coupling the ground reference dataset to remote
sensing imagery from various SAR and optical sensors, it was shown that the mon-
itoring of sugarcane growth is limited by (mainly) saturation, precipitation and
signal characteristics. For both optical and SAR remote sensing signals, sensor-
specific time windows were identified that constrain the effectiveness of monitor-
ing sugarcane growth. Specifically to SAR, the signals proved to be particularly
sensitive to surface wetness (e.g. caused by precipitation events), affecting the
saturation point. For optical, the saturation point occurs approximately halfway
the growth period, whereby C-band SAR signals saturate approximately at around
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one-fourth of the period. For L-band SAR, the signals did not reveal saturation
points during growth.

Whereas the ground reference dataset was adequate for analysis on remote sens-
ing for growth monitoring over the span of sugarcane growth, it should also be
noted that its spatial coverage limited the examination of the full potential of the
signals for detecting sugarcane growth anomalies in space. Nevertheless, the com-
parison of the estimated ground reference biomass with the remote sensing sig-
nals indicated that only high-resolution optical imagery has potential to detect
growth variations in the field. We also found that, based on only remote sensing
imagery, the temporal consistency of spatial patterns is highly dependent on the
growth stage and differs for SAR and optical. For SAR signals, the consistency also
depends on environmental conditions, such as precipitation and beam geometry
conditions. As a result, sets of remote sensing images can be effectively selected for
carrying out sugarcane productivity monitoring based on saturation-dependent
time windows, beam configurations and sensor type.

The second study in this chapter, on the identification of spatio-temporal pat-
terns, showed that the two-fold hypothesis testing technique can be used to dis-
cover field locations that continuously emerge in time. The technique gives an
indication on how to detect these locations and subsequently to analyze their cor-
respondence to sugarcane growth anomalies. The third study demonstrated that
spatial gaps in sugarcane fields influence the SAR signals as a function of vegeta-
tion height, surface wetness and averaging windows. These findings contribute to
further understanding the considered remote sensing signals (in particular L-band
and high resolution C-band imagery) in relation to sugarcane gaps and growth
conditions, and furthermore provide indications on the signals’ potential for de-
tecting sugarcane growth anomalies.

Altogether, the results showed that remote sensing images can be selected based
on specific time windows and environmental conditions under which the remote
sensing imagery is acquired, as is specified in more detail in Chapter 3, for effec-
tive monitoring sugarcane growth. Furthermore, to assess (more) effectively the
potential of remote sensing imagery for intra-field biomass variability estimation,
the features of the ground reference dataset and the satellite measurements ide-
ally match, including their spatial and temporal resolutions, their measured and
estimated parameters and their levels of precision (as will be discussed further in
Recommendations).

3. How can the combined use of space-based SAR and optical measurements improve
their singular use for land cover monitoring with a focus on sugarcane classifica-
tion?
Chapter 4 demonstrated how an adapted Hidden Markov Model (HMM) that mod-
els the sequence of system states based on stochastic mechanisms allows for the
consistent progress monitoring of states during vegetation growth while effectively
combining SAR and optical measurements. We found that missing certain crop
cycle events (such as harvest events) and the occurrence of environmental events
(such as precipitation and drought) during the acquisitions of satellite measure-
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ments create the most common classification confusions between the various land
cover types. Specific examples of such confusions include those between sugar-
cane and grassland due to growth anomalies and between annual crops and grass-
lands due to remaining (corn) stalks after harvest and tall grassland.

In terms of overall model performance, the classification accuracies showed that
optical-only observations generally outperform SAR-only observations, whereby
the model based on optical-only data is particularly sensitive to the missing of
growth events such as early growth and harvest. Insights into these characteris-
tics are of particular importance when such conditions are more likely to occur,
e.g. in severely cloudy regions. When combining SAR and optical measurements,
the kappa accuracy nearly doubles in comparison to the singular use of SAR and
optical measurements.

Altogether, the combination of the HMM’s ability to (i) track states, to (ii) cope
with temporally irregular (optical) data, to (iii) digest data from both sensors and
to (iv) improve the result when combining these sensor data, makes it a particu-
larly attractive alternative to commonly used land cover models. Yet, the model’s
sensitivity to gaps in (optical) observational during important crop events and the
limited ability of SAR measurements to compensate for these are important limi-
tations of the model when using these datasets. The presented research can help
to assess the potential of the model in light of the model’s tracking capabilities
of vegetation states, and to further explore the advantages of combining the data
from both sensors for improved land cover maps.

4. How can a-priori knowledge on precipitation and soil type be used advantageously
for the characterization of vegetation states through space-based SAR measurements?
Chapter 5 quantified the classification performance improvements that can be
achieved when information on precipitation events and soil type are taken into
account. It was shown that the results already improve when excluding SAR obser-
vations that were acquired under surface wetness conditions and further improve
when changes in wetness condition occur between consecutive acquisitions (i.e.
from non-precipitation to precipitation or vice versa). The incorporation of infor-
mation on soil type (differentiated by their clay content) proved to be additionally
beneficial for the results, though to a lesser extent. The incorporation of both types
of information proved to be effective for enhanced discrimination between certain
growth stages, particularly between bare soil and other states since the SAR signals
from bare soil are more sensitive to wetness than other vegetation states. The in-
corporation of the incidence angle did not reveal noteworthy improvements.

Altogether, the analysis was mainly carried out in order to demonstrate the classi-
fication improvements that can be achieved rather than the provision of stand-
alone classification techniques. These findings show a method that effectively
combines SAR acquisitions and precipitation and soil information rather than dis-
carding precipitation-affected signals or underestimating their potential when in-
cluding these acquisitions for vegetation mapping.

The following preliminary and exemplary results were produced by applying the land
cover monitoring technique that was presented in Chapter 4, based on optical images
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only. It should noted that these results have not been further applied and published, and
serve here only to illustrate new research opportunities, to (partly) support the recom-
mendations and to demonstrate possible applications concerning research on a biobased
society.

First of all, the produced land cover maps can visualize the effect of drought on the
water level of a Brazilian reservoir used for hydro-electric power generation (Figure 6.1);
after one of the most severe droughts in the region since 1960 that happened during
2014 and 2015 [1, 2]. It shows that the main body of the reservoir as well as the side
bulges contracted. In addition, the maps show considerable conversions of pasture land
into sugarcane land, as well as the expansion of urban areas. Hence, such detailed maps
can facilitate in detecting temporal variations in water reservoirs and in pinpointing land
cover changes.

Figure 6.1: Water reservoir for hydro-electric power in the Tietê river in the west of São Paulo state, in 2003 (left)
and after severe drought 2015 (right). Main differences are the reduced water area and the replaced pasture
fields by sugarcane fields. North is up.

The maps can also show the extensive expansion of sugarcane over pasture fields
over the course of approximately a decade on municipality-level, in this case a munic-
ipality in São Paulo state named Palestina (Figure 6.2). In terms of acreage, sugarcane
expanded by approximately 65% between 2005 and 2014, most dominantly along the
municipality’s edges, bordering local rivers. The expansion mostly occurred over pas-
ture land, which decreased by approximately 80%.
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Figure 6.2: Land cover in municipality Palestina in the north of São Paulo state, in 2005 (left) and 2014 (right).
North is up.

Furthermore, through the land cover maps of the entire São Paulo state, the dynam-
ics of land cover types in time (Figure 6.3) can be observed. The loss map shows that
between 2005 and 2015 the main land cover loss occurred for pasture, particularly in the
middle and west of the state. The majority of these fields were replaced by sugarcane.
In fact, though not shown here, the intermediate maps reveal that over the course of the
period, the substitution of pasture by sugarcane gradually shifted in northwest direction,
pushing out pasture to the neighboring states. The protected (native) Atlantic forest in
the east of the state has virtually not changed.

Figure 6.3: Loss map (left) and gain map (right) of São Paulo state between 2005 and 2015. It shows wide-scale
replacement of sugarcane with pasture fields, most particularly in the western part of the state. The map of the
Netherlands puts the size of the state in perspective. North is up.
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Finally, the aggregate of land cover area over the entire state from 2003 to 2015 (Figure
6.4) shows that sugarcane increased by more than half, while pasture and annual crops
decreased by more than 20%. In addition, the small deviation of water in 2014 and 2015
is most likely related to the earlier mentioned severe drought period.

Figure 6.4: Change in land cover area in São Paulo from 2003 to 2015 in million hectares (Mha).

Based on these examples, we advocate for the application of the (land cover) tech-
niques that are proposed in this study to São Paulo state as well as to neighboring states.
In particular, the spatial trend in terms of land cover migration can give further insights
into the (indirect) land cover changes that are induced by the expansion of bio-energy
crops such as sugarcane. As pasture fields move westward and northward and out of the
state, it is of particular interest to assess what the effect is on land cover types elsewhere,
such as native vegetation and annual crops.

RECOMMENDATIONS
Since the majority of the presented research relies on collected ground reference data,
it is recommended to enrich such ground reference datasets with dense plant and soil
moisture measurements along with plant failure and plant substitution (e.g. weed infes-
tations) measurements. Especially for SAR satellite imagery, these moisture and plant
measurements are of interest due to the sensitivity of SAR signals to wetness condi-
tions. The methodology for setting up such ground campaigns as was presented in
Chapter 2 may be adopted and adjusted according to the specific needs, whereby the
non-destructive estimation of biomass may be of particular importance when undesired
alteration of space-based observations needs to be minimized. In addition, in order to
match the spatial resolution of the field-collected biomass measurements with the reso-
lution of the analysed satellite imagery, yield sensors may be mounted on the harvester,
shedding more light on the value of the spatial features in the satellite images that are
closest to harvesting. Ideally, the spatial and temporal acquisition density, the param-
eters and levels of precision of the ground measurements should match the effective
spatial and temporal resolution, parameters to be estimated and levels of precision of
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the satellite sensors, respectively. The resolutions could be approximated by applying
variable scales, whereby the spatial density of field measurements is dependent on the
(biomass) variability, and the temporal resolution of field measurements is dependent
on the closeness to signal saturation and environmental conditions (such as precipita-
tion conditions and growth stage).

Secondly, the consistency analysis of the remote sensing imagery as was presented
in Chapter 3 should be extended through the incorporation of Sentinel-1 Interferomet-
ric Wide Swath images, as only Sentinel-1 Extra Wide Swath images were available for
this specific research. This also holds for the inclusion of more ALOS-2 images, which
could shed more light on saturation effects and the understanding of spatial patterns.
Additionally, short-wave SAR imagery from satellites such as TerraSAR-X and COSMO-
SkyMed may be examined, whereby it should be acknowledged that saturation effects
will probably limit the effectiveness to early crop stages due to their signal’s wavelength.
Regarding optical imagery, it is recommended to incorporate larger sets of high-resolution
images from satellites, for example from WorldView, RapidEye and Planet satellites. Al-
ternatively, as a quick-win solution, freely available images from Sentinel-2 may give
easily attainable insights into the effect of the use of higher-resolution imagery (10 me-
ter resolution) than the already analyzed Landsat imagery (30 meter resolution).

Specifically for SAR remote sensing, it is recommended to analyse the potential of
InSAR coherence and PolSAR for monitoring vegetation growth, particularly for detect-
ing agricultural events (such as crop emergence, crop closure and harvest events) as well
as for detecting environmental conditions (such as precipitation and drought events)
and integrate these into models such as the proposed version of the HMM. Successful
detection of agricultural events could substantially improve the tracking of crop stages
and classification of land cover types when employing land cover monitoring techniques
that facilitate the incorporation of state probabilities. The inclusion of environmental
conditions could further improve such a technique by means of attributing reliability
estimates to the observations, giving, for example, different weights to SAR observations
than to optical observations when affected by precipitation. Additionally, the method-
ology that was presented in Chapter 5 may be reversed in order to detect precipitation
events. Also, the sensitivity of SAR signals to soil moisture may be exploited for the dis-
crimination of healthy and degraded grasslands. Such analysis is particularly relevant
for a region like São Paulo state, in light of the threat of pasture degradation to the fitness
of arable land and its relation to overgrazing, as was earlier touched upon in Chapter 5.

Finally, but most importantly, it is recommended to apply the presented HMM-based
land cover monitoring model on the state of São Paulo first and subsequently observe the
trends in spatial expansion, reduction and migration of certain land cover types in time,
in particular of sugarcane, grasslands, annual crops and forest. As was carried out for this
study, it is recommended to utilize Google Earth Engine (GEE) to acquire and preprocess
the remote sensing data, followed by the transfer of the data to a high-performance com-
puting facility (e.g. SURFsara) in order to apply the proposed models to the data in tiles
and finally combine these tiles in time and space. Alternatively, all steps (preprocess-
ing, models and map production) can be incorporated into GEE for direct processing on
GEE’s facilities. The model may, furthermore, be trained, validated and applied to Brazil
in its entirety. Such analysis may give highly valuable insights into potential relation-
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ships between the expansion of sugarcane, the migration of grasslands that are used as
pastures toward the Amazon and the loss of forests in those regions.
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