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Relaxing the Control-gain Assumptions of DSC Design for Nonlinear
MIMO Systems

Yong Chen, Maolong Lv, Simone Baldi, Zongcheng Liu, Wenqian Zhang and Yang Zhou

Abstract— This work focuses on adaptive neural dynamic
surface control (DSC) for an extended class of nonlinear
MIMO strict-feedback systems whose control gain functions
are continuous and possibly unbounded. The method is based
on introducing a compact set which is eventually proved to be
an invariant set: thanks to this set, the restrictive assumption
that the upper and lower bounds of control gain functions must
be bounded is removed. This method substantially enlarges the
class of systems for which DSC can be applied. By utilizing
Lyapunov theorem and invariant set theory, it is rigorously
proved that all signals in the closed-loop systems are semi-
globally uniformly ultimately bounded (SGUUB) and the output
tracking errors converge to an arbitrarily small residual set. A
simulation example is provided to demonstrate the effectiveness
of the proposed approach.

I. INTRODUCTION

In recent years, approximation-based adaptive control of
uncertain nonlinear systems has attracted much attention
[1-3]. When combined with the backstepping technique,
approximation-based adaptive approaches have been shown
to obtain global stability for many classes of nonlinear
systems [1-5]. However, it is well known that, due to
repeatedly differentiating the virtual controllers at each step,
the complexity of conventional backstepping controller dras-
tically grows as the order of the systems increases. The
DSC technique has been proposed to avoid this problem
by introducing a first-order low-pass filter in the conven-
tional backstepping design procedure. Approximation-based
adaptive controllers stemming from this technique have been
successfully constructed for many nonlinear systems and
their applications, see [5-18] and references therein. To list a
few, for example, a novel adaptive neural control is designed
for a class of nonlinear MIMO time-delay systems in [5].
In [6], adaptive fuzzy hierarchical sliding-mode control is
conducted for MIMO input-constrained nonlinear systems,
etc.

However, it should be pointed out that, for all above
schemes [5-9] to work, upper and lower bounds of the control

This work was supported by the National Natural Science Foundation
of China under Grant 61603411, and by Descartes Excellence Fellowship
(French+Dutch grant).

M. Lv is with the Delft Center for Systems and Control, Delft University
of Technology, Mekelweg 2, Delft 2628, CD, The Netherlands. e-mail:
M.Lyu@tudelft.nl

S. Baldi is with the Department of Mathematics, Southeast University,
Nanjing 210096, China, and also with the Delft Center for Systems and
Control, Delft University of Technology, 2628 CD Delft, The Netherlands
e-mail: S.baldi@tudelft.nl

Yong Chen, Zongcheng Liu, Wenqian Zhang and Yang Zhou are with the
Department of Flight control and Electrical Engineering, Aeronautics and
Astronautics Engineering College, Air Force Engineering University, Xi’an,
Shaanxi, 710038 China.

gain functions must be assumed to exist. In order to remove
this restrictive assumption, some efforts have been made:
most notably, in [3] the upper bound is relaxed to a known
positive function, while the lower bound is still assumed
to exist. However, the lower and upper bounds of the
control gain functions maybe difficult to acquire in practical
applications, or even nonexistent [4]. This motivates us to
explore new approaches to remove this restrictive assumption
from the control gain functions. The main contributions of
this work are as follows:

(1) Only the signs of the control gain functions are
assumed to be known: in other words, the control gain
functions are only required to be positive (and possibly un-
bounded), rather than a priori bounded by positive constants.
The main challenge arising from this setting is that the states
cannot be assumed to be bounded a priori before obtaining
system stability.

(2) A novel set-invariance neural adaptive design is carried
out for MIMO nonlinear dynamic systems. The challenge
of this design is to construct appropriate compact sets via
Lyapunov stability and invariant set theory, which guarantee
that the states of the closed-loop system will stay in those
sets all the time, even in the presence of possibly unbounded
control gain functions.

The rest of this paper is organized as follows. Section
II presents the problem formulation and preliminaries. The
control design and stability analysis are given in Section
III. In Section IV simulation results are presented to show
the effectiveness of the proposed scheme. Finally, Section V
concludes the work.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem Formulation
Consider a class of MIMO strict-feedback nonlinear sys-

tems given by [7]:
ẋj,ij = ϕj,ij (x̄j,ρj ) + gj,ij (x̄j,ij )xj,ij+1 + dj,ij (x, t)

1 ≤ ij ≤ ρj − 1

ẋj,ρj = ϕj,ρj (x̄j,ρj ) + gj,ρj (x̄j,ρj )uj + dj,ρj (x, t)

yj = xj,1 j = 1, ...,m
(1)

where xj,ij ∈ R is the state of the jth subsystem, x =
[x̄T1,ρ1 , ..., x̄

T
j,ρj

, ..., x̄Tm,ρm ]T ∈ RN is the state vector of
the whole system (N = ρ1 + · · · + ρm), where x̄j,ρj =

[xj,1, ..., xj,ρj ]
T ∈ Rρj and ρj is the order of the jth

subsystem. x̄j,ij = [xj,1, ..., xj,ij ]
T ∈ Rij , uj and yj ∈

R are the input and output of the jth subsystem respec-
tively. ϕj,ij (x̄j,ρj ) are unknown continuous functions with
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ϕj,ij (0) = 0, gj,ij (x̄j,ij ) are unknown continuous control
gain functions, and dj,ij (x, t), ij = 1, ..., ρj , j = 1, ...,m
are uncertainties consisting of dynamical coupling terms and
external disturbances.

Assumption 1: Only the signs of nonlinear functions
gj,ij (x̄j,ij ) are known. Without loss of generality, it is further
assumed that gj,ij (x̄j,ij ) > 0 for ij = 1, 2, . . . , ρj and
j = 1, ...,m.

Remark 1: It has to be noted that, in all the existing
methods, e.g., [5-9], the control gain functions gj,ij (x̄j,ij )
are assumed to satisfy 0 < a ≤ gj,ij (x̄j,ij ) ≤ b, with
a and b being unknown constants. In fact, this assumption
is sufficient for controllability of system (1). However, the
assumption a ≤ gj,ij (x̄j,ij ) ≤ b is too restrictive since
such a priori knowledge of gj,ij (x̄j,ij ) may be difficult or
even impossible to be acquired in practice. In addition,
the lower bound a and upper bound b of gj,ij (x̄j,ij ) may
be nonexistent: for example, the control gain functions
gj,ij (x̄j,ij ) = x2

j,1 + exj,ij does not admit any a and b do
not exist for all states: however, Assumption 1 holds since
gj,ij (x̄j,ij ) = x2

j,1 + exj,ij > 0 for all x̄j,ij . Therefore,
Assumption 1 allows the functions gj,ij (x̄j,ij ) to be possibly
unbounded, which require new stability tools.

Assumption 2 [7]: For ∀t > 0, there exist positive con-
stants d∗j,ij such that

∣∣dj,ij (x, t)
∣∣ ≤ d∗j,ij , for ij = 1, . . . , ρj

and j = 1, . . . ,m.
Assumption 3 [8]: The reference signal yj,d(t)

is a sufficiently smooth function of t, and there
exist positive constants Bj0 such that Ωj0 :={[
yj,d, ẏj,d, ÿj,d

]T ∣∣∣∣(yj,d)2

+
(
ẏj,d

)2

+
(
ÿj,d

)2

≤ Bj0
}

.

Lemma 1 [4]: Consider the dynamic system

χ̇(t) = −αχ(t) + βυ(t) (2)

where α and β are positive constants, and υ(t) is a positive
function. For any given bounded initial condition χ(0) ≥ 0,
we have χ(t) ≥ 0, for ∀t ≥ 0.

Lemma 2 [4]: For any % ∈ R and $ > 0, the hyperbolic
tangent function fulfills ∀$ > 0{

0 ≤ |%| − % tanh (%/$) ≤ 0.2785$

0 ≤ % tanh (%/$)
(3)

B. Properties of RBF NNs

The radial basis function neural networks (RBF NNs)
is used to approximate the unknown continuous functions
ϕj,ij (x̄j,ρj ) in this study. As is well known, for a given
ε∗ > 0 and any continuous function h(Z) defined on a
compact set Ωz ⊂ Rn, there exists a RBF NN ΘT∗φ̄(Z)
such that

h(Z) = Θ∗T φ̄(Z) + ε(Z), |ε(Z)| ≤ ε∗ (4)

where Z ∈ Ωz ⊂ Rn is the input vector, Θ∗ is the ideal
constant weight vector, ε(Z) is the approximation error, and
φ̄(Z) = [φ1(Z), ..., φl(Z)]T with l > 1 being the number of

neural network nodes and φi(Z) being commonly taken as
Gaussian functions

φi(Z) = exp

[
−(Z − ωi)T (Z − ωi)

Θ2
i

]
, i = 1, 2, ..., l

(5)

where ωi = [ωi1, ωi2, · · · , ωin]T and Θi ∈ R are the center
and the width of the Gaussian function, respectively.

III. CONTROL DESIGN AND STABILITY ANALYSIS

A. Adaptive dynamic surface tracking controller design

The DSC technique is employed to design the adaptive
neural controller for system (1) under the framework of
backstepping. The control design is carried out based on the
following changes of coordinates:{

zj,1 = xj,1 − yj,d
zj,ij = xj,ij − χj,ij

(6)

where zj,1 is the output tracking error and χj,ij is the output
of the first-order filter with ψj,ij as the input, where ψj,ij
is the virtual controller defined in the step ij . The recursive
design includes ρj steps. From step 1 to step ρj − 1, the
virtual control ψj,ij will be constructed in step j, ij and the
actual control input uj will be designed in the step ρj .

Since ϕj,ij (x̄j,ρj ), ij = 1, ..., ρj , are unknown contin-
uous functions, they cannot be used in the control design
directly. Therefore, throughout this note, we use RBF NNs to
approximate the continuous functions ϕj,ij (x̄j,ρj ) as follows:

ϕj,ij (x̄j,ρj ) = Θ∗Tj,ij φ̄j,ij (x̄j,ρj ) + εj,ij (x̄j,ρj ), x̄j,ρj ∈ Ωx̄j,ρj
(7)

where φ̄j,ij (x̄j,ρj ) = [φj,ij ,1(x̄j,ρj ), ..., φj,ij ,lij (x̄j,ρj )]
T

with φj,ij ,n(x̄j,ρj ), for n = 1, ..., lj,ij , being Gaussian
functions defined in (5), and εj,ij are the approximation
errors, satisfying

∣∣εj,ij ∣∣ ≤ ε∗j,ij with ε∗
j,ij

being unknown
positive constants. For compactness, we let εj,ij and dj,ij
denote εj,ij (x̄j,ρj ) and dj,ij (x, t) respectively.

Step j, 1: To begin with, it follows from (1) and (7) that
the dynamics of zj,1 is

żj,1 =Θ∗Tj,1φ̄j,1(x̄j,ρj ) + εj,1 + gj,1(xj,1)xj,2

+ dj,1 − ẏj,d
(8)

where εj,1 is the approximation error satisfying |εj,1| ≤ ε∗j,1
with ε∗j,1 > 0 being an unknown constant.

To consider the stabilization of (8), we consider the
following quadratic function

V̇zj,1 =
1

2
z2
j,1. (9)

Thus the time derivative of (9) can be given by

V̇zj,1 =zj,1(Θ∗Tj,1φ̄j,1(x̄j,ρj ) + εj,1 + gj,1(xj,1)xj,2

+ dj,1 − ẏj,d).
(10)

Define a compact set Ωj,1 :=
{
zj,1

∣∣Vzj,1 ≤ p}, with p >
0 being any positive constant. For Ωj,1×Ωj0 and gj,1(xj,1),
the following lemma holds.



Lemma 3: The continuous control gain function gj,1(xj,1)
has maximum and minimum in Ωj,1 × Ωj0, namely, there
exist positive constants g

j,1
and ḡj,1 satisfying g

j,1
=

min
Ωj,1×Ωj0

gj,1(xj,1) and ḡj,1 = max
Ωj,1×Ωj0

gj,1(xj,1).

Proof : Observing zj,1 = xj,1 − yj,d, we obtain xj,1 =
yj,d + zj,1. Hence continuous function gj,1(xj,1) can be
expressed by

gj,1(xj,1) = µj,1(zj,1, yj,d) (11)

with µj,1(·) being a continuous function. Note that Ωj,1 ×
Ωj0 is a compact set since Ωj,1 and Ωj0 are compact sets
respectively. It is possible to derive from (11) that all the
variables of µj,1(·) are included in the compact set Ωj,1 ×
Ωj0, thus we have

0 < g
j,1
≤ gj,1(xj,1) ≤ ḡj,1, xj,1 ∈ Ωj,1 × Ωj0. (12)

�
Choose the virtual control law ψj,1 and parameters adap-

tation laws ϑ̂j,1 and δ̂j,1 as follows

ψj,1 = −cj,1zj,1 −
ϑ̂j,1zj,1
2a2
j,1

− δ̂j,1 tanh

(
zj,1
νj,1

)
− ξj,1ẏj,d tanh

(
zj,1ẏj,d
νj,1

) (13)

˙̂
ϑj,1 =

βj,1z
2
j,1

2a2
j,1

− σj,1βj,1ϑ̂j,1 (14)

˙̂
δj,1 = γj,1zj,1 tanh

(
zj,1
νj,1

)
− σj,1γj,1δ̂j,1 (15)

where cj,1 > 0, aj,1 > 0, νj,1 > 0, βj,1 > 0, σj,1 > 0, γj,1 >
0 and ξj,1 ≥ g−1

j,1
are design parameters. ϑ̂j,1 and δ̂j,1 are

estimates of the unknown constants ϑj,1 = g−1
j,1

∥∥Θ∗j,1
∥∥2
lj,1

and δj,1 = g−1
j,1

(
ε∗j,1 + d∗j,1

)
respectively, with lj,1 being the

dimension of φ̄j,1(x̄j,ρj ). By recalling Lemma 1, we can
obtain ϑ̂j,1(t) ≥ 0 and δ̂j,1(t) ≥ 0 for ∀t ≥ 0 by choosing
ϑ̂j,1(0) = 0 and δ̂j,1(0) = 0.

To avoid repeatedly differentiating ψj,1, in line with the
DSC in [10], we introduce a first-order filter with positive
time constant τj,2, as follows

τj,2χ̇j,2 + χj,2 = ψj,1, χj,2(0) = ψj,1(0). (16)

Now, by defining the output error of filter (16) as ej,2 =
χj,2 − ψj,1, which yields χ̇j,2 = −ej,2/τj,2 and

ėj,2 = −ej,2
τj,2

+ ζj,2

(
zj,1, zj,2, ej,2, ϑ̂j,1, δ̂j,1, yj,d, ẏj,d, ÿj,d

)
(17)

where ζj,2(·) is a continuous function, which will be used in
the stability analysis.

In view of Young’s inequality1, one has

zj,1Θ∗Tj,1φ̄j,1(x̄j,ρj ) ≤
z2
j,1

∥∥Θ∗j,1
∥∥2

2a2
j,1

φ̄Tj,1(x̄j,ρj )φ̄j,1(x̄j,ρj )

+
a2
j,1

2
.

(18)

Note that φ̄Tj,1(x̄j,ρ)φ̄j,1(x̄j,ρ) ≤ lj,1 since φ̄j,1(x̄j,ρj ) =
[φj,1,1(x̄j,ρj ), ..., φj,1,lj,1(x̄j,ρj )]

T and
∣∣φj,1,n(x̄j,ρj )

∣∣ ≤ 1,
for n = 1, ..., lj,1, with lj,1 being the dimension of φ̄j,1(x̄j,ρ).
Thus we have

zj,1Θ∗Tj,1φ̄j,1(x̄j,ρj ) ≤
z2
j,1

∥∥Θ∗j,1
∥∥2

2a2
j,1

lj,1 +
a2
j,1

2
. (19)

Using xj,2 = zj,2 + ej,2 + ψj,1 and substituting (19) and
(13) into (10), we obtain the time derivative of Vzj,1 as

V̇zj,1 ≤ −cj,1gj,1z
2
j,1 −

g
j,1
ϑ̂j,1z

2
j,1

2a2
j,1

+
z2
j,1

∥∥Θ∗j,1
∥∥2

2a2
j,1

lj,1

− g
j,1
zj,1δ̂j,1 tanh

(
zj,1
νj,1

)
+ zj,1zj,2gj,1(xj,1)

− zj,1ẏj,d tanh

(
zj,1ẏj,d
νj,1

)
+ zj,1gj,1(xj,1)ej,2

+
a2
j,1

2
+ |zj,1| (ε∗j,1 + d∗j,1)− zj,1ẏj,d.

(20)

Choose the Lyapunov function candidate as

Vj,1 = Vzj,1 +
g
j,1
δ̃2
j,1

2γj,1
+
g
j,1
ϑ̃2
j,1

2βj,1
+

1

2
e2
j,2

(21)

where δ̃j,1 = δj,1 − δ̂j,1 and ϑ̃j,1 = ϑj,1 − ϑ̂j,1 are the
estimation errors of δj,1 and θj,1, respectively.

Substituting (14), (15) and (20) into (21), the time deriva-
tive of Vj,1 is

V̇j,1 ≤− cj,1gj,1z
2
j,1 + zj,1zj,2gj,1(xj,1)

+ σj,1gj,1

(
ϑ̃j,1ϑ̂j,1 + δ̃j,1δ̂j,1

)
−
e2
j,2

τj,2

+ 0.2785νj,1
(
ε∗j,1 + d∗j,1 + 1

)
+
a2
j,1

2
+
∣∣ej,2ζj,2(·)

∣∣+ zj,1gj,1(xj,1)ej,2.

(22)

Step j, ij (2 ≤ ij ≤ ρj − 1, j = 1, . . . ,m): The design
process for step ij is similar to Step 1. From zj,ij = xj,ij −
ψj,ij and (4), the dynamics of zj,ij is

żj,ij =Θ∗Tj,ij φ̄j,ij (x̄j,ρj ) + εj,ij + gj,ij (x̄j,ij )xj,ij+1

+ dj,ij − ψ̇j,ij
(23)

with εj,ij being the approximation error satisfying
∣∣εj,ij ∣∣ ≤

ε∗j,ij , where ε∗j,ij > 0 is an unknown constant.

1xy ≤ ε2

α
|x|2+ 1

βε2
|y|2 (α > 1, β > 1, ε > 0 and (α−1)(β−1) =

1)



Choose the following quadratic function

Vzj,ij =
1

2
z2
j,ij . (24)

From (23), the time derivative of Vzj,ij is

V̇zj,ij =zj,ij (Θ
∗T
j,ij φ̄j,ij (x̄j,ρj ) + gj,ij (x̄j,ij )xj,ij+1

+ dj,ij + εj,ij − ψ̇j,ij ).
(25)

Design the virtual control law ψj,ij and adaptation laws
δ̂j,ij and ϑ̂j,ij as

ψj,ij = −cj,ijzj,ij −
ϑ̂j,ijzj,ij

2a2
j,ij

− δ̂j,ij tanh

(
zj,ij
νj,ij

)
− ξj,ij

ej,ij
τj,ij

tanh

(
zj,ijej,ij
τj,ijνj,ij

) (26)

˙̂
ϑj,ij =

βj,ijz
2
j,ij

2a2
j,ij

− σj,ijβj,ij ϑ̂j,ij (27)

˙̂
δj,ij = γj,ijzj,ij tanh

(
zj,ij
νj,ij

)
− σj,ijγj,ij δ̂j,ij (28)

where the parameters are chosen similar to (13)-(15).
Next, let ψj,ij pass through a first-order filter with time

constant τj,ij+1 as follows

τj,ij+1χ̇j,ij+1 + χj,ij+1 = ψj,ij , χj,ij+1(0) = ψj,ij (0).
(29)

Define the filter errors ej,ij+1 = χj,ij+1 −ψj,ij . We have
χ̇j,ij+1 = −ej,ij+1

/
τj,ij+1 and

ėj,ij+1 = −
ej,ij+1

τj,ij+1

+ ζj,ij+1

(
z̄j,ij+1, ēj,ij+1,

¯̂
ϑj,ij ,

¯̂
δj,ij , yj,d, ẏj,d, ÿj,d

) (30)

with ζj,ij+1(·) being a continuous function.
Following similar lines as Lemma 3, we find that the

continuous control gain function gj,ij (x̄j,ij ) can be rewritten
as

gj,ij (x̄j,ij ) = µj,ij (z̄j,ij , ēj,ij ,
¯̂
ϑj,ij−1,

¯̂
δj,ij−1, yj,d) (31)

where µj,ij (·) is a continuous function.
Then, define the following compact sets Ωj,ij

Ωj,ij :=

{[
z̄Tj,ij , ē

T
j,ij
,

¯̂
ϑTj,ij−1,

¯̂
δTj,ij−1

]T
|z2
j,ij

+
∑ij−1
k=1(

z2
j,k + e2

j,k+1 +
g
j,ij

δ̃2j,ij

γj,ij
+

g
j,ij

ϑ̃2
j,ij

βj,ij

)
≤ 2p

}
where p is an arbitrary positive constant. For Ωj,ij and
gj,ij (x̄j,ij ), in a similar fashion as Lemma 3 was derived, we
have that the continuous function gj,ij (x̄j,ij ) has maximum
and minimum in Ωj,ij × Ωj0, namely, there exist positive
constants g

j,ij
and ḡj,ij satisfying

g
j,ij
≤ gj,ij (x̄j,ij ) ≤ ḡj,ij , x̄j,ij ∈ Ωj,ij × Ωj0. (32)

Consider the Lyapunov function candidate

Vj,ij = Vzj,ij +
g
j,ij
δ̃2
j,ij

2γj,ij
+
g
j,ij
ϑ̃2
j,ij

2βj,ij
+

1

2
e2
j,ij+1

(33)

where δ̃j,ij = δj,ij − δ̂j,ij and ϑ̃j,ij = ϑj,ij − ϑ̂j,ij .
With the help of Young’s inequality, we get

zj,ijΘ
∗T
j,ij φ̄j,ij (x̄j,ρj ) ≤

z2
j,ij

∥∥∥Θ∗j,ij

∥∥∥2

2a2
j,ij

lj,ij +
a2
j,ij

2
(34)

where aj,ij and lj,ij are designed constants in line with (19).
Substituting (26) (28) and (34) into (33) and using Lemma

2 and ξj,ijgj,ij ≥ 1, we have

V̇j,ij ≤− cj,ijgj,ijz
2
j,ij + zj,ijgj,ij (x̄j,ij )ej,ij+1 −

e2
j,ij+1

τj,ij+1

+ σj,ijgj,ij

(
ϑ̃j,ij ϑ̂j,ij + δ̃j,ij δ̂j,ij

)
+
a2
j,ij

2

+
∣∣∣ej,ij+1ζj,ij+1(·)

∣∣∣+ zj,ijzj,ij+1gj,ij (x̄j,ij )

+ 0.2785νj,ij

(
ε∗j,ij + d∗j,ij + 1

)
.

(35)

Step j, ρj (j = 1, ...,m): From (1), (6) and (7), one has

żj,ρj =Θ∗Tj,ρj φ̄j,ρj (x̄j,ρj ) + εj,ρj + gj,ρj (x̄j,ρj )uj

+ dj,ρj − χ̇j,ρj
(36)

Consider the quadratic function

Vzj,ρj =
1

2
z2
j,ρj . (37)

Similarly, we know that gj,ρj (x̄j,ρj ) can be rewritten as

gj,ρj (x̄j,ρj ) = µj,ρj (z̄j,ρj , ēj,ρj ,
¯̂
ϑj,ρj−1,

¯̂
δj,ρj−1, yj,d) (38)

where µj,ρj (·) is a continuous function.
In light of previous steps (Lemma 3), it can be seen that,

for Ωj,ρj×Ωj0 and gj,ρj (x̄j,ρj ), there exist positive constants
g
j,ρj

and ḡj,ρj satisfying

g
j,ρj
≤ gj,ρj (x̄j,ρj ) ≤ ḡj,ρj , x̄j,ρj ∈ Ωj,ρj × Ωj0. (39)

Let us now design the actual control law uj and adaptation
laws ϑ̂j,ρj and δ̂j,ρj as

uj = −cj,ρjzj,ρj −
ϑ̂j,ρjzj,ρj

2a2
j,ρj

− δ̂j,ρj tanh

(
zj,ρj
νj,ρj

)
− ξj,ρj

ej,ρj
τj,ρj

tanh

(
zj,ρjej,ρj
τj,ρjνj,rhoj

)
(40)

˙̂
ϑj,ρj =

βj,ρjz
2
j,ρj

2a2
j,ρj

− σj,ρjβj,ρj ϑ̂j,ρj (41)

˙̂
δj,ρj = γj,ρjzj,ρj tanh

(
zj,ρj
νj,ρj

)
− σj,ρjγj,ρj δ̂j,ρj (42)

where the corresponding parameters are defined similarly to
that of (26)∼(28).

Consider the following Lyapunov function candidate

Vj,ρj = Vzj,ρj +
g
j,ρj

δ̃2
j,ρj

2γj,ρj
+
g
j,ρj

ϑ̃2
j,ρj

2βj,ρj
(43)



where δ̃j,ρj = δj,ρj − δ̂j,ρj and ϑ̃j,ρj = ϑj,ρj − ϑ̂j,ρj .
Following the same way as the former steps, we have

V̇j,ρj ≤− cj,ρjgj,ρjz
2
j,ρj + 0.2785νj,ρj

(
ε∗j,ρj + d∗j,ρj + 1

)
+ g

j,ρj
σj,ρj

(
δ̂j,ρj δ̃j,ρj + ϑ̂j,ρj ϑ̃j,ρj

)
+
a2
j,ρj

2
(44)

where aj,ρj is a positive constant.

B. Stability analysis

Consider the following Lyapunov function candidate for
the whole systems

V =

m∑
j=1

Vj (45)

where Vj is the Lyapunov function for the jth subsystem

Vj =
1

2

ρj∑
ij=1

(
z2
j,ij +

g
j,ij

γj,ij
δ̃2
j,ij +

g
j,ij

βj,ij
ϑ̃2
j,ij

)

+
1

2

ρj−1∑
ij=1

e2
j,ij+1.

(46)

The main stability result of the proposed method is sum-
marized in the Theorem 1.

Theorem 1: Consider the nonlinear MIMO non-strict-
feedback system (1), and let Assumptions 1-3 hold. Consider
the control design composed by the virtual control laws
(13) and (26), the actual control law (40), filters (17) and
(29), adaptation laws (14), (15), (27), (28), (41) and (42).
For any p > 0 and bounded initial conditions satisfying
ϑ̂j,ij (0) ≥ 0, δ̂j,ij (0) ≥ 0 and Vj(0) ≤ p, there exist
design parameters cj,ij , aj,ij , νj,ij , βj,ij , σj,ij , γj,ij , ξj,ρj
and τj,ij such that: (1) Ωj,ρj × Ωj0 is an invariant set,
namely, Vj(t) ≤ p for ∀t > 0, and hence all the closed-
loop signals are SGUUB; (2) the output tracking error zj,1
is such that limt→∞ |zj,1(t)| ≤ ∆j,1, where ∆j,1 is a positive
constant depending on the design parameters. Furthermore,
the whole system output tracking error z1 = [z1,1, ..., zm,1]T

satisfies limt→∞ ‖z1(t)‖ ≤ ∆1 with ∆1 a positive constant
depending on the design parameters.

Proof : According to (22), (35) and (44), the time deriva-
tive of Vj is

V̇j ≤
ρj∑
ij=1

[
−cj,ijgj,ijz

2
j,ij

]
+

ρj−1∑
ij=1

[∣∣ej,ij+1ζj,ij+1(·)
∣∣]

+

ρj−1∑
ij=1

[
−
e2
j,ij+1

τj,ij+1
+ ḡj,ij

(∣∣zj,ij+1

∣∣+
∣∣ej,ij+1

∣∣) ∣∣zj,ij ∣∣
]

+

ρj∑
ij=1

[
σj,ijgj,ij

(
ϑ̃j,ij ϑ̂j,ij + δ̃j,ij δ̂j,ij

)
+ bj,ij

]
(47)

where bj,ij = 0.2785νj,ij

(
ε∗j,ij + d∗j,ij + 1

)
+

a2j,ij
2 .

By completion of squares, we have∣∣∣ej,ij+1ζj,ij+1(·)
∣∣∣ ≤ e2

j,ij+1ζ
2
j,ij+1(·)

2kj,1
+
kj,1
2

ḡj,ij
∣∣zj,ij+1

∣∣ ∣∣zj,ij ∣∣ ≤ ḡj,ijz
2
j,ij+1

2
+
ḡj,ijz

2
j,ij

2

ḡj,ij
∣∣zj,ij ∣∣ ∣∣ej,ij+1

∣∣ ≤ kj,2ḡ
2
j,ij
e2
j,ij+1

2
+
z2
j,ij

2kj,2

(48)

with kj,1 and kj,2 being positive constants.

Let 1
τj,ij+1

≥
D2
j,ij+1(·)
2kj,1

+
kj,2ḡ

2
j,ij

2 + αj with

Ḡj= max{ḡj,1, ..., ḡj,ρj} and αj positive constant. There-
fore, we obtain the time derivative of Vj as

V̇j ≤ −λjVj + Cj (49)

where λj = min
{

2αj , σj,ijγj,ij , σj,ijβj,ij
}

and Cj =
1
2

∑ρj
ij=1 σj,ijgj,ij

(
ϑ2
j,ij

+ δ2
j,ij

)
+
∑ρj
ij=1 bj,ij +

(ρj−1)kj,1
2 .

By solving (49), one has

Vj (t) ≤ [Vj (0)− Σ] e−λjt + Σ (50)

with Σ=Cj/λj a positive constant. Thus we have

lim
t→∞

|zj,1| ≤ lim
t→∞

√
2Vj(t) ≤

√
2Σ = ∆j,1 (51)

Now let us consider the Lyapunov function candidate for
the whole systems as V =

∑m
j=1 Vj . From (50), it follows

that

V̇ =

m∑
j=1

V̇j ≤
m∑
j=1

[−λjVj + Cj ] ≤ −κV + Π (52)

with κ = min {λ1, ..., λm} and Π =
∑m
j=1 Cj . Then, one

has

V (t) ≤ [V (0)− Γ] e−κt + Γ (53)

where Γ = Π
κ is a positive constant.

Similarly, we have limt→∞ V (t) ≤ Γ, which leads to

lim
t→∞

‖z1(t)‖ ≤ lim
t→∞

√
2V (t) ≤

√
2Γ = ∆1 (54)

This completes the proof of Theorem 1. �

IV. SIMULATION RESULTS

Consider the nonlinear MIMO uncertain systems as fol-
lows:

ẋ1,1 =x3
1,1e
−0.3x2

1,2 +
(

0.5 + ex
2
2,1

)
x1,2 + d1,1(t, x)

ẋ1,2 =cos(x1,1(x2
1,2))x2

1,2 +
(

1 + ex
2
1,1x

3
1,2

)
u1

+ d1,2(t, x)

ẋ2,1 =
(
1 + sin(x1,2x2,1)2

)
+ ex1,1x2,1x2,2 + d2,1(t, x)

ẋ2,2 =x2,1x
2
2,2 + x1,1x

2
1,2 + (1.5 + ex1,1x2,1x2,2)u2

+ d2,2(t, x)

y1 =x1,1, y2 = x2,1

(55)
where d1,1 = 0.5 cos(x2

1,1x2,1x2,2) sin(0.2t), d1,2 =
0.5 cos(x2

1,2 + x1,2x2,1), d2,1 = 2 sin(x1,1x2,1x
2
1,2) and
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Fig. 1: Simulation results

d2,2 = sin(x2
2,2 +x2

2,1)(sin(t))3. The desired tracking trajec-
tories are y1,d = 0.5(sin(t) + sin(0.5t)) and y2,d = sin(t).
Note that the control gain functions g1,1 =

(
0.5 + ex

2
2,1

)
,

g1,2 =
(

1 + ex
2
1,1x

3
1,2

)
, g2,1 = ex1,1x2,1 and g2,2 =

(1.5 + ex1,1x2,1x2,2) cannot be bounded a priori, but they ap-
parently satisfy Assumption 1. Thus, where existing methods
cannot be applied, our scheme can be used to the nonlinear
system (55).

The adaptation laws are given by (14), (15), (27) and
(28) with design parameters β1,1 = β1,2 = 1.5, β2,1 =
β2,2 = 1, σ1,1 = σ1,2 = 0.2, σ2,1 = σ2,2 = 0.15,
γ1,1 = 1, γ1,2 = γ2,2 = 1.5 and γ2,1 = 2. Let the
initial conditions be [x1,1(0), x1,2(0), x2,1(0), x2,2(0)]

T
=

[0, 0, 0, 0]
T , ϑ̂1,1(0) = ϑ̂1,2(0)= ϑ̂2,1(0)= ϑ̂2,2(0)= 0 and

δ̂1,1(0)= δ̂1,2(0) = δ̂2,1(0) = δ̂2,2(0) = 0. The simulation
results are provided in Fig. 1 (a) and (b).

From Fig. 1 (a), we can see that the outputs y1 and y2 track
the desired trajectories y1,d and y2,d as closely as possible
and excellent tracking performance has been achieved. Fig. 1
(b) shows that the proposed scheme works well with bounded
system inputs even in the presence of possibly unbounded
control gain functions.

V. CONCLUSION

A novel extended adaptive tracking control approach has
been presented for a less restrictive class of nonlinear MIMO
systems with possibly unbounded control gain functions and
external disturbances. The restrictive assumption that the
upper and lower bounds of control gain functions must
be positive constants or coefficients has been removed by
introducing appropriate compact sets where the maximums
and minimums of continuous control gain functions are well
defined and used in the control design. Stability of the closed-
loop systems has been rigorously proved using Lyapunov
theory in combination with invariant set theory.
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