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ABSTRACT
Future computing environments are embedded with many sensors
for applications like augmented reality. Much of the deployed In-
ternet of Things (IoT) technology is designed to be invisible. To
support user’s privacy awareness, a map of surrounding sensing de-
vices is beneficial to determine the nature of data collection taking
place in any given area. Moreover, security and governance issues
are among the challenges IoT poses to organizations which might
not know exactly which IoT devices are connected to their network.
For instance, many employees bringing their own devices to the
workplace. We explore the feasibility to use small COTS drones
to create indoor maps of wireless devices. These comprehensive
device maps serve as basis for device localization and monitoring
to enhance user privacy and network security. We analyze the
impact of our device management platform at the drone’s energy
consumption and evaluate the device detection rate, explored area,
and localization error. Due to the restricted battery capacity of the
drone, we simulate larger areas with a varying number of IoT de-
vices to highlight the limits of our drone-based device management
platform regarding area exploration and reachable IoT devices.

CCS CONCEPTS
• Networks → Network management; • Hardware → Wire-
less devices; • Security and privacy→ Network security; Privacy
protections.

KEYWORDS
IoT device management, COTS drones, Indoor mapping, Device
localization and monitoring, User privacy, Network security
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1 INTRODUCTION
The term “IoT” is an umbrella keyword covering various aspects
related to the extension of the Internet and Web into the physical
realm [13]. In 2019, an estimated amount of 27 billion connected
IoT devices are deployed worldwide [18] and the effective manage-
ment of these IoT devices becomes challenging due to the scale of
deployments. For example, in a harbor logistic warehouse the port
authority and different shipping vendors gradually use wireless
tags and sensing kits to trace and log their products for transaction
and book keeping purposes. Since the position of those sensing de-
vices are often not well tracked and sometimes moved incidentally
by maintainers, we need an automatic mechanism to detect and
trace them. Furthermore, the lack of awareness about spatially dis-
tributed IoT assets both limits the services that can be provided and
raises concerns with respect to user privacy and system security.

Security and governance issues are among the challenges IoT
poses to organizations stemming from the widespread adoption of
IoT devices, their diversity, standardization obstacles, and inherent
mobility. For instance, smart cameras and smoke detectors enhance
security; smart thermostats, smart light bulbs and sockets facilitate
power savings; and so forth. Organizations might not know ex-
actly which IoT devices are connected to their network, particularly
caused by the trend that employees bringing their own IoT devices
(BYOIoT) to the workplace. For example, with the use of wear-
ables in the healthcare and business service/consulting industries.
Surveying this BYOIoT trend, also 25–50% of remote employees
connected at least one IoT device to the enterprise network [4]. A
situation which threatens the security and integrity of the network
and the devices. To support user’s privacy awareness, a map of
surrounding sensing devices is beneficial to determine the nature
of data collection taking place in any given area. It does not pro-
tect users against deliberate covert surveillance, but we are able to
inform users about the data capture upon approaching a region.

With mapped IoT devices, an up-to-date overview of all dis-
tributed devices including their locations and capabilities, we can
fully harness IoT deployments while avoiding potential threats in
terms of security concerns and user privacy. We build upon our
ground work [6, 7] by developing new modules that are dedicated
for drone-based IoT device management. This further reduces oper-
ational costs to be independent of users and able to autonomously
gather data for device maps. We explore the feasibility of using
small COTS drones to create indoor maps which consist of Wi-Fi
and Bluetooth Low Energy (BLE) devices. These comprehensive
device maps serve as basis for device localization and monitoring
to enhance network security and user privacy. Via repeated drone
flights we can perform device presence detection and our indoor
device mapping is able to identify new devices and track changes
in the environment.
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Figure 1: Platform overview for IoT device management.
The edge modules run at multiple end-devices which
are static user-independent (IoT boards) and mobile user-
dependent (smartwatches, smartglasses, smartphones). We
focus on drones as mobile user-independent end-devices.

(a) Assembly view
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(b) Schematic view

Figure 2: Platform for autonomous device management

Our contributions are summarized as follows:
(1) We realize a drone-enabled IoT device management to au-

tonomously create indoor maps containing wireless devices.
This serves for device monitoring and localization improving
user privacy and network security.

(2) We analyze the impact of our device management platform at
the drone’s energy consumption. Moreover, we identify the
best working area exploration strategy in terms of explored
area over time, device detection rate, and localization error.

(3) To unwind the restricted battery capacity of the drone, we
simulate larger areas with different number of IoT devices
to optimize the flight path reaching more devices. After the
initial area exploration the IoT device positions are known
and we are able to tweak the flight path of the drone.

2 PLATFORM FOR DEVICE MANAGEMENT
To enrich our platform in Fig. 1, we build upon our ground work
[6, 7] by developing newmodules that are dedicated for drone-based
IoT device management. The drone has to be as easy as possible to
control autonomously, small enough to fly indoors, and powerful
enough to carry a smartphone for on-board control and an IoT
board for device detection. We use the DJI Mavic Air to analyze the
feasibility of using COTS drones for indoor device management.

Drone platform assembly To achieve fully autonomous area
exploration, our drone controller and device detection platform flies
with the drone as shown in Fig. 2(a), avoiding user involvement
and dependency to a ground-control station. The schematic view in
Fig. 2(b) shows the smartphone controlling the drone and powering
the Raspberry Pi Zero W. During startup the Raspberry Pi begins
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Figure 3: Strategies for area exploration

to continuously perform device detection by receiving Wi-Fi probe
requests and BLE messages. Our drone flies at an altitude of 1.8m
to more easily explore areas by avoiding spatial barriers such as
chairs, tables. Inspired by the reactive control of [3] at which control
decisions are taken only upon observed changes, we actively control
the flight of the drone only in case of encountered obstacles. We
take advantage of the drone’s API and move the drone via virtual
sticks which are translated into movement.

Area exploration We have implemented two different area ex-
plorations: random direction and boundary following. These are
sufficiently simple to realize and fulfill our target to explore the
area and recognize devices. With the control mode random direc-
tion as illustrated in Fig. 3(a) (start and end position highlighted
with red dots), the drone flies up to an obstacle like a wall and ran-
domly chooses another direction until no obstacle blocks the drone.
Fig. 3(b) shows the principal working flow of boundary following,
the drone flies in its heading until it recognizes an obstacle, then it
turns right and left to follow the boundary as closely as possible.
For future work, the hybrid control mode in Fig. 3(c) applies by
default the random direction strategy. When during movement the
drone detects an increasing signal strength, we allow the drone to
follow this signal (dotted line). At the peak of the signal strength
the drone falls back to random direction control mode.

Device detection For the device detection of Wi-Fi devices we
use the Nexmon firmware patch [16] to enable the Wi-Fi monitor
mode at the Raspberry Pi Zero W. On this basis, tcpdump collects
Wi-Fi probe requests of surrounding devices and concurrently we
perform channel hopping to find as many Wi-Fi devices as possible.
The discovery of BLE devices occurs via a Python script receiving
broadcasted BLE messages. The device detection of all Wi-Fi and
BLE devices includes list entries with timestamp, MAC address, and
received signal strength indicator (RSSI).

Relative positioning To calculate a relative position of each
encountered device and be able to generate device maps, we define
a relative coordinate system for our university building. Each room
has a reference frame with an origin at which the drone starts to ex-
plore the room. From this start position, the drone estimates its own
position (x, y) via time, gyroscope (direction), and velocity. Before
the flight we perform a time synchronization between smartphone
and Raspberry Pi to later identify the device locations via matched
log timestamps. During each second of the flight, the smartphone
logs the current relative position and time. After the drone’s flight,
we are post processing the gathered data and for each device we
select encounters with strongest RSSI, i.e., at this time the drone
was nearest to the wireless device. As result, we create a device list
with MAC address, relative location (x, y), time, and signal strength.
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(a) Show room:
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(b) Meeting room:
3 x Wi-Fi, 2 x BLE
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(c) Office room:
4 x Wi-Fi, 2 x BLE

Figure 4: Test environments for autonomous area explo-
ration of : BLE devices and : Wi-Fi devices

Limitations Our device detection is limited to active wireless
devices, entirely passive devices cannot be recognized. Besides that,
the drone’s obstacle avoidance restricts indoor area exploration
to medium- and large-sized areas. In our experiments, we found
that the drone maintains a safety distance of 1.8m to obstacles,
mainly motivated by outdoor usage and weather conditions like
wind. Hence, it is not possible to move the drone in small rooms,
e.g., ≤ 12m2, or corridors with a width of two or three meters.

3 EVALUATION
We analyze our drone-based device management regarding initial
area exploration to create precise device maps. To be specific, we
evaluate the device detection rate, explored area, and localization
error over time. After the initial area exploration, we know the
device positions to optimize the flight route of the drone to reach
more IoT devices within a limited flight time with one battery load.
Therefore, we simulate larger areas with a varying number of IoT
devices to show the impact of path generation algorithms and hot
spots in terms of maximum reachable devices. By hovering at a hot
spot, the drone is able to reach multiple IoT devices at once which
is more efficient than to fly to each device individually.

3.1 Device Management Platform in Testbed
We have chosen three real-world test environments as shown in
Fig. 4 to evaluate our indoor device management platform in terms
of explored area, device detection rate, and localization error. We
placed a varying number of Raspberry PIs acting as BLE or Wi-Fi
device inside and outside of each room representing smartwatches,
printers, BLE beacons, IoT sensor boards, and so forth. For an useful
localization mechanism it is most important to distinguish between
devices located inside and outside of the room. Only in larger areas
like in our simulation with the university hall (Section 3.2) the
device position inside the area gains importance.

Energy consumption The main impact of our device manage-
ment platform at the theoretical maximum flight time of 21min
is the additional weight of the smartphone with 143 g to control
the drone and the Raspberry Pi Zero W with 9 g to gather wireless
information. Fig. 5 shows the energy consumption over time with
and without our platform: the battery drains at -164.18mAh/min
without our platform which results in a maximum flight time of
14.45min. In contrast, with our device management platform, the
battery drain increases to -277.08mAh/min which results in a de-
creased flight time of 8.51min, a decrease of 41.1 %.

Device map For a qualitative evaluation, Fig. 7(a) and Fig. 7(b)
show the device mapping for each testbed with identified devices
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Figure 5: Impact of device
management platform at
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Explored area
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True BLE devices

Est. Wi-Fi devices
True Wi-Fi devices

Show room Meeting room Office room

(a) Area exploration: random direction

Show room Meeting room Office room

(b) Area exploration: boundary following

Figure 7: Maps of indoor area exploration

inside the room and their true and estimated positions (for each de-
vice an own color and shade). The area explorations are performing
well independent of the room size, most device positions are esti-
mated closely to the true position. The outer relative coordinates
from the drone define the convex hull illustrated as explored area.
Based on the knowledge that room shapes are mostly rectangular,
we take the maximum coordinates from the convex hull in each
direction, and lines through these points define the room boundary.

Explored area We evaluate the area explorations presented in
Fig. 3 where we implemented the random direction and boundary
following. Fig. 8 presents the explored area over time compared
to the true area of the testbed. The explored area corresponds
qualitatively to the actual room size. On average, random direction
discovers 0.94m2/min and boundary following obtains 0.66m2/min.
We take the same point in time (14min) to compare the explored
area over time (highlighted via a dotted line). Random direction
explores 15.09m2 covering 30.32 % of the true room area. On the
other hand, the area exploration using the boundary following
results in 14.28m2 covering 29.76 % of the true area. In general,
our area exploration is too slow to discover a reasonable area size
within the limited flight time of one battery load.

Device detection We classify devices to be within the room
based on the assumption that devices inside the room, nearby the
drone without an obstacle in between, achieve a stronger signal
strength compared to devices outside of the room. Over three test
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Figure 8: Experimental evaluation of explored area
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Figure 9: Experimental evaluation of device detection

environments with varying room size, we experimentally identified
RSSI thresholds of -45 dB for Wi-Fi devices and -50 dB for BLE
devices to be able to distinguish devices inside and outside of the
room. For each testbed, Fig. 9 shows the accuracy and duration
until all devices (inside and outside of the room) are recognized
and classified to be inside the room. To detect all devices inside and
outside of the room, the flight mode with boundary following takes
on average 1.33min compared to a 3.5 times increase of 4.67min
using random direction. In addition, to classify the devices to be
within the room, the random direction control mode (5.33min) lasts
1.5 times longer than the boundary following (3.67min). The area
exploration using boundary following is faster compared to random
direction, which allows a good device detection within restricted
flight time.

Localization error For each device we take the device posi-
tion(s) with the strongest signal strength and compute the average
localization error over all of them. We calculate three different loca-
lization errors by varying the time scale of the input data. First, we
compute a localization error for each data collected over one minute.
Second, we average the localization errors over data collectedwithin
one minute. Third, we compute localization errors by taking only
one device position with strongest signal strength for each device
from current and previous data collected over one minute time
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Figure 10: Experimental evaluation of localization error

intervals (min+). The localization error over time highlights the
varying RSSI precision. The mean localization error achieves the
smallest positioning error. Using the boundary following control,
the localization error results on average in 1.59m ± 0.19m com-
pared to the random direction with 1.67m ± 0.35m. The second
most precise device positions are computed over minute intervals
of gathered data. The flight mode using random direction gains a
localization error of 1.6m±0.96mwhich is similar to the boundary
following of 1.61m ± 0.91m. With more collected data to estimate
device positions, the computed localization error increases. The
boundary following control mode results on average in a smaller
localization error of 1.74m ± 0.38m compared to 1.97m ± 0.66m
using random direction.

Explore unknown territory Usually we explore areas with
an unknown number of IoT devices. To assess when we are done
exploring an unknown territory, we are averaging our results for the
device detection rate and flight time over different area explorations
and testbeds to compute a success probability. Fig. 6 shows whether
the area is well enough explored depending on the ratio of flight
time and number of detected devices. This means that most IoT
devices are found and we can classify them to be inside the room,
and the localization error is around 2m.

Summing up, the indoor area exploration using boundary follow-
ing achieves a superior performance compared to random direction.
Boundary following is faster to detect and classify devices and ob-
tains a smaller localization error, the size of the explored area is
similar to random direction.

3.2 Optimizing Device Coverage in Simulation
In terms of reachable IoT devices, the limited battery capacity of
the drone is the most severe limitation for our device management
platform. After the initial area exploration the device positions
are known. On this basis, we simulate larger areas with different
number of IoT devices to optimize the flight path of the drone to
reach more IoT devices with one drone’s battery load.
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Simulation settingsAs prerequisite for the simulation, we have
measured the drone’s velocity and energy drain rate during the
flights in our real-world test environments similar to the simulation
environments regarding spatial arrangement. In the university lab
with more obstacles the drone achieves a velocity of 0.9m/s in
comparison to 1.5m/s in the university hall as one large room with
fewer spatial barriers. We set the energy limit of the drone to ≥ 35 %,
i.e., with the remaining energy the drone is able to fly back to a
predefined position to change or recharge the battery. Based on a
detailed building map, we have modeled two different simulation
environments, our university labwith 564m2 and the university hall
with 3038m2. Fig. 11 highlights our simulation for one exemplary
device distribution (for readability we omit the flight paths without
hot spots). We use a random device distribution with different
number of IoT devices ranging from dense, medium to sparse. For
an area of 25m2 similar to a single room, we randomly distribute
five devices (dense), two devices (medium), and one device (sparse).
Each IoT device is either a Wi-Fi or BLE device and we randomly
select a wireless range of [5, 15]m for Wi-Fi devices and [1, 7]m for
BLE devices. We simulate a maintenance task for each IoT device
by a random waiting time between 5 to 10 s. Table 1 presents the
number of devices, the determined hot spots and their ratio for all
simulation environments. With more IoT devices, the number of hot
spots are increasing while the ratio to the total number of devices
is decreasing. With less devices, multiple hot spots are covering
only one IoT device.

Exemplary simulation results For our exemplary simulations
in Fig. 11, the visibility graph applying Dijkstra path planning
performs best with a median distance of 200.1m in case with hot
spots and 489.3m without hot spots. The visibility graph with A*
path planning obtains on average a longer flight route of 176.1m
with hot spots and 600.5m without hot spots. The sampling-based
graph using A* or Dijkstra path planning achieve similar results
of 216.3m with hot spots and 568.9m without hot spots. The hot
spots save on average 61 % of the flight distance.

Path generation To compute the flight path of the drone, we
generate two different graphs of IoT devices: sampling-based graph
and a visibility graph using the map data from our simulations like
in Fig. 11. After the graph construction representing the simulation
environment, we apply common Dijkstra and A* path planning
to find the shortest flight path of the drone visiting IoT devices.
We compare four different path generation approaches: sampling-
based graph using Dijkstra and A* path planning, and visibility
graph with Dijkstra and A* path planning. Our simulation results
over ten rounds in Fig. 12 show the discovered IoT devices by the
drone with one battery load compared to the total number of IoT
devices (Table 1). Over all simulation runs, the drone’s energy limit
is 39.5 %±2.61 % of the battery capacity with 2375mAh (≈ 938mAh).
This lowers the average flight time to 303.84 s ± 26.15 s compared
to 464.77 s ± 87.73 s without an energy limit leading to a decrease
of 34.63 %. The target of our simulation is to find the most efficient
path generation, i.e., reach a maximum number of IoT devices by
a minimum amount of explored area. Therefore, we consider the
ratio between discovered IoT devices (%) and explored area (%) to
highlight the best performing path planning for each environment
and device distribution. Over all simulation runs, the sampling-
based graph applying Dijkstra path planning performs best. In
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Figure 11: Visualization of exemplary simulation runs

Table 1: Simulation details with number of devices, hot
spots, and their ratio over different device distributions

Simulation University lab University hall

Devices Dense Mid Sparse Dense Mid Sparse

Wi-Fi 59 11 5 233 93 46

BLE 56 12 7 287 122 56

Total 115 23 12 520 215 102

Hot spots 19 10 8 65 46 39

Ratio (%) 16.5 43.5 66.7 12.5 21.4 38.2

comparison, the sampling-based graph using A* achieves a median
ratio of 98.55 % of discovered IoT devices and explored area. This is
similar to the median ratio of 98.35 % using the visibility graph with
Dijkstra path planning. With a median ratio of 87.11 % of discovered
IoT devices and explored area the visibility graph applying A* path
planning performs worst. The Dijkstra path planning finds mostly
the best path even without utilizing a search heuristic as used by
A* path planning.

Hot spots To further optimize the flight path and minimizing
the flight time, we compute so-called hot spots at which the drone
can reach as many IoT devices as possible without movement. We
calculate the intersection points among thewireless ranges of all IoT
devices to find the positions of the hot spots. The difference factor
in Fig. 12 shows the average increase in discovered IoT devices and
decrease in explored area. The effect of the hot spots diminishes
from a dense to a sparse device distribution. In case of a dense
distribution of IoT devices, we achieve the highest impact with an
increase of discovered IoT devices by 2.6 (university lab) and 2.4
(university hall). There is no significant performance difference
between our two test environments. The university lab consists
of 23 rooms with an average room size of 25m2 and many spatial
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(b) Simulation: university hall

Figure 12: Simulation results of two test environments, we
highlight the best performing path generation regarding
most discovered IoT devices and least explored area

barriers such as walls in contrast to the university hall as one large
room with 3038m2.

Over all simulations it is not possible to reach all IoT devices even
in case of hot spots with one battery load and an energy limit of 35 %
to safely fly back to a predefined position. Only in the university lab
with a sparse and medium number of distributed IoT devices we are
able to discover all IoT devices. The university hall is too large to
be entirely discovered with one battery load. Over all simulations,
hot spots increase the number of reachable IoT devices by 39.76 %.

4 USE CASES: PRIVACY AND SECURITY
Our central backend for IoT device management in Fig. 1 provides
add-on services via a global map of locally installed wireless IoT
devices for enhanced user privacy and network security. The drones
as mobile user-independent end-devices identify local devices and
transmit this information to our device management backend. To
improve user privacy, we synchronize MAC addresses, device po-
sitions and device types (Wi-Fi or BLE) to end user devices. Com-
bined with indoor localization at the user device we can inform
users about nearby wireless sensing devices which potentially in-
fringing their privacy. Regarding enhanced network security, we
are able to distinguish between remote and local wireless devices
by comparing network scans with our indoor maps via included
MAC addresses. Hence, network administrators can more easily
recognize unauthorized wireless devices and via white lists of net-
work devices we can discover locally installed malicious wireless
devices.

5 RELATEDWORK
Existing work [1, 2, 10, 14, 15] mainly focus on specialized drones,
control of the drone, or using energy consuming and computation
heavy vision data to create indoor maps. In contrast, our device
management platform only analyzes the wireless signals to localize
devices for indoor mapping.

Users are unaware of the locations and purposes of IoT devices
which are infringing their privacy by sensing data in the back-
ground. Hence, it is important to catalog wireless devices with
detailed information about their locations and capabilities to sup-
port awareness regarding user privacy [17]. A lot of work [8, 11]
analyzes network traffic by applying machine learning models like
random forest or convolution neural network to identify devices
within the network, their device type, and detect anomalous devia-
tions in communication patterns [19]. In our work, we are passively
sensing network traffic of Wi-Fi and BLE devices to detect their
presence and from the received signal strength (RSSI) we infer the
location of the devices.

Maps of surrounding devices can be generated from three sources:
1) authorities, 2) users, and 3) data provided by the infrastructure.
Data from the infrastructure removes the need of human effort. For
instance, analysis of electric signals to identify home appliances
[5], or using network traffic to automatically detect IoT devices
[12]. In our case, we create indoor maps together with installed
IoT devices and their locations. We need a moving data collector
to gather required data and be independent of humans to ensure a
uniform quality of the device maps. We have chosen a drone to be
most suitable for our intended purpose which can move more freely
within indoor areas compared to robots moving on the ground [9]
and obstacles on the way like tables, chairs, and staircases.

6 CONCLUSION
By our control design of the drone, the control unit, e.g., smart-
phone, flies with the drone, we are independent of any ground
control station. The drone’s battery capacity is the main limiting
factor for automated area exploration. In our real-world testbed,
we found that the flight control using boundary following for in-
door area exploration works best in terms of faster device detection
and smaller localization error compared to the random direction
strategy. Our simulation revealed that the sampling-based graph
applying Dijkstra path planning achieves the best path generation
in terms of most discovered IoT devices and least explored area.
Hot spots which cover multiple IoT devices at once are significantly
improving the number of discovered IoT devices. However, it is
still not possible to reach all IoT devices distributed over the entire
space with one drone’s battery load.

For future work, we plan to implement the hybrid area explo-
ration as described in Fig. 3(c) to gain further insights about the
drone’s flight path and precision of estimated IoT device locations.
To reduce the time to explore areas, we can simultaneously fly
multiple drones in different areas and merge the gathered data to
generate an overall device map. Besides that, we seek to avoid the
additional weight of the smartphone to control the drone by mov-
ing the control application to the Raspberry Pi Zero W which is
currently only gathering the wireless data like Wi-Fi probe requests
and BLE messages for device detection.
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