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Sinusoidal Modeling Using Psychoacoustic-Adaptive
Matching Pursuits

Richard Heusdens, Renat Vafin, and W. Bastiaan Kleijn, Fellow, IEEE

Abstract—In this letter, we propose a segment-based matching-
pursuit algorithm where the psychoacoustical properties of the
human auditory system are taken into account. Rather than
scaling the dictionary elements according to auditory perception,
we define a psychoacoustic-adaptive norm on the signal space that
can be used for assigning the dictionary elements to the individual
segments in a rate-distortion optimal way. The new algorithm
is asymptotically equal to signal-to-mask-ratio-based algorithms
in the limit of infinite-analysis window length. However, the
new algorithm provides a significantly improved selection of the
dictionary elements for finite window length.

Index Terms—Audio/speech coding, matching pursuit, psycho-
acoustics, sinusoidal modeling.

I. INTRODUCTION

SINUSOIDAL CODING has proven to be an efficient tech-
nique for the purpose of coding speech signals [1], [2, Ch.

4, pp. 121–174]. More recently, it was shown that this method
can also be exploited for low-rate audio coding [3]–[6]. To ac-
count for the time-varying nature of the signal, the sinusoidal
analysis/synthesis is done on a segment-by-segment basis, with
each segment being modeled as a sum of sinusoids. The sinu-
soidal parameters can be estimated with a number of methods,
including spectral peak-picking and analysis-by-synthesis. We
focus on the matching-pursuit algorithm [7] that is a particular
analysis-by-synthesis method.

Matching pursuit approximates a signal by a finite expansion
into elements (functions) chosen from a redundant dictionary.
Let be a Hilbert space, and let be a com-
plete dictionary of unit-norm elements in ( is the closed
linear span of the dictionary elements). The matching-pursuit
algorithm is a greedy iterative algorithm that projects a signal

onto the dictionary element that best matches the
signal and subtracts this projection to form a residual signal to
be approximated in the next iteration. Let denote the
residual signal after iteration . At iteration , the algo-
rithm decomposes as
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where such that

(1)

The orthogonality of and implies

To account for human auditory perception, the unit-norm
dictionary elements can be scaled [6], which is equivalent to
scaling the inner products in (1). We will refer to this method
as the weighted matching pursuit (WMP) algorithm. While
this method performs well, it will be shown below that it does
not provide a consistent selection measure for elements of fi-
nite-time support and for elements in different signal segments.

To address these issues, we introduce a matching pursuit algo-
rithm where psychoacoustical properties are accounted for by a
norm on the signal space. The norm changes at each iteration. In
contrast to the WMP algorithm, this new psychoacoustic-adap-
tive matching pursuit (PAMP) algorithm has the desired prop-
erty that if the signal is a scaled version of one of the dictionary
elements, this element is always selected. Moreover, in the new
algorithm, the norm of the residual signal converges exponen-
tially to zero when the number of iterations approaches infinity.

II. PSYCHOACOUSTIC-ADAPTIVE MATCHING PURSUIT

Ignoring time-domain masking phenomena, signal distortion
becomes audible when the log power spectrum of the residual
signal exceeds the log-frequency-masking threshold, or
equivalently, when the ratio of the power spectrum and the
masking threshold exceeds unity. Hence, to represent an
audio/speech signal without audible artifacts at the lowest
possible bit rate, we have to shape the residual signal spectrum
such that it equals the frequency-masking threshold. More
generally, if we allow some audible distortion, we assume, in
line with models of partial loudness [8], that distortions are
integrated over the entire spectrum. This motivates us to define
a perceptual distortion measure as

(2)

where indicates the Fourier transform operation, is a
window defining the signal segment, andis a weighting
function representing the sensitivity of the human auditory
system, which we select to be the inverse of the masking
threshold. By doing so, regions in which the auditory system
is less sensitive will contribute less to the total distortion as
compared with regions in which the auditory system is more
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sensitive. The distortion measure (2) defines a norm onif
is positive and real for all and for all
. The norm is induced by the inner product

(3)

facilitating the use of the distortion measure in selecting the best
matching dictionary element in a matching pursuit algorithm.

The masking threshold is based on the reconstructed signal
(the signal expansion) that changes with each iteration. Thus,
the norm on must be adapted with each iteration. Let
be the weighting function used at iteration, and let
denote the corresponding norm. We minimize at
iteration , update to using the newly chosen dictio-
nary element, and then minimize in the next itera-
tion. The convergence properties of this algorithm are described
by the following theorem (proven in the Appendix).

Theorem 1: There exists a such that for all

(4)

if and only if for all , for all
.

Note that since is the reciprocal of the fre-
quency-masking threshold used at iteration, the condition

for all is satisfied, since the
masking threshold increases with the iteration number.

To see how the PAMP algorithm performs, let us consider the
case where the dictionary consists of complex
exponentials

for . To find the best matching exponential at iteration
, we compute the inner products of and the dictionary

elements

(5)

For the case , the function becomes a-function, or
Dirac, and (5) reduces to

Hence, the matching pursuit algorithm selects such
that

(6)

Since is the reciprocal of the masking threshold at iteration
, we conclude, therefore, that for , the PAMP se-

lects the exponential located where the ratio of the power spec-
trum and the masking threshold is largest, which is consistent
with the way the human auditory system works [9], [10]. There-
fore, the PAMP and the WMP algorithm give identical results
for infinite window length.

Fig. 1. Example of selecting sinusoidal components using the WMP (middle
plot) and PAMP (lower plot) algorithms.

The PAMP method has advantages over the WMP method
when the signal segment is of finite length. To see this, we
first take the signal segment to be a scaled version of one of
the dictionary elements (say, ). The PAMP method
will select as desired (from the Cauchy–Schwarz inequality
we have that , with equality if
and only if and are linearly dependent). This is not true
for the WMP method. Fig. 1 illustrates an example where the
original signal contains two sinusoids, at 1 and 1.1 KHz, re-
spectively, with the residual signal after one iteration consisting
of the KHz sinusoid. The upper plot shows the pro-
jection energy (in the -sense)
and the masking threshold. The middle subplot shows the pro-
jection energy for the WMP algorithm, which corresponds to
the signal-to-mask ratio (the difference between the log-residual
signal spectrum and the log-masking threshold of the upper sub-
plot). The lower subplot shows the projection energy
according to the inner product defined by (3). The steep slope
of the masking threshold around KHz causes the WMP
algorithm to select a suboptimal solution, whereas the PAMP
algorithm correctly selects a KHz sinusoid.

A second advantage of the PAMP method is that it discrimi-
nates between main lobes and side lobes in a spectrum of a sum
of (windowed) sinusoids, as shown in Figs. 2 and 3. The upper
and lower plots of Fig. 2 show the results for the WMP and
PAMP methods, respectively, for a rectangularly windowed
input signal (20 ms of voiced speech sampled at 8 KHz). The
plots show the power spectrum of the input signal and the
masking threshold after selecting six sinusoidal components.
The WMP method has selected a component at 3.8 KHz
corresponding to a side lobe. This contrasts with the PAMP
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Fig. 2. Selection of six sinusoidal components using the WMP (upper plot)
and PAMP (lower plot) algorithms for a 20-ms long-voiced speech fragment.

Fig. 3. Selection of six sinusoidal components using the WMP (upper plot)
and PAMP (lower plot) algorithms for a 20-ms long-voiced speech fragment
plus zero-mean white Gaussian noise.

method that selected a peak corresponding to a true sinusoidal
component. To show that this difference does not result from a
preference of selecting low-frequency components, we added
zero-mean white Gaussian noise to the 20-ms speech fragment
in the example of Fig. 3. In this case, both methods select
the same spectral peaks. It should be noted, however, that the
frequency estimation of the spectral peaks is still better with
the PAMP, especially at low frequencies where the slope of the
masking curve is steep around the peaks.

III. EXPERIMENTAL RESULTS

In this section, we present results obtained by computer
simulations and listening tests with audio and speech signals.
The signals are mono, sampled at 48 KHz, where each sample
is represented by 16 bits. The test excerpts are a harpsichord
solo, Suzanne Vega, contemporary pop music, castanets, clean
German male speech, and clean English female speech. We
used a dictionary consisting of real-valued sinusoids. The

TABLE I
RESULTS OF THELISTENING TEST. THE LEFT COLUMN INDICATES

THE EXCERPT, THE RIGHT COLUMN THE PERCENTAGE OFPREFERENCE

FOR THEPAMP METHOD OVER THE WMP METHOD

analysis/synthesis was done on a segment-by-segment basis
using a 50%-overlap 21.3-ms Hanning window.

To compare performance of the PAMP and WMP methods,
each segment was modeled by 25 sinusoids. We performed a
subjective listening test in which signal triplets OAB were pre-
sented to the listeners. Here, O is the original signal; A or B is
the modeled signal using the WMP method; and B or A is the
modeled signal using the PAMP method. The task of the lis-
tener was to indicate which signal (A or B) is closer to the orig-
inal. For each test excerpt, the triplets OAB were presented five
times, and the position of the modeled signal using the WMP
and PAMP methods was changed randomly each time. Ten lis-
teners participated in the test among which five were experi-
enced (the authors not included). The results averaged over all
listeners are shown in Table I. Except for the castanet excerpt,
the PAMP method performs significantly better than the WMP
method.

APPENDIX

PROOF OFTHEOREM 1

A. Proof

Since the dictionary is complete, there exists,
at each iteration, such that for any

(7)

Using (7) and the orthogonality relation between and ,
we conclude that at each iteration

(8)

Next, assume that for all . We
conclude, using (2), that for all

if and only if for all . Combining this with
(8), we have that

so that for we readily obtain (4), which
completes the proof.
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