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Abstract. The Stable Marriage Problem (SMP) describes the problem,
of finding a stable matching between two equally sized sets of elements
(e.g., males and females) given an ordering of preferences for each ele-
ment. A matching is stable, when there does not exist any match of a
male and female which both prefer each other to their current partner
under the matching. Finding such a matching of maximum cardinality,
when ties and incomplete preference lists are allowed, is called MAX-
SMTI and is an NP-hard variation of the SMP.

In this work a Quadratic Unconstrained Binary Optimization
(QUBO) formulation for MAX-SMTI is introduced and solved both with
D-Wave Systems quantum annealing hardware and by their classical
meta-heuristic QBSolv. Both approaches are reviewed against existing
state-of-the-art approximation algorithms for MAX-SMTI. Additionally,
the proposed QUBO problem can also be used to count stable matchings
in SMP instances, which is proven to be a #P-complete problem. The
results show, that the proposed (quantum) methods can compete with
the classical ones regarding the solution quality and might be a relevant
alternative, when quantum hardware scales with respect to the number
of qubits and their connectivity.

Keywords: Quantum annealing · Stable marriage problem ·
Optimization · D-wave systems · Heuristic · MAX-SMTI

1 Introduction

The Stable Marriage Problem (SMP) was first defined by Gale and Shapley in
1962 [6]. The problem consists of two sets with n males and n females, which
rank the opposite gender in strictly ordered and complete preference lists. The
goal is then to find stable matchings for those males m and females w. Stable
means, that there is no pair (mi, wj) such that both would prefer each other to
their current match.
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SMP and its generalized variants have large applications in industry and
science. For instance, Maggs et al. used the Stable Marriage Problem in order
to explain a content delivery network (CDN) in which clients are mapped to
server clusters of the CDN [17]. Other well known applications are the assign-
ment of graduating medicine students to their first hospital appointments [22]
or the design of the clearinghouse adopted by the National Residency Matching
Program [23].

Since SMP has a large field of applications a lot of research has been made
over the years. A survey, regarding SMP and its variants is given in [12]. In
our work an NP-hard variation of the SMP, where the goal is to find the maxi-
mum cardinality with ties and incomplete preference lists, the MAX-SMTI, will
be investigated. Podhradsky et al. compared the state-of-the-art approximation
algorithms for MAX-SMTI [21], while Delorme et al. reviewed the mathematical
models for MAX-SMTI [5].

With Quantum Computing (QC) technology emerging, there is now the pos-
sibility to solve such kind of problems in a completely different way. One field
of QC is Quantum Annealing (QA), a meta-heuristic, which is implemented in
hardware by D-Wave Systems. In order to perform quantum computations on
such a machine, it is necessary to cast the problem into a certain mathematical
form, the Quadratic Unconstrained Binary Optimization (QUBO) or the equiv-
alent Ising formulation. In [8] and [16], many QUBO and Ising formulations for
well known NP-hard problems are introduced.

In the following, SMP and the more complex variation MAX-SMTI are
defined in Sect. 2. After giving some fundamentals of Quantum Annealing, our
QUBO formulation for MAX-SMTI is presented in Sect. 3. In Sect. 4 the exper-
imental setup is given and the results of the MAX-SMTI QUBO formulation by
using D-Wave Systems 2000Q Quantum Annealer and the classical software tool
QBSolv are compared against two state-of-the-art approximation algorithms,
SHIFTBRK and Kiraly2 [21]. The optimal solutions (ground truth) of the small
test instances are determined by a linear programming solver [24]. The algo-
rithms are compared regarding their solution quality and a theoretical outlook
w.r.t the computational time is given.

2 Background

2.1 Stable Marriage Problem

The Stable Marriage Problem describes the problem of finding a stable match-
ing between two sets, males M = {m1,m2, ...,mn} and females W =
{w1, w2, ..., wn}. Elements of both, M and W, rank the other sex in strictly
ordered and complete preference lists. Therefore every preference list has the
length of n.

Let M(m|w) describe the notation for m|w’s matching partner and let
w2�m2w3, describe the notation that m2 (strictly) prefers w2 over w3. A pair
p = (m,w) is considered as blocking towards M , if w�mM(m) and m�wM(w).
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A matching M = {(mi, wj), ...} of size n is considered as stable, if there exists
no blocking pair p.

Note, that this doesn’t mean everybody is “happy” in terms of being matched
to the most desired possibility available. Furthermore this can be expressed, that
everybody is matched in a way he or she cannot complain.

It is known, that SMP can be solved in O(n2) by the Gale-Shapley (GS) algo-
rithm [18]. The basic GS algorithm only works for complete and strict preference
lists, nevertheless this often does not suit reality well. Therefore, mainly three
variants of the SMP were developed. The Stable Marriage Problem with ties in
its preference lists (SMT), the Stable Marriage Problem with incomplete pref-
erence lists (SMI), and the combination of both, the Stable Marriage Problem
with ties and incomplete preference lists (SMTI).

SMT - Stable Marriage Problem with Ties. In the basic SMP, the prefer-
ence lists must be ordered in a strict way. Relaxing this rule, so that indifferences
are allowed in preference lists, results in two different ways of describing prefer-
ences and in three definitions of stability.

– Strict Preference: This is true for (m1, w2, w3), if m1 prefers w2 over w3

and does not tie w2 and w3. It is denoted as w2�m1w3.
– (Weak) Preference: This is true for (m1, w2, w3), if m1 prefers w2 over w3

and both are tied on m2’s preference list. The notation here is w2�m1w3.

Consequently, three definitions for stability of a matching can be made [18]:

– Weakly Stable: There is no pair that would strictly prefer each other over
their partner in M .

– Strongly Stable: There is no pair (m,w), so that w�mM(m) and
m�wM(w).

– Super Stable: There is no pair that would (weakly) prefer each other over
their current match.

Such a pair (described in the manner of weakly, strongly and super stability),
like in SMP, is a blocking pair if it exists.

SMI - Stable Marriage Problem with Incomplete Preference Lists.
Incomplete preference lists do refer to the term that not every person of the
opposite sex needs to be listed on a persons preference list. This results in the fact
that not every male can be matched to every female.1 Therefore an acceptable
pair can be defined as followed.

Acceptable Pair: A pair (m,w) is acceptable if m has listed w on his preference
list and w has listed m. In SMI, a matching is stable, if it is stable in terms of
SMP and no unacceptable pair was matched.
1 Consider the situation, in which m has w on his preference list, but w does not

mention m. A match (m,w) is therefore impossible.
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SMTI - Stable Marriage Problem with Ties and Incomplete Prefer-
ence Lists. Combining both generalizations from before, we obtain the Stable
Marriage Problem with ties and incomplete preference lists (SMTI). Finding a
weakly stable match for a given SMTI problem, by breaking down ties arbitrarily
(like in SMP), will affect the size of the resulting match, as explained in Example
1. This effect will be interesting for MAX-SMTI and therefore, in the scope of
this work, weakly stable SMTI will be reviewed as SMTI. So a pair (m,w) is
considered as blocking towards a matching M , when the following takes account:

(free(m) ∨ w�mM(m)) ∧ (free(w) ∨ m�wM(w)) (1)

where free(m|w) denotes if m|w are matched to anyone in M . Note, that either
w�mM(m)) or free(m) is sufficient to create an unblocking pair towards the
matching M .

Example 1. Consider the example from Table 1, with n = |M| = |W|. It is
easy to review that M1 = {(m2, w3), (m3, w1)} is weakly stable (has no blocking
pairs). Also M2 = {(m2, w2), (m3, w1), (m1, w3)} can be reviewed as weakly
stable. Note that the cardinality of the two stable matchings differ in size. This
effect of possible indifference in the cardinality of the matchings does only occur
in the weakly stability criteria.

Table 1. Arbitrary SMTI instance: the persons in the brackets are tied.

Males Females

m1: w1 w3 w1: (m2 m3)

m2: (w2 w3) w1 w2: (m1 m2 m3)

m3: w1 w3 w2 w3: (m3 m2) m1

MAX-SMTI. In the previous section it was discussed, that breaking ties arbi-
trarily in SMTI will affect the size of the resulting match. Trying to find the
matching with the largest cardinality is an NP-hard optimization problem, ref-
erenced in the following by MAX-SMTI [11].

2.2 Quantum Annealing

Quantum Annealing is a meta-heuristic, which was formulated in its general and
present form by T. Kadowaki and H. Nishimori in 1998 [14] and is commonly
used to solve problems with a discrete search space with many local minima.
D-Wave Systems implemented the meta-heuristic in their hardware, in order to
find low energy states of a spin glass system, described by an Ising Hamiltonian,

H(s) =
∑

i

hixi +
∑

i<j

Jijxixj (2)
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where hi is the energy, which directly affects qubit i. Jij represent the energies
interacting between the two qubits i and j and xi is the spin (−1,+1) of the i-th
qubit. Many optimization problems can be formulated as an Ising Hamiltonian
and therefore be executed on D-Wave’s quantum annealing hardware [16], in
attempt to find good or acceptable solutions.

Within the quantum annealing process an initial Hamiltonian HI with an
easy to prepare minimal energy configuration (or ground state) is physically
interpolated to a problem Hamiltonian HP , whose minimal energy configuration
is sought and corresponds to the best solution of the defined problem, see (3).
This transition is described by an adiabatic evolution path which is mathemat-
ically represented as function s(t) and decreases from 1 to 0 [19].

H(t) = s(t)HI + (1 − s(t))HP (3)

If this transition is executed sufficiently slow, the probability to find the
ground state of the problem Hamiltonian is close to 1 [1]. Thus, by mapping the
MAX-SMTI problem onto a spin glass system, quantum annealing in theory is
able to find the solution of it.

For completeness, we map our optimization problem to a QUBO problem,
which is an alternative formulation of the Ising spin glass system. It is mathe-
matically equivalent and uses 0 and 1 for the spin variables [2,25]. The quantum
annealer is also capable of minimizing the functional form of the QUBO problem,

minxtQx with x ∈ {0, 1}n (4)

with x being a binary vector of size n, and Q being an n× n real-valued matrix
describing the relationship between the variables. Given matrix Q : n × n, the
annealing process tries to find binary variable assignments x ∈ {0, 1}n to mini-
mize the objective function in (4).

3 QUBO Formulation for MAX-SMTI

In the following section, the QUBO formulation for MAX-SMTI gets introduced.

3.1 Encoding

When reformulating MAX-SMTI towards a QUBO problem, every bit variable of
the bit-vector x corresponds to an acceptable pair in the SMTI problem instance.
Therefore, the size of the bit-vector and the QUBO matrix is determined by the
number of acceptable pairs in the SMTI instance. The index of a bit-variable
xi is therefore a unique identifier for one possible match in SMTI. Hence, the
notation xmi,wj

references the unique index for the acceptable pair (mi, wj).2

The reversed encoding (deduce the male/female from the current index of xi) is
written as mxi

or wxi
. In case of xi = 1, it can be concluded that (mxi

, wxi
) are

matched.
2 This kind of notation implies, that the referenced pair is always acceptable.
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3.2 Objective Function and Constraints

In MAX-SMTI it must be ensured that no one is matched twice and that the
matching is stable. Additionally, the matching with the maximum cardinality
is searched. In the following sections, those two constraints and the objective
function will be explained in detail.

Constraint - No One is Matched Twice. Since QUBO is unconstrained, the
quantum annealer could try to match a person twice, in order to gain a smaller
final solution energy.

This would not result in a stable matching nor any valid response. So, the
constraint needs to be enforced by (5).

p3 ·
∑

i,j

xixj · [i �= j]([mxi
== mxj

] + [wxi
== wxj

]) (5)

Note, that the square brackets indicate boolean formulations, which values
are cast to their integer counterparts 0 and 1 for false and true, respectively. So,
if either one of the males or females in that formula equals each other, both bit
variables are 1 and they are matched twice. Therefore, the penalty p3 is added
to the solution energy and states it as invalid.

Constraint - The Matching is Stable. In order to assure the stability of the
match, (1) was reformulated into the following constraint:

p2 · (
n∑

i,j

xm,wj
xmi,w · [¬w�mwj ∧ ¬m�wmi]

−
n∑

i

xmi,w[¬m�wmi] −
n∑

i

xm,wi
[¬w�mwi] + 1)

(6)

Note that (6) must hold for all (m,w) ∈ A, with A being the set of acceptable
pairs.

The first term ensures, that two matched pairs that would create a block-
ing pair are less energy effective. The second and third terms enforce a couple
(w,mi), where ¬m�wmi, regardless of whether (w,mi) gets matched or not.
So while the first part adds up a penalty in case a pair tends to be blocking,
the second part promotes pairs, which are more likely to be stable by adding
negative values on the diagonal of the QUBO matrix.

Objective Function - The Maximum Cardinality is Found. To enforce
the stable matching with the maximum cardinality, −p1 needs to be assigned
onto every element of the diagonal. This has the effect, that solutions with more
matched pairs have a lower energy than solutions with less matched pairs.

− p1
∑

i

xi ∀i ∈ |A| (7)
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3.3 Penalty Assignment

By giving the constraints in the sections above, three penalties (p1, p2 and p3)
were introduced. p1 was set to 1 by default, since it is just used for the objective
function to define, respectively count, the maximum cardinality. However, it
is more important to ensure that a match is stable than finding a match of
maximum cardinality. Therefore, p2 was set to n, with n being the size of the
sets of males/females. The last penalty is p3 = n ·p2 +p1. Since p3 references the
hard constraint that no one is matched twice, it needs to be larger than every
value assigned to the diagonal of the QUBO matrix. The minimum value, that
can be assigned onto the diagonal is, n · p2 + p1.

3.4 Resulting Energy

For a simple verification of the solution, the resulting energy e can be used.
Considering (6), it can be seen, that per acceptable pair, the equation equals
−p2. Since this constraint needs to hold for all acceptable pairs, the energy for a
stable solution has to be e ≤ −p2 · |A|. In (7), −p1 is assigned to every element
of the diagonal and added up per couple in the resulting match. Combining the
two observations, the resulting energy of a stable solution is defined in (8). Here
nr is the size of the resulting match with nr > 0.

e = −(p2 · |A| + p1 · nr) (8)

So in general, with having the energy to a solution, the stability criteria can
be verified easily. However, without knowing the maximum cardinality, it is not
possible to determine the energy of the optimal solution for MAX-SMTI.

4 Experimental Setup

4.1 Datasets

For the computational experiments, two kinds of datasets were created. One
consists of random SMTI-Instances, while the other one consists of random SMP-
Instances, further called SMTI-Dataset and SMP-Dataset, respectively.

SMTI-Dataset. For the SMTI-Dataset, 50 instances per size in the range of
[3; 30] were created by an algorithm proposed by Gent et al. [7]. This algorithm
takes two parameters g1 and g2. g1 describes the probability of one element being
added to a preference list and g2 describes the probability of the occurrence of a
tie in a preference list. For each sample, both parameters were randomly drawn
to promote uniformly distributed ties and preference lists over all samples per
size.
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SMP-Dataset. For the creation of the SMP-Dataset, the same approach as for
the SMTI-Dataset has been used just with 20 samples per size. For the generation
of SMP instances it is sufficient to shuffle each preference list to create a new
SMP instance.

4.2 Methods

Linear Programming Solver. Regarding MAX-SMTI, the optimal solution
can be found by computing every matching for every possible arrangement of
tie breaks and return the matching with the maximum cardinality. Since this
brute force approach is quite inefficient, another approach to find the optimal
solution was developed by Roth et al. using integer linear programming (LP)
[24]. For our experiments, we used COIN-OR‘s branch and cut method to solve
the LP model of Roth et al. [13]. In this work this LP approach will be reviewed
as MAX-SMTI-LP.

Kiraly2. Kiraly et al. introduced two simple linear approximation algorithms
for MAX-SMTI [15]. The first, a linear 3/2-approximation algorithm, works for
SMTI instances with men strict preference lists. This was followed by a sec-
ond algorithm for general SMTI problems with an approximation ratio of 5/3,
based on the former mentioned algorithm. See [21] for a detailed description and
implementation.

SHIFTBRK. Halldòrsson et al. introduced SHIFTBRK, an approximation
algorithm with a ratio of 2/(1 + L2), where L is the length of the longest tie
among all ties in the preference lists [9]. So the approximation ratio decreases
within the increase of the length of the longest tie. The algorithm is based on
iteratively breaking and shifting ties and can solve the resulting SMI instances
via the well known GS algorithm [6].

D-Wave Systems Quantum Annealing. As already mentioned in Sec. 2.2,
D-Wave Systems Quantum Annealer takes a QUBO problem as input and takes
care of the annealing process. However, since the hardware is still quite restricted
in its resources, w.r.t. the number of qubits and their connectivity, we could only
use it for relatively small problem instances up to a size of n = 7. In this work
this approach is reviewed as QUBO-MAX-SMTI (QA).

QBSolv. QBSolv is a software tool, which splits a QUBO problem into smaller
components (subQUBOs) of a predefined subproblem size, which are then solved
independently of each other. This process is executed iteratively as long as
there is an improvement and it can be defined using the QBSolv parameter
“num repeats”. This parameter determines the number of times to repeat the
splitting of the QUBO problem matrix after finding a better sample. With doing
so, the QUBO matrix is split into different components using a classical tabu
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search heuristic in each iteration. QBSolv can be used in a completely classical
way to solve the subQUBOs or as a quantum-classic hybrid method by solving
the single subQUBOs on the quantum annealer.

Besides embedding and splitting the QUBO into subQUBOs, QBSolv also
takes care of unembedding and merging of the subproblems’ solutions. See [20]
for more details on QBSolv. In this work this approach is reviewed as QUBO-
MAX-SMTI (QBSolv).

5 Results and Discussion

5.1 Solution Quality

In Fig. 1 we evaluated the solution quality of our QUBO-MAX-SMTI
(QA/QBSolv) methods against two state-of-the-art approximation algorithms
for MAX-SMTI, Kiraly2 and SHIFTBRK. The ground truth was calculated
using the MAX-SMTI-LP solver. For problem sizes ranging from 3 to 30, 50
randomly sampled instances per size were used. The approximation ratio was
calculated by the number of optimal solutions found divided by the number of
samples per size.

One can see, that the QUBO-MAX-SMTI (QBSolv) could find every opti-
mal stable matching of the problem instances till the size of n = 13 and even
outperforms the other approximation methods in some cases (n = 10, 11, 12, 15).
Regarding the larger problem instances, QUBO-MAX-SMTI (QBSolv) decreases
in solution quality to a minimum of 35% in problem size n = 30, while SHIFT-
BRK, for example, stays in the approximation ratio of around 90%.

QUBO-MAX-SMTI (QA) was run on the D-Wave 2000Q quantum chip for
only the relatively small problem instances, due to the reasons mentioned in Sect.
4.2. The number of measurements per problem was set to 100. The results show,
that the proposed approach can keep up with QUBO-MAX-SMTI (QBSolv) and
SHIFTBRK and even outperforms Kiraly2 till the problem size of n = 5. How-
ever, afterwards the approximation ratio decreases to around 60%. This might
be due to large physical qubit chains, which occur, when the logical qubits of the
QUBO problem don’t fit directly to the physical qubits and their connectivity of
the quantum architecture. However, one could improve performance by adjust-
ing the hyperparameter chain strength of those qubit chains [4]. Additionally,
we ran the two proposed methods against an exact solver, the MAX-SMTI-
LP, for the same problem instances as above. In Fig. 2 the solution energies of
QUBO-MAX-SMTI (QA/QBSolv) are compared against the energy of the global
optimum found by the MAX-SMTI-LP and the solution energies describing a
stable matching, which can be determined as described in Sect. 3.4. The energy
of the global optimum can be calculated by encoding the exact MAX-SMTI-LP
solution on the binary vector x of the QUBO formulation and computing the
matrix multiplication xtQx.

In Fig. 2a the QUBO-MAX-SMTI (QA) method found for the two smallest
problem sizes (n ≤ 4) the optimal solution (determined by the resulting energy)
in every problem instance. For the larger problem sizes (5 ≤ n), the percentage
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Fig. 1. Solution qualities of the approximation algorithms for different sized MAX-
SMTI problem instances. For each problem size, 50 random sampled instances were
used. The approximation ratio was calculated by the number of optimal solutions found,
divided by the number of samples per size.

of optimal solved instances decreases to a minimum of 60%. Additionally one
can see, that for problem size n = 6 and n = 7, the MAX-SMTI-LP found a
better solution, i.e. it has a lower solution energy, for 5% respectively 8% of the
instances. In some cases, the QUBO-MAX-SMTI (QA) method could not find
stable matches, as shown in light blue.

The QUBO-MAX-SMTI (QBSolv) method found for a problem size of n ≤ 13
every optimal solution of the used problem instances, except for n = 11, as shown
in Fig. 2b. From then on, the percentage of optimal solved instances decreases
to a minimum of 35% in problem size 30. Moreover, it can be seen, that for
the largest problem size (n = 30), the percentage of optimal solved instances
roughly equals the percentage of non optimal solved instances and invalid, i.e.
unstable solutions. Besides that, another finding is, that QUBO-MAX-SMTI
(QA/QBSolv) can be used to find and count the number of stable solutions for
SMP instances, which in general is #P-complete [10]. In Fig. 3 the percentage of
all stable matchings per problem size found by the proposed methods, are shown.
For each problem size, 20 instances were used. The baseline was delivered by the
backtracking algorithm proposed in [26] and was run as long as QBSolv. The
results show, that QUBO-MAX-SMTI (QBSolv) found every stable matching
till the size of n ≤ 11 for every problem instance. From then on, the percentage
of finding all stable matchings decreases to a minimum of 9% in problem size 18.
However, for larger problem instances (n ≥ 15), QUBO-MAX-SMTI (QBSolv)
found more stable matches in the same amount of time as the backtracking
algorithm. The QA approach was only able to find every stable matching for
n ≤ 4. With n = 5 only 30% of the stable matchings were found, while for n ≥ 6
QUBO-MAX-SMTI (QA) was not able to find any stable machting for those
SMP instances. The reason why this QA method finds stable solutions for the
SMTI instances for the same problem size lies in the size of the actual QUBO
matrix, which is proportional to the number of acceptable pairs. For SMTI, the
number of acceptable pairs is less or equal to n2, due to the incomplete preference
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(a) Solution energy of QUBO-
MAX-SMTI (QA)

(b) Solution energy of QUBO-
MAX-SMTI (QBSolv)

Fig. 2. The percentage of optimal (dark blue), stable but not optimal (medium blue)
and unstable (light blue), i.e. invalid, solutions of the problem instances. The problem
size varies from 3 to 30. For each problem size 50 problem instances were used. (Color
figure online)

lists, while the number of acceptable pairs for SMP is equal to n2. As a result,
the size of the QUBO matrix for SMP instances increases much faster than for
the SMTI instances and therefore the corresponding solution space.

Fig. 3. The percentage of all stable matchings per problem size found by the proposed
methods. For each problem size 20 instances were used. The baseline was delivered by
the backtracking algorithm proposed in [26]. The backtracking algorithm was run as
long as QBSolv and then stopped.

5.2 Computational Results

Regarding the computational results, it is hard to draw a fair practical com-
parison between the state-of-the-art classical methods for MAX-SMTI and the
quantum annealing approach presented in this paper. Since the interaction of
classical and quantum hardware in our approach leads to additional overhead
(cloud access time and job queuing time at D-Wave Systems) we didn’t do a time
to solution comparison but rather give a theoretical outlook of the computation
times.



A Quantum Annealing Approach for Solving SMP Variations 305

The preprocessing time of MAX-SMTI-QUBO (QA/QBSolv) is in O(n4)
and contains the computation of acceptable pairs and the creation of the QUBO
matrix. MAX-SMTI-LP has a slightly better preprocessing time of O(n3), when
setting up the integer linear program. However, when it comes to solving the
models (QUBO and ILP) we expect the former being computational superior.
The QA algorithm implemented in D-Wave Systems QPU basically runs in con-
stant time O(1), while the runtime of the mixed-integer-programming solver
(COIN-OR’s branch and cut) is definitely larger than O(1) and since it is a
heuristic its runtime complexity is hard to determine exactly. We expect, that
with quantum annealing hardware getting larger in the number of qubits and
their connectivity, it could outperform the state-of-the-art methods w.r.t. bigger
problem size instances (n > 7).

6 Conclusion

We introduced QUBO-MAX-SMTI (QA/QBSolv), the first QUBO formulation
for solving MAX-SMTI instances with classical and also quantum annealing
hardware. The QUBO formulation for MAX-SMTI requries maximal n2 vari-
ables with n being the number of acceptable pairs and therefore does not need
any additional slack variables. Our experiments show the current state of appli-
cability and provide a comparison to some state-of-the-art classical algorithms.

Regarding the solution quality, the approach of using the QUBO formula-
tion with QA and QBSolv can keep up with the state-of-the-art algorithms and
even outperform them in some cases. Additionally, the QUBO formulation can
be used to find and count multiple stable solutions, which is a #P-complete
task. However, since the quantum hardware is still in its infancy the QA method
was only applicable for n ≤ 7 and is therefore at the moment not compet-
itive with the classical methods for the relevant problem sizes. Nevertheless,
the experiments give hope, that the quantum approach gains in importance
when the corresponding hardware increases w.r.t the number of qubits and their
connectivity.

The addressed problem of the immaturity of the quantum hardware makes
it likewise hard to draw a final conclusion regarding the hoped computational
quantum advantage. Since at the moment the classical methods outclass the
quantum method from a practical point of view (time to solution), the theoretical
outlook predicts, that using quantum annealing hardware for solving QUBO
fomulation might be comparatively more efficient.

Regarding future work it would be interesting to see, if the computational
times and the solution quality improve when using D-Wave Systems new annealer
called Advantage [3]. The new hardware chip has up to 5000 qubits and a better
connectivity. This enables to solve larger fully connected QUBO problems and
a shorter total computation time might be achieved.

Concluding, the proposed QUBO approach might be a relevant alternative
to the classical methods, when quantum hardware scales.
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