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Abstract
The most established and widely used methods for
analysing tree images for tasks such as geometry
analysis, segmentation and classification often rely
on pixels. In this paper, the applicability of ana-
lyzing tree geometry based on a graph representa-
tion rather than a pixel-based approach is pursued.
To do so, 2D renders of different species of trees
are converted to spatial graph structures capturing
significant points on the tree skeleton. Two inde-
pendent Graph Convolutional Network algorithms
which learn node (coordinate) features are then ap-
plied on the obtained dataset to assess the reliabil-
ity of graph based analysis. The first experiment
explores a GCN for assigning correct species la-
bels to the skeleton graph of the original tree im-
age, demonstrating the association between geom-
etry and tree metadata. The second experiment, an
unsupervised representation learning, is conducted
by using Graph Autoencoders to obtain an embed-
ding for each skeleton graph which can be used to
reconstruct partially the same graph, demonstrat-
ing the association between GCE latent representa-
tion and geometry. Promising results were found in
both cases, reinforcing the reliability of the original
proposition to rely on geometry as well as pixels for
tree analysis tasks.

1 Introduction
Trees are inspiring creatures and they have inspired
computer scientists to the extent that one of the
most important data structures in the field is called a
tree. In nature, they seem to grow chaotically from
a structure, which makes them tricky to model. In
this paper’s context of two dimensional tree anal-
ysis, attempts at processing tree images to for in-
stance discover recursive patterns or classify trees
often rely on pixels of the tree as input. This ap-
proach has been proven to get the job done. How-
ever, this paper tries to picture the whys to in-
stead model trees with a tree (graph) structure while
demonstrating the applicability and the reasonable-
ness of doing so.
The main research question explored in this paper
is the following:

• RQ: How effective and reasonable is mod-
elling tree geometry using graphs and Graph
Convolutional Networks?

To this end, two subquestions are posed:
• SQ1: Can spatial graphs composed of point

coordinates sampled from skeletonised tree
images be used for supervised learning tasks,
showing the possibility to go from geometrical
representation to tree metadata ?

• SQ2: Can (potentially sparse) spatial tree
graphs be converted to low dimensional vec-

tors holding significant geometrical informa-
tion capable of partially reconstructing the
original graph ?

In the following sections papers related to our aims
are mentioned; Important definitions are laid out.
The details of two different experiments aiming to
answer the two sub questions are explained and
their results are reported and analysed.

2 Related Work
According to Okura [13], plant mod-
elling/reconstruction techniques are categorized
into 5 groups: FSPM/L-system, Graphs, Mesh,
Voxels, and Point cloud. Our work paper draws
inspiration from both graph and point cloud
representation.

2.1 Plant modeling and reconstruction
techniques
Graph Represenation
Concerning graph represenations, some (botanical)
tree reconstruction methods from multiview images
track the branch patterns from the root detected
from a given image [19]. Also, graph and tree based
structures have been used to analyze leaf veins,
which is used for leaf species classification [20].
However, there are gaps in applying the same prin-
ciple to e.g. classify trees in the two dimensional
space, which is one of the aims of our paper.

Point Cloud Representation
PointNet++ [16] is a hierarchical neural network
working recursively on a nested partitioning of the
input point set while exploiting metric space dis-
tances, making it able to learn local patterns and
features as the scale of the context increases. This
model is adopted for the supervised classification
task.

2.2 Imaging techniques
Pixel Based Approaches
Collecting input data for reconstructing realistic
models of real trees through e.g. obtaining 3D
point clouds using laser scanners or taking multiple
photos from different angles around real trees can
be too costly and time-consuming. Single-image-
based tree reconstruction is a harder problem, but
greatly simplifies the input requirements for recre-
ating a realistic tree model.
Argudo et al. [4] created a pipeline which only tries
to reconstruct the volumetric shape of the tree by
extruding its outline, generating a passable but un-
faithful reconstruction of the tree. Tan et al. [18]’s
method requires the user to draw a stroke along the
trunk and around the foliage, which are then fed
into a growth engine to guide the generation of a
tree.



The proposed method by Li et al. [10] involves
training neural networks to predict the 3D struc-
ture of a tree from a single image. It segments the
branches and leaves from the rest of the picture and
generates disc-shaped bounding boxes and classi-
fies the tree species, after which a procedural algo-
rithm generates a more faithful 3D model of the tree
than the aforementioned two papers. Another re-
cent paper uses a Generative Adversarial Network
(GAN) to infer the 3D skeleton of a tree from a sin-
gle image and generate a realistic tree model [11].
On the topic of tree classification based on 2D im-
ages, several papers look at tree top classifications
based on remote sensing data and drone imagery, in
both RGB and hyperspectral images [7] [12] [21].
No papers were found solely on the topic image
classification of trees based on 2D images, since
that would be too elementary a task for a research
paper.

GCN Based Approaches For Image
Classification
[9] proposes some good practices for designing
GCNs for image classification to compensate for
the lack of domain knowledge that is hardcoded
into CNNs, such as spatially oriented translation in-
variant filters.

3 Preliminaries

3.1 Graph Convolutional Networks

Graph Neural Networks (GNNs) are neural mod-
els that capture the dependence of graphs via mes-
sage passing between the nodes of graphs. In recent
years, variants of GNNs such as the Graph Con-
volutional Network (GCN), Graph Attention Net-
work (GAT) and Graph Recurrent Network (GRN)
have demonstrated ground-breaking performances
on many deep learning tasks. [22]
According to Kipf [8], Most graph neural network
models have a somewhat universal architecture in
common which we will refer to as Graph Convolu-
tional Networks.
For these models, the goal is then to learn a function
of signals/features on a graph which takes as input:
A feature description xi for every node i summa-
rized in a N ×D feature matrix X , where N is the
number of nodes and D the number of input fea-
tures, in our case we would be having two features
(x and y coordinates) for each node. A represen-
tative description of the graph structure is a matrix
typically in the form of an adjacency matrix A and
produces a node-level output Z (an N × F feature
matrix, where F is the number of output features
per node). These individual node-level outputs can
be modeled by introducing some form of pooling
operation arriving at a graph-level output.

Every neural network layer can then be written
as a non-linear function H l+1 = f(H l, A), with
H0 = X and HL = Z (or z for graph-level out-
puts), L being the number of layers. The specific
models then differ only in how f(·, ·) is chosen and
parameterized.

3.2 (Variational) Graph Autoencoders
Variational graph autoencoders (VGAE) proposed
by Kipf [8] apply the idea of VAEs on graph-
structured data. They have been successful on a
number of citation network datasets such as Cora
and Citeseer [17].
The encoder (inference model) of GAEs consists of
Graph Convolutional Networks (GCNs). It takes an
adjacency matrix A and a feature matrix X as in-
puts and generates the latent variable Z as output.
The first GCN layer generates a lower-dimensional
feature matrix. The decoder (generative model) is
defined by an inner product between the latent vari-
able Z and the input. After encoding a node to Z
in the latent space, the similarity of each node em-
bedding in that space is computed to generate the
output adjacency matrix.

4 Method
4.1 Dataset
120 images of trees all along the same camera angle
were rendered using the software Tree-it [3]. The
dimensions of each image were 512 by 512 pix-
els. It should be noted the dataset was obtained
independently. The 120 trees comprised of 6 dif-
ferent species, more specifically: 50 Maple trees,
30 Acacia trees, 10 Beech trees, 10 Oak trees, 10
Pine trees, and 10 Willow trees.

Skeletonization
Prior to skeletonization of each image, due to bugs
in the software used, manual alpha blending had to
be conducted on each image in order to be able to
process them. After applying a threshold on the
grayscale image equal to the mean value of the
same image, sci-kit’s [14] skeletonize function is
used to obtain the skeleton of the tree. The skeleton
object is then passed to a chain of dilation, erosion
and closing.

Minimal Skeleton
The minimal skeleton in this paper refers to a graph
structure composed of nodes representing impor-
tant parts of the original skeleton, mainly split
points and segment tails. Edges in the graph rep-
resent connecting segments between the two points
in the original image. These minimal graph skele-
tons form the dataset used for the autoencoder ex-
periment. In order to locate the most important
points on the obtained skeleton object, the skeleton



is converted to a graph object whose independent
connected paths are traversed in order to obtain dif-
ferent segments. The 25 longest segments are then
identified and their start and end points are sam-
pled, resulting in 50 points, most of which repre-
sent split points on the trunk or the end point of the
branches. Creating a graph only with edges con-
necting these nodes often results in disconnected
graphs. Hence, a minimum spanning tree connect-
ing all the obtained points is formed to arrive at a
final representative graph structure. Each node has
one attribute called pos which is a tuple of normal-
ized coordinates.

Figure 1: Data generation process. On the left is the input image of
a synthetic maple tree. In the middle is the generated skeleton. On
the right, the skeleton graph.

Dense Skeleton
The graph classification experiment requires graphs
with more sampled points. Therefore this time only
one third of the points in the skeleton object were
sampled randomly. In this case, the input of the
model are purely point clouds. The model to be
used itself forms edges between the points. Both
datasets, dense and minimal, loaded from node-
link format are then converted into PyTorch custom
datasets and batched and split for training and test-
ing.

4.2 Experiments
GCN-Based Skeleton Classification
In this experiment, isolated nodes from the dis-
joint dense skeleton dataset (120 graphs) are fed
into the PointNet++ neural network [16], orig-
inally proposed for 3D point cloud classifica-
tion/segmentation, which tries to capture meaning-
ful local geometric patterns to be able to classify
the entire graph. We only had to manually reshape
the pos coordinates of the nodes to have a 0.0 third
dimension as well for it to work. In PointNet++, the
nodes are iteratively processed by following a sim-
ple grouping, neighborhood aggregation and down-
sampling scheme:
The grouping phase in our case uses a k-NN algo-
rithm to construct a graph in which nearby points
are connected. The constructed graph is then pro-
cessed in a Graph Neural Network layer by ag-
gregating coordinate values for each node from

their direct neighbors. This layer is what allows
PointNet++ to capture local structures at different
scales. Finally, in the downsampling phase, a pool-
ing scheme which summarizes local structures con-
taining aggregated skeleton coordinate positions is
adopted.
This experiment is the result of applying the PyG
implementation of this model [1] to our dense
skeleton dataset. As a variation of this experiment,
the minimal skeleton dataset is also fed into the
model. 80% of the graphs in both cases were used
for training while 20% of them for testing.
Concerning implementation details, as visible in
the provided code by PyG [1], a (k=16)-Nearest
Neighbor graph based on the position pos of nodes
is generated on which two graph-based convolu-
tional operators are applied and enhanced by ReLU
non-linearities. The first operator takes in 3 input
features (the positions of nodes) and maps them
to 32 output features. The second operator is ap-
plied on the 32 dimension output from the previ-
ous step remaining in the same dimension. In the
end a global graph readout function, global-max-
pool, which takes the maximum value along the
node dimension for each skeleton graph is applied
which is then fed to a linear classifier mapping
it to 6 different classes (1:Oak, 2:Maple, 3:Aca-
cia, 4:Pine, 5:Beech, 6:Willow respectively). Three
variations of this experiment, namely experiment-
ing with different values for k, an additional convo-
lutional middle layer and running the model on the
minimal skeleton dataset as well as the dense one
are also conducted.

GCN-Based Latent Representation With Graph
Autoencoders
The vector encodings associated with the skeleton
graphs in the previous experiment lack one impor-
tant characteristic. There are no guarantees the vec-
tors are representative enough to be able to recon-
struct the original skeleton. Hence, in this exper-
iment, a Graph Autoencoder is utilised in which
the vectors produced by the encoder layer are made
in such a manner that they are able to reconstruct
the adjacency matrix in the original graph, which is
done by minimizing the inner product between each
node and its embedding during the process). For
this experiment, the more challenging dataset con-
taining the minimal skeleton graphs is used. This
means the Graph AutoEncoder will learn to take a
skeleton graph and compress the node positions and
the edge connections into a low dimensional vec-
tor capable of being used to reconstruct the edges
between different points on the skeletons, i.e con-
structing the links of the original graph. Doing so
would mean given the original nodes in the skele-
ton, the skeleton tree can be accurately constructed,
demonstrating geometrical insight hidden in the la-
tent space.



5 Results
In this section, the results of the previously laid out
two experiments are reported.

5.1 Skeleton Classification
As explained in the previous chapter, the Point-
Net++ [16] neural network was applied to our
dataset. 82% accuracy in label prediction was ob-
served with the first successful training and testing
of the model on the dense skeleton dataset to as-
sign a species label to each. Three separate sub-
experiments were conducted to further examine and
improve the prediction score, namely: applying the
algorithm to the minimal skeleton dataset, restruc-
turing the hidden layer of the model, and varia-
tions in the initial graph formation of the model.
A streamline of the process looks as follows :

Figure 2: One input to the PointNet++

Dataset Experimentation
Following the initial success on the dense dataset,
the model was also tested on the minimal skeleton
dataset stripped of the edges in the graph. Quite
surprisingly, as observed in Figure 3, the model
classified the skeletons more accurately, jumping
up to 87% accuracy in the dataset with fewer points
(35 points on average for each minimal skeleton vs
761 points on average for each dense skeleton).

Hidden Convolutional Layer Experimentation
The used implementation of the model originally
had placed two convolutional 32x32 layers for ag-
gregating the node coordinates. As expected with
other standard deep neural nets, the addition of an
extra 32x32 layer to the process, saw the model
jump 4% in the predictive power up to 95% as ob-
served in figure X.

Input Formation Experimentation
A critical part in the implementation of PointNet++
concerns the formation of a custom k-NN graph
since the model expects a point cloud. Originally
the value was set to k=16. Given the two dimen-
sional nature of this task and the special case of
points representing tree skeletons, the model was

Figure 3: PointNet++ performance on dense (blue) vs the minimal
dataset (pink)

Figure 4: PointNet++ accuracy with three convolution layers (red)
instead of two (green)

adjusted and tested for three more cases of k=1,
k=4, and k=8 both in the case of three convolu-
tion layers, and with two, resulting in eight differ-
ent variations.
In both architectures, k=4 was found to produce the
best results: 95% testing accuracy. In the case of 3
convolution layers the original k=16 performed as
well as k=4. In both cases k=1 performs the worst.
The performance for these values of k are under-
standable because, in the case of a minimal skele-
ton which this experiment was based on, message
passing and association between a reasonable num-
ber of neighbours is the optimal mode of analysis
as geometrical information is not isolated in each
node as in the case of k=1 and not too spread out in
the whole structure in the case of k=16 or k=8 with
two convolution layers.
In summary, the customized PointNet++ model de-
scribed above, was able to predict the original tree



Figure 5: 20k steps of training and its performance on test sets

label with a 95% accuracy through learning to map
shared and convolved geometrical patterns between
the critical points in the minimal skeleton of the
trees to metadata.

5.2 Skeleton Representation
The Graph Autoencoder model previously ex-
plained was applied to the minimum skeleton
dataset consisting of MSTs of the tree skeletons.
The relevant details and the results are reported as
follows.

Figure 6: A subsection of the composed graph: the skeleton MSTs
fall on top of each other in the normalized space but are not con-
nected. Highlighted in red is one tree skeleton.

The Graph Auto Encoder works on one single
graph so we had to compose all the different MSTs
to one single object. It should be noted that no
further edges were added to the composed graph.
Therefore, the composed graph is essentially a for-
est of seperated trees. Upon the initial failure to
compute node embedings out of this dataset with
this model, all the coordinate positions in all skele-
ton were normalized. As a visual example, one tree
skeleton is highlighted in the composed normalized
space.
Three different sub experiments were conducted in
this regard. First, the global graph was fed into
the GAE model which learned to reconstruct the
global adjacency matrix with different degrees of

accuracy based on the dimension of the embedded
space. Second, the global graph was fed into a Vari-
ational GAE model hoping for more accurate re-
construction. And lastly, due the implications of the
results of the previous two sub experiments, only
a small subset of the global graph containing only
MST skeletons of the same species of trees were
fed to the model.

Global Graph Adjacency Matrix Prediction
using a Graph Auto Encoder
In this experiment, the GAE composed of the
Graph Neural architecture explained in the previ-
ous section, was applied to the global normalized
disconnected graph four times, each with a differ-
ent dimension of the embedded space as observable
in the figure below:

Figure 7: Our GAE Average Precision associated with two, three,
four and five dimensional latent space

The GAE with the two-dimensional output space
naturally performed the worst with an AP of 67%
followed by three-dimensional space with an AP
of 82%. However, there are no improvements ob-
served increasing the dimension from 4d to 5d.

Global Graph Adjacency Matrix Prediction
using a Variational Graph Auto Encoder
In this experiment, a standard Variational Graph
Autoencoder provided by the PyG official imple-
mentation [2] was applied to the global graph to
look for any improvement over the traditional GAE
model. Quite surprisingly, as observable from the
figure below, the VGAE performed even worse than
its less complex predecessor, in all three dimen-
sions compared.
There are a few possible reasons for this. One is the
structure of the graph dataset fed into the algorithm.
VGAEs were designed with the aim of learning
connections between nodes with high-dimensional
and sometimes irregular features such as geomet-
rical molecular analysis. The crude convolutional
layers used in this model are not optimized for ag-
gregating spatial coordinates as pointed out by [22].



Figure 8: A subsection of the composed graph: the skeleton MSTs
fall on top of each other in the normalized space but are not con-
nected. Highlighted in red is one tree skeleton.

This was not the case in the previous experiment in
which a Euclidian-space-aware Graph Neural Net-
work was used. Moreover, not only the global
graph contained disjoint tree skeletons, they were
skeletons of different species of trees. This is why
as a last experiment, only the MST skeletons of 10
pine trees were fed into the algorithm as laid out
below.

Single Type Adjacency Matrix Prediction using
a Graph Auto Encoder
Restricting the scope of the dataset to only one
species of trees did result in an improvement over
the original mixed dataset. As it can be observed
from the figure below, a 10% jump compared to fig-
ure Y is observed in the case of a two-dimensional
output space.

Figure 9: GAE on only one class of skeletons

6 Discussion
The experiments conducted not only show the pos-
sibility of encoding tree geometry with Graph Neu-
ral Networks, but also show the possibility of using
skeleton graphs of trees as a proxy for the tree itself.

Doing so is justifiable and advantageous in terms of
both space and time efficiency for some tasks such
as tree classification.
Concerning the tree classification experiment, an
important question might be posed: It could be that
such a supervised classification model could learn
to cheat its way to the end by learning special easy
mappings from input to labels with disregard to the
geometry of the skeleton as a whole. One possible
answer to this argument is that the model learns to
arrive at a latent space by using only pure geometri-
cal information (node positions) and no other node
or edge features whatsoever. Even if the model
learns shortcuts from the input graph, it would only
do so purely based on the positions of the nodes,
and not based on any other features such as colour
or node degrees, since the skeletons are fed as raw
point cloud data with no edges. This would actually
demonstrate the model has learned key geometrical
patterns specific to that species of trees. It is ar-
gued that if indeed cheat patterns are part of what
the model does, they can be treated as a representa-
tive pattern of the original skeleton graph. With that
said, the second GAE experiment was conducted
both as a remedy to the this point and to further
demonstrate the capability of GCNs to capture a
geometrical profile at different scales.

Limitations and Future Work
Concerning the first experiment in classifying
skeleton points, our model lacks flexibility as it
takes node positions as input features, and uses
a simple difference in relational Cartesian coordi-
nates for creating messages between nodes. This
means it would not generalize across rotations ap-
plied to the input points. Future work can further
strengthen this experiment by fixing this issue by
using the PPFNet algorithm [6].
As pointed out by Danel et. Al [5], traditional
GCNs lack the ability to take into account spatial
information even when they are coded into node
features. Hence, a strong case for the second ex-
periment not performing as well as the supervised
classification which used a spatially aware convo-
lution mechanism is this. Therefore, future work
can take this into account by designing a pair of
encoder and decoder for the GAE custom designed
for spatial graphs such as the one proposed in the
same paper, PointNet++ [16], or PPFNet [6].
Another area for venture exploring graph based tree
geometry would be with random walk based GCNs
such as a spatially aware DeepWalk algorithm and
the like [15].
Another area for venture concerns using node em-
beddings not only to predict edges between them
but to also predict new (missing) node positions
demonstrating an even deeper representation of tree
geometrical profile embedded in the latent space.



This area (new node generation with GCNs) was
however found to be underdeveloped which makes
this an even more challenging task.

Conclusion
Going back to the original RQ of this paper 1, the
results of our unsupervised and supervised graph
embedding experiments demonstrate the soundness
of modelling trees with only a minimal skeleton
spatial graph object while preserving and encod-
ing both tree geometry and metadata using Graph
Convolutional Networks. This point was reached
through two independent experiments. In the first
one, the PointNet++ model was used to find an
95% accurate mapping between the sparse skele-
ton graph objects composed of only coordinates to
metadata (species label). In the second experiment,
the same point was demonstrated again by utilising
Graph Auto Encoders capable of encoding a sub-
stantial part of a tree’s geometrical profile (i.e the
segments connecting its critical points). In sum-
mary, the answer to both sub questions posed was
found to be positive which declares modelling tree
geometry in 2d using graphs and Graph Neural Net-
works is both reasonable and effective.

Ethical Considerations
There are no ethical considerations pertaining to
this paper as the dataset was generated indepen-
dently and no other stakeholders or parties were in-
volved.
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