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The goal of entanglement distillation is to turn a large number of weakly entangled states into a smaller number
of highly entangled ones. Practical entanglement distillation schemes offer a trade-off between the fidelity to the
target state and the probability of successful distillation. Exploiting such trade-offs is of interest in the design of
quantum repeater protocols. Here, we present a number of methods to assess and optimize entanglement distillation
schemes. We start by giving a numerical method to compute upper bounds on the maximum achievable fidelity for a
desired probability of success. We show that this method performs well for many known examples by comparing it
to well-known distillation protocols. This allows us to show optimality for many well-known distillation protocols
for specific states of interest. As an example, we analytically prove optimality of the distillation protocol utilized
within the Extreme Photon Loss entanglement generation scheme, even in the asymptotic limit. We proceed to
present a numerical method that can improve an existing distillation scheme for a given input state, and we present
an example for which this method finds an optimal distillation protocol. An implementation of our numerical
methods is available as a Julia package.

DOI: 10.1103/PhysRevA.97.062333

I. INTRODUCTION

Entanglement distillation forms an important element of
many proposals for quantum repeaters [1–5], as well as
networked quantum computers [6,7]. It has seen widespread
study across several areas ranging from practical entanglement
distillation schemes [7–13] and their experimental implemen-
tations [14–18], to a general understanding of some of its
possibilities and limitations in quantum information theory
[19]. The general goal of bipartite entanglement distillation
is to convert a state ρAB into a state ηÂB̂ that is close to a
maximally entangled state �ÂB̂ using only local operations
and classical communication (LOCC) between the network
node holding A (Alice) and the one holding B (Bob). Here by
A and B we denote the input registers and by Â and B̂ the
output ones. Closeness is measured in terms of the fidelity

F = 〈�D|ηÂB̂ |�D〉 � 1 − ε (1)

to the target state

|�D〉 = 1√
D

D−1∑
j=0

|j 〉Â|j 〉B̂ , (2)

which is maximally entangled across Â and B̂.
There is a slight difference between the meaning of en-

tanglement distillation in the quantum information theory
literature and in practical schemes. In quantum information
theory, one typically considers the case where ρAB ≈ (τab)⊗n

consist of n copies of a state τab. If we want to distill states that
are arbitrarily close to the perfect maximally entangled state,
then the distillable entanglement ED(τab) of τab answers the

*f.d.rozpedek@tudelft.nl

question of how large this output state can be. Specifically, it
tells us what would be the dimension |ÂB̂| relative to the input
dimension |AB|, under distillation using LOCC as n → ∞
[20]. As such, the dimension of the output state |ÂB̂| is
generally smaller than the dimension |AB| of the input state,
unless the input is already maximally entangled. While ED

is difficult to compute in general, several computable bounds
have been proposed [21–24]. Recent years have seen one-shot
variants of distillable entanglement in which n can be finite,
or indeed ρAB may have an arbitrary structureless form [25–
27]. Bounds on the one-shot distillable entanglement may be
computed numerically [28]. Crucially, the task of entanglement
distillation as it is considered in quantum information theory
always produces an output state ηÂB̂ , and considers no failure.
The possibility of failure is allowed implicitly by assuming
that if the entanglement distillation procedure fails, then Alice
and Bob output an arbitrary state leading to a reduced fidelity
of the output state to the target state.

In contrast, practical schemes for entanglement distillation
explicitly allow for the possibility of failure [7–13]. The fidelity
F to the target state is in that case of interest only in the event
of success. Not surprisingly, there exist interesting trade-offs
between this fidelity F and the probability of success psucc of
the distillation procedure. A simple example of such a trade-
off is the possibility of filtering in which the dimensions |Â|
and |B̂| of the output systems Â and B̂ are equal to the input
dimensions |A| and |B|, that is, |Â| = |A| and |B̂| = |B|. Yet,
it is possible to probabilistically increase the fidelity to the
target state by LOCC, where a higher fidelity F leads to a
lower success probability psucc. More generally, trading off
the fidelity F against psucc is relevant to the construction of
quantum networks: here, the initial generation of entanglement
is typically already probabilistic such as when using a heralded
scheme to produce the initial (imperfect) entanglement [29,30].
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Most significantly, however, the local quantum memory used to
store entanglement is itself imperfect. This means that both the
initial as well as the resulting entanglement cannot be preserved
for an arbitrary amount of time. Clearly, the success probability
psucc dictates the rate at which we can hope to produce high-
fidelity entanglement between different nodes in the network.
This rate imposes requirements on the coherence times of the
memory if multiple entangled pairs are generated such that they
should undergo further processing, for example, to generate
more complex entangled states in a multinode network. In such
a scenario, one may thus wish to obtain a higher probability
of success at the expense of a lower fidelity (or vice versa) in
relation to the local storage capabilities of the nodes.

Due to a limited lifetime of local quantum memories, practi-
cal distillation schemes are not expected to employ multiround
operations in the near future. Instead, practically employed
schemes consist of applying a local operation and measurement
on Alice’s and Bob’s side, followed by a single exchange
of measurement outcomes using classical communication in
order to decide success or failure. Here, we will refer to this
subset of LOCC as measure and exchange (MX) operations
due to their reduced technical demands (see Sec. III A for a
definition).

II. OVERVIEW

In this paper, we develop a set of tools for optimizing and
assessing existing practical distillation schemes. Specifically,
our tools allow for a detailed investigation of the trade-off
between the possible output fidelity and probability of success
of distillation schemes.

In Sec. III A, we first formally define the set of measure and
exchange (MX) operations, and illustrate it with an example
of an existing filtering protocol.

In Sec. III C, we state a semidefinite programming (SDP)
method to compute upper bounds on the achievable fidelity (or
success probability) of a distillation scheme for a given success
probability (or fidelity). These methods adapt the ideas of Rains
[21] as well as the later methods of Bose symmetric extensions
[31,32] to the case of MX operations, where immediate
measurements are performed to decide success or failure. We
implement these methods in a numerical package that is freely
available on GitHub [33].

In Sec. III D, we present a numerical seesaw method based
on semidefinite programming that takes a specific distillation
scheme and entangled state as input, and iteratively searches
for a better distillation scheme adapted to the state of interest.
This method is also included in our numerical package.

In Sec. IV, we illustrate our method with a variety of exam-
ples, considering different entangled states of interest. We com-
pare upper bounds attained with existing distillation schemes
(and interpolations between existing distillation schemes) to
determine their performance. We observe optimality for a
number of schemes for specific states of interest, including
modifications of such schemes and certain new schemes
obtained from existing ones using our tools. Specifically, we
present an instance in which the seesaw method will find
an optimal distillation scheme from an existing one that is
suboptimal for the given state.

In the Appendices (summary in Sec. IV) we employ our
semidefinite programming methods to analytically prove opti-
mality of the DEJMPS protocol [9] for distilling Bell diagonal
states of rank up to three. Furthermore we show optimality of
the distillation procedure used within the Extreme Photon Loss
(EPL) remote entanglement generation scheme as described in
Refs. [7,13], even in the limit of asymptotically many copies.

III. OPTIMIZATION METHODS

Let us now first define MX operations, and specify the
problem of interest in terms of such operations. Throughout,
we will use the convention σX = trY (σXY ) to denote the
marginal σX of a larger state σXY . Moreover, for the purpose
of the compactness of notation, we will often omit writing
explicitly the identity matrix or the identity channel. That is,
for (IA ⊗ MB)ρAB we will often use the shorthand MBρAB and
for (1A ⊗ �B→B̂)(ρAB) we will use �B→B̂(ρAB).

A. Measure and exchange (MX) operations

All MX operations can be modeled as completely positive
trace-preserving (CPTP) maps; e.g., for Alice

�A→ÂFA
: D(HA) → D

(
HÂFA

)
, (3)

where HA and HÂFA
:= HÂ ⊗ HFA

denote the input and
output spaces, respectively, and D denotes the set of density
operators living on the space. The registers FA and FB denote
classical flag registers, which Alice and Bob will compare in
order to decide success or failure. Applying these maps locally
yields the state

σÂFAB̂FB
= �A→ÂFA

⊗ �B→B̂FB
(ρAB). (4)

Since Alice and Bob use classical communication to compare
the flags, we may without loss of generality assume that the
state after a measurement on FA and FB is of the form

σÂB̂FAFB
=

∑
fA,fB

σ
fA,fB

ÂB̂
⊗ |fA〉〈fA|FA

⊗ |fB〉〈fB |FB
, (5)

where the sum is taken over strings fA and fB , and 0 �
tr(σfA,fB

ÂB̂
) � 1. Comparing the flags to decide success or failure

can be understood as subsequently projecting the state using a
projector

P✓ =
∑

(fA,fB )∈S
|fA〉〈fA|FA

⊗ |fB〉〈fB |FB
, (6)

where S = {(fA,fB ) | Alice and Bob declare success}. The
success probability can thus be expressed as

psucc = tr
(
P✓σFAFB

)
. (7)

The global state conditioned on success can in turn be written
as

ηÂB̂FAFB
= (IÂB̂ ⊗ P✓)σÂB̂FAFB

(IÂB̂ ⊗ P✓)

psucc
, (8)

which has a fidelity to the ideal maximally entangled state

F = 〈�D|ηÂB̂ |�D〉. (9)

Our formalism captures all practical schemes by appropriate
definition of P✓.
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As an example let us consider the filtering protocol [34].
This protocol is adapted to perform well for an input state with
|A| = |B| = 2 of the form

ρAB = p|�2〉〈�2| + (1 − p)|01〉〈01|. (10)

In this procedure, Alice performs a measurement given by
the POVM: {M0

A,M1
A} with M1

A = (A1
A)†A1

A, where A1
A =√

ε|0〉〈0| + |1〉〈1| and M0
A = (A0

A)†A0
A = I − M1

A for some
parameter ε determining the trade-off between F and psucc.
In terms of the map this measurement can be expressed as

�A→Â,FA
(ρ) =

∑
fA∈{0,1}

A
fA

A ρ
(
A

fA

A

)† ⊗ |fA〉〈fA|FA
. (11)

Similarly, Bob performs a measurement given by the POVM:
{M0

B,M1
B} with M1

B = (A1
B)†A1

B , where A1
B = √

ε|1〉〈1| +
|0〉〈0| and M0

B = (A0
B)†A0

B = I − M1
B , giving the map

�B→B̂,FB
(ρ) =

∑
fB∈{0,1}

A
fB

B ρ
(
A

fB

B

)† ⊗ |fB〉〈fB |FB
. (12)

Alice and Bob declare success if fA = fB = 1, corresponding
to a choice of P✓ = |11〉〈11|FAFB

.
When optimizing over measure and exchange operations, it

is sometimes convenient to consider a slightly more general
class of operations which we call measure and exchange
operations with shared randomness (MXS operations). As
the name suggests, Alice and Bob have additional access to
classical shared randomness, which is easy to distribute ahead
of time. Specifically, if Alice and Bob have a classical symbol
r chosen with probability pr , then they can perform MX
operations that depend on r . This means the output state is
of the form

σÂB̂FAFB
=

∑
r

pr�r,A→ÂFA
⊗ �r,B→B̂FB

(ρAB). (13)

Note the set of MXS operations is a convex set unlike the set
of MX operations.

B. Optimizing over MX operations

1. General form

We are now going to consider various optimizations related
to the distillation problem. As we have seen, we would like to
optimize one of the three parameters D,psucc, ε, where D is
the local output dimension, psucc is the success probability, and
the fidelity is 1 − ε. We will typically fix the output dimension
D and for now we will consider optimizing the fidelity for fixed
success probability psucc = δ. It is straightforward to adapt the
techniques below to optimize psucc instead. Ideally, we thus
wish to solve the following (quadratic) optimization problem
over maps �A→ÂFA

and �B→B̂FB
:

maximize
1

δ
tr

(|�D〉〈�D|ÂB̂ ⊗ P✓ σÂB̂FAFB

)
subject to tr

(
P✓σFAFB

) = δ,

σÂB̂FAFB
= �A→ÂFA

⊗ �B→B̂FB
(ρAB).

Optimization Program 1.

2. Simplifying the optimization problem

How do we optimize over quantum operations? The key
is to employ the Choi isomorphism which gives a one-to-
one correspondence between quantum channels and quantum
states with certain properties. Specifically, for any quantum
channel 
S→R from a system S to system R, there corresponds
a unique Choi state

CRS ′ = 
S→R ⊗ 1S ′ (�SS ′ ), (14)

satisfying

CRS ′ � 0, CS ′ = IS ′

|S| , (15)

where �SS ′ is the density matrix of the normalized maximally
entangled state from Eq. (2) of dimension D = |S|. The Choi
state carries all information of the original channel, in the
sense that

tr[MR
S→R(ρS)] = |S| tr
[
MR ⊗ ρT

S ′ (CRS ′ )
]

(16)

for all matrices MR on R.
For the case of MX operations the Choi states take a product

form. This is because a maximally entangled state of a larger
system whose dimension D is a composite number is formed
by taking the tensor product of maximally entangled states:

CÂFAB̂FB,A′B ′ = �A→ÂFA
⊗ �B→B̂FB

(�AA′ ⊗ �BB ′)

= CÂFAA′ ⊗ CB̂FBB ′ . (17)

This translates the optimization to the space of product of
two Choi states. Similarly, for MXS operations we obtain the
optimization over the subset of separable Choi states that can
be decomposed as follows (we denote this set here as SEP-C):

CÂFAB̂FB,A′B ′ =
∑

r

prCr,ÂFAA′ ⊗ Cr,B̂FBB ′ . (18)

Note that SEP-C is a strict subset of the set SEP of separable
states, since we require that the individual components satisfy
the Choi condition Eq. (15).

Before delving into the various approaches to optimize our
function below, let us first simplify the problem slightly. Our
goal will be to remove the registers FA and FB from the
expressions above. In particular, let us imagine that C∗

ÂFA,A′

and C∗
B̂FB,B ′ are optimal solutions to the optimization problem

above. We then claim that

C̃ÂFA,A′ =
∑

fA∈{0,1}
|fA〉〈fA|FA

C∗
ÂFAA′ |fA〉〈fA|FA

, (19)

C̃B̂FB,B ′ =
∑

fB∈{0,1}
|fB〉〈fB |FB

C∗
B̂FBB ′ |fB〉〈fB |FB

(20)

are also optimal. This is an immediate consequence of the
fact that in our optimization problem, we always measure the
registers FA and FB . We can thus without loss of generality
assume that both states are cq states:

C̃ÂFAA′ =
∑

fA∈{0,1}
ĈfA,ÂA′ ⊗ |fA〉〈fA|FA

, (21)

C̃B̂FBB ′ =
∑

fB∈{0,1}
ĈfB,B̂B ′ ⊗ |fB〉〈fB |FB

; (22)

that is the flags are always classical registers.
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Observing that our optimization problem is only concerned
with the case that Alice and Bob succeed, we can now express
the problem in terms of the Choi states. We can now consider
two cases:

(1) Some protocols have local success flags; e.g., the
protocol succeeds if Alice and Bob both measure “1”, which
is the case in the filtering protocol described in Sec. III A or
the distillation protocol used within the EPL scheme (both are
also described in Appendix B 1). The meaning of “local” refers
to the fact that here Alice and Bob can individually already
declare failure if they observe a “0” (success evidently requires
a comparison). For this example we arrive at the optimization
problem

maximize
|A||B|

δ
tr

[|�D〉〈�D|ÂB̂ ⊗ ρT
A′B ′(Ĉ1,ÂA′ ⊗ Ĉ1,B̂B ′)

]
subject to |A||B| tr

[
ρT

A′B ′(Ĉ1,A′ ⊗ Ĉ1,B ′ )
] = δ,

Ĉ1,ÂA′ � 0, Ĉ1,B̂B ′ � 0,

Ĉ1,A′ � IA′

|A| , Ĉ1,B ′ � IB ′

|B| .
Optimization Program 2.

Here the last condition follows from the Choi condition
Eq. (15) because we have eliminated the states Ĉ0,ÂA′ and
Ĉ0,B̂B ′ from explicit consideration.

(2) The other case is the one of the nonlocal success flags;
e.g., Alice and Bob succeed if fA = fB . This is the case for
example for the BBPSSW [8] or DEJMPS [9] protocols (again
see also Appendix B 1). In this case we obtain

maximize
|A||B|

δ
tr

[|�D〉〈�D|ÂB̂ ⊗ ρT
A′B ′

×(Ĉ1,ÂA′ ⊗ Ĉ1,B̂B ′ + Ĉ0,ÂA′ ⊗ Ĉ0,B̂B ′ )
]

subject to |A||B| tr
[
ρT

A′B ′(Ĉ1,A′ ⊗ Ĉ1,B ′ + Ĉ0,A′ ⊗ Ĉ0,B ′ )
]

= δ,

Ĉ1,ÂA′ � 0, Ĉ1,B̂B ′ � 0, Ĉ0,ÂA′ � 0,

Ĉ0,B̂B ′ � 0, Ĉ1,A′ + Ĉ0,A′ = IA′

|A| ,

Ĉ1,B ′ + Ĉ0,A′ = IB ′

|B| .
Optimization Program 3.

C. Reliable upper bounds using SDP relaxations

The Choi isomorphism only transfers the optimization from
channel space to state space, but it does not deal with the
(quadratic) nonconvex nature of the program. In this section
we perform a set of convex relaxations on the domain of op-
timization. First, in Sec. III C 1 we consider optimization over
positive partial transpose (PPT) operations and in Sec. III C 2
we add an additional constraint related to the extendibility of
separable states. We will call the resulting bounds reliable,
since these numerical methods are guaranteed to produce an
upper bound on our objective function. In contrast, later in
Sec. III D we discuss a heuristic method which does not have
this property.

1. PPT relaxations

The first method to obtain an upper bound on the objective is
a direct extension of Rains [21]. Here, we relax the set of SEP-C
states to the set of PPT Choi states—Choi states which are
positive under partial transpose. We perform an easy adaption
of this method to the case of MX operations including classical
flags, resulting in Optimization Program 4. This method is
implemented in our numerical software package available at
[33].

Enforcing the PPT condition is an SDP constraint, whereas
membership of SEP is more difficult to characterize and
optimization over the set of separable states is in general hard.
Applying the PPT constraint to our problem means that we
construct a single Choi state variable on all the registers, such
that it obeys the PPT condition, i.e.,

C


ÂFAA′B̂FBB ′ � 0, (23)

where 
 denotes the transpose on all the registers of Bob.
To introduce some helpful notation, we can split this Choi

of the distillation channel into the success and failure parts

CÂFAA′B̂FBB ′ = Ĉ✓,ÂFAA′B̂FBB ′ + Ĉ7,ÂFAA′B̂FBB ′ (24)

obeying the condition

Ĉ✓,A′B ′ + Ĉ✗,A′B ′ = IA′B ′

|A||B| . (25)

For a protocol with local flags we have

Ĉ✓,ÂFAA′B̂FBB ′ = Ĉ1,ÂA′ ⊗ Ĉ1,B̂B ′ ⊗ |11〉〈11|FAFB
, (26)

whereas for a protocol with nonlocal flags

Ĉ✓,ÂFAA′B̂FBB ′ = Ĉ1,ÂA′ ⊗ Ĉ1,B̂B ′ ⊗ |11〉〈11|FAFB

+ Ĉ0,ÂA′ ⊗ Ĉ0,B̂B ′ ⊗ |00〉〈00|FAFB
. (27)

Clearly Ĉ✓,ÂFAA′B̂FBB ′ and Ĉ✗,ÂFAA′B̂FBB ′ are orthogonal on
the flag registers. As a result imposing the PPT constraint on
CÂFAA′B̂FBB ′ is equivalent to imposing it on both Ĉ✓,ÂFAA′B̂FBB ′

and Ĉ✗,ÂFAA′B̂FBB ′ . Finally, Ĉ✗,ÂFAA′B̂FBB ′ does not appear
explicitly in our optimization problem, but because of the
relation in Eq. (25), it translates directly to the following
condition on the marginal of Ĉ✓,ÂFAA′B̂FBB ′ :

Ĉ

✓,A′B ′ �

IA′B ′

|A||B| , (28)

where 
 again denotes the partial transpose on all registers of
B. Of course Eq. (25) also implies that

Ĉ✓,A′B ′ � IA′B ′

|A||B| . (29)

Since in our program we have already eliminated the flags,
our SDP variable is Ĉ✓,ÂA′B̂B ′ . We note that both the cases with
local and nonlocal flags as well as any other flag configuration
reduce to exactly the same relaxed PPT program. All other
constraints in terms of the reduced state of Ĉ✓,ÂA′B̂B ′ remain
the same so that now we will obtain the following program:

maximize
|A||B|

δ
tr

[(|�D〉〈�D|ÂB̂ ⊗ ρT
A′B ′

)
Ĉ✓,ÂA′B̂B ′

]
subject to |A||B| tr

[(
IÂB̂ ⊗ ρT

A′B ′
)
Ĉ✓,ÂA′B̂B ′

] = δ,
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Ĉ✓,ÂA′B̂B ′ � 0,

Ĉ


✓,ÂA′B̂B ′ � 0,

Ĉ✓,A′B ′ � IA′B ′

|A||B| ,

Ĉ

✓,A′B ′ �

IA′B ′

|A||B| .
Optimization Program 4.

We give a side remark regarding terminologies. Such a PPT
Choi state CÂFAA′B̂FBB ′ corresponds to an operation that Rains
defines as a PPT operation [21,35,36]. These PPT operations
include all LOCC operations as a strict subset. Hence our
relaxed program provides upper bounds on the achievable
fidelity not only over MX and MXS operations but also over
all LOCC operations. See Appendix A for a short discussion
of these PPT channels.

The Optimization Program 4 is a semidefinite program with
very high symmetry. This allows considerable further simpli-
fications (see Appendix C). We finally obtain the semidefinite
program corresponding to the Rains style bound on the fidelity
of distillation with fixed success probability δ:

maximize p(MA′B ′ ,EA′B ′) = |A||B|
δ

tr
[
ρT

A′B ′MA′B ′
]

subject to MA′B ′ � 0, EA′B ′ � 0,

MA′B ′ + EA′B ′ � IA′B ′

|A||B| ,

M

A′B ′ + E


A′B ′ �
IA′B ′

|A||B| ,

|A||B| tr
[
ρT

A′B ′(MA′B ′ + EA′B ′ )
] = δ,

M

A′B ′ + 1

D + 1
E


A′B ′ � 0,

−M

A′B ′ + 1

D − 1
E


A′B ′ � 0.

Optimization Program 5.

Recall that ρA′B ′ is the initial input state that Alice and Bob
are attempting to distill and in most examples considered here,
it will consist of two copies of some two-qubit state. In what
follows and on all the plots shown in Sec. IV we will refer to
the bound obtained using this program as the PPT bound.

We note here that by following an analogous procedure, one
can construct a similar program which aims at maximizing
probability of success subject to a constraint of fixed output
fidelity. This program can also be relaxed to a PPT program
which is also an SDP. Effectively it results in a similar program
to the one above just with the objective function and constraint
on probability of success interchanged:

maximize |A||B| tr
[
ρT

A′B ′(MA′B ′ + EA′B ′)
]

subject to MA′B ′ � 0, EA′B ′ � 0,

MA′B ′ + EA′B ′ � IA′B ′

|A||B| ,

M

A′B ′ + E


A′B ′ �
IA′B ′

|A||B| ,

tr
{
ρT

A′B ′[(1 − F )MA′B ′ − FEA′B ′ ]
} = 0,

M

A′B ′ + 1

D + 1
E


A′B ′ � 0,

−M

A′B ′ + 1

D − 1
E


A′B ′ � 0.

Optimization Program 6.

Now F is a constant fidelity and so the fidelity constraint is
just

tr
[
ρT

A′B ′MA′B ′
]

tr
[
ρT

A′B ′(MA′B ′ + EA′B ′ )
] = F. (30)

Hereafter, we will drop the subscripts on ρ,E, and M to
simplify the notation.

We remark that an appealing feature of semidefinite pro-
grams is the dual [37] of the SDP. In Appendix D we dualize
the above SDPs to obtain dual programs which depend on the
variables y,J,G,H,K . We denote the objective function of the
dual program as d(y,J,G,H,K). It is an appealing feature of
SDP duality—known as weak duality—that

d(y,J,G,H,K) − p(M,E) � 0. (31)

Finding values for y,J,G,H , and K that satisfy the con-
straints of the dual SDP thus always results in upper bounds
d(y,J,G,H,K) � p∗, where p∗ denotes the optimal solution
of the primal program. Furthermore, if such variables satisfy
d(y,J,G,H,K) = p(M,E), then we know that the optimal
solution has been found.

We remark that it is this feature that makes SDPs highly
appealing as a numerical method, since a numerical SDP solver
will find primal and dual variables which form a certificate for
optimality, or—if due to finite precision in numerical calcula-
tions optimality is reached only approximately—a certificate
for approximate optimality in which the difference between
the dual and primal (d − p) is sufficiently small. In addition,
however, SDPs can thus also be used to prove optimality
analytically, if one can make an educated guess for the primal
and dual variables.

2. Bose symmetric extensions

The goodness of the relaxation above depends on how
well the set of PPT Choi states approximates the set SEP-
C. A sharper approximation could evidently be obtained by
approximating the set of separable states SEP itself by more
stringent conditions. A standard technique for doing so is by
the method of extensions [31,32] which is closely related to
the sums-of-squares relaxations for polynomial optimization
problems.

In the case at hand, in addition to the PPT constraint in
Eq. (23) we will add the constraint that the state is k-Bose-
symmetric-extendible (k-BSE) [38]. By definition, a (Choi)
state Ĉ(ÂA′)B̂B ′ is k-BSE iff there exists Ĉ(Â1A

′
1)...(Âk+1A

′
k+1)B̂B ′

satisfying
(1) Ĉ(Â1A

′
1)...(Âk+1A

′
k+1)B̂B ′ � 0,

(2) tr(Â2A
′
2)...(Âk+1A

′
k+1) (Ĉ(Â1A

′
1)...(Âk+1A

′
k+1)B̂B ′) = Ĉ(ÂA′)B̂B ′ ,

(3) (PSym ⊗ IB̂B ′ )(Ĉ(Â1A
′
1)...(Âk+1A

′
k+1)B̂B ′) =

Ĉ(Â1A
′
1)...(Âk+1A

′
k+1)B̂B ′ , where PSym is the projector onto

the symmetric subspace of (Â1A
′
1) . . . (Âk+1A

′
k+1).
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It is clear that adding this constraint to the PPT constraint
constitutes a sharper approximation of SEP-C because any
separable state is k-BSE for all k ∈ N. To see this, it is sufficient
to note that

∑
i pi |ui〉〈ui |⊗k+1 ⊗ |vi〉〈vi | is a k Bose symmetric

extension of the separable state
∑

i pi |ui〉〈ui | ⊗ |vi〉〈vi |.
In this way, we obtain a sharper and sharper approximation

of SEP-C by choosing larger values of k—the accuracy scales
not worse than O(|ÂA′|2/(k + 1)2) [39]. The only drawback
is the size of the resulting SDP. Although it increases only
polynomially with k, for practically interesting problems we
were only able to introduce k = 1 Bose symmetric extensions.
We refer to Appendix E for the detailed calculations and the
exact form of the resulting SDP. Whenever we refer to the 1-
BSE bound, we mean the bound arising from this optimization
over Choi matrices that are both PPT and 1-BSE.

D. Optimizing existing schemes

While the previous methods are concerned with deriving
upper bounds on the fidelity, we can as well start from an
existing distillation protocol and try to find a better protocol.
In the following we discuss one such a scheme that we dub
the seesaw method. Looking at the original Optimization
Programs 2 and 3, we see that there is no need for any PPT
style relaxation if one of the distillation maps for either Alice
or Bob is fixed: for a fixed value of one of the maps, the
optimization problem is already an SDP. If we thus fix the
operation of Alice (or Bob), then we may use an SDP solver
to optimize over the possible distillation schemes in terms of
the Choi state of Bob (or Alice). Once solved, we may iterate
the procedure in a seesaw fashion. We now fix the operation
of Bob (Alice) with the outcome of the previous step and we
optimize over the operation of Alice (Bob). The optimization
problem is again an SDP. These steps can then be repeated,
as often as desired optimizing iteratively over either Alice or
Bob. While not guaranteed to find the optimal solution, the
seesaw method often performs rather well in practice and is
implemented in our numerical package [33]. In fact, in the
next section we provide an example where this method finds an
optimal filtering scheme, as the numerical results show that it
achieves fidelities corresponding to the PPT bound. We remark
that given the new Choi states, one may find the corresponding
isometry (or unitary) that implements the map using an ancilla
(see, e.g., lecture notes [40]) and then compile it into a quantum
circuit for the specific architecture in question.

IV. STATES AND DISTILLATION SCHEMES

Let us now illustrate our methods with a number of states
commonly studied in the entanglement distillation literature, or
arising in experiments. We thereby demonstrate the use of our
methods as a numerical tool to compute the trade-offs between
the fidelity F and probability of success psucc, as well as their
use as an analytical tool to formally prove optimality of certain
entanglement distillation schemes. We also provide a simple
example illustrating the use of the seesaw method to improve
an existing distillation scheme for a specific state.

Here we will use the term “a copy of a state” to denote a two-
qubit state shared between Alice and Bob. In these examples,
we will for simplicity only consider distillation to a single

FIG. 1. Distilling the isotropic states τ⊗2
ab with D = 2 and p =

0.7 in Eq. (32) to a two-qubit state. The fidelity of each input copy
is Fin = 0.775 and we observe that deterministic distillation (with
psucc = 1) is not possible for two copies of the isotropic state. We
also find that the method of 1-BSE provides tighter bounds than the
PPT method alone.

copy, i.e., when the output of the procedure is a two-qubit
state. More examples can easily be explored using the freely
available numerical package [33].

A. Isotropic states

As a warm-up, let us consider distilling isotropic states.
These states are often considered in the quantum information
theory literature due to their beautiful symmetries. Moreover,
they are the states that arise when a maximally entangled
state undergoes depolarizing noise, which is often used as
a simplified pessimistic model for the noise caused by the
imperfect operations in physical implementations of quantum
memories. Specifically, an isotropic state is of the form

τAB = p|�D〉〈�D| + (1 − p)
I

D2
, (32)

where |�D〉 is the maximally entangled state defined in Eq. (2).
The isotropic state is invariant under U ⊗ U ∗ on A and B for
all U .

Numerical examples

Figure 1 illustrates the upper bounds obtained by PPT and
the 1-BSE relaxation, in comparison to the BBPSSW and
DEJMPS protocols when distilling 2 copies of the isotropic
state ρAB = τ⊗2

ab to a single two-qubit state (see Appendix B 1
for the description of these well-known protocols). We remark
that when performing a single round of distillation, the two
protocols coincide for the case of the isotropic state. The
continuous red line corresponds to an achievable scheme
based on the interpolation or extrapolation of those existing
schemes. The details of how this is performed are included in
Appendix B 2 and for simplicity on the plots we always label
this curve arising from both extrapolation and interpolation as
“Interpolation”. Similarly in Fig. 2 we depict the corresponding
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FIG. 2. Distilling the isotropic states τ⊗3
ab with D = 2 and p =

0.7 in Eq. (32) to a two-qubit state. The fidelity of each input copy
is Fin = 0.775. The protocol DEJMPS A corresponds to applying
DEJMPS to the first two copies and outputting the resulting state
in case of success and outputting the remaining third copy in case of
failure. This protocol allows for deterministic increase of fidelity. The
protocol DEJMPS B corresponds to applying DEJMPS to the first two
copies and then conditioned on success, applying it to the remaining
two copies. Failure at any stage results in outputting the failure flag.
The 1-BSE bound was already computationally too expensive for this
3-copy scenario.

results for distilling 3 copies of the isotropic state ρAB = τ⊗3
ab

to a two-qubit state.
In Figs. 1 and 2 we see that both the PPT and 1-BSE

bounds are nontrivial and the 1-BSE bound is tighter than the
PPT bound for smaller values of the probability of success.
In particular we observe that deterministic distillation (with
psucc = 1) when operating on 2 copies of the isotropic state
is not possible. For 3 copies it is possible to deterministically
increase the fidelity, and this can be achieved, e.g., using the
protocol DEJMPS A (see caption of Fig. 2 for details of this
protocol).

B. Bell diagonal states

More generally, we now consider states τAB that are diago-
nal in the Bell basis given by

|�+〉 = |�2〉, (33)

|�−〉 = (I ⊗ Z)|�2〉, (34)

|�+〉 = (I ⊗ X)|�2〉, (35)

|�−〉 = (I ⊗ XZ)|�2〉. (36)

These are interesting states to consider since indeed any
two-qubit state ρAB can be brought into this form by
twirling it over the group of correlated Pauli operators:
{X ⊗ X,Y ⊗ Y,Z ⊗ Z,I ⊗ I}. This can be achieved if Alice
and Bob have access to some shared randomness. We can thus

consider entangled states

τAB = p1|�+〉〈�+| + p2|�+〉〈�+| + p3|�−〉〈�−|
+ (1 − p1 − p2 − p3)|�−〉〈�−|, (37)

where p1 > 0.5 and p1 > p2 � p3 � 1 − p1 − p2 − p3. Any
Bell diagonal state for which one of the Bell coefficients is
larger than 0.5 can be rotated into this form using only local
Clifford operations performed by Alice and Bob.

The distillation of such states has been studied in the
literature, and we will focus here on the action of the DEJMPS
protocol on these states since it is known for achieving higher
fidelities than the BBPSSW protocol. Specifically, Alice and
Bob share two copies of a Bell diagonal state τAB , that is,
ρAB = τ⊗2

ab . The decreasing order of the Bell coefficients in
τAB is important as this specific ordering allows us to achieve
the highest fidelity over all the orderings [41].

We note that it has been recently shown that the DEJMPS
protocol achieves the highest possible fidelity over LOCC
operations when distilling a two-qubit state from two copies of
a Bell diagonal state of rank two [42]. Moreover, in Ref. [41]
protocols that permute Bell states in the mixture were analyzed
and it was claimed that for two copies of all Bell diagonal states,
DEJMPS protocol achieves the highest achievable fidelity
when distilling a two-qubit state, but only among all such
permuting protocols. Here our results indicate that we can
make a much wider range of optimality statements about
DEJMPS in relation to Bell diagonal states than has been
known before.

1. Numerical examples

We first investigate a number of examples using our numer-
ical procedure. We present the results in Fig. 3 and in Fig. 4. We
again emphasize that for simplicity we only consider distilling
a two-qubit state from two copies of a Bell diagonal state
and we note that all these optimality statements apply when
optimizing over all LOCC protocols.

First, we observe that for all Bell diagonal states of rank
up to three DEJMPS achieves the highest possible output
fidelity and achieves it with the highest possible probability
of success, as can be seen in a specific example in Fig. 3.
This statement we also prove analytically as described in the
next subsection. Moreover, as we also illustrate in Fig. 3, we
numerically observe that for Bell diagonal states of rank up
to three, extrapolating from DEJMPS allows us to achieve
the highest possible output fidelity for each extrapolation
protocol’s probability of success.

Finally, we also numerically observe that for Bell diagonal
states of rank four, apart from a certain set of states including
and around the isotropic state, DEJMPS achieves the highest
possible fidelity for this protocol’s probability of success when
applied to these states. In Fig. 5 we fix p1 and p2 and plot the
gap between our numerical upper bound and the output fidelity
of DEJMPS, both evaluated at the probability of success of
DEJMPS, versus the parameter p3. We see that in this space
of Bell coefficients the gap vanishes when one moves far
enough from the isotropic state. In this space, we observe a
similar gap in any other direction away from the isotropic state.
However, only by moving exactly along the axis of one of those
coefficients do we obtain a gap that is symmetric around the
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FIG. 3. Distilling the Bell diagonal states of rank-three τ⊗2
ab with

D = 2 and p1 = 0.7,p2 = 0.2,p3 = 0.1 in Eq. (37) to a two-qubit
state. The fidelity of each input copy is Fin = 0.7 and we observe
that deterministic distillation (with psucc = 1) is not possible for two
copies of this state. We see that DEJMPS is optimal for a mixture
of three Bell states. Moreover, extrapolating from DEJMPS to higher
probability of success as described in Appendix B 2, we see that the
extrapolation curve overlaps with the PPT bound for all values of the
probability of success. This means that this extrapolation also results
in optimal schemes achieving the highest possible output fidelity for
the specific fixed probability of success. The 1-BSE bound is not
included because it overlaps with the PPT bound.

isotropic state as in Fig. 5. The reason for this fact is that on
those axes the two states that are located symmetrically on two
sides of the peak at the isotropic state are the same up to the
permutation of the Bell coefficients.

2. Optimal fidelity and success probability

Semidefinite programming duality now allows us to prove
analytically that DEJMPS is an optimal protocol for distilling
from two copies of all Bell diagonal states of rank up to three,
which was not known before.

Theorem 1 (informal). Given two copies of a Bell diagonal
state of rank at most three and distillation towards the target
maximally entangled state with D = 2, there is no protocol that
achieves a larger fidelity than DEJMPS and there is no protocol
that achieves this fidelity with a larger success probability than
DEJMPS.

In the following we sketch the proof of Theorem 1. We leave
the full details including a precise definition of optimality to
Appendix G.

The entangled Bell diagonal states of rank up to three can
be written as

τAB = p1|�+〉〈�+| + p2|�+〉〈�+|
+ (1 − p1 − p2)|�−〉〈�−|, (38)

with p1 > 0.5 and p1 > p2 � 1 − p1 − p2. First we note that
the DEJMPS protocol applied to two copies of the state in

FIG. 4. Distilling the Bell diagonal states of rank-four τ⊗2
ab with

D = 2 and p1 = 0.7,p2 = 0.15,p3 = 0.1 in Eq. (37) to a two-qubit
state. The fidelity of each input copy is Fin = 0.7 and we observe
that deterministic distillation (with psucc = 1) is not possible for two
copies of this state. We also find that the 1-BSE bound is tighter than
the PPT bound for smaller values of the probability of success. Finally,
we observe that DEJMPS achieves the highest possible output fidelity
for this protocol’s probability of success for a mixture of four Bell
states which are far enough from the isotropic state.

FIG. 5. Distilling the Bell diagonal states of rank-four τ⊗2
ab with

D = 2 and p1 = 0.7,p2 = 0.1 in Eq. (37) to a two-qubit state. The
fidelity of each input copy is Fin = 0.7. The plot shows the difference
between the PPT bound and the fidelity achievable through DEJMPS
as a function of p3 for the probability of success of DEJMPS. We
see that DEJMPS achieves the highest possible output fidelity for
this protocol’s probability of success for a mixture of four Bell states
which are far enough from the isotropic state (the middle of the peak).
Clearly the states considered on this plot for which p3 �= 0.1 do not
satisfy the condition p1 > p2 � p3 � 1 − p1 − p2 − p3; therefore
when applying the DEJMPS protocol to such a state we first permute
the Bell coefficients to this order. The 1-BSE bound is not included
because it overlaps with the PPT bound.
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Eq. (38) conditioned on success results in a state

ρÂB̂ = p′
1|�+〉〈�+| + p′

2|�+〉〈�+|
+ (1 − p′

1 − p′
2)|�−〉〈�−|, (39)

where

p′
1 = p2

1

N
, (40)

p′
2 = p2

2 + (1 − p1 − p2)2

N
, (41)

and N = p2
1 + (1 − p1)2 is the probability that the protocol

succeeds. Note that p′
1 > p′

2 � 1 − p′
1 − p′

2. Moreover the
fidelity increases, that is, p′

1 > p1.
The strategy to show optimal fidelity relies on the dual

formulation of the SDP in Optimization Program 5. In partic-
ular, we prove that there exists a feasible solution of the dual
program with the objective function value corresponding to p′

1
for all δ ∈ (0,1]. Hence p′

1 is an upper bound on the achievable
fidelity for all δ and there cannot exist an LOCC protocol that
takes two copies of the state in Eq. (38) and outputs a state
with fidelity larger than p′

1.
The proof of N being the optimal success probability for all

protocols that output fidelity equal to p′
1 also follows from SDP

duality. That is, we show that there exists a feasible solution
of the dual program for optimizing the probability of success
with the objective function taking the value N for the output
fidelity F = p′

1.

C. R states

Another interesting class of states are quantum states that
form a mixture between a maximally entangled state and a
product state. In particular let us first consider a case where
the product part of the mixture is orthogonal to the maximally
entangled part. Specifically let us consider the state

τAB = p|�±〉〈�±| + (1 − p)|11〉〈11|, (42)

which we will call an R state. We note that up to a local X or XZ

gate this state is exactly the state in Eq. (10) that we considered
in the filtering example in Sec. III A (this local flip on one
side will be helpful when discussing remote entanglement
generation in the following section).

This type of state is interesting for two reasons. The first one
is “mathematical.” The above R state is a simple example of a
state that as expressed in Ref. [43] possesses local information,
in the sense that the reduced state on Alice and Bob individually
is not a maximally mixed state. This local information can
also be seen in the nonzero off-diagonal elements when the
state is expressed in the Bell basis. Since for the DEJMPS
and BBPSW protocols the output fidelity and probability
of success are completely independent of those off-diagonal
coefficients, this local information is completely neglected
in those protocols. Hence one could expect that for these
states there exist distillation strategies that utilize this local
information and in this way possibly outperform the DEJMPS
protocol.

As observed in Ref. [20] this is indeed the case, since for
any value of 0 < p � 1 it is possible to extract a perfect Bell
state from two copies of the R state by performing a bilateral

CNOT, measuring the target copy in the standard basis and
postselecting the events for which both Alice and Bob mea-
sured the target copy to be one. In such a scenario of applying
this protocol to two copies of the R state the fidelity of F = 1
is achieved with probability of success psucc = p2/2. Note that
depending on the value of p the R state might actually have
fidelity to any maximally entangled state smaller than or equal
to half. This shows a fundamental difference with respect to the
protocols that do not utilize this local information like DEJMPS
or BBPSSW for which it is required that the initial fidelity to
some maximally entangled state is larger than 0.5 [57].

The second reason for considering these states is exper-
imental. These states arise in certain protocols for remote
entanglement generation that use a single photon detection
scheme in the presence of photon loss [7,13,44]. In particu-
lar, [7] describes an entanglement generation procedure that
generates two copies of a state closely related to the R state
(see the next section for more details) and then performs the
above described distillation protocol proposed in Ref. [20] to
combat the effect of photon loss. Since the authors refer to this
entire entanglement generation scheme as the Extreme Photon
Loss scheme (EPL), here we will refer to this distillation
protocol used within the EPL procedure as EPL-D. As already
mentioned and as we will discuss in the next section, the R state
is still only an idealization of the actual raw state generated
within the remote entanglement generation schemes described
in Refs. [7,13]. In particular the R state includes only noise
due to the photon loss while all realistic implementations will
also suffer from other types of noise.

Numerical examples

We first look at filtering a single copy of the R state, since
as stated in Sec. III A, there exists a well-known protocol
for filtering those states. Optimal filtering schemes have been
studied in the literature [45–47], but not in the context of the
optimal trade-off of fidelity and probability of success.

First, we note that the filtering scheme described in
Sec. III A [here we assume that before filtering, Alice applies
an X or XZ operation to bring the R state to the form in
Eq. (10)] clearly cannot increase the fidelity deterministically,
while from [47] we know that for all p < 2/3 there exists a
way of deterministically increasing the fidelity of the R state
by running a probabilistic filtering protocol and outputting
a product state of fidelity half in case of failure. Inspired
by this result we consider here a modified version of the
discussed filtering scheme in which for certain larger values
of the desired success probability for R states with p < 2/3,
conditioned on the failure of that original scheme Alice and
Bob probabilistically output a state of fidelity half. The details
of this modification are discussed in Appendix B 2. In Fig. 6
and in Fig. 7 we compare this modified filtering scheme with
our numerical bounds. We consider one example for which the
input fidelity is larger and one for which it is smaller than half.

The original filtering scheme allows us to choose the desired
probability of success by making a suitable choice of the ε

parameter, while in our modified scheme success probability
can also be varied by changing the probability of outputting
a product state in case of failure of the original scheme (here
we maximize the fidelity over those two parameters for each
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FIG. 6. Filtering R state τAB with D = 2 and p = 0.8 in Eq. (42)
to a two-qubit state. The fidelity of the input copy is Fin = 0.8 and
in accordance with [47] we observe that deterministic filtering (with
psucc = 1) is not possible for this state. We see that the filtering scheme
perfectly overlaps with the PPT bound, which proves its optimality
for this state. The 1-BSE bound is not included because it overlaps
with the PPT bound.

probability of success). We note that independently of the
value of the parameter p (provided that it is nonzero), in the
limit of zero success probability, this filtering scheme allows
for obtaining a state that is arbitrarily close to a maximally
entangled state. From the numerical results we observe that for
the considered values of p, we have that for all probabilities of
success our PPT bound perfectly overlaps with the modified
filtering scheme, proving that no higher fidelity can be achieved
for the fixed value of probability of success than already

FIG. 7. Filtering R state τAB with D = 2 and p = 0.4 in Eq. (42)
to a two-qubit state. The fidelity of the input copy is Fin = 0.4. As
first shown in Ref. [47], we observe that for the smaller values of p

deterministic filtering of R states is possible and can be achieved with
our scheme. We also see that the filtering scheme perfectly overlaps
with the PPT bound, which proves its optimality for this state. The
1-BSE bound is not included because it overlaps with the PPT bound.

FIG. 8. Distilling the R states τ⊗2
ab with D = 2 and p = 0.8 in

Eq. (42) to a two-qubit state. The fidelity of the input copy is Fin = 0.8
and we observe that while the extrapolation from DEJMPS does not
allow for deterministic distillation (with psucc = 1) in this case, the
PPT bound still allows for this possibility. We also see that EPL-D
allows for achieving unit fidelity. The 1-BSE bound is not included
because it overlaps with the PPT bound.

achieved by our modified filtering scheme. Hence the modified
filtering scheme is in fact optimal for these states.

We also present two numerical examples for distillation
from two to one copies of the R state in Fig. 8 and in Fig. 9. In
Fig. 8 we consider two copies of the R state with input fidelity
of 0.8. We see that while our achievable interpolation scheme
cannot deterministically increase fidelity for this state, the
nontrivial numerical bounds still allow for this possibility. We
also see that for this state the PPT operations allow for distilling

FIG. 9. Distilling the R states τ⊗2
ab with D = 2 and p = 0.4 in

Eq. (42) to a two-qubit state. The fidelity of the input copy is Fin = 0.4
and we observe that deterministic distillation (with psucc = 1) which
achieves output fidelity larger than half is easily achievable for two
copies of this state. We also see that EPL-D allows for achieving unit
fidelity even if p � 0.5. The 1-BSE bound is not included because it
overlaps with the PPT bound.
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a state very close to a maximally entangled state for much
larger probability of success than the achievable interpolation
scheme. In Fig. 9 we consider two copies of the R state whose
input fidelity is smaller than half. In this case the interpolation
scheme allows for deterministic increase of fidelity above 0.5
(as discussed in the previous paragraph, for this value of p

that is possible even with just the modified filtering, but the
interpolation scheme performs better). We see that here the
PPT operations do not allow for distilling a state with fidelity
close to one for probabilities of success much larger than that
of the EPL-D protocol.

D. Remote entanglement generation

Here we expand on the experimentally relevant ideas
described in the previous section on R states to reliably
model the remote entanglement generation through distillation,
including most of the experimentally relevant sources of noise
as described in Ref. [7] and as realized experimentally in
Ref. [18]. Specifically, in most experimental implementations
of this specific entanglement generation scheme the actual state
that is created will be of the form

ρAB(p) = 1

2π

∫
dφτA1B1(φ,p) ⊗ τA2B2(φ,p), (43)

where

τAB(φ,p) = p|�+(φ)〉〈�+(φ)| + (1 − p)|11〉〈11|, (44)

and

|�+(φ)〉 = 1√
2

(|01〉 + eiφ|10〉), (45)

|�−(φ)〉 = 1√
2

(|01〉 − eiφ|10〉). (46)

Here φ is a phase that arises due to the optical apparatus and in
most cases is completely unknown. We see that the complete
lack of knowledge of the phaseφ leads to the uniform averaging
over that phase. However, if the system is stable over the
duration of generation of the two copies of ρ, one can assume
that both of those copies are correlated in that phase.

In the next step we make this model even more precise by
acknowledging the fact that the first copy of ρ will actually
undergo dephasing while trying to generate the second copy.
Moreover, the phase will in general not be exactly the same for
both copies since in any realistic setting it could drift with
respect to the first copy. Mathematically, those two effects
can be combined together into a single dephasing process that
affects one of the two copies

ρAB(p,pd ) = 1

2π

∫
dφτA1B1(φ,p,pd ) ⊗ τA2B2(φ,p,1),

(47)
where

τAB(φ,p,pd ) = p[pd |�+(φ)〉〈�+(φ)|
+ (1 − pd )|�−(φ)〉〈�−(φ)|]
+ (1 − p)|11〉〈11|. (48)

Here we shall refer to the state in Eq. (47) as the “R-state corre-
lated phase.” In this scenario the successful implementation of

FIG. 10. Distilling the R-state correlated phase ρAB (p,pd ) given
in Eq. (47) with D = 2 and p = 0.8,pd = 1 to a two-qubit state.
We see that EPL-D is an optimal distillation protocol for the EPL
remote entanglement generation scheme. The red extrapolation curve
perfectly overlaps with the PPT bounds which means that the proto-
cols arising by extrapolating EPL-D to higher values of probability of
success are also optimal and achieve the maximum possible fidelity
for the corresponding probability of success. The 1-BSE bound is not
included because it overlaps with the PPT bound.

the EPL-D distillation protocol (followed by a local rotation)
leads to the output state

ηÂB̂(pd ) = pd |�+〉〈�+| + (1 − pd )|�−〉〈�−|, (49)

with probability of success psucc = p2/2. We also provide a
more detailed description of this remote entanglement gener-
ation scheme in Appendix B 1.

1. Numerical examples

We present two numerical examples for applying distillation
to the state ρAB(p,pd ) in Fig. 10 and in Fig. 11. We observe
that EPL-D saturates the bound by achieving the highest pos-
sible fidelity with the highest possible probability of success.
Moreover, we observe that extrapolating from EPL-D to higher
values of probability of success also achieves the highest
possible fidelity for the corresponding value of the probability
of success.

2. Optimal fidelity and probability of success

The numerical examples suggest that the EPL-D protocol is
optimal for distilling states ρAB(p,pd ) given in Eq. (47) both in
terms of output fidelity and probability of success. This means
that the EPL scheme utilizes the optimal distillation protocol
in this respect.

Theorem 2. Given a state of the form ρAB(p,pd ) given
in Eq. (47) and distillation towards the target maximally
entangled state with D = 2, there is no protocol that achieves a
larger fidelity than EPL-D and there is no protocol that achieves
this fidelity with a larger success probability than EPL-D.

It turns out that in this case it is possible to analytically
prove this optimality in a simple way without using the SDP
formulation. Specifically, see Appendix H for the proof, that
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FIG. 11. Distilling the R-state correlated phase ρAB (p,pd ) given
in Eq. (47) with D = 2 and p = 0.5,pd = 0.8 to a two-qubit state.
EPL-D is an optimal distillation protocol for the EPL remote entan-
glement generation scheme. The red extrapolation curve perfectly
overlaps with the PPT bounds which means that the protocols arising
by extrapolating EPL-D to higher values of probability of success
are also optimal and achieve the maximum possible fidelity for
the corresponding probability of success. The 1-BSE bound is not
included because it overlaps with the PPT bound.

after performing the integration over the phase φ, the state
ρAB(p,pd ) is actually block diagonal in the standard basis,
where one of the blocks is of size two and all the other blocks
are of size one. Clearly the blocks of size one correspond
to separable states. Hence, output fidelity is maximized by
projecting onto the size-two block. Finally, this block is
equivalent up to a local relabeling to the state ηÂB̂(pd ) in
Eq. (49). Since this state is nonfilterable in the sense that even
probabilistically no LOCC scheme can increase its fidelity
[47], the optimal protocol cannot achieve fidelity higher than
pd which is achieved by EPL-D within the EPL scheme.

The same argument also implies that within EPL, EPL-D
achieves fidelity pd with maximum probability. More con-
cretely, the probability of the projection onto the size-two block
succeeds with probability at most p2/2 which is the success
probability of EPL-D within EPL.

3. Optimality with respect to distillable entanglement

Recall that the distillable entanglement of a state is defined
as the optimal asymptotic rate at which it is possible to
transform copies of the state into copies of the maximally
entangled state. It turns out that within EPL, EPL-D is also
optimal for distillable entanglement. More concretely:

Theorem 3. Given a state of the form ρAB(p,pd ) given in
Eq. (47), there is no protocol with the success probability of
EPL-D that outputs a state with larger distillable entanglement.
Equally there is no protocol that outputs a state with the same
distillable entanglement as EPL-D and succeeds with larger
probability.

We defer the proof of Theorem 3 to Appendix H. The infor-
mal argument relies on the fact that the distillable entanglement
of the output of a distillation protocol multiplied by the rate

of successful distillation cannot be larger than the distillable
entanglement of the original state; that is, we must have that

psucc,EPLED(ηÂB̂(pd )) � ED(ρAB(p,pd )). (50)

In the case of EPL, the distillable entanglement of the
state ρAB(p,pd ) equals psucc,EPL[1 − h(pd )] (see Appendix H)
while the distillable entanglement of the output state of
EPL-D, ηÂB̂(pd ), is 1 − h(pd ), where h(x) = −x log x − (1 −
x) log(1 − x) is the binary entropy function [48]. This proves
that we actually have equality in Eq. (50). The result is
stronger in the case that there is no dephasing, i.e., pd = 1.
In this case, EPL-D outputs perfect EPR pairs at the distillable
entanglement rate. Hence, EPL-D is then by definition optimal
within EPL.

E. S states

We have already looked at the R state, a simple mixture
of a Bell state with a product state. However, we have only
considered the scenario when the product state is orthogonal
to the given Bell state. As we have already seen those states
are easy to both distill and filter. Specifically, we have seen
that from two copies of such a state we can obtain a perfect
maximally entangled state with finite probability of success
and even from a single copy in the limit of zero probability
of success, a perfect maximally entangled state can also be
filtered. It is now interesting to see what happens if this product
noise is not orthogonal to that Bell state. Hence we will now
consider the state

τAB = p|�+〉〈�+| + (1 − p)|11〉〈11|, (51)

which we will call an S state.

Numerical examples

The first property of this S state that we have verified
numerically is that it is less filterable than the R state, meaning
that even at the expense of the probability of success it is not
possible to achieve arbitrarily high output fidelity through
local filtering. However, we show here that by applying the
seesaw optimization from existing schemes to such local
filtering of the S state, we find a new protocol that is more
suited to those states. Namely, we start from the filtering
scheme described in Sec. III A. We see in Fig. 12 that the
seesaw method improves the output fidelity of the original
filtering protocol designed to perform well on states given in
Eq. (10). We observe that the new protocol obtained using the
seesaw method overlaps with the PPT bound which proves its
optimality for the considered state.

We then investigate distillation on two copies of such an
S state. We plot our numerical results in Fig. 13. We see that
distilling these states is harder than distilling R states in the
sense that the output fidelity of one is no longer achievable for
any probability of success. Moreover, our interpolation scheme
does not allow for deterministic increase of fidelity which we
see is possible using PPT operations. The numerical results also
suggest that DEJMPS protocol is optimal for distilling these
states, such that it allows us to achieve the highest possible
output fidelity for this protocol’s probability of success when
operating on these states.
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FIG. 12. Filtering S state τAB with D = 2 and p = 0.5 in Eq. (51)
to a two-qubit state. The fidelity of the input copy is Fin = 0.75. We
see that deterministic increase of fidelity (psucc = 1) is not possible.
We also observe that the filtering scheme designed to work well for
states given in Eq. (10) is not able to improve the fidelity of the
S state for any value of the probability of success. However, after
applying the seesaw method to this protocol we obtain a new filtering
protocol that allows for increasing fidelity of this state. Since the curve
corresponding to that protocol overlaps with the PPT bound, we see
that this protocol is in fact optimal for this state. The 1-BSE bound is
not included because it overlaps with the PPT bound.

V. DISCUSSION

We have provided and studied several methods to under-
stand the trade-off between fidelity and probability of success
in practical entanglement distillation schemes. The fidelity
is thereby of interest not only because it is a commonly

FIG. 13. Distilling the S states τ⊗2
ab with D = 2 and p = 0.6

in Eq. (51) to a two-qubit state. The fidelity of the input copy
is Fin = 0.75 and we observe that while the extrapolation from
DEJMPS does not allow for deterministic distillation (with psucc = 1)
in this case, the PPT bound still allows for this possibility. We also
observe that DEJMPS allows us to achieve the highest fidelity for
the corresponding probability of success. The 1-BSE bound is not
included because it overlaps with the PPT bound.

estimated measure in experiment, but most significantly be-
cause it bears a direct relation to the possible fidelity of
teleportation using the entanglement generated [49]. Given that
the deterministic transmission of qubits in present day systems
relies on the heralded generation of entanglement, followed
by deterministic teleportation (see, e.g., [50]), the fidelity is
thus of central interest in a quantum network. Evidently, it is
an interesting open question to derive trade-offs between the
success probability and different entanglement measures.

Looking at the method of Bose symmetric extensions
employed here, one might wonder whether one might also
employ methods based on ε nets (see, e.g., [51]) in order to
tackle our optimization problem. Here an ε net is placed on
the set of operations, and every point in this ε net is checked.
Whereas this “try everything” approach seems rather trivial it
does actually (in terms of ε) not lead to a computationally (in
terms of k) more expensive optimization than the methods of
k Bose symmetric extensions when optimizing over the set
of separable states. We remark that while this comparison
is evidently very interesting and fruitful from a complexity
theoretic perspective, it is not of great practical interest for
the small values of k for which it is feasible to evaluate
the SDP. Here, the corresponding ε of the net is still very
large, meaning we try out only relatively few points, leading
to uninteresting solutions. In contrast, the method of k Bose
symmetric extensions actually performs not so badly even for
k = 1 in a more practical fashion. We remark that the method
of ε nets can of course be used to optimize over MX operations
directly. It is straightforward to adapt the methods of [51] to
derive conditions for optimizing over the set of Choi states
instead of all states, and then explore the resulting ε net to
optimize. This evidently leads to statements on the complexity
of optimizing over Choi states, but does not lead to a practically
realizable method which is the interest of the present article.

One might also wonder whether there exist good heuristic
methods based on semidefinite programming in order to derive
actual distillation schemes other than using the seesaw method
starting from an existing scheme. This indeed may sound
quite appealing given heuristics for imposing rank constraints
on SDP variables: in our case, we could make explicit a
potential ancilla that Alice and Bob may use in their distillation
scheme. Fixing an ancilla of a desired maximum size, the
Choi state is then pure if we include the purifying ancilla.
As such, heuristics such as [52] that confine the rank of the
entire state including the ancilla to be 1 approximate the
set of pure states, and could thus give rise to a heuristic
method for optimizing over MX operations directly. In our
situation, however, an implementation of [52] did not lead to
any interesting results, which is why this method is omitted
from this article. Nevertheless, it is an interesting open question
to find good heuristic methods for optimizing over the set of
MX operations.
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APPENDIX A: PPT CHOI STATES

In this Appendix we briefly discuss the connection between
the PPT channels and PPT Choi states. The connection between
the PPT channels and Jamiolkowski operator has been dis-
cussed in Ref. [21]; however here we are interested in the Choi
isomorphism and so for clarity we describe this connection for
the Choi isomorphism.

Following [35], we first recall the definition of a PPT
operation:

Definition 1. A quantum operation �AB→ÂB̂ is a PPT
operation if the superoperator �


AB→ÂB̂
is completely positive.

Here, �


AB→ÂB̂
is defined such that

�


AB→ÂB̂
: ρAB → [

�AB→ÂB̂

(
ρ


B

AB

)]
B̂ , (A1)

with 
B and 
B̂ denoting partial transposes on systems B and
B̂.

Now we can easily prove that a PPT Choi state corresponds
to a PPT operation.

Lemma 1. A quantum operation �AB→ÂB̂ is a PPT operation
if and only if its Choi state CÂB̂A′B ′(�) is PPT.

Proof. We use without proof the following simple observa-
tion: for every linear map �A→Â, it follows

(�A→Â ⊗ 1B)(�AB) = [1Â ⊗ TB ◦ (�B̂→B)† ◦ TB̂](�ÂB̂), (A2)

where T denotes the transpose map and �† is the adjoint of � (i.e., the unique linear map satisfying tr [ρ�(σ )] = tr [σ�†(ρ)]).
Consider the Choi matrix of the map �
:

CÂB̂A′B ′(�
) = (
�


AB→ÂB̂
⊗ 1A′B ′

)
�ABA′B ′ = (TB̂ ◦ �AB→ÂB̂ ◦ TB ⊗ 1A′B ′)�ABA′B ′ (A3)

= [TB̂ ◦ �AB→ÂB̂ ⊗ TA′B ′ ◦ (TB ′)† ◦ TA′B ′]�ABA′B ′ . (A4)

It can be easily verified that (TB ′)† = TB ′ , so that

CÂB̂A′B ′ (�
) = (TB̂ ⊗ TB ′)CÂB̂A′B ′ (�) = [CÂB̂A′B ′ (�)]
B̂B′ . (A5)

Now it can be clearly seen that

[CÂB̂A′B ′(�)]
B̂B′ � 0 ⇐⇒ CÂB̂A′B ′ (�
) � 0 ⇐⇒ �
 is a completely positive map, (A6)

which concludes the proof. �

APPENDIX B: BACKGROUND: WELL-KNOWN PROTOCOLS

For convenience, we briefly state the well-known protocols from the literature which we compare to our PPT and 1-BSE
bounds. We also describe how we can interpolate or extrapolate new schemes from those existing ones in order to obtain schemes
that allow us to succeed with arbitrary desired probability.

1. Fixed protocols

First we state again the filtering protocol [34] that has already been mentioned in Sec. III A:

Algorithm 1 filtering protocol

1: Perform local measurements given by the POVMs: {M0
A,M1

A} and {M0
B,M1

B} with M1
A = (A1

A)†A1
A, where A1

A = √
ε|0〉〈0| + |1〉〈1| and

M0
A = (A0

A)†A0
A = I − M1

A and with M1
B = (A1

B )†A1
B , where A1

B = √
ε|1〉〈1| + |0〉〈0| and M0

B = (A0
B )†A0

B = I − M1
B for some param-

eter ε ∈ [0,1].
2: Communicate the results.
3: if The measurement outcomes corresponding to M1

A and M1
B are obtained then

4: Output the post-measurement state.
5: return

This protocol is designed to perform well for the state ρAB = p|�2〉〈�2| + (1 − p)|01〉〈01| defined in Eq. (10) [which is the
R state defined in Eq. (42) up to a local bit (and phase) flip]. For this state, conditioned on success the postmeasurement state is
ηÂB̂ = pε

psucc
|�2〉〈�2| + (1−p)ε2

psucc
|01〉〈01| with fidelity F = pε

psucc
and with the probability of success of the filtering procedure given

by psucc = pε + (1 − p)ε2. At the end of Appendix B 2 we describe the modification of this filtering scheme that allows us to
achieve higher fidelities for R states with smaller values of p in the case of larger desired probability of success.
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Now we will describe the distillation procedures that perform distillation from two to one copies of a two-qubit state. The
most generic distillation protocol is the BBPSSW protocol [8] which is applicable to states whose fidelity with some maximally
entangled state satisfies F > 0.5.

Algorithm 2 BBPSSW protocol

1: Depolarize the two available copies of the state to the isotropic state form:

τ = p|�+〉〈�+| + (1 − p)
I

4
,

with fidelity F = (3p + 1)/4.
2: Apply bilocal CNOT gates between the two copies.
3: Measure the target qubits and communicate the results.
4: if The measured flags are 00 or 11 (this occurs with probability psucc = F 2 + 2F (1 − F )/3 + 5[(1 − F )/3]2) then
5: The source (first) copy becomes more entangled than before (fidelity to |�+〉 increases). We obtain a Bell diagonal state with fidelity

F ′ such that

F ′ = F 2 + [(1 − F )/3]2

psucc
.

6: return

The protocol that can often achieve higher output fidelity than BBPSSW is the DEJMPS protocol [9], which we show is
optimal for rank-three Bell diagonal states Eq. (37). Specifically, we consider a version of DEJMPS in which the Bell coefficients
are first permuted in a way which maximizes output fidelity [41]. Again, this protocol is applicable to states whose fidelity with
some maximally entangled state satisfies F > 0.5.

Algorithm 3 DEJMPS protocol

1: Twirl the two available copies of the state to the Bell diagonal state using LOCC.
2: Perform local rotations on both Alice’s and Bob’s qubits so that the two copies are in the form

τ = p1|�+〉〈�+| + p2|�+〉〈�+| + p3|�−〉〈�−| + p4|�−〉〈�−|,
with p1 > 0.5, p1 > p2 � p3 � p4, and p1 + p2 + p3 + p4 = 1. This ordering of the Bell coefficients allows to achieve the highest
fidelity [41].

3: Perform additional rotations: rotate both qubits on Alice’s side by π/2 around the X axis and by −π/2 on Bob’s side.
4: Apply bilocal CNOT gates between the two copies.
5: Measure the target qubits and communicate the results.
6: if The measured flags are 00 or 11 [this occurs with probability psucc = (p1 + p4)2 + (p2 + p3)2] then
7: The source (first) copy becomes more entangled than before (fidelity to |�+〉 increases). We obtain a state

η = p′
1|�+〉〈�+| + p′

2|�+〉〈�+| + p′
3|�−〉〈�−| + p′

4|�−〉〈�−|,
with p′

1 = (p2
1 + p2

4)/psucc, p
′
2 = (p2

2 + p2
3)/psucc, p

′
3 = 2p2p3/psucc, p

′
4 = 2p1p4/psucc.

8: return

Finally, we also describe the simple protocol first proposed in Ref. [20] which allows us to probabilistically distill a maximally
entangled state from two copies of the R state defined in Eq. (42). Since this distillation protocol is utilized within the Extreme
Photon Loss (EPL) entanglement generation scheme [7,13] (see below), we refer to it here as EPL-D.

Algorithm 4 EPL-D protocol

1: Apply bilocal CNOT gates between the two copies.
2: Measure the target qubits and communicate the results.
3: if The measured flags are 11 then
4: Output the source (first) copy.
5: return

When applied to two copies of the R state defined in Eq. (42), the EPL-D protocol extracts a perfect maximally entangled state
with probability of success given by psucc = p2/2. Since R states arise in the remote entanglement generation scheme that uses
a single photon detection scheme [44], EPL-D will be a very natural element of such a remote entanglement generation scheme.
The scheme for remote entanglement generation using a single photon detection scheme and a distillation operation under the
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condition of Extreme Photon Loss has been proposed in Ref. [13]. Here we will consider an adaptation of this entanglement
generation scheme as proposed in Ref. [7], which performs distillation on the modified version of R states that includes the noise
arising from the lack of knowledge about the internal phase of the generated entangled state and possible additional dephasing.
The scheme presented in Ref. [7], which we will refer to here as the Extreme Photon Loss (EPL) scheme, utilizes EPL-D to
eliminate both the effect of photon loss and lack of knowledge about the internal phase of the generated states. We describe the
whole procedure in detail below.

Algorithm 5 EPL entanglement generation scheme

1: Generate node-photon entanglement at both remote nodes, where the photonic qubit is encoded in the presence-absence of a photon.
2: Send the photonic qubit towards a beam-splitter station in the middle.
3: Conditioned on the detection of a single photon, store the resulting state in quantum memories.
4: Repeat the above procedure to generate the second copy.
5: Assuming stability of the experimental apparatus over the time of generating those two copies, Alice and Bob share then an

effective state

ρAB (p,pd ) = 1

2π

∫
dφτA1B1(φ,p,pd ) ⊗ τA2B2(φ,p,1),

where

τAB (φ,p,pd ) = p[pd |�+(φ)〉〈�+(φ)| + (1 − pd )|�−(φ)〉〈�−(φ)|] + (1 − p)|11〉〈11|.
The dephasing noise corresponds to the decoherence of the quantum memories storing the first copy, while attempting to generate the
second one and to the possible small drifts in the phase φ between the two copies.

6: Apply EPL-D distillation scheme.
7: if EPL-D succeeds (this occurs with probability psucc = p2/2) then
8: After Alice applies additional local rotation, we obtain a state

ηÂB̂ (pd ) = pd |�+〉〈�+| + (1 − pd )|�−〉〈�−|,
with fidelity pd .

9: return

2. Interpolating and extrapolating between
and from the fixed schemes

We note that having access to shared randomness, Alice and
Bob can also apply a mixture of existing schemes. Consider
two protocols with probability of success given by p1 for
the first one and p2 for the second one. Also let the output
fidelity conditioned on success be given by F1 and F2 for the
two protocols, respectively. Then if Alice and Bob share a
classical coin with probability distribution (r,1 − r), i.e., with
probability r the coin outputs head and with probability 1 − r

it outputs tail, then they can construct a new protocol in which
they first toss the coin and depending on the outcome they
apply either the first or the second scheme. This new scheme
has a probability of success given by

psucc = rp1 + (1 − r)p2, (B1)

and the output fidelity conditioned on success will now be
given by

F = 1

psucc
[rp1F1 + (1 − r)p2F2]. (B2)

It is also possible to easily extrapolate from an existing
scheme. Consider a protocol that succeeds with probability
p1 with the output fidelity conditioned on success given by
F1. Then one can also trivially achieve the same fidelity for
any smaller value of psucc by first performing that protocol,

then conditioned on its success throwing a coin and effectively
accepting the output of the protocol only for one of the
outcomes of the coin.

It is also possible to extrapolate in the direction of higher
probability of success. For all the considered states apart
from the scenario of remote entanglement generation and R
states with smaller values of the p parameter, we consider the
following extrapolation scheme from a fixed protocol P when
considering distillation from two to one copies. Alice and Bob
first throw a coin with probability distribution (r,1 − r) and
depending on the outcome they either apply the protocol P ,
which upon success occurring with probability p outputs a
state of fidelity Fout, or they output one of the input copies of
fidelity Fin. This scheme has a probability of success

psucc = rp + (1 − r), (B3)

and the output fidelity conditioned on success will now be
given by

F = 1

psucc
[rpFout + (1 − r)Fin]. (B4)

In the case of remote entanglement generation using EPL,
the state from which we distill is not a simple tensor product
of two copies and therefore the above extrapolation scheme
could not be applied in this case. Hence, we then apply a
different scheme. In this case Alice and Bob first apply the
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EPL-D protocol which upon success occurring with probability
p outputs a state of fidelity Fout. In the case in which EPL-D
fails, they throw a coin with probability distribution (r,1 − r).
Then for one of the coin outcomes Alice and Bob output a
separable state of fidelity 1/2, and declare failure for the other
outcome. This gives

psucc = p + (1 − p)r, (B5)

with the output fidelity given by

F = 1

psucc

[
pFout + (1 − p)r

1

2

]
. (B6)

It also turns out that for R states with Fin < 2 − √
2 it is also

better in terms of output fidelities to apply this extrapolation
scheme to EPL-D without interpolating with DEJMPS at all.

Finally we also describe the extrapolation-based modified
filtering protocol which we apply to the states defined in
Eq. (10) (rotated R states). In this scheme Alice and Bob
apply the filtering protocol as described in Appendix B 1,
but in the case of failure they throw a coin with probability
distribution (r,1 − r) and depending on the outcome they either
output a state of fidelity half or declare a failure. This leads
to the new overall probability of success given by psucc =
pε + (1 − p)ε2 + [1 − pε − (1 − p)ε2]r and new output fi-
delity given by F = {2pε + [1 − pε − (1 − p)ε2]r}/2psucc.
For fixed value of the probability of success one can then
optimize the fidelity over ε and r . The result shows that the
modification (throwing a coin with nonzero probability of
outputting a product state) helps for p < 2/3 for larger values

of the success probability. In particular after fixing psucc the
optimal output fidelity that can be obtained using this protocol
is given by

F =
⎧⎨
⎩

1
2

(
1 + p2

4psucc(1−p)

)
, p � 2

3 ∧ psucc � 3p2

4(1−p) ,

2p

p+
√

p2+4psucc(1−p)
, otherwise.

(B7)

We note that it is the first parameter regime of the above
function where probabilistically adding the product noise of
fidelity half helps. The second regime corresponds to just
applying the original filtering scheme. We also note that setting
psucc = 1 in the above expression we recover the result of [47]
for maximum fidelity obtainable from a single copy of the R
state using trace preserving LOCC operations.

APPENDIX C: SYMMETRY REDUCTION

If the structure of the SDP optimization exhibits a certain
symmetry we can exploit this to simplify the optimization
before actually evaluating it numerically. Inspired by the ob-
servation of Rains [21] we make a similar symmetry reduction
to the main SDP in this section. Specifically, note that the target
maximally entangled state �D satisfies

∀U, UÂ ⊗ U ∗
B̂

(�D)(UÂ ⊗ U ∗
B̂

)† = �D. (C1)

Let T (·) be the twirling operation defined as

T (ρÂB̂) =
∫

dU (UÂ ⊗ U ∗
B̂

)ρAB(UÂ ⊗ U ∗
B̂

)†. (C2)

We can then reexpress the symmetry in Eq. (C1) as T (�D) =
�D . This means that without loss of generality our optimal so-
lution exhibits the same symmetry, because both the constraints
and objective function of the SDP in Optimization Program 4
are invariant under the symmetry:

objective :
|A||B|

δ
tr
(|�D〉〈�D|ÂB̂⊗ρT

A′B ′Ĉ✓,ÂA′B̂B ′
) = |A||B|

δ
tr
{[
T (|�D〉〈�D|ÂB̂)⊗ρT

A′B ′
]
Ĉ✓,ÂA′B̂B ′

}
= |A||B|

δ
tr
[(|�D〉〈�D|ÂB̂⊗ρT

A′B ′
)
T †(Ĉ✓,ÂA′B̂B ′)

] = |A||B|
δ

tr
[(|�D〉〈�D|ÂB̂⊗ρT

A′B ′
)
T (Ĉ✓,ÂA′B̂B ′ )

]
,

constraints : |A||B|tr[(IÂB̂⊗ρT
A′B ′

)
Ĉ✓,ÂA′B̂B ′

] = |A||B|tr[(IÂB̂⊗ρT
A′B ′

)
T (Ĉ✓,ÂA′B̂B ′)

]
, (C3)

and similarly for the other constraints. In other words, if Ĉ✓,ÂA′B̂B ′ is an optimal solution, then so is

T (Ĉ✓,ÂA′B̂B ′ ) =
∫

dU (UÂ ⊗ U ∗
B̂

⊗ IA′B ′ )Ĉ✓,ÂA′B̂B ′(UÂ ⊗ U ∗
B̂

⊗ IA′B ′)†, (C4)

and it is intuitive that T (Ĉ✓,ÂA′B̂B ′) contains a smaller number of variables compared to Ĉ✓,ÂA′B̂B ′ . Thus, declaring and optimizing
over the variable T (Ĉ✓,ÂA′B̂B ′) is a more efficient approach.

In order to explicitly write down the symmetry-reduced optimization, we need to understand the structure of the twirling
operation (C2). Using the tools from representation theory of the unitary group [53] we can write

T (ρÂB̂) = trÂB̂[ρÂB̂ |�D〉〈�D|ÂB̂]|�D〉〈�D|ÂB̂ + trÂB̂[ρÂB̂(I − |�D〉〈�D|)ÂB̂]
IÂB̂ − |�D〉〈�D|ÂB̂

D2 − 1
. (C5)

This gives us the new form of our optimization variable as follows:

T (Ĉ✓,ÂA′B̂B ′) = trÂB̂[Ĉ✓,ÂA′B̂B ′(|�D〉〈�D|ÂB̂ ⊗ IA′B ′)] ⊗ |�D〉〈�D|ÂB̂ + trÂB̂[Ĉ✓,ÂA′B̂B ′

× ((I − |�D〉〈�D|)ÂB̂ ⊗ IA′B ′ )] ⊗ IÂB̂ − |�D〉〈�D|ÂB̂

D2 − 1
. (C6)
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With the definitions

MA′B ′ := trÂB̂[Ĉ✓,ÂA′B̂B ′ (|�D〉〈�D|ÂB̂ ⊗ IA′B ′)], (C7)

EA′B ′ := trÂB̂[Ĉ✓,ÂA′B̂B ′((I − |�D〉〈�D|)ÂB̂ ⊗ IA′B ′)], (C8)

we have

T (Ĉ✓,ÂA′B̂B ′ ) = MA′B ′ ⊗ |�D〉〈�D|ÂB̂ + EA′B ′ ⊗ IÂB̂ − |�D〉〈�D|ÂB̂

D2 − 1
, (C9)

and it is evident that we have reduced the number of variables to those contained in MA′B ′ and EA′B ′ .
Now we are ready to derive the form of our SDP in terms of the new variables MA′B ′ and EA′B ′ . Using (C9) in the objective

function gives

|A||B|
δ

tr
[(|�D〉〈�D|ÂB̂ ⊗ ρT

A′B ′
)
T (Ĉ✓,ÂA′B̂B ′)

] = |A||B|
δ

tr
[
ρT

A′B ′MA′B ′
]
. (C10)

Similarly, the equality constraint transforms as

|A||B| tr
[(
IÂB̂ ⊗ ρT

A′B ′
)
T (Ĉ✓,ÂA′B̂B ′)

] = |A||B| tr
[
ρT

A′B ′(MA′B ′ + EA′B ′)
] = δ. (C11)

The inequality constraint Ĉ✓,ÂA′B̂B ′ � 0 becomes two inequality constraints MA′B ′ � 0 and EA′B ′ � 0. The PPT relaxation
constraint Ĉ


✓,ÂA′B̂B ′ � 0 becomes

T (Ĉ✓,ÂA′B̂B ′ )
 = |�D〉〈�D|

ÂB̂

⊗ M

A′B ′ + (IÂB̂ − |�D〉〈�D|ÂB̂)


D2 − 1
⊗ E


A′B ′

= 1

D
(PSÂB̂

− PAÂB̂
) ⊗ M


A′B ′ +
(
1 − 1

D

)
PSÂB̂

+ (
1 + 1

D

)
PAÂB̂

D2 − 1
⊗ E


A′B ′

= PSÂB̂
⊗

(
1

D
M


A′B ′ + 1 − 1
D

D2 − 1
E


A′B ′

)
+ PAÂB̂

⊗
(

− 1

D
M


A′B ′ + 1 + 1
D

D2 − 1
E


A′B ′

)
� 0, (C12)

where we have used �
 = (PS − PA)/D and I
 = PS + PA, where PS and PA are projectors onto the symmetric and
antisymmetric subspaces, respectively. The orthogonality of PS and PA allows us to read off this constraint as two inequality
constraints

M

A′B ′ + 1

D + 1
E


A′B ′ � 0, −M

A′B ′ + 1

D − 1
E


A′B ′ � 0. (C13)

Finally, the last two inequality constraints of SDP in Optimization Program 4 become

MA′B ′ + EA′B ′ = trÂ,B̂[T (Ĉ✓,ÂA′B̂B ′)] = Ĉ✓,A′B ′ � IA′,B ′

|A||B| , (C14)

M

A′B ′ + E


A′B ′ = {trÂ,B̂[T (Ĉ✓,ÂA′B̂B ′ )]}
 = Ĉ

✓,A′B ′ �

IA′,B ′

|A||B| . (C15)

In summary, putting things together we obtain the following simplified SDP optimization problem, as stated in Optimization
Program 5 in the main text:

maximize
|A||B|

δ
tr

[
ρT

A′B ′MA′B ′
]

subject to MA′B ′ � 0, EA′B ′ � 0,

MA′B ′ + EA′B ′ � IA′B ′

|A||B| ,

M

A′B ′ + E


A′B ′ �
IA′B ′

|A||B| ,

|A||B| tr
[
ρT

A′B ′(MA′B ′ + EA′B ′ )
] = δ,

M

A′B ′ + 1

D + 1
E


A′B ′ � 0,

−M

A′B ′ + 1

D − 1
E


A′B ′ � 0.

Optimization Program 7.
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APPENDIX D: DERIVATIONS OF DUAL SDPs

In this Appendix we will restate some results of the
theory of semidefinite programming, particularly the dual SDP,
following the approach of Watrous [54]. We will use these
results to derive the form of the dual SDPs for optimizing
fidelity and probability of success.

There are various ways of presenting a general semidefinite
program. It is most convenient for our purposes to use the
following form, given in Ref. [54], for an SDP and its dual:

(1) Primal:

maximize tr [AX]

subject to �1(X) = B1,

�2(X) � B2,

X � 0.

Optimization Program 8.

(2) Dual:

minimize tr [B1Y1] + tr [B2Y2]

subject to �
†
1(Y1) + �

†
2(Y2) � A,

Y1 = Y
†
1 ,

Y2 � 0.

Optimization Program 9.

Here A,B1,B2 are Hermitian matrices, �1 and �2 are
Hermiticity preserving linear maps and �† is a Hermiticity
preserving linear map uniquely defined in terms of � through
the following relation: tr [�(X)Y ] = tr [X�†(Y )] for all Her-

mitian matrices X and Y . Notice that the map �† reverses the
order of the spaces as compared to the original map �.
The variables of the primal SDP are the matrix elements of the
Hermitian matrix X and any X that satisfies the constraints is
termed a feasible X. Likewise the variables of the dual SDP are
the Hermitian matrices Y1 and Y2, and such matrices are termed
feasible if they satisfy the constraints of the dual SDP. It is a
very straightforward observation that feasible points of the dual
SDP can be used to provide bounds on the primal optimum and
vice versa. To show this consider feasible variables X,Y1,Y2;
then we have

tr[B1Y1] + tr[B2Y2] − tr [AX]

= tr [�1(X)Y1] + tr [�2(X)Y2]

+ tr {[B2 − �2(X)]Y2} − tr [AX]

= tr{X[�†
1(Y1) + �

†
2(Y2) − A]}

+ tr {[B2 − �2(X)]Y2} � 0. (D1)

The first equality just comes from implementing the equality
constraints of the primal SDP. The second equality is just an
application of the definition of �†, and the final inequality
arises from the inequality constraints of the SDP and the fact
that tr [XY ] � 0 if X � 0 and Y � 0. This observation is
known as weak duality and, as stated in the main text, it is the
key tool that we will use to provide bounds on the single-shot
distillation fidelity with fixed probability of success.

1. Optimizing fidelity

The SDP in Optimization Program 5 for finding the optimal
output fidelity can be written in the above form by defining

A = |A||B|
δ

(
ρT 0
0 0

)
, X =

(
M X12

X
†
12 E

)
, B1 = δ, B2 =

⎛
⎜⎜⎝

I
|A||B| 0 0 0

0 0 0 0
0 0 0 0
0 0 0 I

|A||B|

⎞
⎟⎟⎠,

�1(X) = |A||B| tr[ρT (M + E)], (D2)

�2(X) =

⎛
⎜⎜⎝

M + E 0 0 0
0 −M
 − 1

D+1E
 0 0
0 0 M
 − 1

D−1E
 0
0 0 0 M
 + E


⎞
⎟⎟⎠.

Observe that the SDP induced by this choice is equivalent
to the original SDP in Optimization Program 5 because the
constraint X � 0 reduces to M � 0 and E � 0 without loss
of generality. More precisely, the X � 0 implies M � 0 and
E � 0 so the optimum of the original SDP in Optimization
Program 5 is at least as large as the optimum of the SDP defined
here. Conversely, for any feasible pair M,E of the original SDP
in Optimization Program 5 we can define a feasible X of the
above SDP by setting X12 = 0 so the optimum of the original
SDP in Optimization Program 5 is at most the optimum of the
above SDP.

Now in order to dualize, we need to calculate �
†
1 and �

†
2.

Since �1 maps to a scalar, we conclude that Y1 = y is a scalar

and we must have, by definition of adjoint,

tr[�1(X)Y1] = |A||B| tr[ρT (M + E)]y = tr[X�
†
1(Y1)],

(D3)

from which we conclude that

�
†
1(Y1) = |A||B|

(
ρT y 0

0 ρT y

)
. (D4)
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Turning now to �2, we note that Y2 will be a 4 × 4 block matrix and we will label the blocks as Y
ij

2 . Observe that

tr[�2(X)Y2] = tr
[
(M + E)Y 11

2

] + tr

[(
−M
 − 1

D + 1
E


)
Y 22

2

]
+ tr

[(
M
 − 1

D − 1
E


)
Y 33

2

]
+ tr

[
(M
 + E
)Y 44

2

]

= tr
[
(M + E)Y 11

2

] + tr

[(
−M − 1

D + 1
E

)(
Y 22

2

)


]
+ tr

[(
M − 1

D − 1
E

)(
Y 33

2

)


]
+ tr

[
(M + E)

(
Y 44

2

)
]
.

(D5)

With �
†
2(Y2) expressed as a 2 × 2 block matrix

�
†
2(Y2) =

(
W1 W2

W
†
2 W4

)
, (D6)

we have

tr[X�
†
2(Y2)] = tr[MW1] + tr[X†

12W2] + tr[X12W
†
2 ] + tr[EW4]. (D7)

The definition of the adjoint map, namely tr [�2(X)Y2] = tr [X�
†
2(Y2)], allows us to directly compare (D5) and (D7) and read

off

W1 = Y 11
2 − (

Y 22
2

)
 + (
Y 33

2

)
 + (
Y 44

2

)

, W2 = 0, W3 = 0, W4 = Y 11

2 − 1

D + 1

(
Y 22

2

)
 − 1

D − 1

(
Y 33

2

)
 + (
Y 44

2

)

. (D8)

Therefore the dual program becomes

minimize yδ + tr
[
Y 11

2 + Y 44
2

]
|A||B|

subject to

⎛
⎝|A||B|yρT + Y 11

2 − (
Y 22

2

)
 + (
Y 33

2

)
 + (
Y 44

2

)

0

0 |A||B|yρT + Y 11
2 − 1

D+1

(
Y 22

2

)
 − 1
D−1

(
Y 33

2

)
 + (
Y 44

2

)


⎞
⎠

�
( |A||B|

δ
ρ 0

0 0

)
,

y ∈ R,

Y2 � 0.

Optimisation Program 10.

For ease of notation we will define J = Y 11
2 ,G = Y 22

2 ,H = Y 33
2 ,K = Y 44

2 . The off-diagonal blocks of the matrix variable Y2 can
always be chosen to be zero and thus the dual SDP can be written as follows without loss of generality:

minimize yδ + tr[J + K]

|A||B|
subject to J,G,H,K � 0,y ∈ R,

|A||B|
(

y − 1

δ

)
ρT + J − G
 + H
 + K
 � 0,

|A||B|yρT + J − 1

D + 1
G
 − 1

D − 1
H
 + K
 � 0.

Optimisation Program 11.

Here all the matrices are on registers A′B ′. Thus we have obtained the form of the dual semidefinite program for the optimal
output fidelity.
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2. Optimizing probability of success

Similarly, we can now find the dual of the SDP in Optimization Program 6 for optimizing probability of success. Again, using
the form specified in Ref. [54], we obtain

A = |A||B|
(

ρT 0
0 ρT

)
, X =

(
M X12

X
†
12 E

)
, B1 = 0, B2 =

⎛
⎜⎜⎝

I
|A||B| 0 0 0

0 0 0 0
0 0 0 0
0 0 0 I

|A||B|

⎞
⎟⎟⎠,

�1(X) = (1 − F ) tr[ρT M] − F tr[ρT E], (D9)

�2(X) =

⎛
⎜⎜⎝

M + E 0 0 0
0 −M
 − 1

D+1E
 0 0
0 0 M
 − 1

D−1E
 0
0 0 0 M
 + E


⎞
⎟⎟⎠.

Now we need to calculate �
†
1 and �

†
2. Since �1 maps to a scalar, we conclude that Y1 = y is a scalar and we must have, by

definition of adjoint,

tr[�1(X),Y1] = {(1 − F ) tr[ρT M] − F tr[ρT E]}y = tr[X�
†
1(Y1)], (D10)

from which we conclude that

�
†
1(Y1) =

(
(1 − F )yρT 0

0 −FyρT

)
. (D11)

Turning now to �2, we note that it is the same as in the program for optimizing fidelity; see Eq. (D2). Hence �
†
2(Y2) remains the

same as given in Eq. (D6) and in Eq. (D8).
Therefore the dual problem becomes

minimize
tr

[
Y 11

2 + Y 44
2

]
|A||B|

subject to

(
(1 − F )yρT + Y 11

2 − (
Y 22

2

)
 + (
Y 33

2

)
 + (
Y 44

2

)

0

0 −FyρT + Y 11
2 − 1

D+1

(
Y 22

2

)
 − 1
D−1

(
Y 33

2

)
 + (
Y 44

2

)


)

� |A||B|
(

ρT 0
0 ρT

)
,

y ∈ R,

Y2 � 0.

Optimisation Program 12.

This SDP can be rewritten as

minimize
tr[J + K]

|A||B|
subject to J,G,H,K � 0,y ∈ R,

[(1 − F )y − |A||B|]ρT + J − G
 + H
 + K
 � 0,

[−Fy − |A||B|]ρT + J − 1

D + 1
G
 − 1

D − 1
H
 + K
 � 0.

Optimisation Program 13.

APPENDIX E: k BOSE SYMMETRIC EXTENSIONS

This section details the calculations leading to the 1-BSE optimization program mentioned in the main text. We first explain
how the variable is defined for a k-BSE. Considering Ĉ(ÂA′)B̂B ′ to be k-BSE means that there exists Ĉ(Â1A

′
1)...(Âk+1A

′
k+1)B̂B ′ satisfying

the BSE constraints. We are changing the optimization variable from the former to the latter, which lives only on the symmetric
subspace of (Â1A

′
1) . . . (Âk+1A

′
k+1). The full Hilbert space of Alice decomposes as

H(Â1A
′
1)...(Âk+1A

′
k+1) = HSym ⊕ H⊥

Sym, (E1)
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into symmetric subspace and its orthogonal complement. Hence, the joint Hilbert space of Alice’s and Bob’s systems has the
corresponding form

H(Â1A
′
1)...(Âk+1A

′
k+1)B̂B ′ = (HSym ⊕ H⊥

Sym) ⊗ HB̂,B ′ = (HSym ⊗ HB̂,B ′ ) ⊕ (H⊥
Sym ⊗ HB̂,B ′). (E2)

Under this decomposition, the operator Ĉ(Â1A
′
1)...(Âk+1A

′
k+1)B̂B ′ has the simple form

Ĉ(Â1A
′
1)...(Âk+1A

′
k+1)B̂B ′ =

(
Ws 0
0 0

)
, (E3)

with Ws being some operator acting on HSym ⊗ HB̂,B ′ . Since our derivations in the main text are performed in the standard basis,
let USym→Std be the change of basis from the “symmetric” basis to the computational basis of Alice’s systems. We finally obtain
the form of our new variable in the standard basis

Ĉ(Â1A
′
1)...(Âk+1A

′
k+1)B̂B ′ = USym→Std ⊗ IB̂,B ′

(
Ws 0
0 0

)
U

†
Sym→Std ⊗ IB̂,B ′ . (E4)

In the final SDP which will be presented at the end of this section, we will only declare and optimize over the smaller
variable Ws .

Now we specialize to the case of 1-BSE. Considering Ĉ(ÂA′)B̂B ′ to be 1-BSE means that there exists Ĉ(Â1A
′
1)(Â2A

′
2)B̂B ′ satisfying

the BSE constraints. Since we have only two subsystems on Alice’s side (corresponding to the indices 1 and 2), the orthogonal
complement H⊥

Sym turns out to be the subspace consisting of antisymmetric vectors HASym. We need to compute the change of
basis operator in

ĈÂ1A
′
1Â2A

′
2B̂B ′ = USym→Std ⊗ IB̂,B ′

(
Ws 0
0 0

)
U

†
Sym→Std ⊗ IB̂,B ′ . (E5)

In the case when the input dimensions of Alice and Bob are the same and the target is the maximally entangled state of
dimension D, we have dimensions |Â1| = |Â2| = |B̂| = D and |A′

1| = |A′
2| = |B ′| = C, so Alice’s first (Â1A

′
1) and second

(Â2A
′
2) subsystems each have dimension CD. We can construct the change of basis USym→Std for CCD ⊗ CCD using standard

techniques. Let {|i〉 : i = 0, . . . ,CD} denote the standard basis of a CD-dimensional system. Then the basis for the symmetric
subspace on (A1A

′
1)(A2A

′
2) consists of the vectors in Vs = V1 ∪ V2 where

V1 = {|i〉A1A
′
1
⊗ |i〉A2A

′
2
|i = 0,1, . . . ,CD

}
,

V2 =
{

1√
2

(|i〉A1A
′
1
⊗ |j 〉A2A

′
2
+ |j 〉A1A

′
1
⊗ |i〉A2A

′
2

)∣∣i,j = 0,1, . . . ,CD and j > i

}
.

(E6)

Similarly, the basis for the antisymmetric subspace on (A1A
′
1)(A2A

′
2) consists of the vectors in

Va =
{

1√
2

(|i〉A1A
′
1
⊗ |j 〉A2A

′
2
− |j 〉A1A

′
1
⊗ |i〉A2A

′
2

)∣∣i,j = 0,1, . . . ,CD and j > i

}
. (E7)

The coefficients of these vectors form the entries of the matrix USym→Std.

We are now left with rewriting the optimization in terms of Ws , a (CD)2(CD+1)
2 × (CD)2(CD+1)

2 matrix. The objective function

|A||B|
δ

tr

{(
IÂ1A

′
1
⊗ |�D〉〈�D|Â2,B̂

⊗ ρT
A′

2B
′
)[

USym→Std ⊗ IB̂,B ′

(
Ws 0
0 0

)
U

†
Sym→Std ⊗ IB̂B ′

]}
(E8)

can be rewritten as (since the trace is cyclic under permutation of operators)

tr

[
X

(
Ws 0
0 0

)]
, (E9)

where we convert the input data written in standard basis to the “symmetric” basis

X = |A||B|
δ

U
†
Sym→Std ⊗ IB̂B ′

(
IÂ1A

′
1
⊗ |�D〉〈�D|Â2B̂

⊗ ρT
A′

2B
′
)
USym→Std ⊗ IB̂B ′ . (E10)

This means that only Xs , the component of X living in the symmetric subspace, i.e., the first (CD)2(CD+1)
2 rows and columns of

X, will appear in the objective function and the objective function becomes tr(XsWs). Similarly, the constraint on the probability
of success can be rewritten as tr (YsWs) = δ, where

Y = |A||B|U †
Sym→Std ⊗ IB̂B ′

(
IÂ1A

′
1
⊗ IÂ2B̂

⊗ ρT
A′

2B
′
)
USym→Std ⊗ IB̂B ′ , (E11)
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and again Ys is just a matrix that consists of the first (CD)2(CD+1)
2 rows and columns of Y . All other constraints become unaffected

so the SDP becomes

maximize tr
(
XsÂ1A

′
1Â2A

′
2B̂B ′WsÂ1A

′
1Â2,A

′
2,B̂,B ′

)
subject to tr

(
YsÂ1A

′
1Â2A

′
2B̂B ′WsÂ1A

′
1Â2A

′
2B̂B ′

) = δ,

WsÂ1A
′
1Â2A

′
2B̂B ′ � 0,

trÂ1A
′
1

[
USym→Std ⊗ IB̂,B ′

(
Ws 0
0 0

)
U

†
Sym→Std ⊗ IB̂,B ′

]


� 0,

trÂ1A
′
1Â2B̂

[
USym→Std ⊗ IB̂B ′

(
Ws 0
0 0

)
U

†
Sym→Std ⊗ IB̂,B ′

]
�

IA′
2B

′

|A||B| ,

trÂ1A
′
1Â2B̂

[
USym→Std ⊗ IB̂B ′

(
Ws 0
0 0

)
U

†
Sym→Std ⊗ IB̂,B ′

]


�
IA′

2B
′

|A||B| .

Optimization Program 14.

In the scenario most frequently considered in this paper, that is of distillation from two to one copies of a two-qubit state, we
have that C = 4 and D = 2 and so our variable Ws is a 288 × 288 matrix.

APPENDIX F: DEFINITIONS OF OPTIMALITY

In this section we introduce certain terminology that will later allow us to make precise optimality claims of the different
distillation protocols. We also introduce and prove specific lemmas that later allow us to prove our optimality claims with respect
to the EPL-D protocol in Appendix H.

Let � denote the map corresponding to a distillation protocol and P✓ be the projector on the success space of the flags. We
introduce the following shorthands:

�(�,P✓,ρ) = trF [(IÂB̂ ⊗ P✓)�AB→ÂB̂F (ρ)], (F1)

η(�,P✓,ρ) = �(�,P✓,ρ)

p(�,P✓,ρ)
, (F2)

where

p(�,P✓,ρ) = tr[�(�,P✓,ρ)]. (F3)

That is, �,η are, respectively, the unnormalized and normalized output state conditioned on success. We introduce two additional
shorthands for the fidelity of � and η to |�+〉 = |�2〉, which for simplicity we will now denote as simply �:

g(�,P✓,ρ) = F (�(�,P✓,ρ),�), (F4)

f (�,P✓,ρ) = F (η(�,P✓,ρ),�). (F5)

Note that η(�,P✓,ρ) and f (�,P✓,ρ) are defined only if p(�,P✓,ρ) > 0.
We define the optimal output fidelity fopt(ρ) and the optimal success probability popt(ρ) when optimized over all LOCC

distillation operations � and success projectors P✓ as follows:

fopt(ρ) = sup
�∈LOCC,P✓|p(�,P✓,ρ)>0

f (�,P✓,ρ) (F6)

and

popt(ρ) = sup
�∈LOCC,P✓|p(�,P✓,ρ)>0 and f (�,P✓,ρ)=fopt(ρ)

p(�,P✓,ρ). (F7)

With this notation, we introduce two different definitions of optimality:
Definition 2. We call a protocol � with the success projector P✓ fidelity-optimal with respect to the quantum state ρ if

f (�,P✓,ρ) = fopt(ρ) (F8)

and

p(�,P✓,ρ) = popt(ρ). (F9)

We emphasize here that the above definition concerns distillation towards the maximally entangled state with D = 2, but it
can be easily generalized to higher values of D.
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Definition 3. We call a protocol � with the success projector P✓ distillation-optimal with respect to the quantum state ρ if

p(�,P✓,ρ)ED(η(�,P✓,ρ)) = ED(ρ), (F10)

where ED(ρ) is the distillable entanglement of ρ.
Note that our definition of a protocol being distillation-optimal implies that no protocol can achieve a better trade-off between

success probability and distillable entanglement of the output state (Lemma 4). We recall that the distillable entanglement is
defined as an optimization over arbitrary distillation protocols and, in general, can only be achieved if Alice and Bob hold an
infinite number of copies of the state ρ.

In the following, we prove several basic facts of these definitions.
Lemma 2. Let ρ = ∑

i λiρi such that ∀i,λi > 0 and
∑

i λi = 1. Then,

fopt

(∑
i

λiρi

)
� max

i
fopt(ρi). (F11)

Proof.

fopt

(∑
i

λiρi

)
= sup

�∈LOCC,P✓|p(�,P✓,ρ)>0

g(�,P✓,
∑

i λiρi)

p(�,P✓,
∑

j λjρj )
= sup

�∈LOCC,P✓|p(�,P✓,ρ)>0

∑
i|p(�,P✓,ρi )>0 λif (�,P✓,ρi)p(�,P✓,ρi)∑

j λjp(�,P✓,ρj )

� max
i

fopt(ρi).

(F12)

�
Lemma 3. Let ρ = ∑

i λiρi such that ∀i,λi > 0 and
∑

i λi = 1, let � and P✓ correspond to a distillation protocol such that
f (�,P✓,ρ) = fopt(ρ) = maxi fopt(ρi), and let the index k be such that f (�,P✓,ρk) = maxi f (�,P✓,ρi) is unique. Then,

p(�,P✓,ρ) � λk. (F13)

Proof. From Lemma 2 we see that we must have

f (�,P✓,ρk) = fopt(ρ) = max
i

fopt(ρi) = fopt(ρk). (F14)

Then,

fopt(ρk) = f

(
�,P✓,

∑
i

λiρi

)

=
∑

i|p(�,P✓,ρi )>0 λif (�,P✓,ρi)p(�,P✓,ρi)

p(�,P✓,ρ)

= λkp(�,P✓,ρk)

p(�,P✓,ρ)
fopt(ρk) +

∑
i �= kp(�,P✓,ρi) > 0

λip(�,P✓,ρi)

p(�,P✓,ρ)
f (�,P✓,ρi). (F15)

Now note that
∑

i λip(�,P✓,ρi)/p(�,P✓,ρ) = 1 and ∀i �= k,f (�,P✓,ρi) < fopt(ρk). That is, we have a convex combination
of fopt(ρk) and all the other f (�,P✓,ρi) that are smaller than fopt(ρk). As this convex combination needs to equal fopt(ρk), we
require that λkp(�,P✓,ρk )

p(�,P✓,ρ) = 1 and ∀i �= k,p(�,P✓,ρi) = 0. This means that

p(�,P✓,ρ) = λkp(�,P✓,ρk) � λk. (F16)

�
Lemma 4. Given a bipartite state ρ and an LOCC protocol �AB→ÂB̂F together with a projector P✓, it holds that

p(�,P✓,ρ)ED(η(�,P✓,ρ)) � ED(ρ). (F17)

Proof. Suppose that there exists �AB→ÂB̂F together with a projector P✓ such that

p(�,P✓,ρ)ED(η(�,P✓,ρ)) > ED(ρ). (F18)

Then it would be possible to take n copies of ρ, obtain approximately np(�,P✓,ρ) copies of η(�,P✓,ρ), and for large enough
n distill np(�,P✓,ρ)ED(η(�,P✓,ρ)) EPR pairs which would be strictly larger than nED(ρ). However, this is not possible since
by definition ED(ρ) is the maximum rate at which EPR pairs can be distilled from ρAB by LOCC. �
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APPENDIX G: BELL DIAGONAL STATES

In Sec. IV B 2, we stated Theorem 1 and argued that the DEJMPS distillation protocol is optimal for distilling two copies
of rank-three Bell diagonal states. In this appendix we make this argument rigorous. The formal statement that we show is as
follows:

Theorem 4. DEJMPS is fidelity-optimal with respect to the state ρ = τ⊗2, where

τ = p1|�+〉〈�+| + p2|�+〉〈�+| + (1 − p1 − p2)|�−〉〈�−|, (G1)

with p1 > 0.5 and p1 > p2 � 1 − p1 − p2.
Remark 1. Every Bell diagonal state of rank up to three can be transformed to the form in Eq. (G1) using only local Clifford

operations; hence Theorem 4 effectively applies to all Bell diagonal states of rank up to three.
The proof is structured as follows. In Appendix G 1, we prove some basic properties of Bell diagonal states. In Appendix G 2, we

show that DEJMPS protocol achieves f (DEJMPS,ρ) = fopt(ρ) for states of the form in Eq. (G1) and we complete the argument
in Appendix G 3, where we show that the success probability for these states is p(DEJMPS,ρ) = popt(ρ).

1. Properties of the Bell diagonal states

Consider the Bell diagonal states

τ = p1|�+〉〈�+| + p2|�+〉〈�+| + p3|�−〉〈�−| + (1 − p1 − p2 − p3)|�−〉〈�−|. (G2)

Given the parameters (p1,p2,p3) we have that tr [τ ] = 1 and the eigenvalues of τ are positive so long as p1,p2,p3 � 0 and
1 − p1 − p2 − p3 � 0. Geometrically the set of Bell diagonal states forms a tetrahedron. Notice that p1 = tr [|�+〉〈�+|τ ] and
so on.

We can give an alternative parametrization for τ as follows:

τ = 1
4 (II + r1XX + r2YY + r3ZZ), (G3)

where for Pauli matrices Pi we use the shorthand notation Pi ⊗ Pj = PiPj . Notice that r1 = tr [XXτ ] and so on. The convenience
of this parametrization is that

τ
 = 1
4 (II + r1XX − r2YY + r3ZZ), (G4)

so that in these coordinates the partial transpose is a reflection. (This follows because YT = −Y and other Pauli matrices are
unaffected by transpose.) Notice that the partial transpose of a Bell diagonal state is a Bell diagonal matrix.

We can use the definitions to find

p1 = (1 + r1 − r2 + r3)/4, (G5)

p2 = (1 + r1 + r2 − r3)/4, (G6)

p3 = (1 − r1 + r2 + r3)/4, (G7)

1 − p1 − p2 − p3 = (1 − r1 − r2 − r3)/4. (G8)

These formulas make it possible to tell when τ is positive even if it is expressed in terms of the parameters ri . Now if we have
two copies of τ we of course have

τ ⊗ τ = 1
4 (II + r1XX + r2YY + r3ZZ) ⊗ 1

4 (II + r1XX + r2YY + r3ZZ)

= 1
16

[
IIII + r1(IIXX + XXII ) + r2(IIYY + YYII ) + r3(IIZZ + ZZII ) + r2

1 XXXX

+ r1r2(XXYY + YYXX) + r1r3(XXZZ + ZZXX) + r2
2 YYYY + r2r3(YYZZ + ZZYY )

]
. (G9)

In the dual SDP we will restrict attention to dual variables V that have the same symmetry as the matrices τ ⊗ τ ; specifically,

V = 1
16 [v0IIII + v1(IIXX + XXII ) + v2(IIYY + YYII ) + v3(IIZZ + ZZII ) + v11XXXX + v12(XXYY + YYXX)

+ v13(XXZZ + ZZXX) + v22YYYY + v23(YYZZ + ZZYY )] (G10)

and so

V 
 = 1
16 [v0IIII + v1(IIXX + XXII ) − v2(IIYY + YYII ) + v3(IIZZ + ZZII ) + v11XXXX − v12(XXYY + YYXX)

+ v13(XXZZ + ZZXX) + v22YYYY − v23(YYZZ + ZZYY )]. (G11)
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Here 
 denotes the transpose on Bob’s systems, that is, on the second and fourth Pauli matrices. Notice that in this parametrization
v13 = tr [(XXZZ)V ] and so on. Alternatively we can expand V in terms of projections on the Bell states as follows:

V = w1|�+〉〈�+||�+〉〈�+| + w2(|�+〉〈�+||�+〉〈�+| + |�+〉〈�+||�+〉〈�+|) + w3|�+〉〈�+||�+〉〈�+|
+w4|�−〉〈�−||�−〉〈�−| + w5(|�+〉〈�+||�−〉〈�−| + |�−〉〈�−||�+〉〈�+|) + w6(|�+〉〈�+||�−〉〈�−|
+ |�−〉〈�−||�+〉〈�+|) + w7|�−〉〈�−||�−〉〈�−| + w8(|�+〉〈�+||�−〉〈�−| + |�−〉〈�−||�+〉〈�+|)
+w9(|�+〉〈�+||�−〉〈�−| + |�−〉〈�−||�+〉〈�+|) + w10(|�−〉〈�−||�−〉〈�−| + |�−〉〈�−||�−〉〈�−|). (G12)

Here we use a shorthand notation |ψ〉〈ψ | ⊗ |φ〉〈φ| = |ψ〉〈ψ ||φ〉〈φ|. In terms of this parametrization V � 0 if and only if wi � 0
for all i.

In constructing a dual semidefinite program in the main text we consider a restricted set of V such that V 
 = V . It is clear
from Eqs. (G10) and (G11) that the condition V 
 = V is equivalent to v2 = 0 = v12 = v23. Thus we require the following three
conditions:

v2 = −w1 + w3 + w4 + 2w6 − w7 − 2w8 = 0, (G13)

v12 = −w1 + w3 − w4 + 2w5 + w7 − 2w9 = 0, (G14)

v23 = −w1 + 2w2 − w3 + w4 + w7 − 2w10 = 0. (G15)

In the main text we construct a dual feasible solution for the SDP that arises in the restricted case of a Bell diagonal state
where 1 − p1 − p2 − p3 = 0, and therefore p3 = 1 − p1 − p2. Making the definitions

λ1 = p2
1, λ2 = p1p2, λ3 = p2

2, λ4 = (1 − p1 − p2)2, λ5 = p1(1 − p1 − p2), λ6 = p2(1 − p1 − p2), (G16)

we obtain

τ ⊗ τ = λ1|�+〉〈�+||�+〉〈�+| + λ2(|�+〉〈�+||�+〉〈�+| + |�+〉〈�+||�+〉〈�+|) + λ3|�+〉〈�+||�+〉〈�+|
+ λ4|�−〉〈�−||�−〉〈�−| + λ5(|�+〉〈�+||�−〉〈�−| + |�−〉〈�−||�+〉〈�+|)
+ λ6(|�+〉〈�+||�−〉〈�−| + |�−〉〈�−||�+〉〈�+|). (G17)

2. Optimal fidelity of DEJMPS

We will first show that f (DEJMPS,ρ) = fopt(ρ), when ρ consists of two copies of some Bell diagonal state of rank up to
three. The dual SDP for maximizing fidelity has the form

minimize d(y,J,G,H,K) = yδ + tr[J + K]

|A||B|
subject to J,G,H,K � 0,y ∈ R,

|A||B|
(

y − 1

δ

)
ρT + J − G
 + H
 + K
 � 0,

|A||B|yρT + J − 1

D + 1
G
 − 1

D − 1
H
 + K
 � 0.

Optimization Program 15.

For rank-two and rank-three Bell diagonal states, the output fidelity of DEJMPS is F = p′
1 = p2

1/N , where N = p2
1 + (1 − p1)2

is the probability that the protocol succeeds. Hence we require a feasible solution of the dual program whose objective function
takes the value p′

1. Here we find such a solution that is valid for all δ ∈ (0,1]. As an ansatz consider a solution with y = p′
1
δ

and
J = G = K = 0. This means that the objective function takes the value p′

1. We now need to show that there exists a matrix H

such that

H � 0, (G18)

|A||B|
δ

(p′
1 − 1)ρT + H
 � 0, (G19)

|A||B|
δ

p′
1ρ

T − H
 � 0. (G20)
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To make it simpler we can assume that H = |A||B|
δ

V and so now we need to find the matrix V such that

V � 0, (G21)

(p′
1 − 1)ρT + V 
 � 0, (G22)

p′
1ρ

T − V 
 � 0. (G23)

Since the input state in our SDP is ρ = τ ⊗ τ given by Eq. (G17), we further restrict V by requiring that V = V 
 . We can also
ignore the transpose on ρA′B ′ in the above equations as here we work with the Bell diagonal states. The chosen dual variable V

that satisfies the above conditions can be specified as follows in terms of the coefficients in Eq. (G12):

w1 = p′
1(1 − p1)2, w2 = p′

1(1 − p1)p2, w3 = p′
1p

2
2, w4 = p′

1(1 − p1 − p2)2,

w5 = p′
1(1 − p1)(1 − p1 − p2), w6 = p′

1p2(1 − p1 − p2), w7 = 0 = w8 = w9 = w10. (G24)

Clearly V � 0 since wi � 0 for all i. It is straightforward to check that each of equations (G13)–(G15) are satisfied and therefore
V = V 
 . Since V 
 is diagonal in the same basis as ρA′B ′ , to verify the conditions (G22) and (G23) we just need to verify a set
of scalar equations:

(p′
1 − 1)λi + wi � 0, (G25)

p′
1λi − wi � 0, (G26)

where the coefficients λi are defined in Eq. (G16). It is straightforward to determine that each of these equations is satisfied
so long as p1 � 1/2 as was specified originally. This shows that V defined through Eqs. (G12) and (G24) satisfies Eqs. (G22)
and (G23) and therefore we have found a feasible solution of the dual problem for which the objective function takes the value
p′

1 for all values of δ ∈ (0,1]. This proves that for all those values of δ there exists no protocol that can achieve higher fidelity
than p′

1, and hence DEJMPS protocol achieves the highest fidelity for two copies of all Bell diagonal states of rank up to three,
when optimizing over all LOCC protocols.

3. Optimal probability of success of DEJMPS

Now we will show that DEJMPS also satisfies the second condition required for being fidelity-optimal, namely
p(DEJMPS,ρ) = popt(ρ). In other words, we will show that it is also not possible to achieve the output fidelity of DEJMPS
with probability of success larger than that of DEJMPS. We recall that the dual SDP for the probability of success reads

minimize
tr[J + K]

|A||B|
subject to J,G,H,K � 0, y ∈ R,

[(1 − F )y − |A||B|]ρT + J − G
 + H
 + K
 � 0,

[−Fy − |A||B|]ρT + J − 1

D + 1
G
 − 1

D − 1
H
 + K
 � 0.

Optimisation Program 16.

As an ansatz we consider a solution with J = |A||B|R, y = |A||B|s and G = K = 0, where

R = [
p2

1|�+〉〈�+||�+〉〈�+| + p2
2|�+〉〈�+||�+〉〈�+| + (1 − p1 − p2)2|�−〉〈�−||�−〉〈�−|

+p2(1 − p1 − p2)(|�+〉〈�+||�−〉〈�−| + |�−〉〈�−||�+〉〈�+|)] (G27)

and

s = − N

(1 − p1)(2p1 − 1)
. (G28)

This means that the objective function takes the value N . We now need to show that there exists a matrix H such that

H � 0, (G29)

[(1 − F )y − |A||B|]ρT + J + H
 � 0, (G30)

[−Fy − |A||B|]ρT + J − 1

D − 1
H
 � 0. (G31)
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To make it simpler we can assume that H = |A||B|V and so now we need to find the matrix V such that

V � 0, (G32)

[(1 − F )s − 1]ρT + R + V 
 � 0, (G33)

[−Fs − 1]ρT + R − 1

D − 1
V 
 � 0. (G34)

Here F = p′
1 is the output fidelity of DEJMPS and N = p2

1 + (1 − p1)2. Again, since we work in the Bell basis with Bell diagonal
states, we can ignore the transpose in the above equations. We specify the Bell coefficients of V as

w1 = (1 − p1)p2
1

2p1 − 1
, w2 = p2

1p2

2p1 − 1
, w3 = p2

1p
2
2

(1 − p1)(2p1 − 1)
, w4 = p2

1(1 − p1 − p2)2

(1 − p1)(2p1 − 1)
,

w5 = p2
1(1 − p1 − p2)

2p1 − 1
, w6 = p2

1p2(1 − p1 − p2)

(1 − p1)(2p1 − 1)
, w7 = w8 = w9 = w10 = 0, (G35)

where w’s are the Bell coefficients as expressed in the definition Eq. (G12). Now we will show that these variables satisfy all the
constraints. Clearly V � 0 since wi � 0 for all i. It is straightforward to check that each of equations (G13)–(G15) are satisfied
and therefore V = V 
 . Since V 
 is diagonal in the same basis as ρA′B ′ , to verify the conditions (G22) and (G23) we just need to
verify a set of scalar equations:

[(1 − F )s − 1]λi + [R]ii + wi � 0, (G36)

(−Fs − 1)λi + [R]ii − wi � 0, (G37)

where the coefficients λi are again defined in Eq. (G16) and [R]ii are the diagonal entries of R in the Bell basis.
We can easily check that for p1 > 0.5, all the constraints are satisfied and so we have found a feasible solution to the dual

SDP for probability of success. The value of the objective function is tr[J ]
|A||B| = N . Hence we have found a feasible solution of the

dual minimization problem (that provides upper bounds for achievable probability of success) that can be in fact achieved with
DEJMPS. That is, we have proven that DEJMPS is also optimal with respect to probability of success. That is, for Bell diagonal
states of rank up to three, it is impossible to achieve the output fidelity of DEJMPS with probability of success larger than that of
DEJMPS. This concludes the proof that DEJMPS is fidelity-optimal for two copies of all Bell diagonal states of rank up to three.

APPENDIX H: REMOTE ENTANGLEMENT GENERATION THROUGH EPL SCHEME

Here, we show that EPL-D is the optimal distillation protocol within the EPL remote entanglement generation scheme according
to our two definitions. That is, we formally state and prove Theorems 2 and 3 which we now formulate as one theorem:

Theorem 5. EPL-D is both fidelity-optimal and distillation-optimal for states of the form

ρAB(p,pd ) = 1

2π

∫
dφτA1B1(φ,p,pd ) ⊗ τA2B2(φ,p,1), (H1)

where

τAB(φ,p,pd ) = p[pd |�+(φ)〉〈�+(φ)| + (1 − pd )|�−(φ)〉〈�−(φ)|] + (1 − p)|11〉〈11|. (H2)

We postpone the proof of fidelity-optimal to Appendix H 1 and the proof of distillation-optimal to Appendix H 2.

1. EPL-D is fidelity-optimal

We note that for states of the form Eq. (47) the integration over the phase can be performed analytically:

ρAB(p,pd ) = p2

4

[
PoddA1B1 ⊗ PoddA2B2 + (2pd − 1)(|01〉〈10|A1B1 ⊗ |10〉〈01|A2B2 + |10〉〈01|A1B1 ⊗ |01〉〈10|A2B2)

]
+ (1 − p)p

2

[|11〉〈11|A1B1 ⊗ PoddA2B2 + PoddA1B1 ⊗ |11〉〈11|A2B2
] + (1 − p)2|11〉〈11|A1B1 ⊗ |11〉〈11|A2B2, (H3)
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where Podd = |01〉〈01| + |10〉〈10| is the projector on the odd-parity subspace of the two-qubit space. Let us now permute the order
of the registers to A1A2B1B2. After the permutation, ρ takes the following diagonal form in the standard basis:

ρAB(p,pd ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

03

a

02

Q

01

b

a

b

b

c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (H4)

where 0i denotes an i × i zero matrix, all the nonfilled elements are 0, and the shorthands Q,a,b,c, and d stand for

Q =

⎛
⎜⎝

a 0 0 ad

0 b 0 0
0 0 0 0
ad 0 0 a

⎞
⎟⎠, (H5)

a = p2

4
, (H6)

b = 1

2
(1 − p)p, (H7)

c = (1 − p)2, (H8)

d = 2pd − 1. (H9)

Let

L(p,pd ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

03

a

07

b

a

b

b

c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, I (p,pd ) =

⎛
⎜⎜⎜⎜⎜⎝

06

0 0 0 0
0 b 0 0
0 0 0 0
0 0 0 0

06

⎞
⎟⎟⎟⎟⎟⎠,

F (p,pd ) =

⎛
⎜⎜⎜⎜⎜⎝

06

a 0 0 ad

0 0 0 0
0 0 0 0
ad 0 0 a

06

⎞
⎟⎟⎟⎟⎟⎠. (H10)

Now we can rewrite ρ as a function of L,I , and F :

ρAB(p,pd ) = tr[L]ρL + tr[I ]ρI + tr[F ]ρF , (H11)

where

ρL = 1

tr[L]
L, ρI = 1

tr[I ]
I, ρF = 1

tr[F ]
F. (H12)

Both ρL and ρI are diagonal in the standard basis. In consequence, the output fidelity on these states is upper bounded by 0.5.
Hence by Lemma 2 we see that

fopt(ρAB(p,pd )) � fopt(ρ
F ). (H13)

Note that ρF only has support on a bipartite two-qubit subspace:

ρF = 1
2 (|01〉〈01|A ⊗ |10〉〈10|B + d|01〉〈10|A ⊗ |10〉〈01|B + d|10〉〈01|A ⊗ |01〉〈10|B + |10〉〈10|A ⊗ |01〉〈01|B ). (H14)

Hence, Alice and Bob can redefine their state according to

|01〉A → |0〉A, |10〉A → |1〉A, |01〉B → |1〉B, |10〉B → |0〉B. (H15)
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Under such local relabeling the state ρF becomes

ρF = pd |�+〉〈�+| + (1 − pd )|�−〉〈�−|. (H16)

We know from [47] that it is not possible to increase the fidelity of the state in Eq. (H16) through local filtering. In consequence,

fopt(ρAB(p,pd )) � pd. (H17)

Since the output fidelity of EPL-D is exactly pd , EPL-D achieves the optimal fidelity. Now we show that it achieves this output
fidelity with the highest possible probability of success. From Lemma 3, it follows that this probability of success is upper bounded
by the relative weight of ρF in ρAB(p,pd ), which is p2/2. Since EPL-D achieves the output fidelity of pd with success probability
p2/2, we can conclude that it is also optimal with respect to probability of success. Hence EPL-D is fidelity-optimal for the EPL
remote entanglement generation.

2. EPL-D is distillation-optimal

Let us consider the distillable entanglement of the state in Eq. (H3). Unfortunately, there is no straightforward way of calculating
distillable entanglement. However, distillable entanglement is upper bounded by the relative entropy of entanglement [55]:

ER(ρ) = min
σ∈SEP

S(ρ‖σ ), (H18)

where S(ρ‖σ ) is the relative entropy defined as

S(ρ‖σ ) = tr[ρ log ρ] − tr[ρ log σ ]. (H19)

Moreover, S(ρ‖σ ) for any σ ∈ SEP is an upper bound on ER(ρ) and, in consequence, on ED(ρ). Consider the separable state

σ SEP
AB (p) = p2

4
PoddA1B1 ⊗ PoddA2B2 + (1 − p)p

2
[|11〉〈11|A1B1 ⊗ PoddA2B2 (H20)

+PoddA1B1 ⊗ |11〉〈11|A2B2] + (1 − p)2|11〉〈11|A1B1 ⊗ |11〉〈11|A2B2. (H21)

Then we can calculate

S
(
ρAB(p,pd )‖σ SEP

AB (p)
) = p2

2
[1 − h(pd )], (H22)

where h denotes the binary entropy function. We can conclude that ED(ρAB(p,pd )) � p2

2 [1 − h(pd )].
Now, we note that a possible distillation scheme would be to first perform the EPL-D protocol on the individual copies of the

state in Eq. (H3) and then perform the optimal achievable distillation procedure on the output states. Hence it is possible to distill
EPR states from the states in Eq. (H3) at a rate given by

R = psucc,EPL-DED(ηÂB̂(pd )). (H23)

The success probability of EPL-D is p2

2 and the distillable entanglement of rank-two Bell diagonal states is [48]

ED(ηÂB̂(pd )) = 1 − h(pd ). (H24)

Hence we can conclude that ED(ρAB(p,pd )) = p2

2 [1 − h(pd )] and so ED(ρAB(p,pd )) = psucc,EPL-DED(ηÂB̂(pd )). This proves
that EPL-D is distillation-optimal for EPL remote entanglement generation scheme.
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