

A Review of Fairness Conceptualizations in Electrical Distribution Grid Congestion Management

De Winkel, E.; Lukszo, Zofia; Neerincx, Mark; Dobbe, Roel

DOI

[10.1109/ISGTEUROPE62998.2024.10863079](https://doi.org/10.1109/ISGTEUROPE62998.2024.10863079)

Publication date

2024

Document Version

Final published version

Published in

IEEE PES Innovative Smart Grid Technologies Europe, ISGT EUROPE 2024

Citation (APA)

De Winkel, E., Lukszo, Z., Neerincx, M., & Dobbe, R. (2024). A Review of Fairness Conceptualizations in Electrical Distribution Grid Congestion Management. In N. Holjevac, T. Baskarad, M. Zidar, & I. Kuzle (Eds.), *IEEE PES Innovative Smart Grid Technologies Europe, ISGT EUROPE 2024* (pp. 1-5). (IEEE PES Innovative Smart Grid Technologies Europe, ISGT EUROPE 2024). IEEE.
<https://doi.org/10.1109/ISGTEUROPE62998.2024.10863079>

Important note

To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy

Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

<https://www.openaccess.nl/en/you-share-we-take-care>

Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

A Review of Fairness Conceptualizations in Electrical Distribution Grid Congestion Management

Eva de Winkel

Faculty of Technology,
Policy and Management
TU Delft
e.dewinkel@tudelft.nl

Zofia Lukszo

Faculty of Technology,
Policy and Management
TU Delft
z.lukszo@tudelft.nl

Mark Neerincx

Faculty of Electrical
Engineering, Mathematics
and Computer Science
TU Delft
m.a.neerincx@tudelft.nl

Roel Dobbe

Faculty of Technology,
Policy and Management
TU Delft
r.i.j.dobbe@tudelft.nl

Abstract—Fairness has recently gained significant attention in the scientific literature on algorithmic control systems for congestion management. However, many diverse conceptualizations of fairness have been presented. This paper aims to categorize these varying conceptualizations by reviewing existing literature on congestion management. It examines how researchers approach decisions concerning the scoping of fairness problems, the selection of fairness principles, and the choice of evaluation metrics. Findings highlight a need for more justification of fairness conceptualizations in literature as well as a need for standardized evaluation metrics and more empirical grounding and validation. The insights provided can help researchers and practitioners consider fairness comprehensively in the design of algorithmic control systems for congestion management.

Index Terms—congestion management, fairness, electrical distribution grids, algorithmic control systems

I. INTRODUCTION

The rapid expansion of distributed renewable energy generation and increased electrification is challenging the operation of electrical distribution grids. The corresponding growing power consumption and supply are increasingly leading to grid congestion, characterized by overloading and voltage deviations [1]. Traditionally, distribution system operators have addressed grid congestion by reinforcing infrastructure, but constraints such as technician shortages, spatial procedures, land limitations, and financing options hinder their efforts [2]. An alternative approach focuses on leveraging grid flexibility to shift loads away from congested points, requiring active involvement from prosumers using algorithmic control systems, also known as congestion management [3].

Next to technical challenges, congestion management introduces new questions for distribution system operators regarding fairness [4]. For instance, it is known that curtailment algorithms for maintaining voltage levels might disproportionately favor parties near a substation over others [5]. Researchers in power systems have therefore emphasized the importance of considering fairness in congestion management decisions (e.g.

This research is part of ROBUST: Trustworthy AI-based Systems for Sustainable Growth with project number KIC3.LTP.20.006, (partly) financed by the Dutch Research Council (NWO), Industry and the Dutch Ministry of Economic Affairs and Climate Policy under the program LTP KIC 2020-2023. 979-8-3503-9042-1/24/\$31.00 ©2024 IEEE

[6, 7]). However, many different conceptualizations of fairness have been presented in the literature [3].

Similar developments have been observed in computer science literature, where Gajane and Pechenizkiy [8] emphasized that there is no agreement among computer scientists about which fairness conceptualization is the most appropriate. Moreover, Castelnovo et al. [9] showed that satisfying different fairness conceptualizations at the same time is impossible. So, broadly supported norms and standards are required to ensure that the fairness conceptualizations considered in algorithmic control systems for congestion management are in line with societal needs and expectations. However, these norms and standards are still missing.

We therefore need a more comprehensive understanding of how fairness can or ought to be conceptualized in the context of congestion management. Despite the increasing number of papers addressing fairness in algorithmic control systems for congestion management, a comprehensive review of the various fairness conceptualizations remains lacking. This literature review aims to fill this gap by categorizing fairness conceptualizations in algorithmic control systems for congestion management. Our overview therefore aims to inform a more rigorous grounding of fairness conceptualizations for future researchers and to guide efforts for the development of shared norms and standards for fairness in this context.

Our main research question is therefore: *How do different scientific studies conceptualize fairness in the context of congestion management?* This paper is organized as follows: Section II describes the methodology of this literature review. Subsequently, we analyze and categorize three key aspects across all fairness conceptualizations: scoping decisions made (Section III), fairness principles considered (Section IV), and evaluation metrics used (Section V). Finally, Sections VI and VII provide the discussion and conclusion respectively.

II. METHODOLOGY

The literature search was conducted using IEEE Xplore and Scopus databases. The search keywords are shown in Table I, and the search query was: '(A) AND (B) AND (C) AND (D)'. Conducted on May 1st, 2024, the search spanned from 2009 to 2024. Only articles published in English were considered.

TABLE I
LITERATURE SEARCH KEYWORDS

Group	Keywords
(A)	'fairness' OR 'non-discrimination' OR 'justice'
(B)	'congestion' OR 'demand response' OR 'curtailment' OR 'voltage control'
(C)	'distribution'
(D)	'power' OR 'electrical' OR 'grid'

The search yielded 261 articles: 108 from Scopus and 153 from IEEE Xplore. After removing duplicates across the databases (resulting in 197 unique articles), we selected articles by scanning the abstracts based on two criteria. The first criterion was that the article discussed fairness principles or evaluation metrics in algorithmic control systems. The second criterion was that the article focused on congestion management in electrical distribution grids. After selecting eligible results based on scanning abstracts (82 articles), the complete articles were read and filtered for the same search criteria. This resulted in 54 articles for our literature review.

Three key aspects have been analyzed in the selected articles, as depicted in Figure 1. First, we analyzed how the problem of fairness was scoped within the context of congestion management. This involved aspects such as motivations for considering fairness, the types of congestion considered, and the types of burdens and benefits to be distributed. Secondly, the fairness principles considered in the selected papers have been analyzed, such as the uniform, proportional and social welfare fairness principles. Finally, the evaluation metrics used in the selected papers to assess these systems have been studied. These evaluation metrics are often used to determine whether the fairness principles are achieved, considering potential constraints such as physical limitations or competing objectives. The following sections provide our findings within these three categories.

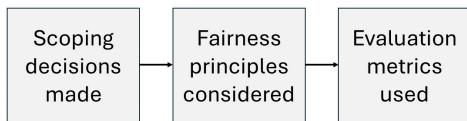


Fig. 1. Analyzed Aspects of Fairness Conceptualizations

III. FAIRNESS PROBLEM SCOPE

Table II outlines the scoping decisions identified from the selected articles. These include the motivation, type of congestion, application area, burdens or benefits to be distributed, time frame, and control type. Most studies concentrate on a specific combination of these scoping decisions, limiting the ability to compare the impact of different scoping decisions.

The scoping decision for a burden or benefit to be distributed *fairly* has a significant impact on the outcomes. For instance, aiming for equal provision of active power differs substantially from aiming for equal reduction of active power. However, many papers lack clear justification for their

TABLE II
SCOPING DECISIONS IN SELECTED ARTICLES

Scoping decisions	Options presented in selected articles
Motivation	Public acceptance (e.g. [10, 11]) Unfair voltage control (e.g. [12, 13]) General 'unfairness issues' (e.g. [14])
Congestion type	Over/under-voltage (e.g. [15, 16, 17]) Cable overloading (e.g. [1, 7, 18]) Transformer overloading (e.g. [19, 20, 21])
Application area	Photovoltaic systems (e.g. [3, 5, 22, 23]) Electric vehicles (e.g. [24, 25, 26]) Distributed energy resources (e.g. [27, 28]) Demand response (e.g. [11, 29, 30, 10])
Distributed burden or benefit	Power reduction amount (e.g. [31, 32, 33, 6]) Power reduction time (e.g. [22]) Power provision amount (e.g. [34, 35]) Rewards for power reduction (e.g. [36, 37]) Costs for power reduction (e.g. [38, 39, 29]) Delay in power provision (e.g. [30])
Time	Fairness at one time-point (e.g. [40, 41, 31, 42]) Fairness over previous time-points (e.g. [43, 44])
Control type	Feedforward (using forecast data) (e.g. [45, 16]) Feedback (using real-time data) (e.g. [27, 46, 47])

selection of burdens or benefits and do not consider how these choices impact the distribution of other burdens or benefits.

IV. FAIRNESS PRINCIPLES

Five main fairness principles emerged from the literature review. First, a *proportional* fairness principle aims to allocate resources based on certain properties of connected parties, such as their active power demand or installed generator capacity. Second, a *uniform* fairness principle strives for equal resource allocation among parties. Third, *fixed limits* set constraints on the distribution of resources, for example by ensuring that the resources of all parties remain below a specific threshold. Fourth, a *social welfare* fairness principle aims to achieve a global objective, such as minimizing curtailment. Finally, a *min-max* fairness principle aims to minimize the maximum burden or benefit among parties.

Many papers operationalize fairness principles in congestion management as optimization objectives and constraints. Table III presents mathematical formulations for each principle as examples. In these examples, consider a resource grid capacity U to be distributed among parties N , where u_n represents the allocated capacity for party n , \bar{u} the average allocated capacity, V a resource for the proportional fairness principle (e.g., active power demand), and L_n a fixed capacity limit for each party.

TABLE III
EXAMPLE MATHEMATICAL FORMULATIONS OF FAIRNESS PRINCIPLES

Principles	Mathematical formulation
Proportional	$f = \min \sum_{n \in N} \left(u_n - \frac{v_n}{\sum_{m \in N} v_m} \sum_{m \in N} u_m \right)^2$
Uniform	$f = \min \sum_{n \in N} (u_n - \bar{u})^2$
Fixed limits	$u_n \leq L_n, \forall n \in N$
Social welfare	$f = \max \sum_{n \in N} u_n$
Min-max	$f = \min u_{\max} \text{ s.t. } u_{\max} \geq u_n, \forall n \in N$

Table IV provides an overview of how the identified fairness principles are conceptualized in the selected articles. Out of 54 reviewed articles, 50 articles applied a fairness principle in their congestion management algorithmic systems. It must be noted that some articles covered multiple fairness principles and may therefore appear in more than one category.

TABLE IV
FAIRNESS PRINCIPLES IN SELECTED ARTICLES

Principles	Options presented in selected articles
Proportional	Real-time active power production (e.g. [48, 49, 50]) Real-time active power demand (e.g. [40]) Forecasted active power production (e.g. [18]) Real-time reactive power production (e.g. [48]) Maximum generator capacity (e.g. [5, 33, 45, 4, 15]) Maximum flexible load (e.g. [1]) Net power export (e.g. [3, 5, 17, 36]) Real-time reactive power production (e.g. [45]) Congestion management rewards (e.g. [5, 33]) Revenue on electricity markets (e.g. [4]) Fees paid to distribution system operator (e.g. [51]) Contribution to overvoltage (e.g. [52, 3, 53]) Number of past requests (e.g. [54, 11]) Power reduction in past requests (e.g. [22]) Power provision in the past (e.g. [55]) Distance to transformer (e.g. [6]) Reliability in execution of requests (e.g. [29]) Time to deadline (for charging) (e.g. [19])
Uniform	Active power reduction (e.g. [56, 3, 13]) Active power provision (e.g. [35, 24]) Reactive power reduction (e.g. [57]) Reactive power provision (e.g. [47]) Among certain geographical areas (e.g. [14, 31]) Delay in obtaining requested active power (e.g. [30]) Within certain geographical areas (e.g. [12])
Fixed limits	Active power reduction below threshold (e.g. [41]) Eligible participants (e.g. [17]) Maximum number of requests (e.g. [32]) Maximum duration of a request (e.g. [32]) Minimum time interval between requests (e.g. [32])
Social welfare	Active power reduction (e.g. [7]) Financial compensation (e.g. [37])
Min-max	Minimize maximum active power reduction (e.g. [3]) Maximize minimum active power provision (e.g. [51])

It's important to recognize that while literature often uses the term *proportional fairness* as a single concept, many factors are used for determining this proportionality, as detailed in the second column of Table IV. Our analysis identified eighteen such factors from the selected articles. Authors however rarely justified why a certain factor was chosen for the proportional fairness principle in their algorithmic system.

V. FAIRNESS EVALUATION METRICS

Fairness principles serve as goals for algorithmic control systems in congestion management. However, the nature of the optimization problem can prevent these goals from being fully achieved in practice. For instance, certain objectives or constraints might be unachievable due to overlooked factors, ill-posed problems, or non-convergence of optimization algorithms. Therefore, fairness evaluation metrics are necessary to assess whether the objectives and constraints are met and whether these objectives and constraints are actually promoting a certain fairness principle. Additionally, fairness

evaluation metrics can provide insights into the operational performance of the algorithmic control systems in practice.

Table V provides an overview of the fairness evaluation metrics considered in the selected articles. Four categories were identified: Jain's fairness index, averages, ratios, and the Gini coefficient. Jain's fairness index and the Gini coefficient were the most frequently used evaluation metrics, both promoting the uniform fairness principle, although Jain's fairness index has been adapted for the proportional fairness principle (e.g. [55, 31]). To clarify, Table VI presents mathematical formulations for Jain's fairness index [58] and the Gini coefficient [59] as examples, where u_n denotes the resource allocated to party n , and $|N|$ represents the total number of parties.

TABLE V
FAIRNESS EVALUATION METRICS IN SELECTED ARTICLES

Metrics	Options presented in selected articles
Jain's fairness index	Active power reduction (e.g. [5, 7]) Active power provision (e.g. [25]) Proportional active power reduction (e.g. [55, 31, 15]) Proportional active power provision (e.g. [19, 14, 16, 4]) Proportional financial benefit (e.g. [4]) Proportional net active power export (e.g. [4])
Average	Active power reduction time per participant (e.g. [32]) Relative distance to transformer for requests (e.g. [32]) Curtailment within a geographical area (e.g. [33, 12]) Percentage curtailment within an area (e.g. [33])
Ratio	Charging costs standard deviation over mean (e.g. [39]) Actual over estimated economic gain (e.g. [20]) Energy difference ratio (e.g. [51])
Gini coefficient	Charging time (e.g. [34]) Active power reduction (e.g. [13])

Most of the selected articles evaluate the same fairness principle applied in their algorithmic control system and do not evaluate the impact on other fairness principles, nor on the distribution of other burdens or benefits. Only Liu et al. [4] address this limitation. Three of the selected articles tested their algorithmic control systems against multiple fairness metrics (i.e. [32, 33, 4]). In contrast, many authors claim that their algorithmic control systems are *fair*, based on a single evaluation metric or without any evaluation metrics at all.

TABLE VI
EXAMPLE MATHEMATICAL FORMULATIONS OF EVALUATION METRICS

Evaluation metric	Mathematical formulation
Jain's fairness index [58]	$\frac{(\sum_{n \in N} u_n)^2}{ N \cdot \sum_{n \in N} u_n^2}$
Gini coefficient [59]	$\frac{\sum_{i=1}^{ N } \sum_{j=1}^{ N } u_i - u_j }{2 \cdot N \cdot \sum_{n \in N} u_n}$

VI. DISCUSSION

This study's analysis highlighted four main points for discussion. First, the motivations for incorporating fairness into algorithmic control systems were often not explicitly stated, yet they can significantly influence how fairness is conceptualized. Motivations ranged from aiming to minimize 'unfairness issues' to addressing specific instances of unfairness deemed unacceptable by actors. These motivations can also affect

researchers' methodological approaches. For instance, public acceptance concerns might prioritize empirical validity, while normative concerns may emphasize philosophical interpretations or alignment with existing policy and regulation.

In addition to addressing motivations, the selected articles frequently lacked justification for design decisions regarding scope, fairness principles, and evaluation metrics. Future research should focus on developing standardized methods for these justifications to enhance transparency and rigor.

The selected articles primarily concentrated on applying fairness principles in their algorithmic control systems for congestion management, rather than on developing fairness evaluation metrics. Establishing common standards for evaluation metrics, alongside fairness principles, would unify the research community and enable more comprehensive empirical testing. More research is therefore needed to establish standardized metrics for assessing fairness in this context.

Moreover, the selected articles failed to address how different fairness conceptualizations were perceived by various actors in congestion management. Future research should therefore prioritize empirical studies to better understand the experiences of these actors, such as distribution system operators, regulators, and connected parties. This could involve field studies, surveys, and interviews. Such research would be instrumental in developing shared norms and standards for fairness in congestion management.

VII. CONCLUSION

This paper reviewed the literature on fairness in congestion management, exploring the different ways fairness is conceptualized. The analysis revealed considerable variation in fairness conceptualizations, highlighting a need for more explicit justification of design decisions. It also identified a need for more research on evaluation metrics to assess fairness and for empirical research on how different fairness conceptualizations are perceived by key actors. The presented categorization is not necessarily complete, but it may help others in conceptualizing and validating notions of fairness in the design of algorithmic systems for congestion management.

REFERENCES

- [1] H. Ipach and C. Becker, "Utility-optimizing real-time congestion management in low voltage distribution grids," in *Proc. IEEE PES Innovative Smart Grid Technol. Europe*, 2020, pp. 685–689.
- [2] K. Spiliotis, A. I. Ramos Gutierrez, and R. Belmans, "Demand flexibility versus physical network expansions in distribution grids," *Appl. Energy*, vol. 182, pp. 613–624, 2016.
- [3] A. R. Vadavathi, G. Hoogsteen, and J. Hurink, "Fair and efficient congestion management for low voltage distribution networks," in *Proc. IEEE Int. Energy Conf.*, 2024, pp. 1–6.
- [4] M. Z. Liu, A. T. Procopiou, K. Petrou, L. F. Ochoa, T. Langstaff, J. Harding, and J. Theunissen, "On the fairness of pv curtailment schemes in residential distribution networks," *IEEE Trans. on Smart Grid*, vol. 11, no. 5, pp. 4502–4512, 2020.
- [5] S. Zhan, J. Morren, W. van den Akker, A. van der Molen, N. G. Paterakis, and J. G. Slootweg, "Fairness-incorporated online feedback optimization for real-time distribution grid management," *IEEE Trans. on Smart Grid*, 2023.
- [6] A. R. Vadavathi, G. Hoogsteen, and J. L. Hurink, "Comparison of fairness based coordinated grid voltage control methods for pv inverters," in *Proc. IEEE PES Innovative Smart Grid Technol. Europe*, 2021, pp. 1–5.
- [7] R. D. Hernandez, J. S. Giraldo, G. Tsatsosoglou, M. J. Rider, and N. G. Paterakis, "Fair congestion management in distribution systems using virtual power lines," in *Proc. Int. Conf. on Smart Energy Syst. and Technol.*, 2021, pp. 1–6.
- [8] P. Gajane and M. Pechenizkiy, "On formalizing fairness in prediction with machine learning," 2017, *arXiv:1710.03184*.
- [9] A. Castelnovo, R. Crupi, G. Greco, D. Regoli, I. G. Penco, and A. C. Cosentini, "A clarification of the nuances in the fairness metrics landscape," *Scientific Reports*, vol. 12, 2022.
- [10] R. Cakmak and İ. H. Altaş, "A novel billing approach for fair and effective demand side management: Appliance level billing (applebill)," *Int. J. of Electrical Power & Energy Syst.*, vol. 121, 2020.
- [11] B. P. Bhattarai, K. Kouzelis, I. D. D. C. Mendaza, B. Bak-Jensen, J. R. Pillai, and K. S. Myers, "Smart grid constraint violation management for balancing and regulating purposes," *IEEE Trans. on Ind. Inform.*, vol. 13, no. 6, pp. 2864–2875, 2017.
- [12] S. Poudel, M. Mukherjee, R. Sadnan, and A. P. Reiman, "Fairness-aware distributed energy coordination for voltage regulation in power distribution systems," *IEEE Trans. on Sustain. Energy*, 2023.
- [13] M. Vassallo, A. Benzerga, A. Bahmanyar, and D. Ernst, "Fair reinforcement learning algorithm for pv active control in lv distribution networks," in *Proc. IEEE Int. Conf. on Clean Electrical Power*, 2023, pp. 796–802.
- [14] S. Alyami and C. Wang, "Renewable curtailment fairness in distribution networks: Application of division rules," in *Proc. IEEE Power & Energy Society General Meeting*, 2022, pp. 1–5.
- [15] Y. Z. Gerdroodbari, R. Razzaghi, and F. Shahnia, "Decentralized control strategy to improve fairness in active power curtailment of pv inverters in low-voltage distribution networks," *IEEE Trans. on Sustain. Energy*, vol. 12, no. 4, pp. 2282–2292, 2021.
- [16] R. K. Gupta and D. K. Molzahn, "Improving fairness in photovoltaic curtailments via daily topology reconfiguration for voltage control in power distribution networks," 2024, *arXiv:2403.07853*.
- [17] D. Gebbran, S. Mhanna, Y. Ma, A. C. Chapman, and G. Verbić, "Fair coordination of distributed energy resources with volt-var control and pv curtailment," *Appl. Energy*, vol. 286, 2021.
- [18] S. Zhan, J. Morren, W. van Den Akker, A. van der Molen, N. G. Paterakis, and J. G. Slootweg, "Combined mv-lv power grid operation: Comparing sequential, integrated, and decentralized control architectures," in *Proc. Int. Conf. on Smart Energy Syst. and Technol.*, 2022, pp. 1–6.
- [19] M. Zeballos, A. Ferragut, and F. Paganini, "Preserving fairness in ev charging under time-varying congestion levels," in *Proc. IEEE Power, Instrum. and Meas. Meeting*, 2018, pp. 1–5.
- [20] C. L. Dewangan, V. Vijayan, D. Shukla, S. Chakrabarti, S. Singh, A. Sharma, and M. A. Hossain, "An improved decentralized scheme for incentive-based demand response from residential customers," *Energy*, vol. 284, 2023.
- [21] S. Bakr and S. Cranefield, "Using the shapley value for fair consumer compensation in energy demand response programs: comparing algorithms," in *Proc. IEEE Int. Conf. on Data Sci. and Data Intensive Syst.* IEEE, 2015, pp. 440–447.
- [22] C. V. Chandran, M. Basu, K. Sunderland, S. Pukhrem, and J. P. Catalão, "Application of demand response to improve voltage regulation with high dg penetration," *Electric Power Syst. Res.*, vol. 189, 2020.
- [23] P. Lusis, L. L. Andrew, S. Chakraborty, A. Liebman, and G. Tack, "Reducing the unfairness of coordinated inverter

dispatch in pv-rich distribution networks," in *Proc. IEEE Milan PowerTech*, 2019, pp. 1–6.

[24] E. Ucer, M. C. Kisacikoglu, M. Yuksel, and A. C. Gurbuz, "An internet-inspired proportional fair ev charging control method," *IEEE Syst. J.*, vol. 13, no. 4, pp. 4292–4302, 2019.

[25] E. Ucer and M. Kisacikoglu, "Data-driven distributed control to scale ev integration into power grid," in *Proc. IEEE Power & Energy Society General Meeting*, 2022, pp. 1–5.

[26] M. Gardlo, L. Buzna, R. Carvalho, R. Gibbens, and F. Kelly, "Collective effects and performance of algorithmic electric vehicle charging strategies," in *Proc. IEEE Workshop on Complexity in Eng.*, 2018, pp. 1–7.

[27] Y. Z. Gerdroodbari, A. B. Pengwah, R. Razzaghi, R. Heidari, and L. L. Andrew, "A method to control distributed energy resources in distribution networks using smart meter data," *Int. J. of Electrical Power & Energy Syst.*, vol. 153, 2023.

[28] S. Bindal and A. R. Abhyankar, "A fair and self-sufficient value stack-based compensation scheme for ders enhancing network performance," *IEEE Trans. on Energy Markets, Policy and Regulation*, 2024.

[29] J. Wu, L. Zhuo, W. Wu, J. Qian, J. Yue, and B. Pan, "Load allocation method based on fairness and economy in hierarchical and district demand response," in *Proc. Int. Conf. on Netw. Syst. of AI*, 2021, pp. 253–257.

[30] J. Gao, Y. Xiao, S. Li, and T. Li, "A schedulable energy scheduling algorithm with fair delay for smart grid distributions," *IEEE Syst. J.*, vol. 15, no. 2, pp. 2871–2882, 2020.

[31] S. Alyami, "Fairness and usability analysis in renewable power curtailment: A microgrid network study using bankruptcy rules," *Renewable Energy*, vol. 227, 2024.

[32] M. Vanin, H. Ergun, R. D'huist, K. Vanthournout, and D. Van Hertem, "Fairness indices for residential power demand management contracts," in *Proc. CIRED Berlin Workshop*, 2020, pp. 105–108.

[33] M. Mukherjee, S. Poudel, R. Sadnan, T. E. Slay, and A. P. Reiman, "Enabling fairness in distributed pv curtailment for voltage regulation: A comparative analysis," in *Proc. IEEE PES Innovative Smart Grid Technol. Europe*, 2024, pp. 1–5.

[34] R. Carvalho, L. Buzna, R. Gibbens, and F. Kelly, "Critical behaviour in charging of electric vehicles," *New J. of Phys.*, vol. 17, no. 9, 2015.

[35] S. Shafiq, M. Nadarajah, and A. T. Al-Awami, "A communication-free ev charge controller for residential households," in *Proc. IEEE Int. Conf. on Energy Technol. for Future Grids*, 2023, pp. 1–6.

[36] S. Liu, X. Li, Y. Ding, Q. Su, and Z. Liu, "A kind of demand response approach for phevs charging in smart grid," in *Proc. Chin. Control And Decis. Conf.*, 2020, pp. 2002–2007.

[37] S. Takayama and A. Ishigame, "A voltage-aware p2p power trading system aimed at eliminating unfairness due to the interconnection location," *Energies*, vol. 17, no. 4, 2024.

[38] A. I. Negash, T. W. Haring, and D. S. Kirschen, "Allocating the cost of demand response compensation in wholesale energy markets," *IEEE Trans. on Power Systems*, vol. 30, no. 3, pp. 1528–1535, 2014.

[39] S. Zafar, R. Féraud, A. Blavette, G. Camilleri, and H. Ben Ahmed, "Decentralized smart charging of large-scale evs using adaptive multi-agent multi-armed bandits," in *Proc. Int. Conf. on Electricity Distribution*, 2023, pp. 1130–1134.

[40] O. Ardakanian, S. Keshav, and C. Rosenberg, "Real-time distributed control for smart electric vehicle chargers: From a static to a dynamic study," *IEEE Trans. on Smart Grid*, vol. 5, no. 5, pp. 2295–2305, 2014.

[41] Y. Z. Gerdroodbari, M. Khorasany, R. Razzaghi, and R. Heidari, "Management of prosumers using dynamic export limits and shared community energy storage," *Appl. Energy*, vol. 355, 2024.

[42] Y. Z. Gerdroodbari, A. B. Pengwah, and R. Razzaghi, "Data-driven control of distributed energy resources using smart meters data," in *Proc. IEEE Asia-Pacific Power and Energy Eng. Conf.*, 2022, pp. 1–5.

[43] V. Venizelou, A. C. Tsolakis, D. Evagorou, C. Patsonakis, I. Koskinas, P. Therapontos, L. Zyglakis, D. Ioannidis, G. Makrides, D. Tzovaras *et al.*, "Dso-aggregator demand response cooperation framework towards reliable, fair and secure flexibility dispatch," *Energies*, vol. 16, no. 6, 2023.

[44] N. Hidaka, T. Miyamoto, and H. Sugihara, "An admm approach to distributed optimization in distribution system considering fairness among consumers," in *Proc. IEEE Int. Conf. on Syst., Man and Cybern.*, 2019, pp. 2254–2258.

[45] X. Sun, J. Qiu, Y. Tao, Y. Ma, and J. Zhao, "Coordinated real-time voltage control in active distribution networks: An incentive-based fairness approach," *IEEE Trans. on Smart Grid*, vol. 13, no. 4, pp. 2650–2663, 2022.

[46] Y. Jacubowicz, D. Raz, and Y. Beck, "Fairness algorithm for emergency demand response operation in distribution networks," *Int. J. of Electrical Power & Energy Syst.*, vol. 138, 2022.

[47] R. Pedersen, C. Sloth, and R. Wisniewski, "Coordination of electrical distribution grid voltage control-a fairness approach," in *Proc. IEEE Conf. on Control Appl.*, 2016, pp. 291–296.

[48] S. Poudel, M. Mukherjee, and A. P. Reiman, "A fairness-based distributed energy coordination for voltage regulation in distribution systems," in *Proc. IEEE Green Technol. Conf.*, 2022, pp. 45–50.

[49] R. Sadnan, S. Poudel, M. Mukherjee, T. E. Slay, and A. P. Reiman, "Bisection method for fairness-aware distributed pv curtailment in power distribution systems," in *Proc. IEEE Power & Energy Society General Meeting*, 2023, pp. 1–5.

[50] N. Gueissaz, K. Christakou, J.-Y. Le Boudec, and M. Paolone, "Fair control of distributed pv plants in low voltage grids," in *Proc. IEEE PES Innovative Smart Grid Technol. Europe*, 2017, pp. 1–6.

[51] X. Wang, Y. Pi, and A. Tang, "Scheduling of electric vehicle charging via multi-server fair queueing," *IEEE Trans. on Parallel and Distrib. Syst.*, vol. 28, no. 11, pp. 3298–3312, 2017.

[52] A. T. Al-Awami, E. Sortomme, G. M. A. Akhtar, and S. Faddel, "A voltage-based controller for an electric-vehicle charger," *IEEE Trans. on Veh. Technol.*, vol. 65, no. 6, pp. 4185–4196, 2015.

[53] H. Mohsenian-Rad and A. Davoudi, "Towards building an optimal demand response framework for dc distribution networks," *IEEE Trans. on Smart Grid*, vol. 5, no. 5, pp. 2626–2634, 2014.

[54] P. Danzi, M. Angelichinoski, Č. Stefanović, and P. Popovski, "Distributed proportional-fairness control in microgrids via blockchain smart contracts," in *Proc. IEEE Int. Conf. on Smart Grid Commun.*, 2017, pp. 45–51.

[55] E. Jamil and B. Hayes, "Fair prosumer participation in p2p energy markets: An iterative water-filling algorithm for congestion control," in *Proc. IEEE Int. Univ. Power Eng. Conf.*, 2023, pp. 1–6.

[56] J. Seuss, M. J. Reno, M. Lave, R. J. Broderick, and S. Grijalva, "Advanced inverter controls to dispatch distributed pv systems," in *Proc. IEEE Photovoltaic Specialists Conf.*, 2016, pp. 1387–1392.

[57] X. Sun, J. Qiu, Y. Tao, and J. Zhao, "Data-driven combined central and distributed volt/var control in active distribution networks," *IEEE Trans. on Smart Grid*, 2022.

[58] R. K. Jain, D.-M. W. Chiu, and W. R. Hawe, "A quantitative measure of fairness and discrimination," *Eastern Res. Lab., Digit. Equip. Corporation, Hudson, MA*, vol. 21, 1984.

[59] A. Ullah, *Handbook of applied economic statistics*. CRC Press, 1998.