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Abstract—Fairness has recently gained significant attention in
the scientific literature on algorithmic control systems for con-
gestion management. However, many diverse conceptualizations
of fairness have been presented. This paper aims to categorize
these varying conceptualizations by reviewing existing literature
on congestion management. It examines how researchers ap-
proach decisions concerning the scoping of fairness problems,
the selection of fairness principles, and the choice of evaluation
metrics. Findings highlight a need for more justification of
fairness conceptualizations in literature as well as a need for
standardized evaluation metrics and more empirical grounding
and validation. The insights provided can help researchers and
practitioners consider fairness comprehensively in the design of
algorithmic control systems for congestion management.

Index Terms—congestion management, fairness, electrical dis-
tribution grids, algorithmic control systems

I. INTRODUCTION

The rapid expansion of distributed renewable energy gener-
ation and increased electrification is challenging the operation
of electrical distribution grids. The corresponding growing
power consumption and supply are increasingly leading to
grid congestion, characterized by overloading and voltage
deviations [1]. Traditionally, distribution system operators have
addressed grid congestion by reinforcing infrastructure, but
constraints such as technician shortages, spatial procedures,
land limitations, and financing options hinder their efforts [2].
An alternative approach focuses on leveraging grid flexibility
to shift loads away from congested points, requiring active in-
volvement from prosumers using algorithmic control systems,
also known as congestion management [3].

Next to technical challenges, congestion management intro-
duces new questions for distribution system operators regard-
ing fairness [4]. For instance, it is known that curtailment algo-
rithms for maintaining voltage levels might disproportionately
favor parties near a substation over others [5]. Researchers in
power systems have therefore emphasized the importance of
considering fairness in congestion management decisions (e.g.

This research is part of ROBUST: Trustworthy AI-based Systems for
Sustainable Growth with project number KICH3.LTP.20.006, (partly) financed
by the Dutch Research Council (NWO), Industry and the Dutch Ministry of
Economic Affairs and Climate Policy under the program LTP KIC 2020-2023.
979-8-3503-9042-1/24/$31.00 ©2024 IEEE

[6, 7]). However, many different conceptualizations of fairness
have been presented in the literature [3].

Similar developments have been observed in computer
science literature, where Gajane and Pechenizkiy [8] empha-
sized that there is no agreement among computer scientists
about which fairness conceptualization is the most appropriate.
Moreover, Castelnovo et al. [9] showed that satisfying different
fairness conceptualizations at the same time is impossible. So,
broadly supported norms and standards are required to ensure
that the fairness conceptualizations considered in algorithmic
control systems for congestion management are in line with
societal needs and expectations. However, these norms and
standards are still missing.

We therefore need a more comprehensive understanding
of how fairness can or ought to be conceptualized in the
context of congestion management. Despite the increasing
number of papers addressing fairness in algorithmic control
systems for congestion management, a comprehensive review
of the various fairness conceptualizations remains lacking.
This literature review aims to fill this gap by categorizing
fairness conceptualizations in algorithmic control systems for
congestion management. Our overview therefore aims to in-
form a more rigorous grounding of fairness conceptualizations
for future researchers and to guide efforts for the development
of shared norms and standards for fairness in this context.

Our main research question is therefore: How do differ-
ent scientific studies conceptualize fairness in the context of
congestion management? This paper is organized as follows:
Section II describes the methodology of this literature review.
Subsequently, we analyze and categorize three key aspects
across all fairness conceptualizations: scoping decisions made
(Section III), fairness principles considered (Section IV), and
evaluation metrics used (Section V). Finally, Sections VI and
VII provide the discussion and conclusion respectively.

II. METHODOLOGY

The literature search was conducted using IEEE Xplore and
Scopus databases. The search keywords are shown in Table I,
and the search query was: ‘(A) AND (B) AND (C) AND (D)’.
Conducted on May 1st, 2024, the search spanned from 2009
to 2024. Only articles published in English were considered.
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TABLE I
LITERATURE SEARCH KEYWORDS

Group Keywords
(A) ‘fairness’ OR ‘non-discrimination’ OR ‘justice’
(B) ‘congestion’ OR ‘demand response’ OR ‘curtailment’

OR ‘voltage control’
(C) ‘distribution’
(D) ‘power’ OR ‘electrical’ OR ‘grid’

The search yielded 261 articles: 108 from Scopus and
153 from IEEE Xplore. After removing duplicates across
the databases (resulting in 197 unique articles), we selected
articles by scanning the abstracts based on two criteria. The
first criterion was that the article discussed fairness principles
or evaluation metrics in algorithmic control systems. The
second criterion was that the article focused on congestion
management in electrical distribution grids. After selecting
eligible results based on scanning abstracts (82 articles), the
complete articles were read and filtered for the same search
criteria. This resulted in 54 articles for our literature review.

Three key aspects have been analyzed in the selected
articles, as depicted in Figure 1. First, we analyzed how the
problem of fairness was scoped within the context of conges-
tion management. This involved aspects such as motivations
for considering fairness, the types of congestion considered,
and the types of burdens and benefits to be distributed.
Secondly, the fairness principles considered in the selected
papers have been analyzed, such as the uniform, proportional
and social welfare fairness principles. Finally, the evaluation
metrics used in the selected papers to assess these systems
have been studied. These evaluation metrics are often used
to determine whether the fairness principles are achieved,
considering potential constraints such as physical limitations
or competing objectives. The following sections provide our
findings within these three categories.

Fig. 1. Analyzed Aspects of Fairness Conceptualizations

III. FAIRNESS PROBLEM SCOPE

Table II outlines the scoping decisions identified from the
selected articles. These include the motivation, type of con-
gestion, application area, burdens or benefits to be distributed,
time frame, and control type. Most studies concentrate on a
specific combination of these scoping decisions, limiting the
ability to compare the impact of different scoping decisions.

The scoping decision for a burden or benefit to be dis-
tributed fairly has a significant impact on the outcomes.
For instance, aiming for equal provision of active power
differs substantially from aiming for equal reduction of active
power. However, many papers lack clear justification for their

TABLE II
SCOPING DECISIONS IN SELECTED ARTICLES

Scoping decisions Options presented in selected articles
Motivation Public acceptance (e.g. [10, 11])

Unfair voltage control (e.g. [12, 13])
General ‘unfairness issues’ (e.g. [14])

Congestion type Over/under-voltage (e.g. [15, 16, 17])
Cable overloading (e.g. [1, 7, 18])
Transformer overloading (e.g. [19, 20, 21])

Application area Photovoltaic systems (e.g. [3, 5, 22, 23])
Electric vehicles (e.g. [24, 25, 26])
Distributed energy resources (e.g. [27, 28])
Demand response (e.g. [11, 29, 30, 10])

Distributed burden Power reduction amount (e.g. [31, 32, 33, 6])
or benefit Power reduction time (e.g. [22])

Power provision amount (e.g. [34, 35])
Rewards for power reduction (e.g. [36, 37])
Costs for power reduction (e.g. [38, 39, 29])
Delay in power provision (e.g. [30])

Time Fairness at one time-point (e.g. [40, 41, 31, 42])
Fairness over previous time-points (e.g. [43, 44])

Control type Feedforward (using forecast data) (e.g. [45, 16])
Feedback (using real-time data) (e.g. [27, 46, 47])

selection of burdens or benefits and do not consider how these
choices impact the distribution of other burdens or benefits.

IV. FAIRNESS PRINCIPLES

Five main fairness principles emerged from the literature
review. First, a proportional fairness principle aims to allocate
resources based on certain properties of connected parties,
such as their active power demand or installed generator
capacity. Second, a uniform fairness principle strives for
equal resource allocation among parties. Third, fixed limits
set constraints on the distribution of resources, for example
by ensuring that the resources of all parties remain below a
specific threshold. Fourth, a social welfare fairness principle
aims to achieve a global objective, such as minimizing curtail-
ment. Finally, a min-max fairness principle aims to minimize
the maximum burden or benefit among parties.

Many papers operationalize fairness principles in congestion
management as optimization objectives and constraints. Table
III presents mathematical formulations for each principle as
examples. In these examples, consider a resource grid capacity
U to be distributed among parties N , where un represents the
allocated capacity for party n, ū the average allocated capacity,
V a resource for the proportional fairness principle (e.g., active
power demand), and Ln a fixed capacity limit for each party.

TABLE III
EXAMPLE MATHEMATICAL FORMULATIONS OF FAIRNESS PRINCIPLES

Principles Mathematical formulation

Proportional f = min
∑

n∈N

(
un − vn∑

m∈N vm

∑
m∈N um

)2

Uniform f = min
∑

n∈N (un − u)2

Fixed limits un ≤ Ln,∀n ∈ N

Social welfare f = max
∑

n∈N un

Min-max f = minumax s.t. umax ≥ un, ∀n ∈ N.
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Table IV provides an overview of how the identified fairness
principles are conceptualized in the selected articles. Out of
54 reviewed articles, 50 articles applied a fairness principle in
their congestion management algorithmic systems. It must be
noted that some articles covered multiple fairness principles
and may therefore appear in more than one category.

TABLE IV
FAIRNESS PRINCIPLES IN SELECTED ARTICLES

Principles Options presented in selected articles
Proportional Real-time active power production (e.g. [48, 49, 50])

Real-time active power demand (e.g. [40])
Forecasted active power production (e.g. [18])
Real-time reactive power production (e.g. [48])
Maximum generator capacity (e.g. [5, 33, 45, 4, 15])
Maximum flexible load (e.g. [1])
Net power export (e.g. [3, 5, 17, 36])
Real-time reactive power production (e.g. [45])
Congestion management rewards (e.g. [5, 33])
Revenue on electricity markets (e.g. [4])
Fees paid to distribution system operator (e.g. [51])
Contribution to overvoltage (e.g. [52, 3, 53])
Number of past requests (e.g. [54, 11])
Power reduction in past requests (e.g. [22])
Power provision in the past (e.g. [55])
Distance to transformer (e.g. [6])
Reliability in execution of requests (e.g. [29])
Time to deadline (for charging) (e.g. [19])

Uniform Active power reduction (e.g. [56, 3, 13])
Active power provision (e.g. [35, 24])
Reactive power reduction (e.g. [57])
Reactive power provision (e.g. [47])
Among certain geographical areas (e.g. [14, 31])
Delay in obtaining requested active power (e.g. [30])
Within certain geographical areas (e.g. [12])

Fixed limits Active power reduction below threshold (e.g. [41])
Eligible participants (e.g. [17])
Maximum number of requests (e.g. [32])
Maximum duration of a request (e.g. [32])
Minimum time interval between requests (e.g. [32])

Social welfare Active power reduction (e.g. [7])
Financial compensation (e.g. [37])

Min-max Minimize maximum active power reduction (e.g. [3])
Maximize minimum active power provision (e.g. [51])

It’s important to recognize that while literature often uses
the term proportional fairness as a single concept, many fac-
tors are used for determining this proportionality, as detailed
in the second column of Table IV. Our analysis identified
eighteen such factors from the selected articles. Authors how-
ever rarely justified why a certain factor was chosen for the
proportional fairness principle in their algorithmic system.

V. FAIRNESS EVALUATION METRICS

Fairness principles serve as goals for algorithmic control
systems in congestion management. However, the nature of
the optimization problem can prevent these goals from being
fully achieved in practice. For instance, certain objectives or
constraints might be unachievable due to overlooked factors,
ill-posed problems, or non-convergence of optimization algo-
rithms. Therefore, fairness evaluation metrics are necessary
to assess whether the objectives and constraints are met
and whether these objectives and constraints are actually
promoting a certain fairness principle. Additionally, fairness

evaluation metrics can provide insights into the operational
performance of the algorithmic control systems in practice.

Table V provides an overview of the fairness evaluation met-
rics considered in the selected articles. Four categories were
identified: Jain’s fairness index, averages, ratios, and the Gini
coefficient. Jain’s fairness index and the Gini coefficient were
the most frequently used evaluation metrics, both promoting
the uniform fairness principle, although Jain’s fairness index
has been adapted for the proportional fairness principle (e.g.
[55, 31]). To clarify, Table VI presents mathematical formu-
lations for Jain’s fairness index [58] and the Gini coefficient
[59] as examples, where un denotes the resource allocated to
party n, and |N | represents the total number of parties.

TABLE V
FAIRNESS EVALUATION METRICS IN SELECTED ARTICLES

Metrics Options presented in selected articles
Jain’s Active power reduction (e.g. [5, 7])
fairness Active power provision (e.g. [25])
index Proportional active power reduction (e.g. [55, 31, 15])

Proportional active power provision (e.g. [19, 14, 16, 4])
Proportional financial benefit (e.g. [4])
Proportional net active power export (e.g. [4])

Average Active power reduction time per participant (e.g. [32])
Relative distance to transformer for requests (e.g. [32])
Curtailment within a geographical area (e.g. [33, 12])
Percentage curtailment within an area (e.g. [33])

Ratio Charging costs standard deviation over mean (e.g. [39])
Actual over estimated economic gain (e.g. [20])
Energy difference ratio (e.g. [51])

Gini Charging time (e.g. [34])
coefficient Active power reduction (e.g. [13])

Most of the selected articles evaluate the same fairness
principle applied in their algorithmic control system and do
not evaluate the impact on other fairness principles, nor on
the distribution of other burdens or benefits. Only Liu et al.
[4] address this limitation. Three of the selected articles tested
their algorithmic control systems against multiple fairness
metrics (i.e. [32, 33, 4]). In contrast, many authors claim that
their algorithmic control systems are fair, based on a single
evaluation metric or without any evaluation metrics at all.

TABLE VI
EXAMPLE MATHEMATICAL FORMULATIONS OF EVALUATION METRICS

Evaluation metric Mathematical formulation

Jain’s fairness index [58] (
∑

n∈N un)
2

|N|·
∑

n∈N u2
n

Gini coefficient [59]
∑|N|

i=1

∑|N|
j=1 |ui−uj |

2·|N|·
∑

n∈N un

VI. DISCUSSION

This study’s analysis highlighted four main points for dis-
cussion. First, the motivations for incorporating fairness into
algorithmic control systems were often not explicitly stated,
yet they can significantly influence how fairness is conceptual-
ized. Motivations ranged from aiming to minimize ‘unfairness
issues’ to addressing specific instances of unfairness deemed
unacceptable by actors. These motivations can also affect
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researchers’ methodological approaches. For instance, public
acceptance concerns might prioritize empirical validity, while
normative concerns may emphasize philosophical interpreta-
tions or alignment with existing policy and regulation.

In addition to addressing motivations, the selected articles
frequently lacked justification for design decisions regarding
scope, fairness principles, and evaluation metrics. Future re-
search should focus on developing standardized methods for
these justifications to enhance transparency and rigor.

The selected articles primarily concentrated on applying
fairness principles in their algorithmic control systems for con-
gestion management, rather than on developing fairness eval-
uation metrics. Establishing common standards for evaluation
metrics, alongside fairness principles, would unify the research
community and enable more comprehensive empirical testing.
More research is therefore needed to establish standardized
metrics for assessing fairness in this context.

Moreover, the selected articles failed to address how dif-
ferent fairness conceptualizations were perceived by various
actors in congestion management. Future research should
therefore prioritize empirical studies to better understand the
experiences of these actors, such as distribution system op-
erators, regulators, and connected parties. This could involve
field studies, surveys, and interviews. Such research would
be instrumental in developing shared norms and standards for
fairness in congestion management.

VII. CONCLUSION

This paper reviewed the literature on fairness in conges-
tion management, exploring the different ways fairness is
conceptualized. The analysis revealed considerable variation
in fairness conceptualizations, highlighting a need for more
explicit justification of design decisions. It also identified
a need for more research on evaluation metrics to assess
fairness and for empirical research on how different fairness
conceptualizations are perceived by key actors. The presented
categorization is not necessarily complete, but it may help
others in conceptualizing and validating notions of fairness in
the design of algorithmic systems for congestion management.
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