

Comparison of Remotely Sensed and Volunteered Geographic Information for water reservoirs

Maria Moscholaki November 2020

Supervisors: Clara Garcia-Sanchez Balázs Dukai

Gennadii Donchyts Christine Rogers

- Introduction
- Methodology
- Implementation and Results
- Sensitivity Analysis
- Conclusions and Future Work

Outline

- Introduction
- Methodology
- Implementation and Results
- Sensitivity Analysis
- Conclusions and Future Work

Introduction Motivation

Data Dis-similarities

Data Dis-similarities

Data Dis-similarities

Data Dis-similarities

17°0.000 E

Dataset

OSM

Port Defacet Sentirel 2

What are the spatial differences between Earth Observation based and Volunteered Geographic Information for water reservoirs and how can they be addressed in an automated way at a large scale?

- What are the differences in terms of spatial coverage?
- What are the differences in terms of positional accuracy?

Outline

- Introduction
- Methodology
- Implementation and Results
- Sensitivity Analysis
- Conclusions and Future Work

Methodology Flowchart

1. Sentinel 2

- 2. Global Surface Water
- 3. OpenStreetMap
- 4. HydroLAKES
- 5. GRaND

Completeness
Percentage of Overlap
Hausdorff Distance

Methodology Pre-Processing: Satellite Imagery

Seasonal and Annual changes in surface water dynamics

Methodology Pre-Processing: Global Surface Water (GSW)

Methodology Pre-Processing: Global Surface Water (GSW)

Methodology Pre-Processing: Global Surface Water (GSW)

Acquisition Period 2016 -2019

1km x 1km Grid over Study Area

Methodology Pre-Processing: Sentinel 2

Sort Images depending on their cloud score

Selection of least cloudy images based on MODIS annual cloud frequency

Methodology Completeness

Completeness quality metric: Indicates water area completeness

Methodology Completeness

Methodology Completeness

area Dataset 2

Percentage of Overlap quality metric:

- 1. Feature Based Comparison
- 2. Indicates spatial offset between two features

Point Based Comparison

Rasterization of Line and Polygonal Primitives

Euclidean Distance Map (EDM) of Rasterized Linear Feature

0	0	0	0	0	0	0	0	0	0							1				
0	0	0	0	0	0	0	0	0	0	<u>ר</u>	6.40	5.66	5.00	4.48	4.12	3.61	2.83	2.24	2.00	2.24
U	U	U	0	U	0	0	0	0	0		5.66	5.0	4.24	3.61	3.16	2.83	2.24	1.41	1.00	1.41
0	0	0	0	0	0	0	0	1	0		5.00	4.24	3.61	2.83	2.24	2.00	1.41	1.00	0.00	1.00
0	0	0	0	0	0	0	1	1	0		1.24	2.61	2 02	2.00	1 / 1	1.00	1.00	0.00	0.00	1.00
- U	v	U	v	v	Ŭ	U	-	-	U		4.24	3.61	2.83	2.24	1.41	1.00	1.00	0.00	0.00	1.00
0	0	0	0	0	1	1	0	0	0		3.61	2.83	2.24	1.41	1.0	0.00	0.00	1.00	1.00	1.41
0	0	0	0	1	1	0	0	0	0		2.83	2.24	1.41	1.00	0.00	0.00	1.00	1.41	2.00	2.24
0	0	0	1	1	0	0	0	0	0		2.24	1.41	1.00	0.00	0.00	1.00	1.41	2.24	2.83	3.16
		•		_					•		1.41	1.00	0.00	0.00	1.00	1.41	2.24	2.83	3.61	4.12
0	0	1	1	0	0	0	0	0	0			1.00	0.00	0.00	1.00			2.00	0.01	
	•	_	_	-			-	-	•		1.00	0.00	0.00	1.00	1.41	2.24	2.83	3.61	4.24	5.00
0	1	1	0	0	0	0	0	0	0		1.41	1.00	1.0	1.41	2.24	2.83	3.61	4.24	5.00	5.66
0	0	0	0	0	0	0	0	0	0			1		1		1	1	1	1	

Hausdorff Distance: Indicates maximum deviation and shape similarity between two features

Method 1

$$H(A,B) = max \Big\{ h(A,B), h(B,A) \Big\}$$

H(A,B) = h(A,B) + h(B,A)

Methodology Hausdorff Distance

Euclidean Distances from B to A

1.4	1.0	1.0	1.0	1.4	2.2	3.2
1.0	0.0	0.0	0.0	1.0	2.0	2.8
1.0	0.0	0.0	0.0	1.0	1.4	2.2
1.0	0.0	0.0	0.0	0.0	1.0	2.0
1.4	1.0	1.0	0.0	0.0	1.0	2.0
2.2	2.0	1.4	1.0	1.0	1.4	2.2
3.2	2.8	2.2	2.0	2.0	2.2	2.8

Euclidean Distance values and maximum value from B to A

Intersection of EDM of A with object B

Euclidean Distances from A to B

Intersection of EDM of B with object A

Euclidean Distance values and maximum value from A to B

Outline

- Introduction
- Methodology
- Implementation and Results
- Sensitivity Analysis
- Conclusions and Future Work

Implementation Study area

Implementation& Results Completeness

Thematic Differences between OSM and HydroLAKES (water /no water)

Implementation& Results Completeness

Overlap between OSM and HydroLAKES:

Dataset	Area (km^2)	Ratio (%)
Total Water	5437	100
OSM	2267	42
HydroLAKES	2201	41
OSM and HydroLAKES	1311	24
OSM, no HydroLAKES	956	18
HydroLAKES, no OSM	3171	58
Thematic Differences between OSM and GRaND (water/no water)

Overlap between OSM and GRaND:

Dataset	Area (km^2)	Ratio (%)
Total Water	5030	100
OSM	2267	45
GRanD	1813	36
OSM and GRaND	1087	22
OSM, no GRaND	1180	24
GRaND, no OSM	2763	54

OpenStreetMap **Global Surface Water** Water Area (km^2) -4.000 Water Area (km^2) -4.000 2267 12865 0 0 -11.000 -11.000 -18.000 -18.000 11.000 17.000 23.000 11 000 17 000 25,000

Thematic Differences between OSM and Global Surface Water (water/no water)

Overlap between OSM and GSW:

Dataset	Area (km^2)	Ratio (%)
Total Water	21759	100
OSM	2267	10
GSW	12865	59
OSM and GSW	1906	9
OSM, no GSW	8894	41
GSW, no OSM	10959	50

Thematic Differences between OSM and Sentinel 2

Implementation & Results Completeness

Overlap between OSM and Sentinel 2:

Dataset	Area (km^2)	Ratio (%)
Total Water	6933	100
OSM	2267	33
Sentinel 2	3783	55
OSM and Sentinel 2	1252	19
OSM, no Sentinel 2	3151	45
Sentinel 2, no OSM	2530	36

Implementation & Results Goodchild's Percentage of Overlap

Features OSM and GSW

Increasing Buffer zones [0,150] m

Distance between OSM and GSW feature

Peak of histogram

Implementation & Results Goodchild's Percentage of Overlap

Features OSM and GSW

Increasing Buffer zones [0,150] m

Distance between OSM and GSW feature

Implementation & Results Goodchild's Percentage of Overlap

Features OSM and Sentinel 2

Increasing Buffer zones [0,150] m

Distance between OSM and Sentinel 2 feature

Implementation & Results Goodchild's Percentage of Overlap

Percentage of Overlap between OSM and HydroLAKES

Frequency

Distances between OSM and HydroLAKES over ANGOLA

Distance (m)

Percentage of Overlap between OSM and GRaND:

Distances between OSM and GRaND over entire ANGOLA

Distance (m)

Frequency

Percentage of Overlap between OSM and GSW

Distances between OSM and GSW over entire ANGOLA

Distance (m)

Percentage of Overlap between OSM and Sentinel 2

Implementation Positional Accuracy: Goodchild's Method

Distances between OSM and Sentinel 2 over entire ANGOLA

Clusters of Sentinel 2 water

Distance (m)

Sampling points on OSM and GSW features

Euclidean Distance Maps of OSM and GSW features

Number of points

umber of points

Euclidean Distances (m)

Euclidean Distances (m)

Mean:25 Max: 65 SD: 13,70

Euclidean Distances of GSW to OSM

Euclidean Distances of OSM to GSW

Hausdorff Distance (m)

Hausdorff Distance (m)

Hausdorff Distance (m)

Hausdorff Distance (m)

Outline

- Introduction
- Methodology
- Implementation and Results
- Sensitivity Analysis
- Conclusions and Future Work

EDM of OSM feature without (left) and with (right) point sampling

Euclidean Distances from HydroLAKES to OSM feature

	Euclidean Distance (m)	
Statistical Unit	Without Sampling	With Sampling
Max	50.67	152.64
Mean	3.57	47.04
Median	0	39.80
Mode	0	43.65
Standard Deviation	11.55	31.80

Without sampling, all HydroLAKES points inside of the OSM red zone appear as zero distance!!

Points with falsely estimated zero distance values

Euclidean Distances from OSM to HydroLAKES feature

Sensitivity Analysis Experiments

Euclidean Distances from OSM to HydroLAKES feature

Euclidean Distances from HydroLAKES to OSM feature

Sensitivity Analysis Experiments

Euclidean Distances between OSM and HydroLAKES feature for various step sizes

	Euclidean Distances (m)		
Step Sizes (m)	Mean ED (OSM to HydroLAKES)	Mean ED (HydroLAKES to OSM)	
3	663.95	212.72	
5	663.94	212.69	
8	663.86	212.68	
10	663.88	212.65	
20	663.90	212.65	
50	663.73	212.38	
100	663.17	211.67	
200	661.30	211.47	
500	655.64	210.60	
1000	657.46	226.05	

Sensitivity Analysis Experiments

Step Sizes (m)	Amount of Points	Hausdorff Distance (m)	Relative Difference (%)
3	14.357	876.67	-
5	8615	876.63	- 0.004
8	5385	876.54	- 0.010
10	4308	876.53	- 0.001
20	2154	876.55	+ 0.002
50	862	876.11	- 0.050
100	432	874.84	+ 0.145
200	217	872.77	- 0.237
500	88	866.20	- 0.753
1000	45	883.51	+ 1.998

Conclusions

Research Question 1:

What are the differences in terms of spatial coverage?

• In terms of common surface water area:

1.	OSM and HydroLAKES	24%
2.	OSM and GRaND	22%
3.	OSM and GSW	9%
4.	OSM and Sentinel 2	19%

Conclusions

Research Question: 2

What are the differences in terms of positional accuracy?

 Goodchild's Percentge of overlap: Within 10 m distance from OSM:

1.57% of HydroLAKES

- 2.46 % GRaND
- 3.15 % GSW
- 4.1.7 % Sentinel 2

Median Hausdorff Distance:

 OSM and HydroLAKES: 206.19 m
 OSM and GRaND: 41761.69 m
 OSM and GSW : 236.07 m
 OSM and Sentinel 2: 92301.64 m

Conclusions

Main Research Question:

What are the spatial differences between Earth Observation based and Volunteered Geographic Information for water reservoirs and how can they be addressed in an automated way at a large scale?

• Accuracy comparison of the datasets at a large scale is possible by exploiting the planetary-scale analysis capabilities of Google Earth Engine. With an optimization of the Hausdorff Distance algorithm, the computational speed could be increased, making a <u>global scale analysis</u> for all three quality metrics possible.

- Refinement of Sentinel 2 and GSW data, by improving surface water detection methods.
- Exclusion of river information from Sentinel 2 and GSW datasets.
- Merging of Sentinel 2 and GSW clusters of smaller water bodies, into single homologous water reservoirs.
- Classification into good and bad reservoir matches based on quality metrics. Creation of data fusion algorithm that combines the strengths of all water reservoir datasets to create one with better overall quality.
- Classification of water reservoirs into types of water features (e.g. lakes, agricultural water reservoirs, valley-dammed reservoirs etc.)

Thank you for your attention!

References:

- 1. <u>https://www.mygrandforksnow.com/17177/columbia-river-treaty-community-discussions-highlighted-in-2019-report</u>
- 2. <u>Planetary-scale geospatial analysis with Google Earth engine, Gennadii</u> <u>Donchyts & Josh Friedman, Deltares, https://www.slideshare.net/Delft</u> <u>Software Days/dsd-int-2015-planetaryscale-geospatialanalysis-with-google-earth-engine-gennadii-donchyts-amp-josh-friedman-deltares</u>
- 3. <u>https://www.btlliners.com/can-irrigation-reservoirs-save-our-farms</u>
- 4. <u>http://floodlist.com/australia/insurers-can-get-better-responding-natural-disasters</u>
- 5. <u>https://spacenews.com/abs-orders-abs-2-satellite-space-systemsloral/</u>
- 6. <u>Allan Cain, Afonso Cupi Baptista, Community Management and the</u> <u>Demand for 'Water for All' in Angola's Musseques.</u>