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Abstract

An often preferred method to control a multi-agent system is by a network-decentralised
controller. Network-decentralised means that each agent only has knowledge about its own
state and the state of its neighbouring agents. In this thesis the multi-agent system consists
of holonomic robots moving in a 2-dimensional configuration space. Each agent is equipped
with a collision avoidance algorithm which does not need unmeasurable information from
other agents, hence it is completely decentralised. The collision avoidance algorithm gen-
erates a reference velocity which is always away and (counter-clockwise) around a possible
collision. Cooperation of the agents is reached by estimating their position and moving in
an assigned formation by only communicating with neighbouring agents, hence the strategy
is network-decentralised. The communication network of the agents is modelled as a graph
and described by the associated incidence matrix. This thesis combines for the first time
the network-decentralised estimation method proposed by Giordano et al. [1] together with
the network-decentralized control method proposed by Blanchini et al. [2] and a collision
avoidance algorithm. When anonymity in coordination is possible the agents are able to
switch target location. Each agent solves a local optimisation problem to minimise the total
distance travelled by itself and its neighbouring agents. The agent with the highest cost sav-
ings is allowed to reallocate the target locations. The results obtained in the simulations are
very promising and suggest that the proposed algorithms can be successfully implemented to
efficiently coordinate agents and avoid collisions in real-world applications.
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Extended Summary

The use of multiple robots to perform a complex task is getting more and more popular. The
dynamic interaction of multiple robots (or entities, or units, or agents in general) gives rise to
an overall multi-agent system, resulting from the interplay of the dynamics of each individual
agent and of their interactions. The interactions among units occur according to a given
interconnection topology: in the associated graph representation, each agent is a node and
interacts only with its neighbours (the nodes that are linked to it). To control multi-agent
systems, resorting to a centralised strategy based on the state of the whole system is often
impossible or disadvantageous, due to the large scale or to the geographical sparsity of the
system. In these cases, an effective method to control a multi-agent system is by a network-
decentralised controller. With this controller every agent only has information about its own
state and the state of its neighbouring agents. There are several reasons why a network-
decentralised controller is preferred, like limited resources to process all the data from every
agent or privacy issues that arise when a single controller is not allowed to access all the
information.
In this thesis we consider multi-agent systems where each agent is holonomic, circle shaped
and has a mass that is time-varying because the agent is able to pick up objects which can
change its total mass. The agents can all have a different speed limit and are all controlled
by a backstepping controller that includes a saturation function, to ensure that the speed
constraints are always satisfied. All the agents are placed in a 2 dimensional configuration
space where their objective is to reach a given formation. They have to reach this formation in
a network-decentralised way while avoiding collision, by cooperating with one another. Also,
the agents are able to exchange their target destinations, whenever it does not matter which
agent performs what task, as long as the task is performed: this feature is called anonymity
in coordination.
First, to avoid collisions, a completely decentralised collision avoidance method is proposed.
Every agent has a so-called collision detection zone that aims in the direction where it (the
agent) wants to move and the radius of this collision detection zone is dependent on the speed
of the agent. When another agent or obstacle is detected, the entire surrounding of the agent
is scanned to be able to prevent a possible collision. Around the closest possible collision point
a circle is constructed, the line from the agent to the collision point is rotated with a specified
angle then the desired velocity of the agent is in the direction of where this line crosses the
constructed circle. This desired velocity is always directed away from the possible collision,
therefore all collisions are avoided. Remarkably, since the collision avoidance manoeuvre
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x Extended Summary

is local, the needed computation time does not increase with the number of agents in the
system: this scalability makes the method particularly interesting and efficient when the
system consists of many agents.

Secondly, cooperation of the agents is reached by allowing them to exchange information so
as to estimate their position and move in an assigned formation. The communication network
of the agents is modelled as a graph and described by the associated incidence matrix. The
incidence matrix is used to estimate the absolute position and orientation of all the agents
in a network-decentralised way, namely, exclusively based on local information. Then, to
achieve an observer-based decentralised control for the system of agents, this thesis combines
for the first time the network-decentralised estimation method proposed by Giordano et al.
[1] together with the network-decentralised control method proposed by Blanchini et al. [2].
This network-decentralised control method prioritizes the formation of the agents above the
target destination, thus preventing selfish behaviours that may otherwise lead to deadlocks.
In particular, it is possible to tune a coefficient to privilege formation reaching (collective
performance) or individual target reaching. With the proposed method, the agents are of
course steered each to its target position, but they are also induced to move in the desired
formation even before their target is reached. The agents are now able to avoid collision,
estimate their position and orientation and are able to cooperate (i.e. to move in the assigned
formation), all in a network-decentralised fashion. The agents can all have different masses
and speed limits but they will reach the desired target position at the same time while moving
in formation.

Finally, when anonymity in coordination is possible, the agents are able to coordinate at best
and to suitably swap their target destination with their neighbours by minimizing a local cost
function. The local cost function to minimise is, for each agent, the total distance travelled
by the agent itself and by its neighbouring agents. To minimise this function, each agent runs
an optimisation algorithm and calculates how to optimally reallocate its own target position
as well as the target position of all the neighbouring agents. The cost an agent can save with
its proposed reallocation is called the bid and the bid is placed in the auction held by every
connected agent. The agent ’sells’ its target location to the agent with the highest bid in its
auction who is then allowed to reallocate the target locations.

All the methods discussed above can be effectively integrated. The proposed collision avoid-
ance algorithm is performed in a fully decentralised fashion, hence it can be naturally em-
bedded in a network-decentralised control and estimation framework. Also the proposed
algorithm to exploit anonymity in coordination is fully decentralised, based on local cost
functions and local information.

In the thesis, the proposed methods are combined and tested in a computer simulation.
The simulation shows that the proposed methods for collision avoidance, cooperation and
anonymity in coordination can be successfully combined and give rise to the expected be-
haviour: the agents are able to cooperate in order to efficiently reach the desired goal, they
are able to coordinate so as to swap their target destinations if this is suitable, and they
are able to move without any collision. The results obtained in simulation are very promis-
ing and suggest that the proposed algorithms can be successfully implemented to efficiently
coordinate agents and avoid collisions in real-world applications.
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Chapter 1

Introduction

The use of multiple robots to perform certain complex tasks is getting more and more popular.
Many robots operating in a warehouse to sort packages is no longer a futuristic scene: in the
Alibaba warehouse for example there are many unmanned vehicles cooperating to distribute
packages [4]. A system resulting from the interaction of several robots, vehicles, or units in
general (termed agents) is called a multi-agent system. In the past two decades there has been
a significant increase in the interest of the control community towards multi-agent systems.
The increasing interest in multi-agent systems is due to the fact that often one complex agent
can be replaced by many simpler agents: this leads to an overall system that is more flexible
and resilient, and can reduce the cost and the needed resources [5]. However, the efficient
coordination of multi-agent systems poses new challenges to control engineers. There are two
approaches to control a multi-agent system: a centralised and a decentralised approach. A
centralised controller processes all the information of all the individual agents and calculates
the desired control action affecting each of them. Conversely, a decentralised controller is
based on several control units, each acting on a single agent and deciding its strategy based
on local information only. A particular type of decentralised control is network-decentralised
control. In a network-decentralised controller the only information available to each local
control unit comes from the agents that are located within communication distance. Every
agent makes its decisions based on its own measurements and local information only.
The idea of network-decentralised control has been first introduced by Iftar and Davison in
the papers [6], [7] and [8]. Several further developments have been provided in [9], [10] and
[11]. The concept has been mathematically formalised in [12] and fully developed in [2], [13]
and [14].
This thesis will focus on the network-decentralised control approach for the following reasons:
as the number agents to be controlled increases, the computation time for a centralised con-
troller to calculate all the trajectories of all the agents increases drastically; moreover, privacy
laws (or reasons) could prevent a centralised controller to access the information about all
the agents (which may be owned by different companies) and to have control authority on all
of them; also, the large scale of the system and the geographical sparsity could make a cen-
tralised controller physically impossible, due to physical constraints like walls, mountains or
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2 Introduction

water that prevent the central controller from receiving all the information that is needed to
compute a centralised control strategy. The objective of the network-decentralised controller
is to make the agents cooperate and pursue a global complex collaborative task, by enforcing
exclusively local actions that are decided based on local information.
The goal of this thesis is to provide a unified approach for network-decentralised control
and estimation in multi-agent systems, which embeds a collision avoidance protocol. The
proposed approach allows effective cooperation among the agents and can also incorporate
a local optimisation method to optimally allocate the target position to the agents when
anonymity in coordination can be exploited (namely, when the agents are interchangeable).
In particular, cooperation in this thesis is focussed on reaching the desired target while keeping
or making a desired formation. Agents moving in formation are usefull for many interesting
applications e.g. surveillance, search or rescue missions [15]. An effective cooperation requires
that the agents must reach this formation without causing a collision. And finally cooperation
includes that the agents have anonymity in coordination: this means that it does not matter
which agent goes where as long as the formation is obtained. This must all be achieved in a
network-decentralised fashion.
Nature can often be inspiring to devise efficient strategies in engineering, and this is the case
also for decentralisation and for global coordination based on myriads of local actions. A good
example of these principles in nature is a colony of ants. The ants only see and feel what is
in their direct surroundings i.e. they only have local information. They are not colliding into
each other. They are cooperating to make a certain formation, for example the ant bridge in
Figure 1-1 and it does not matter which ant performs what action.
In this thesis a novel completely decentralised collision avoidance method is proposed which
can be combined with a network-decentralised position estimation as in [1] and a network-
decentralised control method as in [2], [13] and [14]. Completely decentralised means that in
order to avoid collision, no information about other agents is needed with exception of the
shape and distance which can be measured. Also a method is proposed to locally reallocate
the destinations of every agent in order to minimize the total distance travelled by the agents.
This satisfies the anonymity in coordination for the agents. The proposed methods are tested
with computer simulations using Matlab and Simulink.

Figure 1-1: Bridge of ants as a fascinating natural example of how a global target can be
effectively reached through the coordination of myriads of local actions based on local information.
This is a source of inspiration for man-made decentralised strategies in engineering. [Credit:
Christopher Reid, Matthew Lutz and New Jersey Institute of Technology]

The thesis is structured as follows.

D.W.P. van Wijk Master of Science Thesis



3

• Chapter 2 introduces the considered multi-agent model, where each agent is seen as
a circle with a mass moving in a 2 dimensional configuration space. The considered
network-decentralised backstepping control strategy is introduced to control the agent.

• Chapter 3 presents the proposed novel collision avoidance protocol to avoid collisions
in a completely decentralised way.

• Chapter 4 discusses several examples of collision avoidance, to illustrate the effectiveness
and the limits of the proposed approach.

• Chapter 5 presents the considered approach for network-decentralised control of the
agents and network-decentralised estimation of their position and orientation.

• Chapter 6 discusses further examples to showcase the behaviour of the proposed col-
lision avoidance strategy when it is embedded in a network-decentralised control and
estimation framework. It is shown that the integration of the collision avoidance pro-
tocol with a network-decentralised control can rule out selfish behaviours that would
otherwise lead to deadlocks, thus overcoming all the limits that had previously emerged.

• Chapter 7 proposes a completely novel network-decentralised algorithm to exploit anonymity
in coordination in order to minimise the total distance travelled by the agents, based
on the solution of local optimisation problems with local cost functions and local infor-
mation the agents locally reallocate the target locations.
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Chapter 2

Multi-Agent Model

This chapter describes the properties of the individual agents that compose the multi-agent
system considered in this thesis. The backstepping control strategy that will be used to
control the multi-agent system is also briefly presented.

2-1 The Agent

Contrary to many theoretical multi-agent systems, the agents in this thesis are not considered
to be a massless point. Here, each agent is circle shaped with a radius of 0.15 meter and has
a mass m(t) as is shown in Figure 2-1. The agent is not constrained to move in any direction
in R2 i.e. the agent is holonomic. The mass is considered time varying because agents are
able to drop or pick up objects which changes their total mass.

Figure 2-1: Model of an agent: R is the radius of the agent, while rx and ry are its local
coordinates (x-axis and y-axis)
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6 Multi-Agent Model

The equations of motion of the ith agent can be described by the following state space system



ṙx,i

ṙy,i

r̈x,i

r̈y,i




︸ ︷︷ ︸
[ẋi ẍi]T

=




0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0




︸ ︷︷ ︸
Ai




rx,i

ry,i

ṙx,i

ṙy,i




︸ ︷︷ ︸
[xi ẋi]T

+




0 0
0 0

1/mi(t) 0
0 1/mi(t)




︸ ︷︷ ︸
Bi

ui(t) (2-1)

where rx,i and ry,i are the local coordinates of the agent as shown in Figure 2-1 and ui(t) is
the input force acting on the mass mi(t). The speed of the ith agent is limited individually
and its upper limit is denoted by vlim,i. A formal definition of speed vi(t) is given by Equation
2-2; note that the speed should not be confused with the velocity, which is defined by the
expression in Equation 2-3.

vi(t) ,
√
ṙ2

x,i + ṙ2
y,i (2-2)

velocity , ẋi = ṙi =
[
ṙx,i

ṙy,i

]
(2-3)

2-2 Backstepping Control

Now that the model of the agent is known, a controller for the agent can be designed. First,
recall that the agent’s speed is limited, therefore the controller must be able to cope with this
limitation by including a proper saturation function. Second, it is worth stressing that the
agent’s mass is time-varying in general, and this must be taken into account by the controller.
Third, note that a force input is available for control purposes, while it is typically much easier
to design a control for the velocity. To overcome this issue, a backstepping controller can be
used, which is appropriate to deal with all the above aspects. In particular, a backstepping
controller allows to design a velocity control that provides the reference velocity, and to simply
track this reference velocity by means of the available force input. Two assumptions for this
controller are that the mass mi(t) of the ith agent at time t is known or can be measured and
that the velocity, as defined by Equation 2-3, of the agent can be measured. As mentioned
above, the idea of a backstepping controller is to stabilize the lowest derivative with a feedback
law and then step back until all states are stabilized and the control input is reached. For
the agent as described in the previous section this means that the first step is to calculate a
reference velocity (¯̇xi) which is given by Equation 2-4.

¯̇xi = sat
vlim,i

[(r̄i − xi(t))k1] (2-4)

where r̄i is the target destination and k1 is a gain. The second step is from the velocity to the
input ui(t), this step is shown in the blue rectangle in Figure 2-2. This final step linearises
the system. The method of backstepping was developed by P.V. Kokotovic and can be used
to control non-linear systems by using a non-linear feedback which linearizes the system, it
can even be used to control so-called chaos [16]. Another advantage of this method is that
the collision avoidance algorithm and the decentralised control method proposed in the next
chapters will both generate a reference velocity for the agents. This reference velocity can
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Figure 2-2: Block scheme of the backstepping control

then directly be compared with the actual velocity. The control input ui(t) as in Figure 2-2
is given by:

ui(t) =
(

sat
vlim,i

[(r̄i − xi(t))k1]− ẋi

)
k2mi(t) (2-5)

where xi(t) is the location of the agent at time t and k1 and k2 are gains which can be used
to change the eigenvalues of the system. The state space equation for every agent with this
input ui(t) now becomes

[
ẋi

ẍi

]
=
[

02 I2
−k1k2I2 −k2I2

] [
xi

ẋi

]
+
[

0
I2

]
k1k2r̄i (2-6)

where 02 is the zero matrix of size 2× 2 and I2 is the identity matrix of size 2× 2. The four
eigenvalues of the system are given by:

λ1,2 =
−k2 ±

√
k2

2 − 4k1k2

2 (2-7)

λ1 and λ2 both have an algebraic multiplicity equal to 2. The behaviour of the agent with a
backstepping controller is not dependent on the time varying mass of the agent so the system
is linear time invariant. Therefore, the considered controller cancels out all the differences
among the agents that are due to the fact that their mass is not equal.

2-3 Constrained Configuration Space

The agents are placed in a bounded space (such as, for instance, a room) called the configu-
ration space, which is constrained by four barriers or walls in a square. The control action to
prevent an agent from hitting the barrier is to multiply by zero the reference velocity in the
direction of the barrier when the agent is within a certain range of the barrier. This method
can be extended so that the barrier is repellent, which means that the agent is pushed away
from the barrier in a preferred direction.

Of course, in this type of scenario an agent can face two different types of obstacles: one of the
barriers or one of the other agents. There are several ways the agent can make a distinction
between a barrier and another agent. Some examples are that other agents can communicate
where a barrier can not; that the agent already knows the location of the walls; or that the
barrier can communicate as well, but then it would communicate that it is a barrier.
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Chapter 3

Collision Avoidance Protocol

Multi-agent systems where robots operate in the same environment are an important research
area within robotics nowadays [17]. Those agents, each performing a specific task, must be
able to avoid collision. Since a centralized collision avoidance algorithm usually requires a large
amount of resources and does not scale well with the number of agents [18], a decentralised
collision avoidance algorithm is preferred. To prevent the agents from colliding into each
other a completely decentralised collision avoidance method is proposed in Section 3-2. This
method can directly be embedded in a network-decentralised frame work as described in [1],
[2], [13] and [14].

3-1 Current Collision Avoidance Algorithms

First a formal definition of a collision in a simulation is given: the definition of a collision
in a simulation is when two or more agents occupy the same space at the same time. One
of the most popular decentralised collision avoidance algorithms nowadays is the ’Reciprocal
Velocity Obstacle’ which is an extension of the Velocity Obstacle concept described in [3].
In order to avoid collision using the Velocity Obstacle method the agent needs to have the
other agents’ position, velocity and shape. The need of knowing the velocity of the other
agents is a serious limitation, since it requires either communication among the agents, or the
presence of a centralised supervisor that knows the velocity of all the agents and can provide
this information to all other agents. Then, under the assumption that the other agents make
a similar collision avoidance reasoning, the Velocity Obstacle (VO) algorithm is guaranteed
to generate safe motions by calculating a velocity vector in which no collision will occur. This
is the so called collision free velocity. A brief explanation on how this Velocity Obstacle is
created will now be given, for a detailed explanation the reader is referred to [3].

Consider Figure 3-1, agent A having velocity vA encounters a moving obstacle B with velocity
vB. With the information of the velocities of A and B a Collision Cone (CCA,B) can be
created. This collision cone is the gray area depicted in Figure 3-2, in this figure Â is agent
A reduced to a point and B̂ is obstacle B enlarged with the radius of A. Now by translating
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10 Collision Avoidance Protocol

Figure 3-1: Agent A and moving obstacle
B source: [3]

Figure 3-2: The relative velocity vA,B and
the collision cone CCA,B source: [3]

the collision cone by vB the Velocity Obstacle VO is obtained. The velocity obstacle is the
dark gray area as shown in Figure 3-3. A velocity of agent A that lies within this velocity
obstacle will result in a collision where a velocity in the white area will avoid collision. Figure

Figure 3-3: The velocity obstacle V OB

source: [3]
Figure 3-4: The velocity obstacles for B1
and B2 source: [3]

3-4 shows the velocity obstacles when there are multiple moving objects in the configuration
space. Now to avoid collision the agent must have a velocity that is outside all the velocity
obstacles. The agent calculates for every time step a feasible velocity that avoids collision
and steers the agent to its target.
An improvement to the Velocity Obstacle is the Reciprocal Velocity Obstacle where smoother
collision avoidance trajectories are calculated. The Reciprocal Velocity Obstacle is described
extensively in [19]. The reciprocal velocity obstacle formulation has some limitations, partic-
ularly that it frequently causes agents to end up in a ’reciprocal dance’ as they cannot reach
agreement on which side to pass each other [20]. Another limitation is that as the number of
agents within possible collision distance increases the computation time for the collision free
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3-2 Proposed New Collision Avoidance Method 11

velocity increases.

In this thesis a new collision avoidance algorithm is proposed which only needs the other
agents’ position and shape, which can both be measured. The computation time for this
algorithm does not increase when the number of agents increases.

The approach proposed in this thesis bears some resemblance to another human-inspired col-
lision avoidance method, proposed in [21]. The metod in [21] makes the agents perform a
decentralised collision avoidance manoeuvre based on the so-called virtual rectabouts (namely,
rectangular roundabouts): each agent involved in the possible collision re-plans its path in-
dependently by moving along the sides of a virtual rectabout that lies across the conflicting
positions of the two agents’ routes. The approach does not depend on predefined priority
schemes and its advantage with respect to centralised approaches is that it involves only local
information, without the need of inter-agent communication or of centralised coordination.

The method proposed in this thesis has all the advantages of that in [21], but allows the
agents to follow more natural and smooth trajectories, instead of moving along the sides of
virtual rectangles in the configuration space.

3-2 Proposed New Collision Avoidance Method

For the proposed Collision Avoidance Algorithm there is no need for communication between
agents, they independently perform a collision avoidance manoeuvre when another agent is
detected. Besides the assumption that agents are not actively trying to hit one another, there
is the assumption that all agents prefer to move to the right (counter clock-wise) to prevent
a collision. Just like a car in most countries must pass a roundabout on the right.

A comprehensive explanation of the collision avoidance algorithm will now be given. An agent
moving to a target location in a two dimensional space detects a possible collision in the zone
depicted in red in Figure 3-5, which is called the collision detection zone. When a possible
collision is detected the agent scans the area depicted in gray and red and will make a move
around the obstacle which is closest to the agent until the collision detection zone is obstacle
free. The collision detection zone is dependent on the speed of the agent: the higher the speed
of the agent, the larger the radius of the collision detection zone. The relation between the
radius of the collision detection zone Rcz and the agent speed v(t) is given by:

Rcz(t) = c+ βv(t) (3-1)

where both c and β are constants which can be adjusted.
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12 Collision Avoidance Protocol

Figure 3-5: Collision zone of the agent
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The angle θ that sets the range of the collision detection zone is chosen so that the collision
detection zone is wider than the diameter of the agent. The circle shaped red area around
the agents is also part of the collision detection zone. This makes sure that if an obstacle is
very close the agent can detect this and respond. Figure 3-6 and Figure 3-7 illustrate how the
collision avoidance manoeuvre works when an agent detects a single obstacle. The blue agent
detects an obstacle, which is the green agent, the agent then scans its entire surroundings and
the grey zone in Figure 3-5 now becomes a collision zone. Only the green agent is in the red
collision zone so a circle is constructed with the possible collision point as its center, whose
boundary is the red circumference (the interior is white) in the figure. The red circle is called
the preferred distance from the obstacle and its radius, Rdist, is a little bit smaller than the
radius of the collision detection zone. The line from the blue agent to the possible collision
point is rotated with an angle α and the intersection between this rotated line and the red
circumference gives the desired velocity for the agent to prevent a collision and to continue
its course. Figure 3-7 shows what happens if the green agent is closer to the blue agent: the
reference velocity is always directed away from the obstacle, so that an agent will never have
an input that can potentially cause a collision. Table 3-1 shows all the parameters involved

Figure 3-6: Collision manoeuvre of the
agent

Figure 3-7: Another collision manoeuvre of
the agent

in the proposed collision avoidance method, along with their description.

Parameter Description
α Rotation angle for Collision avoidance
Rcz Collision detection radius
c Constant in equation Rcz(t) = c+ βv(t)
β Constant in equation Rcz(t) = c+ βv(t)
θ Range collision detection zone

Rdist Preferred distance from obstacle

Table 3-1: Table of the used parameters in collision avoidance
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14 Collision Avoidance Protocol

Figure 3-8 shows how two agents avoid each other when they are moving from bottom left to
top right and vice versa. When the agents meet in the middle they both move to the right to
pass each other. When the agents have different speed limits the faster moving agent has a
larger detection zone so it has more distance to perform a collision avoidance manoeuvre. An
example of this is shown in Figure 3-9 where the red agent has a maximum speed of twice the
blue agent’s speed. Its collision detection zone is now larger than the blue agent’s collision
detection zone, this results in a smooth collision avoidance manoeuvre where the blue agent
barely has to change its direction. Another advantage of this feature is that the high speed
agent now has more distance to adjust his direction to avoid a collision.

0 2 4

0

2

4

Figure 3-8: Collision avoidance manoeuvre
of two agents with the same speed limit

0 2 4

0

2

4

Figure 3-9: Collision avoidance manoeuvre
of two agents with different speeds limit

The effect of a non-circular collision detection zone is not investigated and can be interesting
for future work.

3-3 Deadlock and Livelock

An important issue in collision avoidance algorithms is the occurrence of deadlocks and live-
locks. In this section a brief explanation of the two phenomena are given. First of all a lock
is when an agent forces another agent to stop moving. Then, a deadlock is when an agent
is locked and the locking agent is either directly or indirectly locked by said agent. This can
be explained at best by a figure. Consider Figure 3-10, agent 1 waits for agent 2 to move,
agent 2 waits for agent 3 to move and agent 3 waits again for agent 1 to move: hence, none
of the agents will move, because they are all locked. Note that deadlocks are not likely to
occur with the proposed collision avoidance method but the figure serves as an illustration
to describe a deadlock. Similar to the deadlock is the livelock, here the agents can move but
they are not progressing towards their goal. Agents in a corridor both moving to the same
side of the corridor over and over again to try to pass each other provide a good example of
a livelock. Deadlock and livelock detection and how to deal with them is a research area on
its own, although several rules can be implemented for an agent to break from the livelock

D.W.P. van Wijk Master of Science Thesis



3-3 Deadlock and Livelock 15

Figure 3-10: Possible Deadlock Situation

or deadlock (like increasing the collision distance or temporarily making a left turn). In the
thesis, the focus will be on preventing the lock thanks to the cooperation of the agents which
will be achieved by a network-decentralised controller as explained in Section 5-4.
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Chapter 4

Collision Avoidance Case-Studies

In this chapter the strengths and weaknesses of the collision avoidance method are shown by
treating several different cases. In all the cases 10 agents are placed in a constrained space.
The agents must reach a target position from a starting position: both of these positions are
represented by a plus sign. The figures are screen-shots of the final state where all the agents
have reached their target position, the (dotted) lines represent the paths the agents travelled.
To make a mathematical model of the circle shaped agent the circumference of the agent is
discretized. Each agent has 10 points on the border of its body which can be detected by
other agents. To simulate the movement of 10 agents for 5 seconds in Simulink, a 3,1 GHz
Intel Core i5 Macbook Pro 2017 took less than 1 second calculation time.

4-1 Random Starting and Target Locations

The first case-study is a simulation where all agents start at a random position and must
move to a random destination. The random starting and final positions are shown in Table
4-2. The agents are not cooperating or communicating to reach their own destination. The
agents all successfully avoid collision and reach their target location. The trajectories of agent
1 and 6 around agent 5 and 9 respectively clearly show the collision avoidance manoeuvre.
Table 4-1 shows all the values of the parameters used in the simulation.

4-2 Circle to Circle Simulation

The second case-study is a simulation of agents starting in a circle and willing to reach the
opposite of their starting position. Without communication the agents all meet in the middle
where they must avoid collision without any form of cooperation. Figure 4-2 clearly shows
that the agents meet in the middle and perform a collision avoidance manoeuvre, some agents
actually reach the congested middle where other agents will move around like agents number
1 and 5. There are no major oscillations and the agents all reach their goal while successfully
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Figure 4-1: Simulated trajectories of 10 agents starting at a random location and moving to a
random location

Parameter Description Value
m Mass 1
k1 Gain k1 in Figure 2-2 12
k2 Gain k2 in Figure 2-2 8
α Rotation angle for Collision avoidance 5 degree
c Constant in equation Rcz(t) = c+ βv(t) 0.26
β Constant in equation Rcz(t) = c+ βv(t) 0.39
θ Range collision detection zone [−60, 60] degree

Rdist Preferred distance from obstacle Rcz − 0.08 m
h Simulation sample time 0.01
vlim Speed limit 1 m/s

Table 4-1: Table of the parameter values used for the simulation of the agents in Figure 4-1,
Figure 4-2 and Figure 4-3

avoiding each other. The parameters of the simulation are shown in Table 4-1. The starting
positions and final positions lie on a circle with radius of 4 equally dived in 10 parts where
agent 1 starts at (4, 0) and ends at (−4, 0).
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Agent Starting Coordinates (i, j) Target Coordinates (i, j)
1 (3, 1.8) (1.5, 2.4)
2 (1.8, 1.2) (0.6, 1.8)
3 (1.2, 1.5) (1.2, 0.3)
4 (0.6, 0.9) (2.4, 2.1)
5 (2.1, 2.1) (3, 2.7)
6 (0.3, 2.4) (2.7, 1.2)
7 (2.4, 0.6) (0.3, 0.6)
8 (1.5, 3) (0.9, 0.3)
9 (0.9, 2.7) (2.1, 0.9)
10 (2.7, 0.3) (1.8, 1.5)

Table 4-2: Starting and Target locations for the agents in case in Figure 4-1
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Figure 4-2: Simulated trajectories of 10 agents moving from a point on a circle to the opposite
point on the circle
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4-3 Simulation With Different Speed Limits

Figure 4-3 shows a simulation where the agents all have different speed limits. The agents do
not collide and will all reach their target destination. This case-study demonstrates that the
collision avoidance manoeuvre is not limited to agents all having the same speed limit. The
parameters used for the simulation are again given by Table 4-1 except from the individual
speed limits those are shown in Table 4-5. The starting and target position are summarized
in Table 4-4.
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Figure 4-3: Simulated trajectories of 10 agents with differ-
ent speed limits

Agent Speed limit
[m/s]

1 0.5
2 1.4
3 0.3
4 1.2
5 1.3
6 2.2
7 2.5
8 1.6
9 1
10 2.4

Table 4-3: Different speed
limits of the agents in Fig-
ure 4-3

Agent Starting Coordinates (i, j) Target Coordinates (i, j)
1 (6, 4) (0, 0)
2 (4, 4) (6, 0)
3 (3, 4) (4, 0)
4 (0, 4) (6, 0)
5 (0, 2) (6, 2)
6 (0, 0) (6, 4)
7 (2, 0) (4, 4)
8 (4, 0) (2, 4)
9 (6, 0) (0, 4)
10 (6, 2) (0, 2)

Table 4-4: Starting and Target locations of the agents in Figure 4-3
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4-4 Simulation with Different c and β

In this section the effects of varying the values of the c and β parameters in the function
expressing the radius of the collision detection zone

Rcz(t) = c+ βv(t) (4-1)

are shown. The agents in the simulations shown by Figure 4-4, 4-5, 4-6 and 4-7 all have the
speed limits shown by Table 4-5. The speed limits of the simulations shown Figure 4-8 and 4-9
are given by Table 4-6. All the other parameter values are again shown in Table 4-1 except
for c and β. It is clear from the figures that increasing c increases the preferred distance
from the obstacle independent from the speed of the agent whereas increasing β increases the
preferred distance dependent on the speed. This can result that an agent with a low speed
barely has to change its direction, this is clearly visible in Figure 4-8 and 4-9.
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Figure 4-4: Simulated trajectories of 10
agents with c = 0.39 and β = 0.39 with
speed limits shown in Table 4-5
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Figure 4-5: Simulated trajectories of 10
agents with c = 0.78 and β = 0.39 with
speed limits shown in Table 4-5
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Figure 4-6: Simulated trajectories of 10
agents with c = 0.195 and β = 0.65 with
speed limits shown in Table 4-5
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Figure 4-7: Simulated trajectories of 10
agents with c = 0.195 and β = 0.975 with
speed limits shown in Table 4-5
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−2 0 2 4 6 8 10

0

2

4

6

1 2 3 4 5

6 7 8 9 10

Figure 4-8: Simulated trajectories of 10
agents with c = 0.195 and β = 0.78 with
speed limits shown in Table 4-6
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Figure 4-9: Simulated trajectories of 10
agents with c = 0.78 and β = 0.195 with
speed limits shown in Table 4-6

Agent Speed limit
[m/s]

1 0.5
2 0.75
3 1
4 1.25
5 1.5
6 0.5
7 0.75
8 1
9 1.25
10 1.5

Table 4-5: Different speed limits of the
agents in Figures 4-4, 4-5, 4-6 and 4-7

Agent Speed limit
[m/s]

1 0.5
2 0.75
3 1
4 1.25
5 1.5
6 1.5
7 1.25
8 1
9 0.75
10 0.5

Table 4-6: Different speed limits of the
agents in Figures 4-8 and 4-9
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4-5 Livelock Simulation

The final case-study is a simulation of a livelock. Agent two and three in Figure 4-10 already
reached their destination and agent one (the red agent) has a target location at the bottom left.
Agent one detects agent two (the blue agent) and makes a collision avoidance manoeuvre.
Then agent one detects agent three (the green agent) and will make a collision avoidance
manoeuvre to avoid it. At a certain point during this manoeuvre the collision detection zone
in the direction of the target location does not detect a collision any more and agent one wants
to continue its course thereby encountering agent two again. This cycle continuous indefinitely
and is known as a livelock since the agent keeps moving, although it does not progress towards
its target. As told in the previous chapter, there are several ways to break from this livelock
but the focus will be on preventing the livelock by letting the agents cooperate. The parameter
values used for this simulation is the same as stated in Table 4-1 and the starting and target
locations are given by Table 4-7.
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Figure 4-10: Simulation of a livelock

Agent Starting Coordinates (i, j) Target Coordinates (i, j)
1 (2, 2) (0, 0)
2 (1, 1.5) (1, 1.5)
3 (1.2, 2.2) (1.2, 2.2)

Table 4-7: Starting and Target locations of the agents in Figure 4-10
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Chapter 5

Network-Decentralised Control and
Estimation

As discussed in the introduction there can be several reasons why a decentralised controller is
preferred above a centralized controller. For example, the computation time for a centralised
controller to calculate collision free trajectories increases drastically when the number of
agents increases. There can be privacy reasons which prohibit a central controller to monitor
all information or a connection to all agents is simply not possible by physical barriers like
mountains or water. The way to describe the connection between agents is by the use of
graph theory whose main basic notions will be introduced in Section 5-1. In Section 5-2 a
method for decentralised position estimation as described by Giordano et al. in the paper
[1] is explained. Different orientations of the agents in the configuration space are taken into
account in Section 5-3. And finally in Section 5-4 a network-decentralised control method as
described in [2], [13] and [14] for steering the agents to their target destination is treated.

5-1 Graph Theory

The interaction between people, computers, cells or generic units, able to affect one another
or to exchange information with one another, can be represented by a set of points and lines.
These units are called agents. An agent is represented by a point and is called a node n,
all nodes are contained in the set N . A connection between two nodes represented by a
line is called an edge e, all edges are contained in the set E . A graph is described by the
ordered pair G = (N , E) together with an incidence matrix that associates each node with
each edge. Often the direction of the connection or communication is of importance and such
graphs are called directed graphs or digraphs [22]. Digraphs can be recognized by an arrow
representing the communication direction on the edge connecting two nodes. The incidence
matrix for directed graphs that are presented in the following section will be used for the
network-decentralised position estimation and network-decentralised control. The incidence
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matrix of a directed graph is constructed as follows:

Hne =





−1 if edge e is a link and node n is the tail of e
1 if edge e is a link and node n is the head of e

0 otherwise
(5-1)

Consider Figure 5-1 where a graph consisting of 4 nodes and 8 edges is shown, agent 1 is
connected to agent 2 and 3, agent 3 is connected to agent 1, 2 and 4 and so on. The incidence
matrix H belonging to this graph is shown in Equation 5-2. The columns of the incidence
matrix are associated with the edges and the rows are associated with the nodes.

H =

e1 e2 e3 e4 e5 e6 e7 e8





1 −1 1 0 0 0 0 0 n1
−1 1 0 1 −1 1 0 0 n2
0 0 −1 −1 1 0 1 −1 n3
0 0 0 0 0 −1 −1 1 n4

(5-2)

Figure 5-1: Digraph plot of 4 nodes and 8 edges

For the Internet Protocol confirmation of a connecting agent is needed, this is called the Three-
Way Handshake. Actual data transmission is therefore only possible if there is symmetry in
the directed graph i.e. there is an edge going in and out from and to the same agent. Edges e1
and e2 form such a symmetry pair. Removing the non symmetric connections from the graph
in Figure 5-1 leads to the graph in Figure 5-2, which has the incidence matrix Hr shown in
Equation 5-3.

D.W.P. van Wijk Master of Science Thesis



5-2 Network Decentralised Position Estimation 27

Figure 5-2: Reduced digraph plot of 4 nodes and 6 edges

Hr =




1 −1 0 0 0 0
−1 1 1 −1 0 0
0 0 −1 1 1 −1
0 0 0 0 −1 1


 (5-3)

From now on we will consider graphs were all the connections are symmetric. The correspond-
ing incidence matrix will be used to construct the decentralised position estimation strategy
and the decentralised control input that are discussed in the next sections. The way an agent
establishes a connection with other agents is by adjusting its transmitting/receiving radius.
An agent increases or decreases its transmitting radius until ncon number of connection are
made, at least. Since the agents are moving in the configuration space they establish new
connections with other agents. Hence the (reduced) incidence matrix can vary over time, the
time varying incidence matrix H(t) has dimensions N ×Mt, with N the number of agents
(nodes) and Mt the number of edges at time t.

5-2 Network Decentralised Position Estimation

This section highlights some parts of the network decentralised state estimation method de-
scribed by Giordano et al. in the paper [1]. The method is used to allow each of the agents
to estimate its own position by communicating with other nearby agents and measuring their
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distance. Consider the system consisting of N agents described by Equation 5-4.


ẋ1(t)
...

ẋN (t)




︸ ︷︷ ︸
ẋ(t)

=



A1 0 0
0 . . . 0
0 0 AN




︸ ︷︷ ︸
A



x1(t)
...

xN (t)


+



B1
...
BN




︸ ︷︷ ︸
B

u(t) (5-4)

where the dynamics of each agent can be described by

ẋi = Aixi +Biu, i = 1, ..., N (5-5)

with N the number of agents. Moreover, the system has output

yi = Cixi (5-6)

where Ci is the individual output matrix. The overall output is

y = Cx (5-7)

where y = [y1 · · · yN ]T , while C = diag(C1, · · · , CN ) is the overall output matrix. A Luen-
berger state observer [23] is given by Equation 5-8 where z is the estimated state, y are the
measurements and L chosen such that the error defined by e = x − z is acceptably small
(precisely, it asymptotically goes to zero when the time goes to infinity).

ż = Az +Bu+ L(y − Cz) (5-8)

For an agent in a decentralised system the information available are the measured distances
(d) to the connected agents and the estimated positions (Cizi) of the connected agents. So
for agent (node) 2 in Figure 5-1 the available information are the distances between agent 2
and 1 (d21), agent 2 and 3 (d23) and the estimated positions of the two connected agents C1z1
and C3z3. This means that the measurement y in the Luenberger observer for agent 2 is

y2 =
[
C1z1 − d21
C3z3 − d23

]
(5-9)

The measured distance can be described as a difference between the actual positions of the
agents,

d21 = C1x1 − C2x2. (5-10)
The distances between all agents of Figure 5-1 are all included in the matrix shown in Equation
5-11. 



d12
d21
d23
d32
d34
d43




︸ ︷︷ ︸
d

=




−C1 C2 0 0
C1 −C2 0 0
0 −C2 C3 0
0 C2 −C3 0
0 0 −C3 C4
0 0 C3 −C4




︸ ︷︷ ︸
C




x1
x2
x3
x4


 (5-11)

If C1 = C2 = C3 = C4 it can be recognized that the C matrix is in this case

C = Hr(t)T ⊗−C1 (5-12)

D.W.P. van Wijk Master of Science Thesis



5-3 Network Decentralised Orientation Estimation 29

where ⊗ is the Kronecker product. The observer for agent 1 is given by the following equation,

ż1 = A1z1 +Bu+ L1(C2z2 − d12 − C1z1) (5-13)

Where (−C1z1 + C2z2) has the same structure as the first row of C. This means that the
L(y − Cz) part of the the Luenberger observer can be written as:

L(y − Cz) = L( Cx︸︷︷︸
d

−Cz) = LC(x− z) (5-14)

with an appropriate choice for the observer gain L. The error dynamics (ė = ẋ − ż) of the
system containing all agents can now be written as

ė = A(x− z)− L(y − Cz) = (A− LC)e (5-15)

The L matrix belonging to the graph of Figure 5-1 is given by Equation 5-16 .

L =




L11 −L11 0 0 0 0
−L22 L22 L23 −L23 0 0

0 0 −L34 L34 L35 −L35
0 0 0 0 −L46 L46


 (5-16)

where L has the same block structure as CT which means that the observer is network-
decentralised [1]. Now if the graph is strongly connected, meaning that there is a path from
an agent to every other agent, and if there is at least one agent who knows its exact location
called the anchor, then under the assumption that Ai = A1, the estimation error e converges
to zero [1]. These assumptions and requirements are all satisfied by the agents described in
this thesis.

5-3 Network Decentralised Orientation Estimation

In the previous section it was assumed that the distance measurements between agent 1 and 2
are equal but opposite from each other. For example if d12 = [1 1]T then d21 = [−1 −1]T this
means that the orientation of the agents in the configuration space is assumed to be the same.
This assumption does not necessarily hold when agents are randomly placed in a configuration
space. Consider Figure 5-3 where 3 agents are randomly placed in a configuration space, they
all have different orientations. The blue line is the blue agent’s x-direction and the blue
dotted line is the blue agent’s y-direction. This means that the distance measurements are
no longer equal but opposite from each other but they are rotated. To reach a consensus in
orientation an agent must receive the estimated orientation of the other agent and also the
distance measurement of the other agent. Agent 1 connected to agent 2 and to an anchor
called agent 0 will ’measure’ the following information:

y1 =
[
θ̂0 + ∠(−d01)− ∠(d10)
θ̂2 + ∠(−d21)− ∠(d12)

]
(5-17)

where θ̂i is the estimated orientation of agent i in radians in the range (−π, π] and ∠(d10)
is the angle in radians of d10. The measurement can be outside the range of (−π, π], it can
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Figure 5-3: Different orientations of three agents

for example be −11
4π but this is equal to 3

4π. The measurement must therefore be mapped
in the range (−π, π]. It can be recognized that the difference in the angle measurements is
equal to the difference in the actual states of the agents so,

∠(−d01)− ∠(d10) = θ0 − θ1 (5-18)

if the right hand side of Equation 5-18 is mapped in the range (−π, π] radian. With this new
insight a state estimator for the orientation has the following form:

˙̂
θ1 = Aθ̂1 + L

([
θ̂0 + θ0 − θ1
θ̂2 + θ2 − θ1

]
−
[
θ̂1
θ̂1

])
(5-19)

And now it is not hard to recognize the similarity with the state observer described in the
previous section. A new C-matrix can be constructed by taking the Kronecker product of
H(t) and C1 with C1 = 1 , which is therefore equal to H(t). A rotation matrix defined by
Equation 5-20 can be used to rotate the distance measurement of the agent and the input
received from the network-decentralised controller discussed in the next section.

Ri =
[
cos θ̂i − sin θ̂i

sin θ̂i cos θ̂i

]
(5-20)

It is important to stress that a correct position estimation can only be achieved when the
orientations have converged to a consensus, therefore the network-decentralised orientation
estimation is crucial.

5-4 Network Decentralised Control

With the network-decentralised state observer the agents are able to determine their absolute
position. To make the agents cooperate i.e. move in a desired formation a control action will
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be constructed to achieve the formation. First the agents will only move to the formation and
not yet to their destination. Consider Figure 5-4 where the distances from agent 1 and agent
2 to their target location are respectively [0 6]T and [0 5]T , these are called the reference
errors er = r̄ − r(t). When the reference error of both agents are equal they have reached
the desired formation which will be the first part of the controller. The input for agent 1 is
a function of the reference error of agent 1 and agent 2 called r̄new and is defined by

r̄new,1 = er,1 − er,2 (5-21)

For agent 2 this would be
r̄new,2 = er,2 − er,1 (5-22)

The agents will move to the location as shown by Figure 5-5. They both have an equal
error (or distance from target location) of [0 5.5]T so r̄new,i = 0 and they are in the desired
formation. Applying this method to the system of agents where the connections between the

Figure 5-4: Starting situation for agent 1
and 2

Figure 5-5: Final situation agent 1 and 2
with formation control

agents are as shown by Figure 5-2 yields a r̄new defined by Equation 5-23

r̄new =




I2 −I2 0 0
−I2 2I2 −I2 0

0 −I2 2I2 −I2
0 0 −I2 I2




︸ ︷︷ ︸
1
2 GT (t)G(t)




r̄1 − ri(t)
r̄2 − r2(t)
r̄3 − r3(t)
r̄4 − r4(t)




︸ ︷︷ ︸
r̄−r(t)

(5-23)

where
I2 =

[
1 0
0 1

]
(5-24)

I2 is a 2× 2 matrix because the configuration space is 2 dimensional, if a third dimension is
added this matrix would have size 3 × 3. The matrix G(t), used to create the under braced
part in Equation 5-23, can be constructed using the incidence matrix H(t) by

G(t) = H(t)⊗ I2 (5-25)
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As mentioned before this control input only steers the agents to the desired formation not
the destination. To reach the destination the identity matrix I2N of size 2N × 2N times a
positive constant ρ is added to 1

2G
T (t)G(t). A low ρ prioritizes the formation and a high ρ

prioritizes the target location. The new matrix is given by Equation 5-26.

1
2G

T (t)G(t) + ρI2N =




I2 + ρ −I2 0 0
−I2 2I2 + ρ −I2 0

0 −I2 2I2 + ρ −I2
0 0 −I2 I2 + ρ


 (5-26)

Another advantage of this diagonal is that an unconnected agent always has a reference signal
that is able to steer the agent to its target location. The next section shows how this new
input is implemented in the backstepping controller used to control the agents.

5-5 Overview of Control Strategies and Implication on Collision
Avoidance Algorithm

The different control strategies which will be used in the simulation cases of the next chapter
are explained here along with the possible implication for the collision avoidance algorithm.

5-5-1 Individual Force Control

Although the individual force control strategy is already treated in Section 2-2 a brief sum-
mary is given to get a comprehensive view of all possibilities. The individual agent is only
interested in its own target location so the reference velocity for agent i is given by:

¯̇ri = sat
vlim,i

[(r̄i − ri(t))k1] (5-27)

The force ui(t) now applied to agent i is then given by the following equation

ui(t) = k2mi(t)
(

sat
vlim,i

[(r̄i − ri(t))k1]− ṙi(t)
)

(5-28)

There are no implications for the collision avoidance algorithm, the agent keeps looking for a
possible collision in the direction of the target location.

5-5-2 Connection Based Force Control

The connection based force control strategy makes use of the information of connected agents.
The reference velocity for the system of N agents is calculated as follows:

¯̇r = sat
vlim

[
k1

(1
2G

T (t)G(t) + ρI2N

)
(r̄ − r(t))

]
(5-29)

where each agent, therefore each row of ¯̇r can have a different speed limit. The input force
applied to the system of agents is then

u(t) = k2m(t)(¯̇r − ṙ) (5-30)
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with

m(t) =



m1(t) 0 0

0 . . . 0
0 0 mN (t)


 (5-31)

For this method there is an implication for the collision avoidance algorithm. An agent can
be in a situation where it receives an input which is not in the direction of the target location.
This means that the collision detection zone is not pointing in the direction the agent wants to
go, to overcome this the collision detection zone is no longer dependent on the target location
but it depends on the direction of the input generated by the connection based force control.
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Chapter 6

Cooperative Collision Avoidance:
Case-Studies

In this chapter several case-studies are examined to show the performance of the proposed
network-decentralised control strategy embedding the collision avoidance method introduced
in this thesis.

6-1 Cooperation in Corridor

The first case-study concerns two agents placed in a small corridor. The red agent must reach
the top of the corridor and the blue agent must reach the point (0, 3). When the agents are
not cooperating as in Figure 6-1, the blue agent is blocking the path for the red agent, hence
a deadlock occurs. There is no way for the red agent to go around the blue agent without
cooperation. This cooperation is achieved using the network-decentralised control method:
in this case, the trajectories of the agents are shown in Figure 6-2. Both agents prioritize
the formation, this results in the blue agent clearing the path for the red agent. Without
cooperation the red agent would not have reached the target location, while cooperation allows
the agents to avoid the formation of a deadlock. This is one of the biggest advantages of the
proposed network-decentralised control enforcing cooperative collision avoidance. Table 6-1
shows all the parameter values used in the simulation.
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Figure 6-1: Two unconnected agents trying
to pass each other in small corridor: this
situation gives rise to a deadlock.
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Figure 6-2: Two connected agents pass-
ing each other in small corridor: this time,
no deadlock occurs and the two agents can
successfully reach their targets

Parameter Description Value
m Mass 1
k1 Gain k1 in Figure 2-2 20
k2 Gain k2 in Figure 2-2 12
α Rotation angle for Collision avoidance 5 degree
c Constant in equation Rcz(t) = c+ βv(t) 0.36
β Constant in equation Rcz(t) = c+ βv(t) 0.48
θ Range collision detection zone [−60, 60] degree

Rdist Preferred distance from obstacle Rcz − 0.18 m
h Simulation sample time 0.01
vlim Speed limit 1 m/s
ρ constant in network-decentralized controller 0.2

Table 6-1: Table of the parameter values used for the simulation in Figure 6-1 and Figure 6-2
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6-2 Keep Formation

As mentioned in Section 5-4, the essence of the controller is to prioritize the assigned for-
mation. This section shows a simulation where the agents must make a line formation. The
agents first move to the formation, then they move as if they are one to the target location.
The agents all have the same speed limit, in the next section a case where the agents have
different speed limits is shown. Figure 6-3 shows how the agents move, it is clear to see by
the straight lines that the agents first make a formation and then move as one to their desti-
nation. The same parameter values are used as in Table 6-1 with exception of the parameters
mentioned in Table 6-2. The starting positions and target locations are shown in Table 6-3.

0 2 4 6 8 10 12 14

0
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4

6

8

10

1 2 3 4 5 6 7 8 9 10

Figure 6-3: Agents moving in formation from a random starting position to a line

Parameter Description Value
vlim Speed limit 0.5 m/s
ncon Number of connections 5

Table 6-2: Table of different parameters used for the simulation in Figure 6-3 and 6-4

6-3 Keep Formation With different Speed Limits

The next case-study is similar to the one in the previous section, the only difference is that the
agents have different speed limits. Despite having different speed limits, the agents move in a
formation to their destination. The simulation is shown in Figure 6-4. It is again clear to see
by the straight lines that the agents move as one to their destination. The same parameters
and starting positions are used as in the previous section. The speed limits of the agents are
shown in Table 6-4.
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Agent Starting Coordinates (i, j) Target Coordinates (i, j)
1 (6, 4) (1, 2)
2 (4.5, 6.5) (2, 2)
3 (5.5, 8) (3, 2)
4 (3.5, 7.5) (4, 2)
5 (7, 7) (5, 2)
6 (4, 3.5) (6, 2)
7 (8, 5.5) (7, 2)
8 (5, 5) (8, 2)
9 (7.5, 6) (9, 2)
10 (6.5, 4.5) (10, 2)

Table 6-3: Starting and Target locations of the agents in Figure 6-3 and 6-4
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Figure 6-4: Agents moving in formation from a random
starting position to a line having different speed limits

Agent Speed limit
[m/s]

1 0.5
2 0.65
3 0.35
4 0.6
5 0.65
6 1.1
7 1.25
8 0.8
9 0.9
10 1.2

Table 6-4: Different speed
limits of the agents in Fig-
ure 6-4
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6-4 Faster than without connected control

Another interesting case is the one where a network-decentralised controller steers the agents
faster to their target location. The agents are placed in a square and their starting and
target coordinates are shown in Table 6-5. Figure 6-5 shows how agents without network-
decentralised control would behave to reach their target. They all meet in the middle and
form a congestion where a lot of collision avoidance manoeuvres must be made. As a result
that the agents take 25.09 seconds to reach their target location. With network-decentralised
control however this only takes 14.03 seconds. The agents avoid the middle and form new
smaller middle points thereby making less collision avoidance manoeuvres. The simulated
trajectories with network-decentralised control are shown in Figure 6-6. The parameters used
for the simulation are shown in Table 6-1

0 2 4 6 8

0

2

4

6

1 2 3 4

5

6789

10

t = 25.09

Figure 6-5: Unconnected (ncon = 0)
agents moving to the opposite in a square
thereby all meeting in the center
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Figure 6-6: Agents connected up to 3 other
agents (ncon = 3)moving to the opposite in
a square

Agent Starting Coordinates (i, j) Target Coordinates (i, j)
1 (6, 4) (0, 0)
2 (4, 4) (6, 0)
3 (3, 4) (4, 0)
4 (0, 4) (6, 0)
5 (0, 2) (6, 2)
6 (0, 0) (6, 4)
7 (2, 0) (4, 4)
8 (4, 0) (2, 4)
9 (6, 0) (0, 4)
10 (6, 2) (0, 2)

Table 6-5: Starting and Target locations of the agents in Figure 6-5 and Figure 6-6
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6-5 Simulation of 50 Agents

The simulation of 50 agents in Simulink for 5 seconds takes approximately 22 seconds where
as 10 agents took about 1 second. The reason for this major increase in simulation time is
because datasets of size 100×100 are saved in the Matlab workspace every 0.01 second which
takes a lot of time. The 7 snapshots of a simulation where agents are randomly placed in a
configuration space to form 5 circles are shown in Figure 6-7, 6-8, 6-9, 6-10, 6-11, 6-12 and
6-13. The agents successfully avoid each other and move in a formation to the desired target
location. The same parameter values are used as in Table 6-1.
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Figure 6-7: 50 agents moving in a configuration space to form 5 circles in the bottom left at
t = 0 with ncon = 5

D.W.P. van Wijk Master of Science Thesis



6-5 Simulation of 50 Agents 41

−10 −5 0 5 10 15 20−10

−5

0

5

10

15

20
t = 5.00

Figure 6-8: 50 agents moving in a configuration space to form 5 circles in the bottom left at
t = 5 with ncon = 5
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Figure 6-9: 50 agents moving in a configuration space to form 5 circles in the bottom left at
t = 10 with ncon = 5
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Figure 6-10: 50 agents moving in a configuration space to form 5 circles in the bottom left at
t = 15 with ncon = 5
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Figure 6-11: 50 agents moving in a configuration space to form 5 circles in the bottom left at
t = 20 with ncon = 5
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Figure 6-12: 50 agents moving in a configuration space to form 5 circles in the bottom left at
t = 25 with ncon = 5
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Figure 6-13: 50 agents moving in a configuration space to form 5 circles in the bottom left at
t = 30 with ncon = 5
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Chapter 7

Anonymity in Coordination

The agents are able to avoid collision, estimate their location and are able to move in a
formation in a network-decentralized way. But how do we choose which agent goes where?
Often anonymity in coordination can be exploited, which means that it does not matter which
agents goes where in the formation as long as the formation is formed. To determine which
agent goes where each agent solves a local optimisation problem to minimize the distance
travelled. Opposed to the multi-agent optimisation problem described in [24] the optimisation
problem is non-convex.

7-1 Problem Definition

The agents who are all assigned a target destination are allowed to change their destination
with connected agents. The global goal of this local distribution of target destinations is
to minimize the total distance travelled by the system of N agents. Or mathematically the
following cost function must be minimized:

min
T
C =

N∑

i=1

√
(T r̄x − rx,i)2 + (T r̄y − ry,i)2 (7-1)

where T is a matrix which distributes the target location to every agent, making sure that
every target location is assigned only once. There are several ways to solve this global opti-
mization problem such as checking every possible solution for the N location. This has N ! (N
factorial) solutions, when there are 15 agents there are already 1307674368000 possibilities.
A more efficient method is to use the Hungarian Algorithm as explained in [25]. The number
of operations for this method scales with N3 and is therefore preferred when N > 5 because
5! = 120 and 53 = 125.

The agents however are interconnected according to a communication topology H(t) (the
incidence matrix), so each agent is connected to at most 4 other agents. Of course they know
their own target destination so the number of target locations to distribute is 5. The next
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section proposes a method for the agents to minimize the distance travelled by exploiting
anonymity in coordination in a network-decentralised way (because the cost function is local
and a local optimisation problem is solved).

7-2 Network-decentralised Optimization Method

As discussed in Chapter 5 the agents receive information about the error r̄ − r(t) and the
estimated position of the connected agents Cizi. This information will also be used for the
optimization method run by each agent. Each agent runs an optimization such that the
following local cost function is minimized

min
Ti

Ci =
∑

k∈ci

√
(Tir̄x,k − rx,k)2 + (Tir̄y,k − ry,k)2 (7-2)

where ci is the set with agent i and the agents connected to it; for instance, for agent 1 in
Figure 7-1 c1 is given by:

c1 = {1, 2, 3, 7} (7-3)

The difference between the value of the cost function Ci before optimization and after opti-
mization Ci(Ti,opt) (the cost as function as Ti,opt) is called the Bid Bi:

Bi = Ci − Ci(Ti,opt) (7-4)

The bid is placed in an auction held by each interconnected agent. For instance, for agent 1
in Figure 7-1 the Auction is given by

Auction1 =




B1
B2
B3
B7


 (7-5)

Just as in a real auction, the agent ’sells’ its target location to the agent with the highest bid.
Suppose in the graph in Figure 7-1 agent 2, 3 and 7 all take the bid of agent 1 then agent 1
is allowed to allocate their target locations and a new optimization (if necessary) with those
agents is performed. If agent 1 did not take its own bid, it would not perform an optimization
since another agent would reallocate its position. This optimization can be executed multiple
times per second, depending on the computational power of the on-board computer of the
agent.

7-3 Result of Anonymity in Coordination

Each agent individually solves a local optimisation problem, where it minimises the distance
travelled by itself and by the agents connected to it. Therefore, it is not the goal of the agents
to reach the global optimum, in terms of minimum total distance travelled. However, this
is often reached any ways. The outcome is dependent on the number of agents, how they
are connected and how the locations are distributed among the agents. However, anonymity
in coordination is reached, the agents are able to distribute their target locations in what is
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locally the optimal distribution. An example where agents distribute the locations is shown in
Figure 7-1 and Figure 7-2, the blue lines represent the connection at time t = 0 and t = final.
In Figure 7-1 the agents are assigned a random target, all different from their final positions as
shown in Figure 7-2 as shown by the plus signs. The locations of the agents in Figure 7-2 are
the final positions where the plus signs that are not encircled mark their starting positions.
By solving the local optimization problem they distribute their destination to reach, in this
case, the global minimum of total distance travelled. It can be interesting to investigate what
the minimum number of connections must be to guarantee a global minimum in a connected
graph.
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Figure 7-1: Network between agents at time t = 0 where the lines represent the connection
between agents
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Figure 7-2: Final positions of agents with anonymity in coordination at time t = final
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Chapter 8

Conclusion

By multiple simulations it is shown that the proposed collision avoidance algorithm avoids
collisions by generating a reference velocity which is always away and around from the possible
collision. This collision avoidance method can be combined with a network-decentralised state
estimator. The algorithm can also be combined with a network-decentralised controller. The
network decentralised-controller generates an input signal which makes the agents move in a
formation as if they were one system. Special about this controller is that the agents do not
have to be homogeneous, simulations with different speed limits have shown this. The network
decentralised-controller improves the collision avoidance algorithm since agents are helping
one another to reach their destination. A good example of this is the simulation in a corridor
in Section 6-1. The chances on a deadlock or a livelock are therefore greatly reduced. Finally
a local optimization method based on a bidding and auction process with connected agents
reallocates the target destination. The target destination are reallocated such that at time t
the total distance travelled of the connected agents will be minimized. A global optimum can
not be guaranteed since a collision avoidance manoeuvre can prevent an agent from choosing
the shortest path and only local information is used for the optimization. The proposed
collision avoidance method in combination with the network-decentralised controller, observer
and optimization is able to avoid collision, keep a formation and satisfies the anonymity in
coordination requirement.
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Chapter 9

Recommendations

Combining the collision avoidance algorithm with the network-decentralised estimator and
controller showed great promise in the simulation. To test this method on a real life application
is therefore the most important recommendation. Priority attention in the test must go to
achieving consensus in orientation of the agents: this can be particularly challenging when
sensor noise is present.

Another topic of interest is to extend the collision avoidance algorithm to deal with non-
holonomic agents. Using a larger preferred distance from the obstacle is probably needed
to increase the available space for a collision avoidance manoeuvre. The addition of a non-
circular collision detection zone as in [26] might also improve the collision avoidance algorithm.
Inspiration for a collision avoidance algorithm which is applicable to non-holonomic agents
can be found in [27]. Combining the non-holonomic collision avoidance algorithm with the
network-decentralised formation controller is interesting for future work.

Finally it can be investigated what the conditions are to reach a global minimum by solving
multiple local minimum optimisations at the agents.
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Abstract

In mechanical and electrical engineering the equations of motions of a system can be derived
using a Lagrangian or Hamiltonian and by the principle of least action. This thesis presents
an economic equivalent of the Lagrangian and Hamiltonian formulation based on the mini-
mization of cost by the rational behaving agent, the principle of least cost. The Lagrangian
contains the cost belonging to the path of an agent, the path is a configuration of goods q
and the flow of the goods per unit time q̇. The Hamiltonian is the income as a function
of price (Euro per good) and goods q just as the mechanical Hamiltonian is a function of
momentum and generalized coordinate q. The economic equivalent of a force (F ) is a rental
with units Euro per good per unit time. It is shown that existing economic conservation
laws, such as ’income is ρ times wealth, can also be obtained by the economic Lagrangian
and Hamiltonian method. This method, with the exponential discount factor e−ρt, however,
can not be used to obtain a second order model which describes the equations of motion of
an agent, the obtained system is unstable. Also, when price (p) is defined as a constant m
times demand q̇, just like momentum p = mq̇, then Newton’s second law of ṗ = F does not
hold for economic systems, increasing the price does not increase demand, in fact, in general
it decreases demand. A small modification of the Hamiltonian method leads to Pontryagin’s
Maximum Principle which is an important principle in the field optimal control theory. For
the principle, the price (or momentum) does not have to be a function of the flow q̇ and
can therefore be very useful when optimizing economic problems when they are stated as
the proposed economic Lagrangian method. Although a similar method is already used, the
units are often not clear, there is no distinction between price and rental. Dissipating costs
like adjustment cost are not treated correctly this, in combination with the unclear units
used, results in differential equations which do not necessarily have an economic meaning.
So the method is useful for obtaining conservation laws and solving optimization problems in
economics but the mechanical equivalent of a mass spring system (a second order model) can
not be derived with this.
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“As far as the theorems of mathematics refer to reality, they are not certain, and
as far as they are certain, they do not refer to reality.”[1]
— Albert Einstein





Chapter 1

Introduction

The fields of engineering and economics have been closely related throughout their histories.
For example the physicist, engineer and mathematician Simon Stevin is remembered in the
history of accounting for introducing the Italian method of double-entry bookkeeping into
Northern Europe [2]. Stevin understood that, by influence of his bookkeeping studies, a
perpetual mobile is impossible. The first appearance of Smith’s invisible hand, which is
famous for its explanation why prices are pushed to an equilibrium, was in a physics context:
"Heavy bodies descend, and lighter substances fly upwards by the necessity of their own nature;
nor was the invisible hand of Jupiter ever apprehended to be employed in these matters" (Smith
1967 p. 49). And many more examples can be found how engineering and economics have
influenced each other. As a control engineer, the author of this thesis wants to explore the
possibilities of applying control theory on economic problems. To achieve this a connection
between mechanics and economics will be made by use of the Lagrangian and Hamiltonian
formulation. With this formulation mechanical equivalents of electrical elements are already
obtained, an inductor behaves like a mass, a capacitor like a spring and a resistor like a
damper. Can such elements also be found in an economic system?
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Chapter 2

Basic Economic Concepts

In this chapter some basic economic and financial concepts which will be used through out
the thesis will be explained.

2-1 Rational Behaving Agent

One of the most important assumption of many economic and financial theories is that when
a decision is to be made, the decision-maker always chooses the one which contributes to
his goal. The goal can be the maximization of monetary and material value but can also
be purely emotional. Such a decision-maker can refer to an individual, a firm, a household,
a government etcetera and will from now on be called an agent. The agent who makes
decisions which contribute to his goal is said to behave rational. A rational behaving firm
wants to minimize his costs to reach a certain goal and the rational behaving consumer wants
to maximize utility. Utility is described by Jeremy Bentham (founder of utilitarianism) as
the sum of all pleasure that results from an action, minus the suffering of anyone involved
in the action. Both utility and profit are expressed in monetary value to be able to compare
them.

2-2 Time Value of Money

Because of the possibility to invest or save money, a Euro today does not have the same value
as a Euro a year from now. An agent receives an amount of money N , which he can store
in an account which pays an interest of 10% so after a year the account has a value of 1.1N .
Money received in the future must be discounted with the so called discount factor, this can
contain interest rates, inflation, opportunity costs and so on. A commonly used discounting
method is by multiplying the received amount of money by e−ρt, where ρ is the discount
factor and t is the time. There are other methods of discounting like hyperbolic discounting
which value future payments even less then regular discounting and are said to more closely
describe human behaviour.
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2-3 Supply and Demand

The demand and supply curve are two well known economic concepts, they are the forces
which makes an economy work [3]. Figure 2-1 is a graphical interpretation of how supply
and demand together result in a market price. Contrary to (most) mechanical graphs the
free variable is the horizontal axes i.e. the price. If the price decreases, the demand increases
and if the price increase the supply increases. An important distinction between the demand
graph used by economics and the demand graph as it will be used in this thesis is that variable
on the horizontal axes: quantity demanded in a unit of time will be expressed as the quantity
per unit of time: q̇ = dq

dt , the flow of goods per unit of time.

Figure 2-1: Supply and Demand Curve [4]

When supply equals demand the market is in equilibrium, both suppliers profit and consumers
utility are maximized. This is clearly depicted in Figure 2-1. In an efficient markets prices
and demand are moving to a stable equilibrium as if they are pushed by an invisible hand.
This approach to economics is called neoclassical economics. Some economic events however
are better described as if markets tend towards disequilibrium, an example of this are the
boom and bust cycles in the stock market which are described by the reflexivity theory by
G. Soros [5].
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Chapter 3

Fundamentals of Mechanics and
Economics

The principle of critical action, which is often called the principle of least action, and Hamil-
ton’s principle are fundamental principles used to derive the equations of motion of a mechani-
cal and electrical systems. Although the two principles are regarded as being synonymous they
are slightly different. Hamilton’s principle involves varying the integral of the Lagrangian over
all curves with fixed endpoint and fixed time. The principle of least action involves variation
of

∫ b

a

∑

i

q̇i
∂L
∂q̇i

dt (3-1)

over all curves with fixed energy[6]. The principle of least action is also used in quantum
mechanics [7]. Now the question rises if there is such a principle in economics to derive
economical equations of motion similar to the mechanical equations of motions.

3-1 The Economic Agent and the Free Particle

One of the most fundamental concepts of mechanics is that of a free particle [8]. If al the
generalized coordinates q and generalized velocities d

dtq = q̇ are given at some instant, the
accelerations q̈ are uniquely defined. In economics the free particle is the economic agent
whose state is defined by its capital (and labour) q and the change in capital over time q̇.
In economic textbooks capital and labour are often denoted with K and L, q̇ is the change
in capital per unit time. Integration of q̇ and q̈ makes it possible to determine the path of
the agent which will be called the Economic Activity, Figure 3-1 shows a possible path of
an agent who wants to reach a position q(t2) starting at q(t1), q1 and q2 can for example be
chickens and eggs.
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6 Fundamentals of Mechanics and Economics

q1

q2

t1

t2

Figure 3-1: Economic Activity of an Agent

3-2 Principle of Least Cost

The cost for the economic activity can be determined by a function of q(t), q̇(t) and time t,
this can be written as

Cost = f(q(t), q̇(t), t) (3-2)

Now the economic activity, or path, the rational behaving agent takes when going from a
state at t1 to a state at t2 is the one for which the accrued cost are minimized. Let q(t) be
the path for which the accrued cost are minimized and δq(t) be a small variation of this path.
And let the variation at initial and final positions be

δq(t1) = δq(t2) = 0 (3-3)

This is like travelling from Rotterdam to Berlin where an agent has the option of taking
multiple routes (the variation) but the start and final locations are not varied (δq(t1) =
δq(t2) = 0). The change in accrued cost S when taking a small variation of the optimal path
is given by

δS =
∫ t2

t1
f(q + δq, q̇ + δq̇, t) dt−

∫ t2

t1
f(q, q̇, t) dt (3-4)

When this difference is expanded in powers of δq and δq̇, the leading terms are of the first
order and the first order necessary condition for S to have a minimum (or maximum or a
saddle-point) is that these terms should be zero, or mathematically

δS = δ

∫ t2

t1
f(q, q̇, t) dt = 0 (3-5)

The second order condition, known as the Legendre-Clebsch condition to verify if the function
is indeed a minimum and not a maximum or saddle-point is not important when deriving the
mechanical equations of motion since:

The motion of a system from time t1 to t2 is such that the line integral, called the
action, has a stationary value for the actual path of the motion.[9]

In economics this second order condition is important since the agent wants to minimize
cost. If the Legendre-Clebsch condition holds this principle will in economics be called the
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3-3 Minimizing the Accrued Cost 7

principle of least cost, in chapter 7 it will be shown that this second order condition is actually
contained in the Hamiltonian formulation. The function f(q, q̇, t) is in mechanics known as the
Lagrangian (L) with energy measured in Joule [J ] as its unit. The Lagrangian in mechanics
usually consists of two parts, the kinetic energy T and the potential energy V such that,

L = T − V (3-6)

In economics the Lagrangian is the running cost in e/T , where T is a given period of time,
and the action S are the accrued cost in [e]. The kinetic energy T are cost per unit of time
and the potential energy V can be a net profit per unit of time.

3-3 Minimizing the Accrued Cost

So the problem for the economic agent is to minimize a cost function which depends on
the path, f(qq̇). Since most economic problems which are minimized over a period of time
are subjected to a (constant) discount factor ρ because of the time value of money. The un-
discounted accrued cost dependent on the path will be described as F(q, q̇). The minimization
problem with a constant discount factor is now described by:

Minimize S with S =
∫ T

0
e−ρtF(q, q̇)dt (3-7)

subjected to constraints, where S is the accrued cost of the firm and ρ is the discount factor.
In similar fashion a typical economic problem for a consumer (or society) is to maximize an
un-discounted utility function U(q, q̇) over a period of time:

Maximize U with U =
∫ T

0
e−ρtU(q, q̇)dt (3-8)

subjected to constraints, U is the (present) accrued utility of a consumer (or society) expressed
in monetary value. The Euler-Lagrange equations will now be derived for the cost minimizing
firm. By the principle of least cost the optimal path where the accrued costs are minimized
when going from a state q(t1) to q(t2) is when a small variation δ of the path results in no
variation in the accrued cost, δS = 0 so,

δS = δ

∫ t2

t1
L(q, q̇, t) dt = 0 (3-9)

or, effecting the variation, ∫ t2

t1

(
∂L
∂q
δq + ∂L

∂q̇
δq̇

)
dt = 0 (3-10)

and using integration by parts we obtain,

δS =
[
∂L
∂q̇
δq

]t2

t1

+
∫ t2

t1

(
∂L
∂q
− d

dt

∂L
∂q̇

)
δq dt = 0 (3-11)

since the variation at the beginning and final position are zero,
[
∂L
∂q̇ δq

]t2
t1

= 0, the integral
must vanish for al variations of δq, so the function is minimized if,

d

dt

(
∂L
∂q̇

)
− ∂L
∂q

= 0 (3-12)

The next section described the economic meaning of this equation.
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8 Fundamentals of Mechanics and Economics

3-4 Price, Rental and the No Arbitrage Principle

In mechanics the partial derivatives of the Lagrangian are defined as the momentum (p) and
the Force (F ):

p , ∂L
∂q̇

(3-13)

F , ∂L
∂q

(3-14)

the economic definition of these partial derivatives are price (p) in Euro per good [e/#] and
rental cost F in Euro per good per unit of time [e/#T ]. With these definitions the economical
interpretation of the Euler- Lagrange equation 3-12 is that the change in price is equal to the
rental cost:

ṗ(t) = F (t) (3-15)

or
p(t) = p(0) +

∫ t

0
F (t)dt (3-16)

Equation 3-16 is a fundamental economic concept first published by Hotelling in 1931 [10], it
is known as Hotelling’s rule for non-renewable resources where F (t) is an opportunity cost or
resource rent. It states that the price tomorrow is equal to the price today plus resource rent,
nowadays this relation is well known as the no arbitrage principle. This is best explained in
discrete time for a stock paying dividend when the cost price is defined as:

pc ,
∂F
∂q̇

(3-17)

that is the un-discounted price of the cost function

S =
∫ T

0
e−ρtF(q, q̇)dt (3-18)

Since the rental is usually negative, just like potential energy is negative in the mechanical
Lagrangian formulation, i.e. the economic agent receives an amount of Euro per good per
unit of time, the net rental R of the capital good will be defined as

R(t) = −∂F
∂q

(3-19)

(3-20)

then the discrete time price of a stock paying dividend is according to the equations obtained
by the principle of leas cost in discrete time,

pc[t+ 1] = pc[t] + ρpc[t]−R[t] (3-21)

The cost price tomorrow is equal to the cost price today plus opportunity cost (ρpc[t]) minus
the dividend R[t] paid to the stockholder. Which is exactly the no arbitrage rule for stocks
paying dividends.
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3-5 Rayleigh Dissipation and Adjustment cost 9

Equation 3-15 has more important economic and financial meanings, when both sides are
divided by p(t):

ṗ(t)
p(t) = F (t)

p(t) (3-22)

e−ρt (ṗc(t)− ρpc(t))
e−ρtpc(t)

= −e
−ρtR(t)

e−ρtpc(t)
(3-23)

ṗc(t)
pc(t)

= ρ+ −R(t)
pc(t)

(3-24)

R(t)
pc(t) is called the internal rate of return (IRR) of an investment and can be a decisive factor
when choosing between several investment projects [11].

3-5 Rayleigh Dissipation and Adjustment cost

Mechanical problems can contain a frictional force, such forces can not be derived from a
Lagrangian. Usually the frictional force is proportional to the velocity of the particle so that
it has the following form:

Ff = −cv (3-25)

With Ff the friction force, c the friction coefficient and v the velocity of the particle (q̇).
Frictional forces of that type may be derived in terms of a function D, known as Rayleigh’s
dissipation function and is defined as [9]

D = 1
2
∑

i

(
cxv

2
ix + cyv

2
iy + czv

2
iz

)
(3-26)

Dissipation functions also arise in economic problems when there are adjustment costs. Ad-
justment cost, just as friction, cannot be recovered from the system and works in both di-
rections i.e. installing and deinstalling an investment. It turns out that a quadratic cost
function is a good approximation to costs such as machine set-up costs [12]. An example
of an economic problem with dissipation is given in Section 3-6. The difference in economic
problems is that an adjustment cost increases the cost price where in mechanical problem an
friction decreases the momentum, the economic Lagrange equations with dissipation are

d
dt

(
∂L
∂q̇

)
− ∂L
∂q
− ∂D
∂q̇

= 0 (3-27)

3-6 Example from Income, Wealth and the Maximum Principle

In chapter 1 of Income, Wealth and the Maximum Principle[13] a widget entrepreneur is used
as an example for which the calculus of variation can be used to obtain a simple investment
policy. The example in the book can use some insights from an engineering point of view.
The price defined in the book by P of a widget is given by the linear demand function

P (q) = P̄ − bq (3-28)
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Here q is quantity demanded in a month not per month. The revenue (or net income since
no costs are made) per month can be written as

V = P̄ q − bq2 (3-29)

The letter V is used to emphasize that this is equivalent to what is in Lagrangian mechanic
known as the potential. The definition of price for P can be confusing since is has units
e/(#T ) so we must think of it as a net rental. One machine produces one widget and
changing the number of machines (I = q̇) has a cost price c(t). A new machine can not
operate immediately but has an adjustment time. Weitzman reasons that if I new machines
arrive at the beginning of a period, the manager must spend a total time of τI on new
robot adjustments, so τ has dimension [T 2/#]. At adjustment time s, the manager will have
adjusted s/τ machines meaning that the remaining I − s/τ are waiting to be adjusted. The
total loss of widget production per period from the downtime is therefore

∫ τI

0
(I − s

τ
)dt = αI2 (3-30)

where α = τ/2 is called a cost-of-adjustment coefficient. But carefully checking the dimension
of all the variables in Equation 3-30 gives that αI2 must be the number of widgets [#] and
does not have the required units of Euro per time. By changing the dimension of τ such
that αI2 has dimension [e] and by multiplying with the discount (or opportunity) factor ρ
we obtain a cost with dimension Euro per unit of time. Multiplying with e−ρt to make the
adjustment cost time dependent, we obtain a time dependent adjustment cost of e−ρtραI2 in
[e/T ]. The optimization problem for the entrepreneur is now

minimize
∫ ∞

0

(
c(t)I(t) + ραI(t)2 + bq(t)2 − P̄ q(t)

)
e−ρtdt (3-31)

instead of the optimization problem defined in the book:

maximize
∫ ∞

0

(
−cI(t)− αI(t)2 − bq(t)2 + P̄ q(t)

)
e−ρtdt (3-32)

Since we have identified the adjustment cost as a dissipation factor the solution to the La-
grange equation is

ċ = 2bq − P̄ + ρc+ 2ραI (3-33)

If the firm was operating under no arbitrage conditions, the inventory value ċ(t) (or value for
which the entrepreneur would sell the machine) was changing by the right hand side of the
above equation. Now since the machines do not depreciated i.e. ċ(t) = 0,

ρ = P̄ − 2bq
c+ 2αI (3-34)

where the right hanside of this equation is the internal rate of return and a sound investment
policy would be to (des)invest until the internal rate of return is equal to the opportunity
cost i.e. until Equation 3-34 is satisfied for maximum profit. This is also defined in the book
as the stationary rate of return on capital but the relation with the Lagrange equation is
missing. Moreover Weitzman states on page 19 of [13] that

− P̄ + 2bq = 2αİ − ρ(c+ 2αI) (3-35)
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3-7 Example from Advanced Macro Economics 11

is a necessary optimality condition when solving the problem using the maximum principle,
but this equation has no mechanical or economic meaning. The constant 2α is treated like a
mass to simulate a resistance to acceleration: İ. A possibility to account for adjustment time
is to put a constraint on q̇.

3-7 Example from Advanced Macro Economics

In section 9.2 of Advanced Macro Economics by Romer [14] a similar example of a profit
maximizing firm with adjustment cost is given. To prevent ambiguity the variables in this
thesis are changed, Table 3-1 shows the translation between this thesis and Advanced Macro
Economics.

Description Romer Thesis
Discount factor r ρ

Capital κ q
Investments I I

Adjustment costs C(I) D(I)
Investment cost 1 c
Shadow costs q λ

Industry wide capital K Q
Net income π(K) R(Q)

Table 3-1: Table of variable translation to Advanced Macro Economics

The adjustment cost D(I) satisfies D(0) = 0, ∂D(0)
∂I = 0, ∂

2D(·)
∂I2 > 0 and q̇ = I. The objective

is to maximize the present value

V =
∫ ∞

0
e−ρt (R(Q)q(t)− cI(t)−D(I(t))) dt (3-36)

where Q is the industry-wide capital stock, we immediately notice that the adjustment cost
does not have the correct dimension of Euro per unit of time. The shadow price λ(t) is defined
as

λ = c+ ∂D
∂I

(3-37)

Which can be interpreted, according to Romer, that the cost of acquiring a unit of capital is
equal to the purchase price c plus the marginal adjustment cost ∂D

∂I . Then he continues that
the equation

R(Q) = ρ

(
c+ ∂D

∂I
)
)
− ċ− d

dt

(
∂D
∂I

)
= ρλ− λ̇ (3-38)

states that the marginal revenue R(Q) is equal to its user cost ρλ − λ̇ (page 416). The
adjustment costs are treated like kinetic energy with a mass to represent the resistance to
İ or q̈, the acceleration. This ’economic mass’ does not behave like a mechanical mass i.e.
when a larger rental (force) is applied on the mass, the acceleration İ is proportional to this
rental this is not necessary true in economics. Adjustment time does not have to decrease
when a larger rental is applied on the ’economic mass’. Another method would be to treat the
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12 Fundamentals of Mechanics and Economics

adjustment cost as a friction force and to constrain İ . When the definition of cost is adjusted
in the same way as in the previous section the Euler-Lagrange equation with dissipation
becomes

ṗc(t) = ρpc −R(Q) + ρ
∂D
∂I

(3-39)

with pc = c So the investment policy is here again to (des)invest until marginal revenue
(R(Q)) equals marginal cost ρ

(
pc + ∂D

∂I

)
.

We can alo look at this equation as how much value does the investment have for the firm,
invest as long as

R(Q)
ρ
− ∂D
∂I

> c (3-40)

So describing the adjustment cost as a friction a meaningful equation is obtained. To include
adjustment time a constraint on q̇ can be implemented.
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Chapter 4

Hamilton’s Equations

We have seen that when the Lagrangian formulation is used properly it can have great value
in economic problems, another (and more powerful [9]) formulation used in mechanics is the
Hamiltonian formulation. In this chapter the Hamiltonian is derived from the Lagrangian
and several useful properties of the Hamiltonian are explained. In Chapter 5 the Hamiltonian
formulation is used for deriving conservation laws in theoretical economic problems. And
in Chapter 7 t is shown that a little modification of the Hamiltonian leads to Pontryagin’s
Maximum Principle which is an important principle in the field of optimal control theory.

4-1 Hamilton’s Equations

The passage from one set of independent variables to another can be realized by a Legendre
Transformation see the paper Making Sense of the Legendre Transform[15] by Zia et al. for
a detailed description of the Legendre transform. The total differential of the Lagrangian as
a function of capital q(t), flow of capital q̇(t) and time t is,

dL =
∑

i

∂L
∂q

dqi +
∑

i

∂L
∂q̇i

dq̇i + ∂L
∂t

dt (4-1)

which is equal by the definitions of price and momentum to

dL =
∑

i

ṗidqi +
∑

i

pidq̇i + ∂L
∂t

dt (4-2)

Writing the second term of the right hand side of Equation 4-2 as
∑

i

pidq̇i = d
∑

i

piq̇i −
∑

i

q̇idpi (4-3)

With this relation the following equation can be obtained from Equation 4-2

d
(∑

piq̇i − L
)

= −
∑

i

ṗidqi +
∑

i

q̇idpi −
∂L
∂t

(4-4)

H =
∑

i

piq̇i − L (4-5)
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14 Hamilton’s Equations

∂L
∂q̇ q̇ − L is called the energy of the system, when this is expressed in terms of coordinates
q and momenta p it is called the Hamiltonian (H) of the system. The Hamiltonian is the
kinetic energy plus the potential energy:

H = T + V (4-6)

Or economically it are the costs plus profits. The equations of motions of a Hamiltonian
system are given by Equation 4-7, because of their simplicity an symmetry they are also
called canonical equations. [

q̇
ṗ

]
=
[

0 1
−1 0

] [
∂H
∂q
∂H
∂p

]
(4-7)

The time derivative therefore takes the following special form
dH
dt = ∂H

∂t
+ ∂H
∂q

q̇ + ∂H
∂p

ṗ = ∂H
∂t

(4-8)

And
∂H
∂t

= −∂L
∂t

(4-9)

The canonical formulation of the Hamiltonian has a correlation with what is in economics
known as the envelope theorem, in particular interest are Shephard’s lemma and Hotelling’s
lemma for (static) microeconomic problems.

4-2 The Hamiltonian and Income

The Hamiltonian is in economics encountered when optimizing a cost function and it is has
the unfortunate name of a current value Hamiltonian (see any economic textbook about
optimization). Unfortunate, since the units of the Hamiltonian are Euro per unit of time and
not Euro as the word value would suggest. The term value is used for the integral of the
Hamiltonian over a period. The economic description in this thesis of the Hamiltonian is the
income in Euro per unit time. This because when a new investment q̇ is made, this increases
the value of the firm with the price p of the investment. Notice that there is no restriction
on the income about how this investment is added to the firm. Now we have reached another
economic theorem known as Modigliani-Miller theorem which states that in perfect conditions
the value of the firm is unaffected by its choice of capital structure (self funded or borrowed,
unlevered or levered)[16]. This definition of income is not new in economics, in fact the
Marshall-Haig-Kuznets’ definition of income (p. 82 of [17]) is the underlined part of Equation
4-10.

Hc = e−ρt
(
U − ∂U

∂q̇
q̇

)

︸ ︷︷ ︸
Income

(4-10)

or in words when the discount factor is omitted,

Income = Utility + Utility value of investment (4-11)

because the society is maximizing the utility function the consumer Hamiltonian Hc is the
negative of the firms Hamiltonian H and the supply price is defined by

ps , −
∂U

∂q̇
(4-12)
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4-3 Poisson Brackets 15

because the consumer is maximizing utility not minimizing cost. The integral of the firms
income is the value V ,

V (0, t) =
∫ t

0
Hdt (4-13)

The integral of the Consumer Hamiltonian is the Wealth

W(0, t) =
∫ t

0
Hcdt (4-14)

There are some very useful properties of the Hamiltonian which are described in the next
sections.

4-3 Poisson Brackets

The use of Poisson brackets is very useful in finding an integral of the motion. [Section is
based on paragraph 42 of [8]] Let f(q, p, t) be a function of capital, price and time then the
time derivative is given by

df
dt = ∂f

∂t
+ ∂f

∂q
q̇ + ∂f

∂p
ṗ (4-15)

substituting q̇ and ṗ given by the Hamiltonian equation leads to the expression

df
dt = ∂f

∂t
+ [H, f ] (4-16)

Where
[H, f ] = ∂H

∂p

∂f

∂q
− ∂H
∂q

∂f

∂p
(4-17)

and is called the Poisson bracket of H and f . For f to be an integral of the motion (df
dt = 0

the following condition must hold
∂f

∂t
+ [H, f ] = 0 (4-18)

An integral of the motion is a function of dynamic variables which remain constant during
the motion of a system. An important property of the Poisson bracket is that, if the functions
f and g are two integrals of the motion, their Poisson bracket is an integral of the motion

[f, g] = constant (4-19)

See Landau page 137 for a proof of this and for properties of the Poisson bracket.

4-4 Hamilton-Jacobi equation

Another formulation which often used in classical mechanics is the Hamilton - Jacobi equation
which will be derived in this section. Suppose the variation δq(t2) in Equation 4-20 is not
equal to zero but equal to δq, a small variation of the number of goods q at time t2 . And
the integral term of the equation vanishes by minimization.

δS =
[
∂L
∂q̇
δq

]t2

t1

+
∫ t2

t1

(
∂L
∂q
− d

dt

∂L
∂q̇

)
δq dt = 0 (4-20)
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16 Hamilton’s Equations

then (p. 138 of [8])
δS = ∂L

∂q̇
δq (4-21)

Which states that increasing the inventory of an agent with one asset (q) the increase in
accrued cost is equal to the price. From this relation it follows that the partial derivatives of
the cost with respect to the coordinates are equal to

∂S

∂q
= p (4-22)

It is important to notice that this relation only holds when the no arbitrage condition is true
i.e.

d

dt

(
∂L
∂q̇

)
− ∂L
∂q

= 0 (4-23)

And by
dS
dt = ∂S

∂t
+
∑

i

∂S

∂qi
q̇i (4-24)

From this we obtain [8]
∂S

∂t
+H(p, q, t) = 0 (4-25)

replacing the prices by ∂S
∂q the following equations is obtained,

∂S

∂t
+H(q, ∂S

∂q
, t) = 0 (4-26)

Which is the Hamilton - Jacobi Equation and a complete integral of this can be found by
seperating the variables, see paragraph 48 of Landau [8].
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Chapter 5

Two Conservation Laws in Economics

The first example is based on Law of Conservation of the Capital-Output Ratio in Closed
von Neumann Systems by Paul A. Samuelson[18] and Two Conservation Laws in Theoretical
Economics by Paul A. Samuelson[19]. In this article Samuelson derives a conservation law in
a closed von Neumann system with intertemporal efficiency. The second example is based on
The Invariance Principle and Income-Wealth Conservation Laws by R. Sato[17].

5-1 Von Neumann model for a two Commodity Economy

This section is written in spirit of section 7.5 from Symmetry and Economic Invariance - R.
Sato [20]. The closed Von Neumann model can best be explained for an economy with
two commodities (capital goods) with help of Figure 5-1. Starting at an initial capital
(K1(0),K2(0)) the curve t1 are the possible combinations which can be efficiently reached
at time t = 1. When the point P1 is reached at time t = 1 the efficient reachable curve is
t2. If at t = 1, the economy was not in point P1 there would be a different efficient curve t′2
(not shown) and the envelope of all these curves is the curve T . The objective is to maximize
K1(T ) given K2(T ), so if the economy reached P1 at (K1(1),K2(1)), the maximum obtain-
able efficient allocations is the coordinate K1(2),K2(2). But from the envelope it is clear that
there is a better (K̄1(2),K2(2)) possible. So mathematically the objective is:

maximize
∫ T

0
K̇1(t) dt s.t. F (K, K̇) = 0 = C(t) (5-1)

For given initial and boundary conditions and F (K, K̇) the efficient transformation function.
Another way of describing the problem is that the system starting at an initial capital (vector)
K(0) must reach any terminal capital (vector) K(T ) in minimum elapsed time. This is similar
to the challenge issued by Bernoulli in 1696, the Brachystochrone problem (’shortest time
problem’) which according to H.J. Sussman and J.C Willems marks the birth of optimal
contol [21]. The transformation function is assumed to be homogeneous-first-degree, concave
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18 Two Conservation Laws in Economics

Figure 5-1: Representation of Von Neumann Model [20]

and smoothly differentiable with the following properties [18]

− ∂F
∂K̇

= P, the (cost) price of the capital good (5-2)

∂F

∂K
= R, the (net) rental of the capital good (5-3)

Y = PK̇ = RK, national product = national income (5-4)
W = PK, national wealth (5-5)

r = Ẇ

W
, the interest rate when C(t) , 0 (5-6)

In his paper Samuelson derives conservation laws for income growth:

Y (t) = e
∫ t

0 r(s)dsY (0) (5-7)

and wealth growth
W (t) = e

∫ t

0 r(s)dsW (0) (5-8)

from which he derives the fundamental economic law of conservation of capital-output ratio,

W (t)
Y (t) = W (0)

Y (0) (5-9)

these conclusions can also be reached when the mechanical approach described in this thesis
is used. The great difference is that it is no longer a least time problem but a least cost.
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5-2 Mechanical Approach 19

5-2 Mechanical Approach

Before the Lagrangian of the problem is stated, some properties of differentiating integrals
is needed. Suppose a function f is continuous on [a, b] then by the fundamental theorem of
calculus [22]:

if g(x) =
∫ x

a
f(t)dt, then g′(x) = f(x). (5-10)

So the derivative of the function f(t) = x(t)e−
∫ t

0 r(s)ds is by use of the chain rule for expo-
nential functions

df(t)
dt = e−

∫ t

0 r(s)ds
dx(t)

dt + x(t) d
dt

(
e−
∫ t

0 r(s)ds
)

(5-11)

= e−
∫ t

0 r(s)ds
(dx(t)

dt − r(t)x(t)
)

(5-12)

Now with this information we have the following cost Lagrangian:

L = e−
∫ t

0 ρ(s)dsf(q, q̇) (5-13)

And the function to minimize is the accrued cost S over the period [0, T ] where S is

S =
∫ T

0
e−
∫ t

0 ρ(s)dsF(q, q̇)dt (5-14)

With the cost price and net rental definitions as defined in chapter 3-4.

pc(t) = ∂F
∂q̇

(5-15)

R(t) = −∂F
∂q

(5-16)

The reason this Lagrangian is used is that it gives the right (same) equations of motion as in
Samuelson’s constraint problem which are

ṗc(t)− ρ(t)pc(t) +R(t) = 0 (5-17)

The Hamiltonian, or discounted income, in the von Neumann economy is

H = e−
∫ t

0 ρ(s)dspcq̇ − L (5-18)

By the property of the Hamiltonian:

dH
dt = ∂H

∂t
= −∂L

∂t
(5-19)

since the von Neumann economy is a consumptionless economy f(q, q̇) = 0, the Lagrangian is
zero and so is the time derivative of the Hamiltonian which means that the discounted income
is constant.

H = e−
∫ t

0 ρ(s)dspcq̇ − L = constant (5-20)

= e−
∫ t

0 ρ(s)dspcq̇ − 0 = constant (5-21)

Master of Science Thesis D.W.P. van Wijk



20 Two Conservation Laws in Economics

so the income at t = 0 Y (0) = p(0)q̇(0) which is the equal to Samuelson’s definition of income
grows with factor e

∫ t

0 ρ(s)ds or:
Y (t) = Y (0)e

∫ t

0 ρ(s)ds (5-22)

This conservation laws says that: Total income along any optimal path grows in a closed
system at the variable compound interest yield of the system[19]. The second conservation
law of capital-output ration can be derived using Liouville’s theorem and will now be shown.
It can be shown that W(t) = p(t)q(t) is a conserved density in phase space, where p = ∂L

∂q̇ .
The following relation must be true:

∂W
∂t

= −[W,H] (5-23)

where [W,H] is the Poisson bracket of W and H. This boils down to

∂W
∂t

= −∂W
∂p

∂H
∂q

+ ∂W
∂q

∂H
∂p

(5-24)

= e−
∫ t

0 ρ(s)ds(−qR+ pcq̇) (5-25)
0 = 0 (5-26)

Because −qR + pcq̇ = 0, national income equals national product. So p(t)q(t) is a conserved
density in phase space and wealth is growing with the common rate of interest,W (t) = eρtpcq.
It is interesting that the wealth is defined by Samuelson as the integral of the Hamiltonian
times the common rate of interest e−

∫ t

0 ρ(s)ds

∫
Hdt =

∫
pdq −

∫
Ldt (5-27)

=
∫
pdq (5-28)

= e−
∫ t

0 ρ(s)dspcq (5-29)

We
∫ t

0 ρ(s)ds = pcq (5-30)

but when considering the utility function, wealth is the integral of the Lagrangian, not the
Hamiltonian.

5-3 Conservation of Utility Income

Let utility U depend on consumption of many goods which in turn depend on a vector of
capital goods q and a vector of investments q̇, so that

U = U(q, q̇) (5-31)

Let U(q, q̇) be a strictly concave function with existent partial derivatives. The society’s
problem is to maximize the welfare functional

W =
∫ ∞

0
e−ρtU(q, q̇) dt (5-32)
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The supply price of the capital is defined as

ps = −∂U
∂q̇

(5-33)

And the income in utility terms according to the Marshall-Haig-Kuznets’ definition is (p. 82
of [17])

Y = U − ∂U

∂q̇
q̇ (5-34)

Which is clearly the negative Hamiltonian of U(q, q̇). With (Landau p. 133 [8]):

dH
dt = ∂H

∂t
= −∂L

∂t
(5-35)

it is easy to identify the following relations

dH
dt = d

dt

[
e−ρt

(
∂U

∂q̇
q̇ − U(q, q̇)

)]
(5-36)

d
dt

[
e−ρt

(
∂U

∂q̇
q̇ − U(q, q̇)

)]
= e−ρt

[ d
dt

(
∂U

∂q̇
q̇ − U(q, q̇)

)
− ρ

(
∂U

∂q̇
q̇ − U(q, q̇)

)]
(5-37)

= ∂H
∂t

= −∂L
∂t

= ρe−ρtU(q, q̇) (5-38)
d
dt

(
∂U

∂q̇
q̇ − U(q, q̇)

)
= ρ

(
∂U

∂q̇
q̇ − U(q, q̇)

)
+ ρU(q, q̇) (5-39)

d
dt

(
∂U

∂q̇
q̇ − U(q, q̇)

)
= ρ

(
∂U

∂q̇
q̇

)
(5-40)

Or in economic terms:

(rate of change in utility income at t) = ρ× (utility value of investment at t) (5-41)

When the discount factor ρ > 0 we can derive one of the most important conservation laws
in neo-classical economics: the income-wealth conservation[23],

d
dt

[
e−ρt

(
∂U

∂q̇
q̇ − U(q, q̇)

)]
= ρe−ρtU(q, q̇) (5-42)

Integrating both sides between t and ∞ yields,

− e−ρt
(
∂U

∂q̇
q̇ − U(q, q̇)

)
=
∫ ∞

t
ρe−ρsU(q, q̇) ds (5-43)

This holds since the left hand side of Equation 5-43 goes to zero if t→∞, multiplying both
sides with e−ρt gives the relation utility income is ρ times utility wealth,

(
U(q, q̇)− ∂U

∂q̇
q̇

)
= ρ

∫ ∞

t
e−ρ(s−t)U(s)ds (5-44)

Income = ρ×Wealth (5-45)
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Chapter 6

Price and Momentum

So far we have seen that there are some useful similarities between Lagrangian mechanics
and economic systems. Now for a mechanical model to represent an economic model, price p
must be a function of the flow q̇ just like momentum is a function of generalized velocity q̇
and the laws of motion must hold for the economic model.

6-1 Prices as Function of Demand

One of the most well known figures in economics is figure 6-1, it shows the relation between
price (P), supply (S) and demand (D). A high price corresponds to a low demand and high
supply, a low price corresponds to a high demand and low supply. The change in demand
curve, depicted by an arrow from D1 to D2, is called a shift in demand curve which can be
an effect of an increase in income of the consumer. Although the horizontal axes is labelled
quantity, this should be quantity per unit of time. A consumer does not demand 5 apples
(5q), the consumer demands 5 apples per month (5q̇). Contrary to the usual formulation the

Figure 6-1: Supply and demand curve with shifted demand[24]
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variable is on the vertical axis, this means that demand and supply are functions of price and
the equilibrium price is where supply equals demand, at P1 or P2. Now consider the simple
supply and demand graph of Figure 6-2, the direction of the supply line will be denoted with
m such that the price is given by:

p = mq̇ (6-1)

when m is considered constant i.e. there are no technological changes or any other influences
which can change the supply curve, then a shift in demand (the red dotted line) means that
the price increases. Equation 6-1 is price, as a function of demand q̇ in mechanics this equation
is known as momentum. So a possible economic equivalent of mechanical momentum is price.
But do the laws of motion hold for price?

q̇

p

Shifted DemandDemand

Supply

Figure 6-2: Simple Supply and Demand curve with shifted demand

6-2 Newton’s Second Law

Newton’s second law states that the rate of change of the momentum of a particle is propor-
tional to the force F acting on the particle [25]:

F = dp
dt (6-2)

Or in economic terms, the rate of change in price is proportional to the net rental cost (or
cost of carry) acting on it, which is an economically sound statement. When the price is a
linear time invariant function of demand (q̇) so price is

p = mq̇ (6-3)

then a high demand corresponds to a high price and low demand corresponds to a low price,
just like a high velocity corresponds to a high momentum and low velocity corresponds to a
low momentum. The difference between the economic and mechanical model is that increasing
the price results in a decrease in demand, where increasing momentum results in an increase
in generalized velocity. Economically this is only true when the underlying good is a Giffen
good: a product for which the demand increases when the price increases and vice versa. A
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similar problem occurs on the supply side, increasing the supply would decrease the price
but increasing the price would increase supply. From the previous section it is clear that the
price increases when there is an increase in demand, this means that the ’force’ F , defined as
net rental cost, should represent a force which shifts demand curves. Finding a constant m
in reality can be hard because the supply curve is usually not time invariant, technological
changes and governmental influences for example can change the supply curve over time, this
means that obtaining a linear time invariant model of an economic system will be hard. The
acceleration q̈ is dependent on the constant m so this tells something about the time it takes
to reach the new price and m would in this sense be an adjustment time or a resistance to
price change.

6-3 Second Order Model

Suppose an economic model is obtained where the price behaves just like momentum as stated
in the previous section. And there is a something that behaves like a spring such that the
cost Lagrangian is given by:

L = e−ρt
(1

2mq̇
2 − 1

2kq
2
)

(6-4)

The discount factor is in the Lagrangian because of the time value of money. The differential
equation belonging to this Lagrangian is

mq̈ − ρmq̇ + kq = 0 (6-5)

which has eigenvalues λ1,2 at

λ1,2 = ρm±
√

(ρm)2 − 4mk
2m (6-6)

since the discount factor is (almost) always positive the eigenvalues are located in the right half
plane, this is an unstable system and does not represent an economic problem in general. To
compare economic and mechanical models Equation 6-4 can not be used, a different reference
frame where prices can be zero and negative and where the discount takes a different (probably
complex) form might be a possibility. But just because prices oscillate they do not have to
be the equivalent of a mass spring system. A sinus input on a mass for example can have the
same oscillating effect on momentum, this does not make it a mass spring system.
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Chapter 7

Optimal Control From Lagrangian and
Hamiltonian to the Maximum

Principle

In this chapter it is shown how a small modification of the Lagrangian and Hamiltonian leads
to Pontryagin’s Maximum Principle, an important principle in the field of optimal control
theory which can also be applied on economic problems. This chapter is based on 300 Years
of Optimal Control: From The Brachystochrone to the Maximum Principle by J. Willems and
H. Sussmann[21].

7-1 Lagrangian Revisited

So far we have dealt with optimization problems by either minimizing or maximizing the
following form:

minimize S =
∫ t2

t1
L(q(t), u(t), t)dt (7-1)

subjected tot initial conditions q(t1) boundary conditions q(t2) and q̇(t) = u(t) to make clear
that u(t) and q(t) are treated as independent variables. The minimization takes place over all
curves where in optimal control problems a set of curves, determined by dynamical constraints,
are minimized. For example the set of curves that satisfy the a differential equation:

q̇(t) = f(q(t), u(t), t) (7-2)

for a control function u(t). Such constraints arise both in macro- and micro economic problems
[26], for example the capital accumulation equation in the macro-economic Ramsey-Cass-
Koopmans model is

q̇ = f(q)− (n+ δ)q − C (7-3)
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the change in capital (per worker) q̇ is the output for a given capital, f(q) which is a production
function, minus the depreciation rate δ of capital minus consumption (C) and n is a constant
growth rate in the model. a micro-economic example is

q̇ = I − δq (7-4)

where I are investments fulfilling the role as a control variable and δq is again the depreciation.
Problems where the Lagrangian L , 1,so where are interesting action occurs because of the
dynamics of f are called minimum time problems, like the original Von Neumann model
where the agent must reach a certain configuration of capital goods in minimum time.. The
Euler-Lagrange equations which follow from the variational problem,

d
dt

(
∂L
∂u

(q, q̇, t)
)
− ∂L
∂q

(q, q̇, t) = 0 (7-5)

only gave conditions for the first variation of S, the expenditure (or Action), to be zero. An
additional necessary condition for a minimum was found by Legendre which is:

∂2L
∂u2 (q, q̇, t) ≥ 0 (7-6)

Also known as the Legendre-Clebsch condition. In the Lagrangian equation q̇ is now a function
of the input and the state q,

q̇(t) = f(q(t), u(t), t) (7-7)
We have now changed the original Lagrangian equation which is the first step to the Maximum
principle.

7-2 Classical Hamiltonian to Control Hamiltonian

In the classical Hamiltonian defined by:

H(q, p, t) = pq̇ − L (7-8)

the variable q̇ is not treated as an independent variable but as a function of p, q and t and as
shown in the previous section defining the demand,q̇, as a function of the price does not give
the right equations of motion with the Lagrangian used in this thesis. But fortunately in the
control Hamiltonian defined by Equation 7-9, the input variable is treated as an independent
variable.

H(q, u, p, t) = pu− L(q, u, t) (7-9)
and we have

p(t) , ∂L
∂u

(q, q̇, t) (7-10)

So ∂H
∂p = u and

dq
dt = ∂H

∂p
(q, q̇, p, t) (7-11)

also ∂H
∂q = −∂L

∂q so
dp
dt = −∂H

∂q
(q, q̇, p, t) (7-12)
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And finally we have,
∂H

∂u
= p− ∂L

∂u
= 0 (7-13)

Since H(q, u, p, t) is equal to −L(q, u, t) plus a linear term, the Legendre condition for a
minimum, Equation 7-6, becomes

∂2H

∂u2 (q, q̇, t) ≤ 0 (7-14)

by Equation 7-13 it is clear that Equation 7-14 is true so the control Hamiltonian must have
a maximum as a function of u. The advantages is that this new control Hamiltonian is
equivalent to the Euler-Lagrange system but the transformation :

p(t) , ∂L
∂u

(q, q̇, t) (7-15)

does not have to be invertible. Which is, again, very useful for economic problems. This
formulation will lead to Pontryagin’s Maximum Principle.

7-3 Pontryagin’s Maximum Principle

Applications of Pontryagin’s Maximum Principle to economic problems date back to (at least)
1968, where K. Shell applied the principle on an economic growth model [27], but also more
recently its usefulness in economic problems is shown [28]. Equation 7-9 is almost Pontryagin’s
Maximum Principle, a ’abnormal multiplier’ p0 must be added to the function and u must be
written as the constraint function to obtain:

H(q, u, p, p0, t) = < p, f(p, q, t) > −p0L(q, u, t) (7-16)

<,> is the Euclidean inner product. Now to solve the dynamic constraint minimization
problem for a control parameter u in the admissible control set U (u ∈ U) in the fixed time
interval [a, b] and for a constant p0 ≥ 0, several conditions must hold (for the optimal p∗):

(p(t), p0) 6= (0, 0)∀ t ∈ [a, b] (7-17)

q̇(t) = ∂H

∂p
for t ∈ [a, b] (7-18)

ṗ(t) = −∂H
∂q

for t ∈ [a, b] (7-19)

(7-20)

For further information about Pontryagin’s Maximum Principle the author refers to 300 Years
of Optimal Control: From The Brachystochrone to the Maximum Principle by J. Willems and
H. Sussmann[21] since this is beyond the scope of this thesis.

A simple example from p. 122 of Caputo M.R., Foundations of Dynamic Economic Analysis
Optimal Control Theory and Applications. [29] shows that this formulation has great use
in economic problem. In the example the control problem to be solved for an agent is to
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determine the optimal inventory accumulation policy given

min
u
S =

∫ T

o
c1[u(t)]2 + c2q(t)dt (7-21)

s.t. q̇(t) = u(t), (7-22)
q(0) = 0, q(T ) = qT (7-23)

Where c1 and c2 are defined as costs and q is as usual the capital. So the control Hamiltonian
that can be constructed from this problem with p0 = 1,

H(q, u, p) = pu− c1[u(t)]2 − c2q(t) (7-24)

Without solving the optimal control problem we can already identify our definition of cost
price p = 2c1u (or shadow price or marginal price as it is often called since it is dependent
on the variable u(t)). And our definition of rental (or storage) cost F = c2, what Caputo
indeed calls the cost of storing the capital good but it is not mentioned in what units this is
measured. We know now by the definitions at the beginning of this thesis that this must be
in Euro per good per unit time.
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Chapter 8

Conclusion

Some great insights can be obtained by the proper Lagrangian and Hamiltonian approach in
economic systems, so are the concept of energy and the principle of least action less abstract
when considering their economical equivalents. And economic concepts such as rental can
be described by their mechanical equivalent. The Hamiltonian and Lagrangian formulation
can be used to obtain conservation laws in theoretical economic problems and Pontryagin’s
maximum principle can be used as a tool for economic optimization problems where the
units of the variables used in the Lagrangian are now clearly defined. But when price is
described as a function of the flow q̇ i.e. a function of demand, the Lagrangian description
with its definitions used in this thesis and a discount function of e−ρt one does not obtain a
economical equivalent of a mass spring system (a second order model). The obtained second
order model is unstable. So in order to find an economic Lagrangian which is equivalent to the
mechanical one, one must find a way to include a new kind of discount factor in the equation
i.e. if you want to find a second order model, because observing an oscillating price does not
automatically make it a mass spring system. Another point of interest is when the price is
described as p = mq̇ then increasing the price would increase demand, which is only true when
the good is a Giffen good. The more common effect is that when price increases, demand
decreases. So with this method the economic equivalents of a mass, spring and damper can
not be found.
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Chapter 9

Recommendations

Although a second order model which behaves like a mas spring system can not be obtained
using this method, it can be a very powerful tool when optimizing economic problems. The
economic optimization books read by the author did not have a good explanation why it
worked for economic problems and the dimension analyse was often not there. This thesis
can be a foundation on how to properly formulate economic problems so that it can be solved
using Pontryagin’s maximum principle, some more in depth research is needed here. Also if
one want to obtain a second order with price as a function of demand q̇ and a rental dependent
on q such that a mass spring like second order model is obtained, a different discount factor is
needed and some different definitions of the variables such that the laws of motion also hold
for economic problems. However, the added economic value of this is not clear to the author
since economics is anything but linear and time invariant.
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