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Abstract
System administrators and developers who deploy dis-
tributed systems have to deal with a deployment process
that is largely manual and hard to reproduce. This paper
describes how networks of computer systems can be re-
producibly and automatically deployed from declarative
specifications. Reproducibility also ensures that users
can easily instantiate a test environment, before deploy-
ing the specification to the production environment. Fur-
thermore, from the same specifications we can instantiate
virtual networks of virtual machines for both interactive
and automated testing. This makes it easy to write au-
tomated regression tests that require external machines,
need special privileges, or depend on the network topol-
ogy. We instantiate machines from the specifications us-
ing NixOS, a Linux distribution built from a purely func-
tional specification. We have applied our approach to a
number of representative problems, including automatic
regression testing of a Linux distribution and deployment
of a continuous integration environment.

1 Introduction

In this paper we show how we can deploy networks of
computer systems automatically on the basis of declar-
ative specifications of such networks. Figure 1 shows
an example of what we mean by this: it is a specifica-
tion, in the formalism described in the remainder of this
paper, of a small network that implements a Trac soft-
ware project management service [7]. The network con-
sists of an NFS server that provides storage to the other
machines, a PostgreSQL database server, and an Apache
webserver that provides the Trac web application. It is
an executable specification: from it, we can automat-
ically build operating system instances that implement
the specified functionality. Making deployment declara-
tive in this manner has several major applications. Given
such specifications, we can do a number of things auto-
matically:

1. Build and deploy operating system instances that
implement the specified functionality.

2. Build virtual machines running those same operat-
ing system instances, and connect them in a virtual
network. This allows a user to build and interac-
tively experiment with a test instance of a network
before deploying it to the production environment.

3. Use those same virtual machines to run an auto-
mated test suite to perform integration or system
testing.

This work straddles the fields of software testing and
software deployment (or system configuration manage-
ment), and is motivated by practical problems in each of
these. In software testing, we are faced with the problem
that it is hard to write automated system or integration
tests for certain kinds of software. For instance, it is easy
to write an automated regression test suite for a compiler
– simply supply a set of input programs, compile them,
run them, and check the output against the expected re-
sult. Such tests can easily be run from (say) a Makefile,
and from a continuous build system. On the other hand, it
is much harder to automate tests that have environmental
dependencies (e.g., the webserver in Figure 1 that needs
a database server on another machine), that need special
privileges (e.g., we may want to run Apache as the root
user so that we can test the code path that switches to the
wwwrun user), or that depend on the network topology
(e.g., whether a Bittorrent client can successfully con-
nect through a NAT-enabled router). As a result, such
tests tend to be done on an ad hoc, interactive basis. For
example, many major Unix system components (e.g., the
Linux kernel or the Apache web server) do not have au-
tomated regression test suites.

In software deployment, system administrators and
developers who deploy distributed systems have to deal
with a process that is still largely semi-manual, error-
prone, and above all, hard to reproduce. For instance,
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network = {

storage = # NFS server

{ config, pkgs, webserver, ... }:

{

services.nfsd.enable = true;

services.nfsd.exports =

"/repos ${webserver.networking.hostName}";

};

postgresql = # database server

{ config, pkgs, webserver, ... }:

{

services.postgresql.enable = true;

services.postgresql.authentication =

"host ${webserver.networking.ipAddress}";

};

webserver = # Apache server running Trac

{ config, pkgs, storage, ... }:

{

fileSystems = [ {

mountPoint = "/repos";

device =

"${storage.networking.hostName}:/repos";

} ];

services.nfs.enable = true;

services.httpd.enable = true;

services.httpd.extraSubservices = [

{ serviceType = "trac";

projects = [

{ name = "Project Foobar";

db = "postgresql://"

+ postgresql.networking.hostName

+ "/foobar";

svnRepo = "/repos/foobar";

} ];

} ];

};

}

Figure 1: Network specification for a Trac service

a typical web application consisting of a database and
a web server might require us to install PostgreSQL on
one machine, Apache on another, and tweak configu-
ration files and scripts until the desired functionality is
achieved. The lack of reproducibility means in particu-
lar that it takes a lot of effort to set up a test environ-
ment to test configuration changes (such as software up-
grades) before promoting them to production use, and we
may not know for sure if the test environment actually
matches the production environment.

In this work, we therefore have a number of goals:

• To make an automated system test as easy to write
and run as a unit test, e.g., it should be easy to in-

clude in a make check. This opens a whole class of
regression tests to developers.

• To make distributed deployment repeatable and re-
liable.

• To make it straightforward to test a network deploy-
ment by instantiating a clone of the production en-
vironment.

We achieve these goals by expanding on our previous
work on NixOS, a Linux-based operating system distri-
bution [5], which in turn builds on the purely functional
package manager Nix [6]. In NixOS, the entire operat-
ing system – system packages such as the kernel, server
packages such as Apache, end user packages such as
Firefox, configuration files in /etc, boot scripts, and so
on – is built from source from a specification in what is
in essence a purely functional “Makefile”. For instance,
the webserver and storage definitions in Figure 1 are so-
called NixOS system configuration modules, each speci-
fying the configuration of a NixOS machine. (We give an
overview of the relevant concepts in Nix and NixOS in
Section 2.) The way in which the underlying Nix pack-
age manager stores the NixOS artifacts in the filesystem
ensures that upgrading a system is “safe” in that it does
not depend on the previous state of the system and that
users can easily roll back to previous configurations. The
fact that Nix builds from a purely functional specification
means that configurations can easily be reproduced.

The latter aspect forms the basis for this paper. In a
normal NixOS system, the system configuration specifi-
cation is used to build and activate a configuration on the
local machine. In Section 3, we show how these machine
specifications can be extended to networks of machines.
By applying different “top-level” functions to such spec-
ifications, we can do a number of things. First, in Sec-
tion 4, we use the model to perform distributed deploy-
ment by building each machine configuration locally,
then copying the result to each machine, given an infras-
tructure mapping that tells us which target machine to
use for each configuration (e.g., the webserver configura-
tion is to be deployed to the machine www.example.org).
Second, in Section 5, we use the same model to build vir-
tual machines, as well as scripts that automatically start
the virtual machines for a network and apply a test suite
to them. Other deployment functions are possible: for
instance, we could deploy the distributed system by gen-
erating virtual machine images and uploading them to
a cloud infrastructure. Figure 2 summarises the various
use cases of a declarative specification of a network.

We have applied our approach to a number of real-
world scenarios, described throughout the paper, includ-
ing the deployment of a multi-machine Trac configura-
tion management server, deployment of a 9-machine pro-
duction network for a continous build system, automated
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Figure 2: Use cases of a declarative network specifica-
tion

coverage analysis of a Linux distribution, and automatic
testing of a Quake server and clients. We discuss vari-
ous aspects of our work in Section 6, and related work in
Section 7.

2 Background: Nix and NixOS

In our approach, distributed networks are specified in the
Nix expression language, and built using the purely func-
tional package manager Nix. Furthermore, the operating
system instances that we build from the specifications
are instances of NixOS, a Linux distribution based on
Nix. In this section we give a brief overview of Nix and
NixOS.

Nix For the purposes of this paper, Nix [6, 4] (http:
//nixos.org/) can be seen as a purely functional “Make”.
That is, like Make [8] and many other build tools, it per-
forms build actions on the basis of a declarative specifi-
cation of a graph of actions and their dependencies, but
unlike Make, the specification is given in a lazy, purely
functional language – the Nix expression language. This
allows much more powerful abstractions to be expressed.
Moreover, Nix stores the results of build actions in a way
such that they cannot interfere with each other, e.g. that
the results of multiple invocations of a function do not
overwrite each other. Namely, the output of a build step
– or derivation – is stored under a unique path such as

/nix/store/q325djkc1ivlfyzan22197dc62gbq04z-firefox-3.5

where q325djkc1ivl... is a cryptographic hash of the in-
puts of the derivation, such as sources, compilers, li-
braries and build scripts.

The fundamental operation in the Nix expression lan-
guage is the builtin function derivation, which takes as
argument a set of name/value pairs, or attributes:

derivation {

name = "foo";

builder = "${bash}/bin/sh";

args = [ "-c" "echo Hello $who > $out" ];

who = "world";

}

A derivation describes the invocation of a command
(usually a shell script) that must produce output under a
path in the Nix store. The derivation is built by executing
a program, whose path and command-line arguments are
specified in the attributes builder and args, respectively.
The other attributes are passed to the builder as environ-
ment variables. Attribute values can be (lists of) strings
or other derivations. The latter denote the dependencies
of the current derivation. When building a derivation,
its dependencies are built first. The path of each depen-
dency’s output in the Nix store is placed in the corre-
sponding environment variable. Strings can also contain
references to other derivations, enclosed in ${...}. These
are replaced by the derivation’s output path in the Nix
store.

For instance, if we evaluate the derivation above,
first the derivation denoted by the variable bash (not
shown here) is built, resulting in a store path like
/nix/store/49ndfiqrlc9b...-bash-4.0-p17. Then the present
derivation is built, with the environment variable who set
to world. Nix passes the intended location of the output in
the Nix store, computed by hashing the input attributes,
through the environment variable out. Thus, the deriva-
tion above will write the string Hello world to a path such
as /nix/store/6dsdb0j20n3b...-foo.

A derivation can build anything, as long as it is pure,
i.e. depends only on its explicitly defined inputs, and pro-
duces output under the path denoted by the environment
variable out. Nix is primarily intended as a deployment
tool – a package manager. Thus derivations are typically
large steps that build entire packages. Figure 3 shows
an example of a Nix expression to build the Apache web
server. The language construct rec { ... } defines a set of
variable bindings that can refer to each other, e.g. httpd
refers to apr (the derivation that builds the Apache run-
time package).

The derivation httpd shows the use of function abstrac-
tions to capture common build patterns: it calls the func-
tion stdenv.mkDerivation, which performs a build of a
standard Unix-style package (namely, unpack the source,
run an Autoconf configure script, run make to build, and
finally make install to install the package under $out).
Functions are defined using the syntax arg: body. Func-
tions can also pattern-match on attribute sets: a function
{arg1, ..., argn}: body must be called with an attribute
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rec {

httpd = stdenv.mkDerivation {

name = "apache-httpd-2.2.13";

src = fetchurl {

url = http://.../httpd-2.2.13.tar.bz2;

md5 = "8d8d904e7342125825ec70f03c5745ef";

};

buildInputs =

[perl apr aprutil pcre openssl];

configureFlags =

"--enable-mods-shared=all ...";

};

apr = stdenv.mkDerivation {

name = "apr-1.3.8";

...

};

stdenv.mkDerivation = args: derivation {

...

builder = ...

’’

PATH=${gcc}/bin:${coreutils}/bin:...

tar xf ${args.src}

./configure --prefix=$out \

${args.configureFlags}

make

make install

’’;

};

...

}

Figure 3: Nix expression to build Apache

set containing the named attributes. Ellipses can be used
in the argument list to denote that additional attributes
are to be ignored. For instance, the webserver function
in Figure 1 must be called with a set containing at least
attributes name config, pkgs and storage.

We can build Apache from the command line as fol-
lows:

$ nix-build pkgs.nix -A httpd

(where pkgs.nix denotes the expression in Figure 3).
Nix will recursively begin to build the dependencies of
Apache, such as perl, apr and gcc. This is a source de-
ployment model, but as an optimisation, Nix will auto-
matically download pre-built store paths from reposito-
ries on the Internet if they are available. The result of
building Apache on the Nix store is seen in Figure 4.
Nix automatically tracks runtime dependencies between
packages by scanning for store path hashes. For instance,
the httpd binary will have a reference to libapr-1.so.0.3.8
compiled in at build time. Thus, the closure of a package

/nix/store
snws5xld6iyx...-apache-httpd-2.2.13

bin
httpd
apachectl

rl384gzsay47...-apr-1.3.8
lib

libapr-1.so.0.3.8
nqapqr5cyk4k...-glibc-2.9

lib
ld-linux.so.2
libc.so.6

...

Figure 4: Partial closure of Apache in the Nix store

under the references relation gives us all the store paths
that must be copied to another machine to successfully
run it on that machine. This approach prevents miss-
ing dependencies, a common problem with other pack-
age managers.

As a package manager, Nix has several advantages
over conventional tools such as RPM [9]. The fact that
packages never overwrite each other means that there is
no “DLL hell”: the installation, upgrade or deinstalla-
tion of one package can never break others. It is trivial
to roll back to older versions. Different users can have
different “views” of the set of installed applications. By
copying the closure of a package, we can reliably deploy
it to another machine.

There is a large distribution of Nix expressions, the Nix
Packages collection, that contains almost 2000 packages,
and supports a variety of operating systems.

NixOS Nix has been used to build a Linux distribution,
NixOS [5]. NixOS uses Nix to build the entire system
from a specification in the Nix expression language – not
just software packages. All static parts of the system –
packages, the kernel, boot scripts, scripts to manage sys-
tem services, configuration data, and so on – are built by
Nix derivations. In fact, there is a single top-level deriva-
tion, that, when built, causes all static parts of the system
to be built as dependencies. The advantage of such a
purely functional approach to system configuration man-
agement is that upgrading the system is safe (since the
old configuration in the Nix store is not overwritten) and
reliable (since due to purity it does not rely on the pre-
vious state of the system), we can always roll back to
previous configurations, and we can deterministically re-
build a configuration.

Of course, it’s not enough to merely build a system.
The most important thing that the top-level derivation
builds is the activation script, which takes care of the
“imperative” aspects of switching to a new configuration,
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such as stopping and starting system services. The acti-
vation script also updates the boot loader of the operating
system to ensure that when the system is restarted, the
new configuration is booted. Thus, if we make a change
to the Nix expressions that constitute NixOS, we effec-
tuate the change by building the top-level derivation and
running the activation script:

$ nix-build /etc/nixos/nixos \
-A config.build.system.toplevel

$ ./result/bin/switch-to-configuration

(Users actually run a high-level command that wraps
these actions.) The value config.build.system.toplevel
evaluates to the top-level derivation, which builds the ac-
tivation script and the rest of the system through its de-
pendencies.

The Nix expressions that constitute NixOS are organ-
ised into modules. The modules together define a nested
attribute set, the system configuration config. Each mod-
ule contributes values to this set and can use values de-
fined by other modules. The basic structure of a NixOS
module is:

{ config, pkgs, ... }:

{ ... configuration values ... }

Thus, a module is a function that accepts at least two
arguments: config, which contains the full system con-
figuration, and pkgs, which contains the Nix Packages
collection for convenience. For instance, the value
pkgs.httpd is the derivation that builds the Apache web
server. The system configuration config is computed by
calling every NixOS module and merging the attribute
sets of configuration values returned by each. The result
of the merge is passed back as the config function argu-
ment to each module. Thus the input to NixOS modules
depends on their output. This kind of circularity works
thanks to the laziness of the language.

For instance, the value of the webserver variable
in Figure 1 is a NixOS module. It defines a num-
ber of attributes, such as services.httpd.enable and
services.httpd.extraSubservices. These are used by an-
other module – the Apache webserver module – to de-
termine whether to generate a script to start and man-
age Apache, and to include another module that con-
tributes configuration values to build the Trac web ser-
vice. Most configuration values are system options rele-
vant to end users, but others are “computed” values, such
as the derivation build.system.toplevel, that are derived
from other configuration values.

NixOS currently consists of around 125 modules, each
implementing some part of the system (e.g. building the
boot scripts, the Apache configuration, or the X11 GUI
environment). These are added automatically to the end-

user configuration module (such as the webserver con-
figuration in Figure 1).

3 Specifying distributed systems, declara-
tively

In NixOS, we have a declarative specification of how to
build an entire operating system from a set of Nix ex-
pressions. We can now extend this to networks of ma-
chines. At the basic level this is quite easy: a network
is simply an attribute set of NixOS configuration mod-
ules that specify the desired functionality for each ma-
chine. For instance, the Trac network in Figure 1 con-
tains an attribute set network that specifies a network of
three machines: the contents of the storage, postgresql
and webserver attributes are NixOS configuration mod-
ules that each specify a machine. The attribute names are
symbolic names for the machines in the network. The at-
tribute set network in itself does not “do” anything – it
just specifies a set of machines. In the next sections we
will see that by applying different functions and tools to
network, we can deploy it to existing machines, instanti-
ate virtual machines for testing, and so on.

There is a slight complication: the configurations of
machines should be able to refer to the configurations
of other machines. For instance, the database server
needs to know the IP address of the webserver to gener-
ate PostgreSQL’s access control list, which specifies the
machines that are allowed to connect to the database (in
services.postgresql.authentication). Likewise, the web
server needs to specify the hostname of the PostgreSQL
server to be able to connect to it. We do not want to
hard-code such information in the network specification,
since it then becomes harder to deploy a test environ-
ment or build a virtual network. Instead, as we shall see,
we either specify such information separately (for real
deployment) or generate it automatically (for VM gener-
ation).

Therefore, we extend the interface of NixOS modules
to accept the system configurations of other machines
in the network. For instance, the configuration modules
for the storage, postgresql and webserver machines in
Figure 1 are called with arguments storage, postgresql,
webserver, containing the computed (merged) configu-
rations for those machines, respectively. (Due to the
ellipses in the list of function arguments, modules can
ignore arguments that they are not interested in; e.g.,
the NFS server does not need to know anything about
the PostgreSQL database.) For instance, in the call to
storage, webserver.services.httpd.enable will evaluate to
true, while webserver.networking.hostName will contain
the host name of the webserver. The latter is not explic-
itly specified by the configuration module webserver; it
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is defined in another module and depends on the kind of
deployment that we are doing.

Note that machines can be mutually recursive in their
configurations. This is important: for instance, as in the
case of the Trac network, a webserver may need the host-
name of a database server, while the database server may
need to add the IP address of the webserver to its access
control list. Again, due to laziness, this kind of circular-
ity works fine.

Many extensions to network specifications are imagin-
able. For instance, we can allow the model to express that
a configuration is to be instantiated a variable number of
times. For instance, a load-balancing web application
network may consist of a front-end reverse proxy, and a
number of (almost) identical back-end webservers. The
proxy configuration module will then receive an argu-
ment webservers that contains a list of all the machines
in that class. This allows us to map over this list to gen-
erate Apache’s proxy configuration:

services.httpd.extraConfig = ’’

<Proxy balancer://cluster>

Allow from all

${concatMapStrings (machine:

"BalancerMember http://${

machine.networking.hostName}" ) }

</Proxy>

’’;

Another extension is to be able to specify an abstract
topology, e.g., that the back-end webservers and proxy
must be on their own LAN with private (unroutable) IP
addresses, with the proxy also connected (through a sep-
arate network interface) to the Internet.

4 Deployment

The first application of declarative specifications of net-
works is to deploy them to real machines. This requires
that the target machines run NixOS and an SSH daemon
to support automated remote logins. Deployment in our
approach has a centralised model: a specific machine
(the distribution machine) builds the configurations for
each machine and copies them to the target machines.

Because network models such as that in Figure 1 ab-
stract over the concrete identity and location of machines
in the network, it is necessary to supply a second model,
the infrastructure model, that tells the deployment tool
to what actual machines the configurations are to be de-
ployed. (In trivial cases where the hostnames of the tar-
gets match the attribute names in the network model, the
infrastructure model can be omitted.) Moreover, the in-
frastructure model also specifies the architecture of each
machine (e.g. i686-linux or x86 64-linux for 32-bit or 64-
bit Linux on Intel-based systems).

{

storage = {

hostName = "storage.example.org";

system = "x86_64-linux";

};

postgresql = {

hostName = "db.example.org";

system = "x86_64-linux";

};

webserver = {

hostName = "www.example.org";

system = "i686-linux";

};

}

Figure 5: Infrastructure model

Figure 5 shows an example of an infrastructure model
for the Trac network. The structure is very similar to
a network expression and contains additional properties
for every machine in the network: the hostname and the
system attribute, which describes the architecture of the
target machine. Given the network and infrastructure
models, the user can build and deploy the specification
with a single command:

$ nixos-deploy-network -n network.nix \
-i infrastructure.nix

This will cause all the packages and other derivations
needed by the configurations of the three machines in the
network to be built or downloaded to the user’s local ma-
chine. Next, the configurations are copied from the local
Nix store to the Nix stores of the target machines, and the
NixOS activation script is run to switch over to the new
configuration on each machine. When repeating this pro-
cess, e.g. in order to upgrade a package, only those parts
of the derivation dependency graph that differ are rebuilt
and redeployed.

Implementation Deployment works as follows, given
network and infrastructure attribute sets. First, for each
machine in network, we compute the full system config-
uration by combining the machine’s specification with
the standard NixOS modules, plus a module that con-
tains the corresponding information from the infrastruc-
ture model, e.g.

{ config, pkgs, ... }:

{ networking.hostName = "storage.example.org"; }

for the storage machine. The result of the evaluation
of the full system configuration for each machine is
passed as additional function arguments back into the
function that specifies the machine’s configuration. E.g.,
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the result of the evaluation of the configuration for web-
server is passed as an argument to postgresql, and vice
versa. Again, this works due to the laziness of the lan-
guage. The system property is used to build packages on
the right architecture. (Nix supports transparent multi-
platform building; if a derivation must be built for an-
other architecture than the user’s local machine, it can
automatically perform the derivation on another machine
of the right architecture, if properly configured.)

From each machine’s full configuration, we then eval-
uate the system.build.toplevel attribute. This builds the
complete operating system needed for that machine on
the local machine.

After building the configurations, we copy the closure
of each built configuration from the local Nix store to the
Nix store on the corresponding target machine. This is an
imperative action, so it cannot be done in a Nix expres-
sion. Nix provides a command, nix-copy-closure, which
copies the system configuration and all its dependencies
in the Nix store to target machines in the network. This
process is efficient, because it only transfers the Nix store
paths in the closure that are missing in the Nix store on
the target machines.

Finally, we run each configuration’s activation
script, i.e. the path ${system.build.toplevel}/bin/switch-
to-configuration, on the corresponding target machine
(via ssh). If desired, we also update certain configura-
tion files (such as the Grub boot loader) to ensure that
this configuration starts when the machine is restarted.

This tool provides a centralized approach for configur-
ing machines in a network. All the system configurations
are built in one place and are then pushed to the target
machines in the network. In principle, evaluation and
building could also happen on each individual machine,
but the central approach is slightly easier because we do
not have to copy Nix expressions. Copying Nix expres-
sions is not trivial, since they can be scattered across the
filesystem.

Virtualisation and cloud deployment The logical
machines specified in the network model can also be
used to deploy to a virtualised environment. For instance,
the machines listed in the infrastructure model can be
virtual machines running NixOS, rather than “real” ma-
chines. That is, the hostName attributes in Figure 5
would simply denote the host names or IP addresses of
existing virtual machines.

However, a nicer approach to VM deployment is to
instantiate virtual machines automatically from the net-
work model. To the system.build.toplevel attribute of
each machine in the network model, we apply a function
that generates a bootable hard disk image. Such an im-
age can then be uploaded to a virtualisation environment,
e.g. a cloud computing supplier such as Amazon’s EC2,

and VM instances running those images can be started.
(Note that in this approach, an infrastructure model is un-
necessary: machines are created dynamically as needed
to implement the network model.)

On redeployment, if the configuration of a machine in
the model has been changed, it is not necessary to up-
load a full new image; rather, only the new paths in the
closure of the system.build.toplevel derivation in the Nix
store are copied through SSH using nix-copy-closure. If a
machine has been removed from the network model, the
corresponding VM instance is destroyed.

Evaluation We have used nixos-deploy-network in pro-
duction use to upgrade the Hydra build farm, a con-
tinuous integration system based on Nix (http://hydra.
nixos.org/). This network consists of nine NixOS ma-
chines: a front-end webserver running Apache, Subver-
sion, PostgreSQL, and a Jetty servlet container running
the JIRA issue tracking system; the Hydra build sched-
uler and back-end webserver; two 32-bit build machines;
and five 64-bit build machines (from different manufac-
turers). We wrote network and infrastructure models to
deploy this network automatically1. Evaluating the sys-
tem configurations for the complete network took 45.1
seconds on an 8-core Intel Xeon E5430 machine with 16
GiB of RAM.

We built the network configuration on a distribution
machine with an initially empty Nix store. (This is a
worst-case assumption: usually, the user’s Nix store al-
ready contains many packages that the network config-
uration needs.) It then took 541 seconds to build or
download the 1368 derivations in the build graph; 323
derivations were downloaded from the Nixpkgs distribu-
tion server (382 MiB), the others were built from source.
The total size of the closures to be copied to the target
machines was 7.6 GiB (without compression). Recon-
figuration is of course much cheaper. For example, when
we changed the model to use Linux 2.6.28 instead of
2.6.29, it took 23.8 seconds to build the new configura-
tion (because the new kernel is available on the Nixpkgs
distribution server), and 1.2 GiB of data had to be copied
to the targets (again without compression).

Testing the network If we want to test changes to the
network specification before deploying them to the pro-
duction environment, we can do that by deploying the
network first to a test environment. That is, we simply
specify a different infrastructure model that lists the test
machines instead of the production machines. However,
this requires us to have a bunch of spare machines avail-
able for the test environment. In the next section, we will

1The Nix expressions can be found at https://svn.nixos.org/repos/
nix/configurations/trunk/tud.
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see that it is much more convenient to instantiate a virtual
network of virtual machines from the specification.

5 Testing using virtual machines

The next major application of declarative specifications
of networks is to build virtual networks of virtual ma-
chines automatically. This can be used to interactively
test a clone of a production network on the local ma-
chine of a developer or system administrator, or to run
automated regression tests.

The basic idea is that there is a function buildVirtu-
alNetwork that we can apply to a network (the network
model). This function returns a derivation to builds a
shell script that starts VMs running the specified config-
urations. That is, if we extend the Trac Nix expression in
Figure 1 with

vms = buildVirtualNetwork { inherit network; };

then we can perform the following commands:

$ nix-build trac.nix -A vms
$ ./result/bin/run-vms

The latter command then starts a number of virtual ma-
chines on the user’s desktop, each booting a NixOS in-
stance with the specified functionality. The VMs are con-
nected together in a virtual network (with IP addresses in
the private space 192.168.1.n). Certain TCP ports on the
host machine are connected to ports on each VM. For
instance, port 8082 is connected to the Trac webserver.

Building and running virtual networks Virtual ma-
chines are built by a NixOS module qemu-vm.nix that
defines a configuration value system.build.vm, which is
a derivation to build a shell script that starts the NixOS
system built by system.build.toplevel in a virtual ma-
chine. We use KVM (http://www.linux-kvm.org/), a modi-
fied version of the open source QEMU processor emula-
tor that uses the hardware virtualisation features of mod-
ern CPUs to run VMs at near-native speed. An impor-
tant feature of KVM over most other VM implementa-
tions is that it allows VM instances to be easily started
and controlled from the command line. This includes
the fully automated starting, running and stopping of a
VM in a derivation. Furthermore, QEMU provides spe-
cial support for booting Linux-based operating systems:
it can directly boot from a kernel and initial ramdisk im-
age on the host filesystem, rather than requiring a full
hard disk image with that kernel installed. (The initial
ramdisk in Linux is a small filesystem image responsi-
ble for mounting the real root filesystem.) For instance,
the system.build.vm derivation generates essentially this
script:

${pkgs.qemu_kvm}/bin/qemu-system-x86_64 -smb /

-kernel ${config.boot.kernelPackages.kernel}

-initrd ${config.system.build.initialRamdisk}

-append "init=${config.system.build.bootStage2}

systemConfig=${config.system.build.toplevel}"

QEMU provides virtualised network connectivity to
VMs. We configure each VM with two network inter-
faces. The first, eth0, allows the VMs to talk to the host
and to the Internet (if desired). The guest has IP ad-
dress 10.0.2.15, QEMU’s virtual gateway to the host is
10.0.2.2, and there is an implementation of the SMB/-
CIFS network filesystem protocol on 10.0.2.4 that pro-
vides access to the host filesystem (the -smb / option
above). QEMU provides Network Address Translation
(NAT) on outgoing packets to allow the guest to access
the host’s network (including the Internet). This feature
is implemented entirely in user space: it requires no root
privileges.

The second interface, eth1, allows the VMs to talk
to each other. buildVirtualNetworks assigns each ma-
chine a private 192.168.1.n address in sequential order.
QEMU propagates any packet sent on this interface to
all other VMs in the same virtual network. The ma-
chines are assigned hostnames equal to the correspond-
ing attribute name in the model, so the hostname of the
machine built from the postgresql configuration will be
postgresql. Thus, for testing, the user does not need to
specify an infrastructure model.

The system.build.vm derivation does not build a virtual
hard disk image for the VM. Rather, the initial ramdisk of
the VM mounts the Nix store of the host through SMB/-
CIFS. This is a crucial feature: the closure of a sys-
tem is hundreds of megabytes in size at the least, so to
build such an image every time we reconfigure the VMs
would be very wasteful in time and space. Thus, building
VMs for the Trac example takes almost exactly as long
as building it for deployment to actual machines.

The VM start script does create an empty ext3 root
filesystem for each guest at startup, to hold mutable
state such as the contents of /var or the system ac-
count file /etc/passwd. Thanks to sparse allocation of
blocks in the virtual disk image, image creation takes
only a few seconds. NixOS’ activation script is self-
initialising, so at boot time it initialises all state needed
to run the system. For interactive use, the filesystem is
preserved across restarts of the VM, saved in the image
file ./hostname.qcow2.

Running automated tests An important application of
our work is to automatically build and run a virtual net-
work, and then execute a test suite on the virtual ma-
chines. NixOS system configurations allow complex en-
vironments, such as multiple machines with different ser-
vices (including GUIs), to be expressed concisely, and
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client =

{ config, pkgs, ... }:

{ services.xserver.enable = true;

environment.systemPackages =

[ pkgs.quake3demo ];

};

network =

{ server =

{ config, pkgs, ... }:

{ jobs = pkgs.lib.singleton

{ name = "quake3-server";

startOn = "startup";

exec =

"${pkgs.quake3demo}/bin/quake3"

+ " +set dedicated 1"

+ " +set g_gametype 0"

+ " +map q3dm7 +addbot grunt"

+ " 2> /tmp/log";

};

};

client1 = client;

client2 = client;

};

vms = buildVirtualNetwork { inherit nodes; };

test = runTests vms

’’

startAll;

$server→waitForJob("quake3-server");

$client1→waitForX;

$client1→execute(

"quake3 +set name Foo +connect server &");

$client2→waitForX;

$client2→execute(

"quake3 +set name Bar +connect server &");

sleep 40;

$server→mustSucceed(

"grep ’Foo.*entered the game’ /tmp/log");

$server→mustSucceed(

"grep ’Bar.*entered the game’ /tmp/log");

$client1→screenshot("screen1.png");

$client2→screenshot("screen2.png");

’’;

Figure 6: Specification of a Quake client/server regres-
sion test

built using a single command. It is also worth noting that
in our approach, no root privileges are needed to either
build or run the virtual network. This makes it feasible to
include such tests in the standard test suite of a software
package, or to perform it in a continuous build system.

Figure 6 shows a (small) automated test for Quake 3
Arena, a multi-player 3D computer game. It specifies a

network of three machines: server, which automatically
starts a Quake server daemon, and two identical client
machines, client1 and client2, which run an X11 graph-
ical user interface, but otherwise do nothing. The value
test evaluates to a derivation that executes the VMs in
a virtual network and runs the given test suite, specified
as a Perl script. The test script calls a simple test driver
that can perform various actions such as: execute a com-
mand on a machine (execute and mustSucceed); wait
until a system service has started (waitForJob and wait-
ForX); make a machine unreachable to simulate a net-
work outage; stop, start and crash machines; wait until a
machine is listening on a port; and so on.

The test script in the example first starts all machines
and waits until they are ready. It then executes a com-
mand on the clients to start a graphical Quake client and
connect to the server. The clients then do nothing (ex-
cept possibly getting blown up by the bots spawned by
the server). After a while, we verify on the server that
the clients did indeed connect. The derivation will fail to
build if this is not the case. Finally, we make a screenshot
of the clients to allow visual inspection of the end state,
if desired.

(GUI testing is a notoriously difficult subject [11]. The
point here is not to make a contribution to GUI testing
techniques per se, but to show that we can easily set up
the infrastructure needed for such tests. In the test script,
we can run any automated GUI testing tool we want.)

The test driver executes commands on a VM by con-
necting to TCP port 514 on the guest, on which a root
shell is listening. (The remotely accessible root shell is
provided by a NixOS module added to the machine con-
figuration by buildVirtualNetwork. It does not exist in nor-
mal use.) We patched QEMU to allow TCP ports on the
guest to be connected to Unix domain sockets [18] in the
host filesystem rather than TCP ports on the host. This
is important for security: we do not want anybody other
than the test driver connecting to the port. The use of a
Unix domain socket rather than a port also means that
any number of runTests derivations can execute in paral-
lel, without fear of clashing port assignments. These fea-
tures are important for continuous build environments,
where any number of builds may execute concurrently.

Distributed coverage analysis A declarative specifi-
cation of a network and an associated test suite makes
it easy to perform a distributed code coverage analy-
sis. Again, we make no contributions to the technique
of coverage analysis per se; we improve its deployabil-
ity. First, the abstraction facilities of the Nix expression
language make it easy to specify that parts of the depen-
dency graph of a large system are to be compiled with
coverage instrumentation (or any other form of build-
time instrumentation one might want to apply). Second,
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by collecting coverage data from every machine in a test
run of a virtual network, we get more complete coverage
information. For instance, if we add a client machine
to the Trac network and run a test that performs a Sub-
version checkout from the server, different paths in the
Subversion code will be exercised on the client than on
the server.

We can add coverage instrumentation to a
package by setting the configuration value nix-
pkgs.config.packageOverrides. This value is a function
that takes the original contents of the Nix Packages col-
lection as an argument, and returns a set of replacement
packages:

nixpkgs.config.packageOverrides = pkgs: {

subversion = pkgs.subversion.override {

stdenv = pkgs.addCoverageInstrumentation

pkgs.stdenv;

};

};

The original Subversion package, pkgs.subversion, con-
tains a function, override, that allows the original depen-
dencies of the package to be overriden. In this case, we
pass a modified version of the standard build environ-
ment (stdenv) that automatically adds the flag --coverage
to every invocation of the GNU C Compiler. This causes
GCC to instrument object code to collect coverage data
and write it to disk. Most C or C++-based packages can
be instrumented in this way, including the Linux kernel.

The function runTests automatically collects the cov-
erage data from each machine in the virtual network at
the conclusion of the test script, and writes it to $out. An-
other function, makeReport, then combines the coverage
data from each virtual machine and uses the lcov tool [13]
to make a set of HTML pages showing a coverage re-
port and each source file decorated with the line cover-
age. For example, we have built a regression test for an
Apache-based Subversion web service with coverage in-
strumentation on Apache, Subversion, Apr, Apr-util and
the Linux kernel. Figure 7 shows a small part of the dis-
tributed coverage analysis report resulting from the test
suite run. The line and function coverage statistics com-
bine the coverage from each of the four machines in the
network.

One application of distributed coverage analysis is to
determine code coverage of large systems, such as en-
tire Linux distributions, on system-level tests (rather than
unit tests at the level of individual packages). This is use-
ful for system integrators, such as Linux distributors, as
it reveals the extent to which test suites exercise system
features. For instance, the full version of the coverage re-
port in Figure 7 readily shows which kernel and Apache
modules are executed by the tests, often at a very spe-
cific level: e.g., the ext2 filesystem does not get executed

at all, while the ext3 filesystem is used, except for its ex-
tended attributes feature.

Continuous builds The ability to build and execute
a test with complex dependencies is very valuable for
continuous integration. A continuous integration tool
(e.g. CruiseControl) continuously checks out the latest
source code of a project, builds it, runs associated tests,
and produces a report [10]. A problem with the manage-
ment of such tools is to ensure that all the dependencies
of the build and the test are available on the continuous
build system (e.g., a database server to test a web appli-
cation). In the worst case, the administrator of the con-
tinuous build machines must install such dependencies
manually. By contrast, the single command

$ nix-build subversion.nix -A report

causes Nix to build or download everything needed to
produce coverage report for the Subversion web service
test: the Linux kernel, QEMU, the C compiler, the C li-
brary, Apache, PostgreSQL, the coverage analysis tools,
and so on. In total this is 691 derivations, the vast major-
ity of which can be reused between builds.

This automation makes it easy to stick such tests in
a continuous build system. In fact, there is a Nix-
based continuous build system, Hydra, that continuously
checks out Nix expressions describing build tasks from
a revision control systems, builds them, and makes the
output available through a web interface. Developers do
not have to do anything on the Hydra build farm to set up
the environment for a test, as each test completely defines
how to build its own dependencies.

Evaluation We have created a number of tests2 using
the virtual machine-based testing technique described in
this section. These are primarily used as regression tests
for NixOS: every time a NixOS developer commits a
change to NixOS or Nixpkgs, Hydra rebuilds the tests,
if necessary. The tests are the following:

• Several single-machine (non-distributed) tests,
e.g. a test for the KDE desktop environment that
builds a KDE-based NixOS machine and verifies
that a user can successfully log into KDE and start
several applications.

• A two-machine test of an Apache-based Subver-
sion service, which performs HTTP requests from
a client machine to create repositories and user ac-
counts on the server through the web interface, and
executes Subversion commands to check out from

2The outputs of these tests in Hydra can be found at http://hydra.
nixos.org/jobset/nixos/trunk/jobstatus. The Nix expressions are at https:
//svn.nixos.org/repos/nix/nixos/trunk/tests.

Declarative Testing and Deployment of Distributed Systems SERG

10 TUD-SERG-2010-020



Figure 7: Part of the distributed code coverage analysis report for the Subversion web service

and commit to repositories. This test is instru-
mented using addCoverageInstrumentation to per-
form a distributed code coverage analysis of Sub-
version and the Linux kernel.

• A four-machine test of the Trac network in Figure 1.

• A four-machine test of a load-balancing front-end
(reverse proxy) Apache server that sits in front of
two back-end Apache servers, along with a client
machine. It uses test primitives that simulate net-
work outages to verify that the proxy continues to
work correctly if one of the back-ends stops re-
sponding.

• The distributed Quake 3 test in Figure 6.

• Several tests of the NixOS installation CD. An ISO-
9660 image of the installation CD is generated and
used to automatically install NixOS on an empty
virtual hard disk. The function that performs this
test is parameterised with test script fragments that
partition and format the hard disk. This allows
many different installation scenarios (e.g., “XFS on
top of LVM2 on top of RAID 5 with a separate /boot
partition”) to be expressed concisely.

The installation test is a distributed test, because the
NixOS installation CD is not self-contained: dur-
ing installation, it downloads sources and binaries
for packages selected by the user from the Inter-
net, mostly from the NixOS distribution server at
http://nixos.org/. Thus, the test configuration con-
tains a web server that simulates nixos.org by serv-
ing the required files.

For a continuous test to be effective, it must be timely:
the interval between the commit and the completion of
the test must be reasonably short. Table 1 shows the exe-
cution time and memory consumption for the tests listed
above, averaged over five runs. The execution time is
the elapsed wall time on an idle 4-core Intel Core i5 750
host system with 6 GiB of RAM running 64-bit NixOS.
The memory consumption is the peak additional mem-
ory use compared to the idle system. (The host kernel
caches were cleared before each test run by executing

Test # VMs Duration (s) Memory (MiB)
empty 1 34.6 169
kde4 1 98.1 450
subversion 2 386.2 456
trac 4 154.4 962
proxy 4 74.6 639
quake3 3 89.9 706
installation 2 436.6 883

Table 1: Test resource consumption

echo 3 > /proc/sys/vm/drop caches.) All VMs were con-
figured with 384 MiB of RAM, though due to KVM’s
para-virtualised “balloon” driver the VMs typically use
less host memory than that. The test empty starts a sin-
gle machine and shuts down immediately.

Figure 1 shows that the tests are fast enough to execute
from a continuous build system. We have made no effort
to optimise the KVM/QEMU instances, so the tests can
certainly be made cheaper. For instance, since we create
many similar virtual machine instances, it is beneficial to
share pages with identical contents between VMs [14].

6 Discussion

Generality The network specifications described in
this paper build upon NixOS: they build NixOS operating
system instances. This obviously limits the generality of
our current implementation, in particular regarding the
deployment in heterogeneous networks. In this sense, it
shows an “ideal” situation, in which entire networks of
machines can be built from a purely functional specifica-
tion. It is certainly possible to back away from the ideal
and build only parts of systems. For instance, to support
deploying the Trac example to a Red Hat Linux or Win-
dows Server target machine, we could build and deploy
only the Apache or PostgreSQL services, and leave the
native operating system untouched. (The Nix package
manager itself is portable across a variety of operating
systems.)

It is worth noting that the generation of virtual ma-
chines works on any Linux host machine (and probably
other operating systems supported by QEMU). Thus, the
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interactive or automated tests in Section 5 can very well
be run on (say) an Ubuntu Linux system. This is par-
ticularly important for automated regression test suites,
where in many test cases we likely do not care particu-
larly about the specific brand of guest Linux distribution.

Declarative model To what extent do we need the
properties of Nix and NixOS, in particular the fact that an
entire deployable operating system environment is built
from source from a specification in a single formalism,
and the purely functional nature of the Nix store? There
are many tools to automate deployment of machines. For
instance, Red Hat’s Kickstart tool installs RPM-based
Linux systems from a textual specification and can be
used to create virtual machines automatically, with a sin-
gle command-line invocation [15].

However, there are many limitations to such tools:

• Having a single formalism that describes the con-
struction of an entire network from sources makes
hard things easy, such as building part of the system
with coverage analysis. In a tool such as Kickstart,
the binary software packages are a given; we cannot
modify the build processes of those packages.

• Systems such as Kickstart do not offer the same reli-
ability guarantees for upgrades. Unless the previous
root filesystem is wiped, the old configuration might
interfere with the intended new configuration. Thus,
we might find that a deployment that succeeded in
a test environment fails in the production environ-
ment, because of differences in the prior state of the
systems.

• For testing in virtual machines, it is important that
VMs can be built efficiently. With Nix, this is effi-
cient because the VM can use the Nix store of the
host. With other package managers, that’s not an
option because the host filesystem may not contain
the (versions of) packages that a VM needs. One
would also need to be root to install packages in
the host filesystem; this makes any such approach
undesirable for automated test suites in a software
package.

• For automatic testing or deployment, one needs a
formalism to describe the desired configurations. In
NixOS this is already given: it is what users use
to describe regular system configurations. In con-
ventional Unix systems, the configuration is a result
of many “unmanaged” modifications to system con-
figuration files (e.g. in /etc). Thus, given an existing
Unix system, it is hard to distill the “logical” con-
figuration of a system (i.e., specification in terms of
high-level requirements) from the multitude of con-
figuration files.

Granularity The network specifications in this paper
have a machine-level granularity: they declare a set of
logical machines, each of which are mapped onto either
a real machine or a virtual machine. We are working on
an more fine-grained approach, Disnix [20], where the
model specifies smaller components, such as web ser-
vices. These are then mapped onto concrete machines
using quality-of-service attributes specified in the com-
ponent and infrastructure models.

Atomicity A desirably property of a deployment sys-
tem is to have atomic upgrades. That is, during the up-
grade, there should be no point in time during which the
system is in an inconsistent state. Nix has this property,
contrary to most package management systems, as pack-
age are never overwritten. NixOS system upgrades are
almost atomic: building or copying a configuration is
atomic, but the activation step is not. This is a prob-
lem for single machines, but even more so for distributed
systems. For instance, during an upgrade of the Trac net-
work, a new version of the webserver may find itself talk-
ing to an old version of the database, or vice versa.

In [20] we sketched a solution to this problem. At the
start of the activation step, we should block new requests
to services (such as HTTP or SQL requests) and wait
for outstanding requests to finish. Then, we run the ac-
tivation scripts on all machines in the network to realise
the new configuration. Finally, we unblock services and
allow waiting requests to proceed. In this way, no con-
current requests will ever observe an inconsistent con-
figuration state – they will either go to the old or the new
configurations of the servers. Unfortunately, blocking re-
quests cannot be done generically: it requires protocol-
specific proxies to wrap services (e.g., for HTTP or Post-
greSQL).

Mutable state We do not address the problem of muta-
ble state (such as the contents of databases) on machines
in the network. It may be that upgrades require state to be
upgraded as well, e.g., a database upgrade or web appli-
cation schema change might require a dump/load cycle.
These can be accommodated in NixOS through the ac-
tivation script. However, more research into a structural
treatment of mutable state is needed.

7 Related work

Most work on deployment of distributed systems takes
place in the context of system administration research.
Cfengine [2] maintains systems on the basis of a declar-
ative specification of actions to be performed on each
(class of) machine. Stork [3] is a package management
system used to deploy virtual machines in the PlanetLab
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testbed. These and most other deployment tools have
convergent models [19], meaning that due to stateful-
ness, the actual configuration of a system after an up-
grade may not match the intended configuration. By con-
trast, NixOS’ purely functional model ensures congruent
behaviour: apart from mutable state, the system configu-
ration always matches the specification.

Virtualisation does not necessarily make deployment
easier; apart from simpler hardware management, it
makes it harder, since without proper deployment tools,
it simply leads to more machines to be managed [16].

The buildVirtualNetwork function in Section 5 cur-
rently assumes a simple network topology, where all ma-
chines are on the same virtual network. MLN [1], a
tool for managing large networks of VMs, has a declara-
tive language to specify arbitrary topologies. It does not
manage the contents of VMs beyond a templating mech-
anism.

Our VM testing approach currently is only appropriate
for relatively small virtual networks. This is usually suf-
ficient for regression testing of typical bugs, since they
can generally be reproduced in a small configuration. It
is not appropriate for scalability testing or network ex-
periments involving thousands of nodes, since all VMs
are executed in the same derivation and therefore on the
same host. However, depending on the level of virtual-
isation required for a test, it is possible to use virtual-
isation techniques that scale to hundreds of nodes on a
single machine [12].

There is a growing body of research on testing of dis-
tributed systems; see [17, Section 5.4] for an overview.
However, the deployment and management of test envi-
ronments appears a somewhat neglected issue. An ex-
ception is Weevil [21], a tool for the deployment and ex-
ecution of experiments in testbeds such as PlanetLab. We
are not aware of tools to support the synthesis of VMs in
automatic regression tests as part of the build processes
of software packages.

8 Conclusion

In this paper, we have shown an extension of our work
on purely functional software deployment to distributed
systems. The great advantage of this approach is that a
single specification can support a number of deployment
scenarios: deployment to a production environment; de-
ployment to a test environment; instantiating a virtual
network of virtual machines on a user’s machine; and
using the virtual network to run automatic tests and anal-
yses. The latter application is particularly important, as it
allows developers to write integration tests for their soft-
ware that would otherwise require a great deal of manual
configuration, and would likely not be done at all.
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