
Cluster-based search space
pruning in single leg
low-thrust trajectory
optimisation problems

Elmar G.F.B. Puts

Te
ch

ni
sc

he
U
ni
ve

rs
ite

it
D
el
ft

Cluster-based search
space pruning in single leg

low-thrust trajectory
optimisation problems

by

Elmar G.F.B. Puts
to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Tuesday December 21, 2021 at 2:00 PM.

Student number: 4373456
Thesis committee: Prof. Dr. Ir. P. N. A. M. Visser, TU Delft, chair

Ir. K. J. Cowan, MBA, TU Delft, supervisor
Dr. A. Menicucci, TU Delft

This thesis is confidential and cannot be made public until December 31, 2023.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Cover image (Saturn): https://www.peakpx.com/en/hd-wallpaper-desktop-kuyjn, retrieved on 31/10/2021

http://repository.tudelft.nl/
https://www.peakpx.com/en/hd-wallpaper-desktop-kuyjn

Preface

This report marks the end of my 7-year long TU Delft journey and is the product of the thesis that
concludes the Aerospace Engineering Master. This document summarises the effort that went into
exploring an unknown jungle, but does not include each and every path that was taken to reach the
conclusions that are presented here. Nor should it, as it would have become a very lengthy, and most of
all, utterly boring treatise. Still, many avenues were taken, and almost equally many were abandoned
again. This thesis is thus to be treated as a first attempt at a road map in the jungle of clustering in
the field of global trajectory optimisation.
Exploring new territory is of course seldom done on one’s own. Indeed, this work would never

have been completed without the support of many people. First of all, I would like to thank my thesis
supervisor Kevin Cowan. Our weekly meetings were a joy and always gave me an impulsive boost1,
ready to try out the numerous (new) things we discussed. Unfortunately, we have never had the
opportunity to have our meetings in person due to the Corona virus measures. Nevertheless, I will
always fondly remember the vivid and interesting discussions we had during our Zoom sessions.
Next, I want to express my gratitude to my dear Stephan for always being there, especially when

the roller coaster went down and motivation was in its zenith. Even when I did not see the light at the
end of the tunnel, you managed to explain how I could find it, despite all the adverse circumstances.
Mom, dad: thank you for listening to my frustrations, explanations (often in vain, I suppose...), and
supporting me in the times I needed it most. The trips to Limburg were always a welcome distraction
and felt a bit like going to a Kurort. Then there are, of course, those who made my life in Delft
(especially during Covid-lockdown times) enjoyable while writing this thesis, and whom I would like
to thank: the PlanSci-bazen (Bart, Viktor, Thijs, and Bob) for the numerous online Civilization sessions,
drinks, and board games; Thijme, Marijn, Laura, Willem, Liv, Olivier, Bart, Daniël, Kyle, Zhouxin,
Noortje, and Ilse, for the D&D sessions, dinners, and/or drinks; Corinna, for the proofreading and
wonderful discussions on linguistics, language learning, and other random stuff, and everybody else
who contributed to this thesis in one way or another.
“I wish there was a way to know you are in the good old days before you actually left them”, a wise

man once said,2 and, looking back, I think this quote is very applicable to the last 7 wonderful years
that I spent in Delft, Rome, the US, Canada, and Montpellier. I am sure that I will always cherish both
the little and great things I got to experience, and think back to them as being ‘the good old days’. Of
course, the time has come to enter a new phase in life, but my time as a student will always have a
special place in my heart.

Elmar Puts
Delft, December 2021

1Pun intended.
2Andy Bernard, The Office US

iii

Abstract

Many contemporary interplanetary missions use efficient low-thrust engines to reach the far corners
of our Solar System. Their trajectories, however, have proven to be complicated to optimise due to
the non-impulsive manoeuvres involved in low-thrust spaceflight. Even though shaping methods have
been used extensively to reduce the computational burden, multiple-gravity assists and the presence
of constraints create significant computational hurdles. Reducing the number of fitness evaluations
during optimisation is one way of speeding up the search and can be done by ‘pruning away’ regions of
infeasible trajectories. In this research, we approach this by applying clustering, an unsupervised ma-
chine learning approach, to single leg trajectory optimisation problems based on a hodographic shap-
ing trajectory model in combination with restricted two-body dynamics. Through clustering, groups
of promising trajectories can be isolated so that unwanted regions can be discarded. Earth — Mars,
Earth — Venus, and Earth — 9P/Tempel 1 trajectories are used as test cases and are shown to exhibit
periodic behaviour (related to the synodic periods of the departure and target bodies) that enables
clustering on grid search-generated datasets. Different clustering algorithms were compared using the
Silhouette, Davies-Bouldin, and Calinski-Harabasz internal validation indices. However, traditional
clustering algorithms such as (H)DBSCAN, OPTICS, KMeans, and Gaussian Mixture Models, failed to
robustly provide clusterings that can be used for pruning because of the oblong shape of the clusters
and the absence of data/noise density differences due to the artificial nature of the problem. Instead,
a multimodality-based clustering model called SkinnyDip was found to be much more promising for
this task. This algorithm comes with the additional advantage of having very few hyperparameters,
eliminating the need for extensive parameter tuning.

v

List of Acronyms & Symbols

Acronyms
ABC Artificial Bee Colony Optimisation
ACO Ant Colony Optimisation
API Application Programming Interface
CPU Central Processing Unit
DB Database
EA Evolutionary Algorithm
ECDF Empirical Cumulative Distribution

Function
EDF Empirical Distribution Function
ESA European Space Agency
GS Grid Search
ICRF International Celestial Reference Frame
KDO Knowledge-Driven Optimisation
MC Monte Carlo
MGA Multiple Gravity Assist
ML Machine Learning
NFLT No Free Lunch Theorem
NLP Nonlinear Programming
PSO Particle Swarm Optimisation
SQL Structured Query Language
SQP Sequential Quadratic Programming
SSB Solar System Barycentre

Constants
𝜇@ Gravitational parameter of the Sun

1.33 ⋅ 1020 m3s-2

𝑐 Speed of light 2.998 ⋅ 108 m s-1

𝐺 Gravitational constant
6.67 ⋅ 10−11 m3 kg s-2

𝑔0 Gravitational acceleration on Earth
9.81 m s-2

Greek symbols
𝜂 Propulsive efficiency [-]
𝜇 Gravitational parameter m3s-2

𝜙 Initial phase angle [rad]
Φ(⋅) Mayer term in cost functional
𝜃 Angle [rad]

Latin symbols
𝐴 Area [m2]
𝑏 Terminal constraint
𝐶𝑅 Reflection coefficient [-]
𝑖 Index [-]
𝐼𝑠𝑝 Specific impulse [s]
𝑗 Index [-]
𝐽 [⋅] Cost functional
𝑘 Constant [-]
𝐿(⋅) Lagrange term in cost functional
𝑚 Mass [kg]
𝑃 Power [W] or [J s-1]
𝑝 Path constraint
𝑡 Time [s]
𝑉 Velocity function
𝑣 Velocity base function
𝑊 Solar radiation flux [W m-2]
f Function
𝐅 Force [N]
𝐟 Specific force [N kg-1]
𝐫 Position vector [m]
𝐮 Control vector
𝐱 State vector

vii

viii List of Acronyms & Symbols

Other symbols
⬚̇ First derivative with respect to 𝑡
⬚̈ Second derivative with respect to 𝑡
⬚𝑖 Initial value
⬚𝑓 Final value
⬚𝑟 Radial direction
⬚𝜃 Tangential direction
⬚𝑧 Out-of-plane direction
� Vernal equinox

List of Figures

4.1 Taxonomy of optimisation approaches and solution techniques, adopted from [1] and
[2]. 31

4.2 Illustration of the collocation method as described in the text. 32
4.3 Comparison of a pseudorandom and a quasi-random (Sobol) generalisation for points in

a two-dimensional domain. 33
5.1 Comparison of force magnitudes within the inner solar system. [3] 38
5.2 Example of an exponential sinusoid with the definition of the polar coordinates 𝑟 and 𝜃

[4]. 39
5.3 The figure on the left shows the trajectory in position space, whereas the figure on the

right shows that trajectory as a hodograph; taken from [5]. 43
5.4 Illustration of the velocity hodographs for three types of Kepler orbits [6]. 43
6.1 Functions used in [7] to test their method. 49
6.2 Visualisation of the clustering procedure in [8]. 50
6.3 Comparison of clustering algorithms for different types of data set geometries3 52
6.4 Clustering applied to three normally distributed data sets, yielding three classes (purple,

yellow, and green). 53
7.1 Overview of the proposed software architecture. Modules in bold will be written for

this research; all other libraries are . 60
A.1 Depiction of the J2000 reference frame, which is nearly equal to the ICRF frame [9] . . 69
A.2 The Cartesian and cylindrical coordinate systems. 70
B.1 Database schema used during this thesis. 74

ix

List of Tables

5.1 Overview of electric thruster types and their properties [10] 37
5.2 Comparison of major shape-based methods, including the references to the original pub-

lications. P and V refer to position and velocity boundary conditions, respectively.
Based on [3]. 37

6.1 Comparison of the most common offline clustering types, along with examples for each
category. See Table 22 in [11] for a comprehensive comparison. 52

7.1 Data storage trade-off table. 61

xi

Contents

Preface iii

Abstract v

List of Acronyms & Symbols vii

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Research framework . 2
1.2 Report structure . 2

I Research 3

2 Paper 5

3 Recommendations 25

II Background 27

4 Global optimisation 29
4.1 Mathematical formulation of the low-thrust trajectory optimisation problem 29
4.2 Optimal control strategy . 30
4.3 Global optimisation techniques . 32

4.3.1 (Random) sampling methods . 32
4.3.2 Nature-inspired algorithms . 33

5 Astrodynamics 35
5.1 Dynamic environment: gravity and perturbing forces . 35

5.1.1 Gravitational forces. 36
5.1.2 Solar radiation pressure . 36
5.1.3 Thrust force . 36

5.2 Shape-based methods . 37
5.2.1 Exponential sinusoids . 39
5.2.2 Inverse polynomials . 40
5.2.3 Spherical shaping. 40
5.2.4 Fourier series shaping . 41
5.2.5 Pseudo-equinoctial shaping . 41
5.2.6 Pseudo-spectral shaping . 41
5.2.7 Hodographic shaping. 42

6 Machine learning 47
6.1 Machine learning tasks. 47
6.2 Heritage of machine learning in trajectory optimisation 48
6.3 Clustering . 50

III Implementation 55

7 Software 57
7.1 Third-Party Software . 57

7.1.1 Python. 57
7.1.2 Tudat and TudatPy . 58
7.1.3 Pagmo and Pygmo . 58

xiii

xiv Contents

7.2 Software architecture. 59
7.3 Data persistence . 59

8 Clustering 63
8.1 Conventional clustering algorithms . 63
8.2 The dip-test and SkinnyDip . 63

References 65

A Reference frames and coordinate systems 69
A.1 Inertial reference frame . 69
A.2 Cartesian coordinates . 70
A.3 Cylindrical coordinates . 70

B Database schema 71

1
Introduction

The advent of low-thrust, high specific impulse orbital engines and the increasing feasibility of solar
sail-equipped spacecraft have proven a blessing and a curse for the space exploration community. Low-
thrust spacecraft can now efficiently reach the far corners of our solar system, while the application
of continuous thrust has greatly complicated finding optimal interplanetary trajectories. Low-thrust
engines require quasi-impulsive manoeuvres to be replaced by continuous thrust trajectories, trans-
forming the optimisation problem into an optimal control problem [12, 13].
Although these optimal control problems could in theory be solved analytically, this has proved to

be a daunting task in most realistic situations. Constraints, complex dynamics, and path dependencies
render it practically impossible to find the necessary expressions for these analytical methods, and
numerically computing optimal control problems is computationally very expensive [12]. For these
reasons, the focus has shifted towards other numerical methods that are quicker, allowing for a more
thorough exploration of the trajectory design space. In the past decade or two, the so-called shape-
based methods have become a popular choice as the tool of trade. They are fast and accurate enough
for exploratory tasks, and thus have allowed mission designers to cover vast numbers of different
trajectories in very complex interplanetary missions, such as JUICE and DAWN.
Although computational resources are becoming more and more abundant and powerful, the opti-

misation problems still present many obstacles to engineers and researchers. The design space is often
multi-dimensional (e.g., when gravity assists are involved) and multiple objectives as well as (path)
constraints are involved, forcing mission planners to resort to heuristics to solve the problem at hand.
These algorithms then need to perform many computationally expensive fitness evaluations, causing
the optimisation procedure to take infeasible amounts of time.
This sets the stage for search space pruning: a set of different approaches to making the search space

less extensive. This means that in turn fewer fitness evaluations need to take place, drastically reducing
optimisation run times and cost. One of these approaches is to perform knowledge extraction in the
form of machine learning, which can help to prune the search space. Machine learning has gained
much popularity in the past decade and is used in a broad spectrum of applications, ranging from
marketing to disease treatment. Its use in trajectory optimisation is, however, still in its infancy.
In this thesis, we will explore the application of clustering, an unsupervised machine learning

method, to interplanetary trajectory optimisation problems. Departing from the hodographic shap-
ing method for computing single-leg trajectories, we will investigate how clustering methods can be
used to extract knowledge from the problem and use that knowledge to prune the search space and
improve the subsequent optimisation.

1

2 1. Introduction

1.1. Research framework
In order to reach this objective, the following research question was formulated:

To what extent can clustering achieve search space pruning in single leg low-thrust trajectory optimisation
problems?

To answer this question, a number of sub-questions were formulated that deconstruct the complex
problem into smaller pieces:

1. How is pruning used in conjunction with machine learning to improve heuristic optimisation algorithms
in the preliminary design phase?

2. How are low-thrust trajectory design problems modelled in the preliminary design phase?
3. How can clusters be used in pruning interplanetary transfer problems?

(a) How can we know if a certain data set, generated during optimisation, is clusterable?
(b) If a transfer trajectory problem is clusterable, what patterns can be used by a clustering algorithm?
(c) Do these patterns relate to physical properties of the astrodynamical problem?

4. What clustering algorithms are suitable to perform this task?
(a) Are there properties of the problem that could give an indication of a match between a specific

class of clustering algorithms and the trajectory optimisation problem?
(b) Why are some classes of clustering algorithms more suitable in low-thrust trajectory optimisation

than others?
5. In what way can clusters, found by a clustering algorithm, be validated in a situation where no ground

truth data is available?
6. How should the design variables of the transfer problem be transformed to obtain an optimal clustering?
7. How can clustering-assisted pruning be used in a heuristic optimisation algorithm to increase global

optimisation performance?

1.2. Report structure
The goal of this report is to answer all of these sub-questions and the main research question by pre-
senting the different steps that were taken and the results that were obtained during the thesis. It
is structured as follows: the first part will present the scientific paper, which describes the context,
methodology, results, conclusions, and recommendations of the research. Next, the second part con-
tains relevant background: global optimisation, astrodynamics, shape-based methods, and clustering
will be discussed. The last part will examine the details of the implementation of the optimisation,
trajectory computation, and clustering, as well as the trajectory database that was used during this
thesis.

I
Research

THE FIRST PART OF THIS REPORT contains the scientific article, which was written in parallel with
this report, and will describe the methodology, results, discussion, and conclusions. It is included
verbatim in Chapter 2, which is followed by a chapter containing the recommendations in a more
elaborate fashion (Chapter 3).

2
Paper

5

Cluster-based search space pruning in single leg low-thrust
trajectory optimisation problems
Elmar G.F.B. Putsa, Kevin J. Cowana
aDelft University of Technology, Faculty of Aerospace Engineering, Kluyverweg 1, 2629 HS Delft, Netherlands

ABSTRACT
Many contemporary interplanetary missions use efficient low-thrust engines to reach the far corners of our Solar System. Their trajectories,
however, have proven to be complicated to optimise due to the non-impulsive manoeuvres involved in low-thrust spaceflight. Even though
shaping methods have been used extensively to reduce the computational burden, multiple-gravity assists and the presence of constraints
create significant computational hurdles. Reducing the number of fitness evaluations during optimisation is one way of speeding up the
search and can be done by ‘pruning away’ regions of infeasible trajectories. In this research, we approach this by applying clustering, an
unsupervised machine learning approach, to single leg trajectory optimisation problems based on a hodographic shaping trajectory model
in combination with restricted two-body dynamics. Through clustering, groups of promising trajectories can be isolated so that unwanted
regions can be discarded. Earth —Mars, Earth — Venus, and Earth — 9P/Tempel 1 trajectories are used as test cases and are shown to exhibit
periodic behaviour (related to the synodic periods of the departure and target bodies), which enables clustering on grid search-generated
datasets. Different clustering algorithms were compared using the Silhouette, Davies-Bouldin, and Calinski-Harabasz internal validation
indices. However, traditional clustering algorithms such as (H)DBSCAN, OPTICS, KMeans, and Gaussian Mixture Models, failed to robustly
provide clusterings that can be used for pruning, because of the oblong shape of the clusters and the absence of data/noise density differences
due to the artificial nature of the problem. Instead, a multimodality-based clustering model called SkinnyDip was found to be much more
promising for this task. This algorithm comes with the additional advantage of having very few hyperparameters, eliminating the need for
extensive parameter tuning.

Nomenclature
Acronyms
CH Calinski-Harabasz index
CVI Clustering Validity Index
DB Davies-Bouldin index
EA Evolutionary Algorithm
EM Earth – Mars transfer
ET Earth – 9P/Tempel 1 transfer
EV Earth – Venus transfer
GS Grid Search
JD Julian Day(s)
MC Monte Carlo
NFLT No Free Lunch Theorem
Sil Silhouette index

𝑉 Velocity function
𝑣 Velocity base function
Symbols
ẍ Second time derivative of x

e.g.f.b.puts@student.tudelft.nl (E.G.F.B. Puts);
k.j.cowan@tudelft.nl (K.J. Cowan)

ẋ First time derivative of x
Γ Partitioning
f Specific force N kg-1

x State vector
≺ Pareto dominance operator: first operand dom-

inates the second
𝑑 Distance
𝑓 Clustering function
𝑖 Index
𝑗 Index
𝐽 [⋅] Cost functional
𝑚 Number of objectives
𝑁 Number of clusters
𝑛 Number of decision variables
𝑂 Objective space
𝑆 Search/design space
ΔV Total velocity increase m s-1

1. Introduction
The advent of low-thrust, high specific impulse or-
bital engines and the increasing feasibility of solar
sail-equipped spacecraft have proven a blessing and

Puts and Cowan Page 1 of 18

Cluster-based search space pruning in single leg low-thrust trajectory optimisation problems

a curse for the space exploration community. Low-
thrust spacecraft can now efficiently reach the far cor-
ners of our solar system, while the application of con-
tinuous thrust has greatly complicated finding optimal
interplanetary trajectories because of the arising opti-
mal control problem [1, 2]. Analytical solutions ex-
ist only in very simplified cases and hence numerical
methods are often required, albeit at substantial com-
putational cost [1].
In the past decade or two, the so-called shape-

based methods have become a popular choice as the
tool of the trade, allowing for a relatively quick explo-
ration of the trajectory design space in simple cases.
When complex trajectories using multiple gravity as-
sists are considered, however, these methods still need
substantial amounts of computational resources. This
sets the stage for search space pruning: a set of differ-
ent approaches to making the search space less com-
plex. One of these approaches is to perform knowl-
edge extraction in the form of machine learning. Ma-
chine learning has gained much popularity in the past
decade and is used in a broad spectrum of applications,
ranging from marketing to disease treatment. Its use
in trajectory optimisation problems, however, is still
in its infancy.
In this paper we will explore the application of clus-

tering, an unsupervised machine learning method, to
interplanetary trajectory optimisation problems. De-
parting from the hodographic shaping method for
computing single-leg trajectories, we will investigate
how clustering methods can be used to extract knowl-
edge from the problem and use that knowledge to
prune the search space and improve the subsequent
optimisation.
To reach this goal, we will start by highlighting the

fundamentals in the first three chapters. Pruning (Sec-
tion 2), hodographic shaping (Section 3), and cluster-
ing (Section 4) will be reviewed, providing the reader
with adequate knowledge to understand the context
of this paper. Section 5 will discuss the technicalities
of using the hodographic shaping method to generate
the trajectories, as well as details about the implemen-
tation. We then proceed with an endeavour into the
world of pork chop plots in Section 6 to discover what
the search space looks like and how it relates to the
physics of the problem. This will allow us to find out
how clustering can be used, and what is still necessary
to actually carry out this task. As we will see, data
preprocessing is essential and therefore an entire sec-
tion, Section 7, is devoted to this step. Following this,
we will discuss the application of clustering itself in
Section 8 and multimodalility-based clustering in Sec-
tion 9. Lastly, the conclusions and recommendations
will be presented in Section 10.

2. Search Space Pruning
This section addresses the concept of pruning, one of
the core pillars of this research. We will elaborate on
its goal as well as briefly describe which pruning meth-
ods exist and have been tried before.
A mathematical optimisation problem in its most

general form with design/search space 𝑆 and objective
space 𝑂 can be defined as follows [3]:
Definition 1. An optimisation problem with 𝑛 deci-
sion variables and 𝑚 objectives and objective func-
tion F ∶ 𝑆 ↦ 𝑂 amounts to finding min

x∈𝑆
F(x) =

{𝑓1(x), 𝑓2(x), … , 𝑓𝑚(x)} where 𝑆 ⊆ ℝ𝑛 and 𝑂 ⊆ ℝ𝑚.
F, 𝑆, and 𝑂 are not required to have much structure,
i.e., the objective function does not need to be convex,
smooth, or differentiable.
We thus observe that the problem concerns a map-

ping between two – possibly constrained – sets. 𝑆 in
Definition 1 is the feasible decision domain, i.e. the
domain subject to constraints. As the number 𝑛 of de-
cision variables increases, the dimensionality of this
domain usually also increases. The objective space is
often constrained as well and therefore some solutions
of the problem may be infeasible, yielding the feasible
objective space which we will call 𝑂, with 𝑂 ⊆ ℝ𝑚.
The two spaces and the mapping F(x) between them
are visualised in Figure 1.

Figure 1: Mapping of points in the decision space 𝑆 to the
objective space 𝑂 through F(x) [3].

When dealing with cases where 𝑚 > 1, i.e., there is
more than one objective, there is no notion of an abso-
lute best solution, as the objectives are almost always
conflicting: decreasing one objective will inevitably
lead to increasing at least one of the others. In Fig-
ure 1 this is depicted as the curve of connected dots:
the so-called Pareto front [4]. It represents the trade-
off between the objectives and contains all solutions
that are not Pareto dominated by other solutions, that
is:
Definition 2. A solution f dominates f′ if 𝑓𝑖 ≤ 𝑓′𝑖 ∀𝑓𝑖
and if there is at least one 𝑓𝑖 for which 𝑓𝑖 < 𝑓′𝑖 is true.
In this case we write fi ≺ f′i. Thus, for a Pareto optimalsolution fi wemust require that there be no f′i such thatf′i ≺ fi.

Puts and Cowan Page 2 of 18

Cluster-based search space pruning in single leg low-thrust trajectory optimisation problems

Definition 3. The Pareto front is then the set of all
non-dominated points 𝑃 ⊂ 𝑂.
The difficulty of the optimisation problem depends

on the properties of 𝑆 and F(x), e.g., smoothness, con-
tinuity, differentiability, and convexity. Less struc-
ture usually means more difficulty, and lack of con-
tinuity and/or differentiability often implies that one
has to resort to heuristics. Especially the complexity
of the model that is embedded in F(x), which com-
putes the objective values from the decision variables,
can become cumbersome for complicated mathemati-
cal models and for functions that are not convex. Ad-
ditionally, the size and complexity of 𝑆 determine how
many times the objective function needs to be called,
directly affecting the run time of the optimisation al-
gorithm.
Considering this fact, it would thus be fruitful to

reduce the complexity and size of 𝑆. This process
is called search space pruning or just pruning, as it is
analogous to pruning away unwanted branches from a
tree or shrub [5]. Three methods to achieve pruning
using machine learning can be identified [6]:
• Reducing the dimensionality of the search space:
the dimensionality 𝑛 of the unconstrained search
space 𝑆 ⊂ ℝ𝑛 has a substantial impact on the search
time because the algorithm has a time complexity of
𝒪(𝑟𝑛) if each dimension is discretised into 𝑟 points.
This clarifies that reducing the number of control
variables wherever possible is key in reducing re-
source usage, for example by transforming a high-
dimensional problem (𝑛 > 2) into a cascade of mul-
tiple two-dimensional searches (see [7] and [8]) or
by discarding variables that have little to no impact
on the objective function.
• Decreasing the size of variable domains: apart
from reducing the number of variables, we can also
reduce the domain of each control variable by prun-
ing out regions that do not yield feasible solutions,
which happens if either search space constraints or
objective space constraints are violated. This can be
done for every variable, thus compressing the entire
search space. After the evaluation of a few points
distributed throughout the whole initial domain, an
algorithm could possibly identify clusters of feasible
and promising solutions. These can then be used as
initial guesses for the actual optimisation heuristic,
which is then expected to converge to an optimum
more quickly.
• Providing initial search points: the results from
the domain shrinking method, as described in the
previous paragraph, might be used in a learning al-
gorithm to come up with initial search points that
will allow for the optimising heuristic to converge
more quickly to fit solutions and potentially a global
optimum.

Putting our discussion in the context of spacecraft
trajectory design problems, some additional properties
are of importance. Multiple gravity assist (MGA) tra-
jectories give rise to the presence of many local op-
tima due to the periodic nature of the celestial bod-
ies’ motion, which is reflected in the synodic periods
of two bodies [7]. This translates to the existence of
multiple launch windows, some of which are better
than others. From an optimisation point of view, this
situation is troublesome, as local optimisation meth-
ods will often converge to local minima instead of the
global optimum, and some of the search space may be
left unexplored, potentially ignoring good solutions.
For this reason, heuristic algorithms are often used in
this context, which are inherently based on systematic
searching of the search space instead of using gradient
information. Therefore, pruning of the decision space
has substantial impact on the speed of the heuristic
algorithm.
Having laid out the structure of the optimisation

problem and pruning, we will now look at the model
describing the mapping F(x) between the decision and
objective spaces. In our case, the mapping is the result
of the astrodynamical model that is used to describe
the dynamics of the spacecraft and the celestial bodies.
By its very nature, this model is complex and therefore
requires some assumptions and/or simplifications.

3. Hodographic Trajectory Modelling
As mentioned in the introduction, preliminary low-
thrust trajectory optimisation requires the evaluation
of large numbers of different trajectories. Traditional
methods, based on propagation of the governing equa-
tions of motion, are computationally intensive and
thus render this exploration of the search space time
consuming. Instead, research has led to the develop-
ment of so-called shape-based methods, which assume
a certain a priori analytical representation of the flown
trajectory. This mathematical function is then fed into
a dynamical model (usually a formulation of the re-
stricted two-body problem), leading to an expression
for the acceleration needed to stay on this hypothet-
ical trajectory, i.e., the thrust vector as a function of
time. This is in turn integrated w.r.t. time to obtain
the total ΔV necessary to fly the trajectory.
Several shape-based methods have been developed

over the years. The first type, called exponential sinu-
soids (or exposins), was developed by Petropoulos and
Longuski in 2004 [9] and extended by Izzo [10]. Suc-
cessive papers have introduced inverse polynomials
[11], spherical shaping [12], Fourier series [13, 14],
pseudo-equinoctial [15], and pseudo-spectral [16] shap-
ing.
These methods are all based on shaping of the tra-

jectory in position space, i.e., matching the departure
and arrival positions and devising a trajectory in be-

Puts and Cowan Page 3 of 18

Cluster-based search space pruning in single leg low-thrust trajectory optimisation problems

Table 1
Base functions used

Base function 𝑣(𝑡)
Constant 1
Power 𝑡𝑛
Sine sin(𝑛𝑡)
Cosine cos(𝑛𝑡)
Power times sine 𝑡𝑛 ⋅ sin(𝑛𝑡)
Power times cosine 𝑡𝑛 ⋅ cos(𝑛𝑡)

tween. This trajectory describes the position at all
epochs given a few parameters [17, 18].
In contrast, the hodographic method shapes the

trajectory in velocity space. This means that the de-
parture and arrival velocities are matched to those of
the initial and target orbits, and a mathematical de-
scription of the trajectory in between is formulated.
This formula yields the velocity at every point along
the trajectory and can be integrated to obtain the po-
sitions at all epochs. An example of this process is
given in Figure 2: the right plot shows the hodographs
of the initial (blue) and target (red) orbits along with
the transfer trajectory (black). It can be seen that the
transfer orbit intersects the hodographs of the two or-
bits, implying that the velocity boundary conditions
have been met. Integrating this transfer trajectory
over time, we obtain the shape of the transfer in canon-
ical (i.e., spatial) coordinates (see the left figure). Note
that a perfectly circular orbit with eccentricity 𝑒 = 0
would be represented by an infinitesimally small point
in the 𝑉𝑟 vs 𝑉𝑡 graph, with 𝑉𝑟 = 0, as the tangential ve-
locity is constant for this case. In the more general case
of an elliptical orbit, its hodograph will be a circle in
velocity space [19].
Figure 3 shows the velocity hodographs for three

different types of Kepler orbits (elliptical, parabolic,
and hyperbolic). Indeed, all shapes are circular,
whereas the offset of the centre is determined by the
type of orbit. In the case of a parabola, the null veloc-
ity at 𝑟 = ∞ is shown as the circle touching the ̇𝑟 axis.
Hence, an increasing eccentricity relates to shifting the
velocity hodograph down the 𝑟 ̇𝜃 axis.
After having established the trajectory as a linear

combination of base functions, it is substituted into the
equations of motion of the two-body problem. This
then yields the thrust force in every direction, which
is integrated to obtain the total ΔV. For the mathemat-
ical details, the reader is referred to Appendix B.
The advantage of the hodographic method is that

the velocity (Von Neumann) boundary conditions are
easily met, whereas the position (Dirichlet) boundary
conditions are obtained without having to resort to it-
erative algorithms. Furthermore, this method lends it-
self well to low-thrust trajectories and allows both de-
sign with and without degrees of freedom. Gondelach
proposes velocity functions that are linear combina-

Figure 2: The figure on the left shows the trajectory in po-
sition space, whereas the figure on the right shows the same
trajectory as a hodograph; taken from [18].

Figure 3: Illustration of the velocity hodographs for three types
of Kepler orbits [19].

tions of power, sine, cosine, and power times (co)sine
functions (see Table 1) [17, 18]. He also proposes two
variants of his method, making a distinction between
time and polar angle as the independent variable. Both
methods have their advantages, as time-based shap-
ing offers more intuitive insight into the dynamics,
whereas polar angle-based shaping is more related to
the (periodic) geometry of the transfer trajectory.

4. Clustering
This paper focuses on pruning by means of clustering:
dividing the data set into disjoint, internally coherent
groups. In our case, these clusters represent regions in
the search space with feasible trajectories in terms of
Δ𝑉 .
Clustering is however a very ill-defined concept

and no consensus about its definition has been reached
in the scientific community [22, 23]. Likewise, clus-
tering is also problematic from a philosophical view-
point, as the existence of ‘true’ or ‘natural’ partition-
ings is the topic of debate [24]. It is therefore crucial
to specify the goal of the clustering, so that a ‘good’
clustering can be distinguished from a ‘bad’ one. In
this paper, we want to stress the fact that there is no
unique best clustering for any given case, but ‘good’

Puts and Cowan Page 4 of 18

Cluster-based search space pruning in single leg low-thrust trajectory optimisation problems

Table 2
Summary of the four cluster validation techniques, their key strengths, and key weaknesses.

Validation Type Key Strength Key Weakness
External Best performance in autonomous application Requires ground truth
Internal Requires no other clustering Little absolute meaning
Relative Often does not involve statistical tests [20] Is inherently comparative in nature
Manual Highest accuracy Cannot be automated; only feasible when 𝑛 ≤ 3

Table 3
Comparison of the most common offline clustering types, along with examples for each
category. See Table 22 in [21] for a comprehensive comparison.

Type Examples Advantages Disadvantages
Centroid K-means, PAM, CLARA Efficient Sensitive to outliers and K, drawn to

local optimum; does not work well
with non-flat geometry

Density DBSCAN, OPTICS, Mean-shift Non-flat geometry
and high efficiency

Sensitive to parameters; does not
work well with uneven density distri-
butions

Distribution DBCLASD, GMM
Hierarchy HDBSCAN, BIRCH, CURE, ROCK Works with different

kinds of shapes
K is a preset; high time complexity

Kernel SVC, kernel K-means, MMC Works well with high-
dim. feature spaces

Sensitive to kernel type and parame-
ters; high time complexity

clusterings will be regarded as such if they:
1. Match the existing periodic structure in the data (cf.
synodic periods);

2. Help the optimisation algorithm that utilises the
clustering stage in finding the optimal transfer tra-
jectory.
The requirements stated above still fail to allow

an objective assessment of clusterings. This inherent
problem of clustering has led to the development of
cluster validation, which aims to quantify the perfor-
mance of a given clustering, in order to produce state-
ments about its quality in an absolute or relative sense;
it will be discussed in the next section.

4.1. Cluster Validation
Validating the clusters that arise from the clustering al-
gorithm is arguably even more problematic than clus-
tering itself. How dowe know if the clustering is ‘good’
and how can we compare different clusterings?
Answering these questions is the domain of cluster

validation. Four main validation methods are generally
distinguished [20] (see also Table 2):
1. Internal validation: validation based on individ-
ual clusterings only. It usually deals with notions of
cluster coherence (intracluster) and separation (in-
tercluster) that are consolidated into one metric or
index;

2. External validation: a clustering is compared to
another clustering that is considered to be the

ground truth partitioning. Again, a metric is used
to indicate the degree of agreement between the
validated and ground truth clusterings;

3. Relative validation: instead of comparing a clus-
tering to a ground truth partitioning, a data set is
clustered using two or more different clusterings,
which are then numerically compared to provide
a ranking for the different models. In this way, we
can make a statement of a model relative to another,
for that specific data set;

4. Manual validation: the last method is to let a
human assess the clustering, relying on subjective
judgement. This method is feasible when the di-
mensionality of the search space is low (𝑛 ≤ 3),
since visualisation of higher-dimensional spaces is
very difficult.

It should be obvious that external validation is the
preferable validation technique, as it compares a clus-
tering to something we know to be ‘good’. It depends,
however, on a ground truth which is usually not avail-
able — we are performing unsupervised learning after
all. In practice, only the three other methods remain,
so we will now turn our attention to these validation
techniques.
Internal validation uses information that is en-

closed in the clustering to come up with a number that
indicates the clustering performance, called validation
index. Many of these indices exist, each with a dif-
ferent definition. Arbelaitz et al. compare 30 such
indices in their paper [25], concluding that certain in-
dices perform better in some instances than others, al-

Puts and Cowan Page 5 of 18

Cluster-based search space pruning in single leg low-thrust trajectory optimisation problems

though no clear conclusion is drawn. It underlines the
ubiquity of the ‘no free lunch’ principle, which states
that there is no single index that outperforms all oth-
ers in a statistically significant way; one can only hope
to match an index to a specific problem (set).
Other than this, there is yet another problem. What

does it mean when we obtain a value of say, 1.6, on a
range from 0 to 3? Is it any good? The answer to this
question is hard to find, because these indices carry lit-
tle absolute meaning, if any. We can only make state-
ments about the values with respect to either the ex-
treme ends of the spectrum or by comparing the out-
come for different clusterings, which leads us to rela-
tive validation.
Relative validation is based on the comparison of

different clustering schemes, and the best one is se-
lected according to some criterion [20]. This criterion
can be more subjective in nature, e.g. inspection, or be
one of the internal validation indices. It can be used to
compare both different clustering algorithms and dif-
ferent sets of parameters for a given algorithm.

4.2. Clusterability
Related to the philosophical question of whether a
true, unique clustering exists for a given data set, is
the fact that the data generated by a grid search or
other heuristic optimisation algorithm will typically
not contain any obvious clusters, posing an additional
challenge. When one then applies a clustering algo-
rithm to the generated data set, it can and will find a
certain number of clusters (when 𝑁clusters is specified a
priori), or it will just converge to a single cluster, span-
ning the entire data set. It should be obvious that both
situations are meaningless and must thus be avoided.
We therefore use the notion of clusterability to de-

scribe to what degree an inherent clustering is present
in the data set. Several methods of deriving a numeri-
cal representation for clusterability, i.e. clusterability
metrics, have been proposed [26].
To solve the problem of a search space not be-

ing clusterable, we introduce a thresholding step that
creates gaps between promising regions in the search
space by effectively filtering out the data points that
do not satisfy some kind of inequality constraint on
the fitness values.
In the case of decision space pruning, clustering

could identify clusters of trajectories which are often
spread in a quasi-periodic way due to the repetitive
motion of celestial bodies [7]. Obviously, we do not
have any a priori labels for these clusters, as the clus-
ters represent groups of trajectories that belong to a
certain launch window. These regions can then be
used as new bounds for subsequent optimisation runs,
where the search domains can be constrained in a lin-
ear fashion (yielding rectangular boxes) or using non-
linear constraints (yielding arbitrary shapes).

More formally, we can define clustering as an op-
eration that assigns each data point to a unique group
(i.e. cluster) based on its relative proximity to other
data points in the set. We can thus identify two re-
quirements for a ‘good’ partitioning:
1. Data points belonging to the same cluster are in

close proximity to each other;
2. Data points belonging to different clusters are suf-

ficiently far apart.
Next to these requirements, Kleinberg identifies

three desirable properties of clustering algorithms in
his 2003 paper [23]. But before we can introduce
them, we need to have a working definition for a clus-
tering algorithm:
Definition 4. Given a set 𝑆 with 𝑛 data points, we de-
fine the distance function 𝑑 ∶ 𝑆 × 𝑆 → ℝ such that
∀𝑖, 𝑗 ∈ 𝑆 the following holds: 𝑑(𝑖, 𝑗) ≥ 0 and 𝑑(𝑖, 𝑗) =
0 ⟺ 𝑖 = 𝑗. Furthermore, 𝑑(𝑖, 𝑗) = 𝑑(𝑗, 𝑖) ∀(𝑖, 𝑗). A
partitioning Γ is then defined as Γ = 𝑓(𝑑), where 𝑓(𝑑)
is the clustering function acting on 𝑆.
With Definition 4 in mind, Kleinberg defines the

following properties:
1. Scale-invariance: for any distance function 𝑑 and

𝛼 > 0, 𝑓(𝑑) = 𝑓(𝛼 ⋅ 𝑑), hence Γ𝑑 = Γ𝛼⋅𝑑 In words,
we require that the partition Γ be invariant under a
change of scale;

2. Richness: Range(𝑓) is equal to the set of all parti-
tions of S;

3. Consistency: Let 𝑑 and 𝑑′ be two distance functions.
If 𝑓(𝑑) = Γ, and 𝑑′ is a Γ-transformation of 𝑑, then
𝑓(𝑑′) = Γ. See Definition 5 for the definition of a
Γ-transformation.

Definition 5. A Γ-transformation 𝑑′ of 𝑑 is defined as
𝑑′(𝑖, 𝑗) ≤ 𝑑(𝑖, 𝑗) ∀𝑖, 𝑗 ∈ 𝐶 ∧ 𝑑′(𝑖, 𝑗) ≥ 𝑑(𝑖, 𝑗) ∀𝑖 ∈
𝐶, 𝑗 ∉ 𝐶, with 𝐶 ⊂ 𝑆 ∧ 𝐶 ⊂ Γ.
Given these three properties, Kleinberg then postulates
the following:
Theorem 1. For each 𝑛 ≥ 2, there is no clustering func-
tion 𝑓 that satisfies all three properties simultaneously.
Here, 𝑛 is the size of the point sets on which the clustering
function 𝑓 acts.
The proof can be found in [23] and will not be re-

peated here. Which trade-off is made, depends on the
class of the algorithm. For example, Kleinberg proves
that centroid-based algorithms (such as k-means) do
not satisfy the consistency property.

Puts and Cowan Page 6 of 18

Cluster-based search space pruning in single leg low-thrust trajectory optimisation problems

4.3. Clustering Models
There is a plethora of clustering methods, differing in
performance and complexity, and, like optimisation
algorithms, their efficacy depends on the distribution
and nature of the data. There is no free lunch here ei-
ther: a universally applicable algorithm does not exist.
Another taxonomy of clustering methods relates to

the nature in which the data set is fed to the algorithm:
statically or dynamically. The first refers to the more
common case where all relevant data is clustered at
the same time. Dynamic clustering, on the other hand,
refers to the progressive clustering applied to a data
stream, i.e., data is collected through time. With each
time step, the clustering algorithm processes the new
data and uses it to update the partitioning of the data
set. Dynamic clustering comes with its own complica-
tions: the clustering should be stable but also flexible
enough to accommodate new data points and, if nec-
essary, increase or decrease the number of clusters.
Different (static) clustering types are compared in

Table 3. This table is not exhaustive and the reader is
referred to [21] for a comprehensive review of tradi-
tional and more modern clustering algorithms. Each
type of clustering algorithm has its own advantages
and disadvantages; therefore, the choice of which al-
gorithm to deploy is heavily dependent on the nature
of the data set and the number of data points. Some
algorithms, like K-means, are highly efficient and sim-
ple in their use, but do not work well on data with a
‘non-flat geometry’. The term non-flat geometry refers
to manifolds that have a non-zero curvature1, e.g. spi-
rals or concentric circles. In those instances, Euclidean
distances might not be the best option for clustering,
and rather than looking at centroids, one should look
at densities or linkage for correct clustering.

5. Software architecture
Having described the necessary background, we will
now proceed to explaining the methodology for gen-
erating the trajectories, clustering, and data persis-
tence. All simulations were run on the TU Delft As-
trodynamics Toolbox (Tudat)2 platform, a C++/Python
library which has been developed by the Faculty of
Aerospace Engineering at the Delft University of Tech-
nology [27]. It supports the numerical propagation of
dynamical equations, variational equations, as well as
optimisation. The latter is accomplished by means of
an interface to the Pagmo/Pygmo 2 library.3 It sup-
ports both global and local optimisation by provid-
ing numerous implementations of heuristic algorithms
and local optimisation algorithms.

1Source: http://mathworld.wolfram.com/FlatManifold.
html, accessed on 22/08/2019.

2https://tudat-space.readthedocs.io/en/latest/
3https://esa.github.io/pagmo2/index.html

Table 4
Used Python packages, including the version used during this
thesis

Use Package Version
Simulation tudat 2.9.0
... tudatpy 0.5.16
Global optimisation pygmo 2.16.1
Clustering & PCA scikit-learn 0.23.2
HDBSCAN clustering hdbscan 0.8.27
Database & ORM sql-alchemy 1.3.23
Plotting matplotlib 3.3.2
Data manipulation numpy 1.19.1
Local optimisation scipy 1.5.3

Figure 4 shows the structure of the simulation pro-
gram that was developed for this research. The yellow
part comprises the core modules that are responsible
for clustering and pruning. These parts call the Python
wrappers of the simulation and optimisation modules,
here displayed in green. These libraries are imple-
mented in C++for performance reasons, but can be ac-
cessed by the Python wrapper libraries that form the
interface between the yellow and green parts. Lastly,
the red part represents the cloud-run database and its
access layer. The database was run on the Google
Cloud Platform to ensure data persistence in case of
local hardware failure. It contains the generated tra-
jectories and the values of the parameters that describe
them, the clusterings, and values for the different ce-
lestial bodies that were used in this thesis.
All simulations were carried out on an HP ZBook

Studio G5 with an Intel® Core™ i7-8750H CPU with
a clock frequency of 2.20 GHz and 12 logical cores,
and 16 GB of memory. The resulting trajectories were
stored in a cloud-run PostgreSQL database. The code-
base can be found on the main author’s GitHub page4.
The Python modules also use various third-party

packages (see Table 4), all available through Pip or
Anaconda.

6. Exploiting synodic periodicity
Before one can apply clustering and use it to prune the
search space, it is necessary to have a more thorough
understanding of the structure of the latter. Does it
present patterns that lend themselves to clustering in
the first place? We will answer this question in this
section.
We postulate here that single-leg trajectories be-

tween celestial bodies within the solar system exhibit
a certain (repeating) pattern, which will form the ba-
sis for clustering. This statement is based on the ob-
servation that many transfers have multiple launch
windows: corresponding groups of trajectories that
are similar in propellant requirements (thus ΔV) and

4https://github.com/elmarputs/Thesis

Puts and Cowan Page 7 of 18

Cluster-based search space pruning in single leg low-thrust trajectory optimisation problems

DB
Database access

layer

Tudat

TudatPy

Analysis &
visualisation

module

Pruning module

Pagmo

Optimisation
module

Pygmo

Local PC

Server

Figure 4: Overview of the software architecture. Yellow: machine learning & pruning
modules; green: simulation & optimisation modules; red: cloud-run database with access
layer module.

maximum acceleration. Furthermore, we will also
show that these patterns arise from the synodic period,
which is a function of both bodies’ orbital period.
Obviously, it is impossible to test all different possi-

ble transfers between any two objects and exhaustively
prove that this hypothesis holds true for all combina-
tions. Instead, we rely on three different cases, which
are discussed in the next section.

6.1. Test Cases
Three test cases were developed and implemented:
two interplanetary transfers (Earth – Mars and Earth –
Venus) and one comet rendezvous (Earth – 9P/Tempel
1). The Earth – Mars (EM) transfer was chosen as it is
commonly used as a benchmark case in many previ-
ous studies in the field of low-thrust trajectory design
[18, 28, 29]. The Earth – Venus (EV) case is considered
to be representative of a transfer to an inner planet,
possibly changing the dynamical nature of the prob-
lem. Both trajectories are also relevant study objects,
as both Mars and Venus are commonly chosen as mis-
sion targets or fly-by candidates.
These two cases are not the most challenging, since

they involve quasi-circular, i.e., low eccentricity, de-
parture and arrival orbits,5 possibly limiting the va-
lidity and/or applicability of any conclusions follow-
ing from the results. Hence, we have decided to also
include a more dynamically challenging trajectory.
Comet Tempel 1 was chosen to this end, as a comet’s
trajectory greatly differs from the major planets’ tra-
jectories in terms of eccentricity (usually very ellipti-
cal) and inclination (often their orbits are not in the
ecliptic). These two factors reduce the number of pos-

5In a heliocentric reference frame, that is.

sible propellant-efficient transfers that are also feasible
for low-thrust spacecraft. A reason that is more practi-
cal in nature is the availability of accurate ephemeris
data in SPICE. In the remainder of this paper, we will
refer to this case with the acronym ET.
All cases use the same window of 26/9/2022 —

25/9/2030, based on [17]. This window allows for
the presence of four to five synodic periods for the
EV and EM cases, and approximately two for the ET
case. The time of flight bounds are 500 to 2000 Julian
days, allowing for both relatively short and long trans-
fers. Ephemeris data was taken from the NASA/NAIF
SPICE library (Interpolated SPICE), based on the most
recent orbital models (as of June 2021) of the bodies
under investigation. For computational reasons, these
ephemerides were sampled with an interval of 1 JD
and interpolated using a 6th order Lagrange interpo-
lator. The interpolation interval was extended by 200
Julian days on both boundaries to account for the un-
reliability of the interpolator at the edges of the do-
main. Lastly, all pork chop plots were produced using
50 × 50 and 25 × 25 grid searches of the design space.

6.2. Search space exploration results
Both the EM (Figure 5) and the EV (Figure 6) plots ex-
hibit a strong pattern as far as short-lived transfers are
concerned: ‘flames’ of dark, high ΔV regions are vis-
ible at a regular spacing. Similarly, separating these
regions of adverse transfer conditions are the regions
with relatively opportunistic ΔV values. This underly-
ing regularity can indeed be explained by comparing
the frequency of these phenomena to the synodic pe-
riod of the two celestial bodies in question.
Using the simple formula 𝜏 = 𝑇𝑜

𝑇𝑖
to compute the

Puts and Cowan Page 8 of 18

Cluster-based search space pruning in single leg low-thrust trajectory optimisation problems

2023 2024 2025 2026 2027 2028 2029 2030
Departure epoch (calendar year)

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Ti
m

e
of

 fl
ig

ht
 (y

ea
rs

)

0

5

10

15

20

25

30

35

40

45

V
[k

m
/s

]

Figure 5: Porkchop plot for the Earth — Mars transfer.

Figure 6: Porkchop plot for the Earth — Venus transfer.

synodic period 𝜏 using the inner body orbital period 𝑇𝑖
and outer body orbital period 𝑇𝑜, we obtain 𝜏 = 1.88
years in the EM case, whereas for EV this value equals
approximately 𝜏 = 1.62 years. This figure means that
each 𝜏 years, both bodies return to their same initial
relative position. Given the window length Δ𝑡, we can
now calculate how often (𝑓) we would expect both
planets to line up:

𝑓 = Δ𝑡
𝜏 (1)

With Δ𝑡 = 8 years, we see that for the EM transfer
we find 𝑛 = 4.25 and in the EV case 𝑛 = 4.93. We can
clearly see that the frequency of the ridges and valleys
in Figure 5 and Figure 6 correspond to the calculated
frequencies 𝑓, backing up the statement made earlier
that these regions of relatively advantageous trajecto-
ries correspond to the alignment of both bodies and
thus to their synodic period.
As expected, the ET case (depicted in Figure 7) is

Figure 7: Porkchop plot for the Earth — 9P/Tempel 1 trans-
fer.

different. Since Tempel 1’s period is much larger than
Earth’s (approximately 5.58 years), we observe that
only two synodic periods are captured in this specific
window. Furthermore, two different patterns can be
distinguished: a broad, lower ΔVregion, and a narrow
region containing trajectories with higher ΔVvalues.
Next to these oblique regions, that are similar to those
in the EV and EM cases, we can also observe vertical
‘spikes’ emerging from the main bands.

7. Data preprocessing
Before clustering can be applied, it is crucial to format
the dataset such that the clustering model can effec-
tively partition the data into coherent, well-separated
sets. This step is commonly known as data preprocess-
ing and entails filtering out noise, scaling values, trans-
forming to a different basis, etc.

7.1. Noise in clustering
In conventional data sets used in machine learning,
data is not artificially generated but rather obtained
from surveys, existing databases, and other sources.
Usually, these include data points that do not neces-
sarily belong to a group and are considered noise. Most
clustering algorithms can, however, not properly deal
with the presence of noise, which will result in dis-
torted clusters, or even very poor clustering in general
[30]. Only a few algorithms such as (H)DBSCAN and
OPTICS have a notion of noise, where noisy data points
are put in a separate ‘cluster’.

7.2. Scaling
The second type of preprocessing is the use of scaling.
By scaling, we mean operations such as normalising
and standardising: transforming the range of values to
another interval. In the case of normalising, we give

Puts and Cowan Page 9 of 18

Cluster-based search space pruning in single leg low-thrust trajectory optimisation problems

all data points a unit norm, according to some norm (𝑙1,
𝑙2, or 𝑙∞). Standardising, instead, refers to nullifying
the data set mean and enforcing unit variance.

7.3. Basis Transformation
The third important data transformation in this re-
search is rotation, or, equivalently, changing coor-
dinate basis. As we will see in Section 9.1, this is
paramount for some clustering algorithms, which de-
pend on projections of data onto an axis. As such,
these models will perform poorly unless the data set
is transformed to an appropriate basis.

7.4. Making Pork chops Clusterable
Lastly, we need to deal with a problem that is specific
to our case: the datasets generated by the grid search
contain points spaced at regular intervals, and every
point in the mesh is covered. As a result, most, if not
all, clustering algorithms will fail to come up with a
clustering that meets our expectations. For example,
density-based models will fail because of the lack of
difference in density among the points. These models
need a clear distinction between high-density clusters
and low-density intercluster space. Other algorithms
also produce poor results since equally-spaced points
lack the separation between clusters; most algorithms
will thus allocate all points to a single cluster or to
clusters that do not make sense.
Given these poor results, we therefore propose the

application of a threshold to the data set, thus forming
clusters in otherwise unclusterable data. This thresh-
old is implemented as a simple constraint, such as “in-
clude all data points for which ΔV ≤ 𝑘”, where 𝑘 is
some constant. In other words, we filter our data set
by putting constraints on one or more features – in
our case objectives. We also observe that this thresh-
old is a double-edged sword: by throwing away poor
performing trajectories with high ΔV values, we are
already pruning the search space. We are left with the
‘valleys’ of reasonably efficient trajectories, that will
be grouped by the subsequent clustering stage.
The introduction of a threshold does pose some ad-

ditional problems, however. A question that arises
naturally is one that also applies to other hyperparam-
eters: which value should we choose? Of course, the
answer is not easily found and one needs to treat the
threshold value as another hyperparameter.

8. Cluster validation using indices
As mentioned in Section 4.1, cluster evaluation is an
essential part of clustering and is performed using one
of the four methods mentioned earlier. Several dozens
of different validity indices exist to perform this job,
rendering it impossible to thoroughly test all differ-
ent combinations of indices, clustering algorithms, and

data sets. As such, choices have to be made to confine
the number of experiments that need to be run.
In this section, we will direct our focus to three

different clustering validity indices (CVIs): the Silhou-
ette, Davies-Bouldin, and Calinski-Harabasz indices,
from here onwards referred to as Sil, DB, and CH, re-
spectively. This choice was based on the results from
the extensive comparative study of internal validation
indices by Arbelaitz et al. [25]. The three CVIs used
here consistently performed best across the many tests
that were run. Factors such as clustering algorithm,
number of clusters, dimensionality, data density, clus-
ter overlap, and noise were all varied to compare the
performance (in terms of success rate) of the 30 indices
under investigation. This indicates that these three in-
dices are most robust under changing circumstances
and that they might prove to be best suitable to tackle
internal validation.
However, one must remain wary of attaching too

strong a conclusion to this result. As with many al-
gorithms and statistics, there is usually no single one
which outperforms the rest. This is generally known
as the No Free Lunch Theorem (NFLT); see also [31]
and [32] for applications in the field of (global) opti-
misation. With this theorem in mind, we will see that
the CVIs selected will not be the holy grail. In the
worst case scenario, none will be helpful in determin-
ing whether a certain clustering is any good.

8.1. Judging the performance of CVIs
Ideally, one would use a CVI to find some kind of rank-
ing of clusterings. But to see if a certain CVI is suit-
able for this purpose, we need to evaluate the CVI it-
self, given some data sets that resemble the structure
that will be encountered in future applications. To that
end, we compare different clusterings of the same data
set — generated by the grid search as described in Sec-
tion 5— using the three CVIs. As a benchmark, we will
judge the outcome on the basis of manual inspection.
The justification for this approach is given by the fact
that the patterns observed in Section 6 are relatively
obvious; as humans, we can quickly observe the ‘cor-
rect’ clustering that groups favourable trajectories. Of
course, this method has a drawback: it relies on hu-
man, subjective judgement and not on quantitative as-
sessment. However, in our case, we merely want to see
if the CVIs actually correlate to our understanding of
‘good’ clusterings; i.e., whether they behave as some
kind of proxy for our judgement.

8.2. CVI comparison results
The results for the CVI comparison regarding differ-
ent grid resolutions are presented in Figure 8 and Fig-
ure 9, for Sil/DB and CH, respectively. Note that for
the Sil and CH indices, higher values correspond to
better clusterings, whereas the DB index works the

Puts and Cowan Page 10 of 18

Cluster-based search space pruning in single leg low-thrust trajectory optimisation problems

opposite way, meaning lower values are preferable.
With this information, we notice that in most cases,
the grid resolution has only a minimal effect on the
index-measured performance. Only for the HDBSCAN
and OPTICS models, the difference is much more pro-
nounced and we see that here, a higher grid resolution
is beneficial. In the CH case, however, the situation
is completely different. Grid resolution seems to be
much more influential, where higher values in all but
one case yield better index values. DBSCAN is the ex-
ception here, as little difference is observed between
25 and 50 grid points.

Figure 8: Comparison of six different clustering models for
different grid resolutions using the Sil and DB indices. Note
that higher values for Sil correspond to better clusterings; the
opposite holds for DB.

OPTICS and HDBSCAN are also much more sensi-
tive to a change in target body relative to the Sil index
than the other algorithms, as can be seen in Figure 10.
The clustering algorithms seem to perform better in
the Mars transfer. Again, the difference with the CH
index is striking (Figure 11). We see here that for all
models, except DBSCAN, theMars transfer yields much
better clustering results than for the Venus case.

8.3. CVI comparison discussion
From the results shown in the previous paragraphs, an
interesting observation can be made: DBSCAN seems
to behave in an opposite manner with respect to the
other clustering algorithms. It yields better scores
when presented with a lower grid resolution and when
trajectories to Venus are clustered.
Another important observation is that the CVIs are

ambiguous in various situations. An illustrative exam-
ple of this is seen when we look at Figures 8 and 10.
We see that HDBSCAN is the best or second best al-
gorithm for this data set when assessed with CH, but

Figure 9: Comparison of six different clustering models for
different target bodies using the CH index. Note that higher
values for CH correspond to better clusterings.

Figure 10: Comparison of six different clustering models for
different target bodies using the Sil and DB indices. Note
that higher values for Sil correspond to better clusterings; the
opposite holds for DB.

that the DB index yields a completely different story
— here, HDBSCAN is among the worst. An example
of such a clustering is shown in Figure 12, which is
representative for all clusterings using this algorithm
for EM transfers. When compared to the other algo-
rithms (Figures 13 to 15), we see that it is closest to
the desired clustering, together with DBSCAN. This
is remarkable, since the CVI plots consistently rank
DBSCAN much lower or higher than HBSCAN, even
though the clusterings are very similar to those pro-
duced by HDBSCAN.
We also see that the Gaussian Mixture Model and

Puts and Cowan Page 11 of 18

Cluster-based search space pruning in single leg low-thrust trajectory optimisation problems

Figure 11: Comparison of six different clustering models for
different target bodies using the Sil and DB indices. Note
that higher values for Sil correspond to better clusterings; the
opposite holds for DB.

Figure 12: HDBSCAN, EM trajectory

KMeans are not able to produce any useful clusters,
since they are based on centroids and thus group points
that are within some range of these centroids. They
are unable to deal with the elongated clusters that are
encountered here.
From these results we have to conclude that using

these CVIs to judge the performance of the tested clus-
tering algorithms is not advisable. The rankings are
inconsistent and very much dependent on which CVI
is chosen; choosing the wrong index can lead to a rank-
ing that is almost the opposite of the ranking done by
a human. With wrong clusters, it is very unlikely that
the optimisation algorithm will converge more quickly
to the optimum, since the new search space identi-
fied by the clusters still include parts that are infeasible
and/or uninteresting.

Figure 13: KMeans, EM trajectory

Figure 14: DBSCAN, EM trajectory

Figure 15: Gaussian Mixture Model, EM trajectory

9. Multimodality-based clustering
The clustering algorithms described in Section 4 and
used in the previous steps are all based on notions
of density (DBSCAN, OPTICS), centroids (KMeans), or
statistical distributions (GMM, SPECTRAL). Addition-
ally, CVIs were used to compare the models and tune
the algorithms. As we have seen, though, this method
does not prove fruitful for our case, as inconsistent and
contradictory results were obtained. For this reason,
we propose the use of modality-based clustering algo-

Puts and Cowan Page 12 of 18

Cluster-based search space pruning in single leg low-thrust trajectory optimisation problems

rithms.
Multimodality is the existence of multiple ‘peaks’

in a univariate statistical distribution. A distribution
having only a single peak, such as the normal distri-
bution, is therefore called unimodal. Clusters can also
be seen as ‘peaks’ of the distribution of some random
variable. Since clusters can be defined on ℝ or higher-
dimensional spaces, we are mostly dealing with multi-
variate distributions. The clusters then correspond to
modes of this distribution.
An example of this feature is shown in Figure 16.

The figure depicts a typical trajectory optimisation
data set that is obtained using a grid search and fil-
tered using a threshold. We can observe the elongated
clusters that form primarily in one direction, which is
approximately aligned with the y-axis here. Both axes
are accompanied by a 30-bin histogram, showing the
frequency of data points for that axis. The x-axis his-
togram shows clear, well-separated peaks, which can
be thought of as different modes of the underlying em-
pirical distribution. The figure thus shows that the
peaks correspond to the locations of the clusters and
that we can extract the x-axis cluster intervals from
these peaks.

Figure 16: An example of a rotated trajectory data set with
x-axis and y-axis histograms depicting the distribution of data
points.

How can we use this observation to perform clus-
tering? The answer lies in a statistical test, proposed
by Hartigan and Hartigan in their 1985 paper, called
the dip test [33]. This method tests the null hypoth-
esis that the distribution is unimodal, by looking at
the maximum difference between the empirical cumu-
lative distribution function (ecdf) and the unimodal
distribution that minimises this maximum difference.
This maximum difference is aptly called the dip, hence

the name of the statistical test.
The test merely rejects or accepts the null hypothe-

sis, so it should be applied in a recursive manner to ob-
tain all modes in a multimodal distribution. Also, Har-
tigan and Hartigan’s work has one significant short-
coming: the test only works for univariate distribu-
tions, and is thus inherently unsuitable for clustering
in its 1985 incarnation. However, this problem was
solved by Maurus and Plant by employing the dip test
in a recursive algorithm, called SkinnyDip, where the
test is carried out in multiple dimensions to find clus-
ters [30]. The algorithm uses recursion to find all
peaks along one axis and to extract clusters in higher
dimensions.
Figure 17 shows the different steps that are taken

in the SkinnyDip algorithm. Because the dip-test re-
lies on peaks in the empirical distribution function, it
is first crucial to determine the appropriate basis vec-
tor that is perpendicular to the general direction of the
clusters. If such a basis is found, the data is normalised
and rotated, so that it is aligned with the chosen basis.
Then, the data is projected onto the basis vector, pro-
ducing a new, univariate distribution of the data along
that axis. The data can now be processed by the dip-
test, as it requires univariate data and cannot work in
higher dimensions.

9.1. Finding the Appropriate Basis
Figure 16 also makes the importance of the choice of
basis vectors clear: an inappropriate basis will yield
histograms that show no distinct peaks, even though
clusters are present in the data set. It is therefore es-
sential to find a good basis that will maximise the like-
lihood of finding the clusters.
In this paper, we use an effective but simplemethod

to find this angle (see Line 1). By rotating the data set
between 0 and 𝜋 radians and evaluating the dip at reg-
ular intervals, we can find the angle at which the dip
is maximised. Since the clustering takes place in 2D in
this work, this method is sufficient to quickly find the
global optimum angle.

9.2. SkinnyDip clustering results
The results of the modality-based clustering for the dif-
ferent transfers can be seen in Figures 18 to 20. ΔV
threshold values of 10, 15, and 35 km/s were used in
the EM, EV, and ET cases, respectively, clipping out
high ΔV trajectories and creating ‘islands’ of trajec-
tories which can be clustered. We see that Skinny-
Dip consistently produces coherent clusters that each
correspond to a distinct ‘valley’ of low ΔV trajecto-
ries. Note that the data sets in the figures are rotated
back into their original orientation, although the dip-
test takes place in the rotated frame as depicted in
Figure 16, so that a single projection onto the x-axis
creates an empirical distribution function that can be

Puts and Cowan Page 13 of 18

Cluster-based search space pruning in single leg low-thrust trajectory optimisation problems

Determine appropriate basis Scale and rotate Project onto x-axis Perform dip-test

Figure 17: Flowchart of the Dip-based clustering

Algorithm 1: Finding the basis maximising
the dip
Data: 𝐱
Result: Angle 𝜃 at which maximum dip is

found and maximum dip
angles = range(0, 𝜋);
dips := [];
for 𝜃 in angles do
Construct basis vector: 𝐞 ∶= [cos 𝜃, sin 𝜃];
Project data onto basis vector: 𝐱 ∶= 𝐱 ⋅ 𝐞;
Sort data: 𝐱 ∶= sort(𝐱);
dip = diptest(x);
dips.append(dip);

end
return max(dips);
return angles.at(max(dips))

tested for unimodality.
It is clear that, with a proper threshold, SkinnyDip

can efficiently group trajectories that form the elon-
gated clusters, corresponding to the distinct ‘valleys’
encountered in the porkchop plots as seen in Section 6.
In contrast, the more conventional clustering methods
consistently failed to generate clusters that were inter-
nally coherent and well-separated.
Figure 20 also includes the objective values corre-

sponding to transfers in each cluster that was found
by SkinnyDip, along with the local Pareto fronts. This
figure clearly illustrates that different clusters can pro-
duce similar Pareto fronts (as in the case of the blue
and green clusters). Even though the departure epoch
and time of flight values of these two groups differ
greatly, the fitness of the best trajectories seems to
overlap to some degree. This means that clustering
can also be used to find trajectories in different launch
windows with similar ΔV and maximum acceleration
values, allowing for more robust mission planning.

Figure 18: SkinnyDip clustering for the Earth – Mars transfer.

Figure 19: SkinnyDip clustering for the Earth – Venus transfer.

Puts and Cowan Page 14 of 18

Cluster-based search space pruning in single leg low-thrust trajectory optimisation problems

Figure 20: Left: SkinnyDip clustering for the Earth – 9P/Tempel 1 transfer. Right:
Objective values (ΔV and maximum acceleration) and Pareto fronts for each cluster.

10. Conclusions
In this paper, we have explored the use of clustering
for pruning the search space of single leg trajectory op-
timisation problems. All three transfer problems stud-
ied (EM, EV, and ET) exhibited a periodic structure
that was coupled to the synodic period of the depar-
ture and target bodies. Since the data points were gen-
erated artificially, clustering can only be carried out
after the data set has been filtered. To this end, we
propose a simple but effective ΔVthreshold value. This
method extracts the ‘valleys’ containing the favourable
trajectories, which are then clustered. The clusters can
provide knowledge in the form of new search region
bounds, that in turn function as initialisation intervals
for multi-start/parallel optimisation algorithms.
(H)DBSCAN, OPTICS, KMeans, and GMM failed to

consistently and robustly provide clusterings that were
satisfactory for pruning purposes, since the clusters
are oblong and noise–cluster density differences are
nonexistent due to the artificial nature of the data sets.
A solution to this problem was found in the use of
multimodality-based clustering, in the form of Skinny-
Dip. This clustering method uses the dip-test, which
is a statistical test to assess whether some statistical
distribution is unimodal or not. Due to its nature, it
lends itself for long, narrow clusters that we encounter
when optimising interplanetary transfers. SkinnyDip
also has the advantage of requiring very little hyper-
parameter tuning. This stands in stark contrast to the
other clustering algorithms, as they usually require ex-
tensive tuning before being able to produce useful re-
sults.
In every clustering application, it is crucial to eval-

uate the partition of the data. In this paper, we have
seen that internal cluster validation indices are inade-
quate for our problem, since their values are incon-
sistent with human judgement of the quality of the
clusterings. Unless some ad-hoc index is found that
suits the clusters encountered in trajectory optimisa-
tion, the use of CVIs is discouraged, as they might lead
to wrong conclusions about the quality of clusterings
in the absence of human judgement.

Puts and Cowan Page 15 of 18

Cluster-based search space pruning in single leg low-thrust trajectory optimisation problems

References
[1] J. T. Betts, Survey of Numerical Methods for Trajectory Op-

timization, Journal of Guidance, Control, and Dynamics 21
(1998) 193–207. doi:10.2514/2.4231.

[2] A. V. Rao, A Survey of Numerical Methods for Optimal Con-
trol, Advances in the Astronautical Sciences 135 (2009) 497–
528.

[3] S. Bandaru, A. H. C. Ng, K. Deb, Data Mining Methods for
Knowledge Discovery in Multi-Objective Optimization: Part a
- Survey, Expert Systems with Applications 70 (2017) 139–
159. doi:https://doi.org/10.1016/j.eswa.2016.10.015.

[4] K. Deb, Multi-objective Optimization, Springer US, Boston,
MA, 2014, pp. 403–449. doi:10.1007/978-1-4614-6940-7_15.

[5] D. Izzo, Global optimization and space pruning for spacecraft
trajectory design, Cambridge University Press, 2010, pp. 178–
201. doi:10.1017/CBO9780511778025.008.

[6] R. Liu, A. Agrawal, W. Liao, A. Choudhary, Search Space Pre-
processing in Solving Complex Optimization Problems, in:
2014 IEEE International Conference on Big Data (Big Data),
2014, pp. 1–5. doi:10.1109/BigData.2014.7154118.

[7] D. R. Myatt, V. M. Becerra, S. J. Nasuto, J. M. Bishop, Ad-
vanced Global Optimisation Tools for Mission Analysis and De-
sign, Report 03-4101a, European Space Agency, the Advanced
Concepts Team, 2004.

[8] D. Izzo, V. M. Becerra, D. R. Myatt, S. J. Nasuto, J. M.
Bishop, Search Space Pruning and Global Optimisation
of Multiple Gravity Assist Spacecraft Trajectories, Jour-
nal of Global Optimization 38 (2007) 283–296. doi:10.1007/
s10898-006-9106-0.

[9] A. E. Petropoulos, J. M. Longuski, Shape-Based Algorithm for
Automated Design of Low-Thrust, Gravity-Assist Trajectories,
Journal of Spacecraft and Rockets 41 (2004) 787–796. doi:10.
2514/1.13095.

[10] D. Izzo, Lambert’s Problem for Exponential Sinusoids, Journal
of Guidance, Control, and Dynamics 29 (2006) 1242–1245.
doi:10.2514/1.21796.

[11] B. J. Wall, B. A. Conway, Shape-Based Approach to Low-
Thrust Rendezvous Trajectory Design, Journal of Guidance,
Control, and Dynamics 32 (2009) 95–101. doi:10.2514/1.
36848.

[12] D. M. Novak, M. Vasile, Improved Shaping Approach to
the Preliminary Design of Low-Thrust Trajectories, Jour-
nal of Guidance, Control, and Dynamics 34 (2011) 128–147.
doi:10.2514/1.50434.

[13] E. Taheri, O. Abdelkhalik, Shape-Based Approximation of
Constrained Low-Thrust Space Trajectories Using Fourier Se-
ries, Journal of Spacecraft and Rockets 49 (2012) 535–545.
doi:10.2514/1.A32099.

[14] E. Taheri, O. Abdelkhalik, Initial Three-Dimensional Low-
Thrust Trajectory Design, Advances in Space Research 57
(2016) 889–903. doi:10.1016/j.asr.2015.11.034.

[15] P. De Pascale, M. Vasile, Preliminary Design of Low-Thrust
Multiple Gravity-Assist Trajectories, Journal of Spacecraft and
Rockets 43 (2006) 1065–1076. doi:10.2514/1.19646.

[16] B. De Vogeleer, Automatic and Fast Generation of Sub-Optimal
and Feasible Low-Thrust Trajectories Using a Boundary-Value
Pseudo-Spectral Method, Master’s thesis, Delft University of
Technology, 2008.

[17] D. Gondelach, A Hodographic Shaping Method for Low-Thrust
Trajectory Design, Master’s thesis, Delft University of Technol-
ogy, 2012.

[18] D. J. Gondelach, R. Noomen, Hodographic-Shaping Method
for Low-Thrust Interplanetary Trajectory Design, Journal of
Spacecraft and Rockets 52 (2015) 728–738. doi:10.2514/1.
A32991.

[19] K. F. Wakker, Fundamentals of Astrodynamics, Institutional
Repository Library, Delft University of Technology, Delft,
2015.

[20] M. Halkidi, Y. Batistakis, M. Vazirgiannis, On Clustering Vali-
dation Techniques, Journal of Intelligent Information Systems
17 (2001) 107–145. doi:10.1023/a:1012801612483.

[21] D. Xu, Y. Tian, A Comprehensive Survey of Clustering Al-
gorithms, Annals of Data Science 2 (2015) 165–193. doi:10.
1007/s40745-015-0040-1.

[22] M. Ackerman, S. Ben-David, Measures of clustering quality:
Aworking set of axioms for clustering, Advances in Neural
Information Processing Systems 21 - Proceedings of the 2008
Conference (2009) 121–128.

[23] J. Kleinberg, An impossibility theorem for clustering, in: Ad-
vances in Neural Information Processing Systems, Neural in-
formation processing systems foundation, 2003.

[24] C. Hennig, What are the true clusters?, Pattern Recognition
Letters 64 (2015) 53–62. doi:10.1016/j.patrec.2015.04.009.
arXiv:1502.02555.

[25] O. Arbelaitz, I. Gurrutxaga, J. Muguerza, J. M. Pérez, I. Per-
ona, An extensive comparative study of cluster validity in-
dices, Pattern Recognition 46 (2013) 243–256. doi:10.1016/
j.patcog.2012.07.021.

[26] A. Adolfsson, M. Ackerman, N. C. Brownstein, To cluster, or
not to cluster: An analysis of clusterability methods, Pattern
Recognition 88 (2019) 13–26. doi:10.1016/j.patcog.2018.10.
026. arXiv:1808.08317.

[27] K. Kumar, P. van Barneveld, D. Dirkx, J. Melman, E. Mooij,
R. Noomen, Tudat: a modular and robust astrodynamics tool-
box, in: A. Benoit (Ed.), Conference proceeding of the 5th
ICATT Conference, ESA, 2012, pp. 1–8. 5th ICATT Conference
; Conference date: 29-05-2012 Through 01-06-2012.

[28] L. Bouwman, Gaussian Process Models for Preliminary Low-
Thrust Trajectory Optimization, Master’s thesis, Delft Univer-
sity of Technology, 2019.

[29] D. Izzo, Advances in Global Optimisation for Space Trajectory
Design, in: Proceedings of the international symposium on
space technology and science, volume 25, 2006, p. 563.

[30] S. Maurus, C. Plant, Skinny-dip: Clustering in a sea of noise,
Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining 13-17-Augu (2016)
1055–1064. doi:10.1145/2939672.2939740.

[31] T. Joyce, J. M. Herrmann, A Review of No Free Lunch Theo-
rems, and Their Implications for Metaheuristic Optimisation,
Springer International Publishing, Cham, 2018, pp. 27–51.
doi:10.1007/978-3-319-67669-2_2.

[32] D. H. Wolpert, W. G. Macready, No Free Lunch Theorems for
Optimization, IEEE Transactions on Evolutionary Computa-
tion 1 (1997) 67–82. doi:10.1109/4235.585893.

[33] J. Hartigan, P. Hartigan, The dip test of unimodality, Annals
of Statistics 13 (1985) 70–84.

[34] T. Calinski, J. Harabasz, A dendrite method for cluster analy-
sis, Communications in Statistics 3 (1974) 1–27.

[35] D. Davies, D. Bouldin, A cluster separation measure, IEEE
Transactions on Pattern Analysis and Machine Intelligence
PAMI-1 (1979) 224–227. doi:10.1109/TPAMI.1979.4766909.

[36] P. Rousseeuw, Silhouettes: A graphical aid to the interpre-
tation and validation of cluster analysis, Journal of Compu-
tational and Applied Mathematics 20 (1987) 53–65. doi:10.
1016/0377-0427(87)90125-7.

Puts and Cowan Page 16 of 18

Cluster-based search space pruning in single leg low-thrust trajectory optimisation problems

A. CVI definitions
• Calinski-Harabasz index (CH) [34]:

CH(𝐶) = 𝑁 − 𝐾
𝐾 − 1

∑𝑐𝑘∈𝐶
|𝑐𝑘|de (𝑐𝑘, ̄𝑋)

∑𝑐𝑘∈𝐶∑𝑥𝑖∈𝑐𝑘
de (𝑥𝑖, 𝑐𝑘)

(2)

• Davies-Bouldin index (DB) [35]:

DB(𝐶) = 1
𝐾 ∑

𝑐𝑘∈𝐶
max

𝑐𝑙∈𝐶\𝑐𝑘
{S (𝑐𝑘) + S (𝑐𝑙)de (𝑐𝑘, ̄𝑙𝑙)

} (3)

• Silhouette index (Sil) [36]:

Sil(𝐶) = 1
𝑁 ∑

𝑐𝑘∈𝐶
∑

𝑥𝑖∈𝑐𝑘

b (𝑥𝑖, 𝑐𝑘) − a (𝑥𝑖, 𝑐𝑘)
max {a (𝑥𝑖, 𝑐𝑘) , b (𝑥𝑖, 𝑐𝑘)} (4)

where:

a (𝑥𝑖, 𝑐𝑘) = 1
|𝑐𝑘|

∑
𝑥𝑗∈𝑐𝑘

de (𝑥𝑖, 𝑥𝑗) (5)

and

b (𝑥𝑖, 𝑐𝑘) = min
𝑐𝑙∈𝐶⧵𝑐𝑘

{1/ |𝑐𝑙| ∑
𝑥𝑗∈𝑐𝑙

de (𝑥𝑖, 𝑥𝑗)} (6)

B. Hodographic Shaping Equations
B.1. Base functions
The hodographic shaping method fabricates a trajec-
tory in velocity space. This implies that we have to
come up with a function that describes the velocity in
each direction as a function of the independent vari-
able, being time 𝑡 or polar angle 𝜃. One could select
some random function, but it is actually much more
useful if we somehow select functions with more struc-
ture.
Finding this structure is not difficult, knowing that

we must integrate the velocity functions in order to
find the position as function of time or polar angle. It
is hence useful to select functions that are analytically
integrable, i.e., we can readily find their primitive.
Secondly, the definite integral is a linear operator, so
choosing a linear combination of integrable base func-
tions seems useful. The general description of some
velocity function 𝑉(𝑡) is shown in Equation (7).

𝑉 𝑗(𝑡) =
𝑛
∑
𝑖=1

𝑐𝑖𝑣𝑖(𝑡) with 𝑗 = {𝑟, 𝜃, 𝑧}. (7)

Here, 𝑉 𝑗(𝑡) is the velocity function for one of the
three base directions, 𝑛 the number of base functions,

𝑐𝑖 the ith coefficient, and 𝑣𝑖(𝑡) the ith velocity base func-
tion. The specific combination of base functions used
in this thesis is shown in Equation (8) and was based
upon the recommendations given by Gondelach him-
self [17].

𝑟(𝑡) = 𝑐1 + 𝑐2 ⋅ 𝑡 + 𝑐3 ⋅ 𝑡2 + 𝑐4 ⋅ 𝑡 cos (𝑓)
𝜃(𝑡) = 𝑐5 + 𝑐6 ⋅ 𝑡 + 𝑐7 ⋅ 𝑡2 + 𝑐8 ⋅ 𝑡 sin(𝑓)

+ 𝑐9 ⋅ 𝑡 cos(𝑓)
𝑧(𝑡) = 𝑐10 ⋅ cos(𝑓(𝑁 + 0.5)) + 𝑐11 ⋅ 𝑡3 sin (𝑓 (𝑁 + 0.5))

+ 𝑐12 ⋅ 𝑡3 cos (𝑓 (𝑁 + 0.5))
(8)

In these equations, 𝑓 = 2𝜋
𝑡𝑓−𝑡𝑖

and 𝑁 is the number
of revolutions.

B.2. Mathematical description of the hodographic
shaping method

To obtain the position as a function of the independent
variable (here time 𝑡 is considered), we integrate the
three velocity functions with respect to 𝜏, which is a
dummy variable for 𝑡:

𝑟(𝑡) = 𝑟0 +
𝑡

∫
0

𝑉𝑟 d𝜏

𝜃(𝑡) = 𝜃0 +
𝑡

∫
0

𝑉 𝜃
𝑟 d𝜏

𝑧(𝑡) = 𝑧0 +
𝑡

∫
0

𝑉𝑧 d𝜏

(9)

Notice that the equation for the polar angle 𝜃 re-
quires a factor 1

𝑟
, which is the Jacobian for this set

of coordinates. To find the values of the coefficients
in front of the base functions, we need the boundary
conditions. The trivial ones are:

𝑉𝑟(0) = 𝑉𝑟, 0 𝑉𝑟(𝑡𝑓) = 𝑉𝑟, 𝑡𝑓 (10)
𝑉 𝜃(0) = 𝑉 𝜃, 0 𝑉 𝜃(𝑡𝑓) = 𝑉 𝜃, 𝑡𝑓 (11)
𝑉𝑧(0) = 𝑉𝑧, 0 𝑉𝑧(𝑡𝑓) = 𝑉𝑧, 𝑡𝑓 (12)

Those are not the only boundary conditions that
we can find, however. We also happen to know the
boundary conditions in position space, i.e., initial and
final 𝑟, 𝜃, and 𝑧, because the trajectory needs to co-
incide with the position of the departure and target
body at 𝑡 = 0 and 𝑡 = 𝑡𝑓, respectively. Hence, we can
rewrite Equation (9) as follows:

Puts and Cowan Page 17 of 18

Cluster-based search space pruning in single leg low-thrust trajectory optimisation problems

𝑡𝑓

∫
0

𝑉𝑟 d𝜏 = 𝑟𝑓 − 𝑟0

𝑡𝑓

∫
0

𝑉 𝜃
𝑟 d𝜏 = 𝜃𝑓 − 𝜃0

𝑡𝑓

∫
0

𝑉𝑧 d𝜏 = 𝑧𝑓 − 𝑧0

(13)

Since this procedure allows determining three co-
efficients per direction, any extra base functions’ co-
efficients need to be determined by an optimisation
method. In general, it holds that having more base
functions implies more accuracy, although this is not
necessarily the case.
Having obtained the velocity functions with their

coefficients, we can now proceed to calculating the
thrust force that is necessary to fly this trajectory. To
do this, we take the equations of motion in polar co-
ordinates:

̈𝑟 − 𝑟 ̇𝜃2 + 𝜇
𝑑3 𝑟 = 𝑓𝑟

𝑟 ̈𝜃 + 2 ̇𝑟 ̇𝜃 = 𝑓𝜃
̈𝑧 + 𝜇

𝑑3 𝑧 = 𝑓𝑧

(14)

where 𝑑 = √𝑟2 + 𝑧2. These equations hold under
the following assumptions:
• Only the Sun exerts its gravitational force upon
the spacecraft (other celestial bodies’ gravita-
tional pull is ignored);
• The only other force acting on the spacecraft is
the thrust force f itself;
• The spacecraft has negligible mass w.r.t. the
Sun’s mass (restricted two body problem).

Since the specific thrust force is equal to the thrust
acceleration, a simple integration of the thrust accel-
eration w.r.t. time yields the ΔV:

ΔV =
𝑡𝑓

∫
0

‖f‖ d𝑡 (15)

where f = [
𝑓𝑟
𝑓𝜃
𝑓𝑧

].

Puts and Cowan Page 18 of 18

24 2. Paper

3
Recommendations

Since this work is still a very exploratory endeavour into the application of clustering on global trajec-
tory optimisation problems and given the conclusions that were discussed in the preceding section, we
think there are still plenty of challenges that can be tackled in future studies. We have identified the
following points that are likely to be the next steps in applying clustering to trajectory optimisation:

1. Investigate how clustering affects the performance of heuristic optimisation algorithms
and grid searches. In this research, we have not looked into assessing whether significant
improvements in optimisation performance occur after clustering. It is expected that pruning
by means of clustering can improve the converge speed of these algorithms, since uninteresting
areas are cut out and therefore do not impede the search for the global minimum.

2. Implement a clustering-aided heuristic optimiser. Instead of relying on clustering before
optimisation, we expect greater merit from a dynamic clustering lodged inside the optimisation
loop. In this case, clustering can be much more adaptive to new solutions generated by the
heuristic algorithm, although this ‘data stream’ based clustering requires more tuning. Cluster
stiffness (how eager clusters change) is an example of an extra hyperparameter that is introduced
in this process, and needs to be tuned.

3. Use clustering for a recursive ‘zooming’ optimisation algorithm. Since clustering can be used
to partition the population into distinct groups, consisting of potentially promising trajectories,
these groups can each be processed in a separate optimisation loop. For every group, clustering
is applied on a smaller, intra-group scale, such that ‘zooming’ functionality is obtained. As
zoom depth is increased, it is expected that the algorithm comes nearer to the true optimum,
while total computation time is increased. More research is necessary to quantify the effect of
this functionality, so that a trade-off can be made between computation time and optimisation
accuracy on a numerical basis;

4. Further investigate the potential role and merit of CVIs in trajectory clustering. In this
research, we have concluded that CVIs are unreliable when it comes to tuning and comparing
different clustering models, as the nature of the clusters encountered in trajectory optimisation
seems to be unsuitable for these CVIs. As the NFLT dictates, measures that perform very well
on some problems might perform poorly in other problems. As such, a different CVI — already
in existence or still to be created — can be much more suitable to the nature of the clusters
encountered in our problem, although this is rather ad-hoc and does not solve the underlying
philosophical problem. In this regard, SkinnyDip seems to be much more consistent in its clus-
terings and might thus be a more promising path to take;

5. Use clustering-aided pruning as a tool for multimodal optimisation. Trajectory optimisation
problems often present multiple regions with local optima, also called multimodal optimisation.
A classical example of a function exhibiting multimodality is the Weierstrass function, which is
a function contrived by Karl Weierstrass and often used to assess the performance of heuristic

25

26 3. Recommendations

global optimisation algorithms. These problems might give rise to multiple Pareto fronts in
multi-objective optimisation problem, ideally corresponding to different ‘valleys’ of the fitness
function. Under ideal circumstances, one is only interested in the best front, i.e. the one closest
to the utopia point. However, real-life applications often demand a more robust approach that
accounts for uncertainties possibly leading to violation of (some of) the constraints. For that
purpose, lower-ranked Pareto fronts can be useful, as they contain good solutions that might still
be feasible when uncertainties are taken into account. For an example of this application, see [?
];

6. Investigate effect of choice of coordinates on clustering. In this paper, we have looked at the
conventional decision domain, i.e., departure epoch and time of flight. Future research could also
focus on mathematically rewriting the problem into a dimensionless version, using variables such
as planetary phase angle difference. These coordinate transformations might reshape the data
into very different clusters, possibly more advantageous for subsequent optimisation. Perhaps
more general statements regarding synodic period and relative semi-major axis can be made as
well, such that different classes of transfers can be linked to suitable clustering methods;

7. Use as first stage in hybrid ML. Since clustering can attach labels to unlabelled data, it could
also function as a precursor for supervised algorithms like neural networks, support vector ma-
chines, etc. These machine learning models can — after proper training — estimate if a new
individual (i.e., a trajectory design) is feasible or not, without having to calculate the fitness
function. It could also be coupled with fitness function proxy models, which use neural net-
works or Gaussian Process Models to estimate the fitness values. An examples of this can be
found in [14].

8. Investigate the threshold value in greater detail. The threshold value, introduced in this
paper, is simple but effective in making an artificially generated data set clusterable, but also
comes at a cost: an additional hyperparameter is introduced that needs to be tuned. Obviously,
the ideal value for this parameter depends on the transfer problem (and thus on the ∆V values)
but also on the type of clustering algorithm used.

II
Background

WE WILL NOW PROCEED to provide more background information on different topics underlying
this thesis. Chapter 4 will comment and elaborate on the different aspects of trajectory optimisation,
with special emphasis on global optimisation and its main challenges. We will continue with a discus-
sion of the most important astrodynamical notions and shape-based methods that were put to use in
this work in Chapter 5. Last but not least, we will examine machine learning in Chapter 6, in particular
the application of clustering methods to trajectory optimisation problems.

4
Global optimisation

This chapter will discuss the necessary background of global optimisation. It is paramount to have
a good understanding of this topic, because it provides the basic framework for finding optimal tra-
jectories. Being the ultimate pursuit of the overall minimum (or maximum) of a function, global
optimisation presents many challenges; especially when applied to astrodynamical problems.
We will start by discussing the mathematical principles behind optimisation in Section 4.1. The

different approaches to and techniques for optimisation will then be treated in Section 4.2. Finally, we
will turn our attention to global optimisation techniques, with an emphasis on heuristics, in Section 4.3.

4.1. Mathematical formulation of the low-thrust trajectory optimisation
problem

Every dynamical optimisation problem deals with finding the minimum (or equivalently, the maxi-
mum) of the cost functional 𝐽 [15]:

𝐽 = Φ(𝐱(𝑡𝑓), 𝑡𝑓) +
𝑡𝑓

∫
𝑡0

𝐿 (𝐱(𝑡), 𝐮(𝑡), 𝑡) d𝑡 (4.1.1)

in which 𝐱 = 𝐱(𝑡) is the state vector and 𝐮 = 𝐮(𝑡) is the control vector. The cost function therefore
consists of two terms [1]:
1. The Mayer term Φ(⋅): only dependent on the final time and state. Examples in spaceflight are
the arrival epoch and arrival conditions.

2. The Lagrange term 𝐿(⋅): represents the cost depending on the integral over time of the state
and control vectors. Examples include — but are not limited to — propellant mass, actuator
overshoot, and velocity increase.

The problem in which no limitations are imposed on 𝐱 and 𝐮 is called an unconstrained optimisation
problem. In general, however, there will be constraints that complicate the problem. In the case
of spacecraft trajectory design, we cannot choose any 𝐱, as we need to adhere to the physical laws
governing the motion of the spacecraft through space. Additionally, there are control constraints like
maximum thrust magnitude, thrust pointing limitations, etc.
The dynamical constrains are often written as a set of differential equations, as it is usually derived

using Newton’s second law:

�̈� =
𝑁

∑
𝑖=1
𝐟𝑖 (4.1.2)

29

30 4. Global optimisation

where the acceleration �̈�, i.e., the second derivative of the position with respect to time, is given
as the sum of all specific forces on the spacecraft. These include e.g. the gravitational forces exerted
on the spacecraft by various bodies, thrust, and solar radiation pressure. Equation (4.1.2) is therefore
the model that describes the dynamic environment that the spacecraft is subject to. It usually contains
many terms which can be (indirectly) dependent on time and the spacecraft’s position or velocity. For
this reason, it can also be written in the more general form

�̇� = �̇�(𝐱, 𝐮, 𝑡). (4.1.3)
Apart from the dynamic constraint, there are often also terminal constraints (in this case boundary

conditions), which specify the value of the state and/or time at the initial and final epochs [2]:

𝑏𝐿 ≤ 𝑏(𝐱0, 𝑡0, 𝐱𝑓 , 𝑡𝑓) ≤ 𝑏𝑈 (4.1.4)
Lastly, the control and state vectors (or functions thereof) may also be subject to path constraints,

specifying the allowable values at every epoch 𝑡:

𝑝𝐿 ≤ 𝑝(𝐱(𝑡), 𝐮(𝑡), 𝑡) ≤ 𝑝𝑈 (4.1.5)
In summary, the goal of optimisation is to find both the optimal trajectory 𝐱(𝑡) and optimal control

𝐮(𝑡) which both satisfy the constraints and minimise/maximise the cost function 𝐽.

4.2. Optimal control strategy
This section provides a bird’s eye view of the different approaches to an optimisation problem, placing
this research in the wider context of the problem. A taxonomy of the different approaches and tech-
niques will be given, as well as a brief discussion of the (dis)advantages of these methods, culminating
in a rationale for the method that was used in this research.
Figure 4.1 presents one possible taxonomy of the different optimisation approaches that can be used

to tackle the problem as discussed in Section 4.1. The first distinction is that between an analytical
and numerical perspective. Ideally, one would like to have an exact representation of the solution,
however, this goal is in practice often unattainable in trajectory design due to the already mentioned
complexity of the problem, due to the nonlinear nature of the differential equations and the presence
of path constraints. This complexity and the fast advances in computing power have shifted the trend
towards numerical approaches, which discretise the continuous problem so that it can be solved by
computers [12] [13].
In the numerical approach, most literature observes a dichotomy between two approaches: the di-

rect and indirect method. The former converts the continuous optimal control problem into a discrete
optimisation problem by parametrising the state and/or control vectors, so that nonlinear program-
ming or heuristic techniques can be deployed to find a suitable solution. The other method is called
indirect because the problem is first converted to a Hamiltonian boundary value problem and succes-
sively discretised for optimisation [2]. The main issue with the indirect methods, however, is that they
rely on analytical techniques based on calculus of variations and Pontryagin’s principle, and therefore
yield complex derivations in complex problems such as (MGA) trajectory design [15]. For this reason,
usually a direct method is chosen in spacecraft trajectory problems, which is also seen in the increased
popularity of so-called shape-based methods (see Section 5.2), that try to represent the trajectory (i.e.,
the state) in a parametric way and add the control to the objective function [1]. Although direct meth-
ods are now mostly used, they do have a major disadvantage compared to their indirect counterparts:
the obtained solution(s) are not guaranteed to be optimal, due to the lack of optimality conditions
which are derived in the indirect method. An example of trajectory optimisation using an indirect
method based on Pontryagin’s minimum principle is given in [16], where the solutions are obtained
through a heuristic algorithm. For more information on optimal control in trajectory optimisation,
the reader is referred to [17].
Going down one level in Figure 4.1, we arrive at different techniques that can be applied in both

direct and indirect methods. The two most common are the so-called shooting and collocation tech-
niques. Others exist, such as differential inclusion (only applicable in a direct method), but they are
not very common and therefore not treated here. For more information on this technique, the reader

4.2. Optimal control strategy 31

Optimisation
approaches

Numerical Analytical

Direct Indirect

Shooting

Collocation

Other techniques

Solution techniques

Nonlinear
programming (NLP) Heuristics

Nature-inspiredOthers

EAs (GA, DE)
Swarm/colony based
(PSO, ACO)
Etc.

Grid search
Monte Carlo
sampling
Simulated Annealing
(SA)
Etc.

Figure 4.1: Taxonomy of optimisation approaches and solution techniques, adopted from [1] and [2].

is referred to [18]. Shooting is the procedure in which the initial state is fixed and the trajectory is
propagated through time using an initial guess for the parameters. This procedure is repeated until
convergence to the terminal conditions is reached. Collocation methods are different in the sense that
they do not need explicit integration of the equations of motion, for the trajectory is now defined by
values of the state vector at so-called collocation points. Between these points the state is approximated
by an interpolant, and the derivative of this function is set equal to the state derivative as prescribed
by the equation of motion in these collocation points [1] (see Figure 4.21).
Up to this stage, the optimal control problem has been rewritten into a static parameter opti-

misation problem, which has to be solved numerically. Nowadays, there are two main branches of
solution techniques: nonlinear programming (NLP) and heuristics. The former has been around for a
few decades and is mainly based on gradient information. The second option is a method based on
searching and evaluating the objective function, until the algorithm has converged to an optimum.
One aspect of these methods that is often described as an advantage, is that they do not need gradient
information. This does, however, mean that the algorithms become black boxes where little to no
problem-specific knowledge is exploited. Despite this, heuristics, and in particular the nature-inspired
methods, have proven their worth in very complex trajectory optimisation problems and have be-
1Retrieved from https://mec560sbu.github.io/2016/09/30/direct_collocation/ on 25/08/2019.

https://mec560sbu.github.io/2016/09/30/direct_collocation/

32 4. Global optimisation

Figure 4.2: Illustration of the collocation method as described in the text.

come the method of preference. The reason for this trend can also be found in the lack of gradient
information exploitation: heuristics are more likely to converge to a global optimum. NLP solvers are
instead heavily sensitive to the initial guess and therefore often converge to a local optimum. The
latter statement also explains the fact that heuristics are often called global optimisation algorithms.
Given their popularity, versatility and performance in complex optimisation problems, some global

techniques will be explored further in the next section (Section 4.3).

4.3. Global optimisation techniques
As described in Section 4.2, heuristics have surpassed NLP techniques for solving complex trajectory
optimisation problems. This subsection will briefly describe some of the most widely used algorithms
as of today.

4.3.1. (Random) sampling methods
Except for the grid search method, all algorithms in this category are in some way dependent on real-
isations of random (also called stochastic) variables. For this reason, the reader might also encounter
the term stochastic methods in literature, e.g. dealing with the topic of evolutionary algorithms and
Monte Carlo search.

Grid search
Arguably, grid search (GS) is the most naive method for global optimisation. In GS, the domain
of every variable is subdivided into a certain number of intervals, which can be different for every
variable. In this way, a multi-dimensional grid is created, of which every grid point is sampled and
its corresponding fitness value is computed. The overall lowest fitness is then considered to be the
‘global’ optimum, although no proof or warranty can be given that this point is actually the true global
optimum.
Being a naive method, GS suffers from issues which make it unsuitable for complex problems,

such as MGA trajectory optimisation. The first problem arises in problems with a high search space
dimensionality, i.e., many input variables exist, each having their own domain. In case every variable
is sampled at the same grid resolution 𝑛, the total number of grid points equals 𝑛𝑚, where 𝑚 is the

4.3. Global optimisation techniques 33

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0
y

Pseudorandom

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Sobol

Figure 4.3: Comparison of a pseudorandom and a quasi-random (Sobol) generalisation for points in a two-dimensional domain.

dimensionality of the search space. Hence, the complexity of this algorithm is exponential with respect
to the number of decision variables. Another drawback of GS is that a refinement of the grid does not
necessarily lead to an improvement in the optimum value.

Monte Carlo search
Another sampling-based method is the so-called Monte Carlo search. Instead of sampling the search
space in regular intervals, Monte Carlo search randomly samples the domain to evaluate the objective
function at these points. Usually the points are samples from a uniform distribution, so that the
entire search domain will (in theory) be covered more or less evenly, but this heavily depends on the
exact realisation of the random distribution. A frequently mentioned flaw of Monte Carlo methods
is, however, that the eventual coverage of the domain is far from uniform, even though a uniform
distribution has been taken from which the points are drawn. The stochastic nature also implies that
the found optimum can change from run to run, depending on how many points are sampled. These
two complications challenge the convergence speed and the quality of the found optimum. To partially
eliminate the existence of uncovered areas in the design space, a Monte Carlo optimisation is often
run multiple times to assess whether a better optimum can be found.
Instead of relying on a completely (pseudo)random number sequence, one could also draw val-

ues from a quasi-random sequence, which offers a more uniform distribution of the points in the
search domain. One such sequence is the Sobol sequence, developed by and named after the Russian
mathematician Ilya M. Sobol. Figure 4.3 illustrates the difference between the Sobol sequence and a
pseudorandom generalisation: it is clear that the pseudorandomly generated numbers do not evenly
cover the domain and leave some areas more or less uncovered. In the context of optimisation this
might mean that the algorithm potentially misses better optima. On the right side of the figure, it is
visible that a Sobol sequence has the regularity of a grid sampling method but still has some random-
ness. The latter overcomes the problem with grid sampling as discussed in the previous section (grid
refinement not yielding a better optimum).

4.3.2. Nature-inspired algorithms
A relatively new class of algorithms in optimisation is that of the nature-inspired heuristics. Although
still based on the sample-and-evaluate method that is exploited in grid search and Monte Carlo search,
the sampling phase is now more sophisticated and guided by some principle. Three main branches
of nature-inspired heuristics are distinguished here: evolutionary, swarm, and colony-based. The
following sections will discuss the principles, advantages, and downsides of each class.

34 4. Global optimisation

No free lunch theorem
As opposed to the classical approaches in optimisation that use gradient information to converge to a
(local) optimum, global methods are usually agnostic of the specifics of the problem at hand and one
might therefore argue that there is no good reason to prefer one class of global algorithms over another.
This statement would also be supported by the No Free Lunch Theorems as proposed by Wolpert and
Macready in their 1997 paper [19], as they argue that no algorithm shows universal dominance over
other algorithms when performance is averaged out over a large collection of problems. The crux
is, however, in the nuance of ‘averaged out’: there might be a dominance (i.e., better performing
algorithm) for a specific class of problems that share some common features. In that case, Wolpert
and Macready use the terminology that the algorithm matches the problem to some extent. We might
therefore identify one or two algorithms that may perform best on a certain interplanetary transfer
problem.
In their 2019 paper, Joyce and Herrmann review the No Free Lunch theorems and discuss their

implications on heuristics. They draw an important conclusion applying to the comparison of different
heuristic algorithms: “When free lunches are possible, their prominence tends to depend crucially on
the optimisation metric used.” [20] This statement implies that in case we have a preferred algorithm,
its number one position is heavily dependent on the metric. For instance, it might be the best per-
forming algorithm if one considers the minimum function value to be the metric, but only rank e.g.
third if one compares them with respect to convergence speed or number of function evaluations. One
can therefore actually find one or two algorithms that perform better than the others, but comparison
should be done carefully and its outcome is very problem-specific.
As we will see in Chapter 6, these statements also apply to clustering algorithms. Many such

algorithms exist, based on different underlying principles. Again, no single clustering algorithm is
universally dominant over the others when averaged out over a large number of different problems,
so the problem of matching a problem to a suitable clustering algorithm arises here as well. Similarly,
if we find an algorithm that seems to outperform the rest in some type of problems, we see that this
heavily depends on the performance metric used, which is usually some kind of validation index.

Evolutionary algorithms
The class of evolution-based algorithms is the one that was first pioneered by scientists and researchers,
with the introduction of the evolutionary algorithm (EA), which was inspired by Darwin’s theory of
evolution. In this metaphor, designs are represented by individuals in a population, and features
by genes. Individuals can recombine to form offspring in the form of new individuals and mutation
events can alter the genetics of the population. Additional genetic operators, such as genetic crossover
(the exchange of some gene values between individuals) and migration, are also frequently applied.
During every generation, all individuals are evaluated for their ‘fitness’ (i.e., objective function values).
The fitness values are then used in a selection policy to determine which part of the population can
reproduce and which is to be discarded. This process is then repeated until a convergence criterion is
met.

Swarm-based algorithms
Another class of global optimisation algorithms is inspired by animal swarms. The best-known example
is Particle Swarm Optimization, as first described by Kennedy and Eberhart [21]. Just like the EAs, PSO
initialises a population of candidate solutions that continuously changes in order to locate the global
optimum. It however lacks mutation, crossover and migration operators; instead, it mimics swarm
behaviour as encountered in fish and bird populations. The individuals in the population will namely
follow the fittest solution, while also being guided by their own notion of the best solution.
PSO is ubiquitous in engineering optimisation, and its popularity has also reached the realm of

interplanetary trajectory design. See for example [16], [22], [23], [24].

Colony-based algorithms
Another class inspired by animal behaviour is that of the colony-based algorithms. Famous examples
are Ant Colony Optimisation (ACO) and Artificial Bee Colony (ABC).
In contrast to the previously discussed algorithms, ACO is best suited for combinatorial problems.

In astrodynamics, this is encountered in MGA trajectory design, as the flyby sequence is a discrete
problem. See for example [25] and [26] for a case study of MGA planning using ACO.

5
Astrodynamics

The previous chapter introduced the optimisation problem that arises when one aims to find the opti-
mal trajectory from one point in space to another, thereby minimising some cost function. We recall
here that one of the constraints in the optimal control problem is defined by the dynamics of the
problem; in the end, an optimal trajectory must of course adhere to the physical laws governing the
motion of the spacecraft. This chapter will therefore discuss this part of the problem: how can one
best represent the dynamics of the spacecraft?
Before one can start answering this question, it is first important to examine what constitutes the

dynamic environment of the spacecraft, in terms of the forces acting on it and the motion of the
celestial bodies. Having treated this, we can look into different representations of the motion and
assess their advantages and shortcomings.

5.1. Dynamic environment: gravity and perturbing forces
In the case where analytic solutions are not available, because they are either hard to compute or
even impossible to find, one must resort to numerical methods. One of them is the direct method, as
has been discussed shortly in Chapter 4. In this method, we propagate the dynamics of the spacecraft
and its environment numerically; i.e., the forces are computed at each epoch and integrated using a
numerical scheme to obtain the change in velocity and position.
The framework of this approach is Newton’s second law of motion, which in turn leads to the

equations of motion of 𝑁 point masses with constant mass 𝑚𝑁:

d2𝐫𝑁
d𝑡2 = 1

𝑚𝑁
∑
𝑖
𝐅𝑖, 𝑁 (5.1.1)

where 𝐫𝑁 is the position of body 𝑁 in some inertial reference frame (which makes the omission of
pseudoforces possible) in metres, 𝑡 the time in seconds, and 𝐅𝑖,𝑁 the force from source 𝑖 acting upon
body 𝑁, in Nkg . The fidelity of the model is hidden in the sum of the specific forces, on the right side of
the equations, as a more complex and simultaneously more accurate model involves more forces, e.g.
due to third-body effects and solar radiation pressure. The right-hand side also includes the control
forces, which guide the spacecraft’s motion through space.
The following subsections will treat the most important forces for an interplanetary transfer model,

which is based on some assumptions. First of all, it is assumed that the velocity of the spacecraft is
sufficiently low to be able to apply classical mechanics, such that relativity effects can be discarded.
Furthermore, it is assumed that there are no atmospheres, so that aerodynamic forces can be eliminated
from the equations of motion. A third assumption is that only gravitational forces of close, heavy bodies
are taken into account. Obviously, this description is vague and the exact number of bodies taken into
account depends on the requirements on propagation accuracy. The more bodies are included, the
closer the model approximates the real, physical world.

35

36 5. Astrodynamics

5.1.1. Gravitational forces
In the case of interplanetary transfers, it can be defended that the spacecraft is at all times far enough
from the attracting bodies such that it experiences a point-mass gravitational force. In the opposite
case, one should model the gravity field with e.g. spherical harmonics to mimic the irregularity of
the gravity field at a close distance. For interplanetary transfer purposes, it can be assumed that the
spacecraft is — during its transit at least — far away enough from these bodies that the point-mass
gravity model is accurate enough, so we can make use of Newton’s law of gravity:

𝐅𝐺,𝑗 = −𝐺
𝑚𝑖𝑚𝑗
𝑟3ij

𝐫ij (5.1.2)

where 𝐅𝐺,𝑗 is the gravitational force exerted by body 𝑖 on body 𝑗, 𝐺 the gravitational constant (being
equal to approximately 6.67 ⋅ 10−11 m3 kg s-2, 𝑚 the mass of the corresponding body in kg, and 𝐫𝑖𝑗 the
vector of body 𝑖 to body 𝑗 (in m).
The equation above represents the gravitational force of one body acting upon another; hence, all

contributions from the bodies that are included in the simulation must be computed.

5.1.2. Solar radiation pressure
Highly reflective spacecraft with a large frontal area are also prone to so-called solar radiation pressure.
It is the force that results from photons, emitted by the Sun, bumping on the spacecraft’s panels and
either being reflected or (partially) absorbed. The magnitude of this force depends on the attitude
of the spacecraft, its distance from the Sun, the exposed surface area, and the reflectance properties
of the surface material. The importance of including this force is heavily dependent on the accuracy
requirement imposed on the trajectory and on the physical properties of the modelled spacecraft.
The magnitude and direction of this force can be computed using the following equation:

f𝑆𝑅𝑃 = −𝐶𝑅
𝑊𝐴
𝑚𝑐 ê𝑆 (5.1.3)

with f𝑆𝑅𝑃 being the specific solar radiation pressure force in N/kg, 𝐶𝑅 the reflection coefficient, 𝑊
the Solar radiation flux in W/m2, 𝐴 the frontal area of the spacecraft in m2, 𝑚 its mass in kg, 𝑐 the
speed of light, and ê𝑆 the unit vector pointing from the spacecraft towards the Sun. Since the radiation
pressure force always points away from the Sun, there is a minus sign in front of the right side of the
equation.

5.1.3. Thrust force
The last force that is considered here is the thrust force, generated by the spacecraft’s engine(s). The
direction in which the thrust is applied, relative to the local frame, is called the thrust direction. It is
usually taken as a control variable, similar to the thrust magnitude itself.
Since this research focuses on low-thrust transfers, it is wise to look at the different types of electric

thrusters that are used to provide low-thrust propulsion to spacecraft. An overview of these types,
along with their corresponding specific impulses and thrust levels is given in Table 5.1, taken from
[10]. The table gives an indication of the attainable specific impulse and thrust magnitude of different
engine types, and can therefore be used for setting proper thrust constraints during the optimisation.
The typical low-thrust acceleration range is put into perspective in Figure 5.1. We see that the

thrust force is usually the second-most dominant force, after the Sun’s gravitational attraction. Only
in the neighbourhood of the planets, we see that their gravity dominates the Sun’s and the engine’s
thrust force. Consequently, their attraction can be ignored during most of the interplanetary transfer.
Lastly, we see that the solar radiation pressure is almost always an order of magnitude or more lower
than the thrust, meaning that we can safely ignore it for preliminary trajectory optimisation.
For an electric thruster, its force output can be determined with the following formula if the electric

power consumption as well as its efficiency is known [10]:

𝐹thrust =
2𝜂 ⋅ 𝑃elec
𝑔0 ⋅ 𝐼sp

(5.1.4)

or, equivalently, its power consumption from the thrust force:

5.2. Shape-based methods 37

Table 5.1: Overview of electric thruster types and their properties [10]

Type Vacuum 𝐼𝑠𝑝 (s) Thrust range (N)

Electrothermal Resistojet 150-700 0.005-0.5
Arcjet 450-1,500 0.05-5.0

Electrostatic
Ion 2,000-6,000 5⋅10−6-0.5
Colloid 1,200 5⋅10−6-0.05
Hall Effect 1,500-2,500 5⋅10−6-0.1

Electromagnetic
Magnetoplasma-
dynamic 2,000 25-200
Pulsed plasma 1,500 5⋅10−6-0.005
Pulsed inductive 2,500-4,000 2-200

𝑃elec =
𝐹thrust ⋅ 𝐼sp ⋅ 𝑔0

2𝜂 (5.1.5)

where 𝐹thrust is the thrust force in Newton, 𝜂 the engine efficiency, 𝑃elec the electric power con-
sumption in Watt, 𝑔0 the gravitational acceleration on the surface of the Earth (i.e., ≈ 9.81 m/s2), and
𝐼sp the specific impulse in seconds. Especially the power input is an important figure, as it states how
much power is needed to provide the required thrust level. This number should be assessed for fea-
sibility, especially in the case of solar electric propulsion (SEP), where the available power is heavily
dependent on the distance from the Sun and thus also on the trajectory itself. For this reason, required
engine power may be a better constraint in SEP-driven spacecraft and must be modelled as a function
of distance from the Sun and spacecraft orientation.

5.2. Shape-based methods
Instead of representing the control function with discrete parameters, the trajectory itself, i.e. the state
𝐱(𝑡), can also be parametrised. This is the approach of the so-called shape-based methods. The control
∆V is then included in the objective function [1]. Since Petropoulos [4], the number of proposed
methods has increased considerably, and the most prominent ones will be treated in the following
sections. Table 5.2 provides an overview of the methods considered below, and compares them with
respect to their ability to produce 2D/3D trajectories, which boundary conditions can be imposed, and
if thrust constraints can be included. For a detailed discussion of these shaping methods, see [3].

Table 5.2: Comparison of major shape-based methods, including the references to the original publications. P and V refer to
position and velocity boundary conditions, respectively. Based on [3].

2D/3D Boundary
conditions

Thrust
constraint Reference

Exposin 2D P No [4], [27]
Inverse polynomial 2D + 3D P + V No [28]
Spherical 3D P + V No [29]
Fourier series 2D + 3D P + V Yes [30], [31]
Hodographic 3D P + V No [3]

[5]
Pseudo-equinoctial 3D P + V Yes [32]
Pseudo-spectral 3D P + V Yes1 [33]

1Included as a penalty in the cost function.

38 5. Astrodynamics

Figure 5.1: Comparison of force magnitudes within the inner solar system. [3]

5.2. Shape-based methods 39

Figure 5.2: Example of an exponential sinusoid with the definition of the polar coordinates 𝑟 and 𝜃 [4].

5.2.1. Exponential sinusoids
The first shape-based method was proposed by Petropoulos and Longuski in their 2004 paper [4].
Having studied various shapes, they concluded that the exponential sinusoid (hereafter exposin) was
the “most promising of these for representing the powered portion of flight between gravity-assist
bodies.” [4, p. 788]
The trajectory described by an exposin is given by the following parametric equation in polar

coordinates:

𝑟 = 𝑘0𝑒𝑘1 sin(𝑘2𝜃+𝜙) (5.2.1)
with 𝑟 the radius, 𝜃 the angle between the radius vector and some reference direction, and 𝑘0, 𝑘1,

𝑘2, 𝜙 constants that form the parameters describing the exposin. An example of an exposin along with
the definition of the variables 𝑟 and 𝜃 is given in Figure 5.2.
The significance of the constant parameter 𝜙 can be seen by setting 𝜃 equal to zero. In this case,

we observe that 𝜙 is the ‘phase angle’ of the exposin; in other words, it controls the orientation of
the trajectory in the 2D plane. 𝑘0 is a scaling factor to match the size of the shape to the scale of the
trajectory, and 𝑘1

tan 𝛾 = 𝑘1𝑘2 cos (𝑘2𝜃 + 𝜙) (5.2.2)
The normalised thrust acceleration 𝑎 is defined as follows:

𝑎 ≡ 𝐹
𝜇/𝑟2 (5.2.3)

and it can be written as a function of the shape parameters as follows:

𝑎 = (−1)𝑛 tan 𝛾
2 cos 𝛾 [1

tan2 𝛾 + 𝑘1𝑘22𝑠 + 1
− 𝑘22(1 − 2𝑘1𝑠)
(tan2 𝛾 + 𝑘1𝑘22𝑠 + 1)2

] (5.2.4)

with:

𝑠 ≡ sin(𝑘2𝜃 + 𝜙) (5.2.5)
For a detailed discussion of the method and derivation of these equations, the reader is encouraged

to consult [4] and [27].
Although exposins allow for a quick and insightful analysis of the transfer options in between

gravity assists, there are a few drawback to this method that limit its applicability and accuracy:

40 5. Astrodynamics

• The imposed shape implies that thrust can only be defined a posteriori. It is not possible
to define the control profile beforehand, so a feasibility analysis has to be conducted after the
determination of the trajectory to check whether the thrust constraints are still satisfied.
• The trajectory is in general not optimal in terms of propellant usage or transfer time.
The fact that the trajectory is a priori molded into some analytical shape and fitting the thrust
acceleration afterwards implies that the found trajectory is not optimal.
• The thrust is constrained to the tangential direction only. The use of exposins prohibits the
use of thrust in another direction so that an analytical solution is possible. This also contributes
to the lack of optimality of the solution.
• In a boundary value problem involving exposins, a rendezvous solution is in general not
found. This is equivalent to the statement that the velocities at the departure and arrival points
cannot be satisfied, which severely limits the applicability of this class of shaping functions.
• Lastly, the trajectory is only defined in two dimensions. Since they are described in polar
coordinates, exposins are only defined in the plane by their very nature.

As we will see, some of these disadvantages are dealt with in the different shape-based methods
below, although the a priori modelling is a feature that all methods share. Also, most methods suffer
from sub-optimality of their generated shaped, but this is also inherent to the approach that underlies
these methods.

5.2.2. Inverse polynomials
The problem of not being able to compute rendezvous trajectories using exposins was solved by Wall
and Conway in 2009 [28]. Instead of expanding the formulation of exposins with two extra parameters,
they proposed a new representation of the trajectory, based on an inverse polynomial:

𝑟 = 1
𝑎 + 𝑏𝜃 + 𝑐𝜃2 + 𝑑𝜃3 + 𝑒𝜃4 + 𝑓𝜃5 (5.2.6)

Hence, this function allows the six scalar boundary conditions to be solved for, since there are
exactly six free function parameters 𝑎 to 𝑓. Obviously, this implies that the transfer time be left free;
if one wants to specify the transfer time (e.g. in rendezvous problems), then an extra parameter 𝑔 is
added:

𝑟 = 1
𝑎 + 𝑏𝜃 + 𝑐𝜃2 + 𝑑𝜃3 + 𝑒𝜃4 + 𝑓𝜃5 + 𝑔𝜃6 (5.2.7)

The equation for 𝑇𝑎 = 𝑓(𝜃), which allows for the extraction of the thrust magnitude from the shape,
is not restated here. The reader is referred to [28] for a complete overview of all relevant equations.
A three-dimensional extension of the inverse polynomial shaping function using cylindrical coordi-

nates was proposed by Wall in his conference paper [34]. Hence, this method solves two of the issues
related to Petropoulos’s and Izzo’s method, as now the full boundary value problem can be solved to
obtain rendezvous transfers and 3D trajectories can now be modelled more accurately.

5.2.3. Spherical shaping
The next milestone in shaping methods was the proposal of the spherical shaping framework by Novak
and Vasile [29]. This method was proven to be a further generalisation of the exposin and inverse
polynomial methods, i.e., these are merely special cases of the spherical shaping method. Therefore,
this shaping is carried out in three dimensions using the spherical coordinates 𝑟, 𝜃, and 𝜙. Like
the previously described methods, the parameter is chosen to be 𝜃 and the geometry is completely
described by the two shaping functions 𝑟 = 𝑅(𝜃) and 𝜙 = Φ(𝜃). The third shaping function 𝑡 = 𝑇(𝜃)
then yields the evolution of time along the transfer trajectory.
The authors claim that “a relatively wide set of shaping functions for 𝑅 and Φ can be used such that

the boundary conditions can be satisfied analytically”. In their paper, however, they use the following
two functions for the geometrical shaping:

5.2. Shape-based methods 41

{𝑅(𝜃) =
1

𝑎0 + 𝑎1𝜃 + 𝑎2𝜃2 + (𝑎3 + 𝑎4𝜃) cos𝜃 + (𝑎5 + 𝑎6𝜃) sin𝜃
Φ(𝜃) = (𝑏0 + 𝑏1𝜃) cos𝜃 + (𝑏2 + 𝑏3𝜃) sin𝜃

(5.2.8)
(5.2.9)

5.2.4. Fourier series shaping
In 2012, Taheri and Abdelkhalik outlined a novel shaping method, which does not assume a fixed
shape, in contrast to the methods discussed previously [30]. Instead, they propose a finite Fourier
series (FFS) expansion of the states, which are matched with the equations of motion at so-called
discretisation points (DP). The DPs also allow setting thrust constraints, whereas imposing thrust con-
straints is not possible in the classical shape-based methods.
The authors propose the parametrisation of the polar coordinates in terms of the time 𝑡:

⎧
⎪⎪

⎨
⎪⎪
⎩

𝑟(𝑡) = 𝑎0
2 +

𝑛𝑟
∑
𝑛=1

{𝑎𝑛 cos (
𝑛𝜋
𝑇 𝑡) + 𝑏𝑛 sin (

𝑛𝜋
𝑇 𝑡)}

𝜃(𝑡) = 𝑐0
2 +

𝑛𝜃
∑
𝑛=1

{𝑐𝑛 cos (
𝑛𝜋
𝑇 𝑡) + 𝑑𝑛 sin (

𝑛𝜋
𝑇 𝑡)}

(5.2.10)

(5.2.11)

where 𝑎, 𝑏, 𝑐, and 𝑑 are coefficients (determined by imposing the boundary conditions, equations
of motion, and thrust constraints), 𝑇 the total trip time, and 𝑛𝑟, 𝑛𝜃 the number of Fourier terms for
the radius and polar angle equations, respectively.
From Equations (5.2.10) and (5.2.11) it is clear that the trajectory is restricted to two dimensions.

An extension to three dimensions is given in their 2016 paper; the reader is referred to [31] for more
information.

5.2.5. Pseudo-equinoctial shaping
Instead of shaping the trajectory in terms of polar/spherical coordinates, one can also parametrise the
so-called pseudo-equinoctial elements, which are more natural to the dynamic nature of the problem,
as in a perfect Keplerian orbit only one of the variables changes through time. Perturbations can then
often be modelled as secular and periodic variations of the other elements.
This property is exploited in the pseudo-equinoctial shaping method as described by De Pascale

and Vasile in their 2006 paper [32]. The authors recognise that there are two distinct approaches,
one most suitable for solar electric propulsion (SEP) and one for nuclear electric propulsion (NEP). In
the first case, they propose the linear combination of a linear and trigonometric term, whereas NEP
favours the use of an exponential of the longitude.
With this method, 3D trajectories can be found which in general tend to overestimate propellant

mass consumption, but form a good first guess that can improve further search in more sophisticated
approaches.

5.2.6. Pseudo-spectral shaping
The last shaping method discussed here is the one developed by [33], which is based on shaping
functions that take the form of (truncated) power series for the cylindrical coordinates 𝑟, 𝜃, and 𝑧:

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

𝑟(𝜃) =
𝑘

∑
𝑖=0
𝑎𝑖𝜃𝑖

𝜃(𝑡) =
𝑙

∑
𝑖=0
𝑏𝑖𝑡𝑖

𝑧(𝜃) =
𝑚

∑
𝑖=0
𝑐𝑖𝜃𝑖

(5.2.12)

(5.2.13)

(5.2.14)

42 5. Astrodynamics

The numbers 𝑘, 𝑙, and 𝑚 represent the order of truncation for the series and their values should be
chosen such that the accuracy requirements are met. It is also worth noting that the 𝑟 and 𝑧 functions
depend on 𝜃, which is in turn a function of the true independent variable 𝑡 (time). The coefficients 𝑎𝑖,
𝑏𝑖, and 𝑐𝑖 are to be found using optimisation; four of them can be found for each coordinate series by
applying the problem-specific boundary conditions.
The accelerations in cylindrical components can be found with the following equations:

⎧
⎪

⎨
⎪
⎩

𝑎𝑝𝑟𝑜𝑝,𝑟 = �̈� − 𝑟�̇�2 +
𝜇
𝑟3 𝑟

𝑎𝑝𝑟𝑜𝑝,𝜃 = 2�̇��̇� + 𝑟�̈�

𝑎𝑝𝑟𝑜𝑝,𝑧 = �̈� +
𝜇
𝑟3𝑠/𝑐

𝑧

(5.2.15)
(5.2.16)
(5.2.17)

For a detailed derivation, see pages 34-35 in [33].

5.2.7. Hodographic shaping
All previous methods are based on shaping of the trajectory in position space, i.e., matching the de-
parture and arrival positions and devising a trajectory between them. This trajectory describes the
position at all epochs given a few parameters.
The hodographic method, in contrast, shapes the trajectory in velocity space. This means that the

departure and arrival velocities are matched to those of the initial and target orbits, and amathematical
description of the trajectory is formulated in between. This formula yields the velocity at every point
along the trajectory and can be integrated to obtain the positions at all epochs. An example of this
process is given in Figure 5.3: the right plot shows the hodographs of the initial (blue) and target (red)
orbits along with the transfer trajectory (black). It can be seen that the transfer orbit intersects the
hodographs of the two orbits, implying that the velocity boundary conditions have been met. After
integrating this transfer trajectory over time, we obtain the shape of the transfer in ‘normal’ (i.e., space)
coordinates (see the left figure). Note that a perfectly circular orbit with 𝑒 = 0 would be represented
by an infinitesimally small point in the 𝑉𝑟 vs 𝑉𝑡 graph, with 𝑉𝑟 = 0, as the tangential velocity is constant
for this case. In the more general case of an elliptical orbit, its hodograph will be a circle in velocity
space [6].
Figure 5.4 shows the velocity hodographs for three different types of Kepler orbits (elliptical,

parabolic, and hyperbolic). Indeed, all shapes are circular, whereas the offset of the centre is de-
termined by the type of orbit. In the case of a parabola, the null velocity at 𝑟 = ∞ is shown as the
circle touching the x-axis. Hence, an increasing eccentricity relates to shifting the velocity hodograph
down the y-axis.
The advantage of this method is that the velocity (Neumann) boundary conditions are easily met,

whereas the position (Dirichlet) boundary conditions are obtained without having to resort to iterative
algorithms. Also, this method lends itself well to low-thrust trajectories and allows design both with
and without degrees of freedom (i.e., free parameters). Gondelach proposes velocity functions that are
linear combinations of power, sine, cosine, and power times (co)sine functions [3]. He also proposes
two variants of his method, making a distinction between time and polar angle as the independent
variable. Both methods have their advantages, as time-based shaping offers more intuitive insight
into the dynamics, whereas polar angle-based shaping is more related to the (periodic) geometry of
the transfer trajectory.

Base functions
As we have already seen, the hodographic shaping method fabricates a trajectory in velocity space.
This implies that we find a function that describes the velocity in each direction as a function of the
independent variable, being time 𝑡 or polar angle 𝜃. One could select some random function, but it is
actually much more useful if we select functions with more structure.
Finding this structure is not difficult, knowing that we must integrate the velocity functions in

order to find the position as a function of time or polar angle. It is hence useful to select functions
that are analytically integrable, i.e., we can readily find their primitive. Secondly, the definite integral
is a linear operator, so choosing a linear combination of integrable base functions seems useful. The
general description of some velocity function 𝑉(𝑡) is shown in Equation (5.2.18).

5.2. Shape-based methods 43

Figure 5.3: The figure on the left shows the trajectory in position space, whereas the figure on the right shows that trajectory
as a hodograph; taken from [5].

Figure 5.4: Illustration of the velocity hodographs for three types of Kepler orbits [6].

44 5. Astrodynamics

𝑉(𝑡) =
𝑛

∑
𝑖=1
𝑐𝑖𝑣𝑖(𝑡) (5.2.18)

Here, 𝑉(𝑡) is the velocity function for one of the three base directions, 𝑛 the number of base
functions, 𝑐𝑖 the ith coefficient, and 𝑣𝑖(𝑡) the ith velocity base function. The specific combination of base
functions used in this thesis is shown in Equation (5.2.19) and was based upon the recommendations
given by Gondelach himself [3].

{
𝑟(𝑡) = 𝑐1 + 𝑐2 ⋅ 𝑡 + 𝑐3 ⋅ 𝑡2 + 𝑐4 ⋅ 𝑡 cos (𝑓)
𝜃(𝑡) = 𝑐5 + 𝑐6 ⋅ 𝑡 + 𝑐7 ⋅ 𝑡2 + 𝑐8 ⋅ 𝑡 sin(𝑓) + 𝑐9 ⋅ 𝑡 cos(𝑓)
𝑧(𝑡) = 𝑐10 ⋅ cos(𝑓(𝑁 + 0.5)) + 𝑐11 ⋅ 𝑡3 sin (𝑓 (𝑁 + 0.5)) + 𝑐12 ⋅ 𝑡3 cos (𝑓 (𝑁 + 0.5))

(5.2.19)
(5.2.20)
(5.2.21)

In these equations, 𝑓 = 2𝜋
𝑡𝑓−𝑡𝑖

and 𝑁 is the number of revolutions.

Mathematical description of the hodographic shaping method
To obtain the position as function of the independent variable (here time 𝑡 is considered), we integrate
the three velocity functions with respect to 𝜏, which is a dummy variable for 𝑡:

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

𝑟(𝑡) = 𝑟0 +
𝑡

∫
0
𝑉𝑟 d𝜏

𝜃(𝑡) = 𝜃0 +
𝑡

∫
0

𝑉𝜃
𝑟 d𝜏

𝑧(𝑡) = 𝑧0 +
𝑡

∫
0
𝑉𝑧 d𝜏

(5.2.22)

(5.2.23)

(5.2.24)

Notice that the equation for the polar angle 𝜃 requires a factor 1𝑟 , which is the Jacobian for thisset of coordinates. To find the values of the coefficients in front of the base functions, we need the
boundary conditions. The trivial ones are:

𝑉𝑟(0) = 𝑉𝑟, 0 𝑉𝑟(𝑡𝑓) = 𝑉𝑟, 𝑡𝑓 (5.2.25)
𝑉𝜃(0) = 𝑉𝜃, 0 𝑉𝜃(𝑡𝑓) = 𝑉𝜃, 𝑡𝑓 (5.2.26)
𝑉𝑧(0) = 𝑉𝑧, 0 𝑉𝑧(𝑡𝑓) = 𝑉𝑧, 𝑡𝑓 (5.2.27)

Those are not the only boundary conditions that we can find, however. We also happen to know
the boundary conditions in position space, that is, initial and final 𝑟, 𝜃, and 𝑧, because the trajectory
needs to coincide with the position of the departure and target body at 𝑡 = 0 and 𝑡 = 𝑡𝑓, respectively.
Hence, we can rewrite Equations (5.2.22) to (5.2.24) as follows:

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

𝑡𝑓

∫
0
𝑉𝑟 d𝜏 = 𝑟𝑓 − 𝑟0

𝑡𝑓

∫
0

𝑉𝜃
𝑟 d𝜏 = 𝜃𝑓 − 𝜃0

𝑡𝑓

∫
0
𝑉𝑧 d𝜏 = 𝑧𝑓 − 𝑧0

(5.2.28)

(5.2.29)

(5.2.30)

5.2. Shape-based methods 45

Since this procedure allows us to determine 3 coefficients per direction, any extra base functions’
coefficients need to be determined by an optimisation method. In general, it holds true that having
more base functions implies more accuracy, although it is no guarantee of significant improvement.

Having obtained the velocity functions with their coefficients, we can now proceed to calculate
the thrust that is necessary to fly this trajectory. To do this, we express the equations of motion in
cylindrical coordinates:

�̈� − 𝑟�̇�2 + 𝜇
𝑑3 𝑟 = 𝑓𝑟

𝑟�̈� + 2�̇��̇� = 𝑓𝜃
�̈� + 𝜇

𝑑3 𝑧 = 𝑓𝑧

(5.2.31)

where 𝑑 = √𝑟2 + 𝑧2. These equations hold under the following assumptions:
• Only the Sun exerts a gravitational force upon the spacecraft (other celestial bodies’ gravitational
pull is ignored);
• The only other force acting on the spacecraft is the thrust force 𝐟;
• The spacecraft has negligible mass w.r.t. the Sun’s mass (restricted two body problem).
Since the specific thrust force is equal to the thrust acceleration, a simple integration of the thrust

acceleration w.r.t. time yields the ∆V:

∆V =
𝑡𝑓

∫
0
‖𝐟‖ d𝑡 (5.2.32)

6
Machine learning

Machine learning (ML) is one of the core aspects of this research, as it constitutes the computational
meta-algorithm that will optimise the trajectory design problem at hand. During optimisation, clus-
tering methods were used to identify clusters of feasible solutions pertaining to interesting launch
windows, and these clusters will be transformed into new (disjoint) search domains that can be ex-
plored by a global optimisation heuristic.
The aim of this chapter is to explain the rationale behind the choice of MLmodels and their working,

as well as the aspect of software implementations. The chapter is structured as follows: the first section
will deal with the basic notions in ML and the plethora of models and algorithms, providing more
insight in the problem and highlighting the problem of choosing a model for this research. The most
relevant models will be discussed further in Section 6.3. Finally, the last section will discuss a few
more practical aspects, being training the algorithm and discussing assessment of its performance on
a test set.

6.1. Machine learning tasks
Before we dive into different machine learning models, it is useful to define some key tasks that can
be performed by machine learning models in general, so that we can appreciate its wide spectrum of
applications. Not all tasks are relevant for this research, although they are included for the sake of
completeness. In arbitrary order, we can identify (based on [35]):

• Classification: in a classification problem, the algorithm tries to assign a certain data point to a
category. This can be in a binary sense (class I or II), also called dichotomous classification, but
it may be the case that there are more than just two categories. As a dichotomous example in
optimisation, we may be interested in determining whether a design (i.e., a collection of values
for design variables) corresponds to a feasible solution (1) or not (0). A multiple-class problem
is for instance the classification of solutions into different launch windows.
• Regression: in this case the problem is to attach a numerical value to a specified input. Examples
are the cost of a car, the length of a person, ∆V and trip time. In contrast to classification, the
model maps the input to a continuous output space, whereas classification relates to discrete
outputs. In trajectory optimisation, a Gaussian process model for the ∆V and propellant mass
was proposed in [14], where part of its task was to perform regression on the input variables.
• Structure and pattern recognition: the tasks described above are usually performed with su-
pervised learning techniques, meaning that the labels are already available. In the contrary case,
we might still want to find patterns in the data set without possessing explicit information in the
form of labels. The algorithms of this unsupervised kind can then produce labels for the initially
unlabelled data, allowing a follow-up supervised algorithm to further work on the data, thus
paving the way for hybrid machine learning algorithms.

47

48 6. Machine learning

• Optimal decision path: in the case where there is an entity that performs actions in an envi-
ronment, also known as an agent, one is often interested in which sequence of events is optimal
in some way. This problem occurs in many fields and in astrodynamics one could for example
think of the combinatorial problem that arises in MGA trajectories.
• Feature extraction: although an important task in general machine learning problems with
large data sets and number of features, feature extraction does not play a very important role
in optimisation of spacecraft trajectories, for the features that define the dimensionality of the
search space are all considered important and contribute to the objective. This is in contrast to
general optimisation, where it might be that a designer adds a certain feature to the optimisation
process, which might not be influencing the objectives considerably (see for example [36]). For
instance, the design of a re-entry vehicle shape is inherently an optimisation problem, but the
parametrisation of the shape will involve parameters that contribute more and less to the heat
load and downrange, so that they may be left out of the optimisation process.

6.2. Heritage of machine learning in trajectory optimisation
As discussed in the introductory chapter, low-thrust trajectory optimisation problems have a com-
plex nature and often many computational resources are required to find a global optimum. Many
techniques have been investigated and applied, with varying success. Especially problems with many
parameters are hard to solve within a reasonable time frame, due to their high dimensionality and
enormous search space. This section will describe the research that has been carried out on the topic
of application of machine learning in the field of optimisation. Of course, this is a broad field and
therefore the discussion below is not exhaustive. Where appropriate, the reader is referred to more
detailed literature.
Before diving into the heritage, it is first useful to get a grip on the most common applications of

ML in the context of (trajectory) optimisation:
• Objective function estimation: probably the most computationally intensive task in trajectory
optimisation is the calculation of the objective function. Machine learning can help in estimating
the objective functions, reducing calculation effort with limited loss of accuracy. By doing so,
one creates a surrogate or proxy model of the actual fitness evaluation.
• Search space pruning: the initial search space in the optimisation algorithm usually contains
regions where most or all combinations will result in poor objective values. ‘Naive’ algorithms
ignore this and continue searching in these areas. It is more beneficial, however, if an algorithm
could recognise these areas and ‘cut’ them out; this process is called search space pruning. This is
often done manually, but large search spaces would actually benefit from an automated pruning
technique to get rid of unpromising designs, e.g. in the form of an ML algorithm.
• Neurocontrol: especially low-thrust trajectories require continuous thrust to be applied for ma-
noeuvring. This adds complexity to the problem, as the thrust times are not discrete anymore:
the thrust becomes a (semi-)continuous function of time, which is to be optimised. This problem
is called optimal control and neural networks have been applied to this field to speed up and
improve optimisation results. This combination is called neurocontrol.
• Multiple gravity assist trajectory combinatorics: many interplanetary trajectories exploit the
principle of momentum exchange to boost their heliocentric velocity without spending propel-
lant. This is called a gravity assist (or swing-by) and heavily complicates trajectory optimisation
problems. Machine learning can aid here by e.g. applying techniques from the field of reinforce-
ment learning.

An in-depth discussion of so-called knowledge discovery in multi-objective optimisation is given
in [37], which is the first paper in a series of two. This part treats the extraction of knowledge
from the often large datasets that are generated in multi-objective optimisation problems in the most
general way. The authors make a distinction between implicit and explicit knowledge representation,
where the first is subject to interpretation by humans (giving rise to subjectivity) and thus explicit

6.2. Heritage of machine learning in trajectory optimisation 49

Figure 6.1: Functions used in [7] to test their method.

representation is preferred, especially for the concept of Knowledge-Driven Optimisation (KDO). The
latter of course relates to this research, as the goal is to actively use machine learning techniques
in optimisation procedures, with a focus on ‘online’ machine learning (i.e. the extracted knowledge
is used during the optimisation). In this case, it is claimed that this actually demands an explicit
representation of features; implicit data is not sufficient but can of course still aid in the process. For
instance, implicit methods like neural networks or support vector machines can assist in building a
surrogate model of the objective function, speeding up the function evaluation.
Part B of the paper is a follow-up study and implements four methods of knowledge extraction in

multi-objective optimisation problems [38]. These are then applied to three case studies on production
systems in industry, allowing for a comparison of the four proposed methods. Two of those are un-
supervised models (sequential + flexible pattern mining), one is supervised (classification trees), and
the fourth method is a hybrid approach, joining the forces of an unsupervised method (clustering) and
classification trees. Although the researchers extensively compare the different methods, it remains
unclear how the actual optimisation benefits from the introduction of machine learning techniques in
terms of convergence and quality of the found optimum.
The use of classification for the creation of rules is a trend that is also found in two papers of

Liu et al. [36, 39]. These two papers are on the cutting plane between pruning and ML applied
to optimisation, because rule-based classifiers are deployed to prune the variable-specific domain,
therefore cutting down the number of necessary fitness function evaluations. However, as discussed
previously, this method was only benchmarked in artificial optimisation problems, leaving a gap for
applications of this method to real-life engineering problems such as ours.
A similar but more extensive research on the application of data mining techniques on optimisation

was carried out by Chen and Huang [7]. Similar to Liu et al., the authors propose the use of classifica-
tion and association rules to narrow down the search space. Also, a third method based on clustering
is investigated. The three different methods are then each applied to two different optimisation prob-
lems, being the unconstrained and constrained versions of the Bumpy problem. In both cases, the
optimisation is carried out using Sequential Quadratic Programming (SQP), a gradient-based method,
both with and without data mining techniques. In both cases, the optimisation with data mining as-
sisted pruning yielded a higher likelihood that the global optimum is found, if the search is carried
out multiple times. Even better results are obtained when this method is combined with a heuristic
(evolutionary) algorithm. The authors claim that they were able to find the global optimum in every
run, yielding a likelihood of 100% of finding the true optimum.
Multiple papers treat the potential advantages of applying machine learning techniques to multi-

objective optimisation problems, as the existence of a Pareto front implies that no single optimal solu-
tion can be found, but that the decision is left to humans. Here, the Pareto front is the mathematical
representation of the conflict between two (or more) objectives, such that the preference of the decision
maker herself (themselves) underlies the final decision. Sato et al. therefore argue that knowledge
discovery (i.e. ML) can assist in identifying patterns that are usually obfuscated by the complexity
and sheer size of the optimisation problem [40]. To this extent, they use a hybrid of clustering and
association rule learning to obtain largely implicit information hidden in the solutions. This paper
is relevant for it discusses clustering in both the design and objective spaces and successively makes
use of the clusters to come up with association rules. These rules are then expected to accommodate

50 6. Machine learning

Figure 6.2: Visualisation of the clustering procedure in [8].

insightful features of the solutions.
The information extracted by these procedures is however implicit (mostly presented in a visual form),
and ideally we want to have explicit representations of the data so that the optimisation algorithm can
reduce its search space autonomously.
An application of clustering to single-objective turbine blade optimisation is studied in [8]. In this

optimisation problem, the design space had 90 dimensions, rendering the clustering and visualisation
very difficult. For that reason, dimensionality reduction was first applied in the form of a Karhunen-
Loève transformation, which produces two new design variables that are a linear combination of the
90 original variables. The outcome of the clustering is illustrated in Figure 6.2: we see that five
clusters arise, where more than 70% of the solutions reside in cluster 1. We also see that there are
other distinct groups of solutions, clustered around higher values of the integrating heat flux. Though
not globally optimal, these solutions appear to represent different, but similar designs for the blade,
and might thus be interesting in case the designs from cluster 1 cannot be realised in practice.

6.3. Clustering
In the case where labels are unknown, we can still extract relevant information about the data, by
using unsupervised machine learning methods. Clustering is one such example and tries to identify
groups of similar data points, without knowing what the distinctive feature(s) is (are). In the case
of space pruning, clustering can identify clusters of trajectories which are often spread in a quasi-
periodic way due to the repetitive motion of celestial bodies [41]. Of course, we do not have any a
priori labels for these clusters, as the clusters represent groups of trajectories that belong to a certain
launch window. These regions can then be used as new bounds for subsequent optimisation runs,

6.3. Clustering 51

where the search domains can be constrained in a linear way (yielding rectangular boxes) or using
non-linear constraints (yielding arbitrary shapes).

Cluster existence, uniqueness, and other philosophical issues
Due to its unsupervised nature, clustering faces some unique issues, some of which are more philo-
sophical in nature. We can ask ourselves the following questions on clustering a given data set:
• Do clusters actually exist within the data set?
• Is there a ‘natural’ clustering for the data at hand?
• When is a given partitioning of the data set into clusters a good one, i.e. when does the clustering
possess a high quality?
• Does a universally applicable clustering method exist?
• Etc.

The first question is an existence question and the second relates to a notion of uniqueness (is there a
unique, best cluster?). The third question, then, asks whether it is possible to and how to measure the
quality of a clustering. Fourthly, we ask ourselves the question, is there a so-called free lunch (see also
Section 4.3.2)? One might think that there are concrete, satisfying answers to these questions, but
reality is very different. In fact, satisfying answers do not exist, although one can make some sensible
statements. For example, cluster quality assessment differs from situation to situation, so researchers
should be explicit in the requirements they set for high quality clusters [42]. Similarly, the existence
of clusters in a data set cannot be identified in a binary fashion, but one can use some methods (such
as those outlined in [43]) to find a more nuanced answer in terms of the degree of clusterability.
Lastly, a universally applicable clustering method that always works does not exist. This result is

very similar to the No Free Lunch Theorem by Wolpert and Macready [19], treated in more detail in
Section 4.3.2. There are, however, algorithms that match up well with a given problem; this means that
one can still make statements about a clustering algorithm’s performance, when one is explicit about
the specific situation in which it is applied. A second corollary is that the algorithm’s performance
heavily depends on the metric used to judge it by [20].
Having looked at these fundamental and very important questions, we will now turn our attention

to the different types of clustering algorithms that are commonly used in knowledge discovery.

Clustering algorithms
There is a plethora of clustering methods, differing in performance and complexity, and like opti-
misation algorithms, their application depends on the distribution and nature of the data. Another
distinction can be made in the nature of the data supply: is the data set static or a dynamic stream? In
the latter case, online clustering algorithms are often used as a data stream comes with its own compli-
cations: the clustering should be stable but also flexible enough to accommodate new data points and
if necessary, increase/decrease the number of clusters. In the former case, offline algorithms suffice
as the clustering is done on a fixed data set.
Different (static) clustering types are compared in Table 6.1. This table is not exhaustive, so the

reader is referred to [11] for a comprehensive review of traditional and more modern clustering al-
gorithms. Each type of clustering has its own advantages and disadvantages, such that the choice is
heavily dependent on the nature of the data set and the number of data points. See also Figure 6.3 for
a graphical overview of the performance of some clustering algorithms in different situations.

Flat vs non-flat geometry
Some algorithms, like K-means, are highly efficient and simple in their use, but do not work well with
‘non-flat geometry’ of the data. The term non-flat geometry refers to manifolds that have a non-zero
curvature1, e.g. spirals or concentric circles. In those instances, Euclidean distances might not be the
best option for clustering. Figure 6.3 contains a few examples of such geometries: the top two rows
contain instances of such geometry. If we would use simple Euclidean distances, we would obtain
clusterings as the one in the leftmost column (MiniBatch KMeans). The reason for this is that two
1Source: http://mathworld.wolfram.com/FlatManifold.html, accessed on 22/08/2019.

http://mathworld.wolfram.com/FlatManifold.html

52 6. Machine learning

Table 6.1: Comparison of the most common offline clustering types, along with examples for each category. See Table 22 in
[11] for a comprehensive comparison.

Type Examples Advantages Disadvantages
Centroid K-means, PAM,

CLARA
Efficient Sensitive to outliers and K,

drawn to local optimum,
does not work well with non-
flat geometry

Density DBSCAN, OPTICS,
Mean-shift

Non-flat geometry and
high efficiency

Sensitive to parameters; does
not work well with uneven
density distributions

Distribution DBCLASD, GMM
Hierarchy BIRCH, CURE, ROCK Works with different

kinds of shapes
K is a preset; high time com-
plexity

Kernel SVC, kernel K-means,
MMC

Works well with high-
dim. feature spaces

Sensitive to kernel type and
parameters; high time com-
plexity

points, belonging to two very different clusters, might be at a similar (Euclidean) distance from some
centroid. Using this concept, we find clusters that are often far from the ‘true’ clustering.
To solve this problem, one could resort to other notions of cluster cohesion, e.g. point density or

linkage. We see these techniques in action in Figure 6.3, looking at the DBSCAN, OPTICS, and Ward
columns. It is clear that the two non-flat geometries fare well by these different clustering algorithms,
and that the resulting clustering resembles our human intuition of what the ‘true’ clusters would be
in this case. This also applies to the oblong groups of data in the fourth row (counted from above) in
Figure 6.3. These types of clusters are encountered in trajectory optimisation, so investigating which
clustering algorithms work best for these clusters is paramount. Again, we see that centroid-based
algorithms like KMeans and MeanShift perform poorly, again

Figure 6.3: Comparison of clustering algorithms for different types of data set geometries2

6.3. Clustering 53

Figure 6.4: Clustering applied to three normally distributed data sets, yielding three classes (purple, yellow, and green).

Online clustering
The algorithms described before are all so-called offline clustering algorithms, as the entire sample set
is considered static and known at runtime. In the case of assisted optimisation, this is not the case: we
are dealing with a dynamic data set. The optimisation heuristic continuously evaluates new points in
the search domain and these are subsequently fed into the online clustering algorithm. This poses an
additional dilemma: we want the clustering to be both adaptive to new data points, but also stable,
preventing the clusters from shifting around too wildly. In literature, this problem is referred to as
the ‘Stability-Plasticity Dilemma’ [44] [45]. For most of the static algorithms listed above, there are
online counterparts, with varying degrees of plasticity and stability. The nature of the problem will
hence dictate which algorithm is best suited for the data at hand.

Cluster validation
How does one know whether the number of clusters is correct and whether the found clusters actually
represent the data correctly? These questions relate to the concept of validity and are therefore of
paramount importance to ask. In validating the clusters, one can answer the question based on in-
ternal and external measures. A third option of evaluating the validity of a clustering outcome is by
comparing the results of different clustering algorithms, also called relative validation. For the second
option, explicit labels for the data are necessary, so that the found clusters can be compared to the
‘true’, a priori, classification [46]. Of course, this contradicts the concept of unsupervised learning as
there are usually no labels available. In that case, one could resort to human judgement, although this
is often not possible in an automated process. For that reason, the discussion below will mostly focus
on internal validation.
Several quantitative measures, i.e. indices, have been proposed in relevant literature. Examples

of internal validity indices are the Cophenetic correlation coefficient (CPCC), the 𝛾-statistic, and 𝜏-
statistic [47].
One approach could be to devise some mathematical function yielding a certain goodness fit, and

evaluating this function for 1, 2, ..., 𝑐 clusters. Two examples of this are the 𝜒2 and Kolmogorov-
Smirnov statistics [44].
For a more detailed discussion of cluster validation, the reader is referred to Halkidi et al. [47]

and Xu et al. [46].

2Source: https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html, retrieved on
13/10/2021.

https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html

III
Implementation

IN THE PREVIOUS PART we have seen the theory that forms the backbone of this thesis. In the coming
chapters, we will dive deeper into the more practical side of the research. Chapter 7 will give a top-
down overview of the software that was used to generate the trajectories and clusterings and describes
the trade-off that was made for data storage. We will conclude this part with Chapter 8, which deals
with the clustering algorithms in more detail.

7
Software

This chapter discusses the software that was used during this thesis. Section 7.1 treats the external
libraries, written by third parties, that were used: Python, Tudat/TudatPy, and Pagmo/Pygmo. Sec-
tion 7.2 then discusses the overall architecture, i.e., how the different components interact. Lastly, we
discuss the database and the underlying trade-off that was made during the thesis in Section 7.3.

7.1. Third-Party Software
7.1.1. Python
Apart from the numerical propagation of orbits and/or Lambert targeting, the bulk of the analysis and
research will be coded in Python. The decision to use Python instead of MATLAB, which is another
widely used tool for (engineering) analysis and modelling, is based on five important advantages over
MATLAB:

1. First of all, Python and its libraries are completely free to use. MATLAB is a commercial product
and is therefore expensive. For the sake of reproducibility, everyone is able to download and
code in Python without the need to pay a large amount of money for a license.

2. The existence of an extensive package library is a second key reason. Not only is the library
vast, it is also actively maintained and developed. More specifically, Python features two of
the most widely used machine learning libraries (scikit-learn and TensorFlow) in which many
machine learning models and algorithms have been implemented.

3. Tudat’s latest feature (as of Q3 2021) is the advent of a Python wrapper interface called Tu-
datPy, enabling integration between simulation and analysis through an application program-
ming interface (API)1. This way, users can call Tudat subroutines from Python code without
having to write separate programs for simulation and analysis.

4. Another important consideration is the aspect of portability. Python can be run on virtually
every major operating system (Windows, Linux, *nix, macOS, Android) and architecture (x86,
x86-64, ARM)2, whereas MATLAB is restricted to Windows, Linux and macOS on x86 and x86-64
architectures.

5. Lastly, there is an active and large community that develops, tests, and supports Python pack-
ages.

1https://tudat-space.readthedocs.io/en/latest/_src_about/about.html, retrieved on 5/11/2021.
2https://pythondev.readthedocs.io/platforms.html, retrieved on 5/11/2021.

57

https://tudat-space.readthedocs.io/en/latest/_src_about/about.html
https://pythondev.readthedocs.io/platforms.html

58 7. Software

7.1.2. Tudat and TudatPy
During the thesis, Tudat and its Python sibling TudatPy were used extensively to perform all trajectory-
related calculations. Tudat is a C++ library built for Windows, macOS, and Linux that acts as a frame-
work for astrodynamics research. It connects to various external libraries for ephemeris retrieval (NAIF
SPICE), coordinate conversions (SOFA), Boost C++ (various tasks), and ESA’s Pagmo/Pygmo optimisa-
tion libraries (see ??).
Tudat’s low-thrust components were heavily used to produce the hodographic shaping trajectories.

In the first place, it provides a clear interface to the velocity functions that can be built using the
atomic base functions and their primitives, which allows for easy evaluation of the trajectory in both
velocity and position space. The library also encapsulates the integration of the trajectory, such that
the ∆V can be extracted without much effort.
All features come with unit tests to verify the different functions and classes, so that the user need

only test their own code. The library also has interfaces to the CSPICE and SOFA libraries, written
by NASA’s NAIF and the IAU, respectively. These provide accurate data and verified functionality
regarding spacecraft, celestial bodies, and reference frames.
More information on Tudat and TudatPy, including code documentation and tutorials, is available

online.3 The code base can be found on GitHub.4

7.1.3. Pagmo and Pygmo
The optimisation part of the research was carried out with the Pagmo/Pygmo software libraries for
C++and Python, respectively. This section discusses the reasons behind this choice and the capabilities
of these software packages.
Developed by the ESA Advanced Concepts Team, Pagmo and Pygmo are C++ respectively Python

libraries for parallel global optimisation5. It provides an interface for optimisation problems and
comes with several global and local optimisation algorithms supporting multi-objective problems and
constraints. Examples include differential evolution (DE), non-dominated sorting genetic algorithm
(NSGA), and multi-objective evolutionary algorithm with decomposition (MOEAD). It also features
local optimisation algorithms as provided by the NLOPT, IPOPT, and SNOPT libraries, for which Pagmo
contains wrapper classes and functions.
As the P stands for parallel, the library offers a so-called island model for the parallelisation of

the optimisation. In this model, the entire population in for instance a genetic algorithm is split
up in subpopulations, of which each is assigned to one ‘island’. The island metaphor explains how
migration is handled in this implementation: individuals can only recombine with other individuals
on the same island, i.e. both individuals belong to the same subpopulation. There is however a
mechanism of migration, invoked after some number of generations, that allows individuals from one
island to migrate to another. This alteration of the original model allegedly decreases the algorithm’s
tendency to stagnate and promote the creation of a more diverse population [48]. This in turn can
lead to finding a better optimum and/or faster convergence. It should also be noted that the island
model does not restrict the user in her or his choice of algorithm; instead, any optimisation algorithm
based on populations can be used if it adheres to the Pagmo API specifications.
Furthermore, the Tudat software package comes with a Pagmo/Pygmo interface included, simpli-

fying the modelling and subsequent optimisation workflow even further. Based on the host operating
system (Unix-like or Windows), the optimisation can be run in parallel in a multithreading or multi-
processing environment. In this architecture there is one caveat: all the libraries in the application
that run in parallel, should be coded in an asynchronous way. This is not the case with e.g. the CSpice
library, used for fetching ephemeris data of celestial bodies, which is used extensively in the Tudat
package. For that reason, the optimisation application should invoke CSpice before entering paral-
lel mode, avoiding threading issues when multiple instances of the program want to access the same
memory space.
Again, verification routines are provided with the code, so that the user can check whether all

functionality works as intended after installation.

3https://tudat-space.readthedocs.io/
4Tudat: https://github.com/tudat-team/tudat; TudatPy: https://github.com/tudat-team/tudatpy
5https://esa.github.io/pagmo2/index.html, retrieved on 3/7/2019.

https://tudat-space.readthedocs.io/
https://github.com/tudat-team/tudat
https://github.com/tudat-team/tudatpy
https://esa.github.io/pagmo2/index.html

7.2. Software architecture 59

7.2. Software architecture
An overview of the software architecture is shown in Figure 7.1. As can be seen, the application is split
up in a server and a client component. The core component of the software is executed on the client
side, which interfaces the server side that is used as a means of data persistence (see Section 7.3). The
green part on the client side is responsible for trajectory computation and contains the optimisation
back-end as well. These two modules communicate through the optimisation module, which was
written as part of the yellow core part. The optimisation module in turn communicates with the
pruning and analysis & visualisation modules. The pruning module is responsible for clustering, cluster
validation, and storing trajectories, clusterings, and other data in the database back-end on the server
side. Finally, the analysis & visualisation module allows for knowledge extraction by means of plots,
tables, and debugging routines.

7.3. Data persistence
As discussed in the previous section, the data storage part of the software fulfils an important role.
Many different combinations of variables gave rise to a very large number of trajectories that needed
to be simulated, requiring efficient storage. At the same time, the trajectory storage should also allow
for quick and efficient data retrieval. Thirdly, given the highly interconnected structure of trajectories,
transfer cases, and clusters, the storage should be able to reflect these connections and use them to
store, change, and delete data.
These requirements led to a trade-off between different solutions that are commonly used. The

following options were identified:
• Text file storage: save all trajectories and clusterings in text files on a hard disk. This means
that numbers are also stored as strings, implying that they will generally take up more bytes than
when stored in binary form. Examples include plain .txt files, .csv files, and other such formats.
Advantages include easy processing, compatibility with spreadsheet programs (if the .csv format
is used), and human readability. Of course, this method also has some severe drawbacks, such
as excessive storage usage, lack of relational structure, and no support for object storage.
• Binary file storage: instead of storing all data structures as Unicode strings, one could also opt
for binary storage. This means that non-string types are first converted to binary data using
certain data types (e.g. 8-bit integer, 32-bit float), such that more information can be stored
compared to text-based files. For this reason, binary files offer more efficient data storage, but
are much less transparent to humans, unless processed by a dedicated program. These files also
require consistent conversion from and to binary using the appropriate data types: when a wrong
type is assumed, the data read or written is wrong and will cause further problems.
• Non-relational database: upgraded version of binary files, allowing efficient storage of complex
and/or diverse data in a database, without the hassle of creating intricate relationships between
the different data structures. Advantages include compatibility with many cloud services, storage
efficiency, and support for complex data sets. The downsides are, most importantly, the setup
cost, lack of relational structure, and dependence on a certain framework.
• Relational database: most complex form of data storage (at least among the four discussed
here). It combines binary data storage with the power of relationships between data structures,
allowing for complex data retrieval and storage commands, e.g. using SQL technology. Apart
from these advantages, it comes at the cost of a more complicated setup procedure, the need for
DB access libraries (e.g. APIs for programming languages), and understanding of SQL or related
query languages.

These four data storage methods, along with their advantages and downsides, are summarised in
Table 7.1. Given the mentioned requirements (need for storage of large amounts of data, efficient
data retrieval), and the presence of a highly interconnected structure inherently present in the data, a
relational database was chosen as the storage solution for this research, in the form of a PostgreSQL
database hosted in the cloud. The latter allows for redundancy in case of local computer failures and

60 7. Software

DB
Database access

layer

Tudat

Python wrapper

Analysis &
visualisation

module

Pruning module

Pagmo

Optimisation
module

Pygmo

Internet

Local PC

Server

Figure 7.1: Overview of the proposed software architecture. Modules in bold will be written for this research; all other libraries
are

7.3. Data persistence 61

Table 7.1: Data storage trade-off table.

Storage type Storage
efficiency

Relational
structure Compatibility Setup difficulty

Text files – – –/+ +
Binary files –/+ – – –/+
Non-relational DB + – + –/+
Relational DB + + + –

independence of local storage space. For the structure of the database, i.e., the database schema, the
reader is referred to Appendix B.

8
Clustering

In this chapter, we will study the implementation of the clustering component of the software package.
Where possible, existing packages were used to avoid both reinventing the wheel multiple times and
the need to verify and validate these implementations. Section 8.1 deals with the implementation of
the ‘conventional’ clustering algorithms, such as DBSCAN, KMeans, GMM, and so forth. Next, more
details about the the dip-test are given in Section 8.2.

8.1. Conventional clustering algorithms
One of the most popular machine learning packages for Python is scikit-learn1. It contains the im-
plementation of most supervised and unsupervised models and can work with NumPy for vectorised
computations, reducing CPU time in computationally intensive tasks. Clustering, support vector ma-
chines, artificial neural networks, and decision trees are all examples of supported methods. It also
includes various validation indices, data preprocessing techniques (such as scaling and dimension re-
duction), and various other related functionalities. This combinationmakes this a very versatile Python
package, well suited for a myriad of different machine learning tasks; for these reasons scikit-learn
was also used in this thesis.
Any missing functionalities were supplemented with other third-party packages, such as HDBSCAN,

which comes with the eponymous hdbscan Python package. All used libraries were either verified by
their authors, or verified with a simple test problem. In some cases, all code had to be written from
scratch or heavily adapted to ensure compatibility with the rest of the software, such as some validation
indices. These functions were tested with simple cases mentioned in the scientific papers presenting
these indices.

8.2. The dip-test and SkinnyDip
As mentioned in the scientific paper (see Chapter 2), the dip-test performs an important task in clus-
tering the oblong-shaped clusters that are often encountered in trajectory optimisation problems. The
dip-test was first coined by [49] and is used to test the hypothesis that a empirical distribution function
is unimodal; i.e., it has only one ‘peak’. By comparing the empirical cumulative distribution function
(ECDF) to some benchmark distribution, the dip-test attaches a confidence value to the outcome of the
hypothesis test. See Hartigan’s paper for more details on the exact definition of the method, as well
as the numerical implementation of the algorithm.
The original dip-test was however not suitable to detect multiple clusters of data, represented by

multiple peaks in the empirical distribution function (EDF). Furthermore, it only works for univariate
distributions, so applications to higher-dimensional clusterings were impossible.
1See also https://scikit-learn.org, retrieved on 3/10/2021.

63

https://scikit-learn.org

64 8. Clustering

This problemwas solved by Maurus and Plant in their 2016 paper [50]. They propose an algorithm,
called SkinnyDip, that repeatedly applies the dip-test on the ECDF that arises when the clustering data
is projected onto one axis and converted into a cumulative distribution. The outcome of the dip-
test tells us two things: whether at least one peak (cluster) was detected, and where it is located.
Using some confidence value, we can extract the interval that is attached to this peak. If a peak and
its interval are found, the overall interval is split at the inner interval bounds, such that three parts
remain: left of the peak, the peak itself, and right of the peak. The first and last are then fed back
into the algorithm, so each sub-interval is again checked for multimodality of the ECDF, until no more
peaks are found.

References

[1] A. Shirazi, J. Ceberio, and J. A. Lozano, “Spacecraft trajectory optimization: A review of models,
objectives, approaches and solutions,” Progress in Aerospace Sciences, vol. 102, pp. 76–98, 2018,
cited By :3 Export Date: 19 June 2019.

[2] R. Chai, A. Savvaris, A. Tsourdos, S. Chai, and Y. Xia, “A review of optimization techniques in
spacecraft flight trajectory design,” Progress in Aerospace Sciences, 2019, export Date: 19 June
2019.

[3] D. Gondelach, “A hodographic shaping method for low-thrust trajectory design,” Master’s thesis,
Delft University of Technology, 2012. [Online]. Available: http://resolver.tudelft.nl/uuid:
6a4f1673-88b1-4823-b2ef-9d864c84ab11

[4] A. E. Petropoulos and J. M. Longuski, “Shape-based algorithm for automated design
of low-thrust, gravity-assist trajectories,” Journal of Spacecraft and Rockets, vol. 41,
no. 5, pp. 787–796, 2004, cited By :159 Export Date: 3 July 2019. [Online]. Avail-
able: https://www.scopus.com/inward/record.uri?eid=2-s2.0-7544249616&doi=10.2514%
2f1.13095&partnerID=40&md5=e7c8b7fc312a1d2e63b47c07448f38d5

[5] D. J. Gondelach and R. Noomen, “Hodographic-shaping method for low-thrust in-
terplanetary trajectory design,” Journal of Spacecraft and Rockets, vol. 52, no. 3,
pp. 728–738, 2015, cited By :27 Export Date: 15 July 2019. [Online]. Avail-
able: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84930165163&doi=10.2514%
2f1.A32991&partnerID=40&md5=371cbf3d3dd4e379564e5096629521f0

[6] K. F. Wakker, Fundamentals of Astrodynamics. Delft: Institutional Repository Library, Delft
University of Technology, 2015.

[7] T. Y. Chen and J. H. Huang, “Application of data mining in a global optimization algorithm,”
Advances in Engineering Software, vol. 66, pp. 24–33, 2013.

[8] M. J. Jeong, B. H. Dennis, and S. Yoshimura, “Multidimensional clustering interpretation and its
application to optimization of coolant passages of a turbine blade,” Journal of Mechanical Design,
vol. 127, no. 2, pp. 215–221, 2005. [Online]. Available: http://dx.doi.org/10.1115/1.1830047

[9] Navigation and Ancillary Information Facility, “An overview of reference frames and coordinate
systems in the spice context,” 2020. [Online]. Available: https://naif.jpl.nasa.gov/pub/naif/
toolkit_docs/Tutorials/pdf/individual_docs/17_frames_and_coordinate_systems.pdf

[10] W. Larson and J. Wertz, Space Mission Analysis and Design, 3rd ed., ser. Space Technology Series.
El Segundo, CA: Microcosm Press, 2005.

[11] D. Xu and Y. Tian, “A comprehensive survey of clustering algorithms,” Annals of Data
Science, vol. 2, no. 2, pp. 165–193, 2015. [Online]. Available: https://doi.org/10.1007/
s40745-015-0040-1

[12] J. T. Betts, “Survey of numerical methods for trajectory optimization,” Journal of
Guidance, Control, and Dynamics, vol. 21, no. 2, pp. 193–207, 1998. [Online]. Available:
https://doi.org/10.2514/2.4231

[13] A. V. Rao, “A survey of numerical methods for optimal control,” Advances in the Astronautical
Sciences, vol. 135, no. 1, pp. 497–528, 2009.

[14] L. Bouwman, “Gaussian process models for preliminary low-thrust trajectory optimization,” Mas-
ter’s thesis, Delft University of Technology, 2019.

65

http://resolver.tudelft.nl/uuid:6a4f1673-88b1-4823-b2ef-9d864c84ab11
http://resolver.tudelft.nl/uuid:6a4f1673-88b1-4823-b2ef-9d864c84ab11
https://www.scopus.com/inward/record.uri?eid=2-s2.0-7544249616&doi=10.2514%2f1.13095&partnerID=40&md5=e7c8b7fc312a1d2e63b47c07448f38d5
https://www.scopus.com/inward/record.uri?eid=2-s2.0-7544249616&doi=10.2514%2f1.13095&partnerID=40&md5=e7c8b7fc312a1d2e63b47c07448f38d5
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84930165163&doi=10.2514%2f1.A32991&partnerID=40&md5=371cbf3d3dd4e379564e5096629521f0
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84930165163&doi=10.2514%2f1.A32991&partnerID=40&md5=371cbf3d3dd4e379564e5096629521f0
http://dx.doi.org/10.1115/1.1830047
https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/Tutorials/pdf/individual_docs/17_frames_and_coordinate_systems.pdf
https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/Tutorials/pdf/individual_docs/17_frames_and_coordinate_systems.pdf
https://doi.org/10.1007/s40745-015-0040-1
https://doi.org/10.1007/s40745-015-0040-1
https://doi.org/10.2514/2.4231

66 References

[15] S. Kemble, Interplanetary Mission Analysis and Design. Springer Berlin Heidelberg, 2006.
[Online]. Available: https://books.google.nl/books?id=m-k-qI6PsuUC

[16] M. Pontani, “Optimal low-thrust hyperbolic rendezvous for earth-mars missions,” Acta Astronau-
tica, 2019.

[17] J. T. Betts, Practical Methods for Optimal Control and Estimation Using Nonlinear Programming.
Siam, 2010, vol. 19.

[18] A. Bressan and G. Facchi, “Trajectories of differential inclusions with state constraints,” Journal
of Differential Equations, vol. 250, no. 4, pp. 2267–2281, 2011.

[19] D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimiza-
tion,” IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67–
82, 1997, cited By :4251 Export Date: 26 June 2019. [Online]. Available:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031118203&doi=10.1109%2f4235.
585893&partnerID=40&md5=fac8c56be911367d556066800e863066https://ieeexplore.ieee.
org/ielx1/4235/12703/00585893.pdf?tp=&arnumber=585893&isnumber=12703&ref=

[20] T. Joyce and J. M. Herrmann, A Review of No Free Lunch Theorems, and Their Implications
for Metaheuristic Optimisation. Cham: Springer International Publishing, 2018, pp. 27–51.
[Online]. Available: https://doi.org/10.1007/978-3-319-67669-2_2

[21] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95 - Inter-
national Conference on Neural Networks, vol. 4, 1995, Conference Proceedings, pp. 1942–1948
vol.4.

[22] F. Alonso Zotes and M. Santos Peñas, “Particle swarm optimisation of interplanetary trajectories
from earth to jupiter and saturn,” Engineering Applications of Artificial Intelligence, vol. 25, no. 1,
pp. 189–199, 2012.

[23] D. Izzo, Global Optimization and Space Pruning for Spacecraft Trajectory Design. Cambridge Univer-
sity Press, 2010, pp. 178–201, cited By :22 Export Date: 29 May 2019 Correspondence Address:
Izzo, D.; European Space Agency, Advanced Concepts TeamNetherlands. [Online]. Avail-
able: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84932180996&doi=10.1017%
2fCBO9780511778025.008&partnerID=40&md5=a7c2876b7da5f67481f7ccd011f406f8https:
//www.cambridge.org/core/books/spacecraft-trajectory-optimization/
global-optimization-and-space-pruning-for-spacecraft-trajectory-design/
D8D16263E67D6EAD641FD6873B72B3AA

[24] H. Yang, W. You, S. Li, and X. Jiang, “Optimal trajectories for a dual-spacecraft outer planet
mission,” in UNKNOWN, P. Singla, B. A. Jones, R. M. Weisman, and B. G. Marchand, Eds., vol.
167. Univelt Inc., 2018, Conference Proceedings, pp. 1185–1196.

[25] M. Ceriotti and M. Vasile, “Mga trajectory planning with an aco-inspired algorithm,” in 60th
International Astronautical Congress 2009, IAC 2009, vol. 6, 2009, Conference Proceedings, pp.
4357–4370.

[26] G. Radice and G. Olmo, “Ant colony algorithms for two-impulse interplanetary trajectory opti-
mization,” Journal of Guidance, Control, and Dynamics, vol. 29, no. 6, pp. 1440–1444, 2006.

[27] D. Izzo, “Lambert’s problem for exponential sinusoids,” Journal of Guidance, Control, and
Dynamics, vol. 29, no. 5, pp. 1242–1245, 2006, cited By :44 Export Date: 3 July 2019. [On-
line]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33749640639&doi=
10.2514%2f1.21796&partnerID=40&md5=8dd22b9eeb26a6fcd58252f07b4813de

[28] B. J. Wall and B. A. Conway, “Shape-based approach to low-thrust rendezvous trajectory
design,” Journal of Guidance, Control, and Dynamics, vol. 32, no. 1, pp. 95–101, 2009. [Online].
Available: https://arc.aiaa.org/doi/abs/10.2514/1.36848

https://books.google.nl/books?id=m-k-qI6PsuUC
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031118203&doi=10.1109%2f4235.585893&partnerID=40&md5=fac8c56be911367d556066800e863066 https://ieeexplore.ieee.org/ielx1/4235/12703/00585893.pdf?tp=&arnumber=585893&isnumber=12703&ref=
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031118203&doi=10.1109%2f4235.585893&partnerID=40&md5=fac8c56be911367d556066800e863066 https://ieeexplore.ieee.org/ielx1/4235/12703/00585893.pdf?tp=&arnumber=585893&isnumber=12703&ref=
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031118203&doi=10.1109%2f4235.585893&partnerID=40&md5=fac8c56be911367d556066800e863066 https://ieeexplore.ieee.org/ielx1/4235/12703/00585893.pdf?tp=&arnumber=585893&isnumber=12703&ref=
https://doi.org/10.1007/978-3-319-67669-2_2
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84932180996&doi=10.1017%2fCBO9780511778025.008&partnerID=40&md5=a7c2876b7da5f67481f7ccd011f406f8 https://www.cambridge.org/core/books/spacecraft-trajectory-optimization/global-optimization-and-space-pruning-for-spacecraft-trajectory-design/D8D16263E67D6EAD641FD6873B72B3AA
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84932180996&doi=10.1017%2fCBO9780511778025.008&partnerID=40&md5=a7c2876b7da5f67481f7ccd011f406f8 https://www.cambridge.org/core/books/spacecraft-trajectory-optimization/global-optimization-and-space-pruning-for-spacecraft-trajectory-design/D8D16263E67D6EAD641FD6873B72B3AA
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84932180996&doi=10.1017%2fCBO9780511778025.008&partnerID=40&md5=a7c2876b7da5f67481f7ccd011f406f8 https://www.cambridge.org/core/books/spacecraft-trajectory-optimization/global-optimization-and-space-pruning-for-spacecraft-trajectory-design/D8D16263E67D6EAD641FD6873B72B3AA
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84932180996&doi=10.1017%2fCBO9780511778025.008&partnerID=40&md5=a7c2876b7da5f67481f7ccd011f406f8 https://www.cambridge.org/core/books/spacecraft-trajectory-optimization/global-optimization-and-space-pruning-for-spacecraft-trajectory-design/D8D16263E67D6EAD641FD6873B72B3AA
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84932180996&doi=10.1017%2fCBO9780511778025.008&partnerID=40&md5=a7c2876b7da5f67481f7ccd011f406f8 https://www.cambridge.org/core/books/spacecraft-trajectory-optimization/global-optimization-and-space-pruning-for-spacecraft-trajectory-design/D8D16263E67D6EAD641FD6873B72B3AA
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33749640639&doi=10.2514%2f1.21796&partnerID=40&md5=8dd22b9eeb26a6fcd58252f07b4813de
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33749640639&doi=10.2514%2f1.21796&partnerID=40&md5=8dd22b9eeb26a6fcd58252f07b4813de
https://arc.aiaa.org/doi/abs/10.2514/1.36848

References 67

[29] D. M. Novak and M. Vasile, “Improved shaping approach to the preliminary de-
sign of low-thrust trajectories,” Journal of Guidance, Control, and Dynamics, vol. 34,
no. 1, pp. 128–147, 2011, cited By :55 Export Date: 11 July 2019. [Online]. Avail-
able: https://www.scopus.com/inward/record.uri?eid=2-s2.0-78650959637&doi=10.2514%
2f1.50434&partnerID=40&md5=5f9767f8e3955d2753b7c396afeba812

[30] E. Taheri and O. Abdelkhalik, “Shape-based approximation of constrained
low-thrust space trajectories using fourier series,” Journal of Spacecraft
and Rockets, vol. 49, no. 3, pp. 535–545, 2012. [Online]. Avail-
able: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84862649437&doi=10.2514%
2f1.A32099&partnerID=40&md5=3a5adff2ab3eb6eeab98fed1ff316eed

[31] ——, “Initial three-dimensional low-thrust trajectory design,” Advances in Space Research,
vol. 57, no. 3, pp. 889–903, 2016, cited By :24 Export Date: 15 July 2019. [Online]. Avail-
able: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84957439075&doi=10.1016%
2fj.asr.2015.11.034&partnerID=40&md5=6210fc9a3661af5afdac3b7461a82803

[32] P. De Pascale and M. Vasile, “Preliminary design of low-thrust multiple gravity-
assist trajectories,” Journal of Spacecraft and Rockets, vol. 43, no. 5, pp.
1065–1076, 2006, cited By :76 Export Date: 11 July 2019. [Online]. Avail-
able: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33750515616&doi=10.2514%
2f1.19646&partnerID=40&md5=455ad5a9b6d86273d24ab84b05fdfa52

[33] B. De Vogeleer, “Automatic and fast generation of sub-optimal and feasible low-thrust trajectories
using a boundary-value pseudo-spectral method,” Master’s thesis, Delft University of Technology,
2008.

[34] B. Wall, “Shape-based approximation method for low-thrust trajectory optimization,” 2008.
[Online]. Available: https://arc.aiaa.org/doi/abs/10.2514/6.2008-6616

[35] J. Alzubi, A. Nayyar, and A. Kumar, “Machine learning from theory to algorithms: An overview,”
in Second National Conference on Computational Intelligence (NCCI 2018), A. George, V. V, A. S.
Pandian, and A. C. Donald, Eds., vol. 1142. Institute of Physics Publishing, 2018, Conference
Proceedings, cited By :6 Export Date: 26 June 2019.

[36] R. Liu, A. Agrawal, W. K. Liao, A. Choudhary, and Z. Chen, “Pruned search: A machine learning
based meta-heuristic approach for constrained continuous optimization,” in 2015 8th Interna-
tional Conference on Contemporary Computing, IC3 2015, J. Amudha, D. Gupta, J. Zola, N. Nanjan-
gud, A. Pathak, S. K. Prasad, T. Ramesh, M. Parashar, K. Kothapalli, P. Bangalore, S. Chaudhary,
and K. V. Dinesha, Eds. Institute of Electrical and Electronics Engineers Inc., 2015, Conference
Proceedings, pp. 13–18.

[37] S. Bandaru, A. H. C. Ng, and K. Deb, “Data mining methods for knowledge discovery in multi-
objective optimization: Part a - survey,” Expert Systems with Applications, vol. 70, pp. 139–159,
2017.

[38] ——, “Data mining methods for knowledge discovery in multi-objective optimization:
Part b - new developments and applications,” Expert Systems with Applications, vol. 70,
pp. 119–138, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0957417416305474

[39] R. Liu, A. Agrawal, W. Liao, and A. Choudhary, “Search space preprocessing in solving
complex optimization problems,” in 2014 IEEE International Conference on Big Data (Big Data),
2014, Conference Proceedings, pp. 1–5. [Online]. Available: https://ieeexplore.ieee.org/ielx7/
6973861/7004197/07154118.pdf?tp=&arnumber=7154118&isnumber=7004197&ref=

[40] Y. Sato, K. Izui, T. Yamada, and S. Nishiwaki, “Data mining based on clustering and association
rule analysis for knowledge discovery in multiobjective topology optimization,” Expert Systems
with Applications, vol. 119, pp. 247–261, 2019.

https://www.scopus.com/inward/record.uri?eid=2-s2.0-78650959637&doi=10.2514%2f1.50434&partnerID=40&md5=5f9767f8e3955d2753b7c396afeba812
https://www.scopus.com/inward/record.uri?eid=2-s2.0-78650959637&doi=10.2514%2f1.50434&partnerID=40&md5=5f9767f8e3955d2753b7c396afeba812
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84862649437&doi=10.2514%2f1.A32099&partnerID=40&md5=3a5adff2ab3eb6eeab98fed1ff316eed
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84862649437&doi=10.2514%2f1.A32099&partnerID=40&md5=3a5adff2ab3eb6eeab98fed1ff316eed
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84957439075&doi=10.1016%2fj.asr.2015.11.034&partnerID=40&md5=6210fc9a3661af5afdac3b7461a82803
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84957439075&doi=10.1016%2fj.asr.2015.11.034&partnerID=40&md5=6210fc9a3661af5afdac3b7461a82803
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33750515616&doi=10.2514%2f1.19646&partnerID=40&md5=455ad5a9b6d86273d24ab84b05fdfa52
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33750515616&doi=10.2514%2f1.19646&partnerID=40&md5=455ad5a9b6d86273d24ab84b05fdfa52
https://arc.aiaa.org/doi/abs/10.2514/6.2008-6616
http://www.sciencedirect.com/science/article/pii/S0957417416305474
http://www.sciencedirect.com/science/article/pii/S0957417416305474
https://ieeexplore.ieee.org/ielx7/6973861/7004197/07154118.pdf?tp=&arnumber=7154118&isnumber=7004197&ref=
https://ieeexplore.ieee.org/ielx7/6973861/7004197/07154118.pdf?tp=&arnumber=7154118&isnumber=7004197&ref=

68 References

[41] D. R. Myatt, V. M. Becerra, S. J. Nasuto, and J. M. Bishop, “Advanced global optimisation tools
for mission analysis and design,” European Space Agency, the Advanced Concepts Team, Report
03-4101a, 2004. [Online]. Available: http://www.esa.int/gsp/ACT/doc/ARI/ARI%20Study%
20Report/ACT-RPT-MAD-ARI-03-4101a-GlobalOptimisation-Reading.pdf

[42] C. Hennig, “What are the true clusters?” Pattern Recognition Letters, vol. 64, pp. 53–62, 2015.
[43] A. Adolfsson, M. Ackerman, and N. C. Brownstein, “To cluster, or not to cluster: An analysis

of clusterability methods,” Pattern Recognition, vol. 88, pp. 13–26, 2019. [Online]. Available:
https://doi.org/10.1016/j.patcog.2018.10.026

[44] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed. New York: Wiley, 2001.
[45] S. Furao, T. Ogura, and O. Hasegawa, “An enhanced self-organizing incremental neural network

for online unsupervised learning,” Neural Networks, vol. 20, no. 8, pp. 893–903, 2007.
[46] R. Xu, D. C. Wunsch, and I. C. I. Society, Clustering, ser. Ieee Press Series on Computational

Intelligence. Hoboken, N.J. Piscataway, NJ: Wiley ; IEEE Press, 2009.
[47] M. Halkidi, Y. Batistakis, and M. Vazirgiannis, “On clustering validation techniques,” Journal of

Intelligent Information Systems, vol. 17, no. 2, pp. 107–145, 2001.
[48] D. Izzo, M. Ruciński, and F. Biscani, “The generalized island model,” in Studies in Computational

Intelligence, V. Francisco Fernandez, P. Jose Ignacio Hidalgo, and L. Juan, Eds. Springer-Verlag,
2012, vol. 415, pp. 151–169.

[49] J. Hartigan and P. Hartigan, “The dip test of unimodality,” Annals of Statistics, vol. 13, no. 1, pp.
70–84, 1985.

[50] S. Maurus and C. Plant, “Skinny-dip: Clustering in a sea of noise,” Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, vol. 13-17-Augu, pp. 1055–
1064, 2016.

[51] D. A. Vallado and W. D. MacClain, Fundamentals of Astrodynamics and Applications, 2nd ed., ser.
Space Technology Library. El Segundo, CA: Microcosm Press, 2001, vol. 12.

http://www.esa.int/gsp/ACT/doc/ARI/ARI%20Study%20Report/ACT-RPT-MAD-ARI-03-4101a-GlobalOptimisation-Reading.pdf
http://www.esa.int/gsp/ACT/doc/ARI/ARI%20Study%20Report/ACT-RPT-MAD-ARI-03-4101a-GlobalOptimisation-Reading.pdf
https://doi.org/10.1016/j.patcog.2018.10.026

A
Reference frames and coordinate

systems

This appendix treats the reference frame and coordinate sets that were used during the research.

A.1. Inertial reference frame
The reference frame for describing interplanetary transfers used in this thesis is the J2000 frame. It
is an inertial reference frame, centred on the Solar System Barycentre (SSB), whose z-axis is aligned
with the Earth’s rotation axis as of January 1, 2000. The frame is shown in Figure A.1, and we see
that its x-axis is pointing towards the vernal equinox �. It is almost the same as the widely known
ICRF, or International Celestial Reference Frame, and differs only by a negligible amount [51].

Figure A.1: Depiction of the J2000 reference frame, which is nearly equal to the ICRF frame [9]

This frame was used since it is inertial, i.e. it does not exhibit rotation or translational acceleration,
so that the equations of motion (see Appendices A.2 and A.3) are devoid of pseudoforces like the
Coriolis and centrifugal forces.

69

70 A. Reference frames and coordinate systems

A.2. Cartesian coordinates
This coordinate system uses the widely used 𝑥, 𝑦, and 𝑧 coordinates to represent positions, velocities,
and accelerations; it is also shown in Figure A.2. It is the most straightforward system for describing
dynamics, although it might not be the most useful when dealing with rotational motion, such as
encountered in astrodynamics. In this frame, the equations of motion (EoM) can be written as:

�̈� + 𝜇
𝑟3 𝐫 =

𝐓
𝑚 = 𝐟 (A.2.1)

where

𝐫 = [
𝑥
𝑦
𝑧
] (A.2.2)

and ‖𝐫‖ = 𝑟. 𝜇 is the gravitational parameter of the central body, in our case the Sun, and is
approximately equal to 1.33 ⋅ 1020 m3s-2.

A.3. Cylindrical coordinates
As mentioned in Section 5.2, the hodographic shaping method makes extensive use of a cylindrical
coordinate system. This system uses a radius 𝑟, angle 𝜃, and vertical distance 𝑧 to locate some point
𝑃(𝑟, 𝜃, 𝑧) in three-dimensional space. Both 𝑟 and 𝜃 lie in the horizontal xy-plane, as can be seen in
Figure A.2. It is also noted that the orthogonal basis vectors �̂�, �̂�, and �̂� rotate along with the location
of point 𝑃, such that �̂� is always tangential to the imaginary cylinder that touches 𝑃.
In this cylindrical basis, the equations of motion are:

�̈� − 𝑟�̇�2 + 𝜇
𝑠3 𝑟 = 𝑓𝑟

𝑟�̈� + 2�̇��̇� = 𝑓𝜃
�̈� + 𝜇

𝑠3 𝑧 = 𝑓𝑧

(A.3.1)

with

𝑠 = √𝑟2 + 𝑧2 (A.3.2)
In other words, 𝑑 is the Euclidean distance from the spacecraft to the centre of the reference frame,

i.e. the SSB.

Figure A.2: The Cartesian and cylindrical coordinate systems.

B
Database schema

71

Main Layout

Table celestial_bodies
* Pk id integer

name "public".celestialbody
type varchar
spice_name varchar

Indexes
Pk celestial_bodies_pkey id

Table clusterings
* Pk id integer

run_id integer
clustering_algo "public".clusteringalgorithms
sil float8
db float8
ch float8
n_clusters integer
run_time float8
param1 float8
param2 float8
param3 float8

Indexes
Pk clusterings_pkey id
Foreign Keys

clusterings_run_id_fkey (run_id) ref runs (id)

Table hodographic-trajectories
* Pk id integer

departure_date float8
time_of_flight float8
number_of_revolutions integer
delta_v float8
max_acceleration float8
departure_state bytea
arrival_state bytea
radial_velocity_function_components _bytea
normal_velocity_function_components _bytea
axial_velocity_function_components _bytea
radial_free_coefficients _float8
normal_free_coefficients _float8
axial_free_coefficients _float8
run_id integer

Indexes
Pk hodographic-trajectories_pkey id
Foreign Keys

hodographic-trajectories_run_id_fkey (run_id) ref runs (id)

Table runs
* Pk id integer

random_seed integer
algorithm "public".pagmoalgorithm
grid_res_x integer
grid_res_y integer

Table runs
dep_body_id integer
arr_body_id integer

Indexes
Pk runs_pkey id
Foreign Keys

runs_arr_body_id_fkey (arr_body_id) ref celestial_bodies (id)
runs_dep_body_id_fkey (dep_body_id) ref celestial_bodies (id)

Table trajectory_clusterings
* Pk trajectory_id integer
* Pk clustering_id integer

cluster_number smallint
Indexes
Pk trajectory_clusterings_pkey trajectory_id, clustering_id
Foreign Keys

trajectory_clusterings_clustering_id_fkey (clustering_id) ref clusterings (id)
trajectory_clusterings_trajectory_id_fkey (trajectory_id) ref hodographic-trajectories (id)

74 B. Database schema

Figure B.1: Database schema used during this thesis.

	Preface
	Abstract
	List of Acronyms & Symbols
	List of Figures
	List of Tables
	Introduction
	Research framework
	Report structure

	I Research
	Paper
	Recommendations

	II Background
	Global optimisation
	Mathematical formulation of the low-thrust trajectory optimisation problem
	Optimal control strategy
	Global optimisation techniques
	(Random) sampling methods
	Nature-inspired algorithms

	Astrodynamics
	Dynamic environment: gravity and perturbing forces
	Gravitational forces
	Solar radiation pressure
	Thrust force

	Shape-based methods
	Exponential sinusoids
	Inverse polynomials
	Spherical shaping
	Fourier series shaping
	Pseudo-equinoctial shaping
	Pseudo-spectral shaping
	Hodographic shaping

	Machine learning
	Machine learning tasks
	Heritage of machine learning in trajectory optimisation
	Clustering

	III Implementation
	Software
	Third-Party Software
	Python
	Tudat and TudatPy
	Pagmo and Pygmo

	Software architecture
	Data persistence

	Clustering
	Conventional clustering algorithms
	The dip-test and SkinnyDip

	References
	Reference frames and coordinate systems
	Inertial reference frame
	Cartesian coordinates
	Cylindrical coordinates

	Database schema

