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High-Precision Detection Method for Structure
Parameters of Catenary Cantilever Devices

Using 3-D Point Cloud Data
Wenqiang Liu , Graduate Student Member, IEEE, Zhigang Liu , Senior Member, IEEE,

Qiao Li , Graduate Student Member, IEEE, Zhiwei Han , Member, IEEE,
and Alfredo Núñez , Senior Member, IEEE

Abstract— This article proposes an automatic high-precision
detection method for structure parameters of catenary can-
tilever devices (SPCCDs) using 3-D point cloud data. The
steps of the proposed detection method are: 1) segmenting and
recognizing the components of the catenary cantilever devices,
2) extracting the detection plane and backbone component axis
of catenary cantilever devices, and 3) detecting the SPCCD. The
effective segmentation of components is critical for structure
parameter detection. A point cloud segmentation and recogni-
tion method based on three-dimensional convolutional neural
networks (3-D CNNs) is introduced to determine the different
components of the catenary cantilever devices. Compared with
traditional unsupervised clustering procedures for point cloud
segmentation, the proposed method can improve the segmenta-
tion accuracy, does not require complex tuning procedures of
parameters, and improves robustness and stability. Additionally,
the segmentation method defines a recognition function, facili-
tating the analysis of the structural relationship between objects.
Furthermore, we proposed an improved projection random sam-
ple consensus (RANSAC) method, which can effectively divide
the detection plane of catenary cantilever devices to solve the
multicantilever device occlusion problem. With RANSAC, it is
also possible to precisely extract the backbone component axis
and enhance parameter detection accuracy. The experimental
results show that the structure angle and steady arm slope’s error
accuracy can achieve 0.1029◦ and 1.19%, respectively, which
indicates the proposed approach can precisely detect the SPCCD.

Index Terms— Catenary cantilever devices, point cloud seg-
mentation, random sample consensus (RANSAC), structure para-
meter detection, three-dimensional convolutional neural networks
(3-D CNNs).
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NOMENCLATURE

SPCCD Structure parameters of catenary
cantilever devices.

3-D CNNs Three-dimensional convolutional
neural networks.

RANSAC Random sample consensus.
PSO-GAPF Genetic particle filter algorithm based

on particle swarm optimization.
SC_LCCP Slope constrained locally convex

connected patches.
SVC Super-voxel clustering.
LCCP Locally convex connected patches.
IP_RANSAC Improved projection random sample

consensus.
3-D PointCNN Three-dimensional point

convolutional neural network.
MLP Multilayer perceptron.
FPS Farthest point sampling.
RTX Real time exchange.
GPU Graphics processing unit.
RAM Random access memory.
SSD Solid state disk.

I. INTRODUCTION

AS A support device for fixing the catenary component, the
catenary cantilever device is vital to the traction power

supply system in high-speed railway systems [1]. As shown
in Fig. 1, the contact wire is attached and fixed in the
positioning clamp of catenary cantilever devices.

When a train runs, the pantograph collects the current from
the contact wire to supply the train. To guarantee the current
collection quality and to allow vehicles to run smoothly and
safely, it is vital to monitor the stability of the catenary
cantilever device structure periodically [2], [3]. With the rapid
development of artificial intelligence technologies, advanced
vision-based noncontact detection methods for component fail-
ures [4]–[10] and structure parameters measurement [11]–[14]
of the catenary are proposed in the literature.

Detection methods using 2-D images mainly focus on
spatial structure parameters of components. For example,
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Fig. 1. Two-dimensional image of catenary cantilevers: (a) in normal catenary
regions and (b) in catenary transition regions.

Cho and Ko [11] proposed a video-based dynamic stagger
measurement of railway overhead power contact wires. The
rotation-invariant feature matching is used to detect and locate
the pantograph. According to the edge intersection point of the
contact wire and the pantograph, the stagger value is detected.
Liu et al. [12] presented a conductor height and stagger mea-
surement using laser imaging and visual tracking. First, a beam
of fan laser hits the contact wire to form a target spot. Then,
the spot is tracked with the PSO-GAPF algorithm. Lastly,
according to space coordinate transformation, the geometric
parameters are obtained. Zhan et al. [13] proposed a vision-
based detection approach for railway catenary geometry para-
meters. They used a binocular vision component composed
of two line-scan cameras to calculate the space intersection
point, and then the parameters were obtained according to
the triangulation measurement principle. Yang et al. [14]
proposed a parameter detection method for the steady arm
slope of catenary cantilever devices. First, the steady arm was
located and extracted by combining the CNN-based rough
detection and the Hough transformation-based fine detection.
The steady arm slope was then measured by calculating its
spatial coordinates using a novel monocular vision model.

The 2-D images-based methods discussed mainly focus
on the parameter detection for simple environments, such
as the geometric parameter of catenary suspension devices
and the steady arm slope parameter of catenary cantilever
devices. The detection of these parameters is not suscepti-
ble to background interference and is, in general, evaluated
under simple conditions, especially the catenary suspension
devices [11]–[14]. However, for the detection of the SPCCDs,
as shown in Fig. 1(a), the methods do not provide a high-
precision estimation, particularly, in cases with a complex
background in the transition regions, as shown in Fig. 1(b).
A possible solution to capture the devices’ spatial information
and to detect these structure parameters more precisely is to
consider 3-D depth information (as shown in Fig. 2). With the
development of driverless technology, nowadays, it is possible
to update 3-D data collection equipment and 3-D detec-
tion technology based on artificial intelligence. These data
sources make it possible to increase the level of details about
the condition of the railway infrastructure obtained during
inspection programs. The literature so far of 3-D point cloud
data for railway applications is somewhat limited [15]–[18].
Han et al. [19] used 3-D point cloud data to detect the
SPCCDs, as shown in Fig. 3. The proposed method uses
a traditional unsupervised clustering segmentation procedure.

Fig. 2. Three-dimensional point cloud of catenary cantilevers: (a) front view
and (b) oblique view.

The technique, abbreviated as SC_LCCPs, combined the
SVC [20] and the LCCPs [21] to segment the components
of catenary cantilever devices. After that, a line detection
with an RANSAC method [22] was used for the segmented
regions to calculate catenary cantilevers’ structure parameters.
The method can be further improved when considering the
following aspects.

1) The unsupervised clustering method for point cloud
segmentation SC_LCCP was considered [see Fig. 3(b)].
A significant problem of the method is that it requires
setting and adjusting manually various model parame-
ters. Complicated tuning procedures are needed, as low
robustness of the model is obtained when considering
preadjusted parameters. Besides, to calculate the struc-
ture parameters, the category of each segmented compo-
nent should be determined first. However, SC_LCCP is
an unsupervised clustering method that cannot identify
components. Therefore, they use the prior relationship of
the structure of catenary cantilever devices to determine
the component category. However, due to adjustments
of catenary cantilever devices during on-site installation
and during operations, the assumed prior relationship
would contain a degree of uncertainty, which will affect
the accuracy of the component category identification.

2) The method was evaluated considering a simple struc-
ture in typical catenary regions, as shown in Fig. 1(a).
A method designed to address challenging cases, such
as the occlusion situation shown in Fig. 1(b) that the
2-D image method can solve in the transition regions,
is still needed in the literature.

3) Lastly, the projection RANSAC straight-line detection
method was proposed to extract the backbone compo-
nent axis of catenary cantilever devices to measure the
structure parameters. As shown in Fig. 3(c), point clouds
are first projected to X–O–Y plane, and these straight
lines are detected, which ignores the spatial relationships
in the Z dimension. In Fig. 3(c), the point N’ deviates
from the detection plane, although they are still on
the same line in the projection plane. When the points
M’N’ are mapped back, it may lead that the line MN is
detected, and the result will face a slight deviation when
calculating the angle.

To solve the above problems, we proposed a novel
detection method for SPCCD using 3-D CNNs and the
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Fig. 3. Pipeline of the SPCCD detection system using the traditional SC_LCCP [19]. (a) Input point cloud. (b) Segmentation with SC_LCCP. (c) Component
extraction with RANSAC and parameter calculation.

Fig. 4. Pipeline of the proposed SPCCD detection method using 3-D CNN. (a) Input point cloud. (b) Segmentation with 3-D PointCNN. (c) Component
extraction with IP-RANSAC and parameter calculation.

RANSAC method. The proposed method is shown in Fig. 4.
The contributions of this article are summarized as follows:

1) For the component segmentation, a model based on
3-D CNNs is introduced to segment catenary cantilevers,
as shown in Fig. 4(b). Compared with the unsupervised
clustering SC_LCCP, there are two advantages: 1) an
extensive 3-D point cloud data set is used to train
a neural network, avoiding manual parameter setting
and adjustment and 2) as a supervised method, it can
accurately recognize components, and it is not dependent
on prior information about the relationship between the
elements of the catenary cantilever devices.

2) For the SPCCD calculation, we propose an improved
projection RANSAC (IP_RANSAC) method, as shown
in Fig. 4(c). First, the spatial characteristics from 3-D
point cloud data are fully used. A fast plane detection
method is proposed to divide multicantilever devices
and solve the occlusion problem in transition regions.
Then, point cloud data are projected to the detected
plane, and the backbone component axis is extracted
from the projected plane. The parameter calculation can
be directly performed from the extracted component
axis in the projected plane. This can avoid the problem
in [19] when the point cloud data are mapped back to
the original space, and it can improve the measurement
accuracy of the detected SPCCD.

This article is organized as follows. Section II introduces
the segmentation model based on 3-D CNNs. The proposed

structure parameters detection method based on RANSAC is
explained in Section III. Experimental results are analyzed
and discussed in Section IV. The conclusions of this work
are summarized in Section V.

II. CATENARY CANTILEVER SEGMENTATION

We introduce an advanced recognition and segmentation
model based on 3-D CNNs to improve the traditional methods’
segmentation accuracy. The goal is to enhance the detection
precision of SPCCD. Section II-A describes the recognition
and segmentation networks.

A. 3-D Point Convolutional Neural Networks

In the literature, CNNs are widely used to learn hier-
archical feature representations through leveraging the spa-
tially local correlation in image-pixels 2-D regular grids,
as illustrated in the upper part of Fig. 5 [23]. Extensions of
CNNs based on hierarchical architectures have been applied
to higher dimensional regular domains. However, 3-D point
cloud data are in a disordered and irregular domain, as shown
in the lower part of Fig. 5. It is not straightforward to
directly utilize the extended CNNs to extract 3-D point cloud
data features. With the rapid advances and large demands
of 3-D sensing technologies, especially from the driverless
vehicles industry, some recent feature learning developments
from 3-D point cloud data have been presented [24]–[33].
These methods have different advantages and disadvan-
tages. For example, the authors of [24]–[28] successfully
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Fig. 5. Hierarchical convolution on regular grids and point clouds.

achieved order invariance, but they lost valuable information.
In [29]–[33], these methods can apply typical CNNs through
“interpolate” or “project” features into predefined regular
domains. However, the kernels associated with each point were
individually parametrized, and they are insufficient to extract
the local structures. For these above problems, Li et al. [34]
proposed a general and straightforward framework called 3-D
PointCNN. The framework exploits the advantages of CNNs
to learn the features directly from 3-D point cloud data.
The idea of the 3-D PointCNN is that K candidate points
(p1, p2, . . . , pk) are selected from the previous layer. Then,
a K K transformation matrix (named X-transformation) is
learned through the use of the MLP, which is X = MLP
(p1, p2, . . . , pk). The matrix is used to perform the weighting
and permutation for input features. After that, the transformed
features can be processed with conventional CNNs. The entire
process is called X-Conv operator. The architecture diagram
based on the X-Conv operator is shown in Fig. 6. The X-Conv
operator is described next.

1) X-Conv Operator:
Step 1 (Point “Projected”): First, the farthest point sampling

(FPS) is utilized to reduce the number of samples F1 = {(p1,i ,
f1,i ): i = 1, 2, . . . , N1, p1,i ∈ RDim}, each associated with a
feature { f1,i : f1,i ∈ RC1 } and choose the representative points
F2 = {(p2,i , f2,i ): j = 1, 2, . . . , N2} from the set (p1,i)
by the FPS, which are the points that are beneficial to the
information “projection,” and now the feature dimensional of
F2 is C1, so f2,i ∈ RC1 . Then, K nearest neighbor points P (p1,
p2, . . . , pk , p ∈ RK×Dim) of each representative point ( p2, j)
in the previous layer are projected into the local coordinate
system centered on each representative point. Among, N
represents the number of points, and C denotes the channels,
N1 > N2 and C1 < C2

P � = P − p2, j . (1)

Step 2 (Lift Dimensional Space): The P sets of each point
in p are mapped and lifted into a C.δ dimensional space
through MPL.δ , and then a new feature of each representative
point (p2, j ) is obtained, f δ

2, j ∈ Rk×Cδ

f δ
2, j = M L Pδ(P �). (2)

Step 3 (Concatenate Feature): Then, the features f δ
2, j and

f 2, j are concatenated together, forming a new feature f 2, j ,

Fig. 6. Architecture of 3-D PointCNN based on the X-Conv operator.

and its dimensional is C2 = Cδ + C1

f 2, j = [
f δ

2, j , f 2, j

]
. (3)

Step 4 (Learn X-Transformation Matrix): Through the train-
ing and learning for the P sets of each point in p with an MLP,
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the K × K X-transformation matrix is obtained

X = M L P(P �). (4)

Step 5 (Weight and Permute Feature): When the transfor-
mation matrix and new features are obtained, the matrix X is
used to weight and permutate the feature f 2, j

FX = X × f 2, j . (5)

Step 6 (Feature Convolution): Lastly, the typical convolution
operator is performed for the transformed feature FX with
kernel K, and F p is the convolution output

F p = Conv(K × FX ). (6)

2) Segmentation Architecture Based on X-Conv: In Fig. 6,
the X-Conv-based 3-D PointCNN architecture is shown. First,
the original catenary point clouds are uniformly sampled
in 6144 points as the input data. Then, four X-Conv oper-
ators with different setting parameters are followed one by
one. Next, for segmentation tasks, the high-resolution point-
wise output is required, so this is realized by following the
Conv-DeConv architecture and five DeConv operators. Note
that both the Conv and DeConv are the X-Conv operators,
and the only difference is that the latter has more points but
fewer feature channels.

III. CANTILEVER STRUCTURE

PARAMETER MEASUREMENT

To accurately measure the SPCCD, a fast and high-precision
IP_RANSAC algorithm is proposed. First, the detection planes
of cantilever device structures are divided to solve the occlu-
sion problem. Next, the divided point cloud data are projected
into the detected planes to extract the component axis with
RANSAC. Lastly, SPCCD is calculated according to their
spatial relationships.

A. Dividing Detection Plane of Cantilever Device Structures

Due to the occlusion interferences of different catenary
cantilever devices in some special areas like catenary transition
regions, we first use a fast RANSAC plane detection method.
This method allows us to constraint the segmented component
regions and accurately group each complete catenary can-
tilever device. Then, differently than the standard RANSAC,
plane detection is performed by selecting three random points
in the segmented local regions instead of global regions. Next,
the steps are described:

Step 1 (Determine the First Detection Plane): First, calcu-
lating the detection plane and the distance from the point to the
plane. As shown in Fig. 7, first, randomly sample three points
P1, P2, P3 from the point cloud set. Then, using the following
equations, the detection plane and the point distance can be
calculated. Different from the global random point selection
method of the standard RANSAC [35], we randomly choose
three points from the local segmented backbone component
regions and calculate the plane parameters. As the plane is
found in the segmented results instead of the point cloud data
set, we expect a decrease in computing time and improve the

Fig. 7. Plane model detection with RANSAC.

Fig. 8. Plane detection in catenary transition regions: (a) front detection
plane and (b) back detection plane.

detection efficiency as interference with other cloud points is
avoided

−→
Pn = −−→

P2 P1 × −−→
P3 P1 (7)

a(x − x1) + b(y − y1) + c(z − z1) = 0 (8)

dplane =
−−→
P P1 · −→Pn∥∥∥−→

Pn
∥∥∥ (9)

where dplane indicates the distance from the point to the
detected plane, and the vector (a, b, c) is the normal of the
plane.

Then, counting the number of inner points whose distance to
the computed plane is smaller than the given distance threshold
τdp, and iterating tdp times to find and record the best plane,
which includes most of the inner points.

Step 2 (Determine Other Detection Planes): Trim the point
clouds of the detected plane and extract the next detection
plane in the residual point clouds. Once the detected number
of interior points is less than half of the remaining points,
the plane detection process is terminated. As shown in Fig. 8,
it is an example of plane detection in catenary transition
regions.

B. Extracting Cantilever Backbone Component Axis

To calculate the SPCCD, we utilize a projection RANSAC
straight-line detection method to extract the axis of the back-
bone components. Different from the projection RANSAC
straight-line detection in [19], we project the point cloud data
into the detection plane instead of the X–Y plane shown
in Fig. 4(c), and the method can avoid the straight-line
deviation caused by the point cloud being mapped back to
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Fig. 9. Straight-line extraction with RANSAC.

the original space for the second time. The specific processes
are the following.

Step 1 (Determine the First Backbone Component Axis):
First, calculating the axis line of each segmented backbone
component and the distance from the point to the line.
As shown in Fig. 9, randomly sample two points P1, P2 from
the point clouds set, and according to the following equations,
the axis line of the segmented backbone component and the
point distance can be calculated:

−→
Ln = λ

−−→
P2 P1 (10)

x − x1

l
= y − y1

m
= z − z1

n
(11)

dline =
∥∥∥−−→

P P1 × −→
Ln

∥∥∥∥∥∥−→
Ln

∥∥∥ (12)

where dline is the distance from the point to the extracted axis,
λ is a scale factor of the straight line, and (l, m, n) is the
direction vector of the line.

Then, counting the number of inner points whose distance
to the extracted axis line is smaller than a given distance
threshold τdl , and iterating tdl times to find and record the
best line, which includes the most of the inner points.

Step 2 (Determine Another Component Axis): Repeat the
above steps to find the next axis lines of cantilever backbone
components until all the axis lines are detected. An example
is shown in Fig. 10.

C. Detect the SPCCD

As shown in Fig. 11, when the axis line vector (l, m, n)
of each backbone component is extracted, according to the
backbone component connection relationship, the structure
angle θ and the slope S of the steady arm can be calculated
by the following equations. An example is shown in Fig. 12

θ = arccos

−−−−−−→
(li , mi , ni ) · −−−−−−−→

(l j , m j , n j )∣∣∣−−−−−−→
(li , mi , ni )

∣∣∣ ×
∣∣∣−−−−−−−→
(l j , m j , n j )

∣∣∣ (13)

S = tan(arccos

−−−−−−→
(ls , ms, ns) · −−−−→

(1, 0, 0)∣∣∣−−−−−−→
(ls , ms, ns)

∣∣∣ ×
∣∣∣−−−−→
(1, 0, 0)

∣∣∣ ) (14)

Fig. 10. Axis line extraction of catenary backbone components.

Fig. 11. Space angle calculation based on the spatial geometry calculation
method.

Fig. 12. SPCCDs.

where (li , mi , ni ) and (l j , m j , n j ) denote the axis vectors of
two backbone components. (ls, ms , ns) is the axis vector of
the steady arm component.

IV. ANALYSIS AND DISCUSSION OF

EXPERIMENTAL RESULTS

The performance of the proposed method is evaluated using
a catenary image data set. All the experiments are conducted
on a server with Intel (R) Xeon (R) CPU E5-2640 v4 at
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Fig. 13. 3-D data acquisition system in the field.

2.40 GHz, TITAN RTX 24G GPU, 32-GB RAM, and 2-TB
SSD. All core algorithm codes are developed with TensorFlow
architecture [36] and MATLABon Linux 18.04 system.

A. Component Segmentation

1) Data Set: As shown in Fig. 13, the catenary 3-D point
cloud data are acquired from the Azure Kinect sensor camera
installed on the beam on the top of the inspection vehicle.
The camera is a 100-million-pixel time-of-flight (TOF) depth
scanner and complies with all characteristics of the image
sensor presented in ISSCC 2018 [37]. The working range
is from 0.5 to 5.46 m. The field of view (FOV) can cover
75 × 65◦. The sensor camera can work well under the
following conditions: temperature between 10 ◦C and 25 ◦C,
humidity between 8% and 90% with noncondensing rela-
tive humidity, and low natural light interference environment
(<3 klux). To accurately segment the parts, we fuse 20 frames
of point cloud data taken continuously the same location
into a set of data to fill the holes due to uneven reflection,
ensuring that the deviation between data is as small as possible
and improving the performance of the proposed method. The
total amount of cantilever devices point cloud data set is
3000, among which the training data are 2000, the validation
data are 550, and the test data are 450. And the 3-D point
cloud labeling is achieved based on the open-source code
(https://github.com/cloudcompare/cloudcompare).

2) Model Parameters: The 3-D PointCNN parameters are
initialized with the pretrained parameters on a benchmark data
set. The Momentum algorithm is chosen as the backpropaga-
tion gradient descent method, and the term momentum and
weight decay are set to 0.9 and 0.0001, respectively. The
learning rate is 0.0001, and the max iteration epoch is 500.

3) Evaluation Indexes: To evaluate the performance of the
3-D PointCNN, the metric point ratio P_R is used to validate
the accuracy of segmentation. The average error Erroraverage is
calculated to evaluate the robustness of the solution

P_R =
K∑

i=1

TPi

/ K∑
i=1

Ni × 100% (15)

Erroraverage = 1

M

M∑
j=1

(100% − P_R j) (16)

Fig. 14. Segmentation accuracy of catenary point clouds for the training and
validation data set during the training phase.

Fig. 15. Segmentation accuracy of catenary point clouds for the test data
set during the testing phase.

where TPi donates the predicted point number of the true
positive in category i , Ni indicates the total point number of
categories i , and K is the number of component categories.
M is the sample number of the test data set of catenary
cantilever devices.

4) Experimental Results and Analysis:

1) Fig. 14 shows the training process of the 3-D PointCNN
for the catenary cantilever segmentation. The segmen-
tation accuracy for the training and validation data set
begins to converge about 97% after 200 epochs, respec-
tively. These curves fluctuate smoothly. These results
demonstrate that the trained model has high accuracy
and strong robustness.

2) Fig. 15 and Table I indicate the segmentation accuracy
of the trained model for the testing data set. The adopted
3-D PointCNN can precisely segment catenary cantilever
3-D point cloud data, and the accuracy can achieve
97.7% on average. By comparing and analyzing with the
results of [19], as shown in Table I, we can see that both
the average error range 1.3%–2.6% and the average error
2.2% are lower than the results in [19]. These results
show the accuracy and stability of our method.
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TABLE I

STATISTICS OF THE AVERAGE ERROR OF THE TESTING DATA SET

TABLE II

PLANE DETECTION WITH DIFFERENT METHODS

3) Through statistical analysis of the computational load
with the two methods on our test data set, the aver-
age computational load of our segmentation method is
0.48 frames/s, and the average computational load of
the method in [19] is 0.04 frames/s. Obviously, our
algorithm takes more time due to the model, but the
basic real-time performance can still be guaranteed.

B. Plane Extraction

1) Model Parameters and Evaluation Indexes: To extract all
detection planes of each catenary cantilever device on the same
pillar, we utilized: 1) the ratio IP_R between the number Ninc

of those points included in the extracted plane in the distance
threshold τdp and 2) the total number Ntot of those backbone
components as an indicator to choose the optimal model
parameter and evaluate the accuracy of the extracted detection
plane. Here, in order to ensure that the plane is accurately
detected, the iteration tdp is set into 1000. Besides, to prove
the performance of the improved local RANSAC, we do a
comparative experiment, including the detection accuracy and
detection speed, as shown in Fig. 12 and Table II

IP_R = Ninc

Ntot
(17)

2) Experimental Results and Analysis:

1) Fig. 16 shows that the detection accuracy of the local
RANSAC proposed can achieve 96.5% around the dis-
tance threshold 0.035 m, while the accuracy of the global
RANSAC is 81.1%. According to the actual radius of
catenary cantilever backbone components, the radius
range is between about 0.02 and 0.04 m, and the
parameter of the proposed local RANSAC matches this
range. This also indicates that the proposed approach
can more exactly and completely extract the detection
plane.

2) Table II shows that the detection speed of the local
RANSAC is 0.71 ms faster than the global RANSAC.
Thus, the proposed method is faster by searching planes
in local segmented points rather than global points while
ensuring the detection accuracy.

Fig. 16. Plane extraction accuracy with different methods.

Fig. 17. Axis line errors in different model parameters.

C. Axis Line Detection of Cantilever Backbone Components

1) Model Parameters and Evaluation Indexes: To evaluate
the performance of the proposed method IP_RANSAC for
detecting the axis line of cantilever backbone components,
we calculate the angle β between the detected axis line and
X-axis and compare with their real angle β real

i j those are
manually extracted. Through the index of the angle error,
the effectiveness of the proposed method can be proved.
To choose the optimal parameters of the model, including
the distance threshold τdl and the iteration time tdl , a set of
experiments is developed to determine them by measuring the
index of the angle error, as shown in Fig. 16

β = arccos
−−−−−→
(l, m, n) · −−−−→

(0, 0, 1)∣∣∣−−−−−→
(l, m, n)

∣∣∣ ×
∣∣∣−−−−→
(0, 0, 1)

∣∣∣ (18)

Errorβ = 1

N M

N∑
i=1

M∑
j=1

∣∣∣βi j − β real
i j

∣∣∣. (19)

2) Experimental Results and Analysis: From Fig. 17,
we can see that the angle error of the model is minimal when

Authorized licensed use limited to: TU Delft Library. Downloaded on January 19,2021 at 09:51:48 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: HIGH-PRECISION DETECTION METHOD FOR SPCCDS USING 3-D POINT CLOUD DATA 3507811

Fig. 18. Structural angle errors in different methods: (a) is the results with
the method [19] and (b) denotes the results with our proposed method.

TABLE III

STATISTICS OF THE STRUCTURAL ANGLE ERRORS

the distance threshold is 0.035 m, and the iteration time is 600.
As mentioned above, the radius range of backbone components
is between 0.02 and 0.04 m, and their average radius is near
0.035 m, which also indirectly demonstrates the rationality and
effectiveness of parameter selection. Furthermore, the mini-
mal angle error is 0.1084◦, which shows that the proposed
approach has very high precision.

D. Parameter Detection
1) Evaluation Indexes: The effectiveness of the proposed

parameter detection method is evaluated with the errors

TABLE IV

STATISTICS OF THE SLOPE ERRORS

Fig. 19. Slope errors in different methods.

Errorθstr and ErrorSstd of the structural angle of catenary can-
tilevers and the slope of steady arms between their calculated
values θ i

str, Si
std and true values θ i

str_tru, Si
std_true. True values

were measured manually to certify the accuracy of the pro-
posed method. Moreover, the expectation and variance of the
errors are calculated to show the stability of the proposed
method. Also, the results are compared with the method in [19]
on our data set, and the results are shown in Figs. 18 and 19,
and Tables III and IV

Errorθstr = ∣∣θ i
str − θ i

str_tru

∣∣, i = 1 . . . N (20)

Errorexp
θstr

= 1

N

N∑
i=1

Errorθstr (21)

Errorvar
θstr

=
√∑N

i=1

∣∣Errori
θstr

− Errorexp
θstr

∣∣
N

(22)

ErrorSstd = ∣∣Si
std − Si

std_true

∣∣/Si
std_real, i, . . . , N (23)

Errorexp
Sstd

= 1

N

N∑
i=1

Errori
Sstd

(24)

Errorvar
Sstd

=
√∑N

i=1

∣∣Errori
Sstd

− Errorexp
Sstd

∣∣
N

. (25)

2) Experimental Results and Analysis:

1) From Fig. 18 and Table III, the structural angle error
of the proposed method is 0.1029◦, and it is lower than
the errors with the method in [19] by 0.0761◦. Besides,
the proposed method has a smaller variance, so the
method is more stable.
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2) In Fig. 19 and Table IV, it shows that the slope error
of the proposed method is 1.19% and lower than the
errors with the method in [19] by 0.44%. Also, the pro-
posed method has a smaller variance, which denotes
the method is more stable. The detection precision
of the slope parameter is very high and can fully meet
the detection requirement in the field.

E. Discussion

Through the analysis of experiment results, the proposed
method can successfully solve the occlusion interference prob-
lem of two cantilever devices on the pillar. Furthermore,
the proposed method has higher parameter detection accuracy.
However, in some areas of more complicated railway lines,
there may be three or more cantilever devices on the pillar,
and the internal devices cannot be accurately detected. There
are no better solutions and methods in the current research,
and further research is needed.

V. CONCLUSION

This article proposed a method for structure parameter
detection of catenary cantilevers using 3-D cloud data mea-
surements. The major features of the method are as follows.

1) The segmentation and recognition methods are based on
3-D CNN to segment catenary cantilever devices. The
method does not require complex tuning procedures of
a large set of parameters as in conventional methods and
ensures the feasibility of the defect detection method.

2) The improved projection RANSAC method successfully
solves the occlusion interferences of different catenary
cantilever devices in catenary transition regions. It can
avoid the straight-line deviation caused by the point
cloud being mapped back to the original space for
the second time and improve the accuracy of SPCCD
measurement.

The proposed SPCCD detection method obtains high accuracy
detection. Thus, the method will allow the practical imple-
mentation of 3-D point cloud data measurements and auto-
matic detection in the railway infrastructure. Further research
includes accuracy improvement using sophisticated calibration
methods. Other further research lines include: 1) a comparison
with a broader range of segmentation methods, including those
from a classical point of view, 2) robustness improvement by
augmenting more different railway line data, 3) the analysis
of defect diagnosis technology through multichannel data, and
4) the fusion of the characteristics of catenary 2-D images and
3-D point cloud data via multimodal DL techniques together
with dynamic measurements.

REFERENCES

[1] J. Chen, Z. Liu, H. Wang, A. Nunez, and Z. Han, “Automatic defect
detection of fasteners on the catenary support device using deep con-
volutional neural network,” IEEE Trans. Instrum. Meas., vol. 67, no. 2,
pp. 257–269, Feb. 2018.

[2] W. Liu et al., “Multi-objective performance evaluation of the detection
of catenary support components using DCNNs,” IFAC-PapersOnLine,
vol. 51, no. 9, pp. 98–105, 2018.

[3] Y. Song, Z. Liu, A. Rønnquist, P. Nåvik, and Z. Liu, “Contact wire
irregularity stochastics and effect on high-speed railway pantograph-
catenary interactions,” IEEE Trans. Instrum. Meas., vol. 69, no. 10,
pp. 8196–8206, Oct. 2020.

[4] Z. Liu, L. Wang, C. Li, and Z. Han, “A high-precision loose strands
diagnosis approach for isoelectric line in high-speed railway,” IEEE
Trans. Ind. Informat., vol. 14, no. 3, pp. 1067–1077, Mar. 2018.

[5] W. Liu, Z. Liu, H. Wang, and Z. Han, “An automated defect detection
approach for catenary rod-insulator textured surfaces using unsupervised
learning,” IEEE Trans. Instrum. Meas., vol. 69, no. 10, pp. 8411–8423,
Oct. 2020, doi: 10.1109/TIM.2020.2987503.

[6] G. K. Deep, S. Gao, L. Yu, and D. Zhang, “Architecture for high-
speed railway insulator surface defect detection: Denoising autoencoder
with multitask learning,” IEEE Trans. Instrum. Meas., vol. 68, no. 8,
pp. 2679–2690, Aug. 2020.

[7] J. Zhong, Z. Liu, Z. Han, Y. Han, and W. Zhang, “A CNN-based defect
inspection method for catenary split pins in high-speed railway,” IEEE
Trans. Instrum. Meas., vol. 68, no. 8, pp. 2849–2860, Aug. 2019.

[8] Z. Liu, K. Liu, J. Zhong, Z. Han, and W. Zhang, “A high-precision
positioning approach for catenary support components with multiscale
difference,” IEEE Trans. Instrum. Meas., vol. 69, no. 3, pp. 700–711,
Mar. 2020, doi: 10.1109/TIM.2019.2905905.

[9] W. Liu, Z. Liu, A. Núñez, and Z. Han, “Unified deep learning architec-
ture for the detection of all catenary support components,” IEEE Access,
vol. 8, pp. 17049–17059, 2020.

[10] H. Yin, Z. Liu, Z. Xu, and L. Gao, “An automatic visual monitoring
system for expansion displacement of switch rail,” IEEE Trans. Instrum.
Meas., vol. 69, no. 6, pp. 3015–3025, Jun. 2020.

[11] C. J. Cho and H. Ko, “Video-based dynamic stagger measurement of
railway overhead power lines using rotation-invariant feature match-
ing,” IEEE Trans. Intell. Transp. Syst., vol. 16, no. 3, pp. 1294–1304,
Jun. 2015.

[12] Z. Liu, W. Liu, and Z. Han, “A high-precision detection approach
for catenary geometry parameters of electrical railway,” IEEE Trans.
Instrum. Meas., vol. 66, no. 7, pp. 1798–1808, Jul. 2017.

[13] D. Zhan, D. Jing, M. Wu, D. Zhang, L. Yu, and T. Chen, “An
accurate and efficient vision measurement approach for railway catenary
geometry parameters,” IEEE Trans. Instrum. Meas., vol. 67, no. 12,
pp. 2841–2853, Dec. 2018.

[14] Y. Yang, W. Zhang, Z. He, and D. Chen, “Locator slope calculation
via deep representations based on monocular vision,” Neural Comput.
Appl., vol. 31, no. 7, pp. 2781–2794, Jul. 2019.

[15] B. Q. Guo, Z. J. Yu, N. Zhang, L. Zhu, and C. Gao, “3D point cloud
segmentation classification and recognition algorithm of railway scene,”
Chin. J. Sci. Instrum., vol. 38, no. 9, pp. 2103–2111, 2017.

[16] G. Gabara and P. Sawicki, “A new approach for inspection of selected
geometric parameters of a railway track using image-based point
clouds,” Sensors, vol. 18, no. 3, p. 791, Mar. 2018.

[17] J. Zhou, Z. Han, and C. Yang, “Catenary geometric parameters detection
method based on 3D point cloud,” Chin. J. Sci. Instrum., vol. 39, no. 4,
pp. 239–246, Apr. 2018.

[18] W. Liu, Z. Liu, and A. Nunez, “Virtual reality and convolutional neural
networks for railway catenary support components monitoring,” in Proc.
IEEE Intell. Transp. Syst. Conf. (ITSC), Oct. 2019, pp. 2183–2188.

[19] Z. Han, C. Yang, and Z. Liu, “Cantilever structure segmentation and
parameters detection based on concavity and convexity of 3-D point
clouds,” IEEE Trans. Instrum. Meas., vol. 69, no. 6, pp. 3026–3036,
Jun. 2020, doi: 10.1109/TIM.2019.2930158.

[20] J. Papon, A. Abramov, M. Schoeler, and F. Wörgötter, “Voxel cloud
connectivity segmentation—Supervoxels for point clouds,” in Proc.
IEEE Comput. Vis. Pattern Recognit., vol. 9, Jun. 2013, pp. 2027–2034.

[21] S. C. Stein, M. Schoeler, and J. Papon, “Wörgötter, Object partitioning
using local convexity,” in Proc. IEEE Comput. Vis. Pattern Recognit.,
Jun. 2014, pp. 304–311.

[22] R. Schnabel, R. Wahl, and R. Klein, “Efficient RANSAC for point-cloud
shape detection,” in Computer Graphics Forum, vol. 26, no. 2. Oxford,
U.K.: Blackwell, Jun. 2007, pp. 214–226.

[23] H. He, S. Jin, C.-K. Wen, F. Gao, G. Y. Li, and Z. Xu, “Model-
driven deep learning for physical layer communications,” IEEE Wireless
Commun., vol. 26, no. 5, pp. 77–83, Oct. 2019.

[24] S. Ravanbakhsh, J. Schneider, and B. Poczos, “Deep learning with
sets and point clouds,” 2016, arXiv:1611.04500. [Online]. Available:
http://arxiv.org/abs/1611.04500

[25] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov,
and A. J. Smola, “Deep sets,” in Proc. Adv. Neural Inf. Process. Syst.,
2017, pp. 3391–3401.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 19,2021 at 09:51:48 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TIM.2020.2987503
http://dx.doi.org/10.1109/TIM.2019.2905905
http://dx.doi.org/10.1109/TIM.2019.2930158


LIU et al.: HIGH-PRECISION DETECTION METHOD FOR SPCCDS USING 3-D POINT CLOUD DATA 3507811

[26] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical
feature learning on point sets in a metric space,” in Proc. Adv. Neural
Inf. Process. Syst., 2017, pp. 5099–5108.

[27] J. Li, B. M. Chen, and G. Hee Lee, “So-net: Self-organizing network
for point cloud analysis,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2018, pp. 9397–9406.

[28] Y. Shen, C. Feng, Y. Yang, and D. Tian, “Mining point cloud local
structures by kernel correlation and graph pooling,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 4548–4557.

[29] H. Su, V. Jampani, D. Sun, S. Maji, E. Kalogerakis, M. H. Yang, and
J. Kautz, “SPLATNet: Sparse lattice networks for point cloud process-
ing,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 2530–2539.

[30] M. Tatarchenko, J. Park, V. Koltun, and Q.-Y. Zhou, “Tangent convo-
lutions for dense prediction in 3D,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., Jun. 2018, pp. 3887–3896.

[31] F. Groh, P. Wieschollek, and H. P. A. Lensch, “Flex-convolution
(million-scale point-cloud learning beyond grid-worlds),” 2018,
arXiv:1803.07289. [Online]. Available: http://arxiv.org/abs/1803.07289

[32] S. Wang, S. Suo, W.-C. Ma, A. Pokrovsky, and R. Urtasun, “Deep para-
metric continuous convolutional neural networks,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 2589–2597.

[33] Y. Xu, T. Fan, M. Xu, L. Zeng, and Y. Qiao, “SpiderCNN: Deep learning
on point sets with parameterized convolutional filters,” in Proc. Eur.
Conf. Comput. Vis. (ECCV), Sep. 2018 pp. 87–102.

[34] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen, “PointCNN: Con-
volution on X -transformed points,” 2018, arXiv:1801.07791. [Online].
Available: http://arxiv.org/abs/1801.07791

[35] M. Y. Yang and W. Förstner, “Plane detection in point cloud data,” in
Proc. Int. Conf. Mach. Control Guid., Jan. 2010, pp. 95–104.

[36] M. Abadi et al., “TensorFlow: Large-scale machine learning on het-
erogeneous distributed systems,” 2016, arXiv:1603.04467. [Online].
Available: http://arxiv.org/abs/1603.04467

[37] C. S. Bamji, “IMpixel 65 nm BSI 320 MHz demodulated TOF Image
sensor with 3μm global shutter pixels and analog binning,” in IEEE
Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2018,
pp. 94–96.

Wenqiang Liu (Graduate Student Member, IEEE)
received the B.S. degree in electronic information
engineering from Southwest Jiaotong University,
Chengdu, China, in 2013, where he is currently pur-
suing the Ph.D. degree with the School of Electrical
Engineering.

His current research interests include image
processing, computer vision, deep learning, rein-
forcement learning, 3-D modeling, and virtual reality
and their applications in fault detection and diagno-
sis in the electrified railway industry.

Zhigang Liu (Senior Member, IEEE) received the
Ph.D. degree in power system and its automa-
tion from Southwest Jiaotong University, Chengdu,
China, in 2003.

He is currently a Full Professor with the School
of Electrical Engineering, Southwest Jiaotong Uni-
versity. His research interests include the electrical
relationship of EMUs and traction, detection, and
assessment of pantograph-catenary in high-speed
railway. He has written three books and published
more than 100 peer-reviewed journal and conference
papers.

Dr. Liu was elected as a fellow of The Institution of Engineering
and Technology (IET) in 2017. He is an Associate Editor of the IEEE
TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, IEEE
TRANSACTIONS ON VEHICULAR TECHNOLOGY, IEEE TRANSACTIONS ON

INSTRUMENTATION AND MEASUREMENT, and IEEE ACCESS. He received
the IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT’s
Outstanding Associate Editors for 2019 as well as the Outstanding Reviewer
of the IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

for 2018.

Qiao Li ( Graduate Student Member, IEEE) received
the B.S. degree in the electrical engineering and
automation from the School of Automation Science
and Electrical Engineering, Lanzhou Jiaotong Uni-
versity, Lanzhou, China, in 2018. He is currently
pursuing the M.S. degree with the College of Elec-
trical Engineering, Southwest Jiaotong University,
Chengdu, China.

His current research interests include 2-D image
processing, 3-D point cloud deep learning, semantic
segmentation, and their applications in the electrified
railway industry.

Zhiwei Han (Member, IEEE) received the Ph.D.
degree in power system and its automation from
Southwest Jiaotong University, Chengdu, China,
in 2013.

He is currently a Lecturer with the School of Elec-
trical Engineering, Southwest Jiaotong University.
His current research interests include modern signal
processing and computer vision and their application
in railway and electric power system

Alfredo Núñez (Senior Member, IEEE) received
the Ph.D. degree in electrical engineering from the
Universidad de Chile, Santiago, Chile, in 2010.

He was a Post-Doctoral Researcher with the Delft
Center for Systems and Control, Delft, The Nether-
lands. Since 2013, he has been with the Section of
Railway Engineering, Department of Engineering
Structures, Delft University of Technology, Delft,
where he is currently an Assistant Professor in the
topic data-based maintenance for railway infrastruc-
ture. His current research interests include the main-

tenance of railway infrastructures, intelligent conditioning monitoring in
railway systems, big data, risk analysis, and optimization.

Dr. Núñez is on the Editorial Board of the journal Applied Soft Computing,
Elsevier. He is an Associate Editor of the journal IEEE TRANSACTIONS ON
INTELLIGENT TRANSPORTATION SYSTEMS.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 19,2021 at 09:51:48 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


