
 
 

Delft University of Technology

Cosimulation of Intelligent Power Systems
Fundamentals, Software Architecture, Numerics, and Coupling
Palensky, Peter; Van Der Meer, Arjen A.; Lopez, Claudio David; Joseph, Arun; Pan, Kaikai

DOI
10.1109/MIE.2016.2639825
Publication date
2017
Document Version
Final published version
Published in
IEEE Industrial Electronics Magazine

Citation (APA)
Palensky, P., Van Der Meer, A. A., Lopez, C. D., Joseph, A., & Pan, K. (2017). Cosimulation of Intelligent
Power Systems: Fundamentals, Software Architecture, Numerics, and Coupling. IEEE Industrial Electronics
Magazine, 11(1), 34-50. Article 7883974. https://doi.org/10.1109/MIE.2016.2639825

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/MIE.2016.2639825
https://doi.org/10.1109/MIE.2016.2639825


34  IEEE industrial electronics magazine  ■  march 2017 1932-4529/17©2017IEEE

Digital Object Identifier 10.1109/MIE.2016.2639825

Date of publication: 21 March 2017

S
mart grids link various types of 
energy technologies—such 
as power electronics, machi­
nes, grids, and markets—via 
communication technology, 
which leads to a transdisci­

plinary, multidomain system. Simula­
tion packages for assessing system 
integration of components typically 
cover only one subdomain, while sim­
plifying the others. Cosimulation over­
comes this by coupling subdomain 
models that are described and solved 
within their native environments, us­
ing specialized solvers and validated li­
braries. This article discusses the state 
of the art and conceptually describes 
the main challenges for simulating in­
telligent power systems. This article, 
part 1 of 2 on this subject, covers fun­
damental concepts. Part 2 will appear 
in a future issue of IEEE Electrification 
Magazine and cover applications.

Cosimulation’s Value
Simulation is fundamental in power en­
gineering because of its merits in the 
assessment of features such as control­
lability, reliability, and general opera­
bility of devices and the power system 
as a whole. The need to conduct costly 
and time-consuming laboratory or 
field experiments is thereby avoided. It 
helps in predicting the behavior of the 
power system before the occurrence of 

an actual contingency (e.g., converter 
outage, load rejection, or line overload­
ing) and in studying the effects of nec­
essary control actions to avoid these. 
Simulation-based studies in the tra­
ditional power system include a wide 
range of planning and operational situ­
ations, such as long-term generation 
and transmission expansion planning, 
short-term operational simulations, and 
market analysis.

With the advent of widespread in­
formation and communication tech­
nology (ICT)-based infrastructure and 
power electronics in power systems, 
an important gap was bridged between 
technologies (e.g., ICT, smart sensing, 
power electronic equipment, and re­
newable energy sources), disciplines 
(e.g., consumers and producers inside 
the liberalized electricity market en­
vironment), and domains (e.g., elec­
trical, thermal, telecommunication, 
energy storage, and market parties). 
Industrial electronics is the enabling 
discipline. Its power electronics, intel­
ligent and distributed algorithms, and 
automation technology transform the 
power system from a static, dedicated 
machine into a flexible, agile platform 
where functions are software-defined 
and where applications are much more 
complex than just pumping energy 
from A to B. Enhancing the power sys­
tem with industrial electronics leads 

Cosimulation 
of Intelligent 
Power Systems
Fundamentals, Software Architecture, Numerics, and Coupling

PETER PALENSKY,  
ARJEN A. VAN DER MEER,  
CLAUDIO DAVID LÓPEZ,  
ARUN JOSEPH, and KAIKAI PAN

Authorized licensed use limited to: TU Delft Library. Downloaded on April 07,2021 at 10:47:41 UTC from IEEE Xplore.  Restrictions apply. 



march 2017  ■  IEEE industrial electronics magazine  35

©
is
to

c
k
p
h
o
to

.c
o
m
/w

u
t
w
h
a
n
f
o
to

Authorized licensed use limited to: TU Delft Library. Downloaded on April 07,2021 at 10:47:41 UTC from IEEE Xplore.  Restrictions apply. 



36  IEEE industrial electronics magazine  ■  march 2017

to cyberphysical or intelligent power 
systems [1].

The increasing cyberphysical na­
ture of the power system requires re­
thinking how its behavior should be 
addressed in planning and operation 
studies. Traditionally, interactions are 
addressed by simulating the subsys­
tem of interest in detail—usually for a 
particular domain—while simplifying 
the remaining parts. This is the cur­
rent approach, for instance, for power 
electronic devices. Such treatment, 
however, can lead to problems since 
the lack of detail in the characteris­
tics of the overall system disregards 
underlying interactions. In intelligent 
power systems, therefore, phenomena 
need to be addressed holistically, be­
cause the reactions to events in one 
particular domain are now spread 
across multiple domains and cannot 
be safely simplified or disregarded.

The functionality needs of holisti­
cally analyzing intelligent power sys­
tems unfortunately clash. On the one 
hand, the system is heterogeneous in 
nature, which requires a method that 
can generically set up and process dif­
ferent models representing this hetero­
geneity. On the other hand, there is a 
need to represent each phenomenon 
of interest accurately (i.e., in terms of 
modeling detail) and efficiently (i.e., 
computationally and in terms of the 
time needed).

Heterogeneous systems can be ana­
lyzed through a number of approaches 

(Table 1), each with pros and cons. Ex­
periments are often too expensive in 
the intelligent power systems domain, 
which limits the simulation runs to real 
time. General purpose multidomain 
simulation tools, however, have the ca­
pability of simulating heterogeneous 
components and small systems. Once 
the interactions in intelligent power 
systems become complex, they will 
not work correctly anymore because 
of scalability constraints.

The second functionality require­
ment (i.e., computational efficiency and 
accuracy) might be met in a specialized, 
optimized monolithic environment. For 
instance, specialized power system 
simulations have been developed over 
the past decades and numerically opti­
mized for particular purposes (e.g., load 
flow, dynamics, and transients). The 
same holds for telecommunication sim­
ulations. Unfortunately, this is true only 
for nonheterogeneous models. Model­
ing communication systems in power 
system simulators (or vice versa) leads 
to brutal simplifications and is often not 
possible at all.

It is therefore time to move toward 
simulation platforms that can handle 
multidomain systems with reason­
able detail and speed. Coupled simu­
lations, known as cosimulations, aim 
to fulfill the functionality needs by 
modeling multidomain systems using 
multiple simulation tools that act as a 
single integral simulation platform for 
the study [2].

A supposedly simple example of a 
hybrid system in the power domain is 
electric vehicle charging [Figure 1(b)]  
Not only behavioral and electric do­
mains need to be combined, but fun­
damentally different modeling ap­
proaches may also be required within 
one domain. Batteries might best be 
modeled with a universal modeling 
language like Modelica, the distribu­
tion grid has specialized simulators 
and models, and power electronics 
have yet different ones. Squeezing all 
that into one piece of modeling and 
simulation software would require sim­
plifications of unknown consequences 
and great effort.

Cosimulation [Figure 1(a)], on the 
other hand, works with specialized 
software packages that use validated 
model libraries and tailor-made solv­
ers. A multiagent simulator might be 
the best choice to describe market 
players and market rules. Power elec­
tronics and their controls will be in 
another platform. The same applies to 
the distribution grid and the battery. 
The choice of tools depends on the 
required level of detail. If individual 
driving choices and their interdepen­
dencies are important, then a detailed, 
multiagent-based simulation might be 
necessary. If only their collective be­
havior is needed, a statistical model 
will be sufficient. During the analysis, 
these requirements can change, which 
is fully supported by a cosimulation 
setup. With this, the model choice is 
not limited to a single tool; rather, it is 
natural to pick the most appropriate 
tool for the given simulation questions. 
Models can even be encapsulated, pro­
viding privacy (two market players or 
two system operators can run joint 
simulations without sharing internal 

TABLE 1 – THE ALTERNATIVES FOR ANALYZING INTELLIGENT, INTEGRATED POWER SYSTEMS.

ANALYSIS METHOD PROS CONS 

Conduct real-world experiments Reliable results, no need to validate models Only real-time behavior, only for small systems, 
potentially expensive 

Map all system behavior into one modeling domain Simple software structure Simplifications and potentially lossy and inaccurate 
translation for foreign models 

Use a universal modeling language (multidomain) Flexibility, ease of use Bad scalability for systems 

Couple a heterogeneous set of submodels Well-suited tools and languages Complex software coupling 

Enhancing the power system  
with industrial electronics leads to cyberphysical  
or intelligent power systems.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 07,2021 at 10:47:41 UTC from IEEE Xplore.  Restrictions apply. 



march 2017  ■  IEEE industrial electronics magazine  37

information). Splitting systems into sub­
models also allows for distributed simu­
lation to improve performance. Finally, 
the method allows multidisciplinary 
teams to work together and combine 
their knowledge.

Basic Concepts of Cosimulation
A cosimulation is composed of a set 
of coupled simulators that cooperate 
with each other. Each simulator has 
its own solver and works simultane­
ously and independently on its own 
model. The simulators are coupled by 
dynamically connecting the models 
using their input and output variables, 
so that the output of one simulator be­
comes the input of the other and vice 
versa. The variable exchange, time 
synchronization, and execution coor­
dination are, in the most general case, 
facilitated in runtime by a so-called 
master algorithm, which orchestrates 
the entire cosimulation. The basic 
composition of a cosimulation is shown 
in Figure 2.

The Simulator
A simulator is defined as a software 
package that contains the model of a sys­
tem (e.g., a power system or a commu­
nication network) and a solver, which 
carries out calculations based on the 
model and on input variables. Togeth­
er, the model and the solver, and thus 
the simulator, allow predicting the be­
havior of a real system under a set of 
specified conditions. Simulators typi­
cally provide functionality to facilitate 
the development of the models in the 
domain in which they specialize. For 
example, power system simulators 
provide a method to describe standard 
components in terms of a set of physi­
cal parameters and a method to define 
the way components are interconnect­
ed. It is the simulator’s job to take these 
descriptions and transform them into 
equations that can be processed by the 
solver. In this way, any simulator that 
specializes in a certain domain can 
implement a modeling method that is 
most suitable for that specific domain.

The models that can be derived 
from different subsystems in an intel­
ligent power system can be most di­
verse. In the case of the power system, 

the models can be purely algebraic (as 
with steady-state simulations), purely 
composed of differential equations (as 
with electromagnetic transients and 
circuit simulations), or a combination of 
algebraic and differential equations (as 
with transient stability simulations that 
focus on the electromechanical phe­
nomena of rotating generators). Com­
munication networks and markets are 
in turn modeled as discrete event sys­
tems. Other parts might be described 
with the finite element method or via 
behavioral models.

Cosimulation Master Algorithm
The task of a master algorithm is 
threefold:

■■ to set up and initialize the simula­
tors (i.e., provide compatible start­
ing conditions)

■■ to synchronize the time of the sim­
ulators throughout the simulation

■■ to exchange variables and events 
between the simulators.
The master algorithm leads all the 

simulators from the start through­
out the simulation time. Upon start­
ing, the models are initialized, and 

communication links (also referred 
to as interfaces) to the simulators are 
established. The model time is then in 
the hands of the master algorithm.

Once the communication links be­
tween the master and each simulator 
have been established and each simu­
lator has been initialized (with model 
parameters, initial conditions of differ­
ential equations, and so on), the mas­
ter assumes the role of stepping each 
simulator from one so-called commu­
nication point to the next. Individual 
simulators experience each time step 
between communication points (also 

Cosimulation

Master
Algorithm

Simulators

Model Solver

FIGURE 2 – The basic composition of a 
cosimulation.

Energy Market Simulator
Simulated System

Distribution
Grid

Simulator

Power
Electronics/

Controls
Simulator

Real System

Battery
Simulator

Car
Usage

Simulator

Communication
Network
Simulator

(a)

(b)

FIGURE 1 – A typical setup for cosimulating a complex system.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 07,2021 at 10:47:41 UTC from IEEE Xplore.  Restrictions apply. 



38  IEEE industrial electronics magazine  ■  march 2017

known as macro time steps) as a sort of 
full simulation; that is, they receive input 
variables and a simulation duration in 
the beginning and then start simulating 
autonomously. At every communication 
point, the simulators exchange inter­
model variables. Then, the master algo­
rithm informs all the simulators about 
the next communication point, and each 
simulator proceeds until then. Once the 
last communication point is reached, 
the master algorithm ends the cosimu­
lation. The interaction between the 
cosimulation master and each simulator 
is depicted in Figure 3.

Simulator Synchronization
Inside each macro time step, each sim­
ulator is allowed to proceed according 
to its own requirements. Simulators 
can, therefore, carry out a series of 
so-called micro time steps inside each 
macro time step, as shown in Figure 4. 
In most cases, the macro time step is 
chosen to be constant, but it is also 
possible to control its size at run time 
to increase accuracy and improve com­
putational performance. The size of 

the micro time step can differ between 
simulators (compare simulators 1 and 
2 in Figure 4) and can even be variable 
(see simulator 2 in Figure 4).

The breaks at the communication 
points and the associated communi­
cation take time. The choice of macro 
step size is therefore crucial for the 
performance of the cosimulation. If 
one submodel has a small micro step 
size and its variables are relevant for 
other submodels, it will slow down all 
the other simulators by imposing a 
small communication step size.

The synchronization needs for 
each cosimulation depend on the in­
volved domains and their respective 
modeling method. The major param­
eters here are

■■ the test criteria that need to be met 
(e.g., qualitative behavior or valida­
tion of controls)

■■ the time frame of interest for the 
interactions between the modeled 
subsystems; for instance, market 
or tap changing commands have a 
much longer time frame of interest 
than voltage control and fault ride-

through of converter interfaced 
generation

■■ the type of solver in both subsys­
tems (i.e., differential algebraic ver­
sus fully discrete or continuous)

■■ practical considerations, such as 
license availability and black-box 
modeling, that limit the choice of 
tools to be applied and hence re­
strict the freedom in synchroniza­
tion alternatives.

A Software Perspective 
on Cosimulation
Software packages for simulating fu­
ture energy systems face several chal­
lenges. Two important ones are the 
potentially large size of the systems 
(the scalability challenge [3]) and the 
potentially very different parts of the 
subsystems (the heterogeneity chal­
lenge [4]).

An example of a scalability prob­
lem is a vertically integrated view of 
the power system. The transmission 
network and its distribution networks 
are considered as a single integral part 
and are consequently modeled in the 
same system. This leads to a large 
number of elements and time-consum­
ing dependencies when simulating its 
behavior. It can be approached by

■■ simplifying the model (e.g., through 
averaged representation of power 
electronic devices or through net­
work reduction)

■■ choosing a faster numerical solver 
(e.g., adaptive time step sizes)

■■ providing more computational pow­
er (e.g., real-time simulation of high-
voltage dc systems).
Model simplifications are accept­

able as long as the user knows the 
price that must be paid for the simplifi­
cations. Quantitative figures on lost be­
havior or frequency limits are needed 
to decide if a simplification is accept­
able for a given study. Reducing an 
eighth-order electric machine model 
to a second-order model, for instance, 
would remove details that might be im­
portant for certain analyses. Another 
example is the adoption of an averaged 
grid interface for a converter model, 
impairing the accuracy of its interac­
tions with the ac side, predominantly 
during voltage unbalances and valve 

Simulator Simulator Simulator

SSS

M M M

Cosimulation Master

Simulator

Solver

Model

Stepping Variables

FIGURE 3 – The interaction between the cosimulator master algorithm and the simulators  
(S = solver; M = model). 

Simulator 1

Simulator 2

Macro
Time Step

Micro
Time Step

Data
Exchange

t

t

FIGURE 4 – An illustration of micro and macro time steps.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 07,2021 at 10:47:41 UTC from IEEE Xplore.  Restrictions apply. 



march 2017  ■  IEEE industrial electronics magazine  39

blocking—crucial information that is 
lost during model reduction.

Using a faster numerical solver also 
has limits. Some solvers are special­
ized for certain problem categories 
and might even require a special mod­
eling method. Depending on whether 
the model contains partial differen­
tial equations, limiters, or nonlinear 
parts, the choice of solvers narrows, 
and their speed is determined only by 
their implementation.

One way to increase computational 
power is to use faster computers, i.e., 
with more memory and cache, faster 
processing unit, and so on. The passage 
of time is on our side in this respect: 
computers grow faster every year. An­
other way is to separate the problem 
into subproblems that can be solved 
in parallel. This can be an easy task 
in the case of parallel computing: the 
computational problem consists of do­
ing the same analysis many times with 
different parameters [5]. The analyses 
can easily be done on separate ma­
chines, without any communication or 
synchronization during the simulation 
runs. However, the problem is more 
complex if the model itself is split. The 
submodels have mutual dependencies, 
and dynamic variables might require 
communication between the models at 
every time step of the simulation run.

There is heterogeneity when the 
power system dynamically interacts 
with other systems (e.g., the heat net­
work, markets, and so forth) whose 
modeling method is fundamentally 
different than the chosen method for 
the power system. This is also the 
case for smart grids: the digital con­
trols require discrete event handling, 
while the grid infrastructure is proba­
bly modeled via differential equations. 
An instance of such controls is the an­
cillary services and grid support in 
distributed generation, managed by a 
centralized controller. Even within the 
same physical domain, it is possible to 
have a heterogeneous setting if parts 
of the power system are modeled in 
transient stability and selected parts 
by electromagnetic transients to have 
a detailed view of some specific com­
ponents. Heterogeneity of models can 
be approached by using a universal 

modeling platform or via cosimulation 
(see Table 1).

Figure 5 shows the four fundamen­
tal options of solver versus model:
1)	 The trivial case involves one solver 

and one model.
2)	 Parallel simulation means that 

the model is still modeled with 
one tool and one language be­
fore it is jigsawed into pieces for 
parallel solving. The solvers in this 
case might be identical, or even 
have different time steps or solving 
algorithms. A prominent example 
of parallel simulation is the real-
time digital simulator [6], where 
one model is compiled onto mul­
tiple computational targets and 
executed in parallel on dedicat­
ed hardware.

3)	 Hybrid simulation involves multiple 
types of modeling environments 
and languages to make the model­
ing task easier. However, the mod­
els still form a monolithic unity that 
can be solved by a single solver. 
The only advantage is that the in­
dividual parts or aspects of the 
model receive a specialized mod­
eling method (e.g., graphical, dif­
ferent languages and libraries, and  
so forth).

4)	 Cosimulation combines the advan­
tages—but also the challenges—of 
the other three.

Simulator Interfacing
The simulators that compose a co­
simulation need to exchange data with 
each other during various stages of 
the simulation workflow (e.g., model in­
stantiation, initialization, runtime, and 
data export). The interface between 
them can be implemented via shared 
memory, if all the simulators can ac­
cess one common memory, or via net­
work communication protocols. For 
instance, various simulation packages 
offer a number of semistandard inter­
faces based on certain proprietary 
application program interfaces (APIs) 
[7], object linking and embedding for 
process control, or transmission con­
trol protocol (TCP) socket interfaces. 
One interface type that seems to be 
evolving as the standard for coupling 
physical models and simulators is the 
functional mockup interface (FMI) [8]. 
The FMI offers a low-level interface for 
two purposes: model exchange and co­
simulation. Both are equally useful, de­
pending on what needs to be achieved.

The FMI for model exchange (Fig­
ure  6) exposes a compiled numerical 

N
um

be
r 

of
 S

ol
ve

rs >1

1

1 >1
Number of Models

Simulation

Parallel
Simulation

Cosimulation

Hybrid
Simulation

FIGURE 5 – The four types of simulation: normal (i.e., monolithic), parallel, hybrid, and cosimulation.

The simulators that compose a cosimulation  
need to exchange data with each other during 
various stages of the simulation workflow. 

Authorized licensed use limited to: TU Delft Library. Downloaded on April 07,2021 at 10:47:41 UTC from IEEE Xplore.  Restrictions apply. 



40  IEEE industrial electronics magazine  ■  march 2017

model to a solver/simulator with a stan­
dard interface to initialize the states, 
execute a time step, determine deriva­
tives, and so forth. Wrapping a model 
into such an interface results in a func­
tional mockup unit (FMU), a convenient 
way in which component manufactur­
ers can provide their customers with a 
dynamic, standardized model of their 
product without jeopardizing their in­
tellectual property. Ideally, the custom­
er would plug this FMU into the bigger 
system model to verify if that particular 
component interoperates well with the 
others in the intended system.

The FMI for cosimulation (Figure 7) 
goes a step further and also packs the 
solver into the FMU. This FMU acts as 

a cosimulation slave, orchestrated by a 
master algorithm, which cares for such 
areas as synchronization and variable 
exchange. An FMI for cosimulation also 
allows the coupling of separate tools. In 
this case, the FMU consists of an FMI 
wrapper around the slave tool (right 
upper unit in Figure 7), which in turn 
contains the model of interest (plus a 
solver). The former bears the additional 
advantage that it exempts the user from 
possessing a dedicated license for the 
slave simulator.

Two important concepts with an 
FMI are FMU import (where an exist­
ing FMU is plugged in and used in a su­
permodel) and export (where a model 
is compiled into an FMU to be then 

imported somewhere else). If the mod­
el or tool to be wrapped is a black-box 
tool (closed source, binary only), the 
wrapping can be computationally very 
inefficient. In the extreme case, every 
simulation step requires a reinitialization 
and restart of the tool.

The FMI originated in the automo­
tive industry and European projects 
and has now been further developed in 
a Modelica Association Project (www.
fmi-standard.org). It is based on C code 
and XML files that describe the inter­
face and the models. The FMI is current­
ly supported by 84 simulation tools, and 
the standard is published in a Creative 
Commons and a Berkeley Software Dis­
tribution style license. 

Cosimulation Orchestration
Once a set of simulations is defined, 
it is the art of cosimulation to coordi­
nate and orchestrate their execution 
using a master algorithm that propa­
gates events and shared variables and 
synchronizes model time. A detailed 
description of cosimulation master al­
gorithms is presented in [9].

Synchronizing the advancement 
in model time requires direct access 
to the integrators or schedulers of the 
individual simulation packages. Often, 
one of the packages acts as a master 
(Figure 8), especially if only two simu­
lators are coupled or if the simulators 
form a star topology. The more abstract 
and general case, however, is when a 
dedicated master algorithm (Figure 3) 
coordinates the solvers.

The master algorithm therefore has 
a number of interfaces. In the case of 
an FMI, the FMI API services are used 
to perform the time stepping and the 
variable exchange. Often, the master al­
gorithm also contains the user interface 
and/or a scripting engine that can auto­
mate the simulation experiments. Some 
cosimulation settings are made more 
sophisticated by allowing the simulators 
more freedom to proceed in time. If a 
synchronization need is discovered too 
late, such simulators must be able to roll 
back in time, as it were, to synchronize 
at the correct moment. Not many legacy 
simulators have this ability, which is 
why synchronization needs to be done 
the safe way, i.e., at every step.

Cosimulation

FMU

FMU

FMU

Simulation
Tool +
Model

Solver

Solver

Model

Modelu

u

u

u

u

y

y

y

y

uy

y

FIGURE 7 – The use of the cosimulation variant of the FMI (u = input; y = output).

User Interface

Initial States V

FMU

u

t x

y

x, m, z
.

Solver

p : Parameters
u :  Input
v : Exposed Variables
x : Continuous States
y : Output
z : Events

m : Discrete States
t : Time

FIGURE 6 – The model exchange variant of the FMI.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 07,2021 at 10:47:41 UTC from IEEE Xplore.  Restrictions apply. 



march 2017  ■  IEEE industrial electronics magazine  41

The connection between the simu­
lators and the master might be on the 
same machine, using shared memory 
or messages, or it might be network 
based so that the individual parts of 
the software setting can be distributed 
onto separate machines. The high-lev­
el architecture (HLA) [10] is an exam­
ple of a complete specification of a cen­
tral entity (in this case the Run-Time 
Infrastructure) and interaction rules 
on how to initialize, start, synchro­
nize, and stop potentially distributed 
simulators (the so-called federates). 
There are several commercial and free 
HLA implementations available. Using 
these packages solves many of the 
issues arising with coupling simula­
tors, such as synchronization, service 
lookup, initialization, and distribut­
ed computing.

What we might call the philosophy 
of the master algorithm strongly deter­
mines the principles of synchroniza­
tion. A simple master algorithm would 
sort and schedule simulation events by 
time and execute the associated simula­
tor code accordingly while exchanging 
shared variables. More sophisticated 
platforms like Ptolemy II [11] or Mosaik 
[12] provide even more features, such 
as hybrid models or scenario handling. 
Scenarios are sets of parameters that 
might be varied between multiple simu­
lation runs. The simulation then serves 
as a utility function of an optimization 
process (see Figure 9).

Simulations of smart energy sys­
tems can be quite computationally ex­
pensive and time consuming [13]. If 
the optimization requires thousands 
of simulation runs to optimize the 
smart grid parameters, the entire idea 
of simulation-supported optimization 
becomes infeasible. A way out of this is 
to enhance the parameter choice dur­
ing the optimization process. Design 
of experiments, a method dating back 
to the 1930s, uses statistical methods 
to support the choice and variation of 
parameters so that only a small sub­
set of simulations (i.e., experiments) 
is needed to browse through all po­
tential options [14]. It is thus not suffi­
cient just to couple the simulators; the 
scripting and optimization details are 
of equal importance.

Practical Considerations
An important aspect with regard to 
software for cosimulation settings is 
their openness for interfacing. A simu­
lator can 

■■ be a black box (i.e., closed source 
with no cosimulation interfaces) 
that can at best be scripted only to 
batch-perform simulations

■■ have proprietary interfaces or APIs 
(which may be usable for simple 
cosimulation)

■■ have open interfaces like an FMI 
that allow software integration 
and optimization

■■ be open source, so that all details 
are accessible and where even 
the solver can be interfaced and 
controlled.

Often, software packages are avail­
able only for one particular operat­
ing system, so a generalized inter­
face cannot be attained using shared 
memory. This prompts the user to 
implement the master interfaces via 
communication protocols such as the 
TCP/IP stack. The overhead and la­
tency of these communication proto­
cols can dramatically slow down the 
system simulation. Closely coupled 
subsystems should therefore be host­
ed on the same physical machine, 
which is often not possible with a mix 
of heterogeneous closed-source soft­
ware. The ideal case is a combination 
of the last two variants: a standard­
ized interface in an open-source soft­
ware package.

Scenario

Initial States
Parameters
Input Time

Series

Create

Optimizer

Strategy
Utility Function

Scripting
Engine

ResultSimulation

Model(s)
Solver(s)

Initialization

FIGURE 9 – A flowchart of simulation runs.

Simulator 2

Solver Solver Solver

ModelModelModel

Master

Simulator 1 Simulator 3

FIGURE 8 – One central simulator acts as master.

Once a set of simulations is defined,  
it is the art of cosimulation to coordinate  
and orchestrate their execution. 

Authorized licensed use limited to: TU Delft Library. Downloaded on April 07,2021 at 10:47:41 UTC from IEEE Xplore.  Restrictions apply. 



42  IEEE industrial electronics magazine  ■  march 2017

Another limitation of black-box, 
legacy simulators is that they usu­
ally do not offer a sophisticated API 
for simulation control. Step sizes can­
not be chosen, and rollback is practi­
cally impossible. In the worst case, 
they can be used only in an initialize–
simulate–terminate fashion; that is, 
the individual communication steps 
are full simulation runs for them, and 
system states need to be stored and 
restored in between, which is the 
slowest way possible for interfacing 
other simulators.

Numerical Solution of  
Coupled Models
Each model in a cosimulation is solved 
independently using an individual nu­
merical solver. This gives rise to a se­
ries of numerical challenges that have 
to do with lower results accuracy and 
numerical errors that continuously in­
crease as the cosimulation progresses 
in time. To illustrate the numerical 
challenges that arise when coupling 
continuous models (e.g., physical com­
ponents, systems, and controls) by 
having them exchange their output, 
let us consider a case with two sub­
systems modeled through differential 
algebraic equations (DAEs):

( , , ), ( , , ),t tx f x u x f x u1 1 1 1 2 2 2 2
. .
= = 	 (1)

( , , ), ( , , ),t tgy g x u y x u1 1 1 1 2 2 2 2= = �(2)

where ui  are the input vectors, xi  
are the vectors of state variables, yi   

are the output vectors, fi  and gi  are 
vector-valued functions, and t  repre­
sents the time, for subsystems , .i 1 2=  
If both subsystems are coupled into 
one system so that the output of 
each subsystem becomes the in­
put of the other, i.e., that the cou­
pling conditions

	 ,u y u y1 2 2 1= = � (3)

are fulfilled, two main approaches can 
be followed to simulate the coupled 
system. In the traditional simulation ap­
proach, (1) and (2) are composed into 
one system of DAEs according to (3), 
using the chosen simulation tool, and 
are then solved with only one numerical 
solver so that system output is calcu­
lated for a set of discrete points in time 

{ , , }.t t t t tt k k K1 2 1f f= +  In this case, 
(1)–(3) are strongly coupled and are 
fulfilled at every point in t  [15]. When 
subsystems are strongly coupled, the 
numerical stability of the simulation 
(i.e., the assurance that the local trun­
cation error of the numerical solution 
remains constrained as simulation time 
progresses) depends exclusively on the 
properties of the model and the chosen 
solver [16].

In a cosimulation, (1)–(3) are weak­
ly coupled, since each subsystem is 
solved independently and outputs are 
exchanged between subsystems only 
at the communication points in time 
defined in t. Within each macro time 
step ,t tk k 1" +  each subsystem can be 
solved using several micro time steps 

that do not lead to output exchanges 
but that do contribute to the accuracy 
of the calculated outputs at .tk 1+  When 
subsystems are weakly coupled, only 
the fulfillment of (3) is guaranteed at 
the macro time steps defined in t, but 
not that of (1) and (2). This can mani­
fest itself through either numerical 
instabilities or inaccurate results [15]. 
Numerical stability is regarded in this 
context as the stability of the solution 
for a nonzero integration step.

The reason for these numerical 
instabilities and/or inaccuracies lies 
in the appearance of algebraic loops 
between subsystems and the meth­
ods used to overcome them. In fact, 
zero-stability of cosimulations is guar­
anteed as long as no algebraic loops 
exist [16]. Zero-stability refers to a so­
lution being stable when the integra­
tion step approaches zero. Figure 10 
shows a block diagram of the coupled 
subsystems described by (1)–(3) that 
makes the algebraic loop visible. For 
subsystem 1 to advance from tk  to 

,tk 1+  its solver requires input values 
at ,tk 1+  which are only available if sub­
system 2 has already produced an out­
put for .tk 1+  However, subsystem 2 is 
unable to produce this output, since it 
also depends on the output of subsys­
tem 1 at tk 1+  to do so.

Several methods for overcoming 
algebraic loops in cosimulations exist, 
which in most cases have to do with 
the sequence in which the subsystems 
exchange values with each other, the 
choice of variables to exchange, and 
the placement of the dynamics in the 
coupling equations. However, these 
methods may severely affect the qual­
ity of the results and the tradeoffs 
between computational performance 
and accuracy or stability that are to 
be made.

Communication Sequences
Communication sequences describe 
the order in which simulators ex­
change values. These sequences are 
typically classified in parallel and se­
rial depending on whether the simu­
lators that compose the cosimulation 
can run in parallel or if they must be 
executed one after the other. The con­
sequences of choosing one type or the 

Subsystem 1

Subsystem 2

u1

u2

f1

f2

x1
.

x2
.

x1 g1
y1

y2 x2g2

e

e

FIGURE 10 – An algebraic loop in the cosimulation of the two subsystems from (1)–(3).

Authorized licensed use limited to: TU Delft Library. Downloaded on April 07,2021 at 10:47:41 UTC from IEEE Xplore.  Restrictions apply. 



march 2017  ■  IEEE industrial electronics magazine  43

other go beyond the computational 
performance of the cosimulation, since 
each communication sequence over­
comes algebraic loops in a slightly dif­
ferent way.

Parallel Sequence
In parallel communication sequenc­
es, also known as the Jacobi type, all 
the subsystems that compose the co­
simulation are solved in parallel and 
simultaneously exchange values at 
discrete points in time. A diagram de­
picting this sequence for two subsys­
tems is shown in Figure 11(a). Since 
each subsystem requires the output 
of the other at tk 1+  to advance from tk  
to ,tk 1+  the output of each subsystem 
at tk 1+  is extrapolated from the out­
put at .tk  The simplest way to achieve 
this is through zero-order hold ex­
trapolation. That is, the output at tk 1+  
is assumed to be the same as at .tk  
Among the extrapolation methods 
typically found in the literature are 
zero-, first-, and second-order hold 
extrapolation [17] and polynomial ex­
trapolation [15].

The advantage of the parallel se­
quence is that the simulators can be 
executed on distributed computers, 
which can aid the overall computational 
performance of the cosimulation. The 
main disadvantage is that each simu­
lator must predict the future output 
of the remaining simulators by means 
of extrapolation, making the accuracy 
and stability of the cosimulation com­
pletely dependent on the accuracy of 
this prediction [18].

Serial Sequence
In serial communication sequences, 
also known as the Gauss–Seidel type, 
subsystems are solved one after the 
other. A diagram depicting this se­
quence for two subsystems is shown 
in Figure 11(b). Since subsystem 1 re­
quires the output of subsystem 2 at 
tk 1+  to advance from tk  to ,tk 1+  the 
output of subsystem 2 at tk 1+  is ex­
trapolated from its output at .tk  Once 
subsystem 1 has advanced to ,tk 1+  its 
output becomes available to subsystem 
2, which can now advance to tk 1+  with­
out performing extrapolations. The fact 
that this sequence requires only one 

extrapolation usually results in slightly 
more accurate results than those ob­
tained with the parallel sequence, with 
the disadvantage that since the simula­
tors are executed one after the other, a 
greater number of coupled simulators 
results in longer execution times [15].

Iterative Sequences
Iterative sequences can be derived 
from both parallel and serial sequenc­
es. Figures 12 and 13 show diagrams of 
the iterative version of each sequence 
type. Although only two iterations 
are displayed in the figures, these se­
quences can be extended to any num­
ber of iterations. In practice, iterations 
are carried out until a convergence 
criterion is fulfilled. Depending on 
how strict the convergence criterion 
is, strong coupling between subsys­
tems can be enforced through iterative 
sequences, which yields much more 
accurate results than noniterative 
sequences. Iterative sequences have 
also been shown to be zero-stable as 
long as zero-stable solvers are used 
for each subsystem [16]. It is easy to 
note that although iterative sequences 
have better accuracy and numerical 
stability properties than their nonit­
erative counterparts, a much higher 

computational effort is required to run 
the cosimulation.

Due to the higher accuracy of se­
rial sequences [15], iterative serial se­
quences have a higher convergence 
rate than parallel iterative sequences 
[19]. The practical implementation of 
iterative sequences imposes the re­
quirement that all the simulation tools 
involved in the cosimulation must have 
a time-rewinding mechanism so the 
same time step can be solved more 
than once. However, it is uncommon to 
find commercial simulators that offer 
this feature.

Coupling Variables and Models
The choice of coupling variables (i.e., 
the variables that are exchanged be­
tween models) or, equivalently, the 
way a system is partitioned into sub­
systems influences the accuracy and 
stability of the cosimulation. For exam­
ple, in the case of mechanical systems, 
the choice of different combinations of 
force and displacement variables and 
the numerical consequences of each 
combination have received much at­
tention [15], [20].

As discussed in the previous sub­
section, when subsystems are coupled 
as described by (1)–(3), extrapolation 

tk tk+1

3

3

4

1: Output Exchange

2: Output Extrapolation to tk+1

3: Solve Until tk+1

From 4: Repeat for Next Time Step

2

2

1

Subsystem 1

Subsystem 2

(a)

tk tk+1

3

4

5

61

2
2: Output Extrapolation to tk+1

4: Output Sent to Subsystem 2

1: Output Sent to Subsystem 1

5: Solve Subsystem 2 Until tk+1

3: Solve Subsystem 1 Until tk+1

From 6: Repeat for Next Time Step

(b)

FIGURE 11 – The communication sequences for cosimulation (weakly coupled) for one macro 
time step t tk k 1" + : (a) parallel (Jacobi) type and (b) serial (Gauss–Seidel) type.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 07,2021 at 10:47:41 UTC from IEEE Xplore.  Restrictions apply. 



44  IEEE industrial electronics magazine  ■  march 2017

of the inputs is required, which intro­
duces additional errors into the nu­
merical solver of each subsystem. If 
the subsystems are coupled so that 
the coupling variables exhibit weak 
dynamic interactions at the chosen 
coupling point, the effect of the er­
rors introduced by extrapolations on 
the overall cosimulation accuracy can 
be minimized. This is exemplified in 
[21] with the linear circuit shown in 
Figure 14(a).

Let us consider a case where R2  
and C2  are large. The voltage v2  can­
not change quickly and would there­
fore have little influence on the way 
current i2  changes, so the behavior of 
i2  would be mostly influenced by .v1  
The same can be said about the influ­
ence of i2  on .v2  Since the dynamic 
interaction between i2  and v2  is weak, 
having i2  and v2  as coupling variables 
would be beneficial for mitigating the 
influence of extrapolation errors on 
the results. In this case, the mono­
lithic model from Figure 14(a) could 
be cosimulated as in Figure  14(b). 
The model employed to couple both 
subsystems is composed of a volt­
age source of value v2  and a current 
source of value i2  (both shown in 
dashed lines). In this case, v2  is deter­
mined by the subsystem on the right 
and sent to the voltage source on the 
left, while i2  is determined by the sub­
system on the left and sent to the cur­
rent source on the right. This can be 
done following any of the communica­
tion sequences discussed in the previ­
ous subsection.

In [16], the possibility of coupling 
subsystems by adding artificial dy­
namics to the coupling equations is 
discussed. A simple way to achieve 
this is to add a delay tD  in the cou­
pling equations, so the two equations 
in (3) become

( ) ( ), ( ) ( ).t t t t t tu y u y1 2 2 1D D= - = - 	
� (4)

This is equivalent to using zero-order 
hold extrapolation of the inputs, if tD  
is chosen to be the size of one macro 
time step.

Although artificial dynamics break 
existing algebraic loops, they modify 

tk tk+1 tk+2

1: Output Sent to Subsystem 1

4: Output Sent to Subsystem 2

2: Output Extrapolation to tk+1

3: Solve Subsystem 1 Until tk+1

5: Solve Subsystem 2 Until tk+1

6: Output Sent to Subsystem 1

9: Output Sent to Subsystem 2

7: Output Extrapolation to tk+1

8: Solve Subsystem 1 Until tk+1

10: Solve Subsystem 2 Until tk+1

From 11: Repeat for Next Time Step

Subsystem 1

Subsystem 2

2

1

3
12

13

14

15

4

5

6

87

9

10

11

First Iteration Between tk and tk+1

First Iteration Between tk+1 and tk+2

Second Iteration Between tk and tk+1

FIGURE 13 – The iterative (strongly coupled) communication sequences for cosimulation—serial 
(Gauss–Seidel) type—for one macro time step t tk k 1" + .

tk tk+1 tk+2

Subsystem 1

Subsystem 2

First Iteration Between tk and tk+1

First Iteration Between tk+1 and tk+2

Second Iteration Between tk and tk+1

1: Output Exchange

4: Output Exchange

2: Output Extrapolation to tk+1

5: Output Extrapolation to tk+1

3: Solve Subsystems Until tk+1

6: Solve Subsystems Until tk+1

From 7: Repeat for Next Time Step

2

2

5

5

6

6

1

3

3

4

4
7

7

8

8

9

9

FIGURE 12 – The iterative (strongly coupled) communication sequences for the cosimulation—
parallel (Jacobi) type—for one macro time step t tk k 1" + .

Authorized licensed use limited to: TU Delft Library. Downloaded on April 07,2021 at 10:47:41 UTC from IEEE Xplore.  Restrictions apply. 



march 2017  ■  IEEE industrial electronics magazine  45

the dynamic behavior of the original 
model. To avoid these modifications, 
an alternative is to transfer some of 
the dynamics of each subsystem to the 
coupling equations, which gives rise 
to more sophisticated coupling mod­
els than the one shown in Figure 14(b). 
One of the classic methods for achiev­
ing this is the use of the transmission 
line method [22]. The idea behind this 
method is to take advantage of the 
delay associated with waves traveling 
through a transmission line to absorb 
the delay required to break algebraic 
loops between subsystems. Although 
it is straightforward to apply this con­
cept to power systems with long trans­
mission lines, it can be used for other 
types of physical systems as well [23].

Error Estimation and Step-Size Control
The ability to estimate the local trun­
cation error of a cosimulation at run 
time gives insight into the quality of 
the results and allows accuracy and 
performance improvements through 
the implementation of macro step size 
control mechanisms.

Most of the error estimation meth­
ods that have been proposed for co­
simulation are inspired by traditional 
error estimation methods for numeri­
cal differential equation solvers and re­
quire the comparison of two solutions, 
each with a different level of accuracy. 
In [24], a method based on Richardson 
extrapolation is employed. Here, two 
consecutive macro time steps of size h 
are carried out: first, t t t hk k k1" = ++  
and, later, .t t t h2k k k1 2" = ++ +  Then, 
a less accurate solution is obtained us­
ing only one large macro time step of 
size 2h, that is, .t t t h2k k k2" = ++  In 
[25], the embedded methods approach 
is applied to multirate partitioned Run­
ge-Kutta methods. This method con­
sists in evaluating the output of each 
subsystem using polynomial extrapo­
lation of the inputs of two different 
orders, one higher than the other. In 
[26], a method tailored to the predic­
tor/corrector cosimulation approach 
presented in [27] is derived. Here, the 
comparison is carried out between the 
predicted and the corrected solutions.

In all of these methods, if the estimat­
ed error is larger than a user-defined 

tolerance, the macro time step is re­
peated using a smaller macro step size, 
which is time consuming and rather 
difficult, if not impossible, to imple­
ment with most commercial simulation 
tools. Here lies the motivation for the 
method proposed in [15]. This method 
modifies the size of the next macro 
time step based on an estimation of 
the current error. To estimate the er­
ror, the outputs of all the subsystems 
at the current macro time step are 
predicted from previous outputs us­
ing polynomial extrapolation. Once 
the current macro time step is ex­
ecuted and the cosimulation outputs 
become available, they are compared 
to the predicted outputs to derive an 
error estimation.

A completely different approach 
is taken in [28], where the error is es­
timated using a generalized concept 
of energy conservation derived from 
bond graph theory [29]. Here, subsys­
tems are coupled through so-called 
power bonds, which are defined by two 
variables, called a flow and an effort, 
that in the case of electrical systems 
correspond to current and voltage. 
Since the product of flow and effort 
variables corresponds to the energy 
flow (power) through the power bond, 
any discrepancies between the energy 
flow calculated from the cosimulation 
outputs and the one calculated from 
energy conservation are attributed 
to cosimulation inaccuracy and can 
therefore be used to estimate the local 
truncation error.

A macro step size control method 
can be implemented once the local trun­
cation error is estimated through tradi­
tional step size control methods for or­
dinary differential equations (ODEs) so 
that the local error remains within an 
upper and a lower boundary. For exam­
ple, [15] proposes the use of a propor­
tional integral controller, as presented 
in [30]. Since in a cosimulation a differ­
ent local truncation error estimation 
can obtained for the output of each sub­
system, the size of the macro time step 
must be chosen taking into account the 
most demanding of all the subsystems.

Coupling Power System  
and ICT Simulators
The integration of power systems, au­
tomated devices, and ICT gives intel­
ligent power grids the character of a 
cyberphysical system (CPS) [31]. On 
the one hand, ICT-specific features such 
as communication network topology, 
protocols, communication latency, band­
width, information security, and reli­
ability issues intrinsically affect the 
behavior of the power system. On the 
other hand, the power system and its 
features also impact the corresponding 
ICT infrastructure.

There are four variants of how to 
represent ICT in a simulation setup:

■■ Hardware-in-the-loop: The real ICT 
products (telecommunication switch­
es, controllers, and so forth) are used, 
and the setup runs in real time.

■■ Emulated ICT hardware: The real 
binary code (e.g., of switches) is 

Vs

R1

C1 C2

V1
R2

R3

i2

V2

+
–

(a)

Vs C1
C2

R1 V1
R2

R3V2
i2 i2

V2

+
–

+
–

(b)

FIGURE 14 – The subsystem coupling at a point of weak dynamic interaction [21]: (a) the 
monolithic model and (b) cosimulated subsystems.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 07,2021 at 10:47:41 UTC from IEEE Xplore.  Restrictions apply. 



46  IEEE industrial electronics magazine  ■  march 2017

executed on an emulation platform 
that provides the same hardware 
properties, such as memory and 
speed, as the real hardware but al­
lows for flexible reconfiguration. 
Again, the setup runs in real time.

■■ Simulated ICT hardware: The real 
code is executed, and the execu­
tion time of the hardware platform 
is estimated or imitated. This setup 
can run in nonreal time (ideally 
faster than real time).

■■ Full simulation: All ICT elements 
(e.g., switches) are simulated or imi­
tated with proxy code that uses sto­
chastic or other simplified means 
of representing the time-domain 
behavior of the system. This setup 
again runs in nonreal time.
This article mainly covers the last 

variant, full simulation, which opens 
up questions on how to synchronize 
the various parts, especially in a co­
simulation setting.

Combining ICT with a physical sys­
tem leads to a number of dependencies 
that require attention [32]. One impor­
tant example of such dependency is re­
liability analysis. Typically, contingen­
cies in power systems are considered 
as independent events, such as the 
loss of electric components. However, 
intentional cyberattacks and vulner­
abilities from the ICT domain chal­
lenge this assumption, as ICT assets 
could be used to cause damage to the 
electric components in a coordinated 
manner [33].

As in any CPS, the power network 
and its components and the ICT in­
frastructure are two parts of a larger, 
heterogeneous system. Cosimulation 
is currently one of the most popular 
methods to analyze the behavior of 
intelligent power grids.

Modeling and Simulation Challenges
As with all digital systems, commu­
nication networks are modeled as 
a sequence of discrete events (e.g., 

sending and receiving packets, packet 
buffer overflows, and so on), while 
power systems are typically modeled 
as continuous-time functions using 
DAEs, although discrete power system 
events occur as well when the status of 
breakers, switches, and relays change. 
Consequently, a holistic model of a 
smart grid must include continuous 
and discrete aspects.

According to [34], simulation para­
digms can be divided into three time-
management categories:

■■ fixed time-step-size simulation, in 
which the simulation time is dis­
cretized in equal time steps

■■ continuous simulation, which 
commonly applies adaptive time-
step-size control

■■ discrete-event simulation, which 
advances the simulation time only 
when events occur.
Intelligent power grids often need 

multiple models, which need to fit into 
heterogeneous simulation paradigms. 
The ICT part of such a multidomain 
model is normally implemented as a dis­
crete-event simulation, while the power 
system part is included as a continuous 
or fixed time-step-size simulation. As 
mentioned previously, hybrid simula­
tions can be a solution for this problem, 
i.e., single solvers that address mul­
tiple models [35], [36]. However, such 
methods scale badly and hence can be 
used only for component analysis and 
simple-use cases, not for fully fledged 
system studies.

As touched upon before, cosimu­
lation of intelligent power grids, i.e., 
hybrid physical and discrete models 
with multiple solvers, comes with ad­
vantages but also challenges:

■■ The integration of continuous power 
system simulations and discrete-event 
communication network simulation 
needs sophisticated synchronization 
mechanisms. The next subsection will 
present synchronization methods to 
tackle this challenge.

■■ Error estimation and validation of 
cosimulation are a challenge. The 
interdependency of hybrid models 
from the power system and ICT parts 
makes it hard to identify where the 
simulation error comes from. Dif­
ferent synchronization methods in 
cosimulation also impact the simula­
tion accuracy.

■■ The interoperability of the various 
simulators requires standardized 
interfaces (see the HLA and FMI dis­
cussion in the section  “A Software 
Perspective on Cosimulation”).

Synchronization of Discrete 
and Continuous Simulators
When building a cosimulation plat­
form for intelligent power grids, the 
synchronization mechanism between 
the subsystems under consideration 
is one of the performance-dominating 
factors. It has a direct impact on the 
convergence and accuracy of the simu­
lation results.

Time synchronization between con­
tinuous and discrete simulations can 
happen either conservatively or opti­
mistically. Conservative synchroniza­
tion guarantees strict processing of 
logical time by a time stamp order. 
The optimistic alternative allows a vi­
olation of the step-by-step processing 
but needs additional control mecha­
nisms that could detect and recover 
violations [37]. The simulators must 
be capable of rolling back the over­
all simulation time. Unfortunately, 
many power system simulators do 
not possess this functionality [31]. In 
the literature, synchronization meth­
ods are mainly subdivided into three 
categories: point based, event driven, 
and master–slave [38].

Point Based
While the simulation of power sys­
tem dynamics uses a time-stepped ap­
proach, the communication networks 
are typically modeled as discrete 
event systems. One intuitive synchro­
nization method is to use predefined 
synchronization points. As shown in 
Figure 15, individual simulators run 
in parallel and stop at the synchro­
nization points to exchange informa­
tion. The synchronization points are 

The integration of power systems, automated 
devices, and ICT gives intelligent power grids the 
character of a cyberphysical system. 

Authorized licensed use limited to: TU Delft Library. Downloaded on April 07,2021 at 10:47:41 UTC from IEEE Xplore.  Restrictions apply. 



march 2017  ■  IEEE industrial electronics magazine  47

predetermined. However, in most cas­
es, the communication need between 
two simulators is created by events 
generated by one of the models, which, 
in the case of ICT models, may even 
have a stochastic nature [39].

The point-based synchronization 
method may introduce inaccuracies 
in the cosimulation. When system out­
put variables need to be exchanged 
between two synchronization points, 
both subsystems have to wait until the 
next synchronization point. This delay 
introduces error accumulation into the 
simulation and possibly impairs the 
accuracy of the overall simulation re­
sults. A simple solution is to reduce the 
time interval between synchronization 
points, e.g., to exchange data in each 
time step of power system dynamic 
simulation [40]. In [41], an advanced 
point-based synchronization approach 
is proposed, in which the next synchro­
nization point is not predefined but 
given as a parameter to the continuous 
power system simulator.

Event Driven
In [42], a global event-driven cosimula­
tion framework is proposed. The event-
driven synchronization is shown in Fig­
ure 16. It treats each iteration round of 
the continuous power system simula­
tion as discrete events and mixes them 
with communication network events. 
All the discrete events form an event 
queue (as shown in Figure 16) in chron­
ological order. A global event sched­
uler checks the event queue and indi­
vidually handles corresponding control 
for power system events and commu­
nication network events. Both simula­
tors can suspend themselves and yield 
the control back to the scheduler when 
subsequent events occur.

The discrete event specification 
formalism could be used to model 
both the power system and the com­
munication network simulation. It pro­
vides a rigorous mathematical basis 
for simulating hybrid system models 
[43] and is widely used for event-driv­
en synchronization.

Using the event-driven method, 
the time step size of the power system 
simulation significantly impacts the 
overall cosimulation time. Besides, 

the interface between simulators can 
be a performance bottleneck, grinding 
down scalability. In [42], as the sys­
tem scale grows, the simulation time 
increases because of the increased 
number of interactions in the inter­
face. Hence, the performance is highly 
dependent on the capabilities of the 
respective interfaces.

Master–Slave
The third type of synchronization me­
chanism, shown in Figure 17, is a typical 
master–slave configuration that allows 
one simulator (often the discrete-event 
simulator) as a master simulator to 
coordinate the entire cosimulation. In 

Figure 17, the communication network 
simulator (as the master) controls the 
power system simulator (as the slave) 
throughout the simulation process. 
The master starts the simulation at .t0  
When the event at t1  needs the infor­
mation from the slave, the master co­
ordinates the slave to simulate from t0  
to t1  and sends data to the master. For 
the master–slave approach, the syn­
chronization performance is limited by 
the capabilities of the master simulator.  
As discussed in [44], the drawbacks are 
as follows:

■■ Events generated in the slave can­
not be communicated to the master 
immediately.

Communication Network Event Simulation

Event Queue

Power System Dynamic Simulation

Steps:

Events: 1

1

2

2

3

3

4 5

FIGURE 16 – An event-driven synchronization method based on [42].

One way to increase computational power  
is to use faster computers, i.e., with more memory 
and cache, faster processing unit, and so on. 

t

t

Steps:

Start

t0 t1 t2

Events: 1 2 3 4 5

Communication Network Event Simulation

Power System Dynamic Simulation

Synchronization
Point 1

Synchronization
Point 2

FIGURE 15 – The point-based synchronization method.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 07,2021 at 10:47:41 UTC from IEEE Xplore.  Restrictions apply. 



48  IEEE industrial electronics magazine  ■  march 2017

■■ Execution is typically sequential.
■■ Scalability issues inhibit the inte­

gration of an arbitrary number of 
simulators.
The latter can potentially be over­

come if one dedicated master algo­
rithm is used to orchestrate all the 
simulators that act as slaves. All the 
slaves have to tell the master when 
their next event is anticipated. The 
master then picks the time of the ear­
liest event in this list and declares it to 
all the slaves as the next synchroniza­
tion point.

Figure 18 shows an example where 
the master tells slave 2 (the power sys­
tem simulator) the time ,ti1  which is the 
time of the first event in slave 1 (the com­
munication network simulator). Each 
slave executes a simulation to ,ti1  where 
finally data exchange takes place (not 
shown in the figure for simplicity). The 
next events are at ti2  and .t j1  The latter 
wins, since it is earlier, so the next syn­
chronization point is at .t j1  Slave 1 has 
to roll back the simulation time from ti2  
to ,t j1  since it normally jumps from one 
event to the next.

Practical Considerations
Recent work on cosimulation of power 
systems and ICT infrastructure has 
addressed time synchronization with 
sophisticated methods [45]. The major­
ity of these cosimulation platforms fo­
cus on the integration of one power sys­
tem simulator with one communication 
network simulator. However, intelligent 
multienergy systems (e.g., power-to-
heat settings with market integration) 
need multiphysics capabilities and large 
scalability. The corresponding cosimu­
lation needs to couple more than one 
physical system. For this case, simple 
synchronization mechanisms work 
for coupling two simulators but would 
fail when coupling more. The second 
master–slave method with a dedicated 
master algorithm shown in this section 
could be used.

From the preceding, it can be de­
duced that in many cases the design­
ers have to make a tradeoff between 
accuracy, efficiency, and scalability. It 
should be noted that the accuracy and 
efficiency in coupling depend on the 
simulation tools selected, the inter­
faces, and the synchronization mech­
anisms. This also implies the level of 
control the designer could have on the 
simulation tools (compare the black-
box versus open simulators, discussed 
in the section “A Software Perspective 
on Cosimulation”).

Solvers for Better Synchronization 
Between Continuous ODEs and 
Discrete Event Models
The synchronization methods dis­
cussed in the previous subsection are 
a result of continuous simulators that 
are unable to produce or react to asyn­
chronous events, that is, events that 
occur between the points in time at 
which the continuous model is solved. 
An alternative approach is taken with 
the quantized state system (QSS) fam­
ily of solvers [46]. As opposed to tradi­
tional numerical differential equation 
solvers that are designed to determine 
the value that the solution to a differ­
ential equation assumes at a given 
point in time (time discretization), 
QSS solvers are designed to determine 
the earliest point in time at which 
the solution to a differential equation 

The accuracy and efficiency in coupling depend on 
the simulation tools selected, the interfaces, and the 
synchronization mechanisms.

(Slave 2)
Steps:

Events:
(Slave 1)

(Master)

Communication Network Event Simulation

Power System Dynamic Simulation

t0 ti1 ti2 ti3tj1

t0 ti1 ti2 ti3tj1

t

t

t

1 2 3

(ti1)

(ti1)

(ti2)

(tj1)

(ti2) (ti3)(tj1)

(ti2) (ti3)(tj1)

FIGURE 18 – A master–slave synchronization method: using a dedicated master component.

FIGURE 17 – A master–slave synchronization method: one simulator acts as the master.

Communication Network Event Simulation

Power System Dynamic Simulation

(Slave)
Steps:

Events:
(Master)

t

t

t0 t1 t2 t3

1 2 3 4 5

Authorized licensed use limited to: TU Delft Library. Downloaded on April 07,2021 at 10:47:41 UTC from IEEE Xplore.  Restrictions apply. 



march 2017  ■  IEEE industrial electronics magazine  49

assumes a given value (state variable 
quantization). In this sense, QSS solv­
ers transform the continuous system 
described through differential equa­
tions not into a discrete time system 
but into a discrete event system. Every 
time the state variable moves from 
one quantization state to a neighbor­
ing one, a threshold-crossing event  
is generated.

In the context of cosimulations, 
this is an interesting property, since 
it facilitates the integration of continu­
ous and event-based simulators. As an 
example, let us consider a case where 
a digital control system must react to 
an overvoltage in a power grid. Follow­
ing the traditional time discretization 
approach, to determine the moment 
in time when a control action must 
be taken, an iterative root-finding al­
gorithm would be required to find 
the threshold crossing. Following the 
QSS approach, determining the point 
in time when the overvoltage occurs 
is straightforward if one of the quan­
tization states is defined to match the 
upper voltage limit.

Despite their promising properties 
[46], QSS solvers are not as mature as 
traditional solvers, and no commer­
cial power system simulators imple­
ment them yet.

Conclusions
In this article, the fundamental concepts 
behind cosimulation of intelligent power 
systems were described. Software in­
terfaces, numerical aspects, and coor­
dinating individual simulators were dis­
cussed for both the power engineering 
and the ICT domain.

Cosimulation appears to be a pow­
erful tool for dealing with complex, 
heterogeneous systems that can be in­
vestigated in neither an analytical nor 
a purely experimental fashion. Cosimu­
lation has the advantage of easier mod­
eling, since the individual subdomains 
are described within their native tools 
and languages.

The challenges, however, are mas­
sive. Validation is commonly done at 
the subsystem level. System-level vali­
dation of the system under test must 
be achieved with either full hardware 
tests or hardware-in-the-loop. Aside 

from the validation aspects, software 
interoperability is often not given or 
not possible, and numerical phenom­
ena and problems are even sometimes 
unsolvable. The performance and flex­
ibility of the models are often not satis­
fying, but the method itself still enables 
us to perform unprecedented analysis 
of intelligent power systems.

Part 2 on this subject will provide 
a dive into practical aspects of co­
simulation, such as how to integrate 
hardware-in-the-loop simulators, and 
will give an example of how complex 
smart grid questions can be ana­
lyzed by combining electromechani­
cal with electromagnetic transients 
simulations.

Acknowledgment
This work is partly supported by the 
European Community’s Horizon 2020 
Program through the project ERIGrid: 
European Research Infrastructure 
supporting Smart Grid Systems Tech­
nology Development, Validation and 
Roll Out (grant 654113).

Biographies
Peter Palensky (palensky@ieee.org) 
is a full professor of intelligent electric 
power grids at Delft University of Tech­
nology, The Netherlands. Before that, he 
was principal scientist at the Austrian 
Institute of Technology; an associate pro­
fessor in the Department of Electrical, 
Electronic, and Computer Engineering, 
University of Pretoria, South Africa; a uni­
versity assistant at the Vienna University 
of Technology, Austria; and a researcher 
at the Lawrence Berkeley National Labo­
ratory, California. He is active in interna­
tional organizations such as the IEEE. 
His main areas of research are energy 
automation networks and modeling in­
telligent energy systems. He is a Senior 
Member of the IEEE.

Arjen A. Van Der Meer (a.a.vander 
meer@tudelft.nl) received his B.Sc. 
degree in electrical engineering at 

Noordelijke Hogeschool Leeuwarden 
University of Applied Sciences, Leeu­
warden, The Netherlands, in 2006. In 
2008, he received his M.Sc. degree 
(honors) in electrical engineering from 
Delft University of Technology, The 
Netherlands. Currently, he is working at 
Delft University of Technology toward his 
Ph.D. degree on the grid integration of off­
shore voltage sourced converter–high-
voltage dc grids. His main research 
topic is the interconnection of large-scale 
wind power to transnational offshore 
grids. His research interests include 
power system computation, the model­
ing and simulation of smart grids, renew­
able energy sources, power electronic 
devices, and protection systems. He is a 
Member of the IEEE.

Claudio David López (c.d.lopez@
tudelft.nl) received his M.Sc. degree in 
energy technologies from the Karlsruhe 
Institute of Technology, Germany, and 
Uppsala University, Sweden, in 2015 and 
an engineer’s degree in electronics from 
the University of Concepción, Chile, in 
2009. He is a doctoral researcher with 
the Intelligent Electrical Power Grids 
group at Delft University of Technology, 
The Netherlands. He has worked as a 
research assistant in the Fraunhofer 
Institute for Wind Energy and Energy 
System Technology and as a consulting 
engineer on energy-related projects in 
the public and private sectors. His re­
search interests are related to cosimu­
lation of complex and large-scale power 
systems. He is a Member of the IEEE.

Arun Joseph (arun.joseph@tudelft 
.nl) received his B.Tech. degree in electri­
cal engineering from the University of 
Calicut, Malappuram, India, in 2009 and 
his M.Tech. degree in control systems 
from the Indian Institute of Technology, 
Kharagpur, in 2012. He has worked as 
a research assistant in the Aerospace 
Department of the Indian Institute of 
Science, Bangalore, and as senior research 
fellow in the Power System Division of 
the Central Power Research Institute, 

Cosimulation has the advantage of easier modeling, 
since the individual subdomains are described within 
their native tools and languages.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 07,2021 at 10:47:41 UTC from IEEE Xplore.  Restrictions apply. 



50  IEEE industrial electronics magazine  ■  march 2017

Bangalore, India. Currently, he is a 
doctoral researcher with the Intelligent  
Electrical Power Grids group at the Delft 
University of Technology, The Nether­
lands. His research areas include real-
time model validation of power systems 
using cosimulation techniques and hard­
ware-in-the-loop methods. He is a Member 
of the IEEE.

Kaikai Pan (k.pan@tudelft.nl) re­
ceived his B.Eng. and M.Eng. degrees 
in measuring and control from Bei­
hang University, Beijing, China, in 2012 
and 2015, respectively. Currently, he is 
working toward his Ph.D. degree in 
the Intelligent Electrical Power Grids 
group at Delft University of Technol­
ogy, The Netherlands. His research in­
terests include cyberphysical energy 
systems, cybersecurity of intelligent 
power grids, risk assessment for data 
attacks, and cosimulation techniques. 
He is a Member of the IEEE.

References
[1]	 A. Vojdani, “Smart integration,” IEEE Power En-

ergy Mag., vol. 6, no. 6, pp. 71–79, Nov. 2008.
[2]	 S. Chatzivasileiadis, M. Bonvini, J. Matanza, 

R. Yin, T. S. Nouidui, E. C. Kara, R. Parmar, D. 
Lorenzetti, M. Wetter, and S. Kiliccote, “Cyber-
physical modeling of distributed resources for 
distribution system operations,” Proc. IEEE, 
vol. 104, no. 4, pp. 789–806, Apr. 2016.

[3]	 E. Widl, P. Palensky, and A. Elsheikh, “Evalua­
tion of two approaches for simulating cyber-
physical energy systems,” in Proc. 38th IEEE 
Conf. Industrial Electronics (IECON 2012), 2012, 
pp. 3582–3587.

[4]	 P. Palensky, E. Widl, and A. Elsheikh, “Simu­
lating cyber-physical energy systems: Chal­
lenges, tools and methods,” IEEE Trans. Syst., 
Man, Cybern., Syst., vol. 44, no. 3, pp. 318–326, 
2013. 

[5]	 G. V. Wilson, “A glossary of parallel computing 
terminology,” IEEE Concurrency, vol. 1, no. 1, 
pp. 52–67, Feb. 1993.

[6]	 B. Chen, K. L. Butler-Purry, A. Goulart, and 
D. Kundur, “Implementing a real-time cyber-
physical system test bed in RTDS and OPNET,” 
in Proc. North American Power Symp. (NAPS), 
Pullman, WA, Sept. 2014.

[7]	 C. Dufour, S. Abourida, and J. Belanger, “Hard­
ware-in-the-loop simulation of power drives 
with rt-lab,” in Proc. 2005 Int. Conf. Power 
Electronics, Drives, Energy Systems, vol. 2, Nov. 
2005, pp. 1646–1651.

[8]	 A. Elsheikh, M. U. Awais, E. Widl, and P. Palen­
sky, “Modelica-enabled rapid prototyping of 
cyber-physical energy systems via the func­
tional mockup interface,” in Proc. Workshop 
Modeling and Simulation Cyber-Physics Energy 
Systems, 2013.

[9]	 “Functional mock-up interface for co-simu­
lation,” MODELISAR, Information Technol­
ogy for European Advancement, Eindhoven, 
The Netherlands, Tech. Rep., ITEA 2-07006, 
2010.

[10]	 J. S. Dahmann, R. M. Fujimoto, and R. M. 
Weatherly, “The DoD high level architecture: 
An update,” in Proc. Simulation Conf. Proc., vol. 
1, Washington, D.C., Dec. 1998, pp. 797–804.

[11]	 W. Muller and E. Widl, “Using FMI components 
in discrete event systems,” in Proc. Workshop 

Modeling and Simulation Cyber-Physics Energy 
Systems, Seattle, WA, Apr. 2015.

[12]	 S. Rohjans, S. Lehnhoff, S. Schuette, S. Scher­
fke, and S. Hussain, “Mosaik: A modular plat­
form for the evaluation of agent-based smart 
grid control,” in Proc. Fourth IEEE/PES Inno-
vative Smart Grid Technologies Europe (ISGT 
EUROPE), Lyngby, Denmark, Oct. 2013.

[13]	 A. Benigni, F. Ponci, and A. Monti, “Toward an 
uncertainty-based model level selection for the 
simulation of complex power systems,” IEEE 
Syst. J., vol. 6, no. 3, pp. 564–574, Sept. 2012.

[14]	 A. Giunta, S. Wojtkiewicz, Jr., and M. Eldred, 
“Overview of modern design of experiments 
methods for computational simulations,” in 
Proc. 41st Aerospace Science Meeting and Ex-
hibit, Reno, NV, Jan. 6–9, 2003.

[15]	 M. Busch, Zur effizienten Kopplung von Simu-
lationsprogrammen. Kassel, Germany: Kassel 
Univ. Press GmbH, 2012.

[16]	 R. Kübler and W. Schiehlen, “Two methods of sim­
ulator coupling,” Math. Computer Modelling Dy-
namical Syst., vol. 6, no. 2, pp. 93–113, June 2000.

[17]	 M. Benedikt, D. Watzenig, and A. Hofer, “Mod­
elling and analysis of the non-iterative cou­
pling process for co-simulation,” Math. Com-
puter Modelling of Dynamical Syst., vol. 19, no. 
5, pp. 451–470, Oct. 2013.

[18]	 M. Busch and B. Schweizer, “Numerical sta­
bility and accuracy of different co-simulation 
techniques: Analytical investigations based 
on a 2-DOF test model,” in Proc. First Joint Int. 
Conf. Multibody System Dynamics (IMSD), Lap­
peenranta, Finland, May 2010, pp. 25–27.

[19]	 S. Sicklinger, “Stabilized co-simulation of cou­
pled problems including fields and signals,” 
Ph.D. dissertation, Technische Universität 
München, Munich, Germany, 2014.

[20]	 B. Schweizer, P. Li, and D. Lu, “Explicit and implicit 
cosimulation methods: Stability and convergence 
analysis for different solver coupling approach­
es,” J. Computational and Nonlinear Dynamics, vol. 
10, no. 5, pp. 051007-1–051007–12, Sept. 2015.

[21]	 F. Casella and C. Maffezzoni, “Exploiting weak 
interactions in object-oriented modeling,” EU-
ROSIM Simulation News Europe, vol. 22, pp. 
8–10, Jan. 1998.

[22]	 D. M. Auslander, “Distributed system simula­
tion with bilateral delay-line models,” J. Basic 
Eng., vol. 90, no. 2, pp. 195–200, June 1968.

[23]	R. Braun and P. Krus, “An explicit method 
for decoupled distributed solvers in an 
equation-based modelling language,” in Proc. 
Sixth Int. Workshop Equation-Based Object-
Oriented Modeling Languages and Tools, Oct. 
2014, pp. 57–65.

[24]	 T. Schierz, M. Arnold, and C. Clauß, “Co-simula­
tion with communication step size control in an 
FMI compatible master algorithm,” in Proc. Ninth 
Int. Modelica Conf., Munich, Germany, Sept. 2012.

[25]	 M. Günther, A. Kværnø, and P. Rentrop, “Mul­
tirate partitioned Runge-Kutta methods,” BIT 
Numerical Math., vol. 41, no. 3, pp. 504–514, 
June 2001.

[26]	 T. Meyer and B. Schweizer, “Error estimation 
approach for controlling the comunication 
step size for semi-implicit co-simulation meth­
ods,” Proc. Appl. Math. and Mechanics, vol. 15, 
no. 1, pp. 63–64, Oct. 2015.

[27]	 B. Schweizer and D. Lu, “Predictor/corrector 
co-simulation approaches for solver coupling 
with algebraic constraints,” ZAMM - J. Appl. 
Math. and Mechanics/Zeitschrift für Ange-
wandte Mathematik und Mechanik, vol. 95, no. 
9, pp. 911–938, Sept. 2015.

[28]	 S. Sadjina, L. T. Kyllingstad, E. Pedersen, and S. 
Skjong. (2016, Feb.). Energy conservation and 
power bonds in co-simulations: Non-iterative 
adaptive step size control and error estimation. 
ArXiv e-prints. [Online]. Available: http://adsabs.
harvard.edu/abs/2016arXiv160206434S

[29]	 W. Borutzky, “Bond graph based physical sys­
tems modelling,” in Bond Graph Methodology. 
London, U.K.: Springer-Verlag, 2010, pp. 17–88.

[30]	K. Gustafsson, M. Lundh, and G. Söderlind, 
“A PI stepsize control for the numerical solu­

tion of ordinary differential equations,” BIT 
Numerical Math., vol. 28, no. 2, pp. 270–287, 
June 1988.

[31]	 H. Georg, S. Muller, C. Rehtanz, and C. Wiet­
feld, “Analyzing cyber-physical energy sys­
tems: The INSPIRE cosimulation of power and 
ICT systems using HLA,” IEEE Trans. Ind. Infor-
mat., vol. 10, no. 4, pp. 2364–2373, June 2014.

[32]	 C. B. Vellaithurai, S. S. Biswas, R. Liu, and A. 
Srivastava, “Real time modeling and simula­
tion of cyber-power system,” in Cyber Physi-
cal Systems Approach to Smart Electric Power 
Grid, S. K. Khaitan, J. D. McCalley, and C. C. Liu, 
Eds. Berlin, Germany: Springer-Verlag, 2015,  
pp. 43–74.

[33]	 K. R. Davis, C. M. Davis, S. A. Zonouz, R. B. Bobba, 
R. Berthier, L. Garcia, and P. W. Sauer, “A cyber-
physical modeling and assessment framework 
for power grid infrastructures,” IEEE Trans. Smart 
Grid, vol. 6, no. 5, pp. 2464–2475, Sept. 2015.

[34]	 H. L. Vangheluwe, “DEVS as a common de­
nominator for multi-formalism hybrid systems 
modelling” in Proc. IEEE Int. Symp. Computer-
Aided Control System Design (CACSD 2000), 
Anchorage, Alaska, Sept. 2000, pp. 129–134.

[35]	M. S. Branicky, V. Liberatore, and S. M. Phil­
lips, “Networked control system co-simula­
tion for co-design,” in Proc. American Control 
Conf., vol. 4, Denver, Colorado, June 2003, pp. 
3341–3346.

[36]	D. Henriksson, A. Cervin, and K.E. Årzén, 
“Truetime: Simulation of control loops under 
shared computer resources,” in Proc. 15th Int. 
Federation Automat. Control World Congr. Auto-
matic Control, Barcelona, Spain, July 2002.

[37]	 H. Georg, S. C. Muller, N. Dorsch, C. Rehtanz, 
and C. Wietfeld, “INSPIRE: Integrated co-simu­
lation of power and ICT systems for real-time 
evaluation,” in Proc. IEEE Int. Conf. Smart Grid 
Communications (SmartGridComm), Vancou­
ver, Canada, Oct. 2013, pp. 576–581.

[38]	W. Li and X. Zhang, “Simulation of the smart 
grid communications: Challenges, techniques, 
and future trends,” Computers Elect. Eng., vol. 
40, no. 1, pp. 270–288, Jan. 2014.

[39]	 V. Liberatore and A. Al-Hammouri, “Smart grid 
communication and co-simulation,” in Proc. 
IEEE Energytech, Cleveland, OH, May 2011.

[40]	 R. Bottura, D. Babazadeh, K. Zhu, A. Borghetti, 
L. Nordstrom, and C. A. Nucci, “SITL and HLA 
co-simulation platforms: Tools for analysis of 
the integrated ICT and electric power system,” 
in Proc. IEEE EUROCON 2013, Zagreb, Croatia, 
July 2013, pp. 918–925. 

[41]	 D. Bhor, K. Angappan, and K. M. Sivalingam, “A 
co-simulation framework for smart grid wide-
area monitoring networks,” in Proc. 2014 Sixth 
Int. Conf. Communication Systems and Networks 
(COMSNETS), Bangalore, India, Jan. 2014.

[42]	 H. Lin, S. Veda, S. Shukla, L. Mili, and J. Thorp, 
“GECO: Global event-driven co-simulation frame­
work for interconnected power system and com­
munication network,” IEEE Trans. Smart Grid, 
vol. 3, no. 3, pp. 1444–1456, May 2012.

[43]	 J. Nutaro, P. T. Kuruganti, L. Miller, S. Mullen, 
and M. Shankar, “Integrated hybrid-simulation 
of electric power and communications sys­
tems,” in Proc. IEEE Power Engineering Society 
General Meeting, Tampa, FL, June 2007.

[44]	 K. Mets, J. A. Ojea, and C. Develder, “Combin­
ing power and communication network simu­
lation for cost-effective smart grid analysis,” 
IEEE Commun. Surveys Tuts., vol. 16, no. 3, pp. 
1771–1796, Mar. 2014.

[45]	 S. C. Mueller, Y. Deng, P. Palensky, M. Stifter, C. 
Dufour, X. Wang, V. Dinavahi, A. Davoudi, M. O. 
Faruque, A. Monti, M. Ni, and A. Mehrizi-Sani, 
“Interfacing power system and ICT simulators: 
Challenges, state-of-the-art, and case studies,” 
IEEE Trans. Smart Grid, vol. PP, no. 99, 2016.

[46]	 F. Cellier, E. Kofman, G. Migoni, and M. Borto­
lotto, “Quantized state system simulation,” in 
Proc. Grand Challenges Modeling and Simula-
tion, pp. 504–510, 2008.

�

Authorized licensed use limited to: TU Delft Library. Downloaded on April 07,2021 at 10:47:41 UTC from IEEE Xplore.  Restrictions apply. 


