

 Linear Stability Analysis of a Supercritical
Water Loop driven by Natural Convection

 G.B. Koren, August 2010

 PNR 131‐2010‐007

Nomenclature

Roman letters

A Cross-sectional area m2

DH Hydraulic diameter m

f Darcy-Weisbach friction factor -

g Gravitational acceleration m/s2

G Mass flux kg/
(
m2 s

)
h Specific enthalpy J/kg

K Local pressure drop coefficient -

LC Length of core m

ṁ Mass flow kg/s

N Number of grid points -

Ndh Dimensionless enthalpy jump -

Nsub Subcooling number -

p Pressure Pa

P Heated perimeter m

q̇ Heat flow W

q′ Linear heat flow W/m

q′′ Heat flux W/m2

q′′′ Volumetric heat flow W/m3

Re Reynolds number -

S Wetted perimeter m

t Time s

T Temperature ◦C

u Velocity m/s

z Spatial coordinate m

Greek letters

ε Roughness m

θ Angle between flow and horizontal rad

λ Eigenvalue 1/s

µ Dynamic viscosity Pa s

ρ Density kg/m3

ω Angular frequency rad/s

ii

iii

Subscripts

xi Value at point i

xin Value at core inlet

xout Value at core outlet

xpc Value at pseudo-critical conditions

Other

x Steady-state variable

x′ Perturbation variable

Abbreviations

HPLWR High Performance Light Water Reactor

NIST National Institute of Standards and Technology

EOS Equation of State

SCWR Supercritical Water Reactor

Abstract

The HPLWR (High Performance Light Water Reactor) is the European version of the SCWR

(Supercritical Water Reactor) and is one of the Generation IV concepts that have enhanced safety,

improved efficiency and less nuclear waste compared to current nuclear reactors.

A possible way to enhance the safety is by using natural convection as the driving mechanism

for the coolant flow. Natural convection is especially interesting because of the large differences

in density occurring under supercritical conditions. This is safer because of its independence of

mechanical systems (i.e. pumps, which are used in forced convection loops).

The goal of this project was to investigate the linear stability of a one-dimensional, simplified

version of the HPLWR (without the power-density feedback, but with constant power) around

the steady-state solution for a range of operational conditions. A code was written based on one-

dimensional equations for mass, energy and momentum transport. The code successfully predicted

the steady-state behaviour of a system. The results were benchmarked with data from literature.

The code works for natural convection loops as well as forced convection systems. The stability

plots do not agree with literature and are therefore considered to be incorrect.

iv

Table of Contents

Nomenclature ii

Abstract iv

1 Introduction 1

1.1 HPLWR . 1

1.2 Natural convection loop . 2

1.3 Stability . 4

1.4 Outline . 4

2 Mathematical Foundation 5

2.1 Governing equations . 5

2.1.1 Mass equation . 6

2.1.2 Energy equation . 6

2.1.3 Momentum equation . 6

2.1.4 Equation of state . 7

2.2 Boundary conditions . 7

2.3 Steady-state equations . 8

2.3.1 Mass equation . 8

2.3.2 Energy equation . 9

2.3.3 Momentum equation . 9

2.4 Perturbed equations . 9

2.4.1 Mass equation . 10

2.4.2 Energy equation . 10

2.4.3 Momentum equation . 11

3 Linear Stability Analysis 13

3.1 Matrix equation . 13

3.2 Generalized eigenvalue problem . 14

3.2.1 Dimensionless numbers . 14

4 Implementation 16

4.1 Structure . 16

4.2 Fluid properties . 17

4.3 Variables . 18

4.4 Flexible input . 18

v

vi Table of Contents

4.5 Steady-state solution . 19

4.6 Eigenvalues . 20

4.7 Stability plot . 21

5 Results 23

5.1 Pressure-flow characteristic . 23

5.2 Steady-state calculations . 24

5.3 Steady-state benchmark . 25

5.4 Stability benchmark . 26

6 Conclusions 31

7 Discussion and Recommendations 32

7.1 Eigenvalues . 32

7.2 Variable cross-section . 32

7.3 Errors . 32

Appendices 33

A Test case for eig 34

B Dimensions of test loop 36

C Dimensions of test channel 37

D Sparsity pattern 38

Bibliography 40

Chapter 1

Introduction

1.1 HPLWR

The HPLWR (High Performance Light Water Reactor) is the European version of the SCWR

(Supercritical Water Reactor) and is one of the Generation IV concepts that have enhanced safety,

improved efficiency and less nuclear waste compared to current nuclear reactors (Generation IV

International Forum, 2002). The working fluid of the HPLWR is water. The system pressure of

25 MPa is above the critical pressure for water. This means that above a certain temperature or

specific enthalpy, the water will be a supercritical fluid (see figure 1.1).

Pr
es

su
re

Temperature

S L

LiquidSolid
Critical
point

Vapor

L

V

V

S Triple point

Figure 1.1: Schematic diagram of the phase plot for a fluid that expends upon freezing (such as water).

Figure is adopted from Moran and Shapiro (2006).

The thermodynamic efficiency of the HPLWR is estimated to be 44% (Squarer et al., 2003). This

high thermal efficiency can be obtained because of the high temperature at the outlet of the core.

In the most recent HPLWR design the system has a three-pass core to protect the materials from

peaks in temperature (Hofmeister et al., 2007). A schematic view of the three-pass core is given

in figure 1.2.

1

2 Chapter 1. Introduction

Figure 1.2: Schematic diagram of the arrangement of the three-pass core of the HPLWR design. Figure

has been adopted from Fischer et al. (2009).

1.2 Natural convection loop

A possible way to enhance the safety is by making use of natural convection. This is especially

interesting because of the large differences in densities occurring under supercritical conditions

(see figure 1.3). The difference in density in the riser section and downcomer section (see figure

1.4 for these sections) of the loop is the driving force for the motion as will be explained below.

1 2 3 4 5 6

x 10
6

0

200

400

600

800

1000

1200

ρ
¡ kg/

m
3
¢

h (J/kg)

Figure 1.3: Plot of ρ as a function of h for water. The pseudo critical enthalpy hpc = 2.1529 · 106 J/kg

is indicated by the vertical dotted line. The data is taken from NIST

The principle of natural convection in the SCWR works as follows (see figure 1.4). The enthalpy at

the entrance of the core, hin, is assumed to be lower than hpc, the pseudo critical enthalpy. When

the core is active, the enthalpy in the core will increase (due to heat addition). The consequence

1.2. Natural convection loop 3

for the density can be seen in figure 1.3: it decreases. When the hot fluid passes the cooler, its

enthalpy will decrease again and therefore the density increases. This means that the mass of the

fluid in the downcomer is larger than the mass in the riser and therefore a mass flow is induced.

Because of this continuous mechanism, no pump is needed for the circulation of the fluid.

ri
se

r

core

cooler

d
o
w

n
co

m
er

Figure 1.4: Schematic diagram of natural convection loop. Direction of flow is clockwise as indicated by

the arrow. Riser, downcomer, core and cooler are indicated.

The reason that a natural convection loop is considered to be safer than a forced convection loop,

is that it is not dependent on a mechanical system as is the case for forced convection loops. In a

forced convection loop a pump is needed to maintain the flow. If the pump breaks down, serious

accidents can happen because of the over-heating of the core material, which could ultimately lead

to a meltdown. The natural convection loop is driven by the heating in the core, therefore the

fluid will always be in motion if the core is active.

When the inflow to the core decreases Tout is higher than normal and therefore the density in

the core and riser section decreases (see figure 1.3). The lower density in the riser means a larger

difference in density between the downcomer and the riser. This results in more flow into the core.

This makes that Tout now decreases and the denisty in the core and riser section increases. This

mechanism makes the natural convection loop inherently safe.

4 Chapter 1. Introduction

1.3 Stability

A system is said to be stable when it returns to its state after a perturbation from that state.

This depends on whether the initial perturbation grows or decays in time. This overall behaviour

of a system depends on the relative strength of the underlying mechanisms and time scales that

are associated with these mechanisms

Instabilities can be classified into two categories being static and dynamic. Static instabilities occur

when, for instance, for a certain pressure drop different mass flows can exist. This instability is

also called a Ledinegg instability. Static instabilities can be predicted with steady-state equations.

Whether a system has dynamic instabilities can be solved by using a time-dependent approach.

Van Bragt (1998) makes the following distinction of instabilities. Type I instabilities are low-

frequency and due to the gravitational pressure drop over the riser section. Type II instabilities

are of higher-frequency and are caused by frictional pressure losses. These instabilities are

A stability plot is a plot that shows regions of stable operation and unstable operation. Usually

there are dimensionless numbers on the axes of such plots. The dimensionless numbers used in

this thesis are defined in section 3.2.1. The Type I an Type II instabilities can be observed in a

stability plot as the two noses of the stability line. The upper left nose corresponds to a Type I

instability and the lower nose corresponds to a Type II instability.

1.4 Outline

The goal of this thesis is to implement a code that can perform stability calculations for a super-

critical water loop driven by natural convection. In the next chapter, the equations needed for

the steady-state and stability calculations are derived. Chapter 3 focuses on the eigenvalues and

their interpretation. After this, a chapter follows which is devoted to the implementation process.

After this chapter, the output of the code will be benchmarked and conclusions can be drawn

about the correctness of the code. Recommendations for future research are given afterwards.

The nomenclature and bibliography have been placed respectively at the inside front and inside

back cover of this thesis for the convenience of the reader.

Chapter 2

Mathematical Foundation

This chapter starts with the governing equations, first in their continuous form and finally in

discrete-space, continuous-time form. The boundary conditions are described in the second section.

The third section is devoted to the steady-state equations. And finally, the fourth section presents

the linear perturbed equations. Together, this forms the mathematical foundation for calculating

the stability of a system.

2.1 Governing equations

In this section the mass, energy and momentum equation are presented in their one-dimensional,

constant cross-section form. They can also be found (except for the slightly different notation) in,

for instance, Ambrosini and Sharabi (2008). First the mass equation will be presented, secondly

the energy equation and finally the momentum eqation. This corresponds to the order in which

they are solved to obtain the steady-state solution later on.

After presenting the continuous equations, they will be discretized. The reason for doing this in

such an early stage is that this assures better consistency later on (i.e. between the steady-state

solution and the perturbed form of the equations, discussed in sections 2.3 and 2.4 respectively).

An upwind discretisation was selected for this task, since it is numerically stable and does not allow

the zigzag patterns (which can be described as the one-dimensional analog of the two-dimensional

checkerboard patterns) that are permitted by for instance the central difference approximation

(Patankar, 1980).

The following recipe has been used to discretize the equations (x denotes a variable that appears

in the equations and that varies as a function of z. This last criterion excludes A, P and DH

which are constants and t which is independent of z)

• derivatives with respect to space are discretized using an upwind scheme ∂x
∂z →

xi−xi−1

∆z .

This is indeed upwind, since the flow is defined to be in positive z direction

• partial derivatives with respect to time are turned into total derivatives while the function

that it acts on gets a subscript denoting its position ∂x
∂t → dxi

dt

• other functions of z appearing in the equations also get a subscript denoting their position

x→ xi

5

6 Chapter 2. Mathematical Foundation

The discrete form is the form that will be used and referred to on numerous occasions in this

report.

2.1.1 Mass equation

The one-dimensional, constant cross-section mass equation is

∂ρ

∂t
+
∂G

∂z
= 0. (2.1)

Applying the procedure stated above yields the discrete form of the mass equation

dρi
dt

+
Gi −Gi−1

∆z
= 0. (2.2)

2.1.2 Energy equation

The one-dimensional, constant cross-section energy equation is

∂ρh

∂t
+
∂Gh

∂z
= q′′

(
P

A

)
, (2.3)

where the source term is on the right side of the equals sign. In this form, the potential energy

and kinetic energy have been disregarded. In discrete form this is

dρihi
dt

+
Gihi −Gi−1hi−1

∆z
= q′′i

(
P

A

)
. (2.4)

2.1.3 Momentum equation

The one-dimensional, constant cross-section momentum equation is

∂G

∂t
+

∂

∂z

(
G2

ρ

)
+
∂p

∂z
= −gρ sin θ − 1

2

G2

ρ

 f

DH
+
∑
j

Kjδ (z − zj)

 , (2.5)

where θ is the counterclockwise angle between the direction of flow and the horizontal. DH is the

hydraulic diameter of the channel, defined as DH = 4A
S . Again the source term has been placed on

the right side of the equals sign. The source term containing the sine function (−gρ sin θ) can be

either positive or negative, and therefore respectively a source or sink of momentum. The friction

term is always negative and therefore a sink term for momentum (as is expected by the nature of

friction).

Although it might seem contradictory to neglect the potential energy from the energy equation

but to keep the gravity term in the momentum equation, this actually makes perfect sense. The

gravity term is essential in the momentum equation because it is the driving force for the motion,

it is the mechanism that is responsable for flow in the system. The gravitational potential energy

however, is negligable compared to the other terms in the energy equation (Todreas and Kazimi,

1990).

In order to model the Darcy-Weisbach friction factor f , the Haaland approximation is used (Haa-

land, 1983)

f =

[
−1.8 log

((
ε/DH

3.7

)1.11

+
6.9

Re

)]−2

, for Re > 3 · 104. (2.6)

2.2. Boundary conditions 7

It must be noted that the Haaland approximation is valid only in the specified range for the

Reynolds number which is defined as Re = GDH

µ . The expected values for Re are larger than

3 · 104.

The discrete form of the momentum equation is

dGi
dt

+
1

∆z

(
G2
i

ρi
− G2

i−1

ρi−1

)
+
pi − pi−1

∆z
= −gρi sin θi −

1

2

G2
i

ρi

[
fi
DH

+
Ki

∆z

]
. (2.7)

The Haaland equation in discrete form, for the friction factor fi, does not change except that it

now includes the discrete Reynolds number, which is Rei = GiDH

µi
.

2.1.4 Equation of state

The three independent variables that describe the system are the mass flux G, the specific enthalpy

h and pressure p. The density is not an independent variable since, in this work, it is completely

defined by the enthalpy: ρ = ρ (h) or, in its discrete form, ρi = ρ (hi). As was already mentioned in

the introduction, the data used for estimating ρ as a function of h is taken from NIST. The equation

of state (EOS) is in general a function of enthalpy and pressure, but in the regime of interest

(p = 25 MPa) the pressure happens to have almost no influence on ρ. This simplifies the analysis

from one that has 4 equations (mass, energy, momentum and EOS) and 4 independent variables

(G, h, p and ρ), into an anlysis of 3 equations (mass, energy, momentum) and 3 independent

variables (G, h and p).

2.2 Boundary conditions

In the previous section the governing equations were presented. There is still an important ingredi-

ent missing however: the boundary conditions1. The boundary conditions represent the geometry

and operational conditions, while the equations represent the governing physics. The boundary

conditions can be chosen to model a natural convection loop such as described in chapter 1, but

it is also possible to model, for instance, a vertical pipe with an applied pressure drop (e.g. by

a pump). In the following, the appropriate parameters for the natural convection loop will be

desribed. It should be kept in mind, however, that the boundary condiontions are not restricted

to loop geometries.

The operational parameters are the variables that can be set without changing the setup itself.

These are the input enthalpy hin, the heat flux of the core q′′ and the applied pressure drop ∆p.

Obviously, in the case of a natural convection loop ∆p equals zero.

The natural convection loop has a core and riser section and a cooler and downcomer section (see

figure 2.1). They are represented by the variable θ in the momentum equation (equation 2.5).

For the riser section, θ equals 1
2π, and because sin

(
1
2π
)

= 1 this corresponds to a decelerating

force as can be seen in equation 2.5. For the downcomer, θ = 3
2π, and therefore sin θ equals −1

corresponding to an accelerating force. For a horizontal tube θ equals π or 2π, for both of which

the sine function is equal to zero and therefore the gravity does not affect that part of the system.

1Initial conditions are not specified, because they are unnecessary since the system of equations will not be

solved in time.

8 Chapter 2. Mathematical Foundation

flow

flow

θ θ

horizontal horizontal

Figure 2.1: Schematic drawings of the direction of flow and associated angle θ for riser section (left) and

downcomer (right). In the riser, flow is upwards and, therefore, θ = 1
2
π. The riser is a sink

for momentum. In the downcomer section, flow is downwards and, therefore, θ = 3
2
π. The

downcomer is a source of momentum.

Last but not least, periodic boundary conditions apply to all variables in space. In mathematical

form

xi = xi+N , ∀ i. (2.8)

Here x represents any function of z, and z is considered to be defined from −∞ to +∞. If the

interval on which z is defined is restricted to [0, N] then the aforementioned equality (equation 2.8)

reduces to x0 = xN . Note that this is just a matter of definition and the physical interpretation

is the same.

2.3 Steady-state equations

In this section the equations for calculating the steady-state solution are derived from the discrete

governing equations.

Below, an overview is given of the procedure that has been applied (xi denotes one of the variables

Gi, hi, pi and ρi).

• derivatives with respect to time are set equal to zero dxi

dt → 0

• for consistency throughout the report the steady-state variables receive an overbar xi → xi

The resulting set of equations can be used to obtain the steady-state solution when initial condi-

tions are given. This will be further explained in section 4.5.

2.3.1 Mass equation

The time-dependent mass equation (equation 2.2) is repeated for convenience

dρi
dt

+
Gi −Gi−1

∆z
= 0. (2.9)

Applying the procedure mentioned above gives the very simple equation

Gi = Gi−1, or equivalently G = constant. (2.10)

In the remainder of this thesis the notation without the index is favored because this is consistent

with the fact that other constants in the equations are also given without index.

2.4. Perturbed equations 9

2.3.2 Energy equation

The time-dependent energy equation (equation 2.4) is repeated for convenience

dρihi
dt

+
Gihi −Gi−1hi−1

∆z
= q′′i

(
P

A

)
. (2.11)

Using the rules stated above and using the steady-state mass equation (equation 2.10) yields

G
hi − hi−1

∆z
= q′′i

(
P

A

)
. (2.12)

Solving for hi yields

hi = q′′i

(
P

A

)
∆z

G
+ hi−1. (2.13)

2.3.3 Momentum equation

The time-dependent momentum equation (equation 2.7) is repeated here for convenience

dGi
dt

+
1

∆z

(
G2
i

ρi
− G2

i−1

ρi−1

)
+
pi − pi−1

∆z
= −gρi sin θi −

1

2

G2
i

ρi

[
fi
DH

+
Ki

∆z

]
. (2.14)

Again applying the procedure and the steady-state mass equation (equation 2.10) yields

G
2

∆z

(
1

ρi
− 1

ρi−1

)
+
pi − pi−1

∆z
= −gρi sin θi −

1

2

G
2

ρi

[
fi
DH

+
Ki

∆z

]
. (2.15)

This can be rewritten into an expression for pi

pi = G
2
(

1

ρi−1

− 1

ρi

)
−∆z

(
gρi sin θi +

1

2

G
2

ρi

[
fi
DH

+
Ki

∆z

])
+ pi−1. (2.16)

2.4 Perturbed equations

In this section the time-dependent equations will be decomposed in a way that results in three

linear equations of perturbations. These equations will be used for the linear stability analysis, as

described in chapter 3.

The three variables that describe the system (G, h and p) have been decomposed as follows

Gi → G+G′i, (2.17)

hi → hi + h′i, (2.18)

pi → pi + p′i. (2.19)

In this notation the variables with a bar are the steady-state variables (consistent with the notation

in the previous section) and the variables with a prime are perturbations2. The steady-state

variables are constant over time and can vary in space, the perturbations can vary both in time

and in space. Note that the steady-state mass equation (equation 2.10) is already present in

equation 2.17 because G has no index.

The variables that are a function of either G, h or p have also been decomposed

ρi → ρi + ρ′i. (2.20)

10 Chapter 2. Mathematical Foundation

So in total, four variables have been decomposed. Although the friction factor f depends, via the

Reynolds number, on both G and h (through µ, as can be seen in its definition on page 7), f has

not been decomposed because a variation in G or h results in only a minor variation in f .

The expression ρ′ ≈ dρ
dhh

′ has been used to eliminate ρ′ in favor of h′. dρ
dh is also a function of

h and the bar on the function means that it is to be evaluated for the steady-state value of the

enthalpy: h

The decomposition is combined with a linearization in perturbations. The following simple rules

desribe this process (x and χ denote one of the four variables that are being decomposed.)

• derivative with respect to time of a steady-state variable is equal to zero dx
dt → 0

• second order terms have been neglected x′χ′ → 0

The desired outcome of this analysis is a set of equations that is linear in perturbations of the

three system variables (G′, h′ and p′).

2.4.1 Mass equation

The time-dependent mass equation (equation 2.2) is repeated below for convenience

dρi
dt

+
Gi −Gi−1

∆z
= 0. (2.21)

The steady-state mass equation is already present in equation 2.17, and is therefore not needed

here in its explicit form. Applying the above described procedure on the time-dependent mass

equation yields
dρ′i
dt

+
G′i −G′i−1

∆z
= 0, (2.22)

where ρ′i can be eliminated by using ρ′i ≈ dρ
dh

∣∣∣
i
h′i. Performing this elimination and changing the

order of some of the terms yields

dρ

dh

∣∣∣∣
i

dh′i
dt

=
1

∆z
G′i−1 −

1

∆z
G′i, (2.23)

which is in the desired form.

2.4.2 Energy equation

The time-dependent energy equation (equation 2.4) and the steady-state energy equation in its

unsolved form (equation 2.12) are repeated below for reference.

dρihi
dt

+
Gihi −Gi−1hi−1

∆z
= q′′i

(
P

A

)
, (2.24)

G
hi − hi−1

∆z
= q′′i

(
P

A

)
. (2.25)

2Note that the discretization scheme for perturbations, x′, is not strictly upwind since it is allowed for pertur-

bations to be negative. The flow itself (x+x′), however, stays in positive z direction because the perturbations are

small compared to the steady-state variables x. Therefore the discretization scheme is still upwind.

2.4. Perturbed equations 11

Decomposing the time-dependent equation yields

d
(
ρih
′
i + ρ′ihi

)
dt

+
Ghi +Gh′i +G′ihi −Ghi−1 −Gh′i−1 −G′i−1hi−1

∆z
= q′′i

(
P

A

)
. (2.26)

Subtracting the steady-state equation gives

d
(
ρih
′
i + ρ′ihi

)
dt

+
Gh′i +G′ihi −Gh′i−1 −G′i−1hi−1

∆z
= 0. (2.27)

This equation can be simplified by writing out the temporal derivative and again applying ρ′i ≈
dρ
dh

∣∣∣
i
h′i. At the same time the terms have been somewhat manipulated, yielding

(
ρi + hi

dρ

dh

∣∣∣∣
i

)
dh′i
dt

=
hi−1

∆z
G′i−1 −

hi
∆z

G′i +
G

∆z
h′i−1 −

G

∆z
h′i. (2.28)

Again, the resulting equation is in its desired, linear form.

2.4.3 Momentum equation

Below, the time-dependent and steady-state momentum equations are repeated (equations 2.7 and

2.15 respectively)

dGi
dt

+
1

∆z

(
G2
i

ρi
− G2

i−1

ρi−1

)
+
pi − pi−1

∆z
= −gρi sin θi −

1

2

G2
i

ρi

[
fi
DH

+
Ki

∆z

]
, (2.29)

G
2

∆z

(
1

ρi
− 1

ρi−1

)
+
pi − pi−1

∆z
= −gρi sin θi −

1

2

G
2

ρi

[
fi
DH

+
Ki

∆z

]
. (2.30)

Decomposing the time-dependent equation yields

dG′i
dt

+
1

∆z

((
G+G′i

)2
ρi + ρ′i

−
(
G+G′i−1

)2
ρi−1 + ρ′i−1

)
+
pi + p′i − pi−1 − p′i−1

∆z
=

− g (ρi − ρ′i) sin θi −
1

2

(
G+G′i

)2
ρi + ρ′i

[
fi
DH

+
Ki

∆z

]
. (2.31)

Subtracting equation 2.30 yields

dG′i
dt

+
1

∆z

((
G+G′i

)2
ρi + ρ′i

− G
2

ρi

)
− 1

∆z

((
G+G′i−1

)2
ρi−1 + ρ′i−1

− G
2

ρi−1

)
+
p′i − p′i−1

∆z
=

− gρ′i sin θi −
1

2

((
G+G′i

)2
ρi + ρ′i

− G
2

ρi

)[
fi
DH

+
Ki

∆z

]
. (2.32)

Notice that in this equation the three expressions between parentheses are almost identical. The

first and third are actually identical, while the second expression differs only in the position index.

The terms can be rewritten by writing out the quadratic expression and using the Taylor expansion
1

x+x′ ≈ 1
x − x′

x2 (
G+G′i

)2
ρi + ρ′i

− G
2

ρi
≈ G

2
+ 2GG′i
ρi

− G
2
ρ′i

ρ2
i

− G
2

ρi
=

2GG′i
ρi
− G

2
ρ′i

ρ2
i

. (2.33)

12 Chapter 2. Mathematical Foundation

Inserting this result back into equation 2.32 for the corresponding position index yields

dG′i
dt

+
1

∆z

(
2GG′i
ρi
− G

2
ρ′i

ρ2
i

)
− 1

∆z

(
2GG′i−1

ρi−1

− G
2
ρ′i−1

ρ2
i−1

)
+
p′i − p′i−1

∆z
=

− gρ′i sin θi −
1

2

(
2GG′i
ρi
− G

2
ρ′i

ρ2
i

)[
fi
DH

+
Ki

∆z

]
. (2.34)

Finally the three ρ′i terms and the single ρ′i−1 term will be replaced by dρ
dh

∣∣∣
i
h′i and dρ

dh

∣∣∣
i−1

h′i−1

respectively. Also, the terms in the equation are somewhat shuffled to obtain a form that is

convenient for later purposes.

dG′i
dt

=
2G

∆z ρi−1

G′i−1 −
(

2

∆z
+

[
fi
DH

+
Ki

∆z

])
G

ρi
G′i −

G
2

∆z ρ2
i−1

dρ

dh

∣∣∣∣
i−1

h′i−1

+

(
G

2

∆z ρ2
i

− g sin θi +
1

2

G
2

ρ2
i

[
fi
DH

+
Ki

∆z

])
dρ

dh

∣∣∣∣
i

h′i +
1

∆z
p′i−1 −

1

∆z
p′i. (2.35)

Chapter 3

Linear Stability Analysis

In this chapter the linear equations which were derived in the previous chapter will be used to

formulate a criterion for stability in terms of eigenvalues.

3.1 Matrix equation

The set of three linear equations (equations 2.23, 2.28 and 2.35) can be written as the single matrix

differential equation

A
dx

dt
= Bx, (3.1)

where x is a vector of length 3N that contains G′i, h
′
i and p′i for 0 < i ≤ N . A and B are 3N -by-3N

matrices whose elements can be obtained straightforwardly from equations 2.23, 2.28 and 2.35.

Below the structure of matrix A is given. The mass equation corresponds to the first N rows, the

energy equation corresponds to rows N + 1 to 2N and the momentum equation fills up the rows

from 2N + 1 to 3N .

A =



0 · · · 0 a1,N 0 · · · 0
...

. . .
...

. . .
...

. . .
...

0 · · · 0 aN,2N 0 · · · 0

0 · · · 0 aN+1,N 0 · · · 0
...

. . .
...

. . .
...

. . .
...

0 · · · 0 a2N,2N 0 · · · 0

a2N+1,1 0 · · · 0 0 · · · 0
. . .

...
. . .

...
...

. . .
...

a3N,N 0 · · · 0 0 · · · 0



. (3.2)

Studying the structure of A reveals that this matrix is singular. Therefore the inverse of A does

not exist. This has some implications that will be discussed in the next section.

13

14 Chapter 3. Linear Stability Analysis

3.2 Generalized eigenvalue problem

A first step in solving the matrix differential equation (equation 3.1) can be inserting x = ξeλt as

suggested in Boyce and DiPrima (2004). Performing the insertion and calculating the derivative

yields Aλξeλt = Bξeλt, which can be simplified by dividing through eλt (which is always al-

lowed since the exponential function never equals zero). This results in the generalized eigenvalue

problem

Aλξ = Bξ. (3.3)

So, finding a solution to the set of three differential equations (equations 2.23, 2.28 and 2.35)

is equivalent to solving this generalized eigenvalue problem. Now the implications of A being

singular are more apparent, since A−1 does not exist, the generalized eigenvalue problem can not

be converted to the normal eigenvalue problem1. The singular generalized eigenvalue problem can

be solved by the QZ algorithm (Moler and Stewart, 1973). The implementation of the calculation

of the eigenvalue for the singular generalized eigenvalue problem in Matlab will be described in

section 4.6.

In order to have a better understanding of the meaning of the eigenvector ξ and the eigenvalue λ,

the following decomposition was made

ξk = αke
iβk where αk = |ξk| and βk = 6 ξk (3.4)

λ = a+ ib where a = Re{λ} and b = Im{λ} (3.5)

Now, x can be written as

xk = αke
atei(βk+bt) (3.6)

Here the physical interpretation of the eigenvector and eigenvalue can be seen. αk is a non-negative

constant that multiplies the remaining part of the expression. βk is an inital phase shift, it is of

no importance here, since the system will not be solved in time. b is the angular frequency of

oscillation ω. a is the most important parameter for this thesis: if a > 0, then the magnitude is

growing in time and therefore the system is unstable, if a < 0, the magnitude is decreasing and the

system is stable. Note that in this analysis no assumptions have been made on the form of either

ξ or λ, which means that the conclusions are valid for any complex ξ or λ that will be found.

Criterion: if the real part of an eigenvalue is positive, the system is unstable, if the real part of

the eigenvalue is negative, then the system is stable.

3.2.1 Dimensionless numbers

After presenting the criterion for stability, the dimensionless numbers that facilitate easy compar-

ison of stability plots for different setups and from different sources are next

Nsub ≡
hpc − hin

hpc
(3.7)

Ndh ≡
q̇

GAhpc
(3.8)

The definition of Ndh is the same as NPCH in Marcel et al. (2009) when hpc is taken as the reference

enthalpy in the definition of NPCH. The value used for hpc for water is: hpc = 2.1529 · 106 J/kg.

1Note that dividing equation 3.3 by λ and multiplying by B−1 is not allowed as well, because λ can be zero.

3.2. Generalized eigenvalue problem 15

Because an enthalpy smaller than 0 does not exist, it is impossible for Nsub to be larger than 1,

as can be seen from its definition (equation 3.7). The range of Ndh is also restricted, because only

positive values for q̇ and G are considered (see equation 3.8).

Chapter 4

Implementation

In this chapter, the implementation of the theory, as presented in the previous chapters, is de-

scribed. First, the general thought behind the coding and the resulting structure are discussed.

After this, some more specific topics are covered such as the modeling of certain fluid properties

using splines and the algorithms that have been used for the steady-state solution and the stability

analysis.

4.1 Structure

While working on the code it was decided to switch from several Matlab scripts containing all

the code and all the data for one specific calculation to a more convenient structure: a single script

with various interlinking, modular functions for several different calculations. This structure is

possible, because a lot of calculations have the same building blocks. For instance: the problem

of calculating the pressure drop for a certain mass flow and calculating the mass flow for which

the pressure drop is zero, shares a lot of similarities; the latter is coded as an extended version of

the algorithm that solves the first problem (see section 4.5).

The benefits are obvious because it means less code and therefore less work. This approach also

means that updating of the code is easier, since every block of code appears only once. From a

users perspective the single script is also more convenient because in this script any calculation

can be started.

A disadvantage is that all the functions have their own separate workspace. If, for instance a

variable from one function is needed in another, the function containing the variable needs to be

called. As a consequence the lists of input and output arguments tend to be longer than desired.

To keep things as orderly as possible it was decided to divide the variables that are likely to be

changed from the variables that are kept constant most of the time. The first can be altered easily

from the main script and the latter are defined in the functions themselves and can be changed

by editing the functions.

16

4.2. Fluid properties 17

4.2 Fluid properties

The values for ρ, µ and dρ
dh are stored in separate functions. These functions all have h as input,

where h can be a single value (scalar) or a list of values (vector). The data functions return the

value(s) corresponding to the input. If, for instance, the density of water at h = 1.3 · 106 J/kg is

needed it can be obtained, simply by executing estrho(1.3E6,‘water’).

The functions are cubic splines, based on a set of data points taken from NIST. Data for ρ and µ can

be simply read off from the NIST tables and dρ
dh is obtained by a central difference approximation

of the data for ρ, performed by Sanders (2009). 39 data points have been used for each of the

three functions. Since the variation is largest near the pseudo critical point (see figure 1.3), the

data points in this interval were taken closer together. This resulted in smooth functions as can

be seen in figure 4.1.

The data has been extrapolated outside its original domain. This is simply done by assigning

the value at the lower boundary (call this value xmin = x(hmin), where x(h) is the variable that

is to be estimated) to all enthalpies smaller than hmin and xmax (defined in an analog way) to

all enthalpies larger than hmax. For some variables, the extrapolated data seemed to be a more

reasonable approximation to the actual values than for others (in the sense that the resulting plot

is more smooth). This can be seen in figure 4.1 where the spline functions for dρ
dh of Freon R-23

and µ of water are plotted.

0 1 2 3 4 5 6 7 8

x 10
5

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

x 10
-3

d
ρ

d
h

µ k
g
2

J
·m

3

¶

h (J/kg)

-1 0 1 2 3 4 5 6 7

x 10
6

0

2

4

6

8

10

12
x 10

-4

μ
(P
a
·s
)

h (J/kg)

Figure 4.1: Plots of cubic splines used to estimate dρ
dh

of Freon R-23 (left) and µ of water (right) as a

function of enthalpy h. The boundaries (outside which the extrapolated data was used) are

indicated by the vertical, dotted lines.

When extrapolated data is used, a warning message appears in the main screen. When this

warning is given it should be kept in mind that for some variables the data will just be fine and for

others the approximation will not have the desired accuracy. It should be realized however, that

although the data might not be suitable for a final answer of some problem, it can be perfectly used

in an iteration process where approximate values will suffice. In section 4.5 an iteration process

will be described that can use extrapolated data to converge to points inside the boundary. In

such cases the use of extrapolated data does not alter the final accuracy and prevents the code

from crashing in its process.

18 Chapter 4. Implementation

4.3 Variables

All variables and relations were implemented according to the variables and equations in the

previous chapters. In some cases there were some minor changes, however. While coding it was

observed, for example, that using the volumetric heat flow q′′′ and the effective gravity geff (defined

below) is more convenient than working with the heat flux G and the angle between the direction

of flow and the horizontal θ.

The sine term in the momentum equation (equation 2.16) has not been implemented as such.

Instead, the g sin θ term is represented by the single term gEff. The numerical values that it can

take on are in the range of -9.81 to 9.81. The advantage is that there is no need for calculating the

sine and that there is no need for defining a θ. At the same time it reduces the number of output

terms of functions. The primary reason is making the code better readable and understandable,

computational advantages are of minor importance.

4.4 Flexible input

As stated before, it was observed during the coding that the volumetric heat flow q′′′ is a convenient

variable to work with. Another observation was that when comparing data from different sources,

it is likely to encounter various ways of specifying the heat flow, being either the power q̇, linear

power q′ , the heat flux q′′ or the volumetric heat flow q′′′. Those quantities are defined as

q′ =
q̇

LC
(4.1a)

q′′ =
q̇

P ·LC
(4.1b)

q′′′ =
q̇

A ·LC
. (4.1c)

To be consistent in the use of volumetric heat flow throughout the code and facilitate easy

comparison with literature, a small part was added to the code, where the heatinputform

and heatoutputform can be set. Possible values are the strings ‘power’, ‘linear’, ‘flux’

and ‘volumetric’. The variable heatinput is given a numerical value, corresponding to the

heatinputform. Using rewritten versions of equations 4.1 the code was implemented.

The main reason for writing this piece of code was that, despite the simplicity of the mathematics

involved, it was experienced that when continuously deriving the relations and subsequently con-

verting quantities an error is easily made and relatively hard to detect and therefore costing a lot

of valuable time.

The same has been done for the mass flow. flowinputform and flowoutputform can be set to

either ‘mflow’ or ‘mflux’. The variable flowinput is used in an analog way to heatinput.

Different models for the friction factor appear in the literature. The Haaland approximation (given

in equation 2.6) is used used by Gómez (2008) and Sanders (2009) for instance. A constant value

is also often used for f (in fact it is used in Ambrosini and Sharabi (2008) that will be used for

benchmarking purposes later on). Another popular alternative is the Blasius relation (Janssen

and Warmoeskerken, 2006)

f = 0.316 Re−0.25
(
4000 < Re < 105

)
(4.2)

4.5. Steady-state solution 19

To enhance the possibilities of comparing calculated results with data from literature, these friction

models have also been incorporated in the code. The variables fmodel and fconstant were

added to the code for this purpose. In the case that fmodel equals ‘haaland’, then the variable

fconstant is the relative roughness
(

ε
DH

in equation 2.6
)
. When fmodel equals ‘constant’,

then fconstant is the value of the friction factor, f itself. For fmodel = ‘blasius’ the Blasius

relation is used and the value of fconstant is ignored.

4.5 Steady-state solution

The steady-state solution can be found as follows. First an initial mass flux is guessed. Next, for

a given input enthalpy, the variation of the enthalpy over the loop corresponding to the guessed

mass flux can be calculated using equation 2.13. After this, the pressure variation over the loop

can be calculated using equation 2.16. Now, the net pressure drop over the loop is compared to

the pressure drop that is specified1. Depending on the difference between the specified pressure

drop and the calculated pressure drop a new mass flux is guessed. This procedure is continued

until the calculated pressure drop is equal to the specified pressure drop to within the reach of

some specified tolerance. This method is called the shooting method.

An essential ingredient for the shooting method is an algorithm that can come up with improved

guesses for the mass flux. Several possibilities where considered for this task and finally the secant

method was selected. The secant method can be described as the discrete counterpart of Newton’s

method. In Newton’s method the derivative and the amplitude of a function at some point are

used to find a zero-crossing (see figure 4.2). The secant method is used here because there is

no closed expression for the derivative of the function (in this case the pressure). In the secant

method two points are needed to make a linear approximation of the derivative (therefore there

are two initial guesses needed as input for the secant method).

The advantage of the secant method is its simplicity and high speed of convergence. A disadvantage

of using the secant method is that there could be situations where the secant method does not

converge at all. To prevent the code from going on for ever in such cases, a second stop criterion

was implemented. If the number of iteration steps exceeds maxstep, then the code stops and a

message is given in the main screen. Although preventing the computer from crashing is nice, it

does not yield the zero-crossing that was needed.

1Natural convection is implemented as a special case of forced convection, namely when the applied pressure

drop equals zero. Therefore the code is not limited to use on natural convection loops only. This not only means

that the code can be used in more situations, it also enlarges the set of data from literature that can be used for

benchmarking.

20 Chapter 4. Implementation

y

0 xx™ x¡x£
x¢

{x™, f(x™)}

{x¡, f(x¡)}

Figure 4.2: Diagram explaining the algorithm of Newton’s method. The objective is to approximate

the zero-crossing of the function f(x). The initial guess is x1. Evaluating the function and

its derivative for x1 yields respectively f(x1) and f ′(x1). A straight line with slope equal

to f ′(x1) and that crosses f(x1) has x2 as zero-crossing. This way an improved guess can

be obtained. This method is repeated until the desired accuracy is obtained (i.e. when

f(xn) < accuracy). Figure adopted from Stewart (2008).

To be able to find this, the parameters G1 and G2 (the first two mass fluxes that are used for

the secant method algorithm) that are defined in the function forcedconv can be tuned. The

converging/diverging behaviour of the algorithm depends on those values. A good guess can be

obtained by using the function ledinegg. This function plots the pressure drop over a system as

a function of the mass flow or mass flux. From this graph the location of the zero-crossing can be

estimated. Using values close to this zero-crossing for G1 and G2 will likely solve the problem.

4.6 Eigenvalues

The generalized eigenvalue problem (equation 3.3) can be solved by the Matlab function eig

(Matlab Function Reference)2. It has been observed, however, that not all of the values that

Matlab returns are actually eigenvalues3.

In order to select the actual eigenvalues from the set of values given by Matlab, the function eig

can be instructed to give the corresponding eigenvectors. This is done by executing

>> [V,D] = eig(B,A);

where A and B are defined according to matrices A and B in equation (equation 3.3). This pro-

duces a diagonal matrix D of generalized eigenvalues and a full matrix V whose columns are the

corresponding eigenvectors such that

A*V*D = B*V. (4.3)

2Before the function can be used, the matriced A and B from equation 3.3 must be defined in Matlab. In order

to check for mistakes in defining the matrices the spy function has been used as described in appendix D
3The reason why Matlab returns those values is not clear, but might have something to do with the fact that the

eig command can also be used for the normal eigenvalue problem. In the normal eigenvalue problem the number

of eigenvalues equals the size of the square-matrix. In the singular generalized eigenvalue problem there can be less

than 3N eigenvalues for two 3N -by-3N matrices, but for some reason Matlab always returns 3N . This strange

behaviour was also found for a simple test problem that is shown in appendix A.

4.7. Stability plot 21

The actual eigenvalues can now be filtered from the wrong eigenvalues by checking whether the

above-mentioned equality is satisfied. If not, than those values can be disregarded because if they

do not satisfy equation 4.3, than they are not eigenvalues. This is a computationally expensive

method since the eigenvectors would otherwise not been necessary. Also a lot of memory is wasted

in storing the eigenvalues as matrices instead of vectors. Last but not least the three matrix

multiplications affect the speed of the code. For this method to work there also needs to be a

tolerance defined since the equality in equation 4.3 might not be met completely (due to round-off

errors). This introduces an unwanted dependency to this method, since there is no exact criterion,

but a choice for the tolerance has to be made.

Because of all the disadvantages given above, an alternative method to filter the eigenvalues has

been used instead. It was noted that the incorrect values have a large magnitude (most of them

are equal to Inf or -Inf, this is also demonstrated for the test problem in appendix A). To filter

the non-physical eigenvalues, all values with magnitude larger then a certain limit (for instance

1010) have been disregarded. Values smaller than this limit have been considered to be genuine

eigenvalues. Calculating and filtering the eigenvalues is now done in two simple lines.

>> E = eig(B,A);

>> E = E(abs(E)<1e10);

Now, E is a vector containing the eigenvalues.

4.7 Stability plot

Up to this point, the script accepted input in several forms, as described in section 4.4. For the

stability plot, it is convenient to specify input in terms of the dimensionless number Nsub and

Ndh, since the output will also be defined in Nsub and Ndh.4 A minimal and maximal value for

both dimensionless numbers, Nsub and Ndh must be specified. Also the number of points in the

respective intervals are needed as input. For all points it will be computed whether it is a stable

or unstable point. This will result in a plot with green and red dots for respectively stable and

unstable behaviour. Using dots is easier than plotting a curve on the neutral stability boundary

(since Matlab draws the curve in the order in which the points are defined). Also the green

and red dots are fairer than an interpolated line (that suggests better accuracy than is actually

achieved). If better accuracy (on some part) of the plot is required, Nsub and Ndh, can be simply

read off from the graph, and this can be used as input for another plot.

To be able to say something about the stability for a set of Nsub and Ndh, these numbers must

first be converted to the corresponding set of hin and q′′′. Converting Nsub into the corresponding

hin is a straightforward task (as can be seen from the definition, equation 3.7). The conversion of

the specified Ndh into a q′′′ is a bit trickier however. The function findcond was written for this

task. It receives a target value for Ndh as input, and uses an initial guess for q′′′. The inital guess

q′′′ is used as input in the steady-state code to find the corresponding G. With the set q′′′ and

G, Ndh is calculated using equation 3.8. Depending on this Ndh and the target value for Ndh, a

new q′′′ is chosen. This process repeats itself until Ndh is found to within a specified tolerance or

4If the input is given in terms of hin and q′′′, then the domain of the resulting stability plane (which is in terms

of Nsub and Ndh) is not known before the calculation starts.

22 Chapter 4. Implementation

when a pre-set maximum number of iteration steps has passed. If the first is the case then the

corresponding value of q′′′ is used for the stability plot, if the latter is the case, then no q′′′ is

found and no stability calculation will be done (resulting in an empty spot in the stability plot).

The function stabtest has the input parameters hin and q′′′. For these operating conditions

the eigenvalues are calculated and subsequently filtered according to a specified upper limit, as

described in section 4.6. Finally it is checked whether the real parts of all the eigenvalues are

smaller than the specified threshold. Theoretically this value should be equal to zero, but since

there can be small errors due to round off, a value close to zero is chosen (for instance 10−4).

The method as described above is computationally more expensive than the one used in Sanders

(2009). This method is schematically described in figure 4.3. It starts with an initial point, if this

is in the stable region the power is increased and if it happens to be in the unstable region then

the power is decreased. This procedure is repeated until the neutral stability boundary is crossed.

When the neutral stability boundary is found to within a certain tolerance, then Nsub is increased

and the last value for the power is taken as the new initial guess.

0.55 0.575 0.6 0.625 0.65
0.15

0.2

0.25

0.3

0.35

0.4

N
 h

N
s
u
b

Figure 4.3: Schematic overview explaining the method used by Sanders. Figure adopted from Sanders

(2009).

The drawback of this method is that it does not work when there is more than one neutral stability

boundary for a single Nsub, since it moves up when the first is found. Therefore it was decided to

work with a more robust algorithm despite its computational expense.

Chapter 5

Results

In the previous chapter the implementation of the theory into a computer code was discussed. In

the current chapter the output of the computer code will be interpreted and benchmarked. First

the pressure-flow characteristic of a loop is presented and discussed. After this, the variation of the

steady-state variables h and p will be shown and interpreted. In the third section, the power-flow

map for a natural convection loop will be benchmarked. In the last section, the stability plot for

a forced system will be benchmarked.

5.1 Pressure-flow characteristic

The pressure-flow characteristic of the loop defined in appendix B has been calculated and is

plotted in figure 5.1. The calculation is done by imposing a flow through the loop and calculating

the difference in pressure for the input and output of the loop (this can be done without iteration

using equations 2.13 and 2.16). The operational parameters were set to q̇ = 1 · 106 W and hin =

1.558046 · 106 J/kg. The resolution was set to 100 cells per meter and therefore N = 100 · 10 = 104

cells.

∆p is the pressure drop that is needed for realizing the corresponding flow in figure 5.1, it can be

provided by a pump. If ∆p equals zero, then no additional pressure drop is needed, which means

that the flow can be realized by natural convection alone. If ∆p is positive, then an addional

pressure drop is needed for the corrseponding flow. A negative ∆p means that a pump is needed

that works in the negative z direction to slow down the flow. The general trend of this graph is

as expected: for higher flow rates, higher pressure drops are needed.

23

24 Chapter 5. Results

0 0.5 1 1.5 2 2.5 3
-14000

-12000

-10000

-8000

-6000

-4000

-2000

0

2000

4000

6000

ṁ (kg/s)

∆
p
(P
a
)

Figure 5.1: Plot of ∆p as a function of ṁ for the setup in appendix B. Other variables are q̇ = 1 · 106 W,

hin = 1.558046 · 106 J/kg and resolution was set to 100 cells per meter.

5.2 Steady-state calculations

The variation of the pressure and enthalpy as a function of z have been calculated and are shown

in figure 5.2. Again the loop defined in appendix B was used. The operational parameters of

the calculation were, again, set to q̇ = 1 · 106 W and hin = 1.558046 · 106 J/kg, as was done in the

previous section. This time, however, the calculations are restricted to a natural convection loop,

which means that the pressure drop ∆p over the loop is zero.

0 1 2 3 4 5 6 7 8 9 10
1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2
x 10

6

z (m)

h
(J
/
k
g
)

0 1 2 3 4 5 6 7 8 9 10
-2.5

-2

-1.5

-1

-0.5

0
x 10

4

z (m)

p
(P
a
)

Figure 5.2: Variation of the enthalpy h (left) and the pressure p (right) as a function of the axial distance

z for the setup in appendix B.

As can be seen from the plot of the enthalpy h in figure 5.2, the enthalpy is constant for certain

intervals of z ([0, 1], [2, 6] and [8, 10]). These intervals correspond to the parts of the loop outside

the core and the cooler. Because there is no heat transport with the walls of the system, the

enthalpy can neither decrease or increase (therefore also ρ will be constant at those intervals). The

5.3. Steady-state benchmark 25

interval of z where h increases corresponds to the core, the interval where h decreases corresponds

to the cooler. As can be seen from figure 5.2, the magnitude of the slope of h is larger for the core

than for the cooler. The absolute value of the enthalpy change for the core and cooler are always

equal. This means that the slope fully depends on the length of the core and the cooler.

The pressure profile is also given in figure 5.2. The system pressure of 25 · 106 Pa was neglected

for convenience. As can be seen from the pressure profile, the input pressure is indeed equal to

the output pressure of the loop, which is needed for natural convection. The first small part of

the pressure profile [0, 1], shows a small decrease in pressure. This interval corresponds to the

lower horizontal part of the tube, the pressure drop over this interval is due to friction. The next

interval, [1, 5], is the riser section. The pressure p shows the most dramatic decrease in this section,

since the gravity force has the same direction as the friction force in the riser section. The interval

[5, 6] is the upper horizontal part of the loop. As for the first interval of the loop, gravity does

not affect the pressure p, friction is responsible for the change in pressure in this interval. The

reason that the slope is larger than in the first interval is that the density ρ is lower now (due to

the increased enthalpy h). The last interval, [6, 10], is the downcomer. It makes up for the lost

pressure, as can be seen in figure 5.2. The friction force is directed in the negative z direction,

gravity, however, is now helping the flow.

The mass flow ṁ has also been calculated for this setup and operational parameters, yielding

ṁ = 2.30734 kg/s. Note that this agrees with the flow for which the pressure drop is zero in figure

5.1.

The time needed for calculating and plotting is, in this case, approximately 0.7 seconds. It was

noted that when choosing a finer grid, the increase in calculation time was linear with the increase

of the number of cells.

5.3 Steady-state benchmark

For the loop defined in appendix B a benchmark was performed. A power-flow map made by an

in-house code on comsol was used as the benchmark. 34 points were used as input. The inlet

enthalpy hin equals 1.558046 · 106 J/kg. Figure 5.3 shows that there is an excellent match between

the benchmark and the data obtained form the currently developed code. This match means that

output from the steady-state code is reliable (at least under conditions used in this calculation).

26 Chapter 5. Results

10
2

10
3

10
4

10
5

10
6

10
7

0

0.5

1

1.5

2

2.5

3

q̇ (W)

ṁ
(k
g
/
s)

COMSOL

current

Figure 5.3: Plot of steady-state values for the mass flow ṁ as a function of the power q̇. The setup is

described in appendix B. Data from comsol and from calculation. A resolution of 100 cells

per meter was used for the calculation.

5.4 Stability benchmark

The code for creating a stability plot has been benchmarked on the setup described in Ambrosini

and Sharabi (2008). The setup is a vertical flow channel with a constant external pressure drop,

a variable hin and also a variable power. For convenience, the parameters of the setup are also

given in appendix C. Before making the stability plot it was first verified whether the profile of

steady-state variables as given in the article could be replicated by the code up to a satisfactory

degree of accuracy.

Defining the setup in the function geometry was a straightforward task. The pressure drop over

the flow channel was estimated to be ∆p = 0.14 MPa. The number of cells was also set to the

value used in the article N = 48. This was done by setting the resolution to

resolution =
N

LC
=

48

4.2672
= 11.2486 cells per meter. (5.1)

These settings yielded ṁ = 0.0555778 kg/s, which is close to the ṁ = 0.055 kg/s as stated in the

article. Also the pressure, density and velocity were calculated and plotted as functions of z. In

5.4. Stability benchmark 27

these graphs the corresponding data from the article was also plotted to be able to make a better

comparison.

As can be seen in figure 5.4 the density over the setup as given by Ambrosini deviates quite a bit

from the calculated values (especially in the beginnig and the middle part of the setup). As can be

seen in the zoomed-in graph in figure 5.4, even the density at the inlet of the heated section does

not match. The reason for this difference was somewhat unexpected since Ambrosini also uses data

from NIST. The difference could be caused by one or all of the following conversions. First of all,

the inlet temperature, Tin = 280 ◦C, was converted into the inlet enthalpy hin = 1.2305 · 106 J/kg.

Second, this hin was used to estimate the corresponding ρ with the cubic splines that were discussed

in section 4.2. Third, the conversion of the temperature into a density, as was done by Ambrosini.

A work-around could be to match the density to the density of Ambrosini and calculate the

corresponding temperature and enthalpy. This, however, has not been done in this work.

0 0.5 1 1.5 2 2.5 3 3.5 4

0

100

200

300

400

500

600

700

800

900

z (m)

ρ
¡ kg/

m
3
¢

Ambrosini
current

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

680

700

720

740

760

780

800

820

840

z (m)

ρ
¡ kg/

m
3
¢

Ambrosini
current

Figure 5.4: Plot of the density ρ as a function of the axial distance z for the setup in Ambrosini and

Sharabi (2008). Full range of z(left) and zoomed-in on the entrance of the setup (right).

The variation of pressure as a function of the height z is shown in figure 5.5. The match seems

to be better than for the density in figure 5.4. At the end of the setup, the variation between the

pressure profiles suddenly increases. This can be seen more easily in the zoomed-in plot in figure

5.5. The graph of the calculated values has a sudden change in slope at the end. The reason

for this change is that there is a Kout defined in the setup. Therefore this behaviour is actually

expected. Although expected, this is not found in the pressure profile of the data from Ambrosini

flattens.

28 Chapter 5. Results

0 0.5 1 1.5 2 2.5 3 3.5 4

-2

0

2

4

6

8

10

12

14

16

x 10
4

z (m)

p
(P
a
)

Ambrosini
current

3.8 3.9 4 4.1 4.2 4.3 4.4

-0.5

0

0.5

1

1.5

2

2.5

3

x 10
4

z (m)

p
(P
a
)

Ambrosini
current

Figure 5.5: Plot of pressure p as a function of axial distance z for the setup in Ambrosini and Sharabi

(2008). Full range of z(left) and zoomed-in on the end part of the setup (right).

The match between the velocity profiles is good. A zoomed-in version is included revealing no

irregularities.

0 0.5 1 1.5 2 2.5 3 3.5 4

0

2

4

6

8

10

12

z (m)

u
(m
/
s)

Ambrosini
current

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.5

1

1.5

2

2.5

z (m)

u
(m
/
s)

Ambrosini
current

Figure 5.6: Plot of velocity u as a function of axial distance z for the setup in Ambrosini and Sharabi

(2008). Full range of z(left) and zoomed-in on the first part (right).

Although the match was not 100%, the stability plots have been compared. To facilitate the

comparison, the stability plane defined by Ambrosini’s dimensionless numbers was converted into

a stability plane defined by the dimensionless numbers in equations 3.7 and 3.8. The dimensionless

numbers used in Ambrosini and Sharabi (2008) are

NSUBPC ≡
βpc

Cp,pc
(hpc − hin) (5.2)

NTPC ≡
βpc

Cp,pc

q̇

GA
(5.3)

Comparison with equations 3.7 and 3.8 reveals that the dimensionless numbers differ only up to a

multiplicative constant. The familiar dimensionless numbers (equations 3.7 and 3.8) are obtained

by multiplying Ambrosini’s dimensionless numbers by the constant

Cp,pc

βpchpc
, (5.4)

where βpc is the isobaric thermal expansion coefficient at the pseudo critical point, Cp,pc is the

specific heat at constant pressure, also taken at the pseudo critical point and hpc is the specific

5.4. Stability benchmark 29

enthalpy at pseudo-critical conditions. For water the numerical values for the constants are:

βpc = 0.12849 1
K , Cp,pc = 76444 J

kg K and hpc = 2.1529 · 106 J/kg.

As was mentioned in section 3.2.1, the maximal value for Nsub equals 1. While converting the

stability plot, as described above, there were also values encountered for Nsub ≥ 1. These numbers

have been considered to be unphysical and are therefore not included in the stability plot in figure

5.7.

1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ndh

N
su
b

stable

unstable

Figure 5.7: Stability plane from Ambrosini and Sharabi (2008), converted to the dimensionless numbers

Nsub and Ndh to facilitate comparison. The stable and unstable regions are indicated.

N = 48 cells.

In figure 5.8 the stability plots for two different resolutions are shown. The figures do not match

with the stability plot from figure 5.7. Also, figure 5.8 shows that there is a grid dependency in

the stability plots, this grid dependency disappears, however, for resolutions higher than 40 cells

per meter.

30 Chapter 5. Results

1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
su
b

Ndh

1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
su
b

Ndh

Figure 5.8: Stability plots for the setup in Ambrosini and Sharabi (2008) with a resolution of 11.2486

cells per meter (which means N = 48, see equations 5.1) (left) and resolution = 50 cells per

meter (right) For this resolution, the stability plot is grid independent.

Attempts were made to alter the stability plot by manually varying the friciton. Altering the

friction was of no effect on the resulting stability plane however. This is another signal that the

stability plots are incorrect.

The time needed for the calculation with a resolution of 11.2486 cells per meter was slightly less

than 2 minutes. The calculation time for a resolution of 50 cells per meter is approximately 30

minutes. This means that the calculation time increases strong with an increase in the number of

cells.

Chapter 6

Conclusions

The steady-state code is succesfully benchmarked for a natural convection loop. The steady-state

variation of enthalpy over this loop is according to expectation. The succesfull benchmark also

proves that for some lower threshold for the resolution, the solution becomes grid independent.

For steady-state calculations seemed to increase linear for an increased number of cells. The grid

independent solution was found for calculation times of less than one second.

For the stability code, the benchmark was unsuccessful. There was a grid independency found,

however. It was also found that the stability plot does not respond as expected to a change in

friction. It has also been observed that the calculation time for the stability plane increases strong

for an increase in the number of cells.

Further research is necessary for the stability code. In the discussion and recommendations that

follow, possible reasons for the stability code not working properly are listed and subsequently

possible solutions are suggested.

31

Chapter 7

Discussion and Recommendations

In this chapter several things that are open to improvement are listed. In some cases possible

solutions are presented.

7.1 Eigenvalues

The criterion used to filter the eigenvalue, as desribed in section 4.6, is not a very nice way to solve

the problem of wrong eigenvalues, because, although it effectively removes the wrong values, it also

removes the actual eigenvalues that happen to be large. A solution to this problem could be to use

Fortran instead of Matlab. The eig function in Matlab itself is based on Fortran packages, the

Fortran packages however, seem to have better documentation than the Matlab help. Also the

possibilities of using eigs routine (a function comparable to eig for sparse matrices) to benefit

from the obvious sparsity of the matrices seems promising, because it is based on algorithms that

are faster.

7.2 Variable cross-section

A natural extension to the current code is allowing the diameter of the system to vary. For

simplicity, this was not done in this case study. For a lot of interesting setups, however, the cross-

section is not constant. When a variable-cross section is allowed, it might be more convenient to

work with the mass flow ṁ instead of the mass flux G, since the steady-state mass flow will still

be constant in this case.

7.3 Errors

The reason for failing to make a correct stability plot could also be an error, instead of using

the wrong approach. An error could be made in the mathematical derivation in the first few

chapters of this thesis. Also the translating process from mathematics to the Matlab language is

sometimes tricky, despite their similarity, or maybe because of their similarity. This scenario has

only one solution: rereading and checking everything. For checking the structure of the matrices

in Matlab, the spy function was used as described in appendix D.

32

Appendices

Appendix A

Test case for eig

As mentioned in section 4.6 the output from the function eig was different than what was expected.

To get more feeling for the function and its output, a test case was considered. The test case had

to be simple yet representative. For simplicity the size of the matrices was kept small. Still, the set

of equations was chosen such, that it leads to a singular generalized eigenvalue problem. Consider

the following set of equations

dx1

dt
= 3x1, (A.1)

0 = x1 − x2. (A.2)

It can be easily verified that this system of equations is solved by x1 = x2 = e3t. Therefore, both

x1 and x2 have eigenvalue 3. The system can be rewritten in the form Adx
dt = Bx, (same as in

chapter 3) as follows [
1 0

0 0

]
d

dt

[
x1

x2

]
=

[
3 0

1 −1

][
x1

x2

]
. (A.3)

Inserting

x =

[
c1

c2

]
eλt, (A.4)

and performing the time derivative yields[
1 0

0 0

]
λ

[
c1

c2

]
eλt =

[
3 0

1 −1

][
c1

c2

]
eλt. (A.5)

Finally, division by eλt leads to the generalized eigenvalue problem[
1 0

0 0

]
λ

[
c1

c2

]
=

[
3 0

1 −1

][
c1

c2

]
, (A.6)

which can be rewritten as [
λ− 3 0

−1 1

][
c1

c2

]
= 0. (A.7)

This equation has a non-trivial solution (a solution other than c1 = c2 = 0) only when the

determinant of the matrix equals zero:

det

[
λ− 3 0

−1 1

]
= 0. (A.8)

34

35

This reduces to the very simple equation

λ− 3 = 0 ⇒ λ = 3. (A.9)

This corresponds to what was expected. It should be noted that the algebraic multiplicity is 1.

Next, this problem was solved by the function eig. This is easily done by first definining the

matrices A and B and subsequently calling the eig function.

>> A = [1 0;0 0];

>> B = [3 0;1 -1];

>> E = eig(B,A);

Now, E has the value

E =

[
-Inf

3

]
.

Matlab finds the eigenvalue 3 with algebraic multiplicity 1 as was predicted. But the reason why

Matlab also returns the value -Inf is unclear. As stated in section 4.6 this problem was solved

by filtering the values with magnitude larger than a specified limit.

Appendix B

Dimensions of test loop

The following natural convection loop has been used extensively during the coding and has been

used for the calculations in sections 5.1 and 5.3. Therefore it was decided to have a separate page

to define the geometry of the setup.

The size of the different parts of the setup can be read off from figure B.1. The height of the

setup, for instance, is 4 m. The total length of the loop is 2 · 1 + 2 · 4 = 10 m. The diameter of the

circular tube is 5 cm.

riser

core

cooler

d
o
w

n
co

m
er

1 m

4
 m

2
 m

1
 m

Figure B.1: Schematic diagram with dimensions of test loop. Note that the individual parts in this

drawing are not proportionally scaled.

There are no local pressure coeffcients defined and the friciton is implemented by the Haaland

approximation (equation 2.6) with relative roughness
(

ε
DH

equal to 0.0015
)
. The fluid used is

water.

36

Appendix C

Dimensions of test channel

The vertical flow channel from Ambrosini and Sharabi (2008) has been used in this thesis for

benchmarking the stability calculation as described in section 5.4.

Figure C.1: Schematic diagram of vertical flow channel. Figure adopted from Ambrosini and Sharabi

(2008).

The parameters describing the geometry are listed below

• channel length LC = 4.2672 m

• coolant flow area A = 5.49 · 10−5 m2

• heated perimeter P = 32.04 · 10−3 m

• hydraulic diameter DH = 3.4 · 10−3 m

• system pressure p = 25 · 106 Pa

• inlet orifice pressure loss coefficient Kin = 20

• outlet pressure loss coefficient Kout = 1

A constant has been used to model the friction factor: f = 0.0352. The fluid used is water.

37

Appendix D

Sparsity pattern

Before the eigenvalues can be calculated, the matrices A and B from equation 3.3 need to be

defined in Matlab. Although this might not seem a very difficult task, it is a very tedious task

where mistakes are easily made. These mistakes can alter the resulting eigenvalues and therefore

they need to be avoided.

The built-in function spy can be used to check whether the sparsity patterns of the matrices A

and B as defined in Matlab are equal to those of the matrices A and B. The structure of A is

written out in equation 3.2. The structure of B can be easily derived from equations 2.23, 2.28

and 2.35.1 To use the spy function on a matrix, the matrix must first be converted into a sparse

matrix. The sparsity pattern for A is plotted by executing

>> A = sparse(A);

>> spy(A)

Repeating this procedure for matrix B yields the figures shown below.

1In deriving the structure of B it should be remembered that the first N rows correspond to the mass equation

(equation 2.23), the rows N+1 to 2N correspond to the energy equation (equation 2.28) and finally the momentum

equation (equation 2.35) fills up rows 2N + 1 to 3N . The same order was used in defining A as given in equation

3.2

38

39

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Figure D.1: Sparsity patterns of A (left) and B (right) as obtained by the spy function. Number of cells

equals 10 and therefore both A and B are 30-by-30 matrices.

A small number of cells was chosen to be able to distinguish more clearly the individual dots (i.e.

the individual non-zero elements in the matrices). The structure of the matrices in figure D.1 is

the same as that of A and B as derived in this thesis. This assures that at least the structure of

the matrices is correctly definded in Matlab.

Bibliography

W. Ambrosini and M. Sharabi. Dimensionless parameters in stability analysis of heated channels

with fluids at supercritical pressures. Nuclear Engineering and Design, 238(8):1917 – 1929, 2008.

W.E. Boyce and R.C. DiPrima. Elementary Differential Equations and Boundary Value Problems.

John Wiley & Sons, New York, USA, eighth edition, 2004.

D.D.B. van Bragt. Analytical Modeling of Boiling Water Dynamics. PhD thesis, TU Delft, Faculty

of Applied Sciences, Delft, The Netherlands, 1998.

K. Fischer, T. Schulenberg, and E. Laurien. Design of a supercritical water-cooled reactor with a

three-pass core arrangement. Nuclear Engineering and Design, 239:800–812, 2009.

Generation IV International Forum. A Technology Roadmap for Generation IV Nuclear Energy

Systems, 2002.

T. Ortega Gómez. Stability Analysis of the High Performance Light Water Reactor. PhD thesis,

Forschungszentrum Karlsruhe, Karlsruhe, Germany, 2008.

S.E. Haaland. Simple and explicit formulas for the friction factor in turbulent pipe flow. Journal

of Fluids Engineering, 105(1):89–90, 1983.

J. Hofmeister, C. Waata, J. Starflinger, T. Schulenberg, and E. Laurien. Fuel assembly design

study for a reactor with supercritical water. Nuclear Engineering and Design, 237(14):1513 –

1521, 2007.

L.P.B.M. Janssen and M.M.C.G. Warmoeskerken. Transport Phenomena Data Companion. VSSD,

Delft, The Netherlands, third edition, 2006.

C.P. Marcel, M. Rohde, V.P. Masson, and T.H.J.J. van der Hagen. Fluid-to-fluid modeling of

supercritical water loops for stability analysis. International Journal of Heat and Mass Transfer,

52(21-22):5046 – 5054, 2009.

C.B. Moler and G.W. Stewart. An algorithm for generalized matrix eigenvalue problems. SIAM

Journal on Numerical Analysis, 10(2):241–256, 1973.

M.J. Moran and H.N. Shapiro. Fundamentals of Engineering Thermodynamics. John Wiley &

Sons, Chichester, UK, fifth edition, 2006.

S.V. Patankar. Numerical Heat Transfer and Fluid Flow. Series in Computational Methods in

Mechanics and Thermal Sciences. Hemisphere Publishing Corporation, Washington, D.C., USA,

1980.

40

Bibliography 41

M.B. Sanders. Thermo-hydraulic stability analysis of the high performance light water reactor

and a scaled experimental facility. Master’s thesis, TU Delft, Faculty of Applied Sciences, Delft,

The Netherlands, 2009.

D. Squarer, T. Schulenberg, D. Struwe, Y. Oka, D. Bittermann, N. Aksan, C. Maraczy,

R. Kyrki-Rajamäki, A. Souyri, and P. Dumaz. High performance light water reactor. Nu-

clear Engineering and Design, 221(1-3):167 – 180, 2003. Mid-Term Symposium on Shared-Cost

and Concerted Actions.

J. Stewart. Calculus - Early Transcendentals. Thomson Brooks/Cole, sixth edition, 2008.

Matlab Function Reference. The MathWorks.

N.E. Todreas and M.S. Kazimi. Nuclear Systems I - Thermal Hydraulic Fundamentals. Taylor &

Francis, New York, USA, 1990.

