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Summary

Quality assessment of satellite-based global gravity field models

A global model of the Earth’s gravity field may be derived from satellite observations such as satellite
tracking observations or satellite gravity gradiometry (SGG). Due to the satellite’s altitude above the
Earth’s surface, the gravity field recovery from satellite data is an ill-posed problem since it lacks stability.
In addition, the spatial data distribution is heterogeneous in general. A physically sensible solution may
therefore only be obtained by imposing constraints on the solution or by using additional surface data.
The former is called regularisation.

The regularisation methods used here are all filtered least-squares solutions. Several methods are
discussed as well as how to choose the filter or regularisation parameter. Regularisation yields stable
solutions at the expense of introducing bias into the solution. The more the least-squares solution is
filtered, the more stable the solution is and the more bias is introduced. The solution error is described
by the mean square error matrix (MSEM) which includes propagated data noise and bias as well. The
optimal choice for the regularisation parameter will minimise the trace of the MSEM, the so-called mean
square error.

The MSEM plays a key role in quality assessment. It describes not only the accuracy of the estimated
unknowns but can also be used for error propagation to derived products, computation of signal-to-noise
ratio (SNR), and so on. A number of quality measures based on the MSEM is discussed. Of the quality
measures, the error propagation and the ratio measures such as SNR, appear to be useful, whereas the
contribution measures, which reflect the importance of the observations relative to the constraints, are
less useful. A

In order to compare the different regularisation methods a simulation study is conducted for SGG.
Specifically, Tikhonov regularisation (TR) with a number of different constraints is tested as well as or-
dinary and generalised biased estimation. A global gravity field was determined with a spatial resolution
of approximately 1° using simulated SGG data leaving the polar areas uncovered. The regularisation
methods perform equally well in the observation area. TR with signal constraint, however, seems to give
the smallest mean square error when the unsurveyed areas are taken into account as well. Furthermore,
if the error model of the observations is correct, then error analysis and simulation yield comparable
conclusions on the quality.

Therefore, TR with signal constraint in combination with error analysis are used to investigate the
effect of additional data as well as the effect of a change in resolution. The gradiometric observations
are combined with high-low satellite-to-satellite tracking (SST) data and airborne gravimetry. The SST
data are especially useful to compensate for the SGG coloured noise errors and are slightly less sensitive
to data gaps. If surface gravity data are available in the uncovered areas then the ill-conditioning is
largely reduced. These data, however, are not suited to overcome the ill-conditioning due to downward
continuation.

The most important results are that, if only satellite data are available, the bias cannot be neglected
and should be accounted for in the quality assessment. Furthermore, the bias is concentrated in the
unsurveyed areas but many gravitational potential coefficients may be affected. A fuil understanding
of the quality of a gravity field model can only be obtained by considering several quality measures.
Moreover, conclusions about the quality may depend on the desired final product. Gravity anomalies, for
example, are less affected by the SGG coloured noise than geoid heights.



Samenvatting

Kwaliteitsbeschrijving van op satellietmetingen gebaseerde mondiale zwaartekrachtsveld-
modellen

Een mondiaal model van het aardse zwaartekrachtsveld kan worden bepaald met behulp van satel-
lietmethoden als satellietbaanbeschrijving en satellietgravitatiegradiometrie (SGG). Vanwege de hoogte
van een satelliet boven het aardoppervlak, kan de zwaartekrachtsveldbeschrijving uit satellietmetingen
worden gekarakteriseerd als een slecht gesteld invers probleem omdat het instabiel is. Bovendien is de
ruimtelijke dataverdeling in het algemeen heterogeen. Daarom kan een fysisch zinvolle oplossing alleen
worden verkregen door randvoorwaarden aan de oplossing op te leggen of door additionele oppervlakte-
data te gebruiken. Het eerste wordt regularisatie genoemd.

Alle hier gebruikte regularisatiemethoden zijn gefilterde klemstekwadratenoplossmgen Een aantal
methoden wordt besproken alsook de bepaling van de filter- of regularisatieparameter. Door middel van
regularisatie worden stabiele oplossingen verkregen ten koste van de zuiverheid van de oplossing. Hoe
meer de kleinstekwadratenoplossing wordt gefilterd, des te stabieler en onzuiverder de oplossing wordt.
Door middel van de gemiddelde-kwadratischefoutenmatrix (‘mean square error matrix’ MSEM), die
bestaat uit zowel onzuiverheid als voortgeplante meetfout, worden de fouten in de oplossing beschreven
De optimale keuze van de regularisatieparameter minimaliseert het spoor van de MSEM. :

De MSEM vervult een sleutelrol in kwaliteitsbeschrijving. Niet alleen beschrijft deze de nauwkeurig-
heid van de geschatte onbekenden maar ze kan ook worden gebruikt voor foutenvoortplanting naar
afgeleide producten, berekening van signaal-ruisverhouding (SNR), enzovoort. Een aantal op de MSEM
gebaseerde kwaliteitsmaten wordt behandeld. Van deze blijken de foutenvoortplanting en de verhou-
dingsmaten zoals de SNR bruikbaar, terwijl de bijdragematen, die de invloed van de waarnemingen ten
opzichte van de randvoorwaarden beschrijven, minder bruikbaar zijn. E

De verschillende regularisatiemethoden worden vergeleken met behulp van een simulatiestudie voor
SGG. Tikhonov regularisatie (TR) met verschillende randvoorwaarden en gewone en gegeneraliseerde
onzuivere schatting worden getest. Daartoe wordt een mondiaal zwaartekrachtsveld bepaaid met een
ruimtelijke resolutie van ongeveer 1° uit gesimuleerde SGG-data die de poolgebieden niet bedekken.
De regularisatiemethoden geven gelijke resultaten in het gebied met metingen, maar in de niet bedekte
gebieden presteert TR met signaalrandvoorwaarde het best. Bovendien kan geconcludeerd worden dat,
indien het foutenmodel van de waamemingen correct is, foutenanalyse en simulatie vergelijkbare con-
clusies aangaande de kwaliteit opleveren.

Dat is de reden dat het effect van additionele data en het effect van een veranderende resolutie wordt
onderzocht met TR met signaalrandvoorwaarde in combinatie met foutenanalyse. De gradiometrische
waarnemingen worden gecombineerd met satelliet-naar-satellietmetingen (SST) en vliegtuiggravimetrie.
De sST data zijn speciaal geschikt ter compensatie van de gekleurde ruis op de SGG-waarnemingen.
Bovendien zijn ze iets minder gevoelig voor een heterogene bedekking. De slechte conditionering wordt
grotendeels gereduceerd indien oppervlaktezwaartekrachtdata beschikbaar zijn in de niet bedekte ge-
bieden. Deze data zijn echter niet geschikt om de slechte conditionering ten gevolge van de neerwaartse
voortzetting op te heffen.

De belangrijkste resultaten zijn dat, als alleen satellietdata beschikbaar zijn, de onzuiverheid niet ver-
waarloosd kan worden en meegenomen moet worden in de kwaliteitsbeschrijving. De onzuiverheid con-
centreert zich in de gebieden zonder metingen, maar vele zwaartekrachtspotentiaalcoéfficiénten kunnen
worden aangetast. Een volledig inzicht in de kwaliteit van een zwaartekrachtsveldmodel kan alleen wor-
den verkregen door meerdere kwaliteitsmaten te beschouwen. Voorts kunnen de conclusies aangaande de
kwaliteit afhangen van het eindproduct. Zo zijn bijvoorbeeld zwaartekrachtsanomalién minder gevoelig
voor de gekleurde ruis van SGG dan geoidehoogtes.
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Introduction

Background and preblem description

A model of the Earth’s gravity field is used in several geosciences, and throughout the years many of
such models have been computed (for an overview see e.g. Bouman, 1998c). Since the beginning of
the space age satellites have been used for the determination of global gravity field models. Satellites in
free fall around the Earth move under the influence of the Earth’s gravity field. Hence, tracking these
satellites may yield gravity field information, and the models thus determined are called satellite-only
models. At first visible objects were photographed against the star background, whereas later Doppler
measurements and satellite laser ranging were used. With time satellite tracking improved, and because
of the increased number of satellites and tracking stations, the spatial distribution of the measurements
improved as well (e.g. Reigber, 1989). Despite this progress, the distribution still is non-homogeneous.
Another major drawback is the inherent instability of gravity field determination from satellite tracking
data. In other words, a small error in the data may lead to a large error in the gravity field model. This is
a consequence of the strong damping of the high gravity field frequencies at satellite altitude. Vice versa,
the measurement noise is amplified through downward continuation (cf. Rummel et al., 1979).

The standard method to overcome such instabilities is to add prior information to the solution. The
quality description of the solution starts with interpreting the method in the framework of unbiased least-
squares collocation, sometimes also called constraint least squares (Marsh et al., 1988; Schwintzer et al.,
1997). 1t is, however, generally recognised that the satellite-only models are biased, but that the bias
is usually not accounted for (Marsh ez al., 1988; Xu, 1992b). In addition to the standard stabilisation
method a number of alternative methods exists, of which most have not been studied thoroughly in
geodetic literature (cf. Louis, 1989; Engl et al., 1996; Hansen, 1997).

It is well known that only the long wavelengths (about 600 km at the equator, corresponding to
spherical harmonic degree and order 70) of the gravity field are revealed by the available sateilite tracking
data (Nerem et al., 1994; Schwintzer et al., 1997). The combination of satellite tracking data with
terrestrial gravimetry and satellite altimetry allows for resolving shorter wavelengths down to about 100
km at the equator, corresponding to spherical harmonic degree and order 360 (Rapp et al., 1991; Gruber
et al., 1995), although the accuracy of such combined models at different frequencies and locations is far
from homogeneous. The combined models as well as the satellite-only models suffer from an improper
quality description. On the one hand this is due to model errors, e.g. insufficient modelling of atmospheric
drag, the aliasing of oceanographic signals in altimetry, and systematic errors in terrestrial gravity data




2 1. Introduction

(Nerem et al., 1994; Heck, 1990). On the other hand, as said before, the satellite-only models are biased
and these are the basis for the combined models.

In the near future several dedicated gravity field missions are likely to be launched. ‘New’ measure-
ments techniques will be applied, specifically satellite gravity gradiometry (SGG) and satellite-to-satellite
tracking (SST). Two of these missions are GRACE, using high-low and low-low SST (Tapley, 1996), and
GOCE, using a combination of high-low ssT and SGG (ESA, 1999). The purpose of these missions is to
very accurately determine high resolution stationary gravity field models (GOCE), and time-varying grav-
ity signatures (GRACE). The expected measurement precision of the new techniques is rather high and
the required resolution and accuracy of the derived solution is much better than state-of-the-art gravity
field models. However, as noted above, it is unclear as to how the accuracy should be described. When
the bias is taken into account the accuracy description might be different from the conventional accuracy
description. Furthermore, it is of interest to consider alternative estimation methods and to compare those
with the standard solution method without ignoring the bias.

Since a mission such as GOCE leaves small parts of the Earth at the poles un-surveyed, the mission
might be supported by gravity data obtained from airborne gravimetry in order to cover the whole Earth
with measurements. Heretofore it is unknown how these data influence the quality of the solution,
especially the impact on the unknown bias. Moreover, the resolution of the gravity field model is not
fixed beforehand. A resolution increase has effect on the quality of the global model.

Objectives

The above may be summarised by stating that the determination of the Earth’s gravity field from satellite
observations (satellite tracking, SGG) is an ill-posed problem and that the solution requires regularisation
(e.g. Rummel ez al., 1979). Several methods of regularisation exist which stabilise the solution at the
expense of introducing a bias. The objective of this thesis is to study the effect of different measurement
types, parameter estimation methods and resolutions on the quality of Earth gravity field models based
on satellite measurements with emphasis on the bias.

To this end a simulation study is conducted for SGG as well as an error analysis for the combma-
tion of SGG with SST and gravimetry. The quality is assessed by showing differences between missions,
parameter estimation methods, etc. in terms of bias, geoid errors, mean square error, and so on. Al-
though supported by numbers such as “the RMS geoid height error is 2 cm”, the quality should mainly
be understood in a relative sense, for example, one method introduces less bias than another method.

Further context and limitations

Notwithstanding the fact that the measurements are inherently discrete and finite, and although only a
finite number of unknowns can be solved for, the characteristics of ill-posed problems are discussed
by studying continuous functions and operators defined on infinite dimensional spaces. The standard
example of an unstable ill-posed problem is the integral equation of the first kind with compact operator
(e.g. Kress, 1989). The problems solving this equation carry over to the finite dimensional problem,
and therefore the integral equation of the first kind provides the underlying concept for the discrete
case. However, as soon as quality description is involved, always finite dimensions are used since the
measurements dealt with are discrete and finite, and the number of estimated parameters is finite as well.

The observational model, relating the unknowns to the observations, is assumed to be linear or lin-
earised. In our case the approximate values for the linearisation come from the reference model GRS80,
iteration could account for the non-linear effects. In this thesis the unknowns consist only of gravitational
coefficients of a spherical harmonic series. The observations will include gravity gradiometry, orbit per-
turbations derived from satellite-to-satellite tracking and gravimetry. Note that, although the observation
model is linear, a solution method such as conjugated gradients is not. This will hamper the quality



description, and therefore the non-linear methods are not discussed here although they may be of interest
too (cf. Schuh, 1996).

The analysis of a real gravity mission would require the inclusion of many more parameters than just
spherical harmonic coefficients, such as station coordinates, tides, polar motion, time biases, variation
in time of the harmonic coefficients, etc. In the actual data processing the estimation of the unknowns
is conveniently split up into two steps (cf. Reigber, 1989). First, the so-called internal parameters are
estimated, that is, the unknowns related to specific data arcs, such as initial state vectors. Secondly,
the external parameters are estimated, such as the spherical harmonics and tidal terms. The orbit is
assumed to be known with high enough accuracy relative to the accuracy of the model and the noise in
the observations. The precise orbit determination (POD) is the first step (e.g. Davis, 1997). As far as
the second step is concerned, all but the spherical harmonic coefficients are considered to be nuisance
parameters. Undoubtedly, the inclusion of more unknowns influences the quality of the gravity field
solution. However, the estimation of the harmonics fit into the context of the regularisation of ill-posed
inverse problems. Therefore, the influence of the parameter estimation methods on the estimation of
the spherical harmonics is investigated, whereas the effect of estimating other parameters than spherical
harmonics is not.

This study is confined to global gravity field models using spherical harmonics. For local gravity
field determination using splines, for example, it is referred to (Thalhammer, 1995; Schneider, 1997).
Furthermore, the surface of the Earth is assumed to be a sphere of radius R, which is a severe assumption
that neglects complications such as the downward continuation to the actual topographic surface (see
e.g. Hotine, 1967). However, the interest is in a qualitative analysis supported by a quantitative analysis.
It is the purpose to compare regularisation methods and satellite missions, which, to a certain extent,
eliminates questions as how to refer to the actual topographic surface.

The quality description is limited to the precision or mean square error of the individual coefficients.
It may include bias and propagated noise. The errors are evaluated in several ways. The signal-to-noise
ratio is considered, the errors will be propagated to other gravity field functionals such as geoid heights
or gravity anomalies, and the contribution of the observations to the solution is studied with respect to
the constraints or a priori information. A more complete quality description could include, for example,
internal and external reliability. However, these measures are derived under the assumption of unbiased
estimation, and are therefore not discussed.

Outline

The outline of this thesis is as follows. First, the instability of the least-squares solution is clarified
by looking at the singular value decomposition of the linear model. Moreover, parameter estimation
methods (the term ‘solution methods’ is sometimes used as well) to overcome the instability are discussed
as well as the corresponding mean square error matrix in chapter 2. In chapter 3 several quality measures
will be presented, that is, the mean square error matrix is looked upon from different view points which
gives an idea of the overall quality of the solution. Then the observations are discussed as well as their
relation to the unknowns in chapter 4. The necessary simplifications leading to a linear model and a
block-diagonal normal matrix are treated.

Within the framework of these three chapters it is possible to compare the solution methods using
simulations. Chapter 5 deals with representative SGG examples. First, a polar circular orbit is studied
and secondly a GOCE-like orbit is considered. Then gradiometric measurements are combined with
satellite-to-satellite tracking and (airborne) gravimetry using error analysis in chapter 6. Finally, the
main conclusions and recommendations can be found in chapter 7.

Related work and references

Schwarz (1979) and Neyman (1985) treat ill-posed problems and their regularisation in a geodetic con-
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text. Rauhut (1992) compares regularisation methods for local gravity anomaly determination from
satellite altimeter data, which is known as the inverse Stokes problem. However, no attention is given
to the bias. Biased estimation in connection with geopotential fields has been studied by Xu (1992a,b);
Xu and Rummel (1994a). Xu and Rummel (1994b) compare several biased estimators for local grav-
ity anomaly determination from SGG. Bouman (1998b) compares a number of regularisation methods
and regularisation parameter choices by means of the downward continuation of airborne gravimetric
data. There is a vast amount of non-geodetic literature on regularisation methods: e.g. Phillips (1962);
Tikhonov (1963a,b); Tikhonov and Arsenin (1977); Nashed (1976); Vinod and Ullah (1981); Morozov
(1984); Groetsch (1984, 1993); Kress (1989); Louis (1989); Wahba (1990); Wing (1991); Engl et al.
(1996); Hansen (1997). This selection is not complete, further references are given later on. Parts of this
thesis have been published earlier, the corresponding references will be given where appropriate.
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Parameter estimation and the associated mean
square error

2.1 Introduction

The problem of gravity field determination at the Earth’s surface using data acquired at satellite height is
known to be an inverse problem which is ill-posed (e.g. Rummel et al., 1979). The classical example of
such an inverse problem is the integral equation of the first kind, which gives the linear relation between a
continuous function representing the observations and a continuous function representing the unknowns
via a compact operator. It is well known that such inverse problems are unstable because the operator
is compact. The whole idea becomes transparent in the frequency domain, i.e. using singular value
decomposition, and it can easily be shown why the least-squares (1.s.) method fails.

Since 1.s. fails, alternative solution methods are considered in this thesis. Several so-called regulari-
sation methods are discussed here and the associated mean square error matrix is derived as well. This
matrix describes the accuracy of the estimated parameters and includes propagated observation noise and
bias. The latter is due to the fact that the regularisation methods yield biased estimates. The regularisa-
tion methods studied here turn out to be filtered least-squares solutions and the filter may be tuned by
adjusting one or more regularisation parameters. Several parameter choice rules to tune the filters are
discussed as well as their relation with the mean square error.

Although the measurements are inherently discrete and finite and although only a finite number of
unknowns can be solved for in practice, the characteristics of ill-posed problems will be discussed by
means of (non discrete) functions and operators defined on infinite dimensional spaces. The idea is that
the original inverse problem can be described by an integral equation of the first kind. Solving for more
and more unknowns then leads to a discrete inverse problem which more and more resembles the original
problem (e.g. Engl et al., 1996).

In the current chapter only the mean square error of the solution will be discussed. However, other
errors could have been taken into account too. Model errors, for example, can be important. These
errors are touched upon briefly in chapter 5. Another error source comes from the finite sampling of
the signal. If, for example, one wants to determine the Earth’s gravity field from a dedicated satellite
gravity field mission with a certain mission length and sampling rate, the maximum frequency one can
solve for is limited by these factors. Of course, higher frequencies will be present in the measurements
(since they are also present in the signal which is measured), and the power of these higher frequencies
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will be projected onto the lower frequencies which are solved for, which is called aliasing (Oppenheim
et al., 1983). A few first preliminary results on this matter for gradiometry are presented in Van Gelderen
(1998) and Schuh (1999). Further study is certainly required but is outside the scope of this thesis.

This chapter summarises chapters 4 and 5 of Bouman (1998b). In turn, Bouman (1998b) is largely
based on Kress (1989); Louis (1989); Groetsch (1993); Engl et al. (1996); Hansen (1997) and other
references cited therein.

2.2 Inverse problems and regularisation

In this section the abstract linear model is given. The continuous model is an integral equation, whereas
the discrete model is a matrix-vector equation. The determination of the unknowns from the observations
can be classified as an inverse problem which is ill-posed, and which may result in a solution which has
no (physical) meaning. This becomes especially clear when the linear equations are decomposed in
spectral form. The singular value decomposition (SVD), therefore, is discussed and the least-squares
solution is shown to be of little use. Finally, the general technique that does give meaningful solutions is
outlined, as well as the conditions such a technique must fulfil.

2.2.1 Hl-posed problems
Let the sphere in R® with radius R around the origin be given by

Qp = {z € R®||z| = R}.

12k =/ dwg = 4 R?
Qr

with dwp, the surface element on 2. The linear integral equation
[ K@)ft)dents) = s@), =€, e
R

is a Fredholm integral equation of the first kind, where the function f € L?(Qg) is unknown, Q, is
the sphere with radius r, » > R, and the square integrable kernel K € C(Q,) x C(2g) and the right
hand side g € L?(,) are given functions. A geodetic example is the downward continuation of the
gravitational potential at satellite height to the Earth’s surface: the potential g(z) at height r is known
and the potential at height R is to be determined. The integral equation (2.1) refers to a spherical assumed
Earth and the orbit is assumed to be circular. Schneider (1997) considers the generalisation of the integral
equation to non-spherical geometries.
Symbolicaily, (2.1) is written as
Af=g. . 2.2)

The operator A : FF — G is linear and compact, and it is a single-valued mapping with domain F' and
the range is contained in G, that is, for every f € F the mapping A assigns unique elements Af € G.
(Appendix A summarises a few definitions from functional analysis). Note that for simplicity the LZ
spaces where f and g live are denoted as F’ and G respectively from now on.
In real life the number of measurements is finite and so is the number of unknowns. The discrete
version of (2.2) is denoted as
Az =y

withz € R*,y € R™ and m > n. Matrix A is often assumed to have full column rank, that is,
rank(A) = n.




2.2. Inverse problems and regularisation 7

Observations contaminated with noise get a superscript €:

f=g+e¢ lellc<e
¥ =v+e |ellz<e

with ¢ € R . Furthermore, E{g°} = g, E{y*} = y and D{y*} = 0?P~}, with E the expectation oper-
ator, D the dispersion operator and P! the error variance-covariance matrix. Without loss of generality
P is scaled such that the variance of unit weight 2 is set equal to one in most cases from here on.

The determination of the unknown function f from the observed function ¢° and known operator A
is called an inverse problem. A desirable property of the estimate f is of course that it is close to f if
g° is close to g. Moreover, a unique solution should exist for all g € G. These are the conditions of
continuity, existence and uniqueness. When those three conditions are met, the inverse problem is said
to be well-posed.

Definition 2.1 (well-posed, ill-posed). Let A : F — G be an operator from a normed space F into a
normed space G. The equation

Af=g (2.3)
with f € F,g € G is called well-posed if A is bijective and the inverse operator A~! : G — F is
continuous. Otherwise the problem is said to be ill-posed. a

According to this definition three types of ill-posedness can be distinguished (Kress, 1989). If A is not
surjective then (2.3) is not solvable for all g € G (non-existence). If A is not injective then (2.3) may have
more than one solution (non-uniqueness). Finally, if A~! exists but is not continuous then the solution f
of eq. (2.3) does not depend continuously on the data g (instability).

Often at least one of the conditions is not satisfied in inverse problems, therefore inverse problems
are often ill-posed. From theorems A.3 and A4 (appendix A) we know, for example, that a compact
operator cannot have a bounded inverse. The inverse problem is unstable, that is, small changes in the
data g result in large changes in the solution f. A typical example from satellite geodesy is the downward
continuation of the satellite data to the Earth’s surface. At satellite height, higher and higher frequencies
are damped more and more, and will eventually be overwhelmed by the measurement noise. The inverse
problem, the downward continuation, causes noise amplification, resulting in an unrealistic solution.
This will be elaborated in more detail later on.

The existence of the solution will not be a matter of great concern in this thesis. Naturally, it is an
important requirement that a solution exists for exact data, but for perturbed data the problem has to be
changed (regularised) and the notion of a solution can be relaxed, that is, the existence of an approximate
solution is required. As side remark it is noted that even in the presence of exact data no exact solution
may exist since every model contains simplifications and approximations.

The amount of data that is available for the determination of the solution f is usually finite. Because
f is a continuous function the approximate solution is never unique in practice. Also when continuous
exact data is available the null space of A may not be zero. However, injectivity is assumed unless stated
otherwise, and the non-uniqueness due to the finite amount of data will not be discussed, see for example
Backus and Gilbert (1967, 1968); Parker (1994); Trampert and Snieder (1996). Schreiner (1994) studies
uniqueness in a gravity gradiometric context.

Spectral decomposition

If the determination of f from noise corrupted data g° is a well-posed problem, then minimising

lAf - ¢°lI%
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yields the (stable) least-squares solution
f=aa ey,

which is denoted as AT g°. This is the unique best-approximate solution, that is, the least-squares solution
of minimal norm. The set of all least-squares solutions is f+N (A) (e.g- Engl er al., 1996). However,
the problem investigated in the framework of this dissertation is ill-posed and the least-squares solution
is not stable. This becomes particularly clear when considering the SvD of the compact operator A (2.2):

Af =Y on(vn, flun 2.4

n=1

where u,, and v, are the eigenvectors of AA* and A* A respectively, and o, are the singular values, cf.
appendix A. In finite dimensions (2.4) is

Az =UxVTy (2.5)

with U and V' orthogonal matrices and the singular values on the diagonal of ¥.. An important property
of the singular values o, is that they accumulate at 0, compare appendix A:

Iim o, =0.
n—oo
The inverse operations of (2.4) and (2.5) are
o €
~ u N
fmarg =y mdl) ’;”v,. 2.6)
n=1 n

and :
F= A+ye = VE—IUTya

respectively. Equation (2.6) shows that the inverse is unstable. Errors in ¢° corresponding to high
frequencies, that is large n, are amplified by large factors 1/0,. If dim R(A) < oo the amplification
stays bounded, but might be unacceptably large. However, if dim R(A) = oo, then o, — 0 as n — oo,
so data errors of a fixed size are amplified without bounds.

This also suffices to show that the discretisation of the original problem Af = g leads to regular-
isation, that is, the problem is no longer ill-posed. The original equation is approximately solved by a
projection method, thatis, A f = g is replaced by the discrete counterpart Az = y. Let F, C F,Gp, C G
and let P, : G = Gy, be projection operators. For given g € R(A) the projection method approximates
the solution f € F of Af = g by the solution f, € F;, of the projected equation

P,Af, = Pog (or Az =7y) %

compare Kress (1989). The condition number of the discrete linear system will grow with the dimension
n of the subspace used for the projection method. Increasing n will make the discretisation error smaller
but errors in the data will be amplified more. The discrete system has a finite number of singular values
and the error stays bounded. However, the error might be unacceptably large, and for increasing n the
problem becomes more and more ill-posed.

Regularisation schemes

Since the generalised inverse A* does not give stable solutions, the idea is to replace f=Atgbya
continuous approximate solution
fa=ALd

such that fa - f , & = 0. Therefore one has:




2.2. Inverse problems and regularisation 9

Definition 2.2 (regularisation scheme). Let F' and G be normed spaces and let A : F — G be
an injective bounded linear operator. A regularisation scheme consists of a family of bounded linear
operators A} : G = F, a > 0, with the property of point-wise convergence

lim ATAf = f 2.7
a—0
for all f € F. The positive parameter a is called the regularisation parameter. O

Property (2.7) is equivalent to AZg — Atg, a = 0, for all g € R(A) (see Kress, 1989).

One would like that the regularised solution converges to the exact solution when the error level goes to
zero:

Definition 2.3 (regular). The choice of the regularisation parameter o = () depending on the error
level ¢ is called regular if for all g € R(A) and all g° € G with ||g° — g|j¢ < € it holds
lim AY ¢° = Atg.

-0 ale)

Thus a(e) = 0,6 = 0. O

A different perspective on regularisation schemes comes from the SVD of the inverse operator A*. The
ill-posedness of an integral equation of the first kind with compact operator stems from the behaviour of
the singular values, 0, — 0, n = 00. An obvious idea, therefore, is to filter out the influence of the
factor 1/, and to restore continuity. To this end, consider the filter § : (0, 00) x (0, [[A[]) — R which
is defined as a bounded function satisfying the conditions:

1. For each a > 0 there exists a positive constant ¢(a) such that

16(a, 0)| < e(a)o (2.8)
forall 0 < o < || 4]- '
2. It holds
lim é(a,0) =1 2.9

forall 0 < o < ||A]|.
Then the operator AY : G — F,a > 0, defined by

+ S 6(a, on)
Aag = Z —U_(g’ Un)Un
n=1 n

for all g € G, describes a regularisation scheme with
1421l < ().

Thus, A7 is a bounded linear operator with bound ¢ (Kress, 1989). It is not allowed to use any arbitrary
filter since conditions (2.8) and (2.9) have to be satisfied. Tikhonov regularisation, biased estimation and
SvD methods will be discussed, and the corresponding filter functions § will be derived.

These methods are all ‘global’ methods, that is, the regularisation acts on the solution as a whole. In
appendix B three alternatives are briefly discussed that try to adapt the regularisation such that it only
works for specific parameters or in specific areas. These ‘local’ methods are spherical wavelets, the
Konopliv-Sjogren method, and additional constraints.

Not discussed in this thesis are the so-called iteration methods like Landweber iteration or conjugate
gradients. The former is not very useful due to its slow convergence, while the latter has extensively
been studied by Schuh (1996). Moreover, the latter is a non-linear method, obscuring error propagation
and, therefore, quality description.
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Mean square error matrix

The difference between the solution f from the error free data g and the regularised solution fa from the
erroneous data g° is

fa—F=AL(g —9)+ (A} — AN)g.

The first term on the right hand side represents the influence of the data error, the second is due to the
approximation error between A} and A7, i.e. the regularisation error or bias.

A proper quality description of the regularised solution fa takes both errors into account. The mean
square error matrix (MSEM) is the error variance-covariance matrix describing the error in the solution.
Let the vector of estimated parameters be

2o = ALY
with y° the discrete observations. The propagated data error then is
Q. = (45) P} (48)”
with D{y*} = P~1. The MSEM is the sum of the propagated error and the bias term
MSEM := Q. + AAzzTAAT (2.10)

with AA := (AF — A*)A.

2.2.2 Global regularisation methods

Global regularisation methods, as opposed to local regularisation methods, act on the set of unknown
parameters as a whole. (A few local regularisation methods are briefly discussed in appendix B.) Three
kinds of global regularisation methods are discussed: Tikhonov regularisation, biased estimation and
$vD methods. The specific form of the filters are given as well as the explicit expressions for AZ. Note
that all regularisation methods involve the choice of one or more regularisation parameters, denoted as
a, o; or k. Parameter choice rules are discussed in section 2.3.

Tikhonov regularisation

The idea of Tikhonov regularisation (TR) is to minimise the quadratic functional

Ja(f) = | Af = &°1I& + @l fII%

The norm of the solution, therefore, has to be bounded: || f||Fr < ¢ < oo. The positive regularisation
parameter ¢ is a compromise between data misfit (the first term) and the power of the solution (the
second term). In finite dimensions, minimising

Ja(z) = || Az — ¥ ||} + allzlk @.11)

yields
2o = (ATPA + aK) 1 ATPy,

which means that A} = (ATPA 4+ aK)~'ATP. If P = I and K = I, the minimisation problem (2.11)
is said to be in standard form. The transformation to the standard form

Ja(@) = || Az — ¥ |13 + |z}
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is always possible (Eldén, 1982), and the solution is

Ty 14T, _ (v*, ui)
fo = -1 4 = , i AR Rl T
£ (A*A +al) ;=1 (a, oy) y v;
with the filter
§a,00) = o}
191 = .

More generally, one can minimise
Jap(f) = |Af - ¢°1I& + el £1; @.12)
with »
A2 =" lleif D%, peN
i=0

where f) is the i-th derivative of f and ¢; € C*[a, b] are given positive functions (Groetsch, 1984). This
is called higher order Tikhonov regularisation and C[a, 5] denotes the space of all i-times continuously
differentiable functions on [a,b]. The constraint of the derivatives is in the HP-norm, and the space
HP[a, b is the Sobolev space of order p.

A disadvantage of general TR may be that (2.12) always contains a term which tends to minimise the
mean of the approximate solution, which may be undesirable, for example, if the unknown function does
not have zero mean. Instead, one could also minimise

Ja(f) = ||Af — 1% + o|LfIF, € D(L) (2.13)

with L a differential operator. It differs from TR in that the regularisation term is a semi norm rather than
anorm. If N(A) N N(L) = {0} then the minimiser f, of (2.13) is unique and satisfies

A*Afo +aL'Lf, = A*g".

In finite dimensional space, A usually has full rank, hence N(A) = {0} and therefore N(A) N N(L) =
{0}.

Using the generalised SVD (GSVD) of (A, L), compare appendix A, the solution is
14 <y5 uz) n
Za =) 80 y) Lz + Y @ u)mi
i=1 gi i=pt1

with the generalised singular values «;, the generalised singular vectors z;, and filter

2
Yi .
6(0’7i)=7i2-:-a’ i=1,...,p (2.14)

compare Hansen (1990); Bouman (1998b).

Biased estimation

The idea of biased estimation (BE) is to add a positive-definite matrix to the system of normal equations.
The matrix is chosen such that the total error, i.e. bias and noise, is minimal.
The unstable least-squares solution of

min J(z) := min | Az - °|
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is = (ATA)~1ATy¢. One obtains a stable solution with
fo=(ATA+al) P ATy (2.15)

where a > 0. The method (2.15) is called biased estimation or ridge regression. Of course, eq. (2.15)
is the solution of minimising (2.11) in standard form. Consequently, TR and BE lead to the same type of
equations. The bias is denoted as

Az = E{iq~z} = ~(ATA + ol) oz

where —(ATA + oI)"lal = AA.
A generalisation of biased estimation is called generalised biased estimation (GBE), and it is derived
as follows. Let the SVD of A be USVT. The Ls. solution then is

& = (VEVT)lysuTys
V(z?)lzuTye.
The GBE solution is defined as » )
£, = V(22 +A)IzUTys, 2.16)
where A is a diagonal matrix with positive elements o, . . ., &, to be chosen appropriately. The corre-
sponding filter is \
'
(i, 03) = .
(o, 03) o+

1
In non-spectral form (2.16) is
&g = (ATA+ M) ATy

where M = VAVT, which in general is a full and pdsitive—deﬁnite matrix. This is different from BE
since M is a scaled unit matrix there. The GBE solution minimises

Az — y°lI3 + | L=}, M = LTL.

However, L can no longer be identified as a differential operator. The elements of A are not arbitrary,
but will be chosen such that the trace of the MSEM is minimal, cf. section 2.3. The operator A} =
(ATPA 4+ M)~ ATP, including data weights.

Methods based on SVD

The most simple form of the SVD methods is the truncated SVD (TSVD). The smallest singular values
are neglected and the TSVD solution is

e = S g0k ), 2.17
2= )Tvz (2.17)
i=1
with filter (k) defined as
1 fori=1,...,k
TSVD 5(")"{0 fori=k+1,...,n

TSVD solves the problem
min ||Axz — y°||2 subject to min ||z||2,
x

with Ay = UZ VT and T}, = diag(oy, - . -, 0%,0, . . ., 0). Moreover, A} = (AT A;)~ 1AL,
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A generalisation of TSVD is to solve
min || Agz — y*||2 subject to min || Lz||s.
z

This leads to the truncated generalised singular value decomposition (TGSVD). The solution is given by
(2.17) with filter function

0 fori=1,...,p—k
TGSVD 6&(k,03):=¢ 1 fori=p—-k+1,...,p
o; fori=p+1,...,n

where the g; are the values from the GSVD of A, compare appendix A.

Depending on the severeness of the ill-posedness of a problem, one might want to introduce less
filtering. Moreover, the TSVD filter is an ideal low-pass filter, that is, the filter factors are either zero or
one leaving all low frequent parts unchanged, which may lead to oscillations around the true solution
in the spatial domain. The filter factors zero and one in TSVD and TGSVD could be replaced by more
smooth filter factors to obtain damped SVD (DsVvD) and damped GSVD (DGSVD). They are given as

DSVD 4 )= ——
(a, 0‘.) o; + \/E
and
DGSVD (e, 7)) = i
7+ Va

respectively, with -y; the generalised singular values (Hansen, 1997). These filter factors decay slower
than the Tikhonov filter factors and thus introduce less filtering. Schneider (1997) considers smoothed

TSVD with filter :
1 fori=1,...,p—k

8(k):={ 7(@) fori=p—-k+1,...,p
0 fori=p+1,...,n

with 7(%) a strict monotonously decreasing function which satisfies 7(p — k£ + 1) = 1 and 7(p) = 0.

2.3 Choice of regularisation parameters

All regularisation methods involve one or more regularisation parameter(s) to be determined. Several
methods to choose a single parameter are discussed in this section as well as one method to determine
multiple parameters in case of generalised biased estimation. The relation of the different parameter
choice rules with the (minimum) mean square error (MSE) is treated as well.

2.3.1 Minimum MSE

The trace of the MSEM is called the mean square error and it is the expected squared difference between
Zo and z (Hoerl and Kennard, 1970):

MSE := E{||&a —z|3} = (MSEM)
= tw(Q:)+ tr(AzAzT) = (Q,) + AzT Az

with the bias Az := E{Z, — z}. In table 2.1 the MSE is given for the regularisation methods in standard
form. They have been derived using the SVD, compare Bouman (1998b). Here o2 is the variance of unit
weight and )\; are the eigenvalues of ATA or a? = \;, with g; the singular values of A.

For the moment let’s concentrate on one regularisation parameter c, see section 2.3.3 for multiple
a;. The smallest squared distance between %, and z equals the minimum MSE and, since z is ‘known’
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Table 2.1: Propagated error, bias term and mean square error of several regularisation methods.

Method | tr(Q,) AzT Az MSE
n 2 ) 2 3 2 2
o’ a*{z,v;) oA + ot (z,vy)
R/ 7 i ind A
TR ; O + ) ‘A:; i + )2 ; O + )2
7 2 n 3 2 ) ) 2
LAY aj(z,v;) oA+ af{z,v;)
GBE — 0
g (N + a;)? ; (N + a;)? z___zl (i + )2
o? = % [o026;
TSVD — Y (z,m)? E [—-’ +(1- 65)(z,vi)2}
=N i=k+1 ol
o a(z,v;) 0® + oz, vi)
DSVD ——
,-Z; (Vi + Va)? ; (Vi + Va)? ; (Vi + Va)?

in a simulation, the o or k which really yields the minimum MSE may really be computed. For all the
errors given here it holds that tr(Q);) is a monotonic decreasing function of & (or monotonic decreasing
function of 1/k), while tr(AzAzT) is a monotonic increasing function of a (or monotonic increasing
function of 1/k). Hoerl and Kennard (1970) show for BE that the sum of these two functions, the MSE,
always has a minimum smaller than that of the least-squares estimate, compare figure 2.1.

Mean square error functions

70
60}
50 - - 1.5 estimate
401! mse
3of \""""
20} «— bias | }
—— var
i ~-= mse
10 ~--- IS,
0
0 0.02 0.04 0.06 0.08 0.1

o

Figure 2.1: Example of the mean square error, the eigenvalues \; are 1/i, n = 100, 0% = 10~2 and
(x,v;) = 1. The Ls. value is equal to the value of the total MSE for a = 0 which is tr(ATPA)™1.

Of course, in a real life situation one does not know z. Xu (1998) therefore suggests to use & or an
initial £, instead and then to minimise for this approximation of z. The problem, however, can be ill-
posed such that one cannot determine £ due to numerical instability. In that case, £ cannot be used. Also,
using £,, a may be too large yielding too smooth solutions or & may be too small which will lead to
solutions oscillating around the mean with large amplitude. In the former case, the bias is underestimated
which results in a too large a since the emphasis will be on minimising tr(Q;). In the latter case, if the
initial ¢ is too small, ||Z4]| tends to be unrealistically large and the emphasis of minimising the MSE will
be on minimising the bias: the ‘optimal’ a will be too small. In practice, however, it may turn out that
several iterations with new initial ,, selected ‘randomly’ within a certain bound, lead to an unambiguous
determination of o (which hopefully is close to the optimal a). This would be a kind of Monte Carlo
simulation which is, however, outside the scope of this thesis.
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2.3.2 Single regularisation parameter
The methods discussed to determine a single regularisation parameter are
e quasi-solutions (Ivanov, 1962),
e discrepancy principle (Morozov, 1984),
e L-curve (Hansen, 1992),
e generalised cross validation (GCV) (Wahba, 1990),
e quasi-optimality (Morozov, 1984).

These methods can be divided into two groups, the a posteriori methods and the heuristic methods. The
first two parameter choice rules belong to the first group and the last three choice rules to the second. It
can be shown for the a posteriori methods that « goes to zero as € goes to zero, that is, the parameter
choice is called regular (definition 2.3). This is formally not the case for the heuristic methods. In
practice, however, these methods may work well (cf. Engl et al., 1996; Engl, 1997).

The parameter choice rules are given here with emphasis on Tikhonov regularisation. The application
of these rules to other regularisation methods is straightforward. For more details refer to Bouman
(1998b).

A posteriori methods
Quasi-solutions. Given a perturbed ¢¢ of g € G, with ||g — ¢°||¢ < &, choose a such that
(aI + A*A)fy = A*g° (2.18)

satisfies || fx||r = ¢, where c is an a priori bound on the norm of the exact solution (Kress, 1989).
Numerically the regularisation parameter can be obtained by solving

Z(a) = | ful}F - =0

with Newron iteration

Z(an)
[a 7798} =an°7,—(‘&';—), n=0,1,...
(see Press et al., 1992). The derivative of Z is given by

2'(@) =252, fo)

since ]I f”all2 = (.fa’ fa)’ and o
— * 1 f

as can be derived from (2.18). R
Kress (1989) derives a starting value for the iteration to find the desired a. Suppose that || f||r = c.
Since f, satisfies afy, + A*Af, = A*g%, it holds that
alfell = |l4°° - A"AfullF
ac I1Allg* - Afalic
l4lllg* - Ad*glc < Ale.

Therefore, provided that || A*g||r < c, one has the estimate

INIA

ac < | 4lle

In practice rescaling of c to assure convergence may be necessary (e.g. Bouman, 1998b).
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Discrepancy principle. Given a perturbed g° of g € G with a known error level [|g° — gllg < & <
{lg% |l choose a such that ||Afa — ¢°llc =¢.
The regularisation parameter can be obtained by solving
Z(a) = |Afa - ¢°llE - =0
with Newton’s method. Rewriting the above norm using (2.18), we obtain

llg® — Afa||2G = (¢° - A)fa,gg - Afa) o
(9" — Afar8%) ~ (A*(6° = Afu), o
9N ~ (far A%9%) — all full}-

i

Thus
Z(a) = |6 IE = {far A"%) — all fal} — €2
and R .
2(@) =~ 4ty fullh - 2022, )
where the derivative df,/da is given by (2.19). o
- Provided that [|g°||¢ > € (SNR > 1), one has the estimate .

a(llg’lle ~¢) < |4l
which may serve as starting value for the iteration (until || A f, — ¢°||g = €), see (Kress, 1989; Groetsch,
1984).

The discrepancy principle is widely used. Louis (1989), for instance, exclusively applies the discrep-
ancy principle as parameter choice rule. It has to be mentioned that often the criterion ||Afy — ¢°jlc =
Re, with R > 1 and fixed, is used.

Schwintzer (1990) developed an algorithm to determine o, in the framework of collocation, very
similar to the discrepancy principle. Let the least-squares collocation estimate be

3. = (0,—2ATQ;1A + Cz_zl —10'—2ATQ;11/E
(ATQ;1A+ 0,202—31 _1ATQ;ly5
where a"zQ; 1 is the weight matrix of the observations y° with o2 the variance of unit weight and C;,
is the signal covariance matrix of z. Determining c, means scaling of o2 here. Schwintzer’s idea is as
follows. In a least-squares context it holds that
E{é"Pé} =m -n (2.20)

with € = y° — Az the vector of residuals, & the least-squares estimate, P = 0~2Q, !, m the number of
observations and n the number of unknowns, n > n. Generally, (2.20) does not hold when instead of é
the residuals é. = y® — A%, are used. The correct variance of unit weight o2 is assumed to be that o2
for which

€)TP@)=m—-n
or

|AZc — ¥ llp=m —n
is true. It is, therefore, a discrepancy principle-like method.

The method of quasi-solutions and the discrepancy principle can be summarised as follows (Kress, 1989):

o For given ¢ > 0 minimise the defect [JAf — g|| subject to the constraint that the norm is bounded
by || fllF < Re.

o For given £ > 0 minimise the norm || f|| 7 subject to the constraint that the defect is bounded by
HAf - glle < Re.
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Heuristic methods

A disadvantage of the above two methods is the necessity of a priori bounds on either the signal or the
measurement error. Dealing with gravity field determination of the Earth, a few signal models exist, e.g.
Kaula (1966) or Tscherning and Rapp (1974). However, these are approximations and the power of the
models differs from one model to another (e.g. Rapp, 1972; Jekeli, 1978; Rapp, 1979). Consequently,
for quasi-solutions the regularisation parameter may be too large or too small, resulting in a too smooth
or too rough solution.

The information on the noise level may also be unreliable. Typically, the worst-case bound will be
a severe overestimation, while the a priori standard deviation might underestimate the true error (Engl
et al., 1996). Therefore, it is necessary to consider alternative a posteriori parameter choice rules that
avoid knowledge of the noise level or the signal energy, and to determine a regularisation parameter on
the basis of the actual performance of the regularisation method. Exampies are the L-curve, generalised
cross validation (GCV) and the quasi-optimality criterion. Strictly speaking these heuristic parameter
choice rules cannot provide a convergent regularisation method because they are not regular in the sense
of definition 2.3, (Engl ez al., 1996), but in practice they may work well.

L-curve. Let Z, be the solution of minimising
1Az — 31 + ol LIk
Then the L-curve is a plot of the (semi)norm
n(e) = %log || Liallx
of the regularised solution versus the corresponding residual norm
£(a) = Vlog || AZa — of|lp

as a function of the regularisation parameter. For discrete ill-posed problems it turns out that this curve,
when plotted in log-log scale, has an L-shaped appearance with a distinct corer separating the vertical
and horizontal parts of the curve (Hansen, 1997), see figure 2.2. Originally the use of the L-curve was
suggested by Lawson and Hanson (1974). 11k (1986, 1993) discusses a few choices of the regularisation
parameter very similar to the L-curve in the context of unbiased estimators.

The L-curve behaviour can be explained by considering the two error components, that is the data
error € and the regularisation error Az. The vertical part of the L-curve corresponds to solutions where
|[L&q ||k is very sensitive to changes in the regularisation parameter because the data error ¢ dominates
4 and because e does not satisfy the discrete Picard condition (Hansen, 1997), see also appendix A.
Stated otherwise, the vertical part corresponds to smaller «. The emphasis of minimising J(a) is on
l|AZq — y°||p, allowing ||LE,| x to become large. The horizontal part of the L-curve corresponds to
solutions where the residual norm || Az, — y°|| p is most sensitive to the regularisation parameter because
Z4 is dominated by the regularisation error Az, as long as y satisfies the discrete Picard condition (ibid).

The comer of the L-curve can be found by considering the point C = (£(a.),n{a.)) where the
L-curve is concave and the tangent at C has slope -1. The concave condition is necessary, because the
slope may also be -1 near the endpoints of the curve, compare figure 2.2. It turns out that point C is a
corner of the L-curve if and only if the function

¥(a) = |Lzallkl|AZa — ¥llp

has a local minimum at o = o (Regiriska, 1996; Engl et al., 1996).
Although the L-curve method seems to work well in a number of applications, it still lacks a sound
mathematical foundation, see (Engl et al., 1996, section 4.5) and (Vogel, 1996).
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Figure 2.2: The L-curve in log-log scale (from Hansen (1997)).

Generalised cross validation. The idea of GCV is that if an arbitrary element g of ¥ is left out, then
the corresponding regularised solution should predict this observation well. Moreover, let ¢ := Qy°,
with  an orthogonal matrix. The problem of estimating = from

¥ = Az + &
where A = QA, € = Qe, is the same problem of estimating z from
Y¥=Azx +e

if the errors are normally distributed. Therefore, the choice of the regularisation parameter should be
independent of an orthogonal transformation of y* (Wahba, 1990). This leads to the minimisation of:

"Afi’a - yE"%’
J = .
() (tr(Im — AAD))?

221

The denominator can be expressed in terms of filter factors:

P
tr(In — AAL) =m—(n—p) = > &(c, W)
i=l1

with the filter 4 defined in (2.14), see (Hansen, 1997). If « = 0 the trace in (2.21) equals m — n, compare
(2.14).

The range, R(A), has finite dimension, since the foundation of generalised cross-validation origi-
nates from statistical considerations and depends on the assumption that the data perturbation is finite-
dimensional white noise (Engl er al., 1996):

E{y-y}=0 and E{(y -y )y—y)"}=0L

This implies that E{||ly — y°||%} = mo?, hence ¢ = \/mo. The restriction to finite dimensions of R(A),
therefore, is a must. The assumption of white noise is indeed essential as (Hansen and O’Leary, 1993)
show. In case of coloured noise no minimum is found with the GCV method whereas the L-curve works
well.
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Quasi-optimality. The third heuristic parameter choice rule discussed is the quasi-optimality method

(Morozov, 1984; Engl et al., 1996; Hansen, 1997). This rule also tries to compromise between the data

error and the regularisation error by minimising the change in the regularised solution with respect to a.
Let fa,,- be the solution of the problem of minimising

Ja(f, faj-1) = |Af = ¥l + allf = faj-1l}, FEN (2.22)

with fao = 0. This is called iterated Tikhonov regularisation. If j — oo then f,; — f, thatis, it
converges to the unstable least-squares solution (Engl et al., 1996), see also section 4.2. The smaller o
is, the faster iterated Tikhonov regularisation converges to the unstable L.s. solution and therefore fq ;41
will be a worse approximation of f, the true solution, than fa,j- The solution fa,j+1 is, 0 to say, less
regularised than the solution fa,,- and the data error € dominates. The smaller o gets, the larger the
difference || fa,,-H - ﬁ, ]| will be. For large values of a, however, the bias dominates fa,j — f and
fa,j.,.l will be a better approximation of f, and the absolute difference || fa,,-“ - f .|l will decrease as
o becomes smaller (Engl et al., 1996). Altogether, || fa,j+1 — fa,;j|| considered as a function of a will in
general decrease as long as « is small, and increase for larger values of a. Intuitively, it seems reasonable
to choose a value j = jg for which A N
' A : “.fa.j-l-l —..fa,j"F

is minimised, which should correspond to balancing the data error and the regularisation error. The value
a = a(j) is called the quasi-optimal value of the regularisation parameter.

Initial value of o

For the a posteriori parameter choice rules initial values were already given. For the heuristic methods
one could use the following. Let the minimisation problem be

min [|Az — y||3 + af| Lz||3.

Press et al. (1992) suggest to firstly use
_ w(AT4)

* = W(I7I)

which tends to make the two parts of the minimisation having comparable weights.

Relation between certain parameter choice rules and the mean square error

It is demonstrated in for example (Golub er al., 1979; Wahba, 1990) that the GCV criterion is expected to
give a regularisation parameter that results in a MSE close to the minimum MSE. Wahba (1990) remarks
that the discrepancy principle does not give a minimum MSE and is likely to give too smooth solutions.
The relation of the L-curve with the (minimum) MSE is not well understood, although the L-curve tends
to give too smooth solutions (Hansen, 1999). The relation between the comer of the L-curve and the
MSE can be described as follows. The horizontal and vertical part correspond to a large change in data
error and regularisation error, respectively. The comer of the L-curve is defined as the point where the
rate of change for both errors is equal. Quasi-optimality is a similar method, its relation with the MSE
has not been studied so far.

Discussion on the use of the regularisation parameters

The a posteriori regularisation parameters will not be used here. The problem of determining the regu-
larisation parameter shifts to the problem of determining the right scaling factor R for the total noise or
total signal (cf. Bouman, 1998b). The L-curve and quasi-optimality method may give stable solutions
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but, as stated, their relation with the MSE is not well understood. Also the application of the GCV method
is cumbersome, since coloured noise is to be studied in this thesis whereas white noise is required. Fur-
thermore, the computation of the trace in (2.21) requires a decomposition of the design matrix A (cf.
Engl et al., 1996, section 9.4), which is too laborious in our case.

It is, therefore, decided to rely on the minimisation of the MSE. Because the MSE is the expected
squared distance between the true and computed solution, the minimum MSE is adopted as the lower
bound of the accuracy. No matter what parameter choice rule is chosen, the result should preferably be
close to the regularisation parameter associated with the minimum MSE. Since simulation will be used,
the true solution is known and the MSE can be computed.

2.3.3 Multiple regularisation parameters

The GBE solution involves the determination of muitiple regularisation parameters. Hoerl and Kennard
(1970) show that, starting from the 1.s. solution, one can iterate towards a set of a;’s with minimum MSE.
Later, Hemmerle (1975) found an explicit expression for the set of optimal regularisation parameters
with respect to the least-squares solution.

Minimum MSE. The set of o; with minimum MSE is obtained by differentiating the MSE with resbect
to a; (see for example (Xu and Rummel, 1994a) and table 2.1):
OMSE _ 2Xi(0i(z, v;)? — 02)
do; (M + )

where o2 is the a priori variance of unit weight. The minimum is obtained for o; = o2/{z, ;). The
second order derivative of the MSE with respect to a; is
O?MSE Nz, v;)? — 2hai(z,v:)? + 3)i0?

7 =2 1
da? (Ai + ai)

Inserting o; = 0%/ (z, v;)? yields

0’ MSE Mz, v;)? + Nio?
=2 ;>0
Oa; (N +0%/(z,v:)?)

because ); > O (they are the eigenvalues of a positive definite matrix). Thus a minimum is found and

the minimum MSE becomes

0.2

min(MSE) = 3 327t

i=1
The above equation is not very useful for practical purposes since the true solution z is unknown. Having
gravity field determination in mind one could for example use approximate coefficients from an existing
gravity model such as 0SU91A (Rapp et al., 1991), instead of the true coefficients z. Computing o; with
this approximate = and inserting these values in (2.16) gives updated = and oy;’s until the change in the
a;’s is considered to be small enough. Note that if {z, v;)? is small, a small change in z may lead to a
large change in ¢;. In that case, convergence may be a problem.

Hoerl and Kennard (1970) suggest to use the least-squares solution as initial value for the iteration:

a; 0 — &2
w0 (iv vi>2

where the a posteriori variance of unit weight 62 and  are the least-squares values. However, it may oc-
cur in practice that because of numerical instability it is impossible to compute the least-squares solution.
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Then, one can start the iteration from any (stable) BE solution. The first part of the MSE is tr(Q;) which
is a continuous, monotonically decreasing function of ay, ag,. .., a, (table 2.1), whereas the second
part, |AzT |2, is continuous, monotonically increasing as function of @; (Xu and Rummel, 1994a). The
MSE therefore has a unique minimum as function of a.

2.4 Summary

The determination of the Earth’s gravity field by satellite methods may be characterised as an ill-posed
inverse problem. In practical circumstances, that is, in a finite dimensional setting, this means that the
Ls. solution yields an ill-conditioned system of equations. The ill-conditioning is such that small data
errors may lead to unacceptably large solution errors.

A number of regularisation methods exists to overcome this ill-conditioning. All discussed methods
are filtered least-squares solutions and the filter can be tuned by one or more regularisation parameters.
A price one has to pay, however, is that the solution becomes biased and the mean square error matrix,
which replaces the usual a posteriori error variance-covariance matrix, consists of bias and propagated
noise.

A posteriori methods as well as heuristic methods to determine the regularisation parameter have
been discussed. For conceptual reasons the a posteriori methods will not be used. Also the heuristic
methods will not be applied due to the computational restrictions. Instead, the mean square error is
minimised. The regularisation parameter is chosen such that the trace of the MSEM is minimal. This will
allow the comparison of different regularisation methods in chapter 5.
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Quality measures

3.1 Introduction

In this thesis, the gravitational potential at the Earth’s surface is the unknown function to be determined.
Satellite observations are used for this purpose here, and due to the downward continuation regularisation
is necessary. It was shown in the preceding chapter that the regularisation methods considered in this
thesis can all be written as filtered least-squares solutions. The filter differs from one method to another
and so does the solution and the mean square error matrix (MSEM). However, not the potential itself is
used but its expansion in a series of spherical harmonics. The spherical harmonic coefficients are the
unknowns to be solved for. Therefore, the spherical harmonic expansion of the gravitational potential is
treated first in section 3.2.

Using simulated data one could compare the different solution methods by looking at the difference
between solved coefficients and ‘true’ coefficients. However, this is not possible in reality and quality
measures have to be used instead. All quality measures use the MSEM whether the solution is biased or
not. Concerning this bias, it might be argued that (2.15) should be interpreted as an unbiased solution.
This is discussed here since it has implications for the quality description of the solution. Furthermore, a
few general remarks on the bias computation are made (section 3.3).

The quality assessment of a global gravity field solution can be based on a number of tests and mea-
sures. On the one hand there are many different applications for a global gravity field model and on the
other hand a better understanding of the quality is obtained considering the errors in the frequency do-
main (the spherical harmonic coefficients) and the spatial domain. In practice, the solution obtained from
a dedicated gravity field mission, like GOCE, will be compared with independent data, e.g. gravimetry
data, altimeter data and satellite tracking data. Since a simulation study is used here, such a comparison
cannot be carried out. Instead, one has to rely on the formal error description of the estimated parameters.
First of all, in section 3.4 the propagation of the errors in the potential coefficients, as described by the
MSEM, to other gravity field quantities like geoid heights is discussed. Furthermore, the so-called ratio
measures will be considered, such as the size of the solved parameters relative to the size of their uncer-
tainty (signal-to-noise ratio) in section 3.5. Finally, measures for the contribution of the observations to
the solution are addressed (section 3.6).

The methods used are largely based on the work done by (Haagmans and van Gelderen, 1991; Xu,
1992a,b; Bouman, 1993, 1998a).
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3.2 Spherical harmonic expansion of the gravitational potential

The most common series expansion of the gravitational potential V' is the one in spherical harmonics as
function of geocentric polar coordinates (Heiskanen and Moritz, 1967):

0 +1
=0 T
with .
Yi0,0) = Y Kim¥im(0,))
m=-!
where
_ Cim, >0
Rm=1{ ™ ™= (G2
Sllmb m<0
and
_ P [ A, m20
Fin(6,2) = fzm(cos ) cosm > 33)
Bijm|(cos8)sinjm|A, m <0
and

GM  universal gravitational constant times mass of the Earth

R mean equatorial radius

I,m degree, order

Kin  fully normalised potential coefficients

Yim fully normalised surface spherical harmonics

B,, fully normalised associated Legendre functions

r,8,\ geocentric polar coordinates (radius, co-latitude, longitude).

Interchanging the summation over ! and m leads to the Fourier series (Colombo, 1981)

oo
V(r,0,\) = Z Am(r,0) cosmA + Bp(r,0) sinmA (G4
m=0
with coefficients
Ap(r,0 © ¢
m(T ) - Z Hlm(r, 9) _lm (3.5)
Bm (T, 0) I=m Im .
+1
Hyp(r,0) = % (-11_—2-) By, (cos ).

Disturbing potential

Let the Earth be approximated by an ellipsoid of revolution. Introducing such a reference ellipsoid has
the advantage that the deviations of the actual gravity field from the ellipsoidal normal field are so small
that second order terms can often be neglected (Heiskanen and Moritz, 1967). The remaining field is
called disturbing gravity field.

Let the reference ellipsoid be an equipotential surface of the normal gravity field, with given mass
Mp, semi-axes e and b, and angular velocity w. Then the normal potential is uniquely determined. The
angular velocity of the ellipsoid, for example, is the GRS80 value (Moritz, 1980), the difference with the
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angular velocity of the actual Earth are neglected. Refer to Chovitz (1988): in a very good approximation
the Earth’s angular velocity is w(t) = wp + wt with wp = 7.292115 x 10~° rad/s (the GRS80 value)
and the secular change is w = —4.6 & 0.4 x 10722 rad/s®. The angular velocity, therefore, is accurately
known.

The expansion of the normal potential in spherical harmonics is

% I+1
U(r,0,A) = —Gbﬂ Z (2) roPyo(cos 8) + %wzrz sin? 9
1=0(2)

which is a Somigliana-Pizetti reference field. The summation over [ has a step size of 2. The disturbing
potential T is defined as
T=W-U

where W =V + 1/2w?r?sin? §. Putting b = R, and taking the origin at the center of mass of the Earth
(C10 = C11 = 811 = 0), the expansion of T is

MS R\
T(r,e,A)=—é—§:(7) S ARinFim(8, )
=2

m=-—l

_ Cio — ¢ m=0, leven
K, elsewhere

where the term G(M —~ My)/R has been omitted since the relative uncertainty of GM is of the order
109 (Ries et al., 1992). If Ehe estimation of spherical harmonic coefficients with respect to a reference
orbit or field is mentioned, Cj,,, will be written, but it should be clear that these are the actual corrections
to the reference coefficients. The reference field used here is GRS80 with even degree coefficients &g up
to degree 8 (Moritz, 1980).
3.3 Biased and unbiased estimation
In chapter 2 it was shown that a stable solution is obtained by minimising
Az - 4|3 + ellzlik

with the semi-norm ||z||% = (z, Kz) and solution

£o = (ATPA + oK) ATPy . (3.6)
This solution is biased and the bias is

—(ATPA + oK) 'aKz
= AAz = (A} - AN)Az

Az = E{&, — z}

see chapter 2. If @ — oo then Az — —z (Zo = 0). One obvious problem is that the true solution z is
needed if one wants to estimate the bias. This issue is addressed later.
Note that (3.6) also is the unbiased solution of the linear model

e|Y h=[*)apf[V =T O a7
z I z 0 [eK]?
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where z = 0 are zero observations with variance-covariance matrix (aX)~!. Usually, K is a diago-
nal matrix with weights according to a signal variance model, Kaula’s rule for example (Kaula, 1966).
The scaling parameter o is considered as a scaling of the variance of unit weight. The error variance-
covariance matrix of & is Q; = (ATPA + aK)™!, which is clearly different from the MSEM and Q, in
case of a biased solution, cf. eq. (2.10).

The question arises, therefore, how the solution (3.6) should be interpreted: “Is it biased or not?”.
It will be clear by now that the author’s opinion is inclined towards biased estimation for the following
reasons.

o The so-called satellite-only models are computed using (3.6). These models are derived from
satellite tracking data and because of the nature of the observations (long wavelength sensitivity) in
combination with the satellites altitude (typicaily 800 - 1500 km for the major part of the satellites)
the maximum degree and order solved for is about 70. As it is generally recognised, however, the
high degrees are biased towards zero, that is, have less power than one would expect (see for
example Marsh er al., 1988; Reigber, 1989; Nerem e al., 1993). Remarkably enough, the bias is
not accounted for in the subsequent quality description of the satellite-only models.

e The model E{z} = Iz, D{z} = (aK)™! is not correct. Kaula’s rule or any other power rule, as
used to determine K, represents the estimated signal variance of the coefficients, not their error
variance.

Alternative additional observations might be coefficients from an earlier model with the corre-
sponding error matrix. The solution then becomes

& = (ATPA + Po) " (ATPy® + Ppz®)

where z° contains the coefficients of a global gravity field model and Py is the inverse of their
error matrix. However, a global gravity field model is to be determined as independent as possible
from previous gravity field solutions.

For further discussion on biased and unbiased estimation see (Xu, 1992a,b) and (Xu and Rummel,
1994a).

As said before, a complication in the quality description of biased estimators is the bias assessment.
The bias computation involves the true solution, which is not available of course. Instead of the true
values, the bias could be estimated by using £, that is, using the biased solution itself. Xu (1992b)
shows, however, that this on the average will underestimate the size of the bias, since the coefficients are
biased towards zero. Fortunately, the power per degree is known approximately, as in Kaula’s rule for
example. Thus the size of the coefficients is known approximately. The bias can therefore be estimated
by taking the sign of the biased coefficients and their size according to a certain power law (Koop, 1993).
Alternatively, the bias can be estimated using existing global gravity fields model like 0SU91A or EGM96
(Rapp et al., 1991; Lemoine et al., 1999).

A further complication is that, in general, the linear model is obtained after linearisation, see also
section 4.2. Different reference models yield different linear models and the bias therefore depends on
the reference model. In addition, solving the minimisation problem

min 4z - y*|[3 + allz - 2l
with z° an a priori estimate of z yields the bias
E{35 -z} = o(ATPA + aK) 'K (2° - )

where
22 = (ATPA + oK) 1 (ATPy* + aK2").
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The solution 39 is therefore biased towards the a priori z°. If the bias is computed by using 0sU91A
for z and, for example, JGM-3 for z¥, then the bias will be smaller compared to a computation with
2% = 0. However, a proper quality description of £ has to take the quality of zg into account. If zg is
biased itself, for example, then a‘:g is biased towards the biased zp. It is outside the scope of this thesis to
assess whether the quality description of the individual coefficients of current global gravity field models
is adequate. As stated in chapter 1, one of the problems of, for example, satellite-only models is that
they are biased. Moreover, gravity field models suffer from systematic errors. In this thesis, therefore,
29 = 0, the preferred reference model always is GRS80, and OSU91A is the "true’ gravity field.

3.4 Error propagation

The unknowns to be estimated are the coefficients of a spherical harmonic series. Not only the error
variances of the coefficients are of importance, the expected error of derived products, like geoid heights,
is of interest as well. To this end, error propagation can be used. The error propagation with a full error
variance-covariance matrix is followed by a description of the consequences for the error propagation
when the error matrix is block diagonal.

3.4.1 Full error matrix

Let the potential V' at the surface of a sphere with radius R be approximated by a truncated spherical
harmonic expansion, that is, the maximum degree and order in (3.4) and (3.5) is L. Thus, the number of
spherical harmonic coefficients is finite and can be determined from the observations. The variance and
covariance of the unknowns is described by the (full) MSEM. For the propagation of these error covari-
ances to error covariances of for example geoid heights, cov(P, Q), the propagation law of variances is
used

f = Bz
E; = BE,BT,

where f is a linear functional of the harmonic coefficients z and F, is the error variance matrix of z, i.e.,
either E, = MSEM (biased estimator) or E; = Q. (unbiased estimator). In particular one may write

L L L
f(o, ’\) = Z l:(‘z 5lélm}31m(cos 9)) cosmA + (‘E ﬂlglmjjlm (COS 0)) sinmA

m=0 =m =m

?

where the eigenvalues 8; may depend on the degree. Since in this study the error propagation is re-
stricted to geoid heights and gravity anomalies, the eigenvalues do not depend on the order. Applying
the propagation law one gets a two-dimensional Fourier expansion for the error covariances cov(P, @),
(Haagmans and van Gelderen, 1991):

L L
cov(P,Q) = Z Z[A"”“ cosmAp cos kAQ + B sinmAp cos kAg
m=0 k=0
+ Cpi cos mApsin kAg + D sinmAp sin kAg]

with
L L o ~
Amk = DY BiBncov(Cim, Cui) Pim(cos 8p) Par(cos 0)
l=mn=k
L L o _
Buk = 3. BiBncov(Sim, Cuk) Pim(cos 0p) Pk (cos )

I=m n=k
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L L
Z Z BiBncov(Cim, Sni) Prm(cos 8p) Poi(cos 8g)
l=mn=k

L L

>3 BiBrcov(Sim, Snk) Pim(cos 0p) Par(cos )

l=m n=k

ka

Dk

and Ak, Bk, Cmi and D, are the Fourier coefficients of the Fourier expansion of the error covari-
ances. cov(C;m, ,.k) etc. are the spherical harmonic coefficient error covariances. In the sequel only
point error variances are considered, i.e. the case P = () is considered.

3.4.2 Block-diagonal error matrix

In general the error matrix E; is full and positive definite. Sometimes, however, it has a special structure
such as diagonal or block diagonal. As we will see this has consequences for the spatial pattern of the
propagated error. Here only the block-diagonal case is discussed, see (Bouman, 1993) for the diagonal
case.

A block-diagonal error matrix implies that By, = Cpx = 0 and m = k. The propagated error,
which now is denoted as var(8, A) since it is a function of one point only, then is

L
m=0
with
. L L
An = 3" AiBavar(Cim, Com) Pim (€05 ) Pa (cos 6)

I=mn=m
L L

Z Z BiBnvar(Sim, Snm) Pim(cos 8) Paym(cos 8).

l=mn=m

If A, = Dy form = 1,..., L then (3.8) becomes

Dm

var(6,\) = ZA,,,

m=0

that is, the propagated error is independent of longitude.
Bouman and Koop (1998c) showed that north-south symmetry occurs when even and odd degrees
are separated, i.c., the error covariance is zero when |l — nf is odd. The property

Pim(~t) = (=1)"*™Pm(t)
yields the following four cases:
1. mis even, |, n are even; Py, (—t) = P, (t) and Pppp(—t) = Pam(t),
2. miseven, l,n are odd; P, (—t) = —Piu(t) and Pppm(—t) = —Pam(t),
3. mis odd, I, n are even; Py,(—t) = —FPip(t) and Pam(—t) = —Pam(?),
4, mis odd, I, n are odd; Py, (—t) = P (t) and Py (—t) = Ppm(?).

Because [ and n have the same parity, the Legendre functions for a specific m are always simultaneously
symmetric or anti-symmetric with respect to the equator. The combination of two of these functions, as
in A, and Dy, is therefore always north-south symmetric: var(8, ) = var(r — 6, A).
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3.5 Ratio measures

Ratio measures for the quality of the potential coefficients give the relative size of the signal with respect
to the bias, for example. Three such measures are discussed in this section.

Signal-to-noise ratio. The signal-to-noise ratio (SNR) is a measure for the significance of a coefficient.
The size of the estimated coefficient with respect to its uncertainty indicates how well the coefficient is
resolved. The SNR is defined as _

Klml

Olm

SNRy,, := l

with Kj,,, the estimated coefficient and oy,, the error RMs. Ideally the SNR is as large as possible for each
coefficient. If the SNR is one, then there is more signal than noise with a probability of approximately
68% given a Gaussian distribution of the errors. The SNR will not be shown itself, instead a logarithmic
scale is used. The operation %og (SNR) gives the number of significant digits. If, for example, the SNR
is one, then the number of significant digits is zero.

Bias-to-signal ratio. In addition to the SNR, the bias-to-signal ratio (BSR) is of importance as well. It

is defined as _
IAKlmI
BSRyy, = —
" tKlml

with AKj,, the bias in each coefficient. It shows how severe the bias in each coefficient is.

Bias-to-noise ratio. The bias-to-noise ratio (BNR)'is a measure for the significance of the bias with
respect to the pure noise part of the error. The diagonal elements of the corresponding matrices in the
MSEM are compared:

_ [AzAzT]lm

BNRy,,, := ———_[Qz]lm .

The smaller the BNR is, the less important is the bias. One could compute the BNR for each coefficient
as above, but one could also consider the ratio of the traces of the bias and pure noise matrices

tr(AzAzT)
w(Qz)

which is a measure for the total power of the bias with respect to the total power of the propagated error.

BNR :=

3.6 Contribution measures

The third and final quality measure discussed is the contribution of the observations to the solution. The
idea is that, if model (3.7) is correct, the estimators £ are partially determined by the observations y¢ and
partially by the a priori information z. Schwintzer (1990) advocates the application of the redundancy
number to assess the contribution of the observations y° to the solution of each individual coefficient ;.
This is discussed here. The contribution measure based on (3.7) is only valid for unbiased estimators.
Bouman (1998a), therefore, developed an equivalent measure for biased estimators, which is discussed
as well,

In this section contribution measures are derived for Tikhonov regularisation or biased estimation.
For the other regularisation methods, it is rather straightforward to derive the contribution measure once
the MSEM for each method is given.
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3.6.1 Contribution measure for the unbiased solution

Schwintzer (1990) uses the redundancy number as a measure for the contribution of the observations
to the solution of the unknowns. The redundancy number, therefore, is discussed first, followed by
Schwintzer’s interpretation. Finally, the relation of this measure with the gain matrix in recursive least-
squares estimation is clarified.

Redundancy number

Consider the linear relationship E{y®} = Az, where the number of observations is m and the number
of unknowns is n, m > n. The redundancy is r := m — n and it can be shown that (Teunissen, 1994)
E{éTQ;¢} = w(Q:Q;"), and because E{¢TQ, ¢} = m — n, itholds that w(Q:Q; ') =m —n=r,
with Q, the error covariance matrix of 3°, Q; the covariance matrix of € and ¢ the vector minimising
eTQ; le, € = y* — Az. The least-squares solution of z is £, and §* = A%, é = y° — §°.

The elements on the diagonal of Q:Q,! are denoted as r; : [Q¢Q; ']ii = ri. The sum of all r; is

m

r; is the i-th local redundancy number. It measures to what extent the observation y; contributes to the
total redundancy. Because Q: = Qy — @ (Teunissen, 1994) one may write

ri o= [(Q—Q)Qy"u=1I-QQy i
o2

if Q, is diagonal. Therefore, 0 < r; < 1since 0 < 02, < 02 :
Under the assumption that Qy is diagonal (the observations are uncorrelated), the local redundancy

number can be associated with internal reliability, which is a measure of the model error that can be

detected with a certain probability g, for example, v9 = 80%. The minimal detectable bias (MDB) of an

observation y; is (Teunissen, 1995)
{20
IVI' I =0y —1‘-:

with the non centrality parameter Ag which depends on the choice of 4. The MDB tells us that an error
of size |V;] can be detected with a probability of o, the power of the test. Therefore, the smaller r;, the
larger an error in that observation must be in order to be detectable with probability yo.

Schwintzer’s interpretation

Consider the extended model (3.7). The redundancy number of the zero observation z; is

o
ry=1- a_; (3.9)
i
where a%i and afi are the i-th diagonal elements of Q; and Q, respectively, Q. (that is K) is assumed
to be diagonal. Here one has Q, = (aK)~! and Q; = Q; since £ = £,. Schwintzer (1990) uses the
local redundancy number (3.9) as a measure for the contribution to the solution. He states: “The partial
redundancy r_,, (...), reflects the contribution of the a priori information to the corresponding results for
Cim or Si,,, in relation to the contribution coming from the real data” (Schwintzer, 1990, page 3).
There is a certain truth in this. Specifically when the zero observations are uncorrelated and E{z} =
Iz, any redundancy of an observation z;, that is any verifiability of z;, has to come from the observations
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y*. If r,, = 1, then, because of the uncorrelated zero observations, the redundant part of 2; has to come
from the ‘real’ observations y° and these observations contribute 100% to the verification of z;. However,
E{z} = z; and therefore one could say that ¥ contributes 100% to the solution of z;. On the other
hand, if r,; = 0 then the corresponding zero observation has poor reliability and y does not contribute to
the solution of z; = z;.

Note that if the a priori information consists of, for example, correlated coefficients of an earlier
solution, it is not obvious how to explain the redundancy number.

Relation with the gain matrix

The gain matrix in recursive least-squares estimation describes the contribution of one or more additional
observations to the estimate. The gain matrix is (Teunissen, 1996)

Ki = (Q;L, + ATQ; ' 40) 71 AT @} (3.10)

where Q;, _, is the error covariance matrix of the least-squares estimate £;_; based on the observations
Yi_1 Q;l the weight matrix of the observable yi and Ay the corresponding design matrix. The gain
matrix describes by how much the previous estimate #_; changes to form £;. For example, if the
observable y; has a relatively low precision, K, is ‘small’ and £;_) will not change a lot.

Translated to our problem, it is y§ = 2z, y§_, = ¥*, 4x = 1, Q;' = oK and Qz,_, = ATPA.
Inserting this in (3.10) one obtains

(ATPA + oK) taK =: W,.

The i-th diagonal element of W, is the relative weight of the a priori observation z; contributing to the
solution of the unknowns, and its contribution measure is

since oK is a diagonal matrix. The relative weight of the real observations y° contributing to the solution

of the unknowns is defined as ,

(72.
W, =1-W, =1— -2

oz

i3

since the total contribution to the solution of an unknown has to be 1. Thus, if the error covariance matrix
of the a priori observations is diagonal, W,,, equals the local redundancy number r,. Finally, W, can be
defined as

Wy :=1I-W, = (ATPA + oK) 1 ATPA. (3.11)

This comparison makes sense. The larger the weight of the observations is relatively to the prior infor-
mation, the larger Wy, gets. Conversely, the smaller the weight matrix P with respect to oK, the smaller
W, gets.

3.6.2 Contribution measure for the biased solution

The above derivations are all based on the assumption of unbiasedness of the estimator. However, the
solution might be biased and the precision of the solution can no longer be described by the propagated
observation error alone, the bias has to be included as well. The contribution (3.11) compares the error
covariance matrix of the regularised solution with the error covariance matrix of the least-squares so-
lution. Therefore, Bouman (1998a) suggested to introduce a similar comparison for biased estimators.
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Instead of the error covariance matrix, the MSEM should be used. The contribution measure for y now is,
compare with (3.11),

Wy, = MSEM MSEM™'| _ (3.12)
(ATPA + oK)~ (ATPA + o®KzzT K)(ATPA + oK)~  ATPA.

If a = 0 then W, = I as required. However, if & — oo the contribution should go to zero but it does
not:

lim W, = lim (zl;ATPA +K)™! (%ATPA + K:ca:TK)(-Cl;ATPA + K)"1ATPA

=00

= K 'KzzTKK1ATPA #£0.

Because for a — oo the bias term remains, this is not really surprising. The contribution measure (3.12),
therefore, is not satisfactory and will not be used.
An alternative to the MSEM is the spectral decomposition of the MSE (Bouman, 1993):

o? + o?(z,v;)? %

tr(MSEM) = MSE = 3 Eavr

i=1

with the singular value decomposition of A = UXVT and v; is a column vector of V' and o; is the i-th
diagonal element of X. For a single ¢ one obtains

MSE; a,-2 + o?(z,v;)? 2

W, = - _
¥ MSEi|,_, (62 + a)? %

(3.13)

If 02 >> o it means that the unknown z; is represented well by the measurements and Wy, =~ 1. On the
other hand, if o7 is small and 0? < a, Wy, ~ 0, as required. However, also in this case the behaviour
for @ — oo is not satisfactory:

2
g‘: + (z, v5)2 9

. 2
Jim 2 o? = (z,v;)%0} # 0.

4 o2
S +2a 41

The contribution measure (3.13) will therefore not be applied as well.

3.7 Summary

The coefficients of the expansion of the gravitational potential in a series of spherical harmonics are the
unknowns to be solved for. The estimated coefficients are biased and 0SU91A will be used to compute
the bias with respect to the reference model GRS80.
Three quality measures have been studied, which together should provide a clear picture of the qual-
ity of a global gravity field model: error propagation, ratio measures and contribution measures. The
latter two reveal a part of the quality of the gravitational potential coefficients themselves, while error
propagation is a measure for the quality of derived products such as geoid heights and gravity anomalies.
A problem with the contribution measures for biased estimators is their behaviour for large a. If
the regularisation parameter is large the contribution measure should go to zero, which, however, is not
true. The contribution measure for unbiased estimators does show the required properties. Although
the solution methods yield biased solutions, the latter contribution measure will be applied in order to ‘
validate its usefulness for quality assessment. ‘
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Gravity field observations

4.1 Introduction

Three types of gravity field observation methods are of importance in this study: high-low satellite-to-
satellite tracking (SST), airbome gravimetry and satellite gravity gradiometry (SGG). The latter is the
most important one since, in principle, a high resolution gravity field with high precision can be obtained
with these observations (Schrama, 1991; Koop, 1993; Rummel er al., 1993; Visser et al., 1994). The
GOCE mission will serve as an example (ESA, 1999). The unknowns solved for are the coefficients of a
spherical harmonic series, compare chapter 3.

Because the SGG measurements will be complemented by SST this technique is discussed shortly as
well. Furthermore, airborne gravimetry is considered. The GOCE satellite will fly in a non-polar orbit
yielding two polar caps without observations (see the GOCE introduction below). Hence, it is anticipated
that augmenting the satellite observations with gravimetry in the polar areas gives better solutions. Before
discussing the observations, however, it is explained why an iterative solution method and a so-called
block-diagonal normal matrix are adopted.

The material in this chapter is mainly based on the work of Colombo (1981); Schrama (1989, 1990);
Koop (1993) and Rummel er al. (1993).

The GOCE mission

The gravity field and steady-state ocean circulation explorer mission (GOCE for short) has been selected
by ESA as the first of two Earth explorer core missions and is scheduled for faunch in 2004. The foreseen
lifetime of the mission is 20 months with two times six months a measurement phase, the sampling period
is one second (ESA, 1999). The orbit of the satellite is almost circular at a height of approximately 250
km. Due to constraints on the satellite (power supply and disturbances due to temperature fluctuations),
the orbit will most likely be a sun-synchronous dawn-dusk orbit with an inclination of about 96.6°.
To eliminate the effect of the non-conservative forces as much as possible the satellite motion is drag
compensated.

As far as gravity field analysis is concerned, the gravity gradients are measured in three orthogonal
directions z, y, z with z radial and y cross-track and z completing the right-handed coordinate system.
The triad {z, y, z} defines an orthonormal, Earth-pointing coordinate system, and it is assumed here that
the attitude control system will realise such a triad (cf. ESA, 1999). The gravity gradients are denoted
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as Vzz, Vyy and V... A GPS/GLONASS receiver will be mounted on board of the gradiometer satellite
enabling high-low satellite-to-satellite tracking.

Ideally, the satellite is in a polar orbit. Suppose that the mission design is such that after a period
of, for example, six months the ground track pattern repeats itself. Then one would have a global data
set if the data flow is uninterrupted. The inclination of 96.6°, however, yields two polar regions without
observations and these are called the polar gaps.

4.2 Observation model and iterative solution
In general the relation between the observations and the unknowns z is non-linear:
y*=A(z) +e

with ¥ = y + ¢, the observations containing noise, which is denoted as ¢, and A is a non-linear operator.

The observations y° could for example be the second derivatives of the gravity potential, star tracker

readouts or GPS phase observations. The unknowns z are the potential coefficients Kj,, up to degree and

order L, eq. (3.2), and other unknowns to be determined like the coordinates of the observation points.
Linearisation of the non-linear equation yields

Ay =0AAz + ¢

with Az = z — 2%, Ay = ¥ — 3® = y* — A(z0), and A = 9, A(z°) the partial derivatives of A
with respect to the unknowns z evaluated in the approximate point z%. From now on it is assumed that
the only unknowns to be determined are the corrections to the reference potential coefficients. Other
parameters are assumed to be known or determined at an earlier stage. In gradiometry, for example, the
orbit determined with SST is precise enough to be considered known. The approximation z° is in this
case the GRS80 reference potential, that is, Cyo,! = 0,2, 4, 6, 8. -

Instead of a non-linear model, the model now is linear, which is denoted as

Y= Az +e¢

where one should keep in mind that y and z are the corrections to the initial values and that € consists
of measurement errors. Second and higher order linearisation terms as well as other model errors are
neglected. Matrix A is called the design matrix. Alternatively, one can write

E{y°} = Az, D{y*} =Q, “.1)

where Q, is the a priori error variance-covariance matrix of the measurements, E{.} is the expectation
and D{.} is the dispersion operator. In (4.1) the number of observations is assumed to always be larger
than, or equal to, the number of unknowns.

The weighted least-squares solution of (4.1) is

i = (ATPA) 1 ATPy*

with P = Q 1, The matrix Q; = (ATPA)™! is the error covariance matrix of the solved unknowns
and ATPA is called the normal matrix. If the unknowns are spherical harmonic coefficients, the size
of the normal matrix is typically O(L*) where L is the maximum degree of the spherical harmonic
expansion. Thus, when L = 180 the size of ATPA is 3-10* x 3-10* which cannot be solved directly on
the computers that were available for this investigation. Standard methods exist for the solution of the
normal equations. An approximate inverse is used which gives an approximate least-squares solution.
Successive iterations should yield convergence towards the true least-squares solution, see e.g. (Varga,
1962; Press et al., 1992). Such an iterative procedure is adopted here.
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Since the inverse of the normal matrix is needed in quality assessment, its approximate inverse should
be close to the true inverse matrix, while the computation of the inverse should preferably be fast and easy.
The design matrix is approximated such that the normal matrix will be block diagonal, A = Ap + AA,
where Ay is the major part of the model and A 4 a small correction matrix. For SGG, for example, Ay is
the circular orbit part, see section 4.4. The exact normal matrix then is

N = ATPA
= AYPAy + AFPAA+ AATPA,+ AATPAA
Ny + AN

with Ny block diagonal. The solution of
Ni = ATPy*
is the exact least-squares solution. Substituting N = Ny + AN leads to

No(I+Nj'AN): = ATPy*
# = —Ny'ANz+ Nj1ATPy

which suggests the iteration (since AN is small)

in = —Ny'ANz,, + Ny'ATPy*

~Ng (N — No)in-1 + Nyt ATPy*
Zn-1+ Ny YATPY* — N#a_y)

= Zpy + NO_IATP(ye — AZp_1)

forn =1,2,3,.... Putting £5 = 0, the first iteration is
£ = Ny 'ATPy. 4.2)
It can be shown that
lim &, =2
n—oo

if and only if the spectral radius p(I — Ny InN )} < 1, compare (Varga, 1962; Press ef al., 1992). In fact,
Klees et al. (1999) show that any matrix Al instead of Ny will do provided that p(I — M~1Mp) < 1
with My = AJPA.
Instead of (4.2), however,
2] = Ny ATPy

is used since AOTPyE is more easy to compute, with the iteration
&, =&  + Ny 'ATP(y — AZl,_)), n=1,2,3,....
Van Gelderen (1992) shows that this converges to
# = (ATPA) 1 ATPy

which is not equal to Z. The approximate solutions %/, are therefore biased. However, the expectation of

the approximate solution £’ is
E{3'} = (ATPA) 1 ATPAz = =

which shows that the approximate solution is unbiased in the limit.
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As we have seen in chapter 2, it is not the least-squares solution that is of interest but a regularised
solution of the form
Eo = (ATPA + o) ATPy .

Iteration of
&, = (ATPAy + oI) T ATPY.

may reduce the model error. As mentioned in section 2.3.2, however, this is called iterated Tikhonov
regularisation and if n — oo then the unstable least-squares solution is obtained. If many iterations are
needed to overcome the model error, then the solution may become unstable. As long as the number of
iterations can be kept low then the instability will not show up. In practice this depends on the size of the
model error and the size of the regularisation parameter.

4.3 Series expansion of the potential in orbital coordinates

In chapter 3 the series expansion of the gravitational potential in spherical harmonics as a function of
geocentric polar coordinates has been given, eq. (3.1). Working with satellite data, however, it is more
convenient to adopt a coordinate system related to the orbit. The motion of a satellite around the Earth
can be expressed in terms of the Keplerian orbital elements a, e, I, 2, w and M, which respectively are
the semi-major axis of the elliptical orbit, eccentricity, inclination, right ascension of the ascending node,
argument of perigee and mean anomaly. The potential in orbital elements is (e.g. Kaula, 1966; Sneeuw,
1991)

00 +1 1 l [
VLaebim® = F 2 (2) 5 3 Anl) Y Cuale)Srml) @43

a
=0 m=0 k=—1(2) g=—c0

where

C_”m I—-m:even S'Im I-m:even '
S(thrmq(t)) = _ o8 Prmq(t) + | _ SIn Ykmg (),
l-m:odd

Tlm {—m:odd tm
Vrmg(t) = k(w(t) + M(2)) + gM(t) + m(2(t) — I(¢)),

with Fj,, the normalised inclination functions, Gikq the eccentricity functions and ¥ the Earth’s argu-
ment of longitude (or Greenwich hour angle). The summation over k runs from —!{ to ! with step size of
2.

The orbit of a dedicated gravity mission will be nearly circular, that is, e = 0 and a = r. The index
g can be restricted, with sufficient accuracy, to —1 < ¢ < 1 (Schrama, 1989). Since the inclusion of
these eccentricity functions does not influence the analysis method fundamentally, they are left out for
simplicity (Koop, 1993). Therefore, only ¢ = 0 is considered and (4.3) simplifies to

0 +1 1 !
VIt =5 Y (2) X 5 AndDSWin(t) @4
1=0 m=0 k=—1(2)

with

—Vim tm l—m:odd

{-m:even l—-m:even
Cm S m
S(YEm(t)) = ( i ) €08 Ym(t) + ( _l ) sin Yrm(t),

{—-m:odd
Vi (1) = kwo(t) + mw,(t),
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where w, = w+ M and w, = Q — 9, ‘0’ refers to orbit and ‘e’ to Earth.
The interchange of the summation !, m, &k to k, m, [, truncated at L leads to a Fourier series (Schrama,
1989)

L L
Vi(L,r, Ykm(®) = 3 > Akm(I,7) 08 Ykm(t) + Bim(I,7) sin them(t) 4.5)
k=—L m=0
where
L 41 _ _ l-m:even
GM R = Cl ) Sl
(Akm(L,7), Bim(L,)) = 2= 3 (;) By [ O O
I=lmin(2) ~Sims Cim f,_

with Imin = max(|k|,m)+ §, § = 0 if k and max(|k|, m) have the same parity, otherwise § = 1. The
Agm and By, coefficients are the so-called lumped coefficients.

4.4 Satellite gravity gradiometry

The principle of satellite gravity gradiometry (SGG) is explained as well as the assumptions leading to a
block-diagonal normal matrix.

4.4.1 Principle

If two proof masses in free fall around the Earth are close to each other, they encounter a slightly different
attraction by the Earth due to their different positions in the non-homogeneous Earth’s gravity field.
Constraining the relative motion of these two proof masses by fixing them inside a spacecraft centred
around the centre of mass of the spacecraft and measuring the fixing forces exerted on the proof masses
means measuring the acceleration difference which, in good approximation, is proportional to the second
derivative of the gravity potential at the spacecraft’s centre of mass or the gravity gradient (e.g. Rummel,
1986; Koop, 1993). Several of these pairs in different orientations are sensitive to different projections
of the gradient, and one speaks of satellite gravity gradiometry. An example of a proposed gradiometric
mission is GOCE, see section 4.1.

Two types of methods can be distinguished for the analysis of SGG measurements. One is the time-
wise approach, the other the space-wise approach. The latter considers the measurements as a function
of (geographical) position only, while the former considers the consecutive observations as a time series
(Rummel et al., 1993). The time-wise approach is adopted here. This study is concemed with quality
and in the time-wise approach it is easier to model for example coloured noise (instead of white noise),
whereas it is not obvious how to implement coloured noise models in the space-wise approach (Rummel
et al., 1993). The space-wise approach is not discussed.

4.4.2 Time-wise approach

One can discriminate between time-wise approach in the time domain (TT) and the time-wise approach
in the frequency domain (TF), eq. (4.4) and (4.5) respectively. The underlying assumptions leading to a
block-diagonal matrix are that (see also Koop, 1993),

e the orbit is circular,
e the repeat is exact,
o the data flow is uninterrupted,

o the data period is an integer muitiple of the repeat period.
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Table 4.1: ‘Eigenvalues’ for gradiometry.

obs | Kppe

ee | BV rremy
w | BB g
| 9B e

Time-wise approach in the time domain (TT)

The potential is expressed as a time series along the orbit in eq. (4.4). It is assumed that the total
mission length 7; is exactly one repeat period. When the sampling interval is At the total number of
observations is Np = T /At. The mission period consists of the relative primes Ny (nodal days) and N,
(orbit revolutions), or T, = N42x /w, = N,27 /i,. In this approach, w, M, (2 and ¥ are time dependent,
whereas a, e and I are assumed to be not (semi-major axis, eccentricity and inclination).! The angular
variable 9 embodies the time dependency

Yem(t) = kwo(t) + mwe(t)
= kmt @)
neglecting the constant phase shift Yim» With
Piem = kiso + mee. @7

In the observation points j, eq. (4.6) is, using (4.7),

N 2m NN
Yim(j) = (kN; +mNyg) T jAt =2n(k+m NT)N, N, 4.8
j .
= 2nBmNy=—, j=1,...,N,
m er p

(compare Schrama, 1990; Rummel et al., 1993). In order to determine the gravitational potential coeffi-
cients Kj,, uniquely, no two different kmm combinations should yield the same S, frequency. The Sim
are unique if N, is a prime number and N, > 2L, apart from Sxo = B_0, Sec section 4.4.3.

The diagonal elements of the gravity gradient tensor, V¢, Vyy, V. are measured. The time series is

L

Voo (I, Pkem@®) =3 D D 6 Fimi(1)S (Ykm(2)) 49)

1 1
1=0 m=0 k=—1(2)

where obs = {zz,yy or zz}, and k§}* as in table 4.1, compare (Koop, 1993).

'If @, € and T are time dependent, then the inclination functions would become time dependent for example, and the orbit is
no longer circular.
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Time-wise approach in the frequency domain (TF)

Since eq. (4.5) is a Fourier series, the coefficients Ag,, and By, can be derived from the time series.
These coefficients serve as pseudo observations from which the coefficients Cim and Sy, can be com-
puted. Per order m the Fourier coefficients are a linear combination in ! of the potential coefficients, and
therefore are called lumped coefficients.

Specifically, consider the diagonal elements of the gravity gradient tensor, Vig, Viyy, V2. Their
Fourier series are (Koop, 1993)

L L
Vors (L, 7, Uem () = 3 D AP2(I,7) cos em(t) + BRa(I, ) sin them(£)
k=—L m=0
with L
obs
( Al;g;(I ) ) = > &Pl ( i ) (4.10)
Bkm(Lr) I=imin(2) ﬂlm
= {~m:even & l—m:even
At = ( C:g" ) , Blm = ( g"" ) 4.11)
“Rlm / 1—m:odd im /—m:odd

and Imin = max(|k|,m) + 4,6 = 0 if k£ and max(|k|, m) have the same parity, otherwise § = 1. The
n;’,?’ are given in table 4.1.
Relation between TT and TF

Let the time series y° be related to the unknown coefficients x as
E{y"} = Az, D{y} =Qy.
The Fourier transform of this discrete time series gives the pseudo observations y:
vr = Fy°

and
Qur = FQ,FT

where F is the Fourier matrix, F~!F = I, compare (Strang, 1986). Let FAz := Apz. Thus, the
least-squares solution is

o - -1 —
gr = (AFQu7AF)” AFQuM%
(ATFTF—TQ;lF—lFA) -1 ATFTF—TQ;IF—IFyE

z.

]

The normal matrix, N = ATPA, and the right-hand vector ATPy¢ are therefore equal in the TT and TF
approach.

4.4.3 Block-diagonal normal matrix

Consider the time series Vops(j), 7 = 1,..., Np, eq. (4.9). The time dependent variable is Yrm (j) as
defined in (4.8). One column [A]s, of the design matrix corresponds to one coefficient Kj,,, and contains
all j. Specifically, four types of elements exist: [A];, =
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! 1

1. E NflgsFlmk(I) 08 Yrm(J), for Ceyen, 2. E ﬂ?ﬁsﬁlmk(n sin Yrm(4), for Coga,
k=—1(2) k=—1(2)
[ l

3. > K Fme(D)sinUim(5), fr Seven, 4 — ¥ K5t Fimi(I) o ¥rm(4), for Sous,
k=—1(2) k=-1(2)

where even and odd stand for ! — m : even and l — m : odd respectively. Suppose for the moment that
ATPA = 1/02 ATA, that is, equal variance for all observations and no correlation. One element of A7A
then is the inner product of the columns of A:

T L4 - cos wkl my (.7) _— cos "fl)kzmz (.7)
[A"Alymytgm, = Z Z Kok Flymaky . or ) Z Klpky Flamake . or )
i=1 k Sin Yr,m, (7) | *2 SIR Y, m, (7)

11 12

bs bs i
E "?1 by Flymiky E nfz,fan,ka, [cc or ¢s or sc or s3]
k=-1(2) ka:—lz (2)

with the four cases, using (4.8),

cc= ZCOS N, _’)(ﬁklmlN )cos (ﬂkzmzN )
j=1

and for cs, sc and ss, ¢ and s have to be replaced by cos and sin respectively.

The orthogonality properties of the trigonometric functions on [—w, ] yield ¢s = sc = 0 and
cc = s8 = 0if | Bgym, | # |Bkym,|. Furthermore, if |Bk,m,| = |Bkam,| # 0 then cc = ss = N, /2, and
if Bkym; = Bram, = 0 then cc = ss = Np. As stated earlier, Schrama (1990) shows that the number of
revolutions has to be larger than 2L in order to avoid “

lﬂklmll = |ﬂk2m2| for kl 9’: k2 and mq # ma.

If N, > 2L, therefore, |Bk,m, | = |Bram,| if m1 = mq and k; = ko for m # 0. Consequently, ATA=0
for my # my. For m = 0 one always has Bg,0 = B—k,0, V k1 = —k2. Thus only half of the required
frequencies remain. However, also the number of unknowns is divided by two since there are no Sio
coefficients to be determined. If £ = m = 0 then o = 0.

Assuming that N;. > 2L one then has form # 0

N, I12 ~ _

2 > AR Fumi (1) Figme (D)
k=—112(2)

T" & bs ,.obs I

2A¢L ’clollg"leﬁmlmk(I)Fhmk(I)
k=~112(2)

[ AT A] obs

lLilam

with l;2 := min(l;, l5) where !; and I have the same parity as a result of k; = k3 = k. If m = 0 then
the multiplication factor is N, instead of N, /2.

The above derivation shows that the normal matrix is block diagonal in the TT approach. Since we
know that the normal matrix of the TT and TF approach are equal, the normal matrix corresponding to
the TF approach is block diagonal as well. This is easy to verify. Taking the lumped coefficients as
observations and the potential coefficients as unknowns, the design matrix is as follows. A single row
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Figure 4.1: The structure of the design matrix (TF).

of A corresponds to one observation A2 or B, eq. (4.10). Thus, k and m are fixed while ! runs.
A single column of A corresponds to one unknown Kj,,, [ and m are fixed, while k£ runs. Taking the
inner product of two columns of A to form [ATA);,m,1,m,» therefore, results in a summation over k and
m) = mg = m since m is fixed for a single row and column. The design matrix consists of rectangular

blocks for each m, other elements of A with the same row or column number are zero, compare fig. 4.1.

So far, only white noise was considered. One element of ATPA is a‘z[ATA]j’f’,im. In the TF ap-
proach, however, it is easy to include coloured noise. Suppose that the lumped coefficients are uncor-
related, but the variance has the form o2,,,. This means that the noise depends on the frequency. It is a
function of k and m, resulting in coloured noise. The (), matrix remains diagonal in this case and one
element of ATPA is

liz
T: _ _ 1
[ATPARY, = Az > KPR Py (1) Fiymi (1 )7 4.12)
k=—T12(2) km

Due to the instrumental and environmental error sources together with the sampling rate, the error spec-
trum will be band limited and coloured. All frequencies below Bp,;, are disturbed too much, while
frequencies above (4, cannot be obtained because of the sampling rate (Koop, 1993). For GOCE, for
example, Bmin = 2 cpr (cycles per revolution), between 2 and 27 cpr the noise behaves like 1/w, while
above |Brm| = 27 cpr till the maximum frequency a flat spectrum is assumed. If the sampling period is 5
s, then the sampling rate is 0.2 Hz and the highest frequency is 0.1 Hz (Nyquist rate). At a height of 250
km the orbital period of the satellite is approximately 5370 s, so that Spnq; = 5370 % 0.1 = 537 cpr. The
maximum corresponding degree is L = 505. However, if the mission length is 30 days, then the satellite
completes 481 revolutions. The maximum degree is therefore L = 240 in this case.

In the TT approach the Q, matrix is full because of the error characteristics, which means that the
measurements are correlated in time. The normal matrix, however, still is block diagonal under the
condition that the model assumptions, circular orbit etc., hold (see Koop, 1993).
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4.5 Satellite-to-satellite tracking

A GPS/GLONASS receiver will be mounted on board of the GOCE satellite enabling high-low satellite-to-
satellite tracking (SST). The receiver provides code pseudo range observations and phase observations.
Basically, a distinction can be made between two approaches for gravity field determination with these
observations. In the first approach, the SST measurements are used directly, in the second approach the
SST measurements are used first to obtain a best estimate of the GOCE orbit and the coordinates of this
orbit are then used as pseudo observations (Visser et al., 2000).

In the first approach, it is good practice to assume that for the undifferenced SST measurements,
¢.g. the phase measurements, the measurement errors are uncorrelated and behave as Gaussian noise.
(Tiberius (1998) shows that in first approximation this is true but that it might be necessary to refine the
noise model.) However, correlations between different measurements may exist:

e GPS ephemeris errors have typical periods of about 12 hours (1 orbital revolution);

e differenced measurements may be used to eliminate e.g. clock errors and the effect of selective
availability (SA):

— certain measurements show up in more than one differenced measurement;

— in case of double differenced measurements atmospheric refraction errors may be introduced
which may lead to correlated errors, etc.

In the second approach, successive estimates of the GOCE position, e.g. in the form of inertial Carte-
sian z, y and z coordinates may be used as pseudo observations. Depending on the precise orbit deter-
mination (POD) strategy, errors in these pseudo observations will be correlated in time differently. For
example, in case of kinematic POD, for each epoch an independent estimate of the GOCE position will be
made and orbit errors appear to be quite random in time. In case of dynamic POD, orbit errors will look
more systematic (Visser et al., 2000). ’

The indirect approach is adopted here. The POD is not discussed here, the orbit is assumed to be
known with errors of a few cm (see Davis, 1997; Visser et al., 2000). The observation equations for the
pseudo observations are derived using the solution of the Hill equations, which relate the orbit distur-
bances to T in a local satellite frame (Schrama, 1989, 1990).

4.5.1 Hill equations

The reference potential U, cf. section 3.2, defines a circular, precessing orbit. The Hill equations describe
the motion in the local z, y, z-triad and take the form

F, = Z+42nz
F, =+ "(2)!/
F, = %-2not—3ndz

where ngp = w, represents the mean circular orbit velocity (mean motion).
The forcing functions Fy, Fy;, F,, are developed as Fourier series from which particular solutions can
be obtained (e.g. Schrama, 1989). The non-resonant particular solution is found by solving

P.coswt+ Qzsinwt = &+ 2ngz
Pycoswt+ Qysinwt = §+ndy

P,coswt + Q,sinwt = 2 —2not — 3n(2,z
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where P, through Q. symbolise time independent constants originating from the disturbing function.
The solution of this system of equations becomes (Schrama, 1989):

(3n3 + w?)P; + 2nowQ;

(Sn(z, +w?)Q; — 2nowP, s

t) = t nwt
2(t) w?(nd — w?) sw+ w?(nd — w?) “
Py Qy .
y(it) = W coswt + Sy sin wt 4.13)
-2 P,
z(t) = M coswt + 4Qz—2@2—3 sinwt
w(ng — w?) w(ng — w?)

showing that singularity occurs when w = 0 or w = %ng. These cases require separate, resonant
solutions, as described in Schrama (1989).

4.5.2 Observation equations

The SST observation equations are derived from (4.13), w is replaced by Bgmno and all partlal derivatives
are substituted (Schrama, 1990): ‘

Aobs(t Z Z A2 (1,7) cos Yrem (t) + BEE(I, 7) sin Yrm(t) 4.14)
k=~L m=0

where obs = z,y or z. Equation (4.14) relates the disturbances Aobs(t) with respect to the reference
orbit to the disturbing potential T'. The observation equations become

L
I 7 m
( AkmEI 3 ) > s Fim-ry2(D) ( _ﬂ C’, ) (4.15)
I=tmin(2) Ilm
and
Azm(I’ r) = - L* ﬂlm
( B (1,7) ) = H%@) StmaFimk (D o @4.16)
and
Aim(I,7) ) ZL: i ( )
z = imk Eim(i—k)/2(1) @.17)
( im(127) I=imin(2) Bim

for the along-track, cross-track and radial component respectively, with components nf,';;’k given in table
4.2, Fi} . the cross-track inclination functions and o, Bim as in (4.11), see also (Balmino ez al., 1996).

4.5.3 Block-diagonal normal matrix

Comparing the observation equations (4.15) - (4.17) with (4.10), it is obvious that here the normal matrix
also becomes block dxagonal with elements given by eq. (4.12). However, obs now is z,y or z and n""’
should be replaced by n,mk from table 4.2. As with SGG the underlying assumptions are that the orbll is
circular, the repeat is exact and the data flow is uninterrupted.

Note that the reference orbit is computed using the reference potential U, yielding a block-diagonal
matrix. This approximation, however, will not be used in practice since it is not good enough. Instead,
a reference field like JGM-3 or a field from the GRACE mission will be used and the approach based on
the Hill equations can no longer be used, the normal matrix is full. Nevertheless the SST block-diagonal
normal matrix should give a reasonable idea of the benefits of these observations.
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Table 4.2: ‘Eigenvalues’ for satellite-to-satellite tracking.

obs
obs | K>3

. | oM (5)‘2ﬂm(l+1>—(ﬂim+3)k
n0T2 r ﬁl%m(ﬂlzm - 1)
GM (R\' 1

Y W(ﬂ 1- B,

, %(_@)‘ﬂkmaﬂ)—%
nor2 \r /) Bem(Bim — 1)

4.6 Airborne gravimetry

A more homogeneous gravity field solution, in terms of precision, would be obtained having any other
kind of gravity related observations in the polar gap regions in addition to the SGG and SST data. Air-
borne gravimetry is the most likely candidate to support a gradiometric mission. In this section the
characteristics of airborne gravimetric observations are discussed, as well as the assumptions necessary
to obtain a block-diagonal matrix.

4.6.1 Observation model

Scalar gravimetry in the usual sense provides point values of the magnitude of the gravity vector. Us-
ing a spring gravimeter, the difference in spring length between two locations corresponds to a gravity
difference between the two locations. The situation is more complicated, however, if the gravimeter is
attached to a moving vehicle like an airplane. The measured specific force is the sum of gravity and other
accelerations due to the change in motion, airplane vibrations, etc. Furthermore, the orientation of the
gravity sensor has to be known or stabilised (see Schwarz and Li, 1997).

Define the local-level coordinate system as {n, e, u} where the axis n is pointing north, e is pointing
east and u is up along the normal of the ellipsoid. Assume that gravity is measured in an airplane with
the gravity sensor mounted on a local-level stable platform system. By means of GPS position (¢, A, h)
and velocity (v, Ve, Uy) are determined. The model for the scalar gravimetry then is

futgu=0u+E

where  f, vertical component of the measured specific force,
Gu vertical component of the gravitational vector,
Uy vertical vehicle acceleration,
E Eotvos effect.

The Eotvés effect is the sum of the Coriolis acceleration and centrifugal acceleration which are caused by
the motion of the aircraft and the expression of the inertial vehicle acceleration in the rotating Earth-fixed
coordinate system (Rummel, 1988). E is a function of the Earth’s angular velocity w, and of ¢, A, h, v,
and v.. It is, therefore, possible to obtain gravity information from these measurements, knowing the
Earth’s angular rate, compare Schwarz and Li (1997).

Meaningful results are obtained when the measurements have been low pass filtered. The current
RMS values for gravity anomalies are 2-6 mGal with half wavelengths of 5-10 km (ibid). From now on it
is assumed that a regular grid of gravity anomaly values at ground level is available, see also section 6.4.
The observation model is as follows.
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Let f be an L? function on the sphere which can be expressed in a convergent series of spherical
harmonics, truncated at degree L

L {
6,0 =3 3" KEimYim(6:A)

1=0 m=-!

with K}y, and Y, as in (3.2) and (3.3) respectively, and &; an eigenvalue. The coefficients K, are the
unknowns to be determined from measurements f(#, \) in a regular grid. Let this grid be equidistant in
both directions, that is, A@ = AX. The rows 6; are numbered first, the columns A; are numbered next.
If < runs from 0 to N — 1 then j runs from 0 to 2V — 1, and there are N x 2N points. The linear model
relating the measurements y to the unknowns z is y = Az, withy = f(0;,);),i=0,...,N -1, =
0,...,2N — 1,z = K. The columns of A consist of successive values ;Y (6, A;j) corresponding to
the unknowns K, at the points (6;, A;) of the grid. Specifically:

Agop %1%4m (80, Ao) for all l and m

Agoy &1Y1m (60, A1) foralll and m :

Ago,z — Kﬂ.’;m (00, Ag) forall! and m le
AgN-12N-1 £1Yim(ON—-1,Aon—1) foralll and m

where the observations f are gravity anomalies Ag.

4.6.2 Structure of the normal matrix

Colombo (1981) shows that the normal matrix becomes block diagonal for equidistant point values and
a precision of the gravity anomaly observables independent of longitude. This is repeated here in a more
comprehensive form. v

The least-squares solution is £ = (ATQ,1A)~'ATQ;'y*. Assuming that the measurements are
uncorrelated and that the precision is the same for each Iautude Qy is a diagonal matrix with N times
2N equal elements:

: 2 2 2 2 2 2
Qy=dlag(ao,...,00,0'1,...,01,...,UN_I,...,UN_I).

The normal matrix, ATQy‘lA, is formed by multiplying the columns of A and a row-wise summation

with weights o;” 2, Every row corresponds to a unique point (6;, A;), and because @y is diagonal there is
no correlation. Denoting the degree and order of the elements of AT with [ and m and that of A with n
and k, the product ATQ; 1 A for an arbitrary column of A with an arbitrary row of AT gives:

N-12N-1 N-1 2N-1

D D KtYim(B, Aj)anYuk (6, X1)07 % = mikn D 072 D Vi (01, Aj) Yk (63, 25)-

i=0 j=0 i=0 3=0

Using the definition of ¥i,,, eq. (3.3), yields

N-1 2N-1
cov(Ciyn, Cpk) = Kikin Z 07 2Py (cos 8;) Pog(cos ;) Z cosmA; cos kA;
=0 j=0

and similar expressions for cov(Cim, Su|x)) and cov(Syjmy> Snjk|)- The distance in A-direction is constant,
AM = 2r /2N. The respective A-terms, therefore, are of the form
2N-1
Z cosmjAAcoskjAA, m,k < N.
=0
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The non-zero elements of cov(C, C) and cov(S, S) are those for which m = k: cov(C, S) is always
zero. The summations

2N-1 2N-1
Z cos’mjAX and Z sin® |m|jAX, m < N
=0 =0

are the discrete counterparts of the integrals from 0 to 27 of sin? }m|\ and cos®? mA, N corresponds with
m, and it is

2N-1 ON. m=0 2N-1
> cos2mjAA={ N mso d > sin?jm|jAA=N, m <0
=0 ’ =0

which gives

B N-1 _ _ 2N, m=0
cot(Cim, Cam) = Kikin Z ”i_ZPIm(COS 6;) Prm(cos 6;) { N , m>0
i=0 ’

N-1
cov(§1|m|, §n|ml) = K|Kn E ai‘zf’”ml(cos Gi)I—’,qml(cos 9;)N.

=0

This shows that the elements of the diagonal blocks of the normal matrix are non-zero, whereas other
elements are zero.

Remarks. The condition L < N must hold to obtain an over-determined system of equations. The
sampling in longitude should be regular so one can write A; = jAA, a regular sampling in latitude
direction is not strictly necessary to obtain a block-diagonal structure. To preserve the block diagonality,
the o of the observations must not depend on longitude since it must be outside the j-summation.

North-south symmetry

Colombo (1981) also shows that if 07 = ¢3,_, _; and the grid is symmetric with respect to the equator,
the even and odd degrees are separated, that is, cov = 0 if I — n is odd.

4.7 Summary

The combination of computing a solution for the system of observation equations and the quality as-
sessment of the solution, dictates the need for the availability of the inverse of the (regularised) normal
matrix. Since the number of unknowns is large, the direct computation of the true inverse is avoided
and replaced by an approximate inverse. Iteration will lead to the correct solution. In addition, if the
approximate inverse is close to the true inverse then the former may be used in the quality assessment.

The observation types in this study are SGG, SST and airborne gravimetry. The observation equations
as well as the assumptions necessary to obtain a block-diagonal normal matrix have been discussed for
these observables. A block-diagonal matrix allows for an easy inverse computation, while the quality
description based on this matrix is expected to be close to the ‘true’ quality.
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Gravity field models from SGG only

5.1 Introduction

Gravity field determination from satellite gravity gradiometry is an inverse problem which is ill-posed:
(i) the downward continuation of the data amplifies noise (stability), (ii) the polar areas are not covered
because of the orbit inclination (uniqueness). Properties (i) and (ii), however, hold for the continuous
case. Because the linear system of equations is discrete, the best-approximate solution with minimal
norm is unique. Furthermore, the discrete system is stable. However, the original properties (i) and
(ii) may lead to a severely ill-conditioned problem. Consequently, if data errors are present, a least-
squares solution tends to lead to strong oscillations in the solution with large amplitude. Regularisation,
therefore, is mandatory and various regularisation methods discussed in chapter 2 will be applied here.
The measures of chapter 3 will be used to assess the quality of the different solutions and the block-
diagonal approach of chapter 4 is adopted.

In this chapter gravity field determination from only SGG measurements is considered. It was decided
to leave out global SST or gravimetry at first since treating gradiometry data alone gives a better idea of
the possibilities and limitations of these type of data. The combination of all three data types is discussed
in chapter 6. In this chapter the orbit is assumed to be known. Schrama (1990) shows that at a height
of 200 km orbit errors of 10 m give errors in the gradient at the 0.01 E level, whereas orbit errors of 1
m give errors of 0.001 E (rule of thumb). The expected accuracy of the SGG measurements is at the 1
mE level in the measurement bandwidth. The expected orbit determination precision for GOCE is a few
cm’s (Visser et al., 2000), and therefore, the precise orbit determination (POD) from GPS observations is
accurate enough in view of the expected precision of the SGG observations.

The outline of the chapter is as follows. First, the gravity field recovery is tested with faultless
measurements for a gradiometric mission in a circular polar orbit. This will fix the lower bound of the
expected precision. Secondly, the inclination is changed to a GOCE mission inclination of 96.6°, which
introduces two polar gaps without measurements, resuliting in a degree versus order scheme in a ‘wedge’
of badly determined coefficients (low orders, all degrees), (Van Gelderen and Koop, 1997). Both a
circular and a non-circular orbit are considered. The latter, referred to as GOCE orbit, gives information
on the effect of model errors: the orbit is not circular but the normal matrix becomes block diagonal under
the assumption of a circular orbit. Finally, noise is added to the observations and Tikhonov regularisation
as well as biased estimation are used to compute a gravity field solution. The discussion of the gravity
field recovery results is preceded by a few remarks on the computation of the gravity gradients, which
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1=90, circular orbit 1=96.6, circular orbit 1=96.6, GOCE orbit

no noise INTERPOLATION POLAR GAP MODEL ERROR

1 =96.6. circular orbit

coloured noise REGULARISATION
METHODS

Figure 5.1: Outline of chapter 5.

is the direct problem referred to as synthesis, as well as the analysis which is the inverse problem. The
outline of this chapter is summarised in figure 5.1.

Earlier comparisons of regularisation methods applied to gradiometry are based on error propaga-
tion. Bouman and Koop (1998a), for example, compare Tikhonov regularisation (TR) and generalised
biased estimation (GBE) for several gravity gradiometry mission scenarios, while Bouman and Koop
(1998b) compare TR with signal and second derivative constraint. Bouman (1998b) compares regular-
isation methods and parameter choices using airborne gravimetry (with simulated observations), while
Floberghagen and Bouman (1998) tested several parameter choice rules in gravity field determination of
the Moon.

5.2 Synthesis and analysis
5.2.1 Synthesis

The synthesis of the gradiometric observations (the direct problem) should preferably be fast. As béfore,
let y be the observations and z the unknowns. The computation of

y=Az or y¥* =Az+e€

has to be as efficient as possible since several missions, including iterations, are studied. Therefore, the
direct computation of the V,,, Vy,, and V; gradients along the orbit is avoided. Instead, grid points with
gradient values are computed using FFT methods and the correct values are obtained by interpolation,
compare appendix C. The interpolation error tured out to be smaller than 105 E for the non-circular
GOCE orbit for a maximum degree of L = 360. The non-circular orbit was generated with the GEODYN
software (Eddy et al., 1990).

For all missions discussed hereafter, the following specifications have been chosen (cf. ESA, 1999).
The height of the satellite orbit is approximately 250 km, the mission length Ng = 29 days, the sampling
period is 5 s, the inclination is either I = 90° or I = 96.6°. The minimum degree is l;,in = 2 while the
maximum degree is L = 180. The expected GOCE observation window is two times six months. The
maximum resolvable degree will be somewhere between L = 240 and L = 300. For the current study a
mission length of one month is chosen to keep the computations manageable.

Measurements with and without noise are generated. The measurements without noise are not perfect
due to the interpolation errors and round off errors. The error covariance matrix of these measurements is
chosen as a scaled unit matrix with scale factor 10~19. The noise added to the measurements is coloured,
the error PSD for SGG is depicted in figure 5.2. The dashed line indicates white noise, which for Vi, is at
the level of 1.5 x 10‘3E/ VHz. For the coloured noise PSD Bpin = 2 cpr, there is a 1/w behaviour for
2 < Bem < 27 cpr and a flat spectrum for Bgy, > 27 cpr (w stands for frequency here). Because of the
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e XX, 2Z (coOloured noise)
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Figure 5.2: The square root of the error PSD for SGG.

sampling rate of 0.2 Hz, Baz = 537 cpr, cf. section 4.4.3. The error PSD’s for V;; and V;; are a factor
of two more pessimistic than that of ¥, see also ESA (1999).

5.2.2 Analysis

In chapter 2 several methods to analyse observations when the inverse problem is ill-posed are listed.
Of these methods the SVD methods will not be used because they involve the decomposition of the
design matrix which requires too much CPU-time and memory. There are approximately half a million
observations in 30 days with a 5 second sampling, while the number of unknowns is roughly 32400.
Furthermore, none of the discussed parameter choice rules has been used, the minimisation of the trace
of the MSEM is used instead. :

Since the maximum degree solved for is L = 180, the downward continuation is compensated by
the higher short wavelength sensitivity of the gravity gradients. In the space domain the corresponding
resolution is a 1° x 1° grid. In fact the discretisation as well as the truncation act as regularisers. Would
L be much larger, then the downward continuation instability would show up, compare figure 5.3 which
depicts the amplification per degree for V.. It should be noted that the amplification or attenuation of
Vzz and Vy, differs from that of V. Moreover, the power of the higher degree coefficients decreases
~ 1/12, that is, the higher degrees have less power.

A first idea of the relative influence of a polar gap compared to downward continuation one gets from
figure 5.4. The maximum condition number of the normal matrix is shown for the maximum degrees
L =120,180,...,360. The dash-dot line shows the maximum condition numbers for SGG observations
at a height of 0 km and an inclination of 96.6°, Ny = 6 months. The full line shows the maximum
condition numbers for SGG observations in a polar orbit at a height of 250 km, N; = 6 months. The
effect of coloured noise is excluded in this example by assuming white noise. Clearly, the polar gaps
yield extremely large condition numbers, up to 10!° for L = 360. Although the downward continuation
condition numbers are also large, they are 3-10 orders smaller.

It should be noted that not only the condition number is important, the size of the eigenvalues is
important as well. If, for example, the condition number is small, say 102, then the eigenvalues may be
small, say 10~8 < X; < 107, Since the condition number is small, the solution then will be numerically
stable but the absolute precision will be small. On the other hand, if the condition number is small and
the eigenvalues are large, say 10% < ); < 105, then the precision of the solution is high.
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Figure 5.3: Circular orbit at 250 km and a spherical assumed Earth with a radius of 6378 km displayed
at the same scale (left). The amplification factor per degree for V. (right). Shown is the function
(22511 + 1)L + 2), the height b is 250 km.
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Figure 5.4: The maximum condition number of the normal matrix for increasing degree. The full line

gives the maximum condition numbers for SGG, polar orbit and a height of 250 km. The dash-dot line

gives the maximum condition numbers for SGG, inclined orbit (I = 96.6°) and a height of 0 km. For

both cases white noise is assumed.
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5.3 Observations without noise

First of all a few bench marks are set, testing the effect of model and interpolation errors. Therefore,
observations without noise will be used at the first stage and noise will be added to them later. The
approach is as follows. The effect of the interpolation error and a small model error (no exact repeat)
is tested solving gravity potential coefficients using SGG observations in a polar circular orbit. A least-
squares solution is feasible because L = 180, and the error variance-covariance matrix is a scaled unit
matrix. Next the effect of a polar gap is studied by looking at a circular inclined orbit. Even though
there are two polar gaps, regularisation is not necessary due to the very small data errors. Finally, a ‘true’
GOCE orbit is studied. The orbit is no longer circular, and therefore larger model errors are present. It is
shown that these model errors can be overcome by iteration, compare section 4.2. Van den IIssel et al.
(2000) present results similar to those here.

5.3.1 Circular polar orbit

If a satellite collects its measurements along a polar orbit, then after a number of revolutions these
measurements are more or less evenly distributed in a shell close to the Earth, see figure 5.3. The
distribution depends, of course, on the sampling rate and on the distance between the tracks (the repeat
period). However, there will certainly be no ‘polar gaps’ and, given the GOCE mission parameters,
provided the sampling period is short enough (< 14 s) and the repeat period long enough (> 23 days),
all coefficients up to degree and order L = 180 may be estimated uniquely (Koop, 1993; Rummel et al.,
1993). Certainly, the attenuation effect limits the maximum resolvable L, but observing V;, V,, and
V.., together the coefficients up to degree and order L = 180 are estimable.

The results for the circular polar orbit serve as a bench mark for the other mission designs. No polar
gaps are involved, only one model error (no exact repeat), computer round-off and interpolation errors
are possible error sources. The maximum degree is L = 180 for the synthesis as well as the analysis
step. In total 499752 observations have been used which is equivalent to 28.9 days. The satellite orbit
has a height of 252.8 km with respect to a spherical approximation of the Earth.

Because of the ‘perfect’ observations, regularisation is not necessary. The least-squares solution is

& = (ATPA) 1 ATPy

where the weight matrix P is the inverse of a scaled unit matrix. The scaling factor is unimportant for
the solution itself since it drops out. The scaling would matter when using the error variance-covariance
matrix @ of & but this is not pursued here.

Figure 5.5, left, displays the relative differences between OSU91A, the ‘true’ gravity field in the
simulations, and the solved coefficients from the almost perfect observations for the initial solution. The
maximum relative difference is 4.9 for the first iteration and after the second iteration the relative error in
the C},,, coefficients is below 0.1% for almost all coefficients (not shown). Throughout the remainder of
this thesis the degree versus order plots will be restricted to the Cj,,, coefficients since the S, coefficients
yield similar results.

With these coefficient differences geoid errors are computed, as shown in figure 5.5, right panel. The
maximum geoid errors are in the neighbourhood of A = 0, ¢ = 0 which is caused by the not exact closure
of the repeat. The not exact repeat yields maxima in regions with large geoid signals as well, such as the
Andes in South America and near India and Indonesia. The RMS of the geoid errors is already small, 0.24
mm, but the extremes due to the model error are too large (1 cm). The second iteration yields a maximum
geoid error below 1 mm with an RMS of 0.01 mm, compare table 5.1. Again the maximum geoid error is
due to the model error, but this time it is negligible. Apparently, two iterations are sufficient.
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order

degree error in mm

Figure 5.5: Circular polar orbit, no noise. Relative error in the spherical harmonic coefficients, first
iteration (left). The differences (OSU91A - solved)/0SU91 A are shown on a logarithmic scale. The right
panel displays the geoid errors due to the coefficient differences, first iteration.

Table 5.1: Global geoid errors due to the coefficient differences OSU91A - solved, final solutions. Units
are in mm. Two, seven, and eight iterations are required for the three cases respectively.

geoid error (mm)

mission RMS max min
polar 001 03 -01
GOCE circular | 0.72 119 -5.1
GOCE 0.87 143 -6.1

degree degree

Figure 5.6: Circular inclined orbit, no noise. Relative error in the spherical harmonic coefficients, first
iteration (left) and after seven iterations (right). The differences (OSU91A - solved)/0SU91A are shown

on a logarithmic scale.
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max = 11,9 mm, min = -5.1 mm, ms = 0.72 mm

-0.05 0 0.05
error in mm

Figure 5.7: Circular inclined orbit, no noise. Geoid errors after seven iterations due to the coefficient
differences OSU91A - solved.

5.3.2 Circular inclined orbit

The GOCE orbit will not be polar and because I # 90° two polar gaps exist. Due to the polar gaps the
parameter estimation is ill-posed. Even though for GOCE the total area of the gaps is small compared to
the total observation area, and even though the interpolation errors and model errors are small, the ill-
posedness might cause the solution errors to be large. Therefore, an inclined circular orbit is tested. The
inclination is 96.6° and the mission length and orbital height are exactly equal to those of the polar orbit
case. This test case reveals the effect of small errors in the presence of polar gaps. Again regularisation
appeared to be unnecessary, and with successive iterations the model error (no exact repeat) has to be
overcome.

Figure 5.6 displays the relative coefficient error for the first iteration. Especially the low order coef-
ficients are affected, which is typical for a polar gap. The maximum relative difference is of the order
10°. The maximum corresponding geoid errors of 102 m are located in the polar regions (not shown). Al-
though the interpolation errors and model errors are small, the ill-posedness of the inverse problem yields
an oscillating solution with large amplitude in the polar regions. Fortunately, the solution is affected only
locally, which means that also here the model error can be overcome by iteration. Consequently, the geoid
error can be reduced significantly.

In total seven iterations are needed to obtain almost the exact solution, the eighth iteration did not
show any improvement. The relative coefficient error is below 0.01% for the major part of the coeffi-
cients, and it is between 0.1 and 1% for part of the low order coefficients, figure 5.6, right. The RMS
geoid error is 0.72 mm with a maximum of 11.9 mm and a minimum of -5.1 mm located in the polar
regions, see figure 5.7. The RMS in the measurement area, that is, —83.4° < ¢ < 83.4°,is 5 x 1072
mm. These results show that even small errors, like model errors have some significance since small
coefficient errors and geoid errors remain. The best-approximate solution with minimum norm is unique
but, evidently, this need not be the exact solution. Compared to the effect of measurement noise here-
after, however, the errors discussed here are negligible. Figure 5.7 shows that the total area without
observations is small indeed.
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100 o
degres errorinm
Figure 5.8: GOCE orbit, no noise. Relative error in the spherical harmonic coefficients, first iteration

(left). The differences (OSU91A - solved)/OSU91A are shown on a logarithmic scale. The right panel
displays the geoid errors due to the coefficient differences, first iteration.

5.3.3 Non-circular GOCE orbit

The GOCE orbit will in reality not be exactly circular. On the average the orbit can be described by a
circular orbit but the maximum vertical deviations are plus and minus 9 km for a 1 month repeat. Orbit
integration yielded a repeat after 501145 observations or 29.0 days at an average height of 244.6 km.
Again the inclination is I = 96.6°.

The relative coefficient differences after one iteration for such a GOCE-like orbit are displayed in
figure 5.8. The maximum error is of the order of 10° with clearly the highest errors at the low orders, but
also high degree and orders are affected. The coefficient errors after one iteration have an RMS of 8.2 m,
the maximum is 102.2 m and the minimum -58.5 m. The corresponding geoid errors are shown in figure
5.8. Again, the largest errors are located in the polar areas, but due to the model error, large errors occur
in areas where the gravity gradient is large.

The first iteration yields extremely large errors. Fortunately, the iteration converges and the coeffi-
cient errors after eight iterations are similar to those displayed in figure 5.6, right. The ninth iteration did
not show any improvement. The relative coefficient errors are at the level of the circular orbit coefficient
errors. The RMS geoid error after eight iterations is 0.87 mm, with a maximum of 14.3 mm, while the
minimum is -6.1 mm. Again, in the measurement area the RMS geoid error is 5 x 10~ mm. It is therefore
concluded that the non-circular orbit model error can be overcome by iteration.

5.4 Noisy observations

The test with the observations without noise shows that even with a polar gap the coefficients can be
recovered almost exactly. The circular approximation in case of the true GOCE orbit is unimportant, since
it can be removed by iteration. From now on, therefore, only the inclined circular orbit is considered and
several regularisation methods will be tested and the quality of the solutions will be studied in detail. To
this end, simulated coloured noise errors are added to the observations (see also figure 5.2).

The noise characteristic is such that the low frequencies, that is small 8., are badly determined.
Consequently, the spherical harmonic coefficients with m not too large are affected by the coloured
noise. For a specific m, say m = 10, the degree [ runs from ! = 10 to L = 180. Considering the PSD in
figure 5.2 one might argue that the frequencies with SBg,, smaller than five really experience the coloured
noise. If m = 10 then —4 < k < 5 are the corresponding frequencies. If [ is small, and therefore I — m
small, then a relatively large number of frequencies is affected since k runs from —[ to [, see eq. (4.12).
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Table 5.2: MSE and bias of the TR solutions.

no. constraint | a MSE® BNR max(BSR)”
1 signal 2.4 1 0.2 02(54.8)

la Istderiv. [2.0x107% 1.1 02 0.3(5184)
Ib 2ndderiv. | 7.5x10=° 14 03 03(228.1)

“In proportion to mission 1.
PThe maximum BSR based on the 0SU9 1 A degree-order variances. The maximum BSR between brackets has been computed
using the solution coefficients.

However, if [ is large, then the number of frequencies distorted by the coloured noise is relatively small.
In addition, if m is large, then also the number of km combinations smaller than five is reduced. In
summary: if mn is small as well as { — m, then the influence of the coloured noise is large, otherwise the
influence is small.

5.4.1 Tikhonov regularisation

As we know from chapter 2, Tikhonov regularisation (TR} amounts to minimising
2 2
Az — y°|[p + ol Lz| %

with solution
&o = (ATPA + oLTKL) 1 ATPy.

The operator L is a linear differential operator and TR with signal, first and second derivative constraint
is tested. Matrix K is diagonal with elements 10174 which is the inverse of the well known Kaula rule.
The matrix L = I for the signal constraint, whereas it has diagonal elements ({+1) and (I +1)({+2) for
the first and second derivative constraint respectively (the radial derivative is used).! The regularisation
parameter is obtained by minimising the trace of the MSEM. Results are presented in table 5.2. The
regularisation parameter « is obtained by minimising the trace of the MSEM, that is, minimising the
MSE.

Comparing mission la with 1, the low degrees are constrained less and the high degrees are con-
strained more: (I +1)%a =2-1072%,...,6.6for! = 2,...,180. The same holds true for 1b with respect
tolaand 1: (I +1)?(I +2)2a=1-1075,...,8.1 forl = 2,..., 180. Since there are more high degree
coefficients than low degree coefficients, the BNR increases from 1 to 1b (fifth column in table 5.2). In
terms of the MSE, TR with signal constraint is expected to give slightly better results than TR with first or
second derivative constraint.

Coefficient errors. Figure 5.9 shows the relative differences between the true coefficients (OSU91A)
and the solved coefficients (TR with signal constraint). The second iteration did not give further improve-
ment. As the coefficient differences for TR with first and second derivative constraint are almost exactly
equal to those of TR with signal constraint, they are not shown.

The bias-to-signal ratio (BSR) of TR(0) and TR(2) are shown in figure 5.10. (TR(0) denotes regulari-
sation with signal constraint, TR(1) with first derivative constraint, etc.) Instead of the true signal, that is,
the OSU91A coefficients or the solution coefficients, the degree-order variances of OSU91A have been
used to avoid excessive extremes caused by the very small coefficients, compare table 5.2. In accordance
with the stronger regularisation for higher degrees, the higher degree coefficients of TR(2) are more bi-
ased. The BSR of TR(1) lies between that of TR(0) and TR(2) and is not shown. The major part of the
bias is located in the low order coefficients due to the polar gap.

'Bouman and Koop (1998b) erroneously used the inverse of (I + 1)( + 2) for the second derivative constraint.
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order

Figure 5.9: TR. Relative error in the spherical harmonic coefficients, initial solution (left) and after one
iteration (right). The differences (OSU91A - solved)/OSU91A are shown on a logarithmic scale.

order

00
degree degree

Figure 5.10: BSR for TR with signal constraint (left) and second derivative constraint (right), the scale
is logarithmic. The BSR was computed using the OSU91A degree-order variances.

100
degree

Figure 5.11: TR with signal constraint. SNR, maximum is 10%. The coefficients with an SNR larger than
or equal to one are shown in black.
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Figure 5.12: Contribution measure for unbiased estimators. TR with signal constraint (left) and with
second derivative constraint (right).

The signal-to-noise ratio (SNR) of the TR with signal constraint solution is shown in figure 5.11. The
SNR of TR(1) and TR(2) are similar. The maximum SNR is 10, that is, 4 significant digits are determined.
The SNR decreases for increasing degree and, naturally, the SNR of the low order coefficients is low.

The contribution measures, for the unbiased solution (eq. (3.11)), for the TR solutions are displayed
in figure 5.12. The contribution measure for the first derivative constraint is not shown since it is almost
exactly equal to the second derivative constraint contribution measure. The contribution is given as a
number between 0 and 100%. For all three solutions the contribution is above 89%, with minimum
values of 94, 91 and 89% for TR(0), TR(1) and TR(2), respectively. Clearly, the contribution measure
decreases for increasing degree, and again the low order coefficients have a relatively low contribution.
Although a percentage of 90% or higher does not seem to be bad at all, the coefficient differences
between the solution and OSU91A can be large, up to the size of the signal as shown earlier. Altogether,
the contribution measure seems to be of little absolute value, but it is a tool to discriminate between the
well determined and the not so well determined coefficients.

Bias. Recall that the MSEM is
MSEM = Q. + AAzzTAAT,

see chapter 2. The bias term yields a full matrix while @), is block diagonal. Because it is difficult
to handle large matrices, it was decided to stick to the biock-diagonal approach, even and odd degrees,
however, are no longer separated. In order to validate the block-diagonal approach for the bias part of the
MSEM, the bias in the coefficients is translated into geoid heights and compared with bias propagation to
geoid heights. That is, the bias of the TR(0) solution

Az = —(ATPA + aK) oKz

is computed and with these coefficients geoid heights are computed. Moreover, the block-diagonal bias
part of the MSEM is propagated to geoid heights. Figure 5.13 shows the geoid errors due to the bias
averaged in A-direction. Furthermore, the bias is compared with the propagated noise. From these
figures one may conclude that the block-diagonal bias approach is valuable, that is, the approximation
closely resembles the true errors (left panel). Furthermore, the bias is negligible with respect to the noise
in the measurement area (right panel).
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Figure 5.13: TR with signal constraint: true geoid bias and block-diagonal bias part of the MSEM
propagated to geoid heights (left) and propagated bias and noise on a logarithmic scale (right).
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Figure 5.14: TR with signal constraint: geographical plot of the true simulated geoid errors (left) and
the simulated and propagated geoid errors averaged over X (right).

Propagated and true geoid errors. The left panel of figure 5.14 shows the true errors for the solu-
tion with Tikhonov regularisation with signal constraint. The solutions with first and second derivative
constraint yield similar geoid errors. Table 5.3 shows the statistics on the geoid errors, the maximum
and minimum values are located in the polar regions. Evidently, the geoid errors show geographical
correlation which is caused by the coloured noise. The right panel of figure 5.14 shows the geoid errors
averaged over ) as well as geoid errors from error propagation. Compared to the propagated geoid error
based on the conservative coloured noise model (figure 5.2), the simulated error is too small (figure 5.14,
right). This can largely be explained by the more optimistic coloured noise actually put on the data. A
test has been conducted with an error PSD equal to that of figure 5.2 but with the error at the white noise
level below 2 cpr. The optimistic coloured noise model is more in agreement with the actual simulated
coloured noise (Klees et al., 1999). The propagated error for the optimistic coloured noise model has
at least the right order of magnitude. In any case, this example demonstrates that: (i) a reliable noise
model is needed; (ii) if such a noise model is available the expected quality is very well described by
error propagation.
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Table 5.3: Global geoid errors of the TR solutions due to the coefficient differences OSU91A - solved,
final solutions. Units are in m.

geoid error (m)
no. constraint | RMS max min
1 signal 010 11 -12
la 1Istderiv. | 0.09 1.1 -13
1b  2ndderiv. | 0.12 1.0 -20

Table 5.4: MSE and bias of the BE solution.

no. constraint { @ MSE? BNR max(BSR)?
1 TR, signal constraint 2.4 1 02 0.2(54.8)
Ic  BE, first iteration 1.5x10'% 637 04 0.6(23.1)
Ic  BE,second iteration | 1.5 x 1015 584 03 4.2(70.3)

“In proportion to mission 1.
»The maximum BSR based on the 0SU9 1 A degree-order variances. The maximum BSR between brackets has been computed
using the solution coefficients.

5.4.2 Biased estimation
Ordinary biased estimation

The biased estimator (BE)
Go = (ATPA + al) T ATPy*

differs from Tikhonov regularisation in that the regularisation matrix simply is a scaled unit matrix. The
minimisation of the MSE gives the results presented in table 5.4. Biased estimation (BE) is a rather crude
regularisation method. Compared to TR, BE over-regularises the low degrees, which gives large biases
there (see below). The bias with respect to the noise is larger compared to TR, the MSE is larger as well.

Coefficient errors. The relative errors in the spherical harmonic coefficients are depicted in figure 5.15
for the first and second iteration steps. The high degree coefficients as well as the low order coefficients
improve from the first to the second iteration. Compared to TR(0) the BE errors are larger. The BSR for
the first and second BE iteration is shown in figure 5.16. The bias in the high degree low orders increases,
which may be somewhat surprising. However, a more detailed picture of the low degrees and orders
shows that the bias in those coefficients is redistributed over the high degrees, see figure 5.17. The bias
will be discussed in more detail hereafter. The SNR of the low orders is low, many coefficients have a
size below the error, see figure 5.18, left panel. The minimum contribution measure is 97% (figure 5.18,
right), but, as explained in section 5.4.1, this fact has little additional value.

Bias. The true geoid height bias and the bias part of the MSEM propagated to geoid heights for the initial
BE iteration are displayed in figure 5.19, left. Shown are the geoid errors averaged over A. Again, the
block-diagonal approximation provides reasonable bias estimates since the true and propagated errors
are the same. Figure 5.19, right, compares the propagated bias and noise geoid errors. The bias is
much larger than the noise in the area covered with observations, while it is smaller in the polar regions.
Figure 5.20 shows the propagated bias and noise for the second BE iteration. The bias can be neglected
compared to the noise in the measurement area, whereas both errors remain large in the polar regions.
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Figure 5.15: BE. Relative error in the spherical harmonic coefficients, first iteration (left) and after two
iterations (right). The differences (OSU91A - solved)/OSU91A are shown on a logarithmic scale.
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Figure 5.16: BSR for BE first iteration (left) and second iteration (right), the scale is logarithmic. All
coefficients are shown. The BSR was computed using the OSU91A degree-order variances.
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Figure 5.17: BSR for BE first iteration (left) and second iteration (right), the scale is logarithmic. The
coefficients up to | = 40 are shown. The BSR was computed using the OSU91A degree-order variances.
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Figure 5.18: SNR for the second BE iteration (left) and contribution measure for unbiased estimators, BE
(right).
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Figure 5.19: BE first iteration: true geoid bias and block-diagonal part of the MSEM propagated to geoid
heights (left) and propagated bias and noise on a logarithmic scale (right).
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Figure 5.20: BE second iteration: propagated bias and noise on a logarithmic scale.
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Figure 5.21: The simulated and propagated geoid errors averaged over ), BE first iteration (left) and BE
second iteration (right).
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Figure 5.22: BE first iteration: geographical plot of the absolute value of the true simulated geoid errors
(left) and the propagated geoid errors (right).

Propagated and true geoid errors. The total averaged true and propagated geoid errors are very
much alike in the measurement area for the first BE iteration, which is in correspondence with the bias
which is the main contributor there, figure 5.21. Comparing, however, a geographical plot of the true
and propagated error there is certainly some resemblance, but discrepancies remain (figure 5.22). The
geographical correlated error is due to the errors in the low degree tesseral coefficients and coefficients
with I — m small, which are affected most by the coloured noise, see also figure 5.17. The simulated
geoid error is summarised in table 5.5.

Iteration. Because the bias exceeds the noise in the area covered by observations, one may expect that
subsequent iterations reduce the bias in this area. The bias yields residuals y* — AZ, which are larger
than the noise. This erroneous signal may be overcome by iteration as is the case for model errors. Let
the linear model be y* = Az + € with the first solution
& = (ATPA+ oK) 1ATPy*
(ATPA + aK) ' ATP(Az + ¢).

The difference between the ‘true’ solution z and £ is

Az =3 —z = (ATPA+aK)'ATPAz —z + (ATPA 4 oK)~ * ATPe
= Az+m
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Table 5.5: Global geoid errors of the BE solutions due to the coefficient differences OSU91A - solved.
Units are in m.

geoid error (m)
BE RMS max min
Istiteration | 1.92 432 -29.0
2nd iteration | 1.48 186 -21.5

with the bias term
Az = —(ATPA+ oK) laKz

and the error term
= (ATPA + oK) ATPe.

If the error term 7 is small with respect to the bias term (which is true in the measurement area for BE),
then A%, = Ax. Puttmg 91 = AZ,, the second solution is

2 = &1+ (ATPA + aK) 1ATP(y - yl)
T+ Ay + (ATPA + oK) 1 ATP(Az + ¢ — A(z + Axl))
T+ Ay — (ATPA + oK) ATPAAE, +m
z — (ATPA + aK) 'aKA%) + 1.

If A%; = Az then the bias term is reduced in £2 compared to Z;:
Azy := E{#; — z} = —(ATPA + aK) laK Az
and the corresponding MSEM is
MSEM (22) = Q; + Az2Az]. 5.1)

The averaged geoid error is shown in figure 5.21 on the right. In the measurement area the result is equal
to the TR results, whereas the error in the polar regions remains large.

Instead of keeping « fixed in the iteration, one could decide to determine « anew, say a, minimising
the trace of (5.1). Then, the second solution is

g2 =z — (ATPA + 02 K) Lo KAG + 12

with 172 = (ATPA + aa K)~* ATPe. However, to be consistent with TR « is kept fixed.

Generalised biased estimation

The simuiated geoid errors for generalised biased estimation (GBE) are not shown, in the area with
observations they are as shown in figure 5.21, right. The RMs geoid error is 0.42 m, with extremes of 4.2
m and -4.8 m. Although GBE is designed to give the minimum MSE, it does not in case of ill-posedness
due to long wavelengths as is the case here. Bouman and Koop (1998a) argue that GBE is affected more
by the polar gap compared to TR. To the small singular values

= (I, vi>-2

is added if 02 = 1, cf. section 2.3.3. However, the small singular values correspond for a polar gap
also to low orders. Consequently, the product (z,v;) becomes large since these low frequencies have
high energy. The squared inverse therefore becomes small yielding hardly any stabilisation for the small
singular values involved with the low orders. Indeed, excluding the low orders gave better results for
GBE than for TR (Bouman and Koop, 1998a).
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5.5 Summary

The polar gap affects the low orders, but in case of ‘faultless’ observations the exact solution is almost
obtained. The circular approximation of the orbit can be overcome by iteration if the repeat is nearly
exact and there are no data gaps. Of the tested regularisation methods, Tikhonov regularisation performs
best in the presence of a polar gap. Ordinary and generalised biased estimation yield larger errors in the
polar regions than TR. Of the TR solutions, the one with the signal constraint gives the smallest predicted
MSE, however TR with first derivative or second derivative constraint yield comparable results. If the
polar gaps are not taken into account then all regularisation methods perform equally well in terms of
RMS geoid height errors.

A complete understanding of the quality of a satellite based gravity field solution is obtained by
studying the potential coefficients themselves as well as their implications for the geographical distribu-
tion of e.g. geoid errors. In order not to draw too optimistic or pessimistic conclusions about the quality,
the noise model must be reliable. Of the quality measures, the contribution measure is of little additional
value compared to BSR and SNR. The bias in the geoid heights can be neglected in the measurement area
and becomes large in the polar areas. Almost all low order coefficients, however, suffer from the bias
and it cannot be neglected: the bias is up to 20-30% of the signal using TR, whereas it is up to 420%
of the signal using BE. It is therefore concluded that the quality of the individual low order coefficients
may be poor in presence of a polar gap, but that the lumped effect of the poor quality is limited to the
unsurveyed areas. When the block-diagonal approach of the bias part in the MSEM is compared with the
true bias then it can be concluded that the former approximation is good enough.
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Combined solutions

6.1 Introduction

It was shown in chapter 5 that the polar gap and the coloured noise significantly contribute to a badly
conditioned normal matrix. As we have seen the low orders are especially affected. Since potential
coefficients up to degree and order 180 are solved for, the downward continuation does not result in any
instability (compare figure 5.4). Satellite-to-satellite tracking data are reported to be less sensitive to
polar gaps and may compensate for the deficient sensitivity of SGG at the longer wavelengths (Schrama,
1990). Because a GPS receiver will be mounted on the GOCE satellite high-low SST data will become
available (ESA, 1999).

Besides SST other types of observations can be used to obtain better results, especially in the polar
regions. To this end the combination of SGG and/or SST data with gravity data in the polar areas is
studied. More specifically, a point grid of gravity anomalies at the Earth’s surface is assumed to be
available after the processing of airborne gravimetric data.

The outline of the chapter is as follows. The combination of SGG data with (i) SST data and (ii) gravity
anomalies is considered in sections 6.3 and 6.4 respectively. This should lead to a better appreciation
of the individual contribution of both data sets to the quality improvement. Section 6.5 describes the
combination of all three data types. First of all, however, SGG results for different mission scenarios
are described. Since in chapter 5 it is shown that the SGG simulation and error propagation results
are comparable if the error model is correct, only error propagation is used from now on. Using error
propagation, it is easier to study longer mission periods and to study higher maximum degrees. For
reference purposes, appendix D contains results complementary to those of this chapter.

6.2 SGG results for different mission scenarios

In chapter 5 the GOCE SGG mission scenario consisted of the following constants: Ny = 29 days (=
1 month), L = 180, I = 96.6°. The simulations in chapter 5 are limited to these values to keep the
computations manageable. In the current chapter, however, instead of (simulated) observations, error
propagation is used and higher degrees and longer missions are manageable. Now N; = 6 months and
L = 180 as well as L = 240 are considered.

This section and the results presented herein provide the link between chapters 5 and 6. Therefore,
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Table 6.1: MSE and bias of the different SGG-only solutions. The first two columns list the mission
number and the mission parameters, the third column lists the o yielding the minimal MSE. Tikhonov
regularisation with signal constraint is used in all occasions.

mission
no. parameters a MSE® BNR max(BSR)?

1 1m,L=180,cn |24 40 02 020(117.9)
2. 6m,L=180,cn |51 1 006 0.18(61.4)

2b 6m,L=240,cn [ 15 42 04 0.68(2x10%
3 6m,L=180,wn |53 05 20 0.18(386.4)

“In proportion to mission 2a.

»The maximum BSR based on the 0SU91 A degree-order variances. The maximum BSR between brackets has been computed
using the 0SU91A coefficients.

“The abbreviations cn and wn represent coloured noise and white noise respectively, m stands for month or months,

the GOCE SGG solution is considered first using the chapter 5 mission scenario (for the circular, inclined
orbit). Then the mission length is increased from 1 month to 6 months. Although the maximum degree
remains L = 180 for most cases, the case L = 240 is considered as well. At this maximum degree the
error degree variances tend to equal to signal degree variances and the downward continuation starts to
be more important, whereas it is not when L = 180 (see also the section ‘Error degree variances’ below).
The SGG coloured noise model of chapter 5 is adopted.

Bias. Table 6.1 summarises the MSE and bias of the different SGG only solutions. Comparing missions
1 and 2a it becomes clear that « increases by a factor 2, while the number of observations increases by
a factor 6 from 1 to 2a. Note that, if N, > 2L and the along track sampling is dense enough, a mission
length increase of a factor 6 yields a scaling of ATPA by a factor 6. Effectively this means that mission
2a is less regularised than mission 1, although « is larger. Since more observations have been used to
obtain the same number of unknowns, this is also what one would expect. The derivative of the MSE with
respect to « is

OMSE _ Z": 2Xi(alz, v;) — 0?)
o - = (/\i -+ 0)3

compare table 2.1 and section 2.3.3. The minimum MSE for a single i is obtained for o = o2/(z, v;).

Therefore, if the number of observations increases, o2 decreases and a decreases.

Mission 3 has the same mission parameters as mission 2a except for the coloured noise. The regu-
larisation parameter o = 5.3 seems to be only slightly larger than o = 5.1 for mission 2a. However, the
unknowns will have a smaller propagated error @, because of the white noise observations of mission
3. Since oK, which is proportional to the bias, is about equal for 2a and 3, the BNR will be larger for
mission 3 compared to 2a, see below.

Mission 2b is the final SGG only mission discussed. Gravitational potential coefficients up to degree
and order L = 240 are solved for, which is roughly twice the number of coefficients when L = 180. It
is somewhat difficult to compare the normal matrix and the regularisation of mission 2b with the other
missions since everything changes. Since the number of unknowns increases by roughly a factor 2 going
from L = 180 to L = 240, one could say that half of the observations have been used for 2b to solve
up to degree 180 compared to mission 2a, while the regularisation of 2b is about a third of the mission
2a regularisation (o« = 1.5 and a = 5.1 respectively). The regularisation, therefore, is somewhat less
for mission 2b for the degrees up to 180. Compare also figure 6.1 where the bias variance per degree
and order is plotted for missions 2a and 2b. The order variance is a summation over /, and the bias order
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variance of 2b is less than the bias order variance of 2a for most orders. Hence, the degrees up to 180 are
less regularised in the 2b solution, which is in agreement with the smaller regularisation for 2b.

The fourth column of table 6.1 lists the MSE, that is, the trace of the MSEM, with respect to mission
2a. From a pure least-squares solution one would expect an error decrease from 1 to 2a of a factor 6
(/6 for the standard deviation). Clearly, the MSE decrease is smaller here, which must be due to the
regularisation and the bias in the solution. The effect of the coloured noise on the MSE is large: the MSE
for the white noise case is half of that of the coloured noise case. Also the increase of the maximum
degree has a profound effect. While the number of unknowns nearly doubles, the MSE of mission 2b is
more than four times larger than the MSE of mission 2a. Specifically, the downward continuation starts
to play its role, amplifying noise, and the effect of the polar gap is more pronounced (compare figure
5.4).

The bias-to-noise ratio (BNR) is shown in column 5. With respect to the noise, the bias can be
neglected for mission 2a, whereas the bias is not negligible for the other missions. In mission 2b, for
example, the bias is a third (0.4/(1+0.4) = 0.3) of the total error (see also appendix D, figure D.5). The
large bias for the SGG white noise case can be explained by the small noise component, as stated above.

Figures 6.2 and 6.3 display the bias-to-signal ratio (BSR) for missions 1, 2a and 2b. The scales of all
figures is fixed between 10~ and 10° in order to make the comparison easier (note that the BSR scale
is logarithmic). Column 6 of table 6.1 gives the maximum of the relative bias. The maximum BSR of
mission 1 between brackets differs from table 5.2 since OSU91A is used as signal here, whereas in table
5.2 the solved coefficients have been used.

If more observations are available the bias is reduced. Figure 6.2, left, is for 1 month of observations
and 6.2, right, is for 6 months of observations. This is in agreement with the findings above. The
relative bias is the largest for the low order coefficients, being the coefficients affected by the polar gap.
Furthermore, all high degree coefficients are biased more than the lower degrees, which is caused by the
regularisation (101074), the size of the coefficients and the downward continuation. The bias reduction
due to the increase of the number of observations is restricted to the coefficients not affected by the polar
gap. The effect of the polar gap becomes more evident if one solves up to degree and order L = 240,
figure 6.3, right. Moreover, the bias increases for increasing degree.

Figure 6.3, left, displays the bias of the SGG white noise solution with respect to the SGG coloured
noise solution. It is evident that the sectorial and neighbouring coefficients experience the coloured noise
(see also section 5.4). The BSR itself of mission 3 is shown in figure D.1.

Error degree variances. In figure 6.4 the error degree variances of missions 1, 2a, 2b and 3 are dis-
played. The signal degree variances and error degree variances of OSU91A have been depicted for
reference as well. For all SGG only missions it holds that the low degrees have large degree variance,
especially for the coloured noise cases. The error degree variance is the smallest for the medium wave-
lengths and increases for the higher degrees. The white noise case and coloured noise case show large
differences up to degree 30, and tend to be equal from there on. Thus, the coloured noise cause the error
degree variances for low degrees to be large. At degree 240 the signal is still larger than the noise, but
the degree for which the SNR becomes 1 will not be much higher.

Propagated errors. The propagation of the MSEM to geoid heights and gravity anomalies yields es-
timates of their uncertainties or errors and the correlations. The MSEM has a block-diagonal structure,
where the C)y,, part equals the Sy, part and even and odd degrees are separated. The propagated errors,
therefore, are rotational symmetric and symmetric with respect to the equator. Due to the bias, however,
these symmetries are not perfect but the differences turned out to be negligible. For this reason it is suf-
ficient to draw just one longitude from north pole to equator, see figure 6.5. Shown are the geoid height
and gravity anomaly errors.

The lack of data in the polar regions is responsible for the large errors there. The errors have a
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Figure 6.1: Degree (left) and order (right) bias variances. The variances of the L = 240 solution were
computed using terms up to degree and order 180.

Figure 6.2: BSR: SGG only solutions for 1 month (left) and for 6 months (right), L = 180. Logarithmic
scale.
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Figure 6.3: Bias of the SGG white noise solution with respect to the SGG coloured noise solution (left).
BSR: SGG only solution up to degree and order 240 (right). Logarithmic scale.
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Figure 6.5: Geoid and gravity anomaly errors according to error propagation, SGG measurements only.
The geoid heights are on the left, the gravity anomalies on the right.
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Table 6.2: Propagated errors for the SGG solutions.

mission geoid height error (cm) grav. anomaly error (mGal)
no. parameters RMS mean max min { RMS mean max min
1 I m,L=180,cn | 123 61 708 19148 071 698 022
2a  6m,L =180,cn 9.7 35 588 08126 043 6.70 0.08
2b 6m,L=240,cn | 11.9 62 546 19223 156 1050 0.63
2b ez =180 10.8 41 598 09| 155 057 866 0.13
3 6m, L =180,wn | 83 24 471 03| 118 041 673 0.08

minimum around the maximum latitude of the satellite ground track. Since there are relatively less mea-
surements at low latitudes, the error gradually increases towards the equator. The geoid errors decrease
from mission 1 to 3 (ignoring 2b). On the one hand the number of measurements increases and on the
other hand the coloured noise affects the long wavelengths. Solving up to degree L = 240 increases
the maximum geoid error in the measurement area from 2 cm to 5 cm. The anomaly error increase is
much larger going from L = 180 to L = 240: 0.2 mGal becomes 1 mGal. Of course this is what could
be expected since gravity anomalies are more sensitive to short wavelengths and especially the high de-
grees are difficult to obtain, that is, they have a relatively large uncertainty. A comparison of mission 2b
(L = 240), truncated at ;5 = 180, with mission 2a (L = 180) shows that the effect of the polar gap
is larger for larger L: the RMS errors increase (table 6.2). Finally, it appears that the coloured noise has
less effect on the gravity anomalies. The blue and red line in the right panel of figure 6.5, corresponding
to white and coloured noise respectively, are almost equal. This can be explained by the smaller long
wavelength sensitivity of the gravity anomalies and exactly these wavelengths are disturbed most by the
coloured noise. Table 6.2 summarises the errors.

6.3 Combination of SGG and SST

Satellite-to-satellite tracking (SST) is reported to be complementary to the satellite gravity gradiometry
measurements (Schrama, 1990). It is, therefore, natural to expect that the inclusion of SST observations
will improve the overall quality of the gravity field solution, that is, smaller propagated errors, and bias.
However, the SST normal equations are usually set up for a maximum degree of L = 120 (e.g. Schrama,
1990). Increasing the maximum degree for SST might increase the effect of the polar gap as is the case
for SGG.

The high-low SST normal equations are set up to degree L = 180. In principle all these coefficients
are present in the signal. As pointed out in chapter 4, a block-diagonal approach is used for the $ST
observations as well. This is certainly not recommended for a real life situation where one wants to
obtain a gravity field model, since this approach is not good enough as shown by (Van den Issel et al.,
2000). However, in this study only error propagation will be used and a block-diagonal normal matrix
is supposed to give reasonable error estimates, that is, using the block-diagonal matrix one should get a
fair idea of the possibilities and limitations of the SST observations. Past experience showed that a block-
diagonal approach of the GEM-T1 normal matrix and a full normal matrix yield the same geoid error
magnitude (Bouman, 1993). Furthermore, the SGG-SST combination results using a full error matrix can
be very well compared with the results presented here (Van den Wssel et al., 2000).

The error model as shown in figure 6.6 is assumed for the SST observations. The maximum errors
are at 1 cpr, the along track error, z, is the largest due to the larger impact of surface forces in that
direction. Since GOCE is drag compensated, the PSD may be considered as one that represents a drag
compensation that is not perfect. This PSD has been derived from Topex orbit residuals (Sneeuw 1999,
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Figure 6.6: The square root of the error PSD for SST.

Table 6.3: MSE and bias of the SGG+SST solutions.

mission

no. parameters a MSE? BNR max(BSR)
2a SGG, L = 180 5.1 29 0.06 0.18(61.4)
4 SGG+SST, L = 180 36 09 1.2  0.18(223.0)

5a SGG+Ss1/10, L =180 | 4.3 1 1.6 0.18 (493.0)
5b  SGG+SST/10, L =240 |14 97 03 0.66(3 x 10%)
6  SGG+SST/100,L =180 [ 49 12 1.8 0.18(539.4)

“In proportion to mission 5a.
"The maximum BSR based on the 05U9 | A degree-order variances. The maximum BSR between brackets has been computed
using the 0sU91 A coefficients.

private communication). Because the error PSD is fairly optimistic above 3 cpr (Visser et al., 2000), also
a 10 times and 100 times more pessimistic error model are considered, denoted as SST/10 and SST/100
respectively. Most of the results in this section are presented by Bouman and Koop (1999).

Bias. Minimisation of the trace of the MSEM yields the a values as listed in table 6.3. (Mission 2a is
repeated for reference, the old values are in italic.) The less weight the SST observations get the more
the value of the regularisation parameter tends to that of the SGG only value, missions no. 4, 5a and 6.

The MSE of the three SGG-SST missions 4, Sa and 6 does not change much from one mission to
another. The high-low SST contributes only to the, relatively few, low degree and order coefficients. The
accuracy of the SST observables is, therefore, less important. What really matters is that to the SGG
observations measurements are added, sensitive to the low degrees and orders. SGG is less sensitive to
those due to the nature of the measurements themselves, the coloured noise and the polar gap, see also
figure 6.7.

The BNR becomes larger for smaller SST weights. Since the regularisation parameter becomes larger
for smaller SST weights, while the SST weights decrease one order of magnitude each time the regulari-
sation receives a relatively larger weight. The bias relative to the propagated error is much lower for the
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Table 6.4: Propagated errors for the combined SGG/SST solutions.

mission geoid height error (cm) | grav. anomaly error (mGal)
no. parameters RMS mean max min | RMS mean max min
2a SGG, L= 180 9.7 35 588 08| 126 043 670 0.08
4 SGG+S8sT, L = 180 5.9 19 327 03]099 036 571 008

5a  sGG+ss1/10, L = 180 6.5 20 372 03106 038 6.02 0.08
5b  sGG+ssT/10, L = 240 9.0 52 418 18]206 150 947 063
Sb Lz =180 7.6 26 421 05138 051 796 0.13
6 SGG+ssT/100, L =180 | 7.0 21 381 04110 039 647 008

SGG only solution compared to the SGG + SST solution as a consequence of the larger propagated noise
for SGG. SST doubles the number of observations and it compensates for relatively large errors due to
coloured noise SGG, see ‘Propagated errors’ below. Since the $ST/10 errors seem to be the most realistic,
these weights are adopted from now on (Davis, 1997; Visser et al., 2000).

The bias of the SGG only solution, missions 2a and 2b, has been compared with the SGG-SST solu-
tions, missions 5a and 5b, see figure 6.7. Especially the coefficients affected by the coloured noise and
the polar gap have more bias in the SGG only solution, while there is less bias for the low degree and
order tesseral coefficients. An explanation is as follows. The bias in standard form is

Az =—-(ATA+ D7z

which means that in general the weakly determined coefficients are biased the most. If SGG and SST are
combined ATA changes such that certain coefficients can be better determined and receive therefore less
bias. The total bias is not only reduced but also redistributed over other coefficients (of the same order
in this case) because these other coefficients gain relatively less from the additional SST measurements.
Note that the biases are very small for these tesseral coefficients, see figure 6.2 and 6.3. The bias increase
for these coefficients, therefore, is not as dramatic as it may appear at first sight. The BSR itself is shown
in figure D.2 for the SGG + SST missions.

Error degree variances. Figure 6.8 shows the error degree variances of the SGG-SST missions. The
combined solutions outperform the SGG only solution up to degree 100 approximately. The effect of
the changing SST weight is most visible in the low degrees. Since there are only a few low degree
coefficients, the effect on the total MSE is not very large as shown earlier. The error degree variances of
the L = 240 solutions are above those of the L = 180 solutions. Besides the fact that the same number
of observations is used to estimate a higher degree solution, i.e. more unknowns, the effect of the polar
gap becomes more evident. However, all propagated errors of missions Sa-b are smailer than those of
missions 5a-b (table 6.2 and 6.4), see the section ‘Propagated errors’ below.

Propagated errors. The propagated geoid errors are depicted in figure 6.9, left, the gravity anomaly
errors in figure 6.9, right. Since the propagated errors for missions 4 and 6 resemble those of mission 5a
very much, they are not shown. The combination of the SGG coloured noise measurements and the SST
measurements reduces the geoid error in the measurement area to the level of the SGG only, white noise
solution. SST, therefore, effectively compensates for the coloured SGG noise. This effect is, of course,
negligible for the anomaly errors since the coloured noise did not have a large impact on the anomalies
in the SGG only solutions. Because of the long wavelength sensitivity of SST and the high wavelength
nature of gravity anomalies, the overall advantage of SST is small for the gravity anomalies. See also
table 6.4 where the propagated errors have been summarised.
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Figure 6.7: Bias of the SGG solutions with respect to the SGG+SST solutions. Maximum degree is L =
180 (left) and L = 240 (right). Logarithmic scale.
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Figure 6.8: The error degree variances for the SGG-SST combination. Maximum degree is L = 180 (left)
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Figure 6.9: Geoid and gravity anomaly errors according to error propagation, SGG + SST measurements.
The geoid heights are on the left, the gravity anomalies on the right.
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Remarkably, the combination of SST and SGG reduces the geoid error in the polar area, although the
polar gap still exists. The maximum geoid error is 55% - 65% compared to SGG only, table 6.4, fifth
column. Effectively, the SST observations do not ‘feel’ the degrees above 100, see also figure 6.8. Since,
for low orders, especially the high degrees have much support in the polar areas, the high degrees are
affected most. Compare figure 6.10 where for m = 0 the Legendre functions for { = 50,100 and 180
are shown. Thus the polar gap has less effect on the SGG+SST solution.

This is also supported by the increase of the minimum eigenvalues for the low orders. The right
panel of figure 6.10 displays the eigenvalues of the combined SGG - SST solution with respect to those
of the SGG only solution. The effect of coloured noise and polar gap have been separated. Shown are
the first 12 blocks, m = 0, ..., 5, the eigenvalues are ordered increasing within each block. Comparing
white noise with coloured noise and the combination with SGG alone, one may conclude that a few of
the smallest eigenvalues become larger while the largest eigenvalues remain unchanged.

6.4 Combination of SGG and airborne gravimetry

The results presented in this section are an extension of the work in Bouman and Koop (1998c). There
it was concluded that, to obtain geoid heights with a globally homogeneous error, two polar caps of 5°
radius with additional gravity data suffice to constrain the solution in case of a GOCE orbit, that 5-10
mGal accuracy of the gravimetric observations is sufficient, and that larger areas with gravity anomalies
hardly improve the solution because of the relatively low accuracy of the anomalies compared to the SGG
measurements. However, in order to obtain a block-diagonal matrix, an equi-angular grid with a spacing
of 0.125° has been used and white noise was assumed, the maximum degree was L = 180. One final
result to be mentioned is that if the gravity anomalies are given in a grid with a spacing of 0.25° with 5
mGal anomaly accuracy, this yields the same geoid precision as gravity anomalies given in a grid with a
spacing of 0.125° with 10 mGal anomaly accuracy.

Instead of aregular grid based on an angular scale, however, it would be more realistic to use a regular
grid based on a metric scale (K. Schwarz and C. Tscherning 1998, private communication). Furthermore
there is along-track correlation. Present day airborne gravimetry has an accuracy of 2-6 mGal with half
wavelengths of 5-10 km as determined from cross-over points and compared to sparse upward continued
data (Schwarz and Li, 1997). When cross-overs can be computed the white noise assumption is more
realistic.

Based on this information the approach is as follows. It is assumed that two polar caps of 6.6° radius
with gravity anomalies are available. The precision is 2.5 or 5 mGal for the lowest latitudes, that is for
84.4°, but it decreases towards the pole as a function of latitude:

o2(9) = Z90,2(40).

cos ¢

Thus, this is equivalent to ‘thinning out’ the equi-angular grid towards the poles and approximates an
equi-distance grid. The grid distance at ¢y = 84.4° is 8.25 km which corresponds to 0.76°. The decrease
of this distance in km, behaving like cos ¢, is compensated by the weight decrease. This approach is
motivated by the earlier findings that a weight decrease of a factor 2 and a grid spacing increase of
a factor 2 have exactly the same effect (Bouman and Koop, 1998c). In summary: although an equi-
angular grid has been used, preserving the block-diagonal structure, the weight decrease towards the
poles effectively compensates for the point density increase. Solving up to degree 240 a smaller grid size
has to be chosen to fulfil the condition of chapter 4, L < N, with L the maximum degree of the spherical
harmonic expansion and N the number of points in longitude direction. In this case the grid distance at
¢ = 84.4° is 7.25 km which corresponds to 0.67°.

Instead of the airborne gravimetric observations themselves, a grid of anomalies, at the Earth’s sur-
face, is used. As with the $ST normal equations, quality assessment using a block-diagonal normal matrix
should give a fair idea of the possibilities and limitations of the gravity anomaly measurements.
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Table 6.5: MSE and bias of the SGG+Ag solutions.

mission

no. parameters a MSE® BNR max(BSR)”
2a SGG, L= 180 51 29 0.06 0.18(61.4)
5a SGG+S8s1/10, L =180 | 4.3 1 1.6 0.18 (493.0)
7a  SGG+Ag, L = 180 08 1.5 107%  0.00(5.7)
7b  sGG+Ag, L = 240 12 85 0.07 0.55 (121.7)
8 SGG+Agf L =180 12 15 3x107% 0.01(25.1)

“In proportion to mission 5a.

»The maximum BSR based on the 0SU91 A degree-order variances. The maximum BSR between brackets has been computed
using the 0SU9 1 A coefficients.

“The standard deviation of the gravity anomalies is o = 2.5 mGal except for mission no. 8 with ¢ = 5.0 mGal.

Bias. The optimal a’s for the three SGG-Ag solutions, 7a, 7b and 8, are approximately 1, see table 6.5.
The BNR as well as the BSR is very small, see figure 6.11. (The BSR of mission 8 is almost identical to
that of 7a, compare appendix D, figure D.1. For the BNR see figure D.6.) Although the accuracy of the
Ag observations is relatively poor, they are very important for constraining the low order coefficients.
The effect that remains is the downward continuation of the satellite data when L = 240, figure 6.11,
right.

Error degree variances. The error degree variances are displayed in figure 6.12 left and right for the
L = 180 and L = 240 solutions respectively. The error degree variances of mission 8 are almost equal
to those of 7a and are shown in appendix D, figure D.3. The degrees between ! = 25 and I = 170
are biased most due to the polar gap as shown earlier (figure 6.1). The error degree variances of these
degrees, therefore, benefit most from the gravity anomaly measurements.

Propagated errors. The geoid and gravity anomaly errors displayed in figures 6.13, left and right,
show that the Ag observations only have a local effect in the space domain. The coloured noise effect on
the geoid error from SGG only is not compensated for. This is also not to be expected since the additional
measurements are not globally distributed and do not provide sufficient information for long wavelengths,
for which the coloured noise is the most apparent. Interestingly, the maximum gravity anomaly error in
the polar areas (as obtained from error propagation) is 0.5 mGal for mission 7a and 1.0 mGal for mission
7b, cf. figure 6.13 and table 6.6, while the precision of the local anomaly measurements is 2.5 mGal and
5.0 mGal respectively. Because of the correlation between the unknowns, the SGG precision ‘leaks’ to
the polar regions.

Clearly, the gravity anomalies have a local effect only in the space domain, that is the polar areas,
whereas they have a global effect in the frequency domain concerning bias reduction. The geoid error
for the combination of SGG with the 2.5 mGal and 5.0 mGal anomalies stays below 4 cm and 8 cm
respectively (L = 180). See figure D.4 for the propagated errors of mission 8. The SNR of missions 7a
and 7b is shown in figure D.8, and the BNR in figure D.6.

6.5 Combination of SGG, SST and gravimetry

The combination of SGG with SST and gravity anomalies yields the most accurate gravity field solutions.
The polar gaps are compensated by the gravity anomalies, whereas the SGG coloured noise is compen-
sated by the SST observations. Only the combination of the three data types gives a nearly homogeneous
quality. There are no excessive geoid height or gravity anomaly errors and the quality of the potential
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Figure 6.10: Legendre functions for m = 0. The degree is | = 50,100 and 180 (left panel). The
eigenvalues of SGG with coloured noise and of SGG + SST/10 with respect to SGG with white noise
(right panel). Shown are the first five orders or 12 blocks. The eigenvalues increase from left to right
within each block.
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Figure 6.11: BSR: Combination of SGG and Ag, L = 180 (left) and L = 240 (right). Logarithmic scale.
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Figure 6.13: Geoid and gravity anomaly errors according to error propagation, SGG + Ag measure-
ments. The geoid heights are on the left, the gravity anomalies on the right.

Table 6.6: Propagated errors for the SGG+Ag solutions.

mission geoid height error (cm) | grav. anomaly error (mGal)
no. parameters RMS mean max min | RMS mean max min
2a $GG, L= 180 9.7 35 588 08| 126 043 670 008
S5a SGG+S8S1/10, L= 180 | 6.5 20 372 03| 106 038 602 0.08
7a  $GG+Ag, L = 180 1.7 1.5 39 07018 0.16 0.53 007
7b  SGG+Ag, L = 240 3.7 36 46 15| 114 1.11 145 049
76 lpae = 180 1.6 1.5 31 07017 0.16 042 0.08
8 SGG+Ag, L = 180 2.1 1.7 75 07(026 019 103 0.07
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Table 6.7: MSE and bias of the combined solutions.

mission

no. parameters a MSE? BNR max(BSR)?
2a SGG, L= 180 51 29 0.06 0.18(61.4)
5a SGG+S8ST/10, L = 180 4.3 1 1.6 0.18 (493.0)
7a SGG+Ag,L = 180 08 1.5 1074 0.00(5.7)
9a SGG+SST/10+Ag, L =180 | 0.8 02 6x10~* 0.00(5.6)
9% SGG+SST/10+Ag, L =240 12 73 0.09 0.55 (121.8)

“In proportion to mission 5a.
»The maximum BSR based on the 0SU91 A degree-order variances. The maximum BSR between brackets has been computed
using the 0SU91 A coefficients.

Table 6.8: Propagated errors for the combined solutions.

mission geoid height error (cm) | grav. anomaly error (mGal)
no. parameters RMS mean max min | RMS mean max min
2a SGG, L= 180 9.7 35 588 08| 126 043 670 008
5a SGG+8s1/10, L = 180 6.5 20 372 03| 1.06 038 6.02 0.08
7a  sGG+Ag,L = 180 1.7 15 39 07)|018 016 053 007

9a SGG+SST/10+Ag, L =180 ; 0.9 07 32 03]018 016 051 0.07
9b SGG+SST/10+Ag, L =240 | 34 33 42 14| 114 111 145 049
9 ez =180 0.8 07 26 03017 016 041 0.08

coefficients is homogeneous as well. Of course, the effect of downward continuation is still present. The
MSE and bias are listed in table 6.7, table 6.8 lists the statistics on the geoid height and gravity anomaly
errors. Figures 6.14 and 6.15 show the error degree variances for the combined solutions and the geoid
and anomaly errors according to error propagation respectively. The BSR and SNR are equal to that of
the SGG-Ag combination, see appendix D (figures D.6 and D.8).

6.6 Summary

In this chapter the quality of gravity field solutions in a GOCE-like setting was investigated by means of
pure error propagation. The different SGG mission scenarios show that the more measurements of the
same kind are available, the smaller the bias becomes, at least for the gravity potential coefficients not
affected by the polar gaps or downward continuation. Furthermore, it is shown that coloured noise of
SGG observations has a large impact on the geoid errors, specifically in the area covered by observations,
whereas the impact on gravity anomalies is much smaller. This is caused by the fact that the anomalies
are less susceptible to long and medium wavelengths which are affected most by the coloured noise.

The SST observations reduce the bias for the coefficients affected by the coloured noise and the
low order, low to middle degree coefficients affected by the polar gap. If, however, only SGG and SST
observations are available, the bias cannot be neglected. While SST improves the quality of the spherical
harmonic coefficients only locally (low degrees and orders) it has a global effect in the space domain on
geoid errors. The improvement in the long wavelength coefficients is enough to decrease the total geoid
error for the whole Earth, compensating for the SGG coloured noise.

Gravimetry in the polar areas, on the other hand, only improves the geoid error locally, that is in
the polar areas. However, due to this local constraint, the quality of all low order spherical harmonic
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Figure 6.15: Geoid and gravity anomaly errors according to error propagation, SGG + SST + Ag mea-
surements. The geoid heights are on the left, the gravity anomalies on the right.
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coefficients improves. The gravity anomalies fully compensate for the polar gap effect, although their
accuracy is low compared to the satellite observables.

To a certain extent, the accuracy of the SST and Ag measurements is unimportant. The weights of the
SST observations varied between 0.5 and 50 cm/+/Hz above 3 cpr and the weights of the anomalies varied
from 2.5 to 5 mGal without a large influence (note that an orbit disturbance of 10 cm corresponds to 104
E at this height). The accuracy of present day or near future state-of-the-art measurements, therefore,
seems to be sufficient. The value, therefore, of the SST and Ag observations is that they enlighten a part
of the function space for which the SGG observations are blind.
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Conclusions and recommendations

Conclusions

The determination of a global model of the Earth’s gravity field from space bome observations is an ill-
conditioned inverse problem. The severeness of the ill-conditioning, due to the downward continuation
and the heterogeneous data coverage, depends on the resolution of the desired model. A stable system
of equations is obtained by regularisation at the expense of biased solutions. The total error of the
solution can be described by the MSEM which includes propagated observation noise and bias. Of the
discussed regularisation methods, the methods based on the SVD are not implemented since they involve
the decomposition of the design matrix which requires too much CPU-time and memory. Tikhonov
regularisation as well as biased estimation are better suited.

Although it is generally recognised that stable solutions as obtained by regularisation are biased, the
solution is nevertheless interpreted in the framework of unbiased constrained least squares. A proper
quality description, however, does take the bias into account. The quality assessment is based on a
number of quality measures. Propagation of the MSEM to geoid height uncertainties or gravity anomaly
uncertainties is of interest as well as several ratio measures such as the signal-to-noise ratio or the bias-to-
noise ratio. Three contribution measures have been derived which all seem to be of little additional value
in quality assessment compared to BSR for example. Of the three contribution measures, the two for
biased estimators do not show the proper convergence behaviour for large regularisation parameters, that
is, the contribution of the observations to the solution should go to zero but it does not. The contribution
measure for unbiased estimators, applied to the biased solutions, yields large contribution values. The
contribution of the observations to each spherical harmonic coefficient is more than 90%, using TR or
BE up to degree L = 180. Nonetheless, a few coefficients suffer from large biases and propagated error
which would not be expected when looking at the unbiased contribution measure.

A simulation study for SGG only, solving up to spherical harmonic degree L = 180 leads to the following
conclusions. The polar gaps yield an extremely large condition number, 10'%, whereas the condition
number due to downward continuation is much smaller, 10°. However, if almost perfect observations
are available, the almost exact solution is obtained even in presence of polar gaps. The circular orbit
approximation may be overcome by iteration. TR with signal, first and second derivative constraint, as
well as ordinary and generalised biased estimation have been used to compute a regularised solution. In
the presence of polar gaps, TR with signal constraint gives the smallest mean square error of all tested
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regularisation methods. The performance of TR with first derivative constraint equals that of TR with
signal constraint. TR with second derivative constraint is slightly worse, specifically the high degree
coefficients are more biased. Although generalised biased estimation (GBE) is designed to give the
smallest MSE, it does not perform well. This is a consequence of the polar gaps which cause the low
orders to be badly determined. Ordinary BE yields large errors in the polar regions, up to 20 m geoid
height errors. However, in the measurement area all methods have similar performance, if the maximum
degree is L = 180.

The bias cannot be neglected. For the examples considered the bias is 15%-30% of the total error.
The maximum BSR based on degree-order variances is 0.2-4.2, that is, the bias is maximal 20%-420% of
the spherical harmonic coefficients. In the measurement area the bias can be neglected with respect to the
noise for L = 180. The comparison of the simulated ‘true’ error and the error after error analysis shows
that for a proper error analysis a correct noise model is a prerequisite. Notwithstanding that the normal
matrix becomes block diagonal as a result of the model assumptions, the bias term of the MSEM does
not. However, using only the block diagonal of the bias term is sufficient as is shown by a comparison
with the simulated ‘true’ bias.

An error analysis for the combination of SGG with SST and/or Ag, solving up to spherical harmonic
degree L = 180 or L = 240, using TR with signal constraint, leads to the following conclusions. The
combination of SST and SGG yields very accurate geoid heights and gravity anomalies in the surveyed
area. For a solution up to degree L = 240 an RMS geoid error below 5 cm and an RMS gravity anomaly
error below 2 mGal, in the measurement area, seems to be realistic. Increasing the resolution from L =
180 to L = 240 means increasing the effect of the polar gap. The propagated geoid height and gravity
anomaly errors increase. The effect of coloured noise on the SGG only solutions may be quite large: geoid
height errors are up to a factor three larger in the measurement area, whereas gravity anomalies are nearly
not affected. The coloured noise effect, however, may be fully compensated by the SST data. The added
value of the latter is their sensitivity to frequencies for which SGG is less sensitive. Furthermore, SST
partially overcomes the effect of the polar gaps. The bias cannot be neglected using only satellite data,
Up to degree L = 180 the bias-to-noise ratio is between 0.06 and 2.0, that is, the bias comprises 5%-65%
of the total error. The maximum bias is approximately 20% of the signal for all satellite solutions. If
L = 240 then this maximum becomes 70%.

For a maximum degree of L = 180 the combination of SGG and Ag yields geoid errors between
1 and 4 cm, and anomaly errors below 0.5 mGal. The former numbers are 0.5 cm and 3 cm for the
combination of SGG, SST and Ag. If the maximum degree is L = 240, the geoid errors vary between 1.5
and 4.5 cm, whereas the anomaly errors are 0.5-1.5 mGal. The total power of the bias can be neglected
with respect to the measurement noise if L = 180. Also compared to the signal the bias can be neglected.
However, if L = 240 the maximum BSR is 55% and the bias is about 8% of the total error. The bias
due to the polar gaps disappears whereas the downward continuation cannot be compensated for. In
summary, assuming that the simplified error model is good enough, one can state that todays state-of-
the-art airborne gravimetric data in the polar regions effectively compensate for the polar gaps, although
their accuracy is relatively low compared to the satellite data. Only by these additional data a truly global
high quality gravity field model is obtained.

Recommendations

The regularisation parameter has been determined by minimising the mean square error. Although this is
sufficient to compare regularisation methods, it is not feasible in practice, because the true solution needs
to be known. The iterative procedure towards the minimum MSE based on the least-squares solution (Xu,
1998) or its modification based on BE might be of interest in the analysis of satellite data. The exact
relation of the L-curve and quasi-optimality with the MSE needs to be studied. The GCV method, which
is expected to give the minimum MSE, was not implemented, becanse, among others, it is reported to be
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sensitive to coloured noise. However, a combination of SST and SGG eliminates the effect of the coloured
noise SGG error. Thus GCV might work well for a combination of these measurements.

If one is interested in a high quality gravity field model for the whole Earth, additional gravity related
measurements in the polar areas to support GOCE are indispensable. To this end, a feasibility study
might prove useful. Another way to improve the quality of the low order coefficients, at least for the low
degrees, is to combine the GOCE solution with earlier determined gravity field models. If, however, a
high quality local gravity field is needed (apart from the polar regions), then GOCE provides it.

The bias towards zero of the high degree coefficients in todays satellite-only models is generally
recognised. In view of this coefficient bias, the choice of the regularisation parameter as well as the
quality assessment of these models needs to be re-addressed. Since the satellite-only models serve as
starting point for todays combined global gravity field models, also the combination of the satellite-only
models with surface gravity data and altimetric data needs to be reconsidered. Especially bias reduction
may become an important issue.

The errors in the potential coefficients studied in this thesis are either caused by measurement noise
or regularisation. However, there is signal present above the maximum degree and this signal will be
mapped onto the lower degrees. The precise nature and size of the errors caused by neglecting the
gravitational potential coefficients above L = 240 need to be studied. To overcome this error, one
strategy might be to solve for more coefficients than needed or suggested by the SNR. The idea is that
the additional coefficients absorb most of the error. It is questionable, however, whether this is feasible.
Increasing the degree means increasing the influence of the polar gap and all low order coefficients will
be affected. Also the ill-conditioning due to the downward continuation increases. Moreover, the same
number of measurements is used to determine more coefficients, increasing the MSE. The trade-off
between a reduced effect of the neglected coefficients and the increased effect of polar gap/downward
continuation and MSE deserves further attention.
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7. Conclusions and recommendations
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Compact operators and spectral decomposition.

This appendix has been added to support chapter 2. A few definitions from functional analysis are listed
and an introduction to spectral decomposition is given.

A.1 A few definitions from functional analysis

Consider the operator equation
Af=yg
of the first kind. The symbol A : F — G will mean a single valued mapping whose domain of definition

is F' and whose range is contained in G. The range R(A) is the set R(A) := {Af : f € F} of all image
elements.

Injective, surjective and bijective. If foreach g € R(A) thereisonly oneelement f € F withAf =g
then A is said to be injective and its inverse mapping A~! : R(A) — F is defined by A™1g := f. The
inverse mapping has domain R(A) and range F. It satisfies A=A = I on F and AA~! = I on R(A)
where I is the identity operator. If R(A) = G then the mapping is said to be surjective. If it is injective
and surjective the mapping is called bijective, that is, the inverse mapping A~! : G — F exists, e.g.
(Kress, 1989, p. 1).

Bounded operators. An operator A : FF — G mapping a linear space F into a linear space G is called
linear if

Alafh+eafo) =cadfi +cAf
forall fi, fo € Fandallej,c2 € R

Definition A.1 (bounded). A linear operator A : F — G from a normed space F into a normed
space G is called bounded if there exists a positive number ¢ such that

lAflle < cllflir

for all f € F'. Each number ¢ for which this inequality holds is called a bound for the operator A. O
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Definition A.2 (continuous). Consider the mapping A : F' — G where F and G are metric spaces
with d the metric on G and d the metric on F. The mapping A is said to be stable or continuous on the
spaces (F, G) if for every € > 0 there is a 6 > O such that

d(Afy, Af2) = d(g1,92) < & V f satisfying d(f1, fo) < § (A1)

where fi,fo € Fand g1,92 € G. O
A linear operator is continuous if and only if it is bounded. Hence, for a linear operator boundedness
and continuity are equivalent concepts.

Compact operators. A linear operator A : F — G is compact if and only if for each bounded sequence
{fa} in F the sequence {Af,} contains a convergent subsequence in G. Compact linear operators are
bounded.

Theorem A.3. Let F,G, H be normed spaces and let A : F — G and B : G — H be bounded
linear operators. Then the product BA : F — H is compact if one of the two operators is compact. O

Theorem A.4. The identity operator I : F — F is compact if and only if F’ has finite dimension.
]

Therefore, the compact operator A cannot have a bounded inverse unless its range is finite. (4714 =
I is not compact in infinite dimensions due to theorem A.4 and because A is compact A~! has to be
unbounded in view of theorem A.3.) For a proof of these theorems see (Kress, 1989, chapter 2).

A.2 Spectral decomposition

An important tool when dealing with inverse problems is the spectral decomposition of the operator.
A spectrum gives clear insight in the behaviour of the operator for different frequencies and further
illuminates possible ill-posedness of the problem at hand. The main references here are Lanczos (1961);
Groetsch (1980); Kreyszig (1989), compare also Nashed (1976); Golub and van Loan (1996); Louis
(1989); Groetsch (1993); Engl ez al. (1996).

Definition A.5 (eigenvalues, spectrum). Let T : FF — G be a compact, symmetric (or self-adjoint,
T = T*) and semi-positive definite ((T'f, f) > 0V f € F) linear operator. Then T has a finite or
countably infinite number of eigenvalues A,; in the latter case A, — 0 as n — oo (the only possible
point of accumulation is zero which follows from the compactness of the operator (e.g. Kreyszig, 1989,
sec. 8.3)). The eigenvalues can be arranged in a sequence converging to zero

A2 A2 2A2-20 (A2)
with corresponding (nonzero) orthonormal eigenvectors wy, w2, -+, Wy, - -
Tw, = Apwy.

The set of eigenvectors {wy, : A, # 0} is a basis for R(T).!
The set o(T") of numbers A for which the operator T — AT has no bounded inverse is called the
spectrum of T. In the case of a compact, symmetric, semi-positive definite operator the spectrum is

real, nonempty and every nonzero member of o(7T') is an eigenvalue of T'. The corresponding nuil space
N(T - Al) is finite dimensional. 0

!Since span{wn } is complete and R(T") might not be complete. Thus the completion of R(T') is needed.
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The norm of T is equal to the spectral radius:
(ITl = max{A: A € o(T)} = A1
For every f € F we may write

Tf = Z /\n<.f; wn)“’"‘

n=1

Definition A.6 (singular values, singular system). Now consider the compact operators A : F' — G,
A*A : F — F and AA* : G — G. The latter two are self-adjoint and have the same nonnegative
eigenvalues. If there are only nonzero eigenvalues, the spectra of both operators are the same o (A*A) =
o(AA*).

Denote the eigenvectors of A*A as v,, and the eigenvectors of AA* as u,,. The eigenvalues, equal
for both operators, are Ay, the ordering is as in (A.2). Let o, = v/A, and u,, = o, Av,,. Then

Av, = onu,

and

A*uy, = opvg.
The numbers o, are called the singular values for the operator A, the system {vn, un;op} is called a
singular system for A. a

From the last two equations above it follows that v, and u, are indeed eigenvectors of A*A and AA*
respectively. The eigenvectors v,, are a complete orthonormal system or basis for

R(A*) = R(4*A) = N(A)*

and u,, are a complete orthonormal system for
R(A) = R(AA*) = N(4")* (A3)

with N (A)~ the space perpendicular to the null-space of A.
If and only if A has a finite-dimensional range, A has only finitely many singular values. If A is an
integral operator with infinitely many singular values, they accumulate (only) at 0

lim o, =0
n—>o00

as was the case for the eigenvalues. If there are finitely many singular values the kernel of the integral
operator is degenerate.

The norm of A is
A|l = o1.

Theorem A.7 (Picard condition). The equation of the first kind Af = g has a solution if g € R(A)
and

D 0219, un)|? < 0. (A4)

n=1

This is called the Picard condjition. [}

The Picard condition is a *smoothness condition’ for the right-hand side g. Since g € R(A) one can
write g = Y, gnun. Because 0,2 — oo for n = oo the coefficients g,, have to decay fast enough with
respect to the singular values in order to fulfil (A.4).
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Figure A.1: Singular value decomposition (solid lines), thin singular value decomposition (dashed lines).

Singular value decomposition in finite dimensions. Let A € R™*", withm > n. Then the singular
value decomposition of Ais A = uzvT (figure A.1).

The matrices U and V are orthogonal, which means UTU =UUT = I, and VIV = VVT = I,
respectively. Since the last m — n rows of I contain only zeros, the last m — n columns of U could
be cancelled. This is called the thin singular value decomposition (Golub and van Loan, 1996). The
resulting smaller matrix U becomes semi-orthogonal, UTU = I,,,UUT # I,,, compare also Lanczos
(1961). The range of A is spanned by the first n columns of U, provided that all singular values are
non-zero. The domain of A is spanned by the columns of V. Therefore, the large singular values
denote the combination of unknowns z; that is well represented by the measurements y. In contrast,
the small singular values reveal which linear combination of unknowns are hardly recoverable from the
measurements.

Generalised singular value decomposition. The GSVD of the matrix pair (A, L) is a generalisation
of the sVD of A in the sense that the generalised singular values of (A, L) are the square roots of the
generalised eigenvalues of the matrix pair (ATA, LTL) (Hansen, 1997).

Let A € R™*" and L € RP*™ with m > n > p. Then the GSVD is a decomposition of 4 and L in
the form

A-——-U( z Opxn—p)X_l, L=V(M Opxn—P)X—l
On-pxp In-p

where U € R™*, V € RP*P and UTU = I,, VTV = I,. X € R™™ is nonsingular, and £ and M
are p X p diagonal matrices with elements:

which are normalised such that
2T+ MM =1,

Then the generalised singular values v; of (A, L) are defined as
Y =oifp, i=1...,p

and they appear in non-decreasing order (opposite to the singular value ordering for historical reasons
(Hansen, 1997)).
The first p columns of X = (zy,..., zn) satisfy

p2ATAz; = 0?L7Lz;, i=1,...,p
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hence ATAz; = vy?LTLx;. Thus, the z; are called the generalised singular vectors of the pair (A4, L).
For p < n the matrix L € RP*" always has a nontrivial null-space N (L) (Hansen, 1997). The lastn — p
columns z; of X satisfy

Lz; =0, :=p+1,...,n

and they are therefore basis vectors for the null-space N (L).

Relation with SvD. Only when L is the identity matrix I,,, the matrices U, X and V in the GSVD of
(A, L) are identical to U, £ and V of the SVD, except for the ordering of the singular values and vectors,
sincep =n, X~! = M~V7T and A = UTM~'VT. In general there is no connection between the
singular values and vectors of SVD and GSVD. However, when L is well-conditioned (has a ‘small’
condition number, the smallest possible number is one) it can be shown that the matrix X is also well-
conditioned (Hansen, 1997). The diagonal matrix I displays therefore, the ill-conditioning of A.

Discrete Picard condition. Hansen (1990) introduces the Picard condition for finite dimensions, since
condition (A.4) is always fulfilled in finite dimensions. The unperturbed y in a discrete ill-posed problem
with regularisation matrix L (see section 2.2.2) satisfies the discrete Picard condition if the Fourier co-
efficients [u]y| decay faster on the average than the generalised singular values ;. A visual inspection
of a plot of the Fourier coefficients |u] y| and the generalised singular values 7; could reveal the faster
decay. Alternatively, one may define the ratio

Jj=i—g

itq 1/(2g+1)
Pi :='7i_1 H [uTy| , t=q+1,...,n—¢q

which is the moving geometric mean, with g a small integer (Hansen, 1990). This ratio should decay
monotonically to zero.
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A few remarks on local regularisation methods

Three local regularisation methods are briefly discussed. Because of the apparent shortcomings of these
methods, none of them has found further consideration in this thesis.

B.1 Spherical wavelets

Spherical harmonics localise ideally in the frequency domain, that is, any spherical harmonic corresponds
to a single frequency. They do not, however, show any space localisation. Better space localisation is
obtained by using spherical wavelets at the expense of worse frequency localisation (see, for example,
Schneider, 1997; Freeden and Schneider, 1998). Ignoring the whole theoretical background, spherical
wavelets turn out to be filtered versions of the discretised integral equation relating the gradiometer
values at satellite height to those at the Earth’s surface. The numerical examples presented so far (ibid)
use only V. in the space domain approach, assuming that the SGG measurements are contaminated with
white noise and that the satellite is in a polar orbit. In this study, however, all diagonal elements of the
gravity gradient tensor are of interest, as well as non-polar orbits and coloured noise. Spherical wavelets,
therefore, will further not be discussed here. Concerning ordinary wavelets, refer to, for example, Blatter
(1998).

B.2 Konopliv-Sjogren method

Besides the Earth’s gravity field, also the Moon’s (Lemoine et al., 1997; Konopliv et al., 1998), Mars’
(Konopliv and Sjogren, 1995), and Venus’ (Konopliv and Sjogren, 1996; Barriot et al., 1998) fields
have been modelled. Doppler tracking, from stations at the Earth, of satellites orbiting these celestial
bodies enables gravity field determination. Also here, like for the Earth, the spatial distribution of the
measurements is not homogeneous. Konopliv and Sjogren (1995, 1996) wish to avoid the standard
regularisation technique since this biases especially the high degree coefficients to zero, yielding lower
peak values in areas with large gravity signal. They therefore developed a method to partially overcome
this problem accounting for the spatial distribution. The Konopliv-Sjogren method is as follows.

At the surface, the radial acceleration, a;, from all coefficients of degree ! is given by (cf. section 3.2)

a(6,)) = —%—Af(l +1)1i(8, A).
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The expected RMS acceleration is, using Kaula’s rule (Kaula, 1966) and the orthogonality properties of

the base functions,
GM 2
(al)rms = R2 K\/; (B.1)

where K is the constant for the particular planet (or Moon). Equation (B.1) is the square root of the
degree-order variance, which is

g8.35 mGal and L] mGal
Vi Vi
for Mars and Venus respectively (Konopliv and Sjogren, 1995, 1996). This is the first step.

The next step is to compute an unconstrained gravity field solution (Ci,, and Sj,,, coefficients) trun-
cated at degree L. Sub-matrices uptodegree ...,I-1,1,l4+1,..., L of the total error variance-covariance
matrix are propagated to acceleration uncertainties (errors) in a regular grid. The uncertainty for degree
l is then given as the difference of the cumulative errors to degree ! and ! — 1. For each point the degree
where the acceleration error exceeds the expected acceleration signal (B.1) is called the degree strength
D. Thus, for the degrees D, . .., L the noise exceeds the signal.

The final step is to introduce zero values for the acceleration coming from the coefficients above the
degree strength D at each point with an uncertainty approximately equal to the expected signal at the
degree strength. Specifically, the acceleration at a certain point for degree strength D; is

L {
GM _
api (6, X) = 27 D (U +1) 37 KimTim(6is X) (B.2)
I=D; m=-1
where K;,, = 0 forl = D;,...,L. These ‘observations’ are merged with the original (linearised)

observation equations

s(n)=(a)= 2(mp=("% )

with the least-squares solution
&= (ATP A + AT P A2) 1 (AT Py + AT Pay). B.3)

The observation vector g; contains the differences of the satellite tracking data and the nominal data from
the nominal gravity field, while y, contains the differences of (B.2) computed with zero coefficients and
(B.2) computed with the nominal coefficients. The weight matrix P, is diagonal and is approximately
equal to the signal at the degree strength (10 to 20 mGal for Mars). Since actual signals at certain
locations can be much larger than the Kaula rule, the a priori observations y2 over these regions are
relaxed, that is, they are either removed or their weight is decreased (Konopliv and Sjogren, 1995).

The above method has not been implemented for the following reasons:

o The least-squares solution (B.3) combines the unconstrained L.s. solution with zero observations,
to which end the unconstrained Ls. solution needs to be evaluated explicitly. However, it might
occur that due to numerical instability such an unconstrained solution cannot be computed.

o Konopliv and Sjogren (1995, 1996) claim that the main advantage of this spatial constraint instead
of a straight Kaula rule appears to be better determination of peak amplitudes. This is true as
far as the constraint is removed or relaxed. However, to do so one must know in advance the
gravity signal, for example from earlier gravity field solutions, DTM’s or from a first guess using
observations. In any case, this is not really straightforward.
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B.3 Additional constraints
In addition to the usual problem of minimising
Ja(z) = |4z — ° |13 + allz3
it is possible to define a (linear) side constraint of the form
Cx>s (B.4)

where C is an ! x n matrix and s a known [ vector. If for instance z; is a physical parameter that should
be positive then C' = I and s = 0. One could think, for example, of the light intensity of a pixel in a
picture or of the distance between two points. The problem of minimising

J(z) = || Az - °|I3

the least-squares problem, with linear inequality constraint and a computation algorithm is treated by
Lawson and Hanson (1974). The total system of equations becomes non-linear and Lawson and Hanson
(1974) show how this can be solved iteratively. Hemmerle and Brantle (1978) discuss GBE with linear
inequality constraint.

A future application in geodesy might be gradiometric analysis. It is well known that SGG results
in badly determined low order gravitational potential coefficients (Van Gelderen and Koop, 1997). This
problem might partially be overcome by fixing the sign of the coefficients. One could for example adopt
the sign of an existing gravitational potential model when the SNR of a specific coefficient of this model
is larger than a certain threshold. This method, however, is not applied here. The side constraint as given
in (B.4) is deterministic, whereas the sketched application is of stochastic nature.
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Synthesis of SGG observations

C.1 Interpolation

The direct computation of the gravity gradients T;; along the satellite orbit is time consuming. For each
observation point (new r, ¢ and A) a new series expansion has to be evaluated. This means that for every
point one has to evaluate anew the Legendre functions and/or their derivatives together with cos mA
and sin mA. The direct computation can be avoided by pre-computing gravity gradients in regular grids
at several altitudes. The values are then obtained by interpolation. If the interpolation error is one or
more orders of magnitude smaller than the simulated observation error this approach is valuable and
acceptable. Hereafter the computation of the observations is discussed in more detail.

The approach followed does not demand much computer time and is accurate enough, that is, the
RMS interpolation error is 2 to 3 orders smaller than the measurement error as will be shown. The idea
is as follows (see also figure C.1).

o Compute the actual orbit.

o Subtract GRS80 from the ‘true’ gravity field (for example 0SU91A). This reduces the size of the
signal, hence the interpolation error becomes smaller.

e Compute grids with T}; in a north-east frame at four heights with FFT. The two middle grids are
at the minimum and maximum height of the orbit respectively. The other two grids are below and
above the orbit such that the height increment between the grids is constant (equidistant).

o Interpolate horizontally, that is, in ¢ and A in the four grids using Overhauser splines. An Over-
hauser spline is a non-smooth (C) cubic spline, that is, it is one time continuously differentiable
at the data points (see Overhauser, 1968; Klees, 1999).

o Interpolate in the vertical direction, again with Overhauser splines.

o Add the GRS80 contribution to obtain V;; in the orbit points (optionally).

e Rotate the gradients (full tensor) from the north-east frame to the local satellite frame.
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Figure C.1: Interpolation in grids, the grid points are given by x. These points are used for the two-
dimensional interpolation to obtain the interpolation points o. Thereafter, these points are used to inter-
polate in one-dimension and e is obtained.

C.2 Error test

The interpolated values were compared with gradients computed by direct evaluation of the series ex-
pansion at the measurement point to test whether the interpolation error is acceptable. In total the gravity
gradients in 10.000 points have been compared with a 5 second interval between them, figure C.2. The
average orbit height of GOCE is 250 km, and the vertical spacing using 4 grid levels is 15 km approxi-
mately, while Ag = AX = 1/8° which corresponds to 14 km at the equator. Both the exact and the inter-
polated gradients were computed in a north-east frame, using 0SU91A up to degree and order 360. Since
the computation of V,, involves the computation of the second derivative of the Legendre functions, it
is not computed directly. Instead, the harmonicity of V' is exploited to compute V;z = =V, — V,, and
the Legendre functions have to be computed up to the first derivative only.

The minimum obtainable error is 10~7 E since the grids are stored as long integers to save disk space.
A long integer has 8 bytes or 32 bits on our computer, which means that the maximum number one can
store is £231, one bit is needed for the sign. Therefore, gravity gradients up to 999 E can be stored
retaining 7 significant digits after the decimal point or 10~7 E.

A first test with 4 grid levels in the radial direction gave an RMs difference of £10~°> E with absolute
maxima of 10~ E, compare figures C.3, C.4, C.5 and table C.1. Although this is well below the inte-
grated observation noise of approximately 2 x 10~* E, a second test was conducted with 5 grid levels
instead of 4. This gave RMS differences of 1078 E, see table C.1. The vertical spacing is the half of the
previous vertical spacing and the interpolation uses the four grid levels closest to the observation point.

Since the interpolation error decrease, going from 4 to 5 grid levels, outweighs the additional effort
of computing 5 levels instead of 4, it was decided to use 5 grid levels in the radial direction. The spacing
in latitude and longitude direction turns out to be small enough. The interpolation error is uniform using
5 grid levels, i.e. it has the same magnitude for 3 directions.
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|
Figure C.2: The ground tracks of the tested interpolation points.

Table C.1: The interpolation error for Ty;, T,y and T, in Eotvos units ( 10~9s~2). The measurement
noise in chapters 5 and 6 is at the 0.1 mE level.

Tiz Ty T..
4 grids Sgrids 4 grids S5grids  4grids 5 grids
RMS |6.4-10~¢ 28.107% 59.107% 2.0-107® 1.0-10° 3.9.10°¢
max |9.3-107° 4.3-107° 1.2.107* 3.9-10~° 1.5-10~* 5.2.10°°
mean | -2-1077 -2-1077 3.1077 1.1077 -1-1077 1-1077
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Additional results

For reference purposes results in addition to those of chapter 6 are listed here. Furthermore, a few of
the results of chapter 6 are shown again, to facilitate the comparison. The tables and figures are listed
without discussion (see also chapter 6).

Table D.1: MSE and bias of all solutions.

mission

no. parameters? a Mseb BNR max(BSR)‘

1 1m,L=180,cn 24 118 0.2 0.20(117.9)
2a  6m, L =180,cn 51 29 006  0.18(61.4)

2b 6m, L =240,cn 1.5 123 0.4 0.68 (2 x 10%)
3  6m,L =180, wn 53 15 2.0 0.18 (386.4)

4 SGG+SST, L = 180 36 09 1.2 0.18 (223.0)
S5a  SGG+SST/10, L = 180 43 1 1.6 0.18 (493.0)
5b  SGG+SST/10, L = 240 1.4 97 0.3 0.66 (3 x 10°)
6  SGG+SST/100, L = 180 49 1.2 1.8 0.18 (539.4)
7a  $GG+Ag, L =180 08 1.5 107%  0.00(5.7)

76 sGG+Ag, L = 240 12 85 007  0.55(121.7)

8  sGG+Ag, L =180 12 1.5 3x107% 001251

9a SGG+SST/10+Ag, L =180 [ 0.8 02 6x10~% 0.00(5.6)

9b SGG+SST/10+Ag, L =240 | 12 73 009  0.55(121.8)

“Except for mission no. 1 with a mission length of 1 month, the mission length is 6 months. The SGG observations are
subject to coloured noise with the exception of mission no. 3 where the noise is assumed to be white. The accuracy of the
gravity anomalies is o = 2.5 mGal, except for mission no. 8 with an accuracy of ¢ = 5.0 mGal.

"In proportion to mission 5a.

“The maximum BSR based on the 0SU91 A degree-order variances. The maximum BSR between brackets has been computed
using the OSU9 1 A coefficients.
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Figure D.1: BSR: SGG only solution for 6 months, white noise L = 180 (left) and the combination of
SGG, 6 months, coloured noise and Ag(o = 5.0 mGal), L = 180. Logarithmic scale.
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Figure D.2: BSR: Combination of SGG and ss1/10, L = 180 (left), and combination of SGG and ss1/10,
L = 240 (right). Logarithmic scale. The combined solutions SGG + SST or SST/100, L = 180, yields
figures almost identical to the left panel.
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Figure D.3: Error degree variances.
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Figure D.4: MSEM propagated to geoid heights (left) and gravity anomalies (right). SGG + Ag, L = 180.

Table D.2: Propagated errors for all solutions.

mission geoid height error (cm) grav. anomaly error (mGal)
no. parameters RMS mean max min | RMS mean max min
1 I m,L=180,cn 12.3 6.1 708 19| 148 071 698 022
2a 6m, L =180,cn 9.7 35 588 08| 126 043 6.70 0.08
2b 6m,L =240,cn 11.9 62 546 19223 156 1050 0.63
2b  lypaz = 180 10.8 41 598 09| 155 057 866 0.13
3 6 m, L = 180, wn 8.3 24 471 03| 1.18 041 673 0.08
4 SGG+SsT, L = 180 5.9 1.9 327 03]099 036 571 0.08
5a SGG+SST1/10, L = 180 6.5 20 372 03] 106 038 6.02 0.08
5b  SGG+sST/10, L = 240 9.0 52 418 18206 150 947 063
5b  lper =180 7.6 26 421 05| 138 051 796 0.13
6 SGG+SST/100, L = 180 7.0 21 381 04| 110 039 647 0.08
7a  SGG+Ag, L =180 1.7 1.5 39 07)018 016 053 007
7b  $GG+Ag, L = 240 3.7 36 46 15| 114 111 145 049
7b e = 180 1.6 1.5 31 07)017 016 042 0.08
8 SGG+Ag, L = 180 2.1 1.7 75 07026 0.19 103 0.07
9a SGG+SST/10+Ag, L =180 | 0.9 07 32 03)018 016 051 007
9b SGG+SST/10+Ag, L =240 | 34 33 42 14| 114 111 145 049
9b ez =180 0.8 07 26 03}017 0.16 041 008
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Figure D.5: BNR: SGG, maximum is 10%. Solution up to degree L = 180 (left) and L = 240 (right).
The combined solution SGG + SST/10, yields figures almost identical to the current ones. The maximum
BNR, however, is 10,
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Figure D.6: BNR: SGG + Ag, maxima are 102, left, and 100, right. Solution up to degree L = 180 (left)
and L = 240 (right). The combination of SGG, SST/10 and Ag yields figures identical to the current
ones, with the same maximum values.
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Figure D.7: SNR: SGG only, maximum is 10%. Solution up to degree L = 180 (left) and L = 240 (right).
The coefficients with an SNR larger than or equal to one are shown in black, coefficients with an SNR
smaller than one are shown in white. The combination of SGG and SST/10 yields figures identical to the
current ones. The maximum SNR, however, is 10,
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Figure D.8: SNR: SGG + Ag, maximum is 10%. Solution up to degree L = 180 (left) and L = 240
(right). The coefficients with an SNR larger than or equal to one are shown in black, coefficients with
an SNR smaller than one are shown in white. The combination of SGG, SST/10 and Ag yields figures
identical to the current ones. The maximum SNR, however, is 105,
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Stellingen behorende bij het proefschrift

Quality assessment of satellite-based
global gravity field models

door

Johannes Bouman

. Een goed inzicht in de kwaliteit van een mondiaal zwaartkrachtsmodel wordt alleen
verkregen door meerdere kwaliteitsmaten te beschouwen. De toegevoegde waar

de zogenoemde bijdrage-maten is echter gering.
Dit proefschrift, paragraaf 5.4

. Het nadelige effect van het poolgat (het ontbreken van metingen in de poolgebieden) op
de kwaliteit van de met de GOCE-missie bepaalde potentiaalcoéfficiénten is groter dan dat
van de neerwaartse voortzetting (het reduceren van de metingen van satelliethoogte naar

het aardoppervlak).
Dit proefschrift, paragraaf 5.2 en 6.2

. Het vakgebied dat de Geodesie in Nederland bestrijkt, wordt verondersteld een breed
spectrum te bezitten. Helaas is dat spectrum nogal slecht gevuld.

. De kwaliteit van de GOCE-geoide in het gebied met metingen is in hoge mate indifferent

voor de regularisatiemethode.
Dit proefschrift, paragraaf 5.4

. De grootte van de onzuiverheid geintroduceerd door de regularisatie zal in het meetgebied

kleiner zijn dan het effect van de meetruis.
Dit proefschrift, paragraaf 5.4.2




10.

Indien de kwaliteit van het verrichte onderzoek evenredig is met de kwaliteit van de
gemiddelde wetenschappelijke presentatie, verdient het aanbeveling minimaal de helft
van dat onderzoek te staken.

De term ‘netsurfen’ suggereert ten onrechte dat het om een dynamische bezigheid gaat.

Het effect van gekleurde ruis op de SGG-waarnemingen is het meest voelbaar bij geoide-
hoogtes. Door ook SST-waarnemingen te gebruiken wordt dit effect gecompenseerd.
Dit proefschrift, paragraaf 6.3

Het is mens-eigen om met name incidenten te onthouden, waardoor het zicht op de werke-
lijkheid wordt vertroebeld.

Hoop is een gebrek aan informatie.

Bestudering van de literatuur aangaande aardse zwaartekrachtsmodellen leert dat de kwa-
liteit van het meest recente model pas adequaat wordt beschreven in de publicatie over
het model daaropvolgend.

Voor zowel inverse problemen als de maatschappij geldt dat normen er zijn om te regu-
lariseren.




Propositions of this thesis

Quality assessment of satellite-based
global gravity field models

by

Johannes Bouman

. A good insight into the quality of a global gravity field model is only possible through
consideration of a number of estimates of the quality. The so-called contribution MeAee——=—.]

sures have little additional value.
This thesis, section 5.4

. The disadvantage of the polar gap (missing data in the polar regions due to the satellite
orbit) on the potential coefficients determined for the GOCE-mission is greater than that
from the downward continuation (the reduction of the measurements from satellite height

to the Earth’s surface).
This thesis, section 5.2 and 6.2

. It is a common belief that Geodesy in the Netherlands covers a broad ‘spectrum’ of dis-
ciplines, however, it appears only certain ‘frequencies’ within the spectrum are covered.

. In the region of the measurements, it is not important for the quality of the geoid which
regularisation method is used, as each method gives similar results.
This thesis, section 5.4

. The regularisation methods introduce a bias, however this bias will have a smaller effect

than the measurement noise in the region of the measurements.
This thesis, section 5.4.2

- ]




10.

11.

12.

If the quality of the current research is proportional to the quality of the average scientific
presentation, then only half of this research should be completed.

The term ‘netsurfing’ suggests erroneously that it is a dynamic activity.

The effect of coloured noise will be more pronounced on geoid heights determined by
SGG-measurements. Through the use of sST-measurements, this effect can be compen-
sated for. This thesis, section 6.3

It is only human to especially remember certain incidents, which is why the perception of
reality can become obscured.

Hope is a lack of information.

Studying the literature of gravity modelling, one learns that the description of the quality
of the most recent model becomes more realistic in subsequent publications.

For inverse problems, just as in society, using norms enable regularisation.




