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Abstract

In recent years, humanity became strongly dependent on the deep subsurface. It can be used
as the energy source as well as the storage facility. At some stage, both listed applications re-
quire injection of fluid or gas into the subsurface porous media. Under certain conditions, it
may provoke growth of hydraulic fractures. The appearance of fractures significantly changes
properties of the permeable media which, in its turn, affects the operational performance of the
subsurface reservoir. Apart from that, hydraulic fracturing may also cause a nuisance to the hu-
man environment in the form of earthquakes. Ability to predict growth of hydraulic fractures
and their geometry becomes crucial. For this purposes, numerical models are extensively used.

In this work, a fully coupled hydro-mechanical model for hydraulic fracturing of porous me-
dia was proposed. Based on this model, an explicit computational framework was developed
in C++ programming language allowing efficient modeling of a single fracture propagating. Pro-
posed algorithm consists of the Discrete Fracture Model for multi-phase flow and contact-enriched
Finite Element Model for geomechanics. Irwin’s failure criterion from Linear Elastic Fracture
Mechanics concepts was adapted. Stress Intensity Factors are evaluated employing displace-
ment extrapolation technique.

The proposed model was extensively tested in various set-ups including single- and multi-
phase flow in isothermal and thermal conditions. Both straight and turning fractures were mod-
eled. Effects of the mesh geometry, material properties, and stress field anisotropy were ana-
lyzed in a series of tests. Obtained results were validated with the semi-analytical solutions.
Proposed numerical scheme demonstrated its applicability to a wide range of tasks and showed
a great potential for its extension to a larger group of applications.
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Introduction

There are certain technological activities where injection of fluid or gas into subsurface is ex-
ploited. Fields where these activities are routinely done comprise extraction of geothermal en-
ergy, development of unconventional hydrocarbon reservoirs, disposal of wastewater, seques-
tration of CO2, storage of natural gas and Enhanced Oil Recovery. Injection of substances into
porous media leads to changes in its pressure, temperature and stress states. The latter can
potentially lead to generation of hydraulic fractures or activation of pre-existing faults, which
directly affects exercised activity and even human comfort. This makes fracture mechanics very
important when alteration of subsurface state is considered.

Thermal energy can be extracted from subsurface by drilling wells into a formation, inject-
ing cold fluid through one well and extracting hot fluid from another. Further, heat from this
fluid can be transformed into electricity. Circulation of the fluid underground is facilitated by
the natural permeability of the rock or by permeability induced by hydraulic fracturing. The
latter is done in Enhanced Geothermal Systems (EGS) [97]. Knowledge of induced fractures
concentration, their geometry and growth speed is not only necessary for design and optimiza-
tion of such systems, but also for safety reasons. It is well established, that hydraulic fracturing
can lead to anthropogenic earthquakes [70, 73, 82, 112, 112]. Another reason for seismicity
can be reactivation of faults. It owes to the increase of fluid pressure in the close proximity to
pre-existing fault and successive reduction of the effective normal stress acting perpendicular
to it. Extraction of geothermal energy is often accompanied by induced seismicity. Number of
geothermal projects registered generation of seismicity associated with fluid injection. Such
events were reported in 1983 in the Fenton Hill Enhanced Geothermal System project in New
Mexico, USA [14],in 2006 in Basel EGS, Switzerland [44] and in 2013 in the geothermal project
near St. Gallen in Switzerland [80]. The last two projects were suspended due to observed seis-
mic events. Thus, ability to predict hydraulic fracturing and behavior of faults is crucial for fea-
sibility of geothermal projects.

Unconventional hydrocarbon reservoirs are low-permeable formations that contain consid-
erable amounts of oil or gas. Their extraction by conventional methods is complicated due to low
permeability of the rock. In order to increase it, reservoir is hydraulically fractured. For doing
so, horizontal section of a well is divided into isolated stages which are sequentially pressurized
until creation of new fractures [111]. Ability to predict induced fracture geometry is necessary
for efficient field development.

King et al. [61] reported an average volume of fluid injected into one well for hydrofracking
purposes is of order 20,000 m3. Approximately 60 — 90% of this volume remains underground
causing changes in pressure and stress fields. The rest of the fluid returns back to the surface in
the form of wastewater. Apart from initially contained chemicals, it is contaminated with reser-
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2 1. Introduction

voir gases, metals and radioactive materials. Produced wastewater is commonly disposed back
to subsurface [110]. Its injection in close proximity to pre-existing faults caused generation of
seismicity at the number of cites. Keranen et al. and Zhang et al. report induced quakes due to
massive wastewater injection in central Oklahoma, Arkansas and Ohio, USA [58, 119]. Van de
Hoek describe re-injection of unfiltered production water under fracturing conditions in Oman
[101]. Modeling of hydraulic fractures and fault reactivation due to wastewater injection is nec-
essary for prediction of associated earthquakes.

Injection of natural gas into the formation for storage purposes or geological sequestration
of CO2 may also trigger seismicity. The most recent human-felt seismic events were registered
in 2013 at the Castor natural gas storage site, Spain [ 16]. Although no human-felt seismicity was
detected in the CO2 storage projects [52], micro-seismicity was reported from several seques-
tration sites [106]. Zoback and Gorelick warn that even small- to moderate-sized earthquakes
threaten the seal integrity of CO2 repositories [122].

Another field where fractures play significant role is Enhanced Oil Recovery. During ex-
ploitation of the oil or gas fields, operators often face the problem of maintaining the reser-
voir pressure, necessary for efficient extraction of hydrocarbons. One way of doing so is wa-
terflooding: method of water injection into the reservoir with aim of maintaining the reservoir
pressure and displacing the hydrocarbons [67]. Number of well-test researchers [3, 62, 64] re-
port growth of unstable hydraulic fractures in the injection wells and their effect on field per-
formance. The fractures originate at the surface of injecting well and have lengths comparable
with distances to neighboring wells [98]. The fact that fractures are hydraulically much more
conductive than continuous rock, makes them a preferable path for the injected fluid to reach
the production well, therefore increasing the risk of water breakthrough. When densifying the
production wells network, the operating company can unintentionally place a new well in the
effective proximity to the existing hydraulic fracture, jeopardizing its efficiency from the begin-
ning.

Production wells, in their turn, can also have connected fractures caused by hydrofracking
operations or drilling with excessive mud weight. These fractures would normally orient in the
same direction as the waterflood-induced fractures. Having the hydraulic cracks at injection
and production wells co-oriented, under certain conditions, can lead to their unification and
100% watercut at the production well.

Apart from water breakthrough prevention, knowledge of fractures geometry can be used
for field development plan optimization. Being able to predict an approximate fracture length
and its direction, oil field operator can reduce the number of injection wells and bring the pro-
duction and injection zones as close to each other as possible, without additional costs [4].

From described examples, important role of pre-existing or induced discontinuities during
anthropogenic interference into subsurface becomes obvious. In order to produce energy from
subsurface or store highly pressurized substances underground, and perform it in efficient and
safe manner, study of fractures and faults behavior is essential.

In order to model hydraulic fractures, analytical and numerical models are employed. They
are obtained by solving equations of fluid flow and mechanical deformation of rock. Currently,
there is a number of analytical solutions for a single hydraulic crack in a homogeneous con-
tinuous medium subjected to uniform stress field. Two of the most common 2D models used
in fracture treatment design are the Khristianovic-Geertsma-de Klerk (KGD) [36, 59] and the
Perkins-Kern-Nordgren (PKN) [79, 84] models. Their solutions are applicable for induced frac-
tures in low-permeable rock, where effect of pressure field alteration around the fracture can
be disregarded.

Analytic solutions for slow fractures, typical for waterflooding or water disposal, comprise
research by Hagoort [41] and Koning [63]. In their studies, poro- and thermo-elastic contri-



bution to stress field are accounted. 2D fracture models (fracture length and width) were ex-
tended to allow variable fracture height in pseudo-three-dimensional (P3D) formulation. The
P3D concept in modeling hydraulic fractures was introduced by Settari et al. [90]. This research
was further extended by Van Den Hoek et al. [105], who also proposed to evaluate the dimen-
sions and degree of containment of waterflood-induced fractures from pressure-transient anal-
ysis [102].

While being effective and cheap tool for conceptual design of a single fracture, analytical
models are hardly applicable for field cases due to the assumptions they are based on. In field
applications, assumptions of homogeneous rock properties, stress and pressure field symme-
try and model’s 2-dimensionality do not hold anymore. For that reason, a number of numerical
models were developed to tackle the hydraulic fracturing process at the reservoir scale.

In principle, two different groups emerged over the years. The first type couples the finite-
volume reservoir simulator with analytical P3D fracture model. The fractureisincluded into the
reservoir simulator as extension of the well. Such models were developed and tested in [24, 49].

Another group of approaches uses full three-dimensional numerical representation of the
fracture. For modeling flow in porous media with discrete fractures, several techniques were
applied. Within finite-volume approach, following studies stand out [38, 57, 75]. Some authors
used finite-element approach to model multi-phase flow in discrete fracture models [53, 55, 60].
Mixed finite-element method was used in [47, 69]. Discontinuous Galerkin method, in its turn,
was employed in [29, 46].

Mechanical part is commonly modeled by finite- and boundary-element approaches [20, 48,
121]. Recently, Nordbotten proposed usage of finite-volume method for both flow and mechan-
ics modeling [78]. In order to make fracture path mesh-independent, eXtended Finite-Element
Method (XFEM) was developed in [25, 26]. This approach was further combined with cohesive
crack model in [114]. For situations of complex crack topologies, where discontinuous crack
representation can be complicated, diffusive crack model was introduced by continuum dam-
age approach [54], phase-field approach [71, 72] and level set model [74].

For modeling hydraulic fractures and pre-existing faults, contact mechanics concept is ap-
pealing, as it allows to have frictional resistance to sliding. Treatment of fractures as surfaces
in contact was extensively studied by means of finite-element [94], extended finite-element
[68] and mortar methods [87]. Classical approaches used for the construction of discretiza-
tion scheme for nonlinear contact problem are the methods of Lagrange multipliers and penalty
regularization [94, 96]. Nitsche’s method for treating the contact problem was proposed in [43].

Discrete Fracture Model (DFM), developed by Karimi-Fard et al. [56] for simulating fluid
flow in fractured rock, has proven its excellent applicability for large scale problems. The pro-
posed DFM model allows accurate representation of the pressure and fluid distributions since
all the fractures are taken into account explicitly. DFN was implemented in the Automatic Dif-
ferentiation General Purpose Reservoir Simulator (AD-GPRS) developed in Stanford University
[109]. AD-GPRS posses an extensive set of nonlinear formulations [107, 108, 116], flexible spa-
tial discretization [120] and advanced physics models [32, 34, 117]. DFM was further extended
by Garipov et al. to include geomechanics [33]. It is done by coupling the fluid flow equations,
discretized using the finite-volume method, with poro-elasticity equations, discretized using
finite-element method. Fracture is treated as surfaces in contact. The extended geomechan-
ics model for DFM inherits all benefits of the original method and allows to represent fracture
properties, such as aperture and stresses, on each fracture. This work has proven to be effective
and stable in modeling hydro-mechanical behavior of pre-existing non-propagating fractures
and faults on a large scale. Fracture initiation and propagation, as well as mechanisms of rock
failure were not addressed in their work.



4 1. Introduction

1.1. Problem Statement

Contact mechanics is properly suited for modeling discontinuities in rock. Its combination with
efficient technique to model fluid flow in fractured media was developed and successfully tested
on reservoirs with stationary fractures and faults [33]. Empowering this combination to model
growing hydraulic fractures could broaden the spectrum of problems which researchers canin-
vestigate. In order to do so, following research questions have to be answered:

e How the combination of classical DFM scheme and finite-element model with contacts
should be modified to allow for dynamic addition of fracture segments?

Which fracture propagation criterion is suitable for this numerical scheme?

How can fracture grow more than one finite segment in one time step?

How sensitive is the model to the average mesh size and time step?

How sensitive is the model to anisotropic stress field?

How sensitive is it to certain material parameters?

1.2. Code Development Goals

The project tends to improve the existing geomechanical model in AD-GPRS in cooperation with
researchers from CiTG at TU Delft and SUPRI-B group at Stanford University. The developed
code should be readily applicable to related research and meet the following requirements:

e Be applicable at the reservoir scale.

e Bestable, accurate and mesh-objective.

e Account for poro- and thermo-elasticity effects.

e Be capable of both fracture opening and closure.

e Be capable of opening several fracture segments in one time step.
e Be capable to predict brittle material failure.

e Beimplemented in 2D, but expandable to 3D.

o Be validated with existing (semi-) analytic solutions for fracture growth.

1.3. Report Structure

The structure of the report is summarized below. In chapter 2, equations governing physics of
fluid and heat flow, solid deformation and fracture growth are reviewed. Numerical schemes
commonly used in fracture modeling are also compared. This chapter is completed by justifi-
cation of the methods adopted in the developed approach. In chapter 3, the discretization of
the flow and mechanics equations implemented in the numerical scheme is discussed. Further,
the employed grid generation and fracture propagation algorithms are explained. The model
description, boundary and initial conditions are followed by semi-analytical solution, used for
the model validation. In chapter 4, results of numerical simulations are shown and compared
with semi-analytical solutions. Such results are given for stationary and propagating fractures
in conditions of single- and multi-phase flows, as well as in iso- and non-isothermal conditions.
The chapter is completed by study of model sensitivity to the key parameters. Chapter 5 de-
scribes possible application of the developed model to a practical case, namely waterflooding



1.3. Report Structure

operations. Obtained results may serve for redesign of the injection pattern and optimization
of the operations. In chapter 6, the results of the research are summarized and the recommen-

dations for the future work are given.






Theory and Numerical Schemes

2.1. Governing Equations

Physics of hydraulic fracture propagation is governed by laws of fluid and heat flow through
porous media, deformation of rock and brittle fracture opening. In this chapter, theoretical
background for each of these fields is reviewed.

2.1.1. Fluid Flow
The flow equation for compressible single-phase fluid is obtained by combining the mass con-
servation equation:

o(prp)
’;f(/) +V-(pv)—q=0, (2.1)
t
with Darcy’s law:
k
v=——Vp-prg, (2.2)
P P-0f8
which at the end yields:
o(pre) k B
oL -V Pf'u—f(VP—Pfg) -q=0. (2.3)

In the above expressions, p is the fluid pressure, vis the fluid velocity, oy and uf are the density
and the viscosity of the fluid, ¢ is the porosity of the matrix, k is the permeability tensor, g is the
source term, and g is the gravity vector.

2.1.2. Poro-Elasticity

Poro-elasticity is the theory describing interaction between porous media and fluid flowing
through. Equations of poro-elasticity relate strains of a solid matrix with stress in solids and
pressure of liquid. Starting point in obtaining the mechanical formulation is the momentum con-
servation equation for solid skeleton and pore fluid:

V-o+pg=0, (2.4)

where o is the total stress tensor.
Adapting the infinitesimal strain theory, strain tensor € can be expressed through displace-
ment vector u as follows:

€= %(Vu+VTu). (2.5)

7
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Much of the poro-elastic theory comes out from the work of Biot [11]. It states that the de-
formation of poro-elastic media is caused by variation of the effective stress ¢”, which is related
to the total stress o by the fluid pressure p and the Biot coefficient a:

o=0"-alp, (2.6)

where I is the identity matrix. Expression 2.6 can be further extended by incorporating con-
stitutive relation between the effective stress ¢” and strain tensor e by means of fourth-order
tangent stiffness matrix K:

oc=K:e—alp. (2.7)

As failure phenomenon in reservoirs is commonly modeled through activation of faults and
growth of fractures, plastic deformation is disregarded. Non-damaged reservoir rock is as-
sumed to behave elastically, and Hooke’s law is adapted as a constitutive relation. It can be
written in terms of the Lamé parameters A and u:

o =2ue + Atrace(e)l — alp . (2.8)

Equation of poro-elastic equilibrium is derived by combination of the momentum conserva-
tion equation 2.4 and definition of the total stress 2.6:

V-o"+pg-aVp=0. (2.9)

Material parameters such as porosity and permeability differ with changes in pressure and
strains. Porosity update can be modeled as follows [19]:

(a—¢o)(1-a)

X, (p=po), (2.10)

p=ddo+aley,—€po) +
where K} is the drained bulk modulus, and €, = €17 + €25 + €33 is the volumetric strain. Advantage
of this formulation is that by equating a to 0, we can perform one-way uncoupling of mechanical
problem from flow.

Another approach for modeling the porosity change was proposed by Jaeger et al. [51]. They
define the porosity change by means of the bulk compressibility of the fluid filled matrix C, the
bulk compressibility of the rock-forming minerals C,,, the pressure inside the pores p,,, and the
confining pressure p,:

¢ =¢po—[(1 = o) Cpc = Cl(pc — pp) - (2.11)

Deformation of the rock affects its permeability. The latter can be calculated by David’s
model [22]:
- (i)” (2.12)
k=ko %) .
where ko and ¢ are the reference permeability and the porosity of porous media respectively,
and n is a fitted parameter. Another method to determine the permeability was proposed by
Carman[15]. It was developed considering flow through a porous media, similar to a flow through

a bundle of capillary tubes. It states:

_ 1 ¢
- T (2.13)

where ky is the factor depending on a pore shape and a ratio of length of actual flow path to soil
bed thickness, and S is a specific surface area.
Fluid density is related to the pressure through its compressibility:

pr=prol—=CrAp), (2.14)
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Figure 2.1: Artistic representation of flooded and cooled zones around the injection well and growing hydraulic frac-
ture

where Cy is the compressibility of the fluid, p o and p are the initial and current fluid densities
respectively.

Coupling between mechanical and flow problems is performed by update of the pressure p
and the effective stress ¢ in a flow-to-mechanics direction and by update of the permeability
k, porosity ¢ and fluid density p s in mechanics-to-flow direction.

2.1.3. Thermo-FElasticity

Thermo-elasticity describes the effect of changes in the stresses and displacement of the body
due to changes in its temperature. Theory of thermo-elasticity resemble poro-elasticity for the
following reasons:

1. Temperature change in isotropic body, similar to pressure change, creates normal strains
equal in three principal directions and zero shear.

2. Bothtemperature and pressure fields are governed by dissipation-type equations.

The effect of the temperature change plays significant role in development of a fracture.
Fluids injected into a well during waterflooding operations normally come at lower temperature
than the reservoir. Filtration of the injected fluid from existing fracture into the formation cools
down the rock within a flooded zone. The cooled region grows as more fluid is injected (see fig.
2.1). Reservoir rock within cooled region contracts, leading to reduction of horizontal stresses
in all directions. Reduced minimal horizontal stress o, results in lower pressure needed for
fracture toinitiate and to grow, and as a result, the larger fracture extent.

The theory of thermo-elasticity was developed by Duhamel in 1833 [28]. Temperature change
inside a solid piece of rock leads to its expansion or contraction depending on the value of tem-
perature difference:

e=-p(T-Ty), (2.15)

where g is the second-order thermal expansivity tensor. Combination of thermo- and poro-
elastic strains yields:

1 v a
- - — I-—Ip-pBoI, 21
€ 2 o o V)trace(e) 3 p—po (2.16)



10 2. Theory and Numerical Schemes

where K is the macroscopic bulk modulus and 6 is the temperature difference T — T,. Inversion
of the equation 2.16 yields following expression for stresses:

o =2ue + Atrace(e)I — alp — BOI. (2.17)

Following Noorishad et al.[77], equation accounting for fluid and heat flow is obtained by
combination of the mass conservation equations (2.1) with the total energy conservation equa-
tion, where thermal equilibrium between fluid and solid skeleton is assumed:

0 K
E(PC)M"'PfCUfH_f'(Vp_Pfg)‘VT:V'KM‘VT» (2.18)

where T is the temperature, (0C) ) and K, are the specific heat capacity and thermal conduc-
tivity of the fluid-filled media, defined as

(PCpm = (prCyf + (1 -¢P)psCys
Km = ¢pKs+ (1 — P)K.
In the above equations, C, r and C, are the fluid specific heat capacities, and K¢ and K are the
thermal conductivity of fluid and solid.
Change in the rock temperature trigger variation of its porosity. In accordance with Coussy
[19], equation 2.10 is modified to account for the thermal effect:
(@—¢o)(1—a)
Ka

(2.19)

¢ =po+ale,—€yo) + (p—po) —3PAT . (2.20)

2.2. Fracture Mechanics

Let us consider a finite body with a crack in the middle. This body is subjected to the global
tensional stress o applied at the boundaries. Presence of the discontinuity leads to intensifica-
tion of stresses at sharp edges. Increase of stress value in the near-tip area ¢ up to the material
tensile strength oS leads to development of a plasticity zone. The theory of fracture mechan-
ics distinguish following scenarios of material failure in such setting. The classification given by
Pluvinage is followed [85].

1. The plastic zone around the tip is relatively small. Material fails as a result of fast and
unstable fracture growth. This process is commonly modeled by means of Linear Elastic
Fracture Mechanics (LEFM).

2. The plastic zone is relatively wide, but it does not reach boundaries of a specimen. In
such case, failure mechanism is described by the laws of elasto-plastic fracture mechanics.
Nevertheless, LEFM with correction of the plastic zone gives a reasonable solution to this
problem.

3. The plastic zone reaches the edges of the specimen and has a shape of stripes originating
at the fracture tips.

4. The whole specimen is subjected to plasticity. Failure mechanics problem can be solved
through the limit state analysis.

In problems of hydraulic fractures, the material state can vary from 15t to 2", depending on
material properties and load values.

In figure 2.2, different modes of fracture opening are shown. In mode |, the displacement of
the fracture surface is perpendicular to the fracture plane. Mode Il takes place when the dis-
placement of the fracture is parallel to the fracture plane and perpendicular to its front. Mode
Il occurs when displacement of the fracture is in the plane of the fracture and parallel to its
front. Three modes can also combine into mixed modes.
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Figure 2.2: Modes of the fracture opening (Source: G. Pluvinage. Elasto-plastic mechanics of failure. In translation.
Page 16.[86])

2.2.1. Stresses in the Near-Tip Zone

The three basic modes of crack deformation can be more precisely defined by associated stress
ahead of the crack tip. In current subsection, a 2D specimen with pre-existing crack is consid-
ered. In such case, only mode | or Il are possible. Polar system of coordinates is adopted. So-
lution to the equilibrium equations 2.9 for stresses in the near-tip area defines tangential ogg,
radial o, and shear stress 7,4 before failure as:

! [K;(1+ cos8) —3K;sinf] cos 0
Tpg = - Z
0 amr " 2
1 0
0, =——— | K;(3-cos0) + K;;(3cosf@ —1)sin— | , 2.21
" ov2nr ! " 2 ( )

. 0
T,0= [K131n0+KH(3c030—1)]cos§,

2V2nr

where 6 is the angle between the fracture plane and a line connecting fracture tip with the point
of interest, r is the distance from the tip to this point (see figure 2.3), and K; and Kjj are the Stress
Intensity Factors (SIFs) for mode | and mode Il respectively.

2.2.2. Stress Intensity Factors
K, Kip and Kjyp are formally defined as [89]:

K= lirr(1)v27tr0yy(r, 0),
r—
I<H = }ﬂlil(l) \% 27”‘ny(7', O) ) (2.22)

Ky = lim v2rroy(r,0),
r—
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Figure 2.3: Fracture geometry for analytical solution of stresses around the crack-tip

where values in the brackets are the distance r from the crack tip to the point and the angle
of deviation 6. Analytical solutions for Kj, Kj; and Kjj; for different geometries are derived and
available in the literature [66, 89].

The Stress Intensity Factor for a through crack of length 24, at right angles, in an infinite
plane, subjected to a uniform stress field o (see figure 2.3) is [89]:

Ki=ovna. (2.23)

By means of the analytic solution 2.21, stresses around the fracture tip at an arbitrary radius
r and different combinations of unitless K; and Kj; could be calculated and plotted in figures 2.4.
Effect of the Stress Intensity Factors (SIFs) on the stresses is clear in these plots. Variation in
SIFs permits reproduction of the stress fields typical for specific fracturing mode. In that way,
mode | fracture (K7 > 0 and Kj; = 0) has the highest tangential and zero shear stresses in front of
the tip (figure 2.4a). This direction coincides with the principle plane as the stress normal to it
has the maximum value and the shear component equals to zero. For mixed mode I+ll, where
both K; > 0 and K;; > 0, the principle plane is deviated from the fracture direction (see figures
2.4b,c). For the pure mode Il (fig. 2.4d), the shear stress 7,4 maximizes on the fracture plane,
while maximum tangential stress is acting on the plane at approximately —70°. The direction of
failure and mode in which material fails depends on its brittleness. Fracture in a brittle material,
such as glass, extends by splitting in the direction of —70° (mode 1), while ductile material fails
plastically, developing the shear band in the direction of 0°.

The simplest failure criterion is defined by three SIFs and has the form f (K, Ky, Kiy) = 0. For
mode |, this criterion is

Ki <K, (2.24)

where K. is the fracture toughness. Equation 2.24 is known as the Irwin’s criterion for linear
elastic failure [50].

2.2.3. Griffith Energy Criterion

The Griffith energy criterion [39] states that unstable propagation of a crack decreases strain
energy of a system and takes place when incremental release of energy dW is greater than in-
cremental increase of surface energy dW:

aw =dw;. (2.25)
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Having equations for release of energy and surface energy, Griffith arrived at expression for
critical stress applied at infinity o, which led to fracture propagation:

2Ey
Ocr = —a (plane stress),
(2.26)

2Ey

Opr =1 —————
er 7(1-v%)a

(plane strain),
where E is the Young’s modulus, y is the surface energy density, v is the Poisson’s ratio, and a is
the fracture half-length.

2.2.4. Strain Energy Release Rate
Strain energy release rate per crack tip G can be expressed through the incremental release of
energy dW:

w
g2 (2.27)
2a
Then instability condition can be re-written in terms of strain energy release rate G:
G=2y. (2.28)

Theoretically, the fracture propagates as soon as the energy release rate G becomes equal to
2y. However in practice, fracture propagates at much higher values of energy release rates. The
reason behind is occurrence of plastic deformations near the crack tip. If this additional plastic
work y,, is to be taken into account, the instability condition is [81]:

G=2y+y,, (2.29)

and critical stress at infinity is defined as:

Ocr=

EG .
Ocr = R (plane strain).

For brittle materials, surface energy term dominates and G = 2y, while for ductile materials,
plastic termis the dominating one G = y,.

Irwin showed that the strain energy release rate G and the SIFs are related through the fol-
lowing expressions:

(plane stress),

(2.30)

Kf1-v?)
Gi=—,
nE
K?(1-v?)
G = HT (plane strain), (2.31)
_ K5 (1+v)
111 —E .

If mixed mode is taking place, the total strain energy release rate can be calculated as:
G=G;+Gir+Gypr . (2.32)
Then the Griffith energy criterion modified by Irwin looks like:
G=Gy, (2.33)

where Gy, is the fracture energy, which is material specific.
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2.2.5. Strain Energy Density Criterion
When mixed mode failures is expected, Sih’s criterion [93] is appealing. It is based on the local
strain energy density concept. The energy density S is defined as follows:

S dUu

S 2.34

r dv ( )
where dU/dV is the change of strain energy per unit volume and r is the distance from the frac-
ture tip. At the moment of failure, this density reaches the critical value S.,. Change in strain
energy at distance r from the tip, inits turn, is defined by the stress intensity factors. After some
elaborations, one arrives at the expression for the strain energy density:

2 2 2
S= duI(I +2a12K1 Ky + aggKH + a33KIH , (235)
where coefficients a1, aj2, az» and ass are defined as:

a;; = (1/16w)[(1+cosB)(x —cosh)],

ajp = (1/16u)2sinfcosf — (x —1)],

azy = (1/16w)[(x +1)(1 —cosB) + (1 + cosB)(3cosf —1)],
asz =1/4u.

(2.36)

Here, x = (3—v)/(1 + v) for plane stress and x = 3 —4v for plane strain conditions, and u is the
shear modulus.
Sih’s failure criterion states:

1. Fracture propagates in the direction of the minimum strain energy density at angle 6,:

N 0%S
% =0, W >0 at 6= 9() , (237)

2. Fracture grows when strain energy density S reaches its critical value S,;:

S0 =06¢) =Scr. (2.38)

Plotting the strain energy density at some arbitrary radius r versus the deviation angle 6,
figure 2.5 is obtained. Employed values of SIFs are similar to the one used in figure 2.4. For com-
parison purposes, tangential stress ogg from figures 2.4 is also present in figures 2.5. It is seen
that introduction of K;; # 0 provokes second local minimum. It should be noted that Sih’s failure
criterion is applicable for ideally brittle materials failing in tension. Thus, the curve minimum,
corresponding to the tensional tangential stress, should be chosen.

After comparison of two curves, one can conclude that the direction where strain energy
density reaches its local minimum coincides with the direction of local maximum in tangential
stress ogg. The failure criterion for mixed | + Il mode written in terms of the hoop stresses
around the crack tip was proposed by Erdogan and Sih [31]. In their approach, fracture grows in
the direction of maximum tangential tensional stress ogg.

2.2.6. Irwin’s Correction for Plastic Zone

Aswas stated previously, the area of the plastic zone around the crack tip can vary. For high yield
strength materials, such zone is relatively small and ,therefore, is usually ignored. For materi-
als with low yield strength, plasticity can develop considerably, and principles of elasto-plastic
fracture mechanics should be taken into account.
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Figure 2.6: Irwin’s equivalent crack and plastic zone size (Source: G.Pluvinage. Elasto-plastic mechanics of failure. In
translation. Page 33. [86])
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Irwin [50] computed the size r, of the plastic zone by limiting the maximum possible stress
to the yield strength oy (see figure 2.6):

1 (K \?
=—|—] . 2.39
Ty 27 (ay) ( )
Artificial restriction of the stresses in the plastic zone up to the material yield strength unbal-
ances the force equilibrium. Balance could be gained again by shifting the stress field on a dis-
tance equal to ry. This leads to a fictitious prolongation of the fracture on the distance equal to
the radius of the plastic zone (see the hatched fracture contour in figure 2.6):

Aeff=a+ry=¢a, (2.40)

where ¢ is the Irwin’s correction factor calculated as:

2

(o
p=1+ 207 (plane stress),
o

y (2.41)

o
=1+ 852 (plane strain).
o

Y

In elasto-plastic fracture mechanics, Irwin’s failure criterion 2.24 is transformed into:
K<K¢, (2.42)
where K¢ is the equivalent stress intensity factor, corrected by Irwin’s factor ¢:
K=K /@. (2.43)

The drawback of the discussed approach is in its limited applicability. It works well only when
the plastic zone size is smaller than the elastic region ahead of the crack. This restriction is
removed by introduction of cohesive forces at the crack tip.

2.2.7. Cohesive Zone Theory
Cohesive zone model was developed to take plastic relaxation at the fracture tip into account.
Initially, this model was proposed by Barenblatt in 1959 [5] and later by Dugdale in 1960 [27].
It is assumed that the cohesive forces at the tip depend on a distance between atoms. In the
ideal crystal, the cohesive forces are null when the inter-atomic distance y equals to the same
distance at rest. When the separation § increases, the cohesive forces o grow substantially until
the distance reaches the value of §, (see figure 2.72a). Further separation of atoms leads to de-
velopment of unrecoverable damage and reduction of the cohesive forces. After reaching some
critical separation 6,4, 0 vanishes and discontinuity propagates. The whole area under the
stress-displacement curve should be equal to the fracture energy Gy.. Similar approach is used
in the cohesive element method, where interface elements with pre-defined o — § relation are
dynamically inserted in-between finite elements in front of the existing fracture tip.

The model of Barenblatt was not based on the pattern of cohesive stresses distribution, but
on the absolute value of cohesion modulus C, which is a material constant. C can be simply
related to the surface tension y, Young’s modulus E and Poisson’s ratio v:

nEy
1—v?

. (2.44)

Barenblatt’s propagation criterion states that fracture propagates as soon as the stress inten-
sity factor at the fracture tip K reaches the value of C/x.
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Figure 2.7: Visualization of the cohesive forces theory. (a) Diagram for inter-atomic separation - cohesive forces
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Page 35.[2])

Dugdale, in his approach [27], assumed that the cohesive stress is constant along the tip and
equals to the yield strength of the material oy. In his approach, the crack artificially extends on
a distance s, and the yield stress oy is applied at this extension (see figure 2.7b). Distance s is
defined such, that the stress singularity at the tip of the effective fracture disappears, and SIF
becomes equal to zero.

Based on the proposed geometry, Dugdale found the expression for the distance s:

2. .2 2
g e ke (2.45)

where o is the stress applied at infinity.
Based on Dugdale’s model, the equation for crack opening 6 at the original tip can be de-

rived:

8aocy o
= In |sec
E 20'y

) (2.46)

Wells [113] proposed that the process of fracture propagation is controlled by large strains
around the fracture. He also suggested that the fracture opening near the tip is the measure
of these strains. The critical deformation criterion states that fracture starts growing as soon as
its opening 6 reaches the critical value 6 .. Translation between critical fracture opening §. and
energy release rate G, can be established as follows:

4G,

6c .
oy

(2.47)

Model of Barenblatt-Dugdale for elasto-plastic deformation permits calculation of follow-
ing properties: 1) stress distribution around the fracture tip; 2) dimensions of the plastic zone;
3) fracture opening near the tip. Output of such model is more suitable for the experiments than
the elastic fracture description, even with Irwin’s plasticity correction factor [86].

2.2.8. J-Integral

Due to difficulties in calculation of stresses in close proximity to the crack tip for a nonlinear
elastic or elasto-plastic material, an approach based on an integral over the area around the tip
was developed. The J-integral is intended to calculate the strain energy release rate for a crack.
Itis defined as:

]=[(de—t-a—uds , (2.48)
r dy
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Figure 2.8: Way of calculating the J-integral in a general domain

where W = [0;;de;; is the strain energy density, t = on is the surface traction vector acting on
the contour T, n is the normal to this contour, o is the stress tensor, and u is the displacement
vector. J integral can be thought as the energy flux in the failure zone. Equation for the flux 2.48
was independently developed by Cherepanov [18] and Rice [88]. The line integral is evaluated
in a counterclockwise direction starting from the lower crack surface and ending on the upper
flat surface (see figure 2.8). For linear and nonlinear elastic materials the J-integral is path T
independent.
For linear elastic material, J-integral equals to a change of potential energy:
oIl

J=6=-57. (2.49)
For material with a fracture at rest, change in potential energy equals to zero. The fracture
starts growing when J-integral reaches its critical value J;.:

J=JIc, (2.50)

which is the J-integral related failure criterion. Parameter J;. is material specific and indepen-
dent of load type and geometry.

2.2.9. Fracture Orientation

Fractures tend to grow in the direction perpendicular to the minimum in-situ stress. However,
the orientation of the principal planes near the borehole can differ from orientation in the far-
field. In practice, fracture initiates in the plane along the wellbore, and as it propagates, it re-
orients itself to unaltered in-situ stress. The latter direction would normally coincide with the
direction of natural fractures, formed by current stress state. The difference in directions of nat-
ural and induced fractures is easily distinguished at the wellbore images (see figure 2.9). Orien-
tation of the induced and natural fractures is used to determine the principal stresses direction.

Series of the lab experiments on hydraulic fracturing [1, 30, 42] gives insight into the nature
of turning fractures. Turning, or nonplanar fractures, typically have wall waviness or roughness
along the surface within the reorientation plane [1] (see figure 2.10a).

Daneshy [21] demonstrated that the wall waviness and existence of the steps on a fracture
face is a proof of the mixed mode of failure, due to tension and shear.
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Figure 2.9: Wellbore images of Yufutsu field well in Japan. (a) Example of drilling-induced fracture developed in a
subvertical well and (b) drilling-enhanced natural fractures developed within the tensile region of the wellbore wall.
Fractures are indicated with red arrows. Although data was taken from the same field and similar type of wells,
direction of natural and induced fractures differ. Source: Barton et al. [8]

(b)

Figure 2.10: Colored fracture in lab specimens sawed in halves. (a) Steps and roughness along a reoriented fracture
and (b) smooth single planar fracture. Source: Abass et al. [1]
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For vertical wells and horizontal wells drilled towards the maximum horizontal stress, the
directions of the minimum horizontal stress in the near-well and far-field zones coincide. As
a result, hydraulic fracture is planar. Experiments done by Abass et al. [1] confirm that such a
fracture is single and smooth, with full communication with the wellbore (see figure 2.10b).

2.2,10. Adopted Concepts of Fracture Mechanics
Following concepts of fracture mechanics were adapted in the current work:

e Linear Elastic Fracture Mechanics concept. As we are concerned with crack propagation
in a brittle rock, plasticity zone, developing around the crack tip, is insignificantly small
compared to the rest of the rock which behaves elastically.

e Irwin’s criterion for linear elastic failure of mode | K; = Kj. [50]. Assumption of mode |
failure is fair for hydraulic fracturing phenomenon. Application of chosen failure criterion
is strictly limited to brittle rock. Different failure criteria should be chosen when ductile
material, such as shale, is considered.

e Erdogan and Sih’s approach for determination of fracture propagation direction [31]. Ac-
cording to their approach, brittle fracture grows in the direction of the maximum tangen-
tial tensional stress ggg. This approach is claimed to be suitable both for mode | and mixed
mode fractures in brittle material.

2.3. Numerical Modeling Techniques

In this section, brief review of numerical techniques commonly used for modeling fracture growth
is done. Main focus is given to the techniques that permit simulating long fractures on the large
reservoir scale.

2.3.1. Finite Element Method

The most common way of modeling fracture growth is by means of Finite Element Method
(FEM). The formulation of this technique requires solution of a system of algebraic equations.
In the scope of this approach, the whole domain is discretized into finite elements. Unknowns,
such as displacements, are defined in elemental vertices. The approximated form of the govern-
ing equationis written for each separate cell and then included into a larger system of equations
corresponding to the whole geometry.

There are a number of ways of treating fracture in FEM methodology. The most simple ap-
proach allows crack to follow the path between neighboring finite elements. Upon opening a
new fracture segment, the vertex shared by two elements next to the last fracture segment
duplicates. It enables a separation of these elements (see figure 2.11). An advantage of such
technique is a constant number of finite elements, although the number of nodes and topology
changes.

The weakness of such method is in the fact that the fracture is obliged to follow the path be-
tween finite elements which leads to artificial tortuosity of fracture trajectory. It can be avoided
by introduction of re-meshing algorithm. In scope of the re-meshing procedure, mesh is rebuilt
on each propagation step in such way that the fracture always follows the exact theoretically
defined direction. Advantage of the re-meshing is also taken for re-arranging elements with dif-
ferent sizes along the fracture. Having dense mesh closer to the tip helps to reproduce stresses
and strains in a more accurate manner, while having larger elements further away helps to save
computational time (see figure 2.12).
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(a) Before opening (b) After opening

Figure 2.11: 2D illustration of the node duplication upon fracture segment opening

Figure 2.12: Crack growth modeled using re-meshing (Source: Garzon et al., 2010 [35])

2.3.2. Finite Element Method with Contact Plane

A significant drawback of using only finite elements for cracks is the inability to model inter-
action between two opposite fracture faces when the fractures closes. This problem is solved
by introduction of contact surfaces on the fracture segment. It enables having effects of co-
hesion, friction, and mutual non-penetration as described by Borja [13]. Thus, opening a new
fracture segment also causes adding a new contact surface. Mathematically, it leads to addition
of a normal and tangent traction components ¢y and ¢, and normal and tangent gap compo-
nents gn and gr into numerical scheme (see figure 2.13a). A similar idea of a contact-type frac-
ture growing in-between finite elements was used by Settgast et al. [91] in implementation of
GEOS, which is a multi-physics simulator developed at Lawrence Livermore National Labora-
tory. However, in their approach, a fluid flow is simulated only along the fracture, while the loss
of fluid from the main fracture into combination of natural fractures and porous rock material
is modeled through a simple sink term. Unlike them, in the current model the fluid flow is mod-
eled across the whole domain, including induced and natural fractures and porous rock. Fluid
flow is simulated by means of Discrete Fracture Method. Detailed explanation of the adopted
approach is given in chapter 3.

Itisimportant to mention, that positive values of gn and ry correspond to fracture "closure™:
virtual penetration of one fracture face into another. The mechanical behavior of a closed crack
can be described through relation between traction forces and gap components as shown by
Garipov et al. [33]:

tn=N(gN),
tr=%(ty) for g:#0 (slip state), (2.51)
tr <F(ty) for g,=0 (stickstate),

where % is a friction law and .4 is a function describing the relation between normal gap and
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(a) 2D representation of a contact (b) Model with contacts on fracture

Figure 2.13: lllustration of a contact and its integration into FE model (Source of 2.13a: Garipov et al., 2016 [33])

normal traction.
Advantages of the discussed method are given below:

¢ No need for remeshing.
» Ease-of-formulation.
e Both open and closed fractures can be modeled
Some disadvantages of this method persist:
e Changing topology.
e Requires conforming mesh.
e Difficulty in determination of principal planes at the fracture tip.

The latter is happening due to difficulty in representing the stress singularity at the tip by
common bilinear finite element. That problem is commonly tackled by using the quarter-point
elements or elements with enriched strains.

2.3.3. Quarter-Point Element
Barsoum [7] and Henshell and Shaw [45] proposed the use of the quarter-point isoparamet-
ric elements in the vicinity of the crack tip to have a good representation of the crack-tip field.
Moving the mid-side node towards the crack tip by a quarter size helps to reproduce the 1//r
linear-elastic singularity for stresses and strains [40] (see figure 2.14b).

Combining analytic equations for plane strain displacement at quarter point A and vertex B
through K; and solving them for K, results in following equation:

E |21
K]—m T(BUA—UB). (252)

The advantage of such method is no need in explicit extrapolation of the SIF values further than
from one element behind the crack tip. Shih [92] showed that numerical K; values for the dou-
ble edge crack strip and three point bending specimens to be within 1.2% and 1.1% of analytic
values.
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(b) Shape functions for bilinear (red), mid-point
(a) Quarter-point singular elements. Source: (green) and quarter-point elements (blue)
Guinea et al., 2000 [40]

Figure 2.14: lllustration of a quarter-point element

2.3.4. Enriched Element

Another way of retrieving the theoretical stress field around the crack tip is done via element
enrichment. The formulation involves incorporation of known beforehand analytic expression
for the displacement field into the conventional 4-node (in 2D) finite element approximation for
the displacement. Benzley [10] proposed following expression for it:

4
u; = Z Nkul-k+R(a, b)
k=1

4 4
K; (Qli - fk@) +Kig (in - fk@)] ) (2.53)
k=1 k=1

where
i-1,2;
u; - displacement in the 1 and 2 directions;
Kj, K7 - intensities of singular terms;
Qi - specific singular assumptions;
N - shape functions;
u;i - displacement in the element’s vertices;

R(a, b) - set of functions equal to 1 on boundaries adjacent to "enriched" elements, and O
on boundaries adjacent to "bilinear" elements;

Qyix - the value of Q,; evaluated at node k;
a, b - local coordinates.

Benzley did a series of simulations of a plane strain tensile strip with a side crack and compared
them with the reference solutions. Figure 2.15 gives a comparison between finite element so-
lution with the closed form solution for Stress Intensity Factor K;. Results are in fair agreement
with each other.
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Figure 2.15: SIF as a function of crack length (Source: Benzley, 1974 [10])

2.3.5. Extended Finite Element Method

The idea behind XFEM is the local enrichment of finite elements crossed by a fracture. Fracture
path becomes mesh independent. Fracture coming to an element leads to addition of extra de-
grees of freedom in the vertices and extra term into approximation of displacement function u
(see figure 2.16a):

u= ZNkuk + Z Mgray . (254)
kel kcl*

strd. FE approx.  enrichment

Here, u is the approximated displacement function, Ny is a standard FE shape function, uy is the
displacement in the node k, I is the set of all nodes in the domain, Mg is the local enrichment
function of node k, a;. is the displacement of the enrichment at node k, I* is the nodal subset of
the enrichment. The enrichment function Ms(x) consists of continuous blending function f"(x)
and discontinuous Heaviside function H(x). Graphic representation of the last two is given in
figure 2.16b. Introduction of the jump function Mg into the formulation of the displacement
field permits having discontinuity init.
Following, few advantages of XFEM over standard FEM are given:

e Can have nonconforming mesh.
e Constant topology.
e Mesh independent fracture path.
At the same time, method poses some drawbacks:
e Drastic changes to the FE code:

- Additional degrees of freedom.

- Additional Gauss points for integration.

e Computationally expensive.
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(a) Discontinuity S embedded in a fixed finite ele-
ment mesh. Shaded region 2 is the support of Mg

(b) Blending function f"(x) and jump function Ms(x)
for enriched triangular finite elements: (a) one node
in .; (b) two nodes in %,

Figure 2.16: Illustration of XFEM method (Source: Borja, R. I. Plasticity, 2013 [13])

2.3.6. Stress Intensity Factor in Finite Element Method Approach
There are three most commonly used approaches for SIFs determination in FEM environment:
1) displacement method, 2) stress method and 3) energy method.

e Stress method

As was previously mentioned in chapter 2.2.1, the analytic solution for stresses around
the crack tip is known (see equations 2.21). Inverting it, we can get an expression to esti-
mate the SIF K

« _ V2mr
KI = mau(rﬁ) , (255)

where

fxx(0) = cos(68/2)[1—sin(6/2)sin(36/2)],
fyy(0) =cos(0/2)[1 +sin(0/2)sin(36/2)] (2.56)
fxy(0) =sin(6/2)cos(6/2) cos(30/2) .

Similar expression for K}, can be derived. If exact values of stresses with corresponding
distances from the tip r are substituted into equation 2.56, exact value of stress intensity
factor K is obtained. As a distance from the crack tip becomes smaller, SIF approaches a
theoretical value. However, finite element method needs to have infinitely small elements
in the crack tip vicinity to be able to reproduce the stress singularity, which is not possi-
ble in practice. Therefore, estimation of SIFs from the closest to the tip element would
give erroneous number. Chan et al. [17] proposed an K extrapolation technique. They
stated that K} curve, obtained from stresses with increasing distance r from the crack tip,
rapidly approaches a constant slope. Then they used the intercept of the tangent to the
constant slope portion of the curve with the K} axis as the estimate of K;. The most com-
mon choice of the angle 0 is 0. Then K; can be estimated from stress o, and K from 7,
in the elements laying on continuation of the fracture plane as follows:

K; =V2nroyy,

(2.57)
Ki=V2nrtyy.
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e Energy method

Estimation of the SIFs by energy approach comes from the definition of J-integral (see
subsection 2.2.8). Rice [88] showed that for the mixed mode fracture under plane strain
condition the following expression holds:
1-v2

J=— (KZ+K2Z). (2.58)
Evaluating the J-integral along the contour around the crack tip gives an estimate of K;
and K;j; separately in case of pure mode | or |, or their combination in case of the mixed
mode I+1l. Individual estimation of K; and K;; under mixed mode I+l failure is hardly pos-
sible.

¢ Displacement method

Displacement method is similar to the stress method. The analytic expressions for dis-
placement around the tip are derived. Inverting them for K; yields:

2n Gu;
*:\/——l 2.59
Ky r f;0,v)’ (2.59)

£16,v) =cos(0/2)[1—2v +sin®(0/2)],
£(0,v) =sin(0/2)[2 - 2v —cos?(0/2)],

where

(2.60)

with u; = u and u, = v being the horizontal and vertical displacement correspondingly.
Above equations are written for plane strain conditions. If analytic values of displace-
ment were substituted in the above equations, exact value of K; could be obtained. As
finite element displacement is inaccurate at an infinitesimal distance from the tip, the ex-
trapolation technique is used. lllustration for the extrapolation method is given in figure
2.17. The average slope of the K} curve is calculated based on the values of displacement
of the elements which are sufficiently far from the crack tip to be affected by the stresses
distortion. The constant slope line is extended until intersection with the crack tip posi-
tion. Corresponding value of K} is accepted as Kj.

Common choice of angle 0 for estimation of SIFs is 8 = &; therefore relative vertical and
horizontal displacement v and u are evaluated at the fracture faces:

Kt = V2nE v
=i
4=V vr (2.61)
" V2nE u

In the developed algorithm, the latter approach is adopted due to its efficiency and compu-
tational cheapness. As the displacement data of the fracture segments is already in place, no
additional manipulation besides extrapolation is needed.

2.3.7. Adopted Numerical Approach
Based on the techniques discussed above, the developed model was built adapting following
approaches:

1. Finite Element Method with contact treatment of fractures. This combination is imple-
mented in geomechanical module of AD-GPRS and has been tested extensively on sta-
tionary fractures and faults [33].
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Ny —— KI* FEM approximation | |
~ o -——- KI* extrapolation line
* Extrapolated KI

h/2 ~ 3h/2 5h/2 7h/2 9h/2 11h/2 13h/2 15h/2 17h/2 19h/2 21h/2
Distance from the crack tip inwards the existing fracture

Figure 2.17: lllustration of the displacement extrapolation method. KI* are evaluated at the centers of the fracture

segments. Left extreme of the plot is the center of the element closest to the crack tip. Distance inward the crack is
increasing from left to right.

2. Displacement extrapolation technique for obtaining K values. From FE scheme, displace-
ment field is known. It can be used for evaluation of SIFs.
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3.1. Discretized Governing Equations

3.1.1. Flow Equation
In this section, the discretization of the flow equation adopted for the model is briefly reviewed.
Two-point flux approximation is used in calculation of flow rate between two adjacent volumes:

Qij=ATij(pi—pj), (3.1)
where i and j are control volume numbers, p; and p; are the pressure values in these volumes,
A= ﬁ is the fluid mobility equal, and T;; is the geometric part of transmissibility. The latter is
calcﬁlj;ted by means of Discrete Fracture Model proposed by Karimi-Fard [56]. T;; is given by:

aa Aik;
172 with a; = ! lni -f;, (3.2)
a1+ a D;

T, =

where A; is the interface between two Control Volumes (CV), k; is the permeability of i-th CV,
D; is the distance between the centroid of the interface and the centroid of the CV, n; is the
unit normal to the surface between two CVs and f; is the unit vector along the line connect-
ing the centroid of the interface with the centroid of the CV (see figure 3.1). Definition of the
transmissibility between fracture and rock CVs is done in similar way, with only difference that
the volumes of two elements can have different magnitudes. The permeability values k of the
fracture and the rock may also have large difference.

After integrating the finite-volume approximation of the flux 3.1 into the flow equation 2.3
and using the backward Euler scheme for time, we obtain:

p?;l‘rb;lﬂ _p?i(?bzr‘l
At

Vi=) Qij+qiVi, (3.3)
j

where V; is the volume of the element i, n and n + 1 are the current and the following moments
intime, At is the time step size, and j is summed over all adjacent control volumes.

3.1.2. Heat Equation
To model the thermal part, equations 3.1 are modified by changing the fluid mobility A for ther-
mal conductivity x and solving for temperatures T instead of pressures p. It yields expression
for the heat flux by conduction:

(Dij=KTl‘j(Ti—Tj), (34)

29
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A = 0 C2
/ L Dy =|CoC|
{ |
L ' Dy = |CoCs
¢ Dy = |GGy

Figure 3.1: 2D illustration of two point flux approximation

where T;; is the transmissibility defined previously. Discretized heat equation is similar to the

flow equation 3.3:
pﬁrl ok _p?i(l)?
At

Vi=) ®ij+q;iV;. (3.5)
j

3.1.3. Poro-Elasiticy Equation

The solution of the poro-elasticity equation is done by minimization of the potential energy I as
proposed by Wriggers and Zavarise [115]. It is done by equating the first variation of potential
energy to zero:

5H=f 0€: O'dQ—f 5upng—f5uidF—f 5ngde—f (égNtN+5thT)de:0. (36)
Q Q r Ts Ts

Here, € and o are strain and stress tensors in the unfractured body domain Q, u is the displace-
ment, gis the gravity vector, t)y and t are normal and tangential components of a traction force t
acting on a crack (same as internal boundary I'y), gy and g7 are the normal and tangential open-
ings of afracture, p is the pressure inside afracture, tis the traction acting on external boundary
I.

It is important to mention that the latter term in the equation 3.6 is present only when frac-
ture is closed, and two surfaces are in contact and push onto each other with 7 and 7. As soon

as the fracture opens and two surfaces separate, term | (6gntny +dgrtr)dl f vanishes. Then,
Ty

the only force acting on the internal boundary I'; is the pressure p inside the term [ ognpdrly.
Iy

Value of normal gap component gy is positive for situations when surfaces penetrate into each
other. Negative values of gy correspond to the fracture opening.
Nodal-based finite-element approximation used for displacements u:

u@) =) Ny&ug, (3.7)
a

where u, is the vector of nodal displacements and N, are shape functions. Gap function g is



3.2. Domain Discretization 31

approximated in a similar manner:

g&) =Y Nu(é)ga, (3.8)
a

where g, are the gap function values in the contact surface integration points.
Traction t and t7 in equation 3.6 are treated by means of Kuhn-Tucker conditions for Coulomb
friction[95]:

in=0, gNEO, l'N'gN=O,
O =|tr|-puitn=0,
0
gr=¢—@ 3.9
gr fatT (3.9)
$=0,
ED=0.

Here, u is the friction coefficient, @ is the yield function, which can have only negative or zero
value. First equation states that normal opening can happen only when having zero normal trac-
tion ty. The third and forth equations postulate that slip occurs only in the direction opposite
to applied tangential traction. The last equation enforces the condition that slip can occur only
when ® = 0. When |t7| < uty, perfect stick occurs and gr = 0.

The method used to impose the contact and stick/slip conditions is penalty method. Previ-
ous equations are replaced with:

IN=ENEN,

0 1.
5§ D=}, 3.10
gr fdtT e T ( )

(=0, ®<0, (D=0,

where gy and e7 are penalty parameters.
When "slip" occurs, the traction vector is evaluated by return mapping algorithm [95]:

n+l1

Iy =UEN,

il = v er (gt - gh,
(Dtrial — |t¥ial| _Nt]’\1[+l , (311)

t¥+1 — t;gial if thrial <0,

t¥+1 — 'utlr\l]+1 if cI)‘[riall >0.

Although in the developed model, we deal with mode | fractures, where sliding is not acommon
phenomenon, having the return mapping algorithm enables modeling both hydrofractures and
pre-existing natural fractures and faults.

3.2. Domain Discretization
In the current section, description of modification to the meshing and solving technique for a
stationary fractures is given. This modification comprises a core of the proposed approach.
The flow equations are solved by finite volume technique, and the mechanics equations are
solved by finite element method implicitly. Both methods of solution share the same computa-
tional grid. Smoothness of a fracture path is achieved by using an unstructured grid. Although
the reservoir simulator handles 3D formulation, the model was developed for 2D case by as-
signing the third dimension equal to unity. A 2D illustration of the grid type can be seenin figure
3.2b, while actual grid used for simulations is given in figure 3.4c.
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Figure 3.2a shows the physical domain with the curved fracture in it. Figure 3.2b shows
the discretized domain and the mesh that later would be used by flow and mechanics module
in different ways. The geomechanical grid and associated unknowns are shown in figure 3.2c.
Non-fractured domain consists of finite elements with displacements u defined in their vertices.
Fracture, inits turn, is modeled as a contact surface between two finite elements. Each fracture
surface has associated traction vectors ¢, whose locations coincide with the Gauss integration
points. Different nodes are used to represent the displacements on each side of a single fracture
surface. Upon activation of a next fracture segment, nodes at the open side of this segment
duplicate, which makes the separation of two neighboring finite elements possible (see figure
2.11).

The flow grid, shown in figure 3.2d, is produced as a modification of a typical flow grid for
Discrete Fracture Model (DFM) [56]. In DFM, continuous rock is discretized by finite volumes
with the pressure p, density p and viscosity u defined in cell centers. Each fracture segment
has assigned a finite volume with corresponding unknowns. In my approach, a fracture propa-
gates along the boundaries of the FEs/FVs. These boundaries are named the "virtual" fracture
segments. The classical DFM scheme is modified in such a way that all these boundaries are
assigned additional finite volumes from the beginning. By doing so, a single discretized domain
is prepared for any possible fracture geometry. Volumes of these "virtual" segments are kept
smaller than the non-fractured rock finite volumes. Reason for adding all the finite volumes
from the beginning and not doing it dynamically is sensitivity of the DFM to volume changes.
A sudden increase in total system volume can easily destabilize numerical scheme for flow.
Adding the finite volumes in one step increases the computational as extra unknowns are added
to the system of equations. That is the main "price" of the current fracture model payed for no
need in re-meshing. Improvement of the finite volume generation scheme should be treated as
one of the main priorities in further development of this model. Advantage of such approach
is a constant size of the system of equations for flow and no need in its re-assembly after each
fracture segment opening or closing.

When afailure criterion is satisfied, fracture propagates one element further from its tip. In
mechanical grid, it leads to addition of a contact surface with associated traction vectors. The
flow grid is not affected by opening or closing of this segment as it already has finite volumes
assigned at every possible position. The permeability of the "activated" finite volume changes
from some small value, corresponding to non-fractured rock, to much higher value, for fracture.
The latter leads to an update of the transmissibilities around the tip. Any analytic function de-
scribing the fracture conductivity could be employed in the model.

3.3. Fracture Opening Algorithm
Fracture opening algorithm is designed to open or close fracture segments on each Newton it-
eration. The flow chart with this algorithm is given in figure 3.3.

Fracture segments can have three types of activity markers. Marker 0 is assigned to non-
active fracture segments and corresponds to non-fractured rock. Fracture segments activated
during current time step get marker 1. Initially, all non-active "virtual" segments have the marker
0. Segments of pre-existing fracture have marker 2. When fracture append any non-active seg-
ment, its marker is updated from 0 to 1. A segment can be erroneously activated during a New-
ton iteration. The reason for this could be an overshoot in the pressure. If that happens, in one
of the following Newton iterations pressure solution retracts. As a consequence, marker of an
erroneously activated segment is also retracted from 1 to 0. As a result, the fracture can both
extend and shorten during one time step. When the solution at the end of a time step converges,
all markers 1 are updated to 2, which means that the fracture can not be shortened anymore.

Apart from markers, active segments (segments with markers 1 and 2) have also mechanical
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(a)Physical domain (b)Unstructured grid

(c)Grid for mechanics  (d)Extended grid for flow

Figure 3.2: lllustration of a grid structure

statuses. Again, three mechanical statuses are possible. Status 2 belongs to an open fracture,
faces of which are not in contact. Status 1 corresponds to two surfaces that are in contact and
slide along each other (so called "slip" condition). Status 0 is assigned to two surfaces in contact
which are stick to each other.

Convergence of Newton iteration is checked separately versus following norms: [*°-norm
for the pressure and temperature, and 2-norm for mechanics. Based on the stress field from
each Newton iteration, decision is made whether to activate a new segment or not. If failure
criterion is satisfied, one more segment is added, which triggers update of conductivity and as-
sociated transmissibilites values. In mechanical scheme, it leads to renumbering of nodes and
addition of new variables gn and g7. In the next Newton iteration, updated scheme is solved.
Correctness of a segment activation during previous iteration is evaluated in current iteration
and is based on the mechanical statuses of a segment. If recently activated segment with marker
1 has mechanical status 2, then solution is correct. In contrast, if an activated segment is me-
chanically closed (status 0 or 1 ), then the previous solution was wrong and this segment is de-
activated. Conductivity and associated transmissibilities of this segment are also retracted.

3.4. Model Geometry, Boundary and Initial Conditions

Reservoir is modeled as the 3D plate with unity thickness whichis treated as 2D. As the problem
is symmetric with respect to a plane perpendicular to the fracture and originating in its center,
only half-space is modeled. The size of the model is chosen to be 300 m in Y direction and 150 m
in X direction. Fracture starts at the center of the left edge. Pre-existing crack has a length of 5
m.

Boundary condition for the flow problem is no flow through the left edge and constant pres-
sure at the certain radius from the fracture center (r = 100 m). Reason for having an aquifer at
the circular boundary is replication of the analytic solution assumptions, namely radially moving
pressure penetration front. The reason for keeping the flow boundary far from the mechanical
boundary is to reduce the effect of pressure change on the stresses. At the center of the pre-
existing fracture, water is injected with a constant flow rate. lllustration of the domain size and
boundary conditions for the flow problem can be seen in figure 3.4a. Initial conditions for the
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Figure 3.3: Algorithm of fracture propagation
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Figure 3.4: Model dimensions and boundary conditions for a) flow and b) mechanics problems; (c) employed unstruc-
tured grid.

flow problem is constant reservoir pressure p..s across the whole domain.

Mechanical problem has the following settings. Stress field is created by applying the normal
stresses on 3 domain sides: the upper and lower boundaries have minimum horizontal stress oy,
and the right boundary has maximum horizontal stress o . Symmetry condition for mechanics
is provided by fixing zero displacements in X direction on the left side. The two planes bounding
domain in Z direction have zero displacements out of plane, which replicates the plane strain
condition. Schematic view on mechanical boundary conditions is given in figure 3.4b. Initial
conditions for the mechanical problem is the anisotropic stress state conforming the boundary
conditions.

Geometry and mesh are built by means of free-ware 3D grid generator GMSH [37]. Un-
structured grid employed both in the flow and mechanics calculations is given in figure 3.4c.
The discretization data together with the rock properties are converted into AD-GPRS input
files.

3.5. Semi-Analytical Solution

For validation of developed model, following semi-analytic solution for fracture length is em-
ployed. It consists of solution for pressure, stresses and well-known fracture propagation cri-
teria. Semi-analytic solution for the pressure distribution was developed by Koning [63] in his
doctoral thesis. He employed the elliptical coordinate system:

x = Lcoshécosn, (3.12)

x = Lsinh{sinng,
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where L is the fracture length, ¢ is the ellipse number starting from the smallest, and 7 is the
direction angle. Further, he used solution for the steady-state pressure profile surrounding an
infinite conductivity fracture derived by Muskat [76]:

qu In e+ be ): qu ae"'be_f)
2nkh \Lcoshé +Lsinhé)  2nkh L ’
where q is the injection flow, u is the fluid viscosity, k is the rock permeability, & is the fracture
thickness, a, and b, are the semi-axises of an area influenced by the change in pressure. He
assumed that the pressure penetration front moves radially outward with respect to the slowly
growing fracture. That allowed him to define an effective time-dependent exterior radius as
follows:

Ap(©) = (3.13)

R.(1) = 1.5\/nt, (3.14)

where 7 is the fluid diffusivity. After substituting equation 3.14 into 3.13, he obtained the fol-
lowing equation for pressure distribution at late-time regimes:

_ Qu ( 3vint )
Ap(é)_anhm Lcoshé + Lsinhé) - (3.15)

Koning modified this equation to account for different fluid properties in three domains sur-
rounding the fracture: 1) cold water zone, 2) warm water zone, and 3) oil zone. Expression for
the pressure distribution only in the near-fracture (cold water) zone is given. Other 2 expres-
sions are omitted due to their extensiveness:

Qu 1 ( ac+ b, ) 1 ay + by 1 3 noilt]
- 1 (pdetbe o), 1, T , 3.16
P, pR+271'kh Ac n L €+/1w " ac+ b +/’Loil aw+ by ( )

where A¢, A, A,;; are the fluid mobilities for cold, warm and oil zones, a; and b; with i = ¢, w, oil
are the major and the minor semi-axises of these zones.

For this solution to be valid, fracture growth should be slow enough, so the pressure pene-
tration front would develop radially. Otherwise, equation 3.14 does not hold. Keeping the reser-
voir and fluid parameters constant, main parameter that affects fracture growth speed is the
injection rate. Keeping Q in certain range assures that the pressure front distribution is radial.
Koning defined the range of validity for pseudo-radial solution by condition gp < 0.61, where di-
mensionless quantity gp equals to %. Increasing the gp above this quantity leads to pres-
sure front shape elongating towards the fracture direction and becoming elliptical. At this stage,
the best approximation of the flow can be given by the elliptical solution. At values of gp > 4.5,
ratio between the pressure penetration depth and the fracture length becomes too small, and
the pressure front is propagating parallel to the fracture face. This phenomenon is better ap-
proximated by one-dimensional leak-off. In the two latter cases, assumption of pseudo-radial
flow is no longer valid; simulation results are compared with radial solution in its range of valid-
ity.

Simple analytic solution for the stress intensity factor from stresses in the infinity was used.
It was rewritten in terms of pressures and stresses in the rock:

KIC
Nk
where py is the pressure inside the fracture, o is the far-field total stress perpendicular to the
fracture face, Aop and Aot are the poro- and thermo-elastic backstresses on the fracture face
caused by pressure and temperature changes in the vicinity of the fracture. Koning derived
analytic solutions for the poro-elastic backstress which for 2D case is:

Q 1 b, +lc by be )+/1c(1 by )]

—A,— - — —
PamhA¢ lac+be Aw\aw+bw ac+be) Ao \2 ap+by
(3.18)

(3.17)
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where A, is the poro-elastic constant, related to Biot coefficient a through A, = :2¥ a.

Expression for the thermo-elastic backstress is based on research of Perkins and Gonzalez
[83], who proposed an empirical fit to numerical simulations:

b, ac 1

+ . ,
ac+b,  ac+be 1+1/2-[1.45(h/2b:)%° +0.35(h/2b:)?][1 + (bc/ac)0-7g] 19
where A7 is the thermo-elastic constant, related to the linear thermal expansion coefficient ar
through Ay = Ear/(1 —v). Equation 3.19 is based on the assumption of elliptic shape of the
fracture cross-section. Adopting this assumption for the 2D scenario, fracture height 7 is taken
equal to infinity. That makes the second term in the brackets vanish. When obtaining the equa-
tion 3.19, authors ignored heat conduction, making heat convection the only energy flow mech-
anism. Equations 3.17 with 3.16, 3.18, and 3.19 form set of semi-analytic equations used for
benchmarking of the developed numerical model.

As the described semi-analytic solution holds only for later times, for early times Mathieu
functions are used: analytic expressions, employed in the solution of the diffusivity equation in
elliptical systems. In petroleum industry, these functions are applied in Pressure Transient Anal-
ysis [PTA] around hydraulically fractured wells. Van den Hoek [104] extended previous work on
Mathieu functions for PTA and presented exact solution of the transient pressure around a hy-
draulic fracture, for both finite and infinite conductivity fractures. These results, expressed in
dimensionless time 7 and pressure pp, are used for comparison with simulated results. Dimen-

2nkH
pHQ

AO’T = AT(TC— Toil)

. . . k t
sionless time is calculated as tp = — and pressure as pp = p
(;b:uctot L






Model Validation and Testing

In order to validate the developed model, several benchmarking tests were conducted. Analysis
of the pressure field around a stationary fracture and comparison with semi-analytic solution
are given first. Further, a single propagating fracture is modeled. Its growth is compared with
the semi-analytic solution. Such numerical experiments are conducted for the conditions of a
single- and multi-phase flow as well as for conditions of different temperatures of injected fluid
and reservoir rock.

4.1. Single-phase Fluid Injection

4.1.1. Stationary Fracture

In the first experiment, injection of the single-phase fluid into stationary fracture is modeled.
Properties of the rock, fluid and fracture used in current simulation are given in table 4.1. Tem-
perature values of the injected and stored fluid are equal, and therefore, the problem becomes
isothermal. Obtained pressure and stress profiles are shown in figure 4.1).

The fracture has infinite permeability and pressure instantly builds up along its full length.
The rock permeability is some finite number, and we see the gradual pressure reduction from
346-10° Padown to 180-10° Pa (see figure 4.12a).

Solutions for the stress field (figure 4.1b and 4.1c) shows high tensional stresses in front of
the crack tip which is in agreement with the analytic solution (see subsection 2.2.1). Far field
pressure and stresses are kept constant.

Dynamics of the pressure development inside the stationary fracture is presented in figure
4.2. Simulated results make a close fit to the Koning’s solution. The pressure values are nor-
malized over the initial reservoir pressure to make it dimensionless. In the early-time stage,
there is a separation between pseudo-radial solution and numerical results, which disappears
at t <5-107* day. The reason behind is the limited range of validity of the pseudo-radial so-
lution. For verification of early-time results, Mathieu functions are used [104]. In the second
stage (5-107% < ¢ < 6-1072 days), we observe a logarithmic growth of simulated pressure up
to 1.93P,.;, after which its value stabilizes. The second, logarithmic, stage is characterized by
the radial seepage from the fracture. There is a perfect match between numerical results and
pseudo-radial analytic solution. The breaking point of numerical pressure curve is caused by the
pressure front reaching the radially placed aquifers, which is the upper range of validity for the
analytic expression.

Benchmarking of the numerical solution in the early-time stage is done via comparison with
the analytic solution by Mathieu function (see figure 4.2b). In this graph, pressure is normalized
over parameters of the fluid, rock, reservoir, and flow rate. Time, in its turn, is also normal-

39



4. Model Validation and Testing

40

n
o
o
@
©
@
en
©
al

-1.189e+02

[
-
®
S
o
o
+
S
N

(a) Pressure field (b) Stress ", field (zoomed in)
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Table 4.1: Fluid and rock properties used in the single-phase simulation

Rock properties and stresses

Matrix porosity ¢ 0.3
Matrix permeability k, mD 250
Fracture conductivity cy, o)
Density p,, kg/m® 2500
Biot modulus « 1
Young's modulus E, Pa 5-1010
Initial reservoir pressure p,, Pa 180-10°
Poisson’s ratio v 0.25
Compressibility C,, 1/Pa 0
Cohesion c, Pa 1-10'0
Friction angle ¢, ° 0
Dilation angle v, © 0

Total horizontal stress o4, Pa —300-10°
Total horizontal stress o, Pa -250-10°

Fluid properties

Density p, kg/m?3 1000
Viscosity us, cP 1
Compressibility C¢, 1/Pa 1-10710

Injection rate (into half-fracture) Q, m3/day 30

ized over similar parameters plus the fracture length. There is a close agreement between two
curves in the transient regime period (¢p < 1)) which indicates correctness of numerical solution
for transient flow regime. The reason of separation between two curves in later times is due to
the fact that the analytic solution is obtained for an unbounded problem, while numerical model
has a well defined aquifer boundaries which causes pressure curve to flatten.

4.1.2. Propagating Fracture

The next stage of validation is the simulation of afracture, growing under the conditions of injec-
tion of a single-phase fluid into the reservoir. First, we confirm that for the chosen fluid param-
eters and injection rate, expected flow regime falls into category of pseudo-radial, according to
Qu
2nkhAp
possible flow rates and then compared with the limiting values given by Koning (see figure 4.3).

Larger injection rate Q results in higher dimensionless flow value gp. Growth of gp indicates
a shift of the flow regime from pseudo-radial (¢qp < 0.61) towards pseudo-elliptical and, finally,
to linear flow (gp > 4.5). Similar ranges are reported by VVan den Hoek [103]. As the analytical
solution is developed for the radial flow regime, corresponding injection rate of Q = 60 m/day is
chosen, which is equal to the injection rate of g = 30 m3/day per one fracture wing.

Growing fracture is modeled with chosen parameters. The fracture activity map and pres-
sure solution across the domain before and after fracture propagation stage are given in figures
4.4 and 4.5 respectively.

Dynamics of the fracture growth and development of the pressure inside can be seen in fig-
ure 4.6. Numerical fracture length, given in figure 4.6a, has a good match with the analytic so-
lutions. Both curves coincide in terms of fracture initiation time and its length during growth.
The moment when the analytic fracture stops growing (¢ = 4- 1073 day) coincides with the mo-

Koning’s classification. For doing so, dimensionless parameter ¢gp = is calculated for 3
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Figure 4.2: Comparison of pressure dynamics inside the fracture with (a) Koning’s pseudo-radial solution [63] and
(b) solution obtained through Mathieu functions [104]. Both plots show match between simulated result for a sta-
tionary fracture and analytic solutions inside the validity range.
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Figure 4.3: Correspondence between the injection rate Q and the dimensionless parameter gp based on analytic
solution for growing fracture. Higher values of Q lead to increase in gp.
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Figure 4.4: (a) Map of the fracture activity before the fracture started to grow. Red line in the left bottom corner cor-

responds to the initial fracture, active from the beginning of simulation. Blue lines correspond to non-active fracture
segments. (b) Solution for pressure across the domain before fracture starts to propagate.
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Figure 4.5: (a) Map of the fracture activity at the end of the fracture growth. Red line of the active fracture extended
deep into the domain. The rest of the segments remained non-active. (b) Pressure profile developed according to
the new fracture shape. It has a constant high value along the infinite conductivity fracture and a smooth pressure
reduction down to the reservoir value at the aquifer boundary.
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Figure 4.6: Development of (a)the fracture length and (b) the pressure inside the fracture in numerical model com-
pared with the semi-analytic solution. Numerical model has an average size of the mesh equal to 1.0 m. Time step
dynamically grows from 1-10~° day to 1-10~2 day. Results for fracture length and pressure are normalized by dividing
them by the distance to the aquifer R;.s and the minimum horizontal stress o}, respectively.
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ment when the increase rate of the numerical fracture reduces, which is an indication of the
pressure front reaching the aquifers. The difference in the values of final length is caused by
the certain simplifications in the semi-analytic solution. Simple logarithmic equations for pres-
sure and stresses (eq. 3.16 - 3.18) are obtained at cost of pressure (and consequently length)
cut-off after the pressure wave reaches the aquifer. Early-time transient regime and pressure
cut-off upon reaching the aquifer determine the lower and upper validity limits for employed
semi-analytic solution. On the contrary, the numerical simulator captures pressure growth in-
side the fracture after reaching the aquifer. The secondary pressure growth happens due to the
residual compressibility of the system.

Pressure buildup inside the fracture is shown in figure 4.6b. To visualize the fracture prop-
agation process, the pressure is normalized over the minimum horizontal stress ;. Thereis a
close fit between two curves inside the validity range of analytic solution. Correctness of the
numerical pressure solution outside this range was proved in the previous section. During the
initial pressure build-up (¢ < 4-1073 day), the pressure in the fracture accumulates above the
sum of minimum horizontal stress o, and the poro-elastic backstress Ao ,. When it reaches the
critical value, fracture propagates. Less pressure is needed for the fracture to advance when it
becomes longer (see equation 3.15). After the moment when first pressure impulse reaches the
aquifers, the pressure inside the fracture grows every time slower. This reduction also owes to
the residual compressibility of the system. Finally, when pressure solution becomes stationary
(t>2-107! day), fracture growth stops. The difference between two solutions in the final stage
(107! < ¢ < 1 day) is caused by the differences in length 4.6a. As the simulation provides a dis-
crete solution, pressure fluctuations due to its accumulation and drop upon opening of a new
segment are observed. Analytical solution is smooth due to its continuous nature.

4.2, Multi-Phase Fluid Injection
When fracture growth algorithm is successfully tested in the conditions of a single-phase flow,
we proceed with the tests on more complicated cases. In this section, multi-phase flow is con-
sidered.

Waterflooding is a common practice in oil recovery operations. In its course, less viscous
water is injected into a reservoir with aim to push more viscous oil towards the producing well.
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Table 4.2: Fluid properties used in the multi-phase simulation

Fluid parameter

Injected fluid

Displaced fluid

Case 1l

End-point relative permeability £, 0.3 0.7
Viscosity us, cP 0.5 1.0
Compressibility Cr, 1/Pa 1-10710 1-10710
Density pf, kg/m® 1000 850
Irreducible saturation S; 0 0
Corey exponent 1 1
Mobility ratio M 0.85

Case 2

End-point relative permeability k, 1.0 1.0
Viscosity us, cP 0.5 1.0
Compressibility Cr, 1/Pa 1-10710 1-10710
Density p, kg/m3 1000 850
Irreducible saturation S; 0 0
Corey exponent 1 1
Mobility ratio M 2.0

In presence of two fluids with different parameters, pressure profile from fracture towards the
pressure distortion front has a broken curve shape, as each fluid zone has its specific pressure
gradient. It means that when the pressure front reaches the aquifer boundary, pressure inside
the fracture keeps changing due to the expansion of the flooded zone. Whether this pressure
grows or drops, depends on the characteristics of the injected fluid.

Analytic solution used for validation was given in section 3.5. As in the single phase flow ex-
ample, there is no difference in the fluid parameters inside and outside the flooded zone, all the
intermediate terms in equation 3.16 disappear. Now, when fluid parameters are different, semi-
axes of flooded zone a,, and b,, have to be computed. Equation for the flooded zone semi-axes
as well as the pressure distribution inside and outside the flooded zone supposes a piston-like
fluid displacement and a constant relative permeabilities of each phase k,,, and k,, in every
zone. In order to match the numeric solution with the analytic one, ideal piston-like displace-
ment had to be simulated in the model. For doing so, fluid parameters given in the table 4.2
under Case 1 were employed. Mobility ratio M < 1 means that oil is capable of traveling with
the same or even higher velocity than water, which leads to favorable, or piston-like, displace-
ment. On the contrary in Case 2, mobility ratio M = 1 which means that water is more mobile
than oil and can travel faster, therefore by-pass oil forming water tongues or fingers.

Based on the parameters used for Case 1, relative permeability curves shown in figure 4.7a
were obtained. They were constructed by the on-line source mmbbls-app.glassworks.no. Ad-
ditionally, it provided the water saturation profile along the reservoir at some specific time.
Skipping the input parameters, we show the output in figure 4.7b. Indeed, we clearly see the
shock in saturation profile which is characteristic for the piston-like displacement. This combi-
nation of the fluids is tested in the non-propagating (subsection 4.2.1) and propagating (subsec-
tion 4.2.3) fracture scenarios.

In Case 2, less viscous fluid is injected. Relative permeability curves and saturation profiles
are shown in figures 4.8a and 4.8b. Note, that the latter was obtained by means of Welge's
approach for determination of the shock front position. In the second figure, we clearly see
smearing of the water saturations along the water front. Assumption of piston-like displace-
ment adopted in the semi-analytic solution, is not valid for this case. Numerical modeling of the
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Figure 4.7: (a) Relative permeability curves for case 1 for injected K;,, and displaced K, fluid, fractional flow of
water from Buckley-Leverett f;, and Welge solutions, (b) saturation profile at certain time and reservoir dimensions,
obtained by Buckley-Leverett S, [BL] and Welge's S, [Welge] solutions.

fracture growth for this fluid combination is done, and the results are compared to the analytic
curve qualitatively (see subsection 4.2.4).

4.2.1. Stationary Fracture under the Conditions of Favorable Displacement (Case 1)
First,comparison between the pressure inside the non-propagating fracture and the semi-analytic
solution is done. Comparison with the pseudo-radial solution is given in figure 4.9a. The pres-
sure inside the fracture Py, is normalized over the initial reservoir pressure Py.;. Two curves are
matching each other in the late-time stage until the pressure wave reaches the aquifer bound-
ary. Both curves have similar behavior and timing. Difference between two solutions after hit-
ting the aquifer boundary has the similar nature as in the case of the single-phase flow experi-
ment. Secondary pressure growth is caused by the expansion of the flooded zone, which con-
tains less mobile fluid. To prove correctness of the numerical solution in the early-time stage,
comparison with the Mathieu solution for transient flow [104] is done. A fair agreement be-
tween the numerical data and the analytical curve is observed. As the analytic solution is ob-
tained for an unbounded problem (infinite reservoir), it is valid only until the moment when
pressure wave reaches the aquifer boundary.

4.2.2, Stationary Fracture under the Conditions of Unfavorable Displacement (Case 2)

In the second case, more mobile fluid is injected into the reservoir filled with the less mobile
oil. Such combination of the injected and displaced fluid is characterized by the unfavorable
displacement type. As a result, no shock in saturations is observed, and flooded zone front is
smeared. Water saturation profiles for favorable and unfavorable displacement types obtained
in the simulations are given in figure 4.10.

Result of numerical simulation of unfavorable displacement type (case 2) is given in figure
4.11. Comparison of the normalized pressure curve with pseudo-radial analytic solution is shown
in figure 4.11a. Although two pressure curves have similar behavior, numerical curve is less
steep than the analytical one. The reason for this difference is the assumption of piston-like
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Figure 4.8: (a) Relative permeability curves and (b) water saturation profile for case 2.
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Figure 4.9: Pressure growth inside the stationary fracture in the multi-phase flow conditions. Comparison with (a)
pseudo-radial analytic solution and (b) solution obtained with Mathieu functions. Numerical result matches both
analytic curves within their validity ranges.
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Figure 4.10: Water saturation profiles for (a) favorable (case 1) and (b) unfavorable (case 2) displacement types. In
case 1, water front is well defined and corresponds to the piston-like displacement, while in case 2, water saturation
is smeared along the larger area.

displacement in the analytic solution for pressure, which does not hold for chosen fluid parame-
ters. Both curves exhibit decline in the secondary stage. This behavior is the result of the growth
of the flooded zone, which contains more mobile fluid in it. As a result, displacement of this fluid
requires less steep pressure gradient, than the original oil. Comparison of the normalized pres-
sure with Mathieu solution is given in figure 4.11b. Within the range of applicability of the an-
alytic solution two curves coincide in the early-time stage and deviate in the later stage due to
the reasons described above.

4.2.3. Propagating Fracture under the Conditions of Favorable Displacement (Case 1)
When the solution for a stationary fracture is matched with analytical one, we proceed with
simulation of the propagating fracture. Similar injection rate of Q = 30 m3/day was used as in
the single-phase flow example.

Numerical solution for length (see figure 4.13) has perfect match with the analytical solu-
tion during the primary crack growth. In this stage, the main driver of propagation is pressure
growth in reservoir which is almost 100% filled with oil. After the pressure wave reaches the
aquifer, analytic solution "freezes" while numerical solution continues to develop, as it accounts
for the residual compressibility of the fluid. Existing difference in length values remains. The
secondary crack growth is caused by expansion of the flooded zone. Parameters of the injected
and displaced fluid were chosen in such away, that injected fluid is less mobile than the displaced
one. Inorder todisplace a larger volume of the less mobile fluid, fracture surface has toincrease.
Therefore, expansion of the flooded zone leads to the fracture growth. Rate of the secondary
crack extension for numerical and analytic solutions coincide. Two curves stay parallel until the
end of the simulation.

Solution for the pressure is shown in figure 4.12. While two solutions differ in the early-
time stage due to limited applicability of the analytic equation, there is a fair agreement in the
late-time stage. It includes pressure break time due to crack growth initiation as well as further
pressure decrease due to the crack opening.



4.2. Multi-Phase Fluid Injection

49

2 T

P

5=PP

fr* res

18

16

1.4

Pseudo-radial solution
Numerical solution
— — - Validity range of the analytic solution

12

Normalized pressure inside the fracture PD

107 10°
Time [day]

10

0.8 :

2 1

10°

(a)

7 T T T

Mathieu solution
Numerical solution
— — — Upper validity limit of the analytic solution

o

Py = AP-27kH/nQ

s 2
tD—lk/ouC[mL

7€ Lt KT

Normalized pressure inside the fracture PD

o . .
10?
Normalized time tD

Figure 4.11: Pressure development inside the stationary fracture in the multi-phase flow conditions for the case
2. Comparison with (a) the pseudo-radial analytic solution and (b) the solution obtained with Mathieu functions.
Numerical result and analytic curves have similar behavior within their validity ranges. Reduction of the pressure in
the secondary stage is caused by increase of the flooded zone with more mobile fluid in it.

0.7 T T T HH‘H‘ T T T
LD:L/Rres }
0.6 I
I
I
o I
— 05 |
ES]
<))
c
ko) I
o 04 I
2 \
o
I \
e I
g 03 | B
N |
= - -
IS | Analytic solution
5] 02k | Numerical solution |
z | — — — Upper validity limit of the analytic solution
I
I
0.1 | B
I
I
0 | Ll Ll M I | | L
10 107 107 10 10° 10t 102
Time [day]

Figure 4.12: Comparison between numeric and analytic solutions for normalized length Lp in conditions of multi-

phase flow (case 1). Numerical length is matching the
same increase rate during the secondary growth stage.

analytical one during the primary growth stage and has the
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Figure 4.13: Comparison between numeric and analytic solutions for normalized pressure pp in conditions of multi-
phase flow (case 1). Two curves differ in the early-time stage due to limited validity of analytical solution. Both
solutions indicate similar fracture growth initiation time, after which pressure decrease as the fracture keeps open-

ing.

4.2.4. Propagating Fracture under the Conditions of Unfavorable Displacement (Case 2)

When modeling the second case of fluid parameters, more mobile water is injected into less mo-
bile oil. This leads to smearing of the water saturation profile. Piston-like displacement assump-
tion, adapted in the analytic solution, could not be satisfied. At the same time, the reservoir
simulator can accurately model both saturation front and pressure profile.

Results of the simulation and its comparison with the analytic curve is given in figures 4.14
and 4.15. Primary fracture growth shown in figure 4.14 is caused by initial pressure build-up
across the domain. In the second stage, expansion of a zone flooded containing more mobile
fluid, leads to the gradual fracture closure. As smaller fracture surface is needed to displace
more mobile fluid, fracture shortens. Both numeric and analytic curves capture the closing be-
havior. In the normalized pressure plot (figure 4.15), moderate separation between two solu-
tions during the initial pressure growth can be seen. Reason behind is the assumption of favor-
able displacement type in analytic solution. In order to show the limiting range of the numerical
solution, the semi-analytic curves for average viscosity across the reservoir equal to 1 cP and
0.8 cPis plotted. The first value corresponds to the initial moment, when original reservoir fluid
is not displaced. The second value corresponds to a case when significant part of the reservoir
fluid is displaced by less viscous water. In transition from the first value to the second, fracture
growth initiation delays and final fracture becomes shorter. In terms of pressure, for the sec-
ond viscosity value, pressure curve is less steep during the initial pressure build-up (see figure
4.15). Similar tendency is observed in the numerical solution: fracture growth starts later and
pressure curve is less steep than in the analytic solution. After length increase stabilizes, frac-
ture starts to close due to expansion of the flooded zone. This example illustrates the ability of
the developed numerical model to reproduce fracture closure phenomena, also observed dur-
ing the lab experiments on hydraulic fractures (see [23], [100]). By this, the validation of the
developed model for multi-phase flow conditions is completed.
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Table 4.3: Fluid and rock properties used in the thermal simulation

Rock properties & stresses All cases

Matrix porosity ¢ 0.3

Matrix permeability k, mD 250

Fracture conductivity cy, oo

Density p,, kg/m® 2500

Biot modulus « 1

Young's modulus E, Pa 5-1010

Initial reservoir pressure p,, Pa 500-10°
Poisson’s ratio v 0.25
Compressibility C,, 1/Pa 0

Linear thermal expansion coefficient ar, 1/K  1.5-107°
Volumetric heat capacity c,, kJ/m3K 1975

Thermal conductivity A,, kJ/m day K 0

Cohesion c, Pa 1-10'°

Friction angle ¢, ° 0

Dilation angle v, © 0

Total horizontal stress o4, Pa —-620-10°

Total horizontal stress o, Pa -570-10°

Fluid properties Casel Case 2
Density p, kg/m3 1000 1000
Viscosity s, cP 1 1
Compressibility Cr, 1/Pa 1-1078 1-1079
Thermal conductivity A ¢, kJ/m day K 0 0
Volumetric heat capacity cy, kJ/m3K 4185 4185
Injection rate (into half-fracture) Q, m3/day 30 30

4.3. Injection of Cold Single-Phase Fluid into Hot Reservoir with the Grow-

ing Fracture
In previous examples, the effect of thermo-elasticity was ignored, assigning the injected fluid
temperature similar to the one from reservoir. Now, the effect of rock cooling on the fracture
propagation is accounted. For the current simulation, single-phase scenario (injection of water
into water) is adopted, but with different fluid temperatures. Fluid and rock parameters used in
the following test are given in the table 4.3.

As it was shown in section 3.5, the semi-analytic solution is based on the assumption of zero
heat conduction. To reproduce similar set-up, zero thermal conductivity is assigned both for
rock and fluid in the numerical model.

To delay the effect of fracture growth due to pressure buildup and to capture pure growth
due to rock shrinkage in Case 1, fluid with high compressibility 1-1078 1/Pa was used (see ta-
ble 4.3). In such setup, pressure growth between fracture and aquifer boundary is slower than
in previous simulations. However, cold fluid filtration through the rock happens at similar rate
and formation steady cools down. Reduction of the effective stresses, necessary for the frac-
ture to propagate, happens first due to the thermal contraction of the rock rather than high
pressure inside the fracture. Nevertheless, further contribution of the fracture pressure and
poro-elastic effects increases and adds to the thermo-elastic driver. After that moment, crack
propagation is due to both pressure and temperature effects. Analytic solutions for fracture
pressure and length extension with and without temperature effects can be seenin figure 4.16.
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Figure 4.16: Comparison between numeric and analytic solutions of (a) normalized pressure inside the fracture Pp
and (b) normalized length L in thermal simulation

Rock shrinkage due to cooling leads to reduction of pressure inside the fracture, necessary for
it to propagate. This effect is clearly seen when comparing analytic pressure curves with and
without temperature effect (figure 4.16a). Similar behavior is observed in the length vs. time
plotinfigure4.16b. "Cold" fracture starts growing earlier than the isothermal one. Besides that,
when the latter stops extending, "cold" fracture keeps growing due to strong thermo-elastic ef-
fect. Results of the numerical simulations are given in the same figure. Both numerical results
for isothermal and thermal simulations are in fair agreement with the analytic results. Effect of
thermo-elasticity is particularly revealing itself in different timing of fracture growth initiation
and is perfectly captured by the numerical model.

When pronounced effect of rock contraction due to cooling was demonstrated on the ex-
ample of exaggeratedly high fluid compressibility, previous value of 1-1071° 1/Pa is used (see
table 4.3 Case 2). Results of the numerical simulation including and excluding thermal effects
are shown in figure 4.17. As compressibility of the fluid is much higher, development of pres-
sure in the domain is faster than in Case 1. Although thermal rock contraction takes place, its
effect on fracture growth comes moments before the crack starts growing due to pure pressure
effect. This conclusion is based on the minimal separation between analytic curves for frac-
ture length with and without thermal effects (fig. 4.17b). After the pressure wave reaches the
aquifer, fracture growth due to pressure stops, which is observed from the analytic curve for Lp
in isothermal conditions. On the contrary, fracture keeps growing only due to rock contraction
inthe thermal case. Simulated results, also given in figure 4.17, show good accordance with ana-
lytics. Numerical curve for length in isothermal conditions fits analytical curve during the initial
growth stage. Additionally to that, it captures secondary fracture growth which happens due to
compressibility of the fluid after the aquifer boundary is reached by the pressure impulse. As
was already mentioned, this effect could not be properly addressed by semi-analytic solution.
Similar behavior of numerical curve accounting for thermal effect is observed. It captures ini-
tial fracture growth (until reaching the aquifer) and secondary growth due to residual pressure
buildup and thermal effect. As analytic solution doesn’t have residual pressure growth and ac-
counts only for the thermal growth in the secondary stage, there is a constant gap between two
curves.

Analytic and numerical solutions for pressure inside the fracture is shown in figure 4.17a.
Similarly to analytic results, numerical model with thermal effects requires less pressure to
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Figure 4.17: Case 2: comparison between numeric and analytic solutions of (a) normalized pressure inside the frac-
ture Pp and (b) normalized length Lp.

propagate the fracture than the isothermal one. Secondary fracture growth due to the thermo-
elastic effect forces pressure to drop below constant pressure line in isothermal case.

4.3.1. Material Contraction Along the Fracture

Developed model was able to capture the effect of strong rock contraction along the fracture
faces. Simulation of a stationary fracture with nonphysically high value of linear thermal expan-
sion coefficient ar = 6-107% 1/K was performed. High tensional stress o, in front of the crack
tip (see region in front of the crack tip in figure 4.18b) is the one leading to intensive fracture
growth. Its nature was already shown and explained in the previous subsections. Here, high
horizontal tensional stress along the fracture is noted (see region along the crack face in figure
4.18a). It is much higher than the one perpendicular to it (see figure 4.18b). It is caused by the
larger area of contracted rock along the fracture than perpendicular to it. Strong tension along
the fracture face may cause thermal fractures to develop. This type of fractures was reported in
literature [6, 9, 83]. Perkins and Gonzalez [83] refer to them as to secondary fractures. They at-
tribute appearance of these fractures to flat cooled regions around long primary fractures and
relate them to leveling of the effective principle stresses o, = o, (see figure 4.19). As the devel-
oped algorithm is designed to model slow hydraulic fracturing process where single continuous
fracture develops, growth of secondary thermal fractures is not currently accounted. However,
model is properly capturing temperature and stress changes leading to appearance of such frac-
tures.

4.4, Study of Model Sensitivity to Parameters

The following step in the model verification is testing the effects of various model parameters
on the results. In this section, the effects of such parameters as an average mesh size, timestep,
and initial fracture length are tested. All the tests are done on the base of setup where single-
phase fluid is injected into the reservoir. Parameters of the fluid and the rock are given in table
4.1 unless otherwise indicated.

4.4.1. Mesh Refinement Study
To evaluate the effect of mesh size on the resulting solution, mesh refinement study was con-
ducted. Simulations were done with four different average mesh size: 2.0 m, 1.0 m, 0.5 m and 0.25
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Figure 4.19: Secondary thermal fractures perpendicular to fracture face. Source: Perkins and Gonzalez [83]
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equal to 1-1073 day. Increase of the average mesh size makes the numerical fracture exceed its analytic analogue.
Solutions obtained with average mesh size of 0.25 m and 0.5 m fit the analytic solution

m. Maximum time step employed was 1-1072 day. Following results were obtained. Figure 4.20
shows the effect of average mesh size on the fracture growth. Curves corresponding to meshes
of 0.25 m and 0.5 m are in fair agreement with each other and with the analytic curve. Results
for the larger mesh sizes are slightly displaced to the left of the analytic solution. That indicates
that the numerical solution passes ahead of the analytical one, and the fracture develops earlier
than it should be. Analysis of the length plotted against time allows drawing a conclusion that
for the chosen time step, solution obtained on meshes with average size less or equal to 0.5 miis
already converged.

Figure 4.21 shows variation in pressure inside the fracture for four mesh sizes. Larger mesh
displays higher jumps in pressure upon opening of each segment. For smaller mesh sizes these
jumps are less noticeable as smaller volume of newly opened fracture has to be filled with a fluid.
Pressure for the mesh size of 2.0 m stays below all other curves which is also correlated with the
previous figure 4.20: longer fracture has lower pressure inside.

Figure 4.22 gives overview of Kj during iteration process. Only 3 out of 5 curves were left
to make the plot less dense. Each "tooth" represents one time step. Every node on the tooth
is one Newton iteration within the time step. In the beginning, pressure in the fracture is too
low, so that K; = 0. When pressure starts to overcome the total normal stress acting on the
fracture face, Kj starts growing. If during iterations value of K; grows above fracture toughness
Kic (horizontal line at 30 bary/m level), algorithm tends to drop it by extending the fracture.
During the following iterations within the same time step, segments are opened. Opening of
one segment leads to drop in K as the pressure redistributes within all the fracture segments
including the newly opened. This happens until K; goes below Ki. . When K is below it and all
other norms are satisfied, solution is accepted, saved and the next time step is initiated. K; curve
for larger mesh size has higher jumps than the smaller mesh sizes. It happens due to the fact that
opening of one segment in a mesh with a size of 2 m decreases pressure more than the same
event in a mesh with a size of 0.25 m. Larger drop of pressure leads to relaxation of stresses and
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Figure 4.21: Pressure inside the fracture in the mesh refinement study for simulations with the maximum time step
equal to 1-1073 day. Curve for a larger mesh size exhibits higher pressure jumps upon opening of new fracture seg-
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therefore smaller values of the Stress Intensity Factors. Higher number of iterations is needed
for a model with larger mesh size to grow the K; above the K. As a result, solutions for denser
meshes have fewer iterations per time step. As the pressure inside the fracture grows slower
after the pressure wave reaches the aquifer boundary, more iterations are needed to build-up
K;in the late time stage.

4.4.2, Time Step Size Effect

In current subsection, effect of time step size on the solution for pressure and fracture length
is studied. Following simulations were done on the same model with average mesh size equal
to 0.5 m. Range of the used time steps has the smallest one of 1-1073 day and the biggest of
0.1 day. Time step was fixed throughout the whole simulation. First data point of each solution
corresponds to the time step size employed.

In figure 4.23, length solution for different time steps is plotted. The smaller the time step,
the closer the numerical solution is to the analytical curve. Increase of the time step shifts the
numerical result to the right of the analytical one. In physical terms, it leads to delay in the frac-
ture growth. Irrespective of the time step employed, all solutions yield the same final fracture
length. It is important to mention, that irrespective of the chosen time step, all the curves have
similar increase rate during the active fracture growth.

Figure 4.24 shows variation of pressure inside the fracture for solutions obtained with dif-
ferent time steps. All the solutions exhibit similar height of fluctuations as they were obtained
on the same mesh. However, width of the fluctuations is different for different time steps. Nu-
merical pressure curves are very close to each other irrespective of how close is the numerical
solution for length to the analytical one.

Analysis of both plots led us to conclusion that in order to capture the fracture growth, time
step size should be sufficiently small. Absence of the evaluation points during the active fracture
growth stage (4-1073 day to 5- 1072 day) for solutions with large time steps caused significant
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Figure 4.23: Fracture length comparison in the time step refinement study for the model with the average mesh size
equal to 0.5 m. Increase of the time step leads to the delayed fracture growth. Irrespective of the time step size, the
final fracture length and increase rate are similar for all the simulations. Length obtained with the smallest time step
size (1-1073 day) has the best match with analytic length in its validity range.
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Figure 4.24: Pressure inside the fracture in the time step refinement study for the model with the average mesh size
equal to 0.5 m. Pressure curve obtained with the smallest time step size (1-10~3 day) has the best match with analytic
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delay in length development.

Figure 4.25 shows the behavior of K; value during iteration process with 3 different time
steps. 2 other curves were removed to make the plot less dense. The value of K; rises above
K. during the first iteration of every time step. In the further iterations, the algorithm opens
segment by segment to relieve the K; value. Finally, when K is below K., solution is converged,
and the next time step is initiated. Solution obtained with larger time step has larger initial value
of Kj, as the pressure had more time to build-up. Further, algorithm does more iterations in
order to drop the Kj value, therefore activates more segments in one time step.

4.4.3. "Virtual" Fracture Segments Aperture Effect

As some artificiality was introduced into both mechanical and flow scheme in the form of addi-
tional volumes of the "virtual" fracture segments, the effect of these volumes on the final solu-
tion was investigated. 4 models with different opening sizes were tested. To make the formu-
lation of the problem dimensionless, ratio between the volume of an average "virtual" fracture

v \were
cell
employed: 2-1077,2-107>,6-1073 and 2- 10~2. Note that all the previous simulations were done

segment V,r and the volume of an average "normal” cell V. is given. Following ratios

Vi . . .
Y 2.1075. Same mesh with average size of 1.0 m was used in
cell
all simulations. Adaptive time step with the smallest value of 1-107° day and the highest value

of 5-10~3 day was used. The results of the tests are given in figures 4.26 and 4.27.

Figure 4.26 shows effect of the "virtual" fracture segment aperture on the fracture length.
Vit

with the default value of ratio

Reduction of the ratio below the default value doesn’t have any effect on the solution. Both

cell

74
curves fit the analytic solution. However, increase of the ratio Y above the default leads to

1l
premature fracture growth and longer final solution. It is seenin (ﬁgure 4.27 that pressure also
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Figure 4.25: Development of the Stress Intensity Factor for Mode | K} for simulations with 3 different time step sizes
and single mesh with average size equal to 0.5 m. Solution obtained with the larger time step exhibit higher jumps in
the K7 value and consequently has higher number of iterations to decrease it by opening fracture segments.

builds up faster than in the default case. The reason behind is the fact that, although the aper-
ture of the "virtual" segments was increased, corresponding conductivity and therefore trans-
missibility values were not updated. Thus, larger volume had conductivity value corresponding
to a smaller one. As a result, fluid flow from the fracture towards the formation was impeded,
whichinits turn, accelerated pressure growth inside the fracture. High pressure inside the frac-
ture and weak fluid filtration led to a faster fracture growth.

In order to exclude the effect of the conductivity of the "virtual" fracture segments, it was
increased proportionally to the segment’s volume. The last curve presented in figures 4.26 and
4.27 corresponds to simulation with updated conductivity. This curve coincides with the nu-
merical curve for default value and fits the analytic solution. By this, | conclude, that when the
"virtual" segment aperture and its conductivity are upscaled correspondingly, no effect on final
solution for pressure and fracture length is observed.

4.4.4, Initial Fracture Length Effect

Models with 3 different initial lengths of the fracture were tested. The following lengths were
used: 5m, 10 mand 15 m. Results of the simulations together with corresponding analytic curves
are given in figures 4.28 and 4.29. Larger initial length leads to the slower pressure develop-
ment. However, after initiation of the fracture growth, curves for length and pressure for all 3
models merge with each other and with the analytical solution.

4.4.5. Effect of the Total Compressibility C;

Variation of the total compressibility C; was studied on the model with average mesh size equal
to 1.0 m and adaptive time step size with the maximum value of 5-10~3 day. 3 compressibility val-
ues were used: 5-107! 1/Pa, 1-1071% 1/Paand 5-10~ 1% 1/Pa. Results of the simulations are given
in figures 4.30 and 4.31. Less compressible medium tends to build-up pressure faster than te
medium with the higher compressibility. Early pressure build-up leads to early fracture growth
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Figure 4.30: Fracture length comparison in the variation of the total system compressibility C; for the model with
the average mesh size equal to 1.0 m and the adaptive time step. Reduction of the compressibility (blue curve) leads
to early fracture growth in comparison with more compressible systems. All the solutions fit the analytical length
prediction in its validity range.

initiation. All the solutions for pressure and fracture length fit their analytical analogues in their
ranges of validity.

4.4.6. Effect of the Fracture Toughness Value Kj.

Rate of the fracture growth as well as its final length are controlled by the fracture toughness
value Ki.. The higher this value, the higher should be concentration of stresses at the tip for
the fracture to propagate. Lower values of K. require less effort for the fracture to grow and
the final length becomes larger. To demonstrate the sensitivity of the developed model to the
fracture toughness, 3 simulations with Kj. =1, 3 and 5 MPa-m%> were conducted. Results for the
fracture length and pressure are given in figures ?? and ??. Numerical model is capable of cap-
turing the effect of Kj. on the dynamics of the fracture growth. Numerical solution is matching
the analytical curves within their validity range.

4.4.7. Effect of the Fracture Path Tortuosity

In the previous examples, fracture was developing along the horizontal line, defined in the ge-
ometry (see figures 4.4a and 4.5a). In this subsection, tests are done on geometries where no
such "comfortable" path exists. Fracture growth was simulated on four geometries with differ-
ent average mesh size. The sizes are 0.25 m, 0.5 m, 1.0 m and 2.0 m. All simulations were done
with the adaptive time step starting with 1-107° day and ending with 5-1072 day. Resulting frac-
ture geometries are given in figure 4.34. Development of fracture length and pressure is shown
in figures 4.35 and 4.36.

From analysis of figure 4.34, conclusion is made that for denser mesh, fracture trajectory
tends to become more horizontal. In case of coarser mesh, deviation from the horizontal path is
more significant. In figure 4.35, we can see that the large mesh size (green line) has larger devia-
tion from the analytic curve. Similar behavior was observed in the case with horizontal path for
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Figure 4.31: Pressure inside the fracture comparison in the variation of the total system compressibility C; for the
model with the average mesh size equal to 1.0 m and the adaptive time step. Less compressible media develops
pressure inside faster than its more compressible analogue.
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Figure 4.32: Fracture length comparison in the variation of the fracture toughness value Kj. for the model with the
average mesh size equal to 1.0 m and the adaptive time step. Higher value of K leads to later fracture growth initi-
ation. It also leads to shorter fracture in final solution.
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Figure 4.33: Pressure inside the fracture comparison in the variation of the fracture toughness value K;. for the
model with the average mesh size equal to 1.0 m and the adaptive time step. Higher K. value leads to later initiation
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Figure 4.34: Fracture path for geometries with no horizontal line in front of the initial fracture. Red line corresponds
to the average mesh size of 0.25 m, black line - to the mesh size of 0.5 m, blue line - to the mesh size of 1.0 m and
- to the mesh size of 2.0 m.

the fracture (see subsection 4.4.1 and figure 4.20). The rest of the meshes (0.25 m, 0.5 m and 1.0
m) give length solutions very close to the analytic curve. Pressure growth given in figure 4.36
shows behavior similar to the solution obtained on the meshes with horizontal fracture path
(figure 4.21). Pressure has larger fluctuations upon opening of new segments for meshes with
larger average element size. Shown study demonstrates applicability of the proposed algorithm
for the class of problems where fracture path is straight.

4.4.8. Effect of the Stress Anisotropy Level on Turning Fracture
All previous examples of growing fracture were modeled in anisotropic stress field where ini-
tial fracture direction coincided with the direction perpendicular to the minimum horizontal
stress o,. Therefore, fracture grew straight. In the current series of experiments, the stress
field was turned 90°, forcing the fracture to change its initial direction. 3 stress fields with dif-
ferent anisotropy were modeled. Following ratios between minimum and maximum horizontal
stresses o,/0y were employed 1:1.05,1:1.075 and 1: 1.1. Tests were done on domains with 3
different average mesh sizes: 1.25, 2.5 and 5.0 m. Results are given in figure 4.37.

Infigure 4.37, we see that the proposed algorithm allows for fracture re-orientationin space.
Additional to that, the numerical scheme is sensitive to the level of stress anisotropy. Model
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Figure 4.35: Comparison of fracture lengths in time for meshes without horizontal path for the fracture. The largest
mesh size shows overshoot in length and non-smooth growth in time. Denser meshes have better agreement with
analytic curve and variation of the final length in the range of 3%.
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with only 5% of anisotropy shows smooth fracture turning, while larger values of anisotropy
(7.5% and 10%) make fracture turn under a more acute angle to the initial direction right from
the beginning. However, difference between fracture trajectories calculated on meshes with
different average size is apparent. In contrast to straight fracture, results of simulations for
turning fracture are rather qualitative. The reason for that is the disturbance of the stress field
around the crack tip, which is caused by finite size of the elements at the tip as well as their size
ratio.
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(a)

Figure 4.37: Turning fracture trajectory for anisotropic stress fields with ratios o}, /o i equal (a) 1:1.05, (b) 1:1.075 and (c)
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Application

The purpose of this chapter is to demonstrate the applicability of the developed model to prac-
tical tasks. The specific problem that we solve is to model the hydraulic fracture growth during
waterflooding operations within a classical injection pattern.

The waterflooding operation aim is to increase the recovery of hydrocarbons by displacing
them by injected water. Different injection patterns are employed for such operation. Here
we consider one the most commonly used patterns called an inverted nine-spot. This injection
pattern is a specific design of the reservoir development plan, where water is injected into a
well surrounded by 8 producing wells. Schematics of this pattern is given in figure 5.1a. It is
adopted on many oil & gas fields worldwide due to its high extraction rates and coverage ratio,
and therefore, maximum Net Present Value and Oil Recovery Value. One of the places where
such injection pattern is successfully employed is Priobskoye field in Western Siberia, Russia.
Priobskoye is the second by amount of geological reserves field in Russia, after Samotlorskoye
field.

In the oil fields of Western Siberia with low permeable producing rock, hydraulic fractur-
ing is a common practice of increasing oil recovery [65]. Likewise, hydraulic fracturing is widely
used in Priobskoye field [99]. Half-lengths of stimulated fractures are reaching 150 — 200 m. Af-
ter injection starts, a waterflood-induced fracture grows as a continuation of an existing hy-
draulic fracture. Half-lengths of such fractures may reach 350 — 400 m and lead to a 100% water-
cut at producing wells. In order to avoid this situation, a reservoir development plan should be
designed, considering waterflood-induced fractures. Specific parameters which could be opti-
mized are distances between wells, intensity of hydraulic stimulation, injection and extraction
rates. Toillustrate the effect of early watercut and show the importance of including waterflood-
induced fractures into a reservoir development plan, we setup the following synthetic problem.

5.1. Model description

Here we model a waterflood-induced fracture in a limited section of the injection pattern. The
considered region is limited by the dashed line in figure 5.1a and comprises one injecting well
and three producers. Induced hydraulic fractures are oriented in the direction perpendicular
to the minimum horizontal stress o, with small deviations of +8°. Lengths of induced fractures
are contained in the region 200 — 300 m for a whole 2-winged fracture. In order to simplify the
generation of the model input files, boundaries of the modeled region are co-oriented with the
principal stresses directions. The simulated domain and its boundary conditions for mechanics
are given in figure 5.1b. To reduce the size of the discrete model, only half-space is considered.
The symmetrical boundary condition is imposed at x = 0 m. The model is compressed by the
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horizontal stresses, o, = 386-10° Pa and oy =-360- 10° Pa. The displacement in Z direction is re-
stricted for every node. The computational domain is defined by Q = [900 x 920 x 1m]. The mesh
with the average size of elements equal to 10 m in the center and 100 towards the boundaries
was employed. The matrix is discretized using 9,990 tetrahedral elements (10,052 vertices). The
fractures are discretized by 11,695 rectangles. The total number of control volumes is 21, 685.
Initial conditions for the mechanical part correspond to the stresses applied at the boundaries.
Flow domain is surrounded by impermeable boundaries. The initial reservoir pressure equals
to pr =200-10° Pa. The fluid is injected with the rate Qjy;. Full recovery is ensured by extracting
from 3 wells with the production rate of Q.x; = Qinj/3 per each well. As we are modeling a 2D
case, but the numerical domain has a third dimension equal to 1, injection flow rates are given
per unit height of the reservoir, and the unit for it is m3/day/m. Conductivity of the fractures is
sensitive to the stress field and will change during operations. Conductivity values correspond-
ing to the Barnett shale were adopted from [118]. They are plotted as a function of the normal
traction and aperture in figure ??. The curve in the left part of the figure is plotted against the
normal fracture aperture, while in the right part it is plotted against normal traction on a frac-
ture face. Reduction in compression between faces and following opening of the fracture leads
to the increase of its conductivity. Properties of the rock, injected and extracted fluids, as well
as the operational parameters are provided in table 5.1.
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Figure 5.1: (a) Inverted nine-spot injection pattern. (b) Simulated part of the pattern with boundary conditions for
mechanical part. Hydraulic boundary conditions are no flow through its sides.

5.2. Results

Two typical waterflooding scenarios are considered. The first behavior is characterized by no
induced fracture. This typically happens when the injection flow rate is low. The second be-
havior is an induction of fracture growth by the injection of water under a high rate. Even for
the no-induced-fracture case, including the geomechanics into simulation is important. It al-
lows predicting conductivity changes of both stationary crack and porous media. Observation
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Table 5.1: Fluid and rock properties used in the practical example

Rock properties and stresses

Matrix porosity ¢

Matrix permeability k, mD
Density p,, kg/m?

Biot modulus «

Young’s modulus E, Pa

Initial reservoir pressure p,, Pa
Poisson’s ratio v
Compressibility C,, 1/Pa
Cohesion ¢, Pa

Friction angle ¢, °

Dilation angle v, ©

Total horizontal stress o, Pa
Total horizontal stress o, Pa
Rock temperature T;, °K
Fracture toughness K¢, Pay/m

Fluid properties

0.2
2500

2.10'°
200-10°
0.25
1-10710
1-10™

—386-10°
-360-10°
373
30-10°

Oil density p,, kg/m®

Water density p,,, kg/m3

Oil viscosity u,, cP

Water viscosity y,,, cP

Oil compressibility C,, 1/Pa

Water compressibility C,,, 1/Pa
Connate water saturation S,,r
End-point relative permeability of oil k;,
End-point relative permeability of water k;,,
Mobility ratio M

Injected water temperature Ty, °K

1000
1000
0.5

0.2
5-10710
4.10710
0.25
0.8

0.8

2.5

373
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Figure 5.2: Fracture conductivity as a function of its aperture (left part) and normal traction (right part)

and comparison of two numerical simulations corresponding to the two typical behaviors dur-
ing the waterflooding operation are given.

The first typical behavior was achieved in the numerical simulations with the water injec-
tion rate Qi =9 m3/day/m. Pressure and water saturation profiles after 3 years of simulation
time are given in figure 5.3. Pressure increase along the existing hydraulic fracture connected
to the injection well is much more pronounced than the pressure drop on wells-producers. The
reason behind is the aperture dependent fracture conductivities. As the injection well tends to
"blow-up" the neighboring fracture, compression of the fracture tends to decrease leading to
increase in its conductivity. In contrast, producing wells reduce the pressure in their neighbor-
hood, which leads to the increase of the normal traction on the neighboring fracture faces. As
a result, conductivity of fractures at producing wells reduces. Waterflood front, given in figure
5.3b, still does not reach any of the producing wells after 3 years. Smeared water saturation
front corresponds to the unfavorable displacement type, indicated by the mobility ratio M > 1
(see table 5.1).

Pressure dynamics at each well is given in figure 5.4a. Bottom Hole Pressure (BHP) at the
injector grows intensively during the first 200 days after which it stabilizes. The maximum value
of pressure stays close to 1.08¢;, which is not enough to overcome the sum of the minimum hori-
zontal stress o, the poro-elastic component Ao, and the contribution from fracture toughness
Ki.. Therefore, the fracture does not propagate. Pressure profiles at two of the producing wells
have a decrease after 2300 days. The reason for such behavior is the water breakthrough which
is clearly seen in figure 5.4b. Here, the collective water production from 3 wells is given. It is
normalized over the volume of the injected water. Water breaks at 2300 days which is distin-
guished by a steep increase in the produced water volume.

The next typical waterflooding behavior is the one with the growing hydraulic fracture. As
an illustration, results of the simulation with the injection rate Qi = 21 m3/day/m are investi-
gated. Pressure and water saturation profiles across the domain after 3 numerical years are
givenin figure 5.5. In comparison to the stationary fracture case, pressure and water saturation
front advanced on a larger distance owing both to a conductive path created by the fracture and
the higher value of injection rate.

Dynamics of the Bottom Hole Pressure at the injection well and the fracture length is given
infigure 5.6a. Here, pressure increases above the critical stress’, which makes propagation pos-

1which approximately equals to 1120,
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Figure 5.3: (a) Pressure and (b) water saturation profiles across the domain in the simulation with Qjn; =9 m3/day/m
after 3 years. Water front yet didn’t reach any of the producing wells.

sible. Unlike the stationary fracture case, the pressure profile for growing crack has fluctuations
e . 1
associated with openings of fracture segments. Crack, which initiates with the length of =W 2,

develops dimensions even larger than W. Water production history is given in figure 5.6b. Wa-
ter breaks after 900 days.

In order to compare two typical behaviors irrespective of time, variables are plotted against
V .
volume of the injected water normalized by the displaceable pore volume of the domain %
dpor

‘anN

Theratio shows the fraction of the total available pore volume already displaced by water

pﬁpor
and serves as the indicator of the waterflooding progress. Normalized BHP curves at the in-

‘Gnhv.
in figure 5.7a. Pressure curve for sta-

jecting well for two simulations are plotted against
dpor
tionary fracture case stays below the similar curve for growing fracture during the whole sim-

ulation. The critical pressure value after which the fracture starts growing is found in-between
these two curves. Normalized volume of the produced water for two simulations is given in fig-
ure 5.7b. If the hydraulic fracture is induced, less injected water is needed to cause the water
breakthrough. This statement holds for these specific injection rates and the current domain.

In order to identify patterns in behavior of pressure, length and water breakthrough ini-
tiation, 4 more simulations were performed. Their injection rates are Qi = 5, 7, 14, and 28
m3/day/m. Data from all 6 simulations is plotted together. Profiles of the BHP at the injector
for all 6 simulations are given in figure 5.8. Increase in the injection rate leads to a higher pres-
sure level. After a rapid pressure growth during injection of the first 2% of the displaceable pore
volume, the pressure value stabilizes. When pressure exceeds the critical value (approximately
1.103), the fracture starts to grow. It is important to mention that for a propagating fracture,
BHP does not vary significantly for different injection rates.

Dynamics of the fracture length is shown in figure 5.9. The figure reveals that the growth
rate is directly dependent on the injection rate. Similar to the pressure behavior, the most in-

21y is the shortest distance between two neighboring wells
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Figure 5.4: Dynamics of (a) the Bottom Hole Pressures and (b) the produced water volumes throughout the simula-
tion with Qipj =9 m3/day/m. Values of the BHP at every well are normalized with respect to the minimum horizontal
stress o, The cumulative volume of water produced by 3 wells Q)44 is normalized by the cumulative volume of
the injected water Q;, -

tensive fracture growth fall on the displacement of the first 2% of the total volume. Assessment
of figures 5.8 and 5.9 shows that, although the BHPs at the injector are very similar during the
crack growth, corresponding lengths can differ at times. One conclusion is that during the wa-
terflooding operation, controlling only the injection pressure is not sufficient for having control
over the induced fracture length.

Water production in time is given in figure 5.10. It is clear that higher injection rates are
leading to earlier water breakthrough. However, this information is not sufficient to evaluate
efficiency of the waterflooding operation. For this, production volumes should be plotted with
respect to the injected volumes.

Figure 5.11 gives the volume of the produced water with respect to the volume of the in-
jected water. It is seen that, when no fracture is induced, water production curve is the same
for all the flow rates (5, 7 and 9 m3/day/m). In contrast, the growing fracture changes the wa-
terflooding performance. In this particular case, development of the fracture with Qi = 14
m3/day/m leads to a more effective operation and later water breakthrough than in case where
no fracture is induced. However, a further increase of injection rate leads to a water break-
through happening earlier, like in case of Qi = 14 m3/day/m.

In addition, scenarios with Qj,j = 14 and 21 m3/day/m were simulated on two different meshes
with average size equal to 5 and 10 m. Comparison of the solutions for length is given in figure
5.12. Results show good agreement in each pair of curves.

5.3. Summary

The developed model is of great value for this specific application. Results of the simulations
reveal the nature of the waterflooding process. Evolution of pore pressure and stress fields,
growth of water saturation front and variation of the rock conductivity are only few among
many other features traced by the model. Properties of both stationary and growing fracture
can be accurately predicted. For a stationary crack, these properties include aperture, traction
and conductivity. For a growing fracture, the list is extended to include the crack length, growth
rate, critical stress necessary for propagation, etc. In addition, it allows accounting for the prop-
erties of the injected proppant and dependency of fracture conductivity on stresses.
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Figure 5.5: (a) Pressure and (b) water saturation profiles across the domain in the simulation with Qinj =21 m3/day/m
after 3 years. The pressure and water saturation front follow advancing fracture.

The employment of the developed model to design waterflooding operations is advanta-
geous. Based on the predicted final fracture length and the water breakthrough time, well plan
and the injection pattern could be optimized allowing for a more cost-effective solution. The
choice of operational parameters such as limiting pressures, injection and production rates could
be also based on the model predictions.

From the operational point of view, the model provides key parameters such as critical in-
jection rate and associated bottom hole pressure, after exceedance of which starts the fracture
propagation. The model can also estimate the final fracture length depending on the employed
injection rate.
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Figure 5.10: Produced water volume normalized by volume of the injected water against time
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Figure 5.12: Solution for fracture length obtained on meshes with average size equal to 5 and 10 m.






Conclusions and Recommendations

Here, conclusions regarding the model’s effectiveness, applicability and stability are presented.
Further on, recommendations for the future work with the proposed method and developed
code are given.

In the current thesis, the model which allows simulating the hydraulic fracturing was pro-
posed. This model comprises a contact-enriched finite-element method for mechanics and a
Discrete Fracture Model for hydraulics. Application of the proposed model was tested by pro-
ducing the numerical code. Techniques adopted in this model were chosen, based on the con-
ducted literature survey. Applicability of the proposed algorithm for a wide range of practical
problems was demonstrated during the validation stage. Results obtained with the proposed
model confirmed its ability to predict correctly growth of the hydraulic fracture and to capture
pressure, temperature and stress changes in the domain.

6.1. Modifications to Classical DFM and FEM with Contacts

In order to enable the existing numerical solution [33] to account for growing fractures, both
the hydraulical and mechanical parts were modified. Modification of the flow part comprises
assigning the "virtual" fracture segments with associated finite volumes to every face shared
by two neighboring cells. This operation is done only once in the beginning of the simulation.
Mechanical scheme is updated upon each fracture propagation event. It is done by separation
of neighboring finite elements and addition of a contact surface in-between. Proposed scheme
was tested both on stationary and propagating fracture examples, showing compliance with the
analytical solution. In addition, the numerical model is capable of capturing flow regimes that
are not accounted for in the simplified analytical solution.

For fracture propagation, Irwin’s criterion [50] for linear elastic failure of mode | K7 < K. is
adopted. The Stress Intensity Factor is calculated by means of the displacement extrapolation
technique where K-values based on a fracture opening, are extrapolated to the crack tip. Adop-
tion of such technique enables fracture to propagate with a stable rate, independent of the av-
erage mesh size. Fracture length had the same rate of growth both for fine and coarse meshes
(see figure 4.20). Results of all tested examples are in compliance with analytical solution.

Erdogan and Sih’s approach for determination of the fracture propagation direction was em-
ployed [31]. Enabling the fracture to grow into direction of the maximum tensional hoop stress
ogp gave excellent results for fracture propagating straight. The model was tested on a set of
random meshes without prescribed horizontal path and obtained fracture trajectories close to
horizontal. It demonstrates applicability of the proposed method for a wide range of problems
where no fracture turning is expected. Employment of the same criterion for turning fracture
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scenarios resulted in fractures reorientation and alignment with far-field stresses. It indicates
that the proposed numerical scheme is sensitive to the stress field, which is a positive indica-
tion for further research. However, trajectories of turning fractures obtained on meshes with
different average sizes vary. In order to use the proposed algorithm for quantitative analysis of
turning fractures, additional work on the selection of proper direction has to be done.

In order to activate more than 1 fracture segment per one time step, decision on fracture
propagation/closure is taken on every Newton iteration. This is done by verifying the failure
criteria and mechanical status of the last open segment. Implementation of this algorithm on
each iteration permits to have as many segments open in one time step as necessary for the
solution to converge. Study of the model sensitivity to time step size resulted in similar fracture
growth rates in all the simulations (see figure 4.23). This example demonstrates stability of the
proposed approach for problems with single propagating hydraulic fracture.

The proposed fracture opening algorithm supposes that only one segment next to the crack
tip is opened per iteration. This algorithm is convenient for slow hydraulic fracturing process,
typical for waterflooding operations, wastewater disposal and any other processes where sin-
gle continuous fracture is developing. Stability of the numerical scheme for a single growing
fracture was demonstrated in numerous test cases, both for straight and turning fractures. In
order to broaden the range of applicability for tasks where multiple fractures grow, some future
work is suggested.

Model sensitivity to such parameters as fluid compressibility and fracture toughness was
studied as well. Increase in the compressibility led to a delay in the fracture growth, which per-
fectly matches physics of the process. Increase in fracture toughness K. led to later fracture
growth initiation as well as shorter final crack. Both obtained results match analytical solution.

The "virtual" fracture segment is an artificial element, that was introduced into numerical
scheme in order to model fluid flow through fractured media. The effect of its volume and con-
ductivity on the fracture pressure and length development was studied. Increase in its volume
together with proper upscaling of its conductivity and transmissibility do not cause any noted
effect on the solution for fracture pressure and length.

Several simulations were performed where two fluid phases were present in the domain.
Reservoir simulator performed impeccably, resulting in saturation profile of water front simi-
lar to the one predicted by Welge’s solution (see figures 4.7, 4.8 and 4.10). Mechanical part,
in its turn, managed to capture both primary and secondary fracture growth, and fracture clo-
sure due to expansion of the flooded zone. These examples demonstrate model’s sensitivity to
long-term pressure variations and its ability to effectively close the fracture. One testing case
was devoted to injection of cold fluid into a hot reservoir. Cooling of the reservoir by injected
water led to the rock shrinkage. Resulting tensional stresses around the crack facilitated its
further propagation. Apart from the primary fracture growth, numerical algorithm is capable
of detecting the secondary fracturing mechanism, which causes development of thermal cracks
perpendicular to the primary fracture face. Obtained results confirmed the model’s ability to
capture thermo-elastic effect.

The proposed model was tested on the real-life application, namely waterflooding opera-
tion. Segment of the inverted nine-spot injection pattern was simulated with different injection
and production rates. In some cases, simulation resulted in no induced fractures, while in oth-
ers hydraulic fracture has grown. Fracture growth rate and its final length show dependence on
the injection rate. Time of the water breakthrough for different scenarios was compared. Em-
ployment of the model for this specific application could be beneficial for the waterflood design
optimization and correlation with field data during operations.

Apart from the discussed application, the proposed method has great potential in the range
of different problems, where single continuous straight fracture is considered. Such tasks in-
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clude hydraulic fracturing due to wastewater disposal, geothermal reservoir development and
any other applications where slow injection of fluid into porous media is considered. In order
to widen the range of applicability as well as to improve efficiency of the model, | suggest that
further work should be performed.

6.2. Future Work

The proposed fracture opening algorithm allows opening only one fracture segment next to the
crack tip. It suits large number of engineering applications, mentioned earlier. Still, there are
technological activities which cause simultaneous development of multiple hydraulic fractures
as well as separation of one fracture into several. Such behavior is common for "fast" fractures,
caused by high injection rates, where fluid losses into formation are insignificant. Typical activ-
ity is hydrofracking, where the whole network of fractures is developing. Another phenomenon,
where multiple fracture growth is considered is rock shrinkage due to cooling around the pri-
mary crack. It was shown in the subsection 4.3.1 that under certain conditions, secondary cracks
tend to develop from the primary crack in direction perpendicular to it. Intersection of the hy-
draulic fractures with the natural ones is another important process where fracture splitting
may take place[12].

To enable a simultaneous growth of multiple fractures, a split of one fracture into a few or
intersection with natural cracks, the proposed fracture opening algorithm should be modified. A
suggested way of doing this is opening multiple segments upon meeting failure criteria at every
specific location. As in the developed approach, it can be performed on every Newton iteration.
Fracture propagation criteria should also be reconsidered. Estimation of Stress Intensity Factor
can be complicated for multiple fracture case. Alternatively, local critical stress criteria could be
employed. One of them was proposed by Erdogan and Sih [31].

Another group of tasks, where this model can be extended is applications with turning frac-
tures. The developed algorithm is capable of capturing fracture reorientation. However, frac-
ture trajectories obtained on different meshes have significant offset. The reason behind is the
algorithm for direction selection. It is based on the value of the normal stress acting on the
crack tip neighboring segments. The stress field around the tip is disturbed and not represen-
tative. One of the possible ways of improving the turning mechanism is recovery of the smooth
stress field around the crack tip. That could be done by calculating principal stresses in the el-
ements in close proximity to the crack and applying a spline function to smooth the field. The
segment closest to the direction of maximum tensional stress should be opened. Another way
of improvement is implementation of Sih’s approach [23]. In the scope of this method, frac-
ture propagates in the direction with minimum strain energy density. Additional calculations of
strain energy density S and its first and second derivatives are necessary.

Efficiency of the proposed model could be improved by modification of the flow problem
discretization. As mentioned earlier, finite volumes are assigned to every "virtual" fracture seg-
ment. This considerably increases number of variables and size of the final system of equations.
In order to reduce the CPU load, finite volumes may be added dynamically upon opening of new
fracture segments, similar to how contact surfaces are added into mechanical scheme. How-
ever, Discrete Fracture Model is very sensitive to volume changes and may destabilize upon
increase of the system volume. The generation of new volumes for propagating fracture should
be implemented in a conservative manner.
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